WorldWideScience

Sample records for burn engine exhaust

  1. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  2. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  3. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States); Wan, C.Z.; Rice, G.W.; Voss, K.E. [Engelhard Corp., Iselin, NJ (United States)

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  4. Jet Engine Exhaust Analysis by Subtractive Chromatography

    Science.gov (United States)

    1978-12-01

    hydrocarbon ( TIIC ) results for the March 1975 jet engine exhaust studies ......... .............. 11 3. Specific retention volumes (Vg) for selected...studies with subsequent low TiIC recove.’cries. At least three factors could singly or in combination bu I responsible for exceeding the trap capacities: 1...effective system for collectingq crqanics : in jet engine exhaust. The success of these modifications is illustrated by t.he TIIC recovery data compared

  5. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  6. Lean-burn engines UHC emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Karll, B.; Kristensen, P.G.; Nielsen, M.; Iskov, H. [Danish Gas Technology Centre a/s (Denmark); Broe Bendtsen, A.; Glarborg, P.; Dam-Johansen, K. [Technical University of Denmark. CHEC, Department of Chemical Engineering (Denmark)

    1999-04-01

    at increased NO{sub x} levels and the results show that increased NO{sub x} levels improve the UHC conversion in the exhaust reactor. The process is found to be very dependent on actual NO{sub x} levels and the exhaust reactor temperature. The exhaust temperature from lean burn engines is in the range from 450 to 550 deg. C depending on the engine settings and type. The conclusion from the tests shows that only if the temperature in the exhaust system is raised, it will be possible to use the NO{sub x} enhanced UHC oxidation process for post oxidation. Injection of hydrogen peroxide caused a significant reduction in the stack emission of UHC by conversion of UHC at conditions where the exhaust reactor otherwise was unable to oxidise UHC. The stack emission of UHC was reduced by 40-60% during test engine conditions. (EHS) EFP-96; 14 refs.

  7. Lean-burn engines UHC emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Karll, B.; Kristensen, P.G.; Nielsen, M.; Iskov, H. [Danish Gas Technology Centre a/s (Denmark); Broe Bendtsen, A.; Glarborg, P.; Dam-Johansen, K. [Technical University of Denmark. CHEC, Department of Chemical Engineering (Denmark)

    1999-04-01

    at increased NO{sub x} levels and the results show that increased NO{sub x} levels improve the UHC conversion in the exhaust reactor. The process is found to be very dependent on actual NO{sub x} levels and the exhaust reactor temperature. The exhaust temperature from lean burn engines is in the range from 450 to 550 deg. C depending on the engine settings and type. The conclusion from the tests shows that only if the temperature in the exhaust system is raised, it will be possible to use the NO{sub x} enhanced UHC oxidation process for post oxidation. Injection of hydrogen peroxide caused a significant reduction in the stack emission of UHC by conversion of UHC at conditions where the exhaust reactor otherwise was unable to oxidise UHC. The stack emissin of UHC was reduced by 40-60% during test engine conditions. (EHS) EFP-96; 14 refs.

  8. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Science.gov (United States)

    2010-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...

  9. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  10. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  11. Air flow quality analysis of modenas engine exhaust system

    Science.gov (United States)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  12. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  13. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  14. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.

  15. Significance of burn types, as measured by using the spark plugs as ionization probes, with respect to the hydrocarbon emission levels in S. I. engines

    Energy Technology Data Exchange (ETDEWEB)

    Rado, W.G.; Johnson, W.J.

    1975-01-01

    The significance of burn types on hydrocarbon emissions from spark ignition engines was investigated by analyzing combustion signals with the utilization of spark plugs as ionization probes. A correlation between the simultaneously recorded combustion and cylinder pressure signals allowed for the use of combustion signals to identify three types of burns, viz., good burns, slow burns, and misfires. During both deceleration and operation with exhaust gas recirculation, degradation from good burns followed the same pattern irrespective of engine type tested. Good burns gradually turned into slow burns and then into misfires as deceleration became more severe or as the EGR rate was increased. Slow burns resulted in 3 to 13 times the hydrocarbons that resulted from good burns, and misfires increased hydrocarbon levels 18 to 24 times those resulting from good burns. About 60 percent of the unburned fuel leaving the engine cylinder appeared to be burned up in part of the exhaust manifold.

  16. Field and laboratory measurements of biomass burning and vehicle exhaust using a PTR-MS

    Science.gov (United States)

    VanderSchelden, Graham Samuel

    The Proton Transfer Reaction Mass Spectrometer (PTR-MS) is a powerful tool for analyzing organic compounds in air and has been applied in field and laboratory applications to assess emissions from biomass burning and vehicles. Biomass burning is an important source of air pollution globally in the form of wild fires, burning of crop stubble, and combustion of organic material for home energy. In the United States, residential wood combustion combined with low inversion heights in winter time has caused air quality problems. Through field deployment of the PTR-MS in Xi'an China during August of 2011, it was determined that 27%, 16%, 26%, and 12% of ambient carbon monoxide (CO), acetaldehyde, benzene, and toluene could be attributed to biomass burning. The PTR-MS was also deployed to Yakima, Washington in January of 2013, finding that residential wood combustion was a substantial source of air toxics and PM. Residential wood combustion contributed 100%, 73%, 69%, 55%, 36%, 19%, 19%, and 17% of organic PM1, formaldehyde, acetaldehyde, black carbon, benzene, toluene, C2-alkylbenzenes, and CO respectively. Diesel vehicles are becoming a larger fraction of the vehicle fleet and can be held responsible for a substantial fraction of air pollution emissions from on and off road mobile sources. Diesel engines are a source of low volatility products that are difficult to measure and are thought to be important in the formation of secondary organic aerosol (SOA). This work focuses on measuring important diesel exhaust compounds with the PTR-MS and assessing oxidation processes of these compounds. When the PTR-MS was deployed to the field along with a thermal desorption pre-concentration system, we estimated that diesel vehicles were about 3-15% of the vehicle activity influencing our study site in Yakima, WA using the ratio of m/z 157 to m/z 129. SOA yields of diesel exhaust compounds were assessed and about 48% of the SOA was attributed to compounds measured by the PTR

  17. Electromagnetic Exhaust Valve Event Optimization for Enhancing Gasoline Engine Performance

    Directory of Open Access Journals (Sweden)

    Fan Xinyu

    2017-01-01

    Full Text Available Variable exhaust valve events have the potential to further improve the engine power output, fuel economy and decrease the NOX emissions. Based on the moving coil electromagnetic valve train applied to engine exhaust system, effects of variable exhaust valve events are analyzed in detail and the optimization approaches are carried out. Also with the fully variable intake and exhaust valve train, different internal EGR strategies can be achieved and the contrastive analyses are carried out between combustion chamber recirculation and exhaust port recirculation strategies at same operational condition. Results show that, the optimal exhaust valve opening motion can strengthen both power performance and fuel economy at engine part loads. And two principal EGR strategies are applied in a good combination under variable engine loads. At the engine speed of 2000 r/min, BMEP is about 0.3 MPa and with 30%~35% exhaust port recirculation rate, the BSFC and NOX emissions have decrease over 10% and 85% respectively compare with initial condition.

  18. Subscale Design of an NTP Engine Exhaust Containment System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A total containment NTP exhaust system has been conceptually engineered, however, since this a completely novel approach to address the numerous issues associated...

  19. Exhaust emissions from small engines in handheld devices

    Directory of Open Access Journals (Sweden)

    Lijewski Piotr

    2017-01-01

    Full Text Available The paper presents the results of investigations on the exhaust emissions carried out under real operating conditions of gasoline engines operating in a power generator and a chainsaw. During the operation of these devices the authors measured the following exhaust emissions: CO, HC, NOx and CO2. For the measurements the authors used a portable exhaust emission analyzer SEMTECH DS by SENSORS. This analyzer measures the concentrations of the exhaust gas components in an on-line mode while the engine is running under real operating conditions (road, field etc.. The exhaust emissions tests of non-road engine applications are performed on engine test beds in the NRSC (ISO 8178 and NRTC tests. The presented method is a new solution in determining of the exhaust emissions from such engines. The obtained results were compared with the applicable emission requirements. Besides, based on the performed investigations, the authors attempted an evaluation of the possibilities of the use of the measurement method for development works related to the reduction of the emission from small gasoline engines.

  20. Engineering task plan for five portable exhausters

    Energy Technology Data Exchange (ETDEWEB)

    Rensink, G.E.

    1997-10-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures.

  1. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  2. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  3. Effluent Scrubbing of Engine Exhaust of a Nuclear Thermal Propulsion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project identified specific knowledge and expertise in radioactive hydrogen effluent filter technology, so that internal resources on NTP engine exhaust...

  4. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    Science.gov (United States)

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  6. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  7. Particulate matters from diesel engine exhaust emission

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.

    2008-01-01

    Full Text Available Air pollution caused by diesel engine emissions, especially particulate matters and nitric oxides emissions, is one of the biggest problems of current transportation. In the near future the emission of diesel particulate matters will become one of the most important factors that will affect the trend of engine development. Ambient airborne particles have adverse environmental and health effects and therefore their concentration in the air is regulated. Recent medical studies showed that different particle properties are important (for example: number/concentration, active surface, chemical composition/morphology and may take role in the responsibility for their human health impact. Thus, diesel engines are one of the most important sources of particles in the atmosphere, especially in urban areas. Studying health effects and diesel engine particulate properties, it has been concluded that they are a complex mixture of solids and liquids. Biological activity of particulate matter may be related to particle sizes and their number. The paper presents the activities of UN-ECE working group PMP on defining the best procedure and methodology for the measurement of passenger cars diesel engines particle mass and number concentrations. The results of inter-laboratory emissions testing are presented for different engine technologies with special attention on repeatability and reproducibility of measured data. .

  8. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)

    2011-07-28

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  9. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    Science.gov (United States)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  10. Adaptive feedforward control of exhaust recirculation in large diesel engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2017-01-01

    Environmental concern has led the International Maritime Organization to restrict NO푥 emissions from marine diesel engines. Exhaust gas recirculation (EGR) systems have been introduced in order to comply to the new standards. Traditional fixed-gain feedback methods are not able to control the EGR...

  11. Method of calculation of exhaust gases emissions of biogas engine

    OpenAIRE

    Абрамчук, Ф. И.; Кабанов, А. Н.; Петров, Н. В.

    2013-01-01

    In article has been presented method allows to calculate content of harmful chemical species in exhaust gases of biogas engine. To determine the equilibrium composition of internal combustion engine with spark ignition is proposed to use a system of 10 equations with 10 unknowns based on six chemical reactions, 3 equations of material balance and Dalton’s law equation. The technique of algebraic solutions of system of nonlinear equations has been proposed. Comparison of results of calculation...

  12. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  13. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    Science.gov (United States)

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.

  14. Performance and exhaust emissions of a biodiesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, Mustafa [Kocaeli University, Technical Education Faculty, 41380 Kocaeli (Turkey); Erdil, Ahmet [Kocaeli University, Engineering Faculty, 41040 Kocaeli (Turkey); Arcaklioglu, Erol [Kirikkale University, Engineering Faculty, 71450 Kirikkale (Turkey)

    2006-06-15

    In this study, the applicabilities of Artificial Neural Networks (ANNs) have been investigated for the performance and exhaust-emission values of a diesel engine fueled with biodiesels from different feedstocks and petroleum diesel fuels. The engine performance and emissions characteristics of two different petroleum diesel-fuels (No. 1 and No. 2), biodiesels (from soybean oil and yellow grease), and their 20% blends with No. 2 diesel fuel were used as experimental results. The fuels were tested at full load (100%) at 1400-rpm engine speed, where the engine torque was 257.6Nm. To train the network, the average molecular weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio and cetane number of each fuel are used as the input layer, while outputs are the brake specific fuel-consumption, exhaust temperature, and exhaust emissions. The back-propagation learning algorithm with three different variants, single layer, and logistic sigmoid transfer function were used in the network. By using weights in the network, formulations have been given for each output. The network has yielded R{sup 2} values of 0.99 and the mean % errors are smaller than 4.2 for the training data, while the R{sup 2} values are about 0.99 and the mean % errors are smaller than 5.5 for the test data. The performance and exhaust emissions from a diesel engine, using biodiesel blends with No. 2 diesel fuel up to 20%, have been predicted using the ANN model. sing the ANN model. (author)

  15. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    Diesel engine exhaust gases contain several harmful substances. The main pollutants are carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrous gases such as nitrogen oxide (NO) and nitrogen dioxide (NO2) (together NOx). Reducing the emission of these pollutants is of great...... outperformed the other control structures. The results were experimentally verified by implementing the tested controllers on a full-scale engine setup, and the results showed that coupling feedback with ANR based feedforward was yielding better performance. The PD controller showed good performance...... importance due to their effect on urban air quality, and because of new legislation. In modern heavy-duty applications, the exhaust gases are typically treated with four different catalysts: a Diesel Oxidation Catalyst (DOC) which oxidises HC and CO into H2O and CO2, and NO into NO2, a Diesel Particulate...

  16. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel engines...

  17. SUPERCHARGED ENGINE USING TURBINE STANDALONE EXHAUST GAS RECUPERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Nikola Matulić

    2017-01-01

    Full Text Available This paper presents a new hybrid concept that increases the overall efficiency of the propulsion system on ships. The hybrid concept of the marine propulsion system was examined in 1D CFD internal combustion engine model where the turbine and compressor are not mechanically connected. Such a configuration makes possible different turbine designs than needed in the conventional turbocharger. The advantage is an increased recuperation of energy from exhaust gases. By means of computer simulation and optimization, this study proves that the hybrid concept significantly increases the propulsion system efficiency and lower emissions in maritime environment.

  18. Exhaust Nozzle for a Multitube Detonative Combustion Engine

    Science.gov (United States)

    Bratkovich, Thomas E.; Williams, Kevin E.; Bussing, Thomas R. A.; Lidstone, Gary L.; Hinkey, John B.

    2004-01-01

    An improved type of exhaust nozzle has been invented to help optimize the performances of multitube detonative combustion engines. The invention is applicable to both air-breathing and rocket engines used to propel some aircraft and spacecraft, respectively. In a detonative combustion engine, thrust is generated through the expulsion of combustion products from a detonation process in which combustion takes place in a reaction zone coupled to a shock wave. The combustion releases energy to sustain the shock wave, while the shock wave enhances the combustion in the reaction zone. The coupled shockwave/reaction zone, commonly referred to as a detonation, propagates through the reactants at very high speed . typically of the order of several thousands of feet per second (of the order of 1 km/s). The very high speed of the detonation forces combustion to occur very rapidly, thereby contributing to high thermodynamic efficiency. A detonative combustion engine of the type to which the present invention applies includes multiple parallel cylindrical combustion tubes, each closed at the front end and open at the rear end. Each tube is filled with a fuel/oxidizer mixture, and then a detonation wave is initiated at the closed end. The wave propagates rapidly through the fuel/oxidizer mixture, producing very high pressure due to the rapid combustion. The high pressure acting on the closed end of the tube contributes to forward thrust. When the detonation wave reaches the open end of the tube, it produces a blast wave, behind which the high-pressure combustion products are expelled from the tube. The process of filling each combustion tube with a detonable fuel/oxidizer mixture and then producing a detonation repeated rapidly to obtain repeated pulses of thrust. Moreover, the multiple combustion tubes are filled and fired in a repeating sequence. Hence, the pressure at the outlet of each combustion tube varies cyclically. A nozzle of the present invention channels the

  19. Oxides of nitrogen measurement at exhaust gases of combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Prietsch, W.; Alter, C.; Naumann, M.

    1975-01-01

    Chemical and physical methods available for the determination of nitrogen oxides were tested and compared with respect to their suitability for spark-ignition and diesel engine exhaust oxides of nitrogen analysis. Of all methods tested (Saltzmans method, phenoldisulfonic acid method, as well as non-dispersive infrared, ultraviolet absorption, and chemiluminescence methods), the chemiluminescence method was best for the determination of the total nitrogen oxides concentration in vehicle exhaust, even though the nitrogen dioxide conversion is still problematic, and the NO/sub 2/ concentrations lie within the dispersion limits of the nitric oxide analyzer. Measurement of NO is possible by the NDIR method provided the cross-sensitivity for water is simultaneously measured, and adequate correction is used. The Saltzman method is preferable to the phenoldisulfonic acid method under stationary analytical conditions due to its simplicity and reliability. For a concentration range of 100 to 1000 ppM, a Saltzman factor of 0.72 is best for exhaust nitrogen oxides analysis.

  20. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus

  1. Infrared signature characteristic of a microturbine engine exhaust plume

    Science.gov (United States)

    Gu, Bonchan; Baek, Seung Wook; Jegal, Hyunwook; Choi, Seong Man; Kim, Won Cheol

    2017-11-01

    This research investigates the infrared signature of the exhaust plume ejected from a microturbine engine. Circular and square nozzles are designed and tested to study their effects on the resultant infrared signature of the plume. A microturbine engine is operated under steady conditions with a kerosene added lubricant oil as a fuel. The measurements of the infrared signature are conducted using a spectroradiometer. Blackbody radiance is also measured at an arbitrary temperature and compared to theoretical values to validate the reference and to calibrate the raw spectrum. The infrared signatures emitted from the plume are measured at three measurement locations along the plume for two nozzle configurations. The results are grouped into sub-bands to examine and discuss their specific spectral characteristics. The infrared signatures are shown to decrease as the distance from the nozzle exit increases, which is attributed to the hot exhaust plume mixing with ambient air. The degree to which the signature is reduced at the different the measurement locations was dependent on the sub-band. Comparison of the results shows that the infrared signature of the square nozzle is lower than that of the circular nozzle in specific bands.

  2. Options for Burning LWR SNF in LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  3. Occupational exposure to diesel engine exhaust and serum cytokine levels.

    Science.gov (United States)

    Dai, Yufei; Ren, Dianzhi; Bassig, Bryan A; Vermeulen, Roel; Hu, Wei; Niu, Yong; Duan, Huawei; Ye, Meng; Meng, Tao; Xu, Jun; Bin, Ping; Shen, Meili; Yang, Jufang; Fu, Wei; Meliefste, Kees; Silverman, Debra; Rothman, Nathaniel; Lan, Qing; Zheng, Yuxin

    2017-10-12

    The International Agency for Research on Cancer has classified diesel engine exhaust (DEE) as a human lung carcinogen. Given that inflammation is suspected to be an important underlying mechanism of lung carcinogenesis, we evaluated the relationship between DEE exposure and the inflammatory response using data from a cross-sectional molecular epidemiology study of 41 diesel engine testing workers and 46 unexposed controls. Repeated personal exposure measurements of PM2.5 and other DEE constituents were taken for the diesel engine testing workers before blood collection. Serum levels of six inflammatory biomarkers including interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1β, and monocyte chemotactic protein (MCP)-1 were analyzed in all subjects. Compared to unexposed controls, concentrations of MIP-1β were significantly reduced by ∼37% in DEE exposed workers (P 397 µg/m3 ) compared to unexposed controls. Further, significant inverse exposure-response relationships for IL-8 and MCP-1 were also found in relation to increasing PM2.5 levels among the DEE exposed workers. Given that IL-8, MIP-1β, and MCP-1 are chemokines that play important roles in recruitment of immunocompetent cells for immune defense and tumor cell clearance, the observed lower levels of these markers with increasing PM2.5 exposure may provide insight into the mechanism by which DEE promotes lung cancer. Environ. Mol. Mutagen., 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Analysis on fuel economy improvement and exhaust emission reduction in a two-stroke engine by using an exhaust valve

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Masahiro; Kurosaki, Takaharu; Okada, Kazunori

    1995-12-31

    A timing controlled auto-ignition name ``AR combustion`` could improve irregular combustion in the part load operation of conventional two-stroke engines. Their previous papers have suggested its idea and the drastic improvements in fuel consumption and HC emission proven through a bench experiments. This time, form a concept that improvements of a two-stroke engine should be done maintaining its original advantages, an AR combustion engine was developed by using a simple exhaust valve and maintaining engine`s original power output. This engine was mounted on a motorcycle and experimented in the ``Dakar rally``. As the results, good fuel economies exceeding a four-stroke rally model, excellent driveability and durability were proven, because of the improvement in the combustion and engine`s potential for the downsizing. The AR combustion engine, consequently, has good prospects for the practical use.

  5. Evaluation of Diesel Engine Performance with Intake and Exhaust System Throttling : Volume 2. Appendix 1.

    Science.gov (United States)

    1975-11-01

    The appendix to the preceding volume presents the data for the subject diesel engine noise study, including an engine sound power level analysis and sound spectrums showing the effect of intake and exhaust restrictions.

  6. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    Science.gov (United States)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  7. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Broerman, III, Eugene L.; Bourn, Gary D [Laramie, WY

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  8. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  9. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Wail Aladayleh; Ali Alahmer

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively....

  10. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  12. Laser beam propagation through a jet aircraft engine's exhaust

    Science.gov (United States)

    Sirazetdinov, Vladmir S.; Starikov, Anatoly D.; Titterton, David H.

    2001-01-01

    One-, half- and ten-micron wavelength radiation was used to study laser beam propagation through turbojet aircraft engine exhaust. A feature of the methods was that instantaneous distributions of the beam intensity were recorded during the experiment. Analysis of experimental data has shown that turbulent stream has a dramatic impact on spatial characteristics of a laser beam. For example, the averaged angle divergence for 30-mm one-micron beam becomes about ten times higher than its diffraction divergence. Results of different experiments showed that the average angle divergence of the narrow one-micron beam disturbed by the jet plume is several times less than that of the ten-micron beam which is characterized by a large diffraction divergence, and that of the half-micron beam stronger subjected to disturbances. Experiments in which the beam crossed the plume close to a nozzle at (phi) = 90 degree(s), 45 degree(s) and 10 degree(s) have shown that angular divergence increases with decreasing cross-angle, practically doubling the value when coming from the maximal angle of (phi) = 90 degree(s) to the minimal (phi) = 10 degree(s). Mathematical models have been derived, based on the experimental studies. The value of the structural characteristic in a turbulent stream is in the range of Cn2~10-9m-2/3.

  13. Lab-scale Lidar Sensing of Diesel Engines Exhausts

    Science.gov (United States)

    Borghese, A.

    1992-01-01

    Combustion technology and its environmental concerns are being considered with increasing attention, not only for global-scale effects, but also for toxicological implications, particularly in the lift conditions of traffic-congested areas and industrial sites. Majority combustion by-products (CO, NO(sub x)) and unburned hydrocarbons (HC), are already subject to increasingly severe regulations; however other, non-regulated minority species, mainly soot and heavy aromatic molecules, involve higher health risks, as they are suspected to be agents of serious pathologies and even mutagenic effects. This is but one of the reasons why much research work is being carried out worldwide on the physical properties of these substances. Correspondingly, the need arises to detect their presence in urban environments, with as high a sensitivity as is required by their low concentrations, proper time- and space-resolutions, and 'real-time' capabilities. Lidar techniques are excellent candidates to this purpose, although severe constraints limit their applicability, eye-safety problems and aerosol Mie scattering uncertainties above all. At CNR's Istituto Motori in Napels, a Lidar-like diagnostic system is being developed, aimed primarily at monitoring the dynamic behavior of internal combustion engines, particularly diesel exhausts, and at exploring the feasibility of a so-called 'Downtown Lidar'.

  14. Staged combustion with piston engine and turbine engine supercharger

    Science.gov (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  15. Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Vejlgaard-Laursen, Morten

    2015-01-01

    A nonlinear adaptive controller is proposed for the exhaust gas recirculation systemon large two-stroke diesel engines. The control design is based on a control oriented model ofthe nonlinear dynamics at hand that incorporates load and engine speed changes as knowndisturbances to the exhaust gas...... will make the system converge exponentiallyto the best achievable state. Simulation examples confirm convergence and good disturbancerejection over relevant operational ranges of the engine....

  16. 40 CFR 1054.103 - What exhaust emission standards must my handheld engines meet?

    Science.gov (United States)

    2010-07-01

    ... Emission Standards for Handheld Engines (g/kW-hr) Engine displacement class HC+NOX CO Class III 50 805... my handheld engines meet? 1054.103 Section 1054.103 Protection of Environment ENVIRONMENTAL...-IGNITION ENGINES AND EQUIPMENT Emission Standards and Related Requirements § 1054.103 What exhaust emission...

  17. 46 CFR 182.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... installation. (a) The design of all exhaust systems must ensure minimum risk of injury to personnel. Protection... steel or equivalent bulkhead in way of a penetration and a fiberglass wet exhaust pipe may be fiberglassed to a fiberglass reinforced plastic bulkhead if suitable arrangements are provided to relieve the...

  18. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  19. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  20. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK

    2009-01-01

    Full Text Available Ever since man invented fire he has been more frequently burning himself by this creation than by the naturally occurring bushfires. It is estimated that over 1.152 million people in India suffer from burn injuries requiring treatment every year and majority of them are women aged between 16-40 years and most of them occur in the kitchen. The treatment for burns basically involves autologous skin grafting, which originated in India more than two thousand years ago (Sushruta Samhita, is still the gold standard for the wound resurfacing, although, autografting is difficult where graftable donor sites are limited. Although, Cadaver skin, porcine or bovine xenografts are used alternatively over the past thirty years, modern approaches like the Bioengineering of skin substitutes emerged during the past 20 years as advanced wound management technologies with no social impediment. They can be broadly categorized as Acellular and Cellular biotechnological products. The acellular products like Alloderm (LifeCell Corporation, Integra (Integra Life Sciences act like template and depend on natural regeneration, while the cellular ones are either ‘Off-the-Shelf’ products like Apligraf (Organogenesis Inc and Orcel (Ortec International have allogenic elements and ‘home grown’ autologous cell products like Cultured Epithelial Autograft (CEA and epidermal-dermal composite skin use synthetic or natural non-human matrices. The CEA is based on the ex-vivo epidermal stem cell-expansion and our laboratory has been engaged in CEA technique development with innovative cost-effective approach and yielded promising preliminary clinical success. The basic methodological approach in CEA technique which is still clinically adopted by several developed countries involves the use of growth arrested mouse dermal fibroblasts as growth supportive matrix and is thus considered a drawback as a whole. Additionally, there is no superior enough method available to augment the

  1. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  2. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear ...... Feedback Theory (QFT) designs. Validation of the controller is made on the model with focus on disturbance reduction ability....

  3. Will you thrive under pressure or burn out? Linking anxiety motivation and emotional exhaustion.

    Science.gov (United States)

    Strack, Juliane; Lopes, Paulo N; Esteves, Francisco

    2015-01-01

    Can individual differences in the tendency to use anxiety as a source of motivation explain emotional exhaustion? We examined the effects of using anxiety as a source of energy or as a source of information (viewed here as two forms of anxiety motivation) on emotional exhaustion. In Study 1, the use of anxiety as a source of energy predicted decreased emotional exhaustion one year later. Moreover, both forms of anxiety motivation buffered people from the detrimental effects of trait anxiety on later emotional exhaustion. In Study 2, an experiment, participants who were instructed to use anxiety as a source of energy reported lower emotional exhaustion following a stressful task, compared to those instructed to focus on the task or to simply do their best. These findings suggest that using anxiety as a source of motivation may protect people against emotional exhaustion.

  4. ANALYSIS OF EXHAUST GAS EMISSION IN THE MARINE TWO-STROKE SLOW-SPEED DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Branko Lalić

    2016-09-01

    Full Text Available This paper explores the problem of exhaust emissions of the marine two-stroke slow-speed diesel engines. After establishing marine diesel engine regulations and defining the parameters influencing exhaust emissions, the simulation model of the marine two-stroke slow-speed diesel engine has been developed. Furthermore, the comparison of numerical and experimentally obtained data has been performed, resulting in achieving the model validity at 100% load, which represents a requirement for further exhaust gas analysis. Deviations obtained at the real engine and the model range from 2% to 7%. An analysis of the influential parameters such as compression ratio, exhaust valve timing and fuel injection timing has been performed. The obtained results have been compared and conclusions have been drawn.

  5. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What exhaust emission standards must my sterndrive/inboard engines meet? 1045.105 Section 1045.105 Protection of Environment ENVIRONMENTAL... from advertisements or other marketing materials for any engines in the engine family. (B) Your basic...

  6. Exhaust gas recirculation dispersion analysis using in-cylinder pressure measurements in automotive diesel engines

    OpenAIRE

    Luján, José M.; Climent, H.; Pla Moreno, Benjamín; Rivas Perea, Manuel Eduardo; Francois, Nicolas-Yoan; BORGES ALEJO, JOSE; Soukeur, Zoulikha

    2015-01-01

    Current diesel engines are struggling to achieve exhaust emissions regulations margins, in certain cases penalizing the fuel consumption. The exhaust gas recirculation (EGR) continues to be employed as a technique to reduce NOx emissions. EGR dispersion between cylinders is one important issue when a high pressure (HP) loop is used. Different techniques have been developed in order to analyze the EGR dispersion between cylinders in an engine test bench. In this paper a methodology using the i...

  7. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  8. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Science.gov (United States)

    2010-07-01

    ... Standards for Nonhandheld Engines (g/kW-hr) Engine displacement class HC+NOX Primary CO standard COstandard...: (1) 40.0 g/kW-hr for Class I engines with displacement below 100 cc. (2) 16.1 g/kW-hr for Class I engines with displacement at or above 100 cc. (3) 12.1 for Class II engines. (c) Fuel types. The exhaust...

  9. The two-stroke poppet valve engine. Part 1: Intake and exhaust ports flow experimental assessments

    Science.gov (United States)

    Kamili Zahidi, M.; Razali Hanipah, M.; Ramasamy, D.; Noor, M. M.; Kadirgama, K.; Rahman, M. M.

    2017-10-01

    A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper is looking at experimental assessment on a two-stroke poppet valve engine configuration to investigate the port flow performance. The aims are to evaluate the intake and exhaust coefficient of discharge and assess the twostroke capability of the cylinder head. The results has shown comparable coefficient of discharge values as production engine for the intake while the exhaust has higher values which is favourable for the two-stroke cycle operation.

  10. Generic methods for aero-engine exhaust emission prediction

    NARCIS (Netherlands)

    Shakariyants, S.A.

    2008-01-01

    In the thesis, generic methods have been developed for aero-engine combustor performance, combustion chemistry, as well as airplane aerodynamics, airplane and engine performance. These methods specifically aim to support diverse emission prediction studies coupled with airplane and engine

  11. Exhaust emissions of DI diesel engine using unconventional fuels

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  12. Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Hong-hua Cai

    2017-01-01

    Full Text Available Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.

  13. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants.

    Science.gov (United States)

    Ryu, Kyunghyun

    2010-01-01

    The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel.

  14. Reducing drag of a commuter train, using engine exhaust momentum

    Science.gov (United States)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  15. The review of the IR radiation characteristic of exhaust plume of the liquid rocket engine

    Science.gov (United States)

    Wu, Hanyang; Sheng, Weidong; An, Wei; Zeng, Jian; Yang, Yuanyuan

    2017-02-01

    At present, there are various methods to compute the infrared radiation characteristics of exhaust plume of the liquid rocket engine. Though they are different in computational complexity. Their ideas and methods are alike. This paper focuses on the computation methods of exhaust plume's flow field, spectral parameters and radiation transfer equation. Comparison, analysis and conclusion of these methods are presented. Furthermore, existing problems and improvements of them are proposed as well.

  16. Discharge Plasma Treatment for ${NO}_x$ Reduction from Diesel Engine Exhaust: A Laboratory Investigation

    OpenAIRE

    Rajanikanth, BS; Srinivasan, AD; Ravi, V

    2005-01-01

    A detailed study on the removal of oxides of nitrogen $({NO}_x)$ with and without the presence of carbonaceous soot in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/catalyst/adsorbent processes. The processes were separately studied first and then the cascaded processes namely plasma-catalyst and plasma-adsorbent were examined. To investigate the effect of carbonaceous soot on the plasma treatment process, the filtered and unfiltered exhaust was treated...

  17. Identification of informative features for predicting proinflammatory potentials of engine exhausts.

    Science.gov (United States)

    Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei

    2017-08-18

    The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.

  18. Tissue-engineered epithelium transplantation for severe ocular surface burns.

    Science.gov (United States)

    Guo, Qing; Pi, Yuli; Dong, Ying; Zhu, Jing

    2013-03-01

    To evaluate the clinical outcomes of tissue-engineered epithelium transplantation for severe ocular surface burns. This was a retrospective observational case series. From October 2005 to May 2011, 19 eyes of 19 patients with grade IV to VI ocular surface burns (Dua Classification) were treated by autologous transplantation of corneal stem cells cultivated on a fibrin gel membrane, with a mean follow-up of 16.2 months (range 12-36 months). Postoperative corneal surface stability, visual acuity (VA), corneal opacity, and neovascularization were evaluated. No corneal perforations occurred and the entire corneal surface was free from epithelial defects in all eyes. At the final follow-up visit, VA in 17 eyes was improved after surgery, with 6 eyes achieving a VA of 20/100 or better. Corneal vascularization was significantly reduced in 17 (89.5%) eyes. Corneal opacity was also improved in 12 (63.2%) eyes. All donor eyes remained healthy. Tissue-engineered epithelium transplantation can promote rapid reepithelialization of the ocular surface, inhibit corneal neovascularization, and improve vision for patients with severe ocular surface burns.

  19. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  20. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Science.gov (United States)

    2010-07-01

    ... collected for analysis. Mass emissions are determined from the sample concentration and total flow over the test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust...), as applicable are achieved by sampling at a constant flow rate. For methanol-fueled engines, the...

  1. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  2. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai

    2013-01-01

    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynamic...... models. While literature is rich on four-stroke automotive engines, this paper considers two-stroke engines and develops a non-linear dynamic model of the exhaust gas system. Parameters are determined by system identication. The paper uses black-box nonlinear model identication and modelling from rst...

  3. Efficiency of thermoelectric recuperators of the exhaust gas energy of internal combustion engines

    Science.gov (United States)

    Anatychuk, L. I.; Kuz, R. V.; Rozver, Yu. Yu.

    2012-06-01

    Results of computer simulation of thermoelectric generators (TEG) using the exhaust heat of internal combustion engines are presented. Sectionalized generator schematics whereby maximum efficiency is achieved for cases of real temperature dependences of the most suitable thermoelectric materials are considered. A model optimized for minimum cost is considered as well. Results of experimental research on generator that employs exhaust heat from heat and electricity cogeneration plant with a diesel engine are presented. Computer simulation is verified by the test results. The outlook for application of such heat recuperators in stationary plants is considered.

  4. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  5. Future railway diesel engines to comply with exhaust limits; Einhaltung zukuenftiger Abgasgrenzwerte von Bahndieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, T. [Deutsche Bahn AG, Muenchen (DE). DB Systemtechnik, TZF 71, Antriebstechnik, Energieversorgung (Bordnetze)

    2004-07-01

    With the inclusion of railway diesel engines within the cope of the European Union's directive 97/68/EC, the requirements to be met by exhausts have been tightened up. The diesel engines currently installed on trains are not able to meet the future limits or, at best, only partly so. Many technical means are available for reducing exhaust emissions, but the situation is very complex. The author presents a number of concepts and compares them with one another. The optimum solution depends on the specific nature of the vehicle and its engine(s) and on the conditions of its deployment. Working out such an optimum solution in future is going to require the close cooperation of operators, vehicle manufacturers, engine builders and parts suppliers. (orig.)

  6. Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder

    restriction on NOx emissions from large two-stroke diesel engines on vessels operating in certain NOx Emission Control Areas. Exhaust Gas Recirculation (EGR) is one of the three technologies on the market that are able to reduce the NOx emission adequately for Tier III operation. EGR is well known from...... the automotive industry, but have only recently been introduced commercially to large two-stroke diesel engines. Recirculation of exhaust gas to the cylinders lowers the oxygen availability and increases the heat capacity during combustion, which in turn leads to less formation of NOx. Experience shows......, that while large two-stroke engines with EGR perform well in steady state, fast engine load transients cause smoke formation due to the decreased oxygen availability. The aim of this thesis is to design a control system that enables the large two-stroke engines with EGR to meet the emission limits...

  7. Laser beam propagation through a full scale aircraft turboprop engine exhaust

    Science.gov (United States)

    Henriksson, Markus; Gustafsson, Ove; Sjöqvist, Lars; Seiffer, Dirk; Wendelstein, Norbert

    2010-10-01

    The exhaust from engines introduces zones of extreme turbulence levels in local environments around aircraft. This may disturb the performance of aircraft mounted optical and laser systems. The turbulence distortion will be especially devastating for optical missile warning and laser based DIRCM systems used to protect manoeuvring aircraft against missile attacks, situations where the optical propagation path may come close to the engine exhaust. To study the extent of the turbulence zones caused by the engine exhaust and the strength of the effects on optical propagation through these zones a joint trial between Germany, the Netherlands, Sweden and the United Kingdom was performed using a medium sized military turboprop transport aircraft tethered to the ground at an airfield. This follows on earlier trials performed on a down-scaled jet-engine test rig. Laser beams were propagated along the axis of the aircraft at different distances relative to the engine exhaust and the spatial beam profiles and intensity scintillations were recorded with cameras and photodiodes. A second laser beam path was directed from underneath the loading ramp diagonally past one of the engines. The laser wavelengths used were 1.5 and 3.6 μm. In addition to spatial beam profile distortions temporal effects were investigated. Measurements were performed at different propeller speeds and at different distances from exhaust nozzle to the laser path. Significant increases in laser beam wander and long term beam radius were observed with the engine running. Corresponding increases were also registered in the scintillation index and the temporal fluctuations of the instantaneous power collected by the detector.

  8. Burns

    Science.gov (United States)

    ... doing so puts you in danger as well. Chemical and Electrical Burns For chemical and electrical burns, call 911 or ... the power source has been turned off. For chemical burns: Dry chemicals should be brushed off the skin ...

  9. Analysis of large solid propellant rocket engine exhaust plumes using the direct simulation Monte Carlo method

    Science.gov (United States)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T., Jr.; Bird, G. A.

    1984-01-01

    A new solution procedure has been developed to analyze the flowfield properties in the vicinity of the Inertial Upper Stage/Spacecraft during the 1st stage (SRMI) burn. Continuum methods are used to compute the nozzle flow and the exhaust plume flowfield as far as the boundary where the breakdown of translational equilibrium leaves these methods invalid. The Direct Simulation Monte Carlo (DSMC) method is applied everywhere beyond this breakdown boundary. The flowfield distributions of density, velocity, temperature, relative abundance, surface flux density, and pressure are discussed for each species for 2 sets of boundary conditions: vacuum and freestream. The interaction of the exhaust plume and the freestream with the spacecraft and the 2-stream direct interaction are discussed. The results show that the low density, high velocity, counter flowing free-stream substantially modifies the flowfield properties and the flux density incident on the spacecraft. A freestream bow shock is observed in the data, located forward of the high density region of the exhaust plume into which the freestream gas does not penetrate. The total flux density incident on the spacecraft, integrated over the SRM1 burn interval is estimated to be of the order of 10 to the 22nd per sq m (about 1000 atomic layers).

  10. Experimental Design of Compact Heat Exchanger for Waste Heat Recovery of Diesel Engine Exhaust Gases for Grain Dryers

    OpenAIRE

    Aziz, Nasruddin

    2016-01-01

    Abstract??? In diesel engine cycle, 35% of energy losses through the exhaust gases, the heat is an energy potential that can still be reused for various purposes. This research aims to design a heat exchanger, based of diesel engine exhaust gases integrated with rice milling unit for drying agricultural products. The exhaust gas is derived from 6D16 diesel engine of 120 kVA as a power generator for rice milling unit at South Sulawesi. Exhaust gas temperature reaches 357oC with the mass flow r...

  11. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine

    Directory of Open Access Journals (Sweden)

    Gürbüz Habib

    2015-01-01

    Full Text Available In this study, we have investigated the recovery of energy lost as waste heat from exhaust gas and engine coolant, using an improved thermoelectric generator (TEG in a LPG fueled SI engine. For this purpose, we have designed and manufactured a 5-layer heat exchanger from aluminum sheet. Electrical energy generated by the TEG was then used to produce hydrogen in a PEM water electrolyzer. The experiment was conducted at a stoichiometric mixture ratio, 1/2 throttle position and six different engine speeds at 1800-4000 rpm. The results of this study show that the configuration of 5-layer counterflow produce a higher TEG output power than 5-layer parallel flow and 3-layer counterflow. The TEG produced a maximum power of 63.18 W when used in a 5-layer counter flow configuration. This resulted in an improved engine performance, reduced exhaust emission as well as an increased engine speed when LPG fueled SI engine is enriched with hydrogen produced by the PEM electrolyser supported by TEG. Also, the need to use an extra evaporator for the LPG fueled SI engine is eliminated as LPG heat exchangers are added to the fuel line. It can be concluded that an improved exhaust recovery system for automobiles can be developed by incorporating a PEM electrolyser, however at the expense of increasing costs.

  12. Detailed characterization of particulate matter emitted by lean-burn gasoline direct injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland, WA, USA; Wilson, Jacqueline [Pacific Northwest National Laboratory, Richland, WA, USA; Imre, Dan [Imre Consulting, Richland, WA, USA; Stewart, Mark [Pacific Northwest National Laboratory, Richland, WA, USA; Muntean, George [Pacific Northwest National Laboratory, Richland, WA, USA; Storey, John [Oak Ridge National Laboratory, Knoxville, TN, USA; Prikhodko, Vitaly [Oak Ridge National Laboratory, Knoxville, TN, USA; Lewis, Samuel [Oak Ridge National Laboratory, Knoxville, TN, USA; Eibl, Mary [Oak Ridge National Laboratory, Knoxville, TN, USA; Parks, Jim [Oak Ridge National Laboratory, Knoxville, TN, USA

    2016-11-10

    This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantly with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings

  13. Control-Oriented Model of Molar Scavenge Oxygen Fraction for Exhaust Recirculation in Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2016-01-01

    Exhaust gas recirculation (EGR) systems have been introduced to large marine engines in order to reduce NOx formation. Adequate modelling for control design is one of the bottlenecks to design EGR control that also meets emission requirements during transient loading conditions. This paper...... effect from 2016....

  14. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits

    NARCIS (Netherlands)

    Valentino, Sarah A; Tarrade, Anne; Aioun, Josiane; Mourier, Eve; Richard, Christophe; Dahirel, Michèle; Rousseau-Ralliard, Delphine; Fournier, Natalie; Aubrière, Marie-Christine; Lallemand, Marie-Sylvie; Camous, Sylvaine; Guinot, Marine; Charlier, Madia; Aujean, Etienne; Al Adhami, Hala; Fokkens, Paul H; Agier, Lydiane; Boere, John A; Cassee, Flemming R; Slama, Rémy; Chavatte-Palmer, Pascale

    2016-01-01

    BACKGROUND: Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure

  15. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  16. Reduced Noise Gas Turbine Engine System and Supersonic Exhaust Nozzle System Using Elector to Entrain Ambient Air

    Science.gov (United States)

    Sokhey, Jagdish S. (Inventor); Pierluissi, Anthony F. (Inventor)

    2017-01-01

    One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  17. Occupational exposures to engine exhausts and other PAHs and breast cancer risk: A population-based case-control study.

    Science.gov (United States)

    Rai, Rajni; Glass, Deborah C; Heyworth, Jane S; Saunders, Christobel; Fritschi, Lin

    2016-06-01

    Some previous studies have suggested that exposure to engine exhausts may increase risk of breast cancer. In a population-based case-control study of breast cancer in Western Australia we assessed occupational exposure to engine exhausts using questionnaires and telephone interviews. Odds Ratios (OR) and 95% Confidence Intervals (CI) were calculated using logistic regression. We found no association between risk of breast cancer and occupational exposure to diesel exhaust (OR 1.07, 95%CI: 0.81-1.41), gasoline exhaust (OR 0.98, 95%CI: 0.74-1.28), or other exhausts (OR 1.08, 95%CI: 0.29-4.08). There were also no significant dose- or duration-response relationships. This study did not find evidence supporting the association between occupational exposures to engine exhausts and breast cancer risk. Am. J. Ind. Med. 59:437-444, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The Australian Work Exposures Study: prevalence of occupational exposure to diesel engine exhaust.

    Science.gov (United States)

    Peters, Susan; Carey, Renee N; Driscoll, Timothy R; Glass, Deborah C; Benke, Geza; Reid, Alison; Fritschi, Lin

    2015-06-01

    Diesel engines are widely used in occupational settings. Diesel exhaust has been classified as a lung carcinogen, but data on number of workers exposed to different levels of diesel exhaust are not available in Australia. The aim of this study was to estimate the current prevalence of exposure to diesel engine exhaust in Australian workplaces. A cross-sectional survey of Australian males and females (18-65 years old) in current paid employment was undertaken. Information about the respondents' current job and various demographic factors was collected in a telephone interview using the web-based tool OccIDEAS. Semi-quantitative occupational exposure levels to diesel exhaust were assigned using programmed decision rules and numbers of workers exposed in Australia in 2011 were estimated. We defined substantial exposure as exposed at a medium or high level, for at least 5h per week. Substantial occupational exposure to diesel exhaust was experienced by 13.4% of the respondents in their current job. Exposure prevalence varied across states, ranging from 6.4% in the Australian Capital Territory to 17.0% in Western Australia. Exposures occurred mainly in the agricultural, mining, transport and construction industries, and among mechanics. Men (20.4%) were more often exposed than women (4.7%). Extrapolation to the total working population indicated that 13.8% (95% confidence interval 10.0-20.4) of the 2011 Australian workforce were estimated to be substantially exposed to diesel exhaust, and 1.8% of the workers were estimated to experience high levels of exposures in their current job. About 1.2 million Australian workers were estimated to have been exposed to diesel exhaust in their workplace in 2011. This is the first study to describe the prevalence of occupational diesel exhaust exposure in Australia and will enable estimation of the number of lung cancers attributable to diesel exhaust exposure in the workplace. © The Author 2015. Published by Oxford University Press

  19. Study of exhaust and noise emissions reduction on a single spray direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Hirofumi; Sahara, Masanori; Takamori, Yuji; Sakurai, Shigeru (Mazda Motor Corp., Hiroshima (Japan))

    1989-04-01

    In order to materialize the automobile use small direct injection diesel engine (DI), the reduction in both exhaust emission and noise, as studied, was explained in summary. The DI, as excellent in fuel consumption characteristics, was studied to be adopted to the small automobile, with the materialization of small DI to be about 600cc in capacity per cylinder. However the further diminution in dimension had not been materialized yet, because of the aggravation in exhaust emission and vibration noise. Then a single spray DI, characterized by the approximate sphericity in shape of combustion chamber and adoption of cast iron made piston and two-stage spring nozzle, was prototypically made, with optimizing the combustion in characteristics, decreasing HC in exhaust quantity by modifying the injection system, doing also NOx in exhaust quantity by adopting the lag angle at injection time and EGR, modifying the structure to lower the noise, and adopting an air heater to improve the cold start-up in performance. As a result, the present ten-mode exhaust gas regulation and noise level target were achieved, with the improvement in cold start-up and warm-up properties. 6 refs., 20 figs., 3 tabs.

  20. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  1. DETERMINATION OF CO2 MASSES IN THE EXHAUST GASES OF THE MARINE DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Doru COSOFRET

    2016-05-01

    Full Text Available Currently, reducing CO2 emissions that contribute to the greenhouse effect is currently under attention of the relevant international bodies. In the field of maritime transport, in 2011 International Maritime Organization (IMO has taken steps to reduce emissions of CO2 from the exhaust gases of marine diesel engines on ships, by imposing their energy efficiency standards. In this regard, we conducted a laboratory study on a 4-stroke diesel engine naturally aspirated by using to power it diesel and different blends of biodiesel with diesel fuel. The purpose of the study was to determine the formulas for calculating the mass flow rates of CO2 from exhaust gases’ concentrations experimentally determined. Determining the mass flow of CO2 is necessary to calculate the energy efficiency coefficient of the ship to assess the energy efficiency of the board of the limits imposed by the IMO.

  2. Advanced engine management of individual cylinders for control of exhaust species

    Science.gov (United States)

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  3. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  4. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  5. Modified pressure loss model for T-junctions of engine exhaust manifold

    Science.gov (United States)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  6. A source-independent empirical correction procedure for the fast mobility and engine exhaust particle sizers

    Science.gov (United States)

    Zimmerman, Naomi; Jeong, Cheol-Heon; Wang, Jonathan M.; Ramos, Manuel; Wallace, James S.; Evans, Greg J.

    2015-01-01

    The TSI Fast Mobility Particle Sizer (FMPS) and Engine Exhaust Particle Sizer (EEPS) provide size distributions for 6-560 nm particles with a time resolution suitable for characterizing transient particle sources; however, the accuracy of these instruments can be source dependent, due to influences of particle morphology. The aim of this study was to develop a source-independent correction protocol for the FMPS and EEPS. The correction protocol consists of: (1) broadening the >80 nm size range of the distribution to account for under-sizing by the FMPS and EEPS; (2) applying an existing correction protocol in the 8-93 nm size range; and (3) dividing each size bin by the ratio of total concentration measured by the FMPS or EEPS and a water-based Condensation Particle Counter (CPC) as a surrogate scaling factor to account for particle morphology. Efficacy of the correction protocol was assessed for three sources: urban ambient air, diluted gasoline direct injection engine exhaust, and diluted diesel engine exhaust. Linear regression against a reference instrument, the Scanning Mobility Particle Sizer (SMPS), before and after applying the correction protocol demonstrated that the correction ensured agreement within 20%.

  7. Software for computer-aided study of intake and exhaust systems for engines

    Energy Technology Data Exchange (ETDEWEB)

    Payri, F.; Benajes, J.; Chust, M.D. (Universidad Politecnica de Valencia (ES))

    1991-01-01

    In this work are described the main characteristics of a software designed to globally analyze the behavior of intake and exhaust systems of alternating engines with multiple cylinders and the effect produced by each element on the engine performances and the emitted noise. The software consists in a model of waves action, which computes the fluid behavior through the collectors using particular boundary conditions for each singular element of the system: filter, compressor, carburettor, valves, pipes, mufflers, junctions, etc. Moreover, the software contains interactive modules to introduce the data and to graphically output the results. Finally we present results showing the model accuracy and examples of input and outputs. 29 refs..

  8. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  9. Application of reburn techniques for NOx reduction to cogeneration prime movers. Volume 1. Rich-burn engine application. Final report, June 1984 to July 1988

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.A.; Lips, H.; Kuby, W.C.

    1989-03-01

    The report describes the results of a design and experimental program to develop a post-combustion NOx control technique for gas-fired I.C. engines and gas turbines as applied to cogeneration. Emissions and performance data of both rich-burn and lean-burn engines were used to develop a conceptual reburner design to be placed between an engine and a waste heat boiler. This reburner design was then modeled for testing in a 100,000 Btu/hr subscale test facility. Parametric testing achieved 50 percent NOx reduction at a fuel fraction of 30 percent for rich-burn and mid-O2 range engine exhausts. Lean-burn NOx reductions were limited to 35 percent at the same fuel fraction. With the addition of a NiO catalyst in the rich zone, NOx reductions of up to 90 percent were achieved in the subscale testing. A full-scale system was designed, fabricated, and tested on a 150 kW Caterpillar engine. NOx reductions of 40 to 50 percent were achieved without a catalyst; reductions of up to 75 percent were achieved with a NiO catalyst.

  10. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    Science.gov (United States)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  11. Evolution of deep-bed filtration of engine exhaust particulates with trapped mass

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Sandeep; Rothamer, David; Foster, David E.; Fansler, Todd D.; Zelenyuk, Alla; Stewart, Mark L.; Bell, David M.

    2016-11-03

    Micro-scale filtration experiments were performed on cordierite filter samples using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with tier II EEE certification gasoline. Size-resolved mass and number concentrations were obtained from several engine operating conditions. The resultant mass-mobility relationships showed weak dependence on the operating condition. An integrated particle size distribution (IPSD) method was used estimate the PM mass concentration in the exhaust stream from the SIDI engine and a heavy duty diesel (HDD) engine. The average estimated mass concentration between all conditions was ~77****** % of the gravimetric measurements performed on Teflon filters. Despite the relatively low elemental carbon fraction (~0.4 to 0.7), the IPSD mass for stoichiometric SIDI exhaust was ~83±38 % of the gravimetric measurement. Identical cordierite filter samples with properties representative of diesel particulate filters were sequentially loaded with PM from the different SIDI engine operating conditions, in order of increasing PM mass concentration. Simultaneous particle size distribution measurements upstream and downstream of the filter sample were used to evaluate filter performance evolution and the instantaneous trapped mass within the filter for two different filter face velocities. The evolution of filtration performance for the different samples was sensitive only to trapped mass, despite using PM from a wide range of operating conditions. Higher filtration velocity resulted in a more rapid shift in the most penetrating particle size towards smaller mobility diameters.

  12. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Science.gov (United States)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  13. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant

    Science.gov (United States)

    Muruganandam, M.; Mukesh Kumar, P. C.

    2017-10-01

    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  14. ANN based evaluation of the NOx concentration in the exhaust gas of a marine two-stroke diesel engine

    National Research Council Canada - National Science Library

    Kowalski, Jerzy

    2009-01-01

    ...) to the evaluation of NOx concentration in the exhaust gas of a marine two-stroke Diesel engine. A concept is presented how to use the ANN as an alternative to direct measurements carried out on a ship at sea...

  15. Pulsed Plasma Processing of Diesel Engine Exhaust Final Report CRADA No. TC-0336-92-1-C

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Bernard T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Broering, Louis [Cummins Engine Company, Inc., Columbus, IN (United States)

    2017-11-09

    The goal was to develop an exhaust-gas treatment process for the reduction of NOx and hydrocarbon from diesel engines. The project began believing that direct chemical reduction on NOx was possible through the use of non-thermal plasmas. The original CRADA began in 1993 and was scheduled to finish in 1996. It had as its goals three metrics: 1) remove two grams/brake-horse-power-hour of NOx, 2) have no more than five percent energy penalty, and 3) cost no more than ten percent of the engine cost. These goals were all aimed at heavy-duty diesel trucks. This CRADA had its Defense Program funding eliminated by DOE prior to completion in 1995. Prior to loss of funding from DOE, LLNL discovered that due to the large oxygen content in diesel exhaust, direct chemical reduction was not possible. In understanding why, a breakthrough was achieved that combined the use of a non-thermal plasma and a catalyst. This process was named Plasma Assisted Catalytic Reduction (P ACR). Because of this breakthrough, the CRADA became a funds-in only CRADA, once DOE DP funding ended. As a result, the funding decreased from about 1M dollars per year to about $400k per year. Subsequently, progress slowed as well. The CRADA was amended several times to reflect the funds-in nature. At each amendment, the deliverables were modified; the goals remained the same but the focus changed from heavy-duty to lightduty to SUVs. The diesel-engine NOx problem is similar to the furnace and boiler NOx emission problem with the added constraint that ammonia-like additives are impractical for a mobile source. Lean-burning gasoline engines are an additional area of application because the standard three-way catalyst is rendered ineffective by the presence of oxygen. In the P ACR process an electrical discharge is used to create a non-thermal plasma that contains oxidative radicals O and OH. These oxidative radicals convert NO to NO2. Selective catalytic

  16. Heat Transfer Analysis of an Engine Exhaust-Based Thermoelectric Evaporation System

    Science.gov (United States)

    Chen, Ming; Tan, Gangfeng; Guo, Xuexun; Deng, Yadong; Zhang, Hongguang; Yang, Kai

    2016-03-01

    Engine exhaust can be used by thermoelectric generators for improving thermal efficiency of internal combustion engines. In his paper, the performance of a thermoelectric evaporation system is investigated. First, the thermal characteristics of diesel engines are obtained according to the experiment data. Then, mathematical models are created based on the specified conditions of the coolant cycle and the evaporator geometric parameters. Finally, the heat transfer characteristics and power performance of the thermoelectric evaporation system are estimated, and a comparison with the system in which the heat exchanger operates with all-liquid coolant is investigated. The results show that the overall heat transfer rate of the thermoelectric evaporator system increases with engine power. At the rated condition, the two-phase zone with an area of 0.8689 m2 dominates the evaporator's heat transfer area compared with the preheated zone area of 0.0055 m2, and for the thermoelectric module, the cold-side temperature is stable at 74°C while the hot-side temperature drops from 341.8°C to 304.9°C along the exhaust direction. For certain thermoelectric cells, the temperature difference between the cold side and hot side rises with the engine load, and the temperature difference drops from 266.9°C to 230.6°C along the exhaust direction. For two cold-side systems with the same heat transfer, coolant mass flow rate in the evaporator with two-phase state is much less, and the temperature difference along with equivalent heat transfer length L is significantly larger than in the all-liquid one. At rated power point, power generated by thermoelectric cells in the two-phase evaporation system is 508.4 W, while the other is only 328.8 W.

  17. Mutagenicity of biodiesel or diesel exhaust particles and the effect of engine operating conditions.

    Science.gov (United States)

    Kisin, Elena R; Shi, X C; Keane, Michael J; Bugarski, Aleksandar B; Shvedova, Anna A

    2013-03-01

    Changing the fuel supply from petroleum based ultra-low sulfur diesel (ULSD) to biodiesel and its blends is considered by many to be a viable option for controlling exposures to particulate material (PM). This is critical in the mining industry where approximately 28,000 underground miners are potentially exposed to relatively high concentrations of diesel particulate matter (DPM). This study was conducted to investigate the mutagenic potential of diesel engine emissions (DEE) from neat (B100) and blended (B50) soy-based fatty acid methyl ester (FAME) biodiesel in comparison with ULSD PM using different engine operating conditions and exhaust aftertreatment configurations. The DPM samples were collected for engine equipped with either a standard muffler or a combination of the muffler and diesel oxidation catalytic converter (DOC) that was operated at four different steady-state modes. Bacterial gene mutation activity of DPM was tested on the organic solvent extracts using the Ames Salmonella assay. The results indicate that mutagenic activity of DPM was strongly affected by fuels, engine operating conditions, and exhaust aftertreatment systems. The mutagenicity was increased with the fraction of biodiesel in the fuel. While the mutagenic activity was observed in B50 and B100 samples collected from both light-and heavy-load operating conditions, the ULSD samples were mutagenic only at light-load conditions. The presence of DOC in the exhaust system resulted in the decreased mutagenicity when engine was fueled with B100 and B50 and operated at light-load conditions. This was not the case when engine was fueled with ULSD. Heavy-load operating condition in the presence of DOC resulted in a decrease of mutagenicity only when engine was fueled with B50, but not B100 or ULSD. Therefore, the results indicate that DPM from neat or blended biodiesel has a higher mutagenic potency than that one of ULSD. Further research is needed to investigate the health effect of biodiesel

  18. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  19. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  20. Urban air quality improvement by using a CNG lean burn engine for city buses

    NARCIS (Netherlands)

    Merétei, T.; Ling, J.A.N. van; Havenith, C.

    1998-01-01

    The use of compressed natural gas (CNG)-fuelled lean-burn city bus engines has a significant potential for air quality improvement in urban areas. Particularly important is the reduction of NO, as well as particulate and non regulated HC-emissions. For this reason, a CNG-fuelled, lean-burn,

  1. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN

    Directory of Open Access Journals (Sweden)

    K. Prasada Rao

    2017-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI engine fueled with Rice Bran Methyl Ester (RBME with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN modeling. The study used IDI engine experimental data to evaluate nine engine performance and emission parameters including Exhaust Gas Temperature (E.G.T, Brake Specific Fuel Consumption (BSFC, Brake Thermal Efficiency (B.The and various emissions like Hydrocarbons (HC, Carbon monoxide (CO, Carbon dioxide (CO2, Oxygen (O2, Nitrogen oxides (NOX and smoke. For the ANN modeling standard back propagation algorithm was found to be the optimum choice for training the model. A multi-layer perception (MLP network was used for non-linear mapping between the input and output parameters. It was found that ANN was able to predict the engine performance and exhaust emissions with a correlation coefficient of 0.995, 0.980, 0.999, 0.985, 0.999, 0.999, 0.980, 0.999, and 0.999 for E.G.T, BSFC, B.The, HC, O2, CO2, CO, NOX, smoke respectively.

  2. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    Directory of Open Access Journals (Sweden)

    Naeimi Hessamedin

    2011-01-01

    Full Text Available Nowadays, computational fluid dynamics codes (CFD are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction losses from the total energy losses. The total pressure loss coefficient has been related to the extrapolated Mach number in the common branch and to the mass flow rate ratio between branches at different flow configurations, in both combining and dividing flows. The study indicate that the numerical results were generally in good agreement with those of experimental data from the literature and will be applied as a boundary condition in one-dimensional global simulation models of fluid systems in which these components are present.

  3. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.

    2015-01-01

    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.

  4. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  5. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  6. Stoichiometric and lean burn heavy-duty gas engines: a dilemma between emissions and fuel consumption?

    NARCIS (Netherlands)

    Steen, M. van der; Rijke, J. de; Seppen, J.J.

    1996-01-01

    This paper compares stoichiometric with lean burn technology for heavy-duty gas engines (natural gas and LPG) and demonstrates that there is a future for both engine concepts on the multilateral global market. Emission limits in Europe as expected in the near future will facilitate both engine

  7. Sustainability assessment of turbofan engine with mixed exhaust through exergetic approach

    Science.gov (United States)

    Saadon, S.; Redzuan, M. S. Mohd

    2017-12-01

    In this study, the theory, methods and example application are described for a CF6 high-bypass turbofan engine with mixed exhaust flow based on exergo-sustainable point of view. To determine exergetic sustainability index, the turbofan engine has to undergo detailed exergy analysis. The sustainability indicators reviewed here are the overall exergy efficiency of the system, waste exergy ratio, exergy destruction factor, environmental effect factor and the exergetic sustainability index. The results obtained for these parameters are 26.9%, 73.1%, 38.6%, 2.72 and 0.37, respectively, for the maximum take-off condition of the engine. These results would be useful to better understand the connection between the propulsion system parameters and their impact to the environment in order to make it more sustainable for future development.

  8. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-11-13

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  9. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; hide

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  10. Experimental investigation on cyclic variability, engine performance and exhaust emissions in a diesel engine using alcohol-diesel fuel blends

    Directory of Open Access Journals (Sweden)

    Gurgen Samet

    2017-01-01

    Full Text Available This paper investigates the impacts of using n-butanol-diesel fuel and ethanol-diesel fuel blends on engine performance, exhaust emission, and cycle-by-cycle variation in a Diesel engine. The engine was operated at two different engine speed and full load condition with pure diesel fuel, 5% and 10% (by vol. ethanol and n-butanol fuel blends. The coefficient of variation of indicated mean effective pressure was used to evaluate the cyclic variability of n-butanol-diesel fuel and ethanol-diesel fuel blends. The results obtained in this study showed that effective efficiency and brake specific fuel consumption generally increased with the use of the n-butanol-diesel fuel or ethanol-diesel fuel blends with respect to that of the neat diesel fuel. The addition of ethanol or n-butanol to diesel fuel caused a decrement in CO and NOx emissions. Also, the results indicated that cycle-by-cycle variation has an increasing trend with the increase of alcohol-diesel blending ratio for all engine speed. An increase in cyclic variability of alcohol-diesel fuel blends at low engine speed is higher than that of high engine speed.

  11. Modification of exhaust muffler of a diesel engine based on finite element method acoustic analysis

    Directory of Open Access Journals (Sweden)

    Jun Fu

    2015-04-01

    Full Text Available In order to improve the acoustic attenuation performance of an exhaust muffler of a 175 series of agricultural diesel engine, automatic matched layer method of finite element is adopted on the basis of LMS Virtual.Lab software to simulate the non-reflecting boundary conditions, which can avoid the complex calculation and then figure out the value of propagated sound power directly and finally obtain the transmission loss of the exhaust muffler. Compared with the experimental data, it can be found that the error between the simulation and measured values is small, and it can be accurately simulated for the acoustic performance of the exhaust muffler at the frequencies smaller than 3000 Hz, which verifies the validity of the acoustic solution. An improved design that properly distributes the insertion length of intubation, increases the length–diameter ratio, and adds the length of the first expansion cavity is proposed for the poor acoustic attenuation performance in low and medium frequencies. Compared with the original design, the transmission loss value at low and medium frequencies obviously increases, so the acoustic attenuation performance at the frequencies becomes better.

  12. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge ADJIBADE

    2017-09-01

    Full Text Available This work presents an experimental study of H20-NH3-H2 diffusion absorption refrigeration under two types of energy sources, i.e. the conventional electric energy from grid (electric and exhaust gas from internal combustion engine. Dynamic method is used to evaluate the behavior of the components of the system for both energy sources. Results obtained show that the performance of each component under different types of energy sources is almost coherent. For the generator, the electrical heater system requires more time to warm up, around three minutes, compared to the 40 s for system running with exhaust gas. For the evaporator, the decreasing rate is higher for the exhaust gas source and it took only about two hours to reach steady-state while for the electrical heat, the steady-state is reached after about seven hours of operation. For both energy sources, the evaporation temperature stabilizes to 3 °C and the minimum temperature to boil off ammonia is around 140 °C.

  13. 40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.

    Science.gov (United States)

    2010-07-01

    ...), except for variable-speed marine engines used with controllable-pitch propellers or with electrically... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.101... the 2014 model year, recreational marine engines at or above 3700 kW (with any displacement) must be...

  14. 40 CFR 1045.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Science.gov (United States)

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION... engine families certified under this part. Apply deterioration factors as follows: (1) Additive deterioration factor for exhaust emissions. For engines that do not use aftertreatment technology, use an...

  15. Nonintrusive optical measurements of aircraft engine exhaust emissions and comparison with standard intrusive techniques.

    Science.gov (United States)

    Schäfer, K; Heland, J; Lister, D H; Wilson, C W; Howes, R J; Falk, R S; Lindermeir, E; Birk, M; Wagner, G; Haschberger, P; Bernard, M; Legras, O; Wiesen, P; Kurtenbach, R; Brockmann, K J; Kriesche, V; Hilton, M; Bishop, G; Clarke, R; Workman, J; Caola, M; Geatches, R; Burrows, R; Black, J D; Hervé, P; Vally, J

    2000-01-20

    Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NO(x), total unburned hydrocarbon, and smoke), together with CO(2) and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO(2), CO, and NO data showed agreement with intrusive techniques of approximately ?30%. A narrow-band spectroscopic device was used to measure CO(2) (with deviations of less than ?10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.

  16. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C. [Societe Nationale d`Etude et de Construction de Moteurs d`Aviation (SNECMA), Villaroche (France)

    1997-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  17. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  18. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust

    Science.gov (United States)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin

    2017-04-01

    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.

  19. EVALUATION OF DISPERSED PARTICLE CONTENT IN EXHAUST GAS OF DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak

    2016-01-01

    Full Text Available Pollution of an atmosphere due to hazardous substances emissions deteriorates ecological environment in the world. Exhaust gases of diesel engines are considered as one of the main environmental pollutants. At the moment it is not possible to determine rate and limits of threshold level of air pollution which do not affect human health. The paper considers current issues pertaining to regulation and control over dispersed particles. The most convenient measuring methods for investigations are those which provide the opportunity to obtain immediate results. However, from the legislative point of view, a gravimetric investigation method is a legitimate one which requires compliance with certain procedures of adjustments and calculations. The method presupposes availability of complicated system for sample dilution and its adjustment must include temperature and kinetic parameters of the measured flow. In order to ensure measuring accuracy and results reproducibility filter loading should be in a regulated range and dilution parameters should be chosen according to not only engine type but also according to its emissions rate. Methods for evaluation of a hot exhaust gas sample is characterized by higher response and the results correlate with indices of combustion efficiency. However, such approach does not account for a number of processes that take place during gas cooling in the environment. Therefore, in this case, measuring results are to be evaluated within certain boundary conditions with respect to the object of investigations. Difficulty in achievement of modern ecologocal standards is substantiated by complicated fractional composition and multiple stage process in formation of hazardous components. The paper presents calculated dependences between particles and smokiness and contains a comparative analysis. Methods for measurement and investigations of dispersed particles have analyzed on the basis of the results obtainesd during engine

  20. Numerical simulations on increasing turbojet engines exhaust mixture ratio using fluidic chevrons

    Directory of Open Access Journals (Sweden)

    Adrian GRUZEA

    2017-06-01

    Full Text Available This paper refers to some aspects regarding the terms “chevron” and “fluidic chevron” and to the process of increasing the jet engines exhaust mixing rate towards achieving noise reduction. One of the noise reduction methods consists in covering the high velocity main flow with a secondary one, having a much lower velocity, similar to the turbofan engines. The fluidic chevrons try to accomplish these requirements, being used just in particular moments of the flight. This study will be based on numerical simulations carried using the commercial software ANSYS. The geometry used will the based on the micro jet engine JetCat P80, equipping the turbines laboratory from the Faculty of Aerospace Engineering. A research based on the measured geometric, gasodynamic and cinematic parameters will be carried varying the mass flow and keeping the immersion angle constant. As a result of these simulations we’ll observe the influence of the mentioned parameters on the jet’s flow field.

  1. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  2. 40 CFR 1039.102 - What exhaust emission standards and phase-in allowances apply for my engines in model year 2014...

    Science.gov (United States)

    2010-07-01

    ... Requirements § 1039.102 What exhaust emission standards and phase-in allowances apply for my engines in model year 2014 and earlier? The exhaust emission standards of this section apply for 2014 and earlier model years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112...

  3. Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle's final launch

    Science.gov (United States)

    Stevens, Michael H.; Lossow, Stefan; Fiedler, Jens; Baumgarten, Gerd; Lübken, Franz-Josef; Hallgren, Kristofer; Hartogh, Paul; Randall, Cora E.; Lumpe, Jerry; Bailey, Scott M.; Niciejewski, R.; Meier, R. R.; Plane, John M. C.; Kochenash, Andrew J.; Murtagh, Donal P.; Englert, Christoph R.

    2012-10-01

    The space shuttle launched for the last time on 8 July 2011. As with most shuttle launches, the three main engines injected about 350 t of water vapor between 100 and 115 km off the east coast of the United States during its ascent to orbit. We follow the motion of this exhaust with a variety of satellite and ground-based data sets and find that (1) the shuttle water vapor plume spread out horizontally in all directions over a distance of 3000 to 4000 km in 18 h, (2) a portion of the plume reached northern Europe in 21 h to form polar mesospheric clouds (PMCs) that are brighter than over 99% of all PMCs observed in that region, and (3) the observed altitude dependence of the particle size is reversed with larger particles above smaller particles. We use a one-dimensional cloud formation model initialized with predictions of a plume diffusion model to simulate the unusually bright PMCs. We find that eddy mixing can move the plume water vapor down to the mesopause near 90 km where ice particles can form. If the eddy diffusion coefficient is 400 to 1000 m2/s, the predicted integrated cloud brightness is in agreement with both satellite and ground-based observations of the shuttle PMCs. The propellant mass of the shuttle is about 20% of that from all vehicles launched during the northern 2011 PMC season. We suggest that the brightest PMC population near 70°N is formed by space traffic exhaust.

  4. Theoretical and Experimental Investigation of Mufflers with Comments on Engine-Exhaust Muffler Design

    Science.gov (United States)

    Davis, Don D , Jr; Stokes, George M; Moore, Dewey; Stevens, George L , Jr

    1954-01-01

    Equations are presented for the attenuation characteristics of single-chamber and multiple-chamber mufflers of both the expansion-chamber and resonator types, for tuned side-branch tubes, and for the combination of an expansion chamber with a resonator. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers with a reflection-free tailpipe termination. The experiments were made at room temperature without flow; the sound source was a loud-speaker. A method is given for including the tailpipe reflections in the calculations. Experimental attenuation curves are presented for four different muffler-tailpipe combinations, and the results are compared with the theory. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts are included for the assistance of the designer.

  5. Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008

    Energy Technology Data Exchange (ETDEWEB)

    Dane, J.; Voorhees, K. J.

    2010-06-01

    The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

  6. Carbonaceous aerosol in jet engine exhaust: emission characteristics and implications for heterogeneous chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, A.; Schroeder, F.P.; Kaercher, B. [Deutsches Zentrum fuer Luft- und Raumfahrt, Wessling (Germany). Institut fuer Physik der Atmosphaere; Stroem, J. [Stockholm University (Sweden). Dept. of Meteorology

    1999-08-01

    Characteristic parameters of black carbon aerosol (BC) emitted from jet engine were measured during ground tests and in-flight behind the same aircraft. Size distribution features were a primary BC mode at a model diameter D {approx} 0.045 {mu}m, and a BC agglomeration mode at D < 0.2 {mu}m. The total BC number concentration at the engine exit was 2.9 x 10{sup 7} cm{sup -3} with good agreement between model results and in-flight measured number concentrations of non-volatile particles with D {>=} 0.014 {mu}m. A comparison between total number concentration of BC particles and the non-volatile fraction of the total aerosol at the exit plane suggests that the non-volatile fraction of jet engine exhaust aerosol consists almost completely of BC. In-flight BC mass emission indices ranged from 0.11 to 0.15 g BC (kg fuel){sup -1}. The measured in-flight particle emission value was 1.75 {+-} 0.15 x 10{sup 15} kg{sup -1} with corresponding ground test values of 1.0-8.7 x 10{sup 14} kg{sup -1}. Both size distribution properties and mass emission indices can be scaled from ground test to in-flight conditions. Implications for atmosphere BC loading, BC and cirrus interaction and the potential of BC for perturbation of atmospheric chemistry are briefly outlined. (author)

  7. Marine diesel engines exhaust noise. Pt. VII: Calculation of the acoustical performance of diesel engine exhaust systems / Uitlaatgeluid van scheepsdieselmotoren. Dl. VII: Berekening van de akoestische eigenschappen van uitlaatsystemen van dieselmotoren

    NARCIS (Netherlands)

    Buiten, J.; Gerretsen, E.; Vellekoop, J.C.

    1974-01-01

    A method is given lor the calculation of the transfer damping of diesel engine exhaust systems. Also the complete computer program in FORTRAN IV, based on this calculation method is given. The method includes such system elements as chamber resonators, 1,5-pipes, absorbing siìencers and shunts to

  8. Lean-burn stratified combustion at gasoline engines; Magere Schichtverbrennung beim Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Breitbach, Hermann [Daimler AG, Stuttgart (Germany). Entwicklung Einspritzung und Betriebsstoffe; Waltner, Anton [Daimler AG, Stuttgart (Germany). Verbrennungsentwicklung Pkw-Ottomotoren; Landenfeld, Tilo [Robert Bosch GmbH, Schwieberdingen (Germany). Hochdruckeinspritzung Piezo; Porten, Guido [Robert Bosch GmbH, Schwieberdingen (Germany). Systementwicklung Benzindirekteinspritzung

    2013-05-01

    Spray-guided lean-burn combustion is an integral part of the Mercedes-Benz technology strategy for highly efficient and clean gasoline engines. With regard to the excellent fuel efficiency combined with outstanding specific power, a good combustion system robustness and the low particulate emissions, the concept offers a very good cost/benefit ratio especially for the Euro 6 emission legislation. Thus, Mercedes-Benz believes, that the sprayguided lean-burn combustion offers the by far highest future viability of gasoline engine combustion systems.

  9. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two......-stroke marine diesel engine. A turbocharger model together with a blower, a pre-scrubber and a cooler for the exhaust gas recirculation line, are included. The steam turbine, depending on the configuration, is modeled as either a dual or triple pressure level turbine. The condensation and pre-heating process......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...

  10. Investigation of Deposit Formation Mechanisms for Engine In-cylinder Combustion and Exhaust Systems Using Quantitative Analysis and Sustainability Study

    Science.gov (United States)

    Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.

    2007-06-01

    The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization

  11. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  12. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    Science.gov (United States)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  13. 40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?

    Science.gov (United States)

    2010-07-01

    ... emission standards must my engines meet after the 2014 model year? The exhaust emission standards of this section apply after the 2014 model year. Certain of these standards also apply for model year 2014 and... emission standards that apply to 2014 and earlier model years. Section 1039.105 specifies smoke standards...

  14. Evaluation of Diesel Engine Performance with Intake and Exhaust System Throttling : Volume 1. Text and Appendixes A through H.

    Science.gov (United States)

    1975-11-01

    The diesel engine itself is an important source of diesel powered vehicle noise, and becomes dominant after proper treatment of intake/exhaust and cooling system noise at vehicle speeds below fifty miles per hour. An investigation is reported, in two...

  15. Characterization of optical turbulence in a jet engine exhaust with Shack-Hartmenn wavefront sensor

    Science.gov (United States)

    Deron, R.; Mendez, F.

    2008-10-01

    Airborne laser countermeasure applications (DIRCM) are hampered by the turbulence of jet engine exhaust. The effects of this source of perturbation on optical propagation have still to be documented and analyzed in order to get a better insight into the different mechanisms of the plume perturbations and also to validate CFD/LES codes. For that purpose, wave front sensing has been used as a non-intrusive optical technique to provide unsteady and turbulent optical measurements through a plume of a jet engine installed at a fixed point on the ground. The experiment has been implemented in October 2007 along with other optical measuring techniques at Volvo Aero Corporation (Trollhättan, Sweden). This study is part of a European research programme dealing with DIRCM issues. The Shack- Hartmann (SH) wave front sensing technique was employed. It consisted of 64 x 64 lenslets coupled to a 1024x1024 pixel Dalsa CCD sensor working at a sampling rate of 40 Hz. A 15 ns pulsed laser synchronized with the SH sensor enabled "freezing" turbulence in each SH image. The ability of the technique to substract a reference permitted a simple calibration procedure to ensure accurate and reliable measurements despite vibration environment. Instantaneous phases are reconstructed using Fourier techniques so as to obtain a better spatial resolution against turbulent effects. Under any given plume condition, overall tilt aberration prevails. Phase power spectra derived from phase statistics are drawn according to the plume main axis and to normal axis. They compare favorably well to the decaying Kolmogorov power law on a useful high spatial frequency range. Averaged phases are also decomposed into Zernike polynomials to analyze optical mode behavior according to engine status and to plume abscissa. With overall tilt removed, turbulent DSP's amplitude drops by a factor of 30 to 40 and mean aberrations by a factor of 10 from an abscissa 1 meter to another 3.5 meters away from the engine

  16. The Effect of Fuel Dose Division on The Emission of Toxic Components in The Car Diesel Engine Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2016-09-01

    Full Text Available The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and

  17. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  18. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine

    Energy Technology Data Exchange (ETDEWEB)

    Baumgard, Kirby; Triana, Antonio; Johnson, John; Yang, Song; Premchand, Kiran

    2006-01-30

    packing density inside the porous wall were 1 to 5 kg/m{sup 3}; and percolation factors were 0.81 to 0.97. Average particulate layer permeability was 1.95 x 10{sup -14} m{sup 2}. Solid particulate layer packing density values were between 11 and 128 kg/m{sup 3}. These values were in good agreement with the Peclet number correlation theory reported in the literature. NO{sub 2}-assisted oxidation of PM in the DPF showed experimentally that a significant reduction of the pressure drop can be achieved (<8 kPa) when sufficient NO{sub 2} (>120 ppm) is available and high exhaust gas temperatures ({approx}360-460 C) can be maintained, even at high PM loadings (low NO{sub 2}/solid PM ratios). The CRT{trademark} (DOC-DPF system) showed limited advantages when used with high PM rates (low NOx/PM ratios) in combination with a low pressure loop EGR strategy for a continuous operation of an engine-exhaust aftertreatment system. The 8.1-liter engine was not designed for low-pressure loop EGR and when the EGR was added the NOx emissions were reduced but the PM emissions increased. This corresponds to the well known NOx to PM relationship in which if the NOx is reduced the PM emissions increase. In order for this technology to be successful on this engine family, the engine out PM emissions must be reduced. These results led to Task II. Task II objective was to meet the interim Tier 4 standards using the CCRT{trademark} technology applied to an advanced 6.8 liter John Deere engine. The advanced engine incorporated a 4 valve head, required additional EGR, an advanced high pressure common rail fuel system and a better matched turbocharger. The EGR system was optimized and the goal of less than 2 g/kWh NOx and less than 0.02 g/kWh PM were achieved over the 8 mode test. Again, experimental data was provided to Michigan Tech to study the passive regeneration of the CCRT{trademark} technology. Two computer models, i.e., the MTU 1-D DOC model and the MTU 1-D 2-layer CPF model were developed as

  19. Innovative MAN Euro V engines without exhaust aftertreatment; Innovative MAN Euro V Motorisierung ohne Abgasnachbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Held, W.; Raab, G.; Schaller, K.V.; Gotre, W.; Lehmann, H.; Moeller, H.; Schroeppel, W. [MAN Nutzfahrzeuge AG, Muenchen (Germany); MAN Nutzfahrzeuge AG, Nuernberg (Germany); MAN Nutzfahrzeuge AG, Steyr (Austria)

    2009-07-01

    MAN Nutzfahrzeuge AG (Munich, Federal Republic of Germany) always is eager to offer products for the respective markets whereby the products are interesting for the customer under economic criteria. Additionally, the products shall not lack in the travelling comfort under consideration of the legal emission borders. Thus, a AdBlue {sup registered} free technology for all MAN series was already offered before the legal introduction of EURO IV. This technology is based on an internal-motor solution with external, cooled AGR and a PM-Cat {sup registered} -filter. This solution is esteemed highly by our customers because apart from the well-known advantages in relation to a SCR technology there were no losses with the operating cost. With EURO V which is inserted in some countries MAN Nutzfahrzeuge AG returns to a long-term experience with SCR technology. The motivation for the development of a AdBlue {sup registered} free solution was the positive feedback of our customers on the basis of MAN EURO IV AGR/PM Cat technology. With the developed EURO V AGR solution, other EURO IV solutions in line with market conditions for the 'Emerging markets' can be derived with which a technology without exhaust post-treatment can be offered worldwide for our customers. This technology presents the basis for a platform concept EURO IV/V and EURO VI. In this concept, EURO IV can be presented without subsequent treatment of exhaust gases, EURO V in connection with an Oxicat and EURO VI with a SCRT system. Here, the vehicle/engine concept presents the most important components for the individual series in particular. By means of these components, the goal EURO V was achieved internal-motor without losses of operating cost and life span in relation to SCR technologies.

  20. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  1. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Science.gov (United States)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was

  2. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Directory of Open Access Journals (Sweden)

    J. Alanen

    2017-07-01

    Full Text Available Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission

  3. Low-pressure-ratio regenerative exhaust-heated gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  4. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadian, B.; Rahimi, H.; Nikbakht, A.M.; Najafi, G. [Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran); Yusaf, T.F. [University of Southern Queensland, Toowoomba 4350 QLD (Australia)

    2009-04-15

    This study deals with artificial neural network (ANN) modeling of a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of the engine. To acquire data for training and testing the proposed ANN, a two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results revealed that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model was developed based on standard Back-Propagation algorithm for the engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values were obtained as 0.0004 by the model. (author)

  5. Investigation of Chronic Toxic and Carcinogenic Effects of Gasoline Engine Exhausts Deriving from Fuel without and with Ferrocene Additive.

    Science.gov (United States)

    Peters, L; Ernst, H; Koch, W; Bartsch, W; Bellmann, B; Creutzenberg, O; Hoymann, H G; Dasenbrock, C; Heinrich, U

    2000-01-01

    Chronic toxic and carcinogenic effects of gasoline engine exhaust inhalation were investigated in rats. The exhaust from the combustion of commercial fuel containing 30 ppm ferrocene additive was compared to exhaust from the same fuel without ferrocene. This study was part of a procedure to get a special authorization for the use of ferrocene as gasoline additive according to the German Gasoline Lead Act. To generate the exhausts, pairs of engines of the same type and age were operated on computer-controlled test benches in a combined urban-freeway driving cycle. The engines were equipped with three-way catalysts and lambda sensors. Rats inhaled the exhausts after dilution at ratios of about 1.20 and 1:40 for 18 h/day, 5 days/wk for 12 mo (chronic toxicity study) or for 24 mo followed by 6 mo of clean air (carcinogenicity study). The limiting factor for the exhaust concentration was the relative humidity of the exposure atmosphere. At defined intervals, body weight and food consumption, parameters of clinical chemistry, hematology, bronchoalveolar lavage (BAL), and mechanical lung function were measured, as well as lung clearance and particle retention in the lungs. In the high-dose groups and the controls the complete organ/tissue spectrum was investigated histopathologically, and in the low-dose groups the respiratory tract. Only slight exposure-related effects could be detected, like a loss in the background iron content of the cell pellet of the bronchoalveolar lavage fluid and cytoplasmic inclusions and goblet-cell hyperplasias in the nasal cavity. Between the clean-air controls and the exhaust-exposed groups, no exposure-related differences occurred in body weight development, mortality incidences, or any of the clinical investigations. Ninety-two to 94% of the animals developed age-related tumors, predominantly in the mammary glands, uterus, adrenals, thyroid, and pituitary. In the respiratory tract a total of five tumors was found: one in the controls and

  6. Selective Catalytic Reduction of Nitric Oxide in Diesel Engine Exhaust over Monolithic

    Directory of Open Access Journals (Sweden)

    Ahmad Zuhairi Abdullah

    2009-01-01

    Full Text Available Selective catalytic reduction (SCR of nitric oxide (NO in diesel engine exhaust over Cu-Zn/ZSM-5 washcoated ceramic monolithic catalysts is reported. The washcoat component was prepared by ion-exchanging ZSM-5 (Si/Al=40 with zinc while copper was incorporated through impregnation. The dispersed washcoat component was then incorporated into 400 cpsi ceramic monolith through a dipping process with the final loadings between 19.6 wt. % and 31.4 wt. %. The SCR process was studied with a feed comprising of 900 ppm NO, 2,000 ppm iso butane and 3 % oxygen at gas hourly space velocities (GHSV between 5,000 and 13,000 h-1. NO conversion increased until a loading of 23.6 wt. % to give a conversion of 88 % at 400 °C. The activity dropped at higher loadings due to the partial blockage of cell openings and diffusion limitations while unstable washcoating adherence was also demonstrated. After an initial deactivation of about 10 % in the first 48 h, this catalyst showed stable residual activity. Between 325 and 375 °C, minimal effect on the activity was detected when the space time was reduced from 0.94 s to 0.24 s, suggesting the absence of external mass transfer limitations for up to a GHSV of 16,000 h-1.

  7. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  8. Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Trottmann, Matthias; Weidenkaff, Anke; Populoh, Sascha; Brunko, Oliver; Veziridis, Angelika; Bach, Christian; Cabalzar, Urs [Empa, Duebendorf (Switzerland)

    2011-07-01

    The energy efficiency of passenger cars becomes increasingly important due to a growing awareness in terms of climate change and shortages of resources associated with rising fuel prices. In addition to the efforts towards the optimization of the engine's internal efficiency, waste heat recovery is the main objective. In this respect, thermoelectric (TE) devices seem to be suited as heat recuperation systems. Thermoelectric generators allow for direct transformation of thermal into electrical energy. In order to thoroughly investigate this type of recovery system a TE demonstrator was mounted on the muffler of a VW Touran and tested. The waste heat of the exhaust gas was converted into electricity with a conversion rate of {proportional_to}. 3.5%. The limiting factor was the low thermal stability of the commercial modules used in this pre-study to elaborate reference values. Thermoelectric modules based on sustainable and temperature-stable materials are being developed to improve the measured values. A thermoelectric test generator with perovskite-type oxide modules was constructed confirm the function and stability at elevated temperatures. Despite all the advantages of this material class, the TE performance is still to be improved. A quantitative measure of a material's TE performance is the temperature-independent Figure of Merit ZT. ZT increases with decreasing thermal and increasing electrical conductivity. An approach to thermal conductivity reduction is nanostructuring of the material. The Ultrasonic Spray Combustion (USC) technique allows to produce powders with a grain size on the nanoscale and was tested in this study. (orig.)

  9. Improvement of the thermal and mechanical flow characteristics in the exhaust system of piston engine through the use of ejection effect

    Science.gov (United States)

    Plotnikov, L. V.; Zhilkin, B. P.; Brodov, Yu M.

    2017-11-01

    The results of experimental research of gas dynamics and heat transfer in the exhaust process in piston internal combustion engines are presented. Studies were conducted on full-scale models of piston engine in the conditions of unsteady gas-dynamic (pulsating flows). Dependences of the instantaneous flow speed and the local heat transfer coefficient from the crankshaft rotation angle in the exhaust pipe are presented in the article. Also, the flow characteristics of the exhaust gases through the exhaust systems of various configurations are analyzed. It is shown that installation of the ejector in the exhaust system lead to a stabilization of the flow and allows to improve cleaning of the cylinder from exhaust gases and to optimize the thermal state of the exhaust pipes. Experimental studies were complemented by numerical simulation of the working process of the DM-21 diesel engine (production of “Ural diesel-motor plant”). The object of modeling was the eight-cylinder diesel with turbocharger. The simulation was performed taking into account the processes nonstationarity in the intake and exhaust pipes for the various configurations of exhaust systems (with and without ejector). Numerical simulation of the working process of diesel was performed in ACTUS software (ABB Turbo Systems). The simulation results confirmed the stabilization of the flow due to the use of the ejection effect in the exhaust system of a diesel engine. The use of ejection in the exhaust system of the DM-21 diesel leads to improvement of cleaning cylinders up to 10 %, reduces the specific fuel consumption on average by 1 %.

  10. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  11. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pingen [Tennessee Technological University (TTU); Lin, Qinghua [Tennessee Technological University (TTU); Prikhodko, Vitaly Y. [ORNL

    2017-10-01

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuel penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.

  12. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends

    Directory of Open Access Journals (Sweden)

    Punitharani K.

    2017-11-01

    Full Text Available NOx emission is one of the major sources for health issues, acid rain and global warming. Diesel engine vehicles are the major sources for NOx emissions. Hence there is a need to reduce the emissions from the engines by identifying suitable techniques or by means of alternate fuels. The present investigation deals with the effect of Exhaust Gas Recirculation (EGR on 4S, single cylinder, DI diesel engine using plastic oil/Diesel blends P10 (10% plastic oil & 90% diesel in volume, P20 and P30 at various EGR rates. Plastic oil blends were able to operate in diesel engines without any modifications and the results showed that P20 blend had the least NOx emission quantity.

  13. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report

    Science.gov (United States)

    1976-01-01

    The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.

  14. U.S. Army Armament Research, Development and Engineering Center Grain Evaluation Software to Numerically Predict Linear Burn Regression for Solid Propellant Grain Geometries

    Science.gov (United States)

    2017-10-01

    ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...distribution is unlimited. AD U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Munitions Engineering Technology Center Picatinny...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID

  15. Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient.

    Science.gov (United States)

    An, Gary; Faeder, James; Vodovotz, Yoram

    2008-01-01

    The pathophysiology of the burn patient manifests the full spectrum of the complexity of the inflammatory response. In the acute phase, inflammation may have negative effects via capillary leak, the propagation of inhalation injury, and development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later stage processes of wound healing. Despite the volume of information concerning the cellular and molecular processes involved in inflammation, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective clinical therapeutic regimens. Translational systems biology (TSB) is the application of dynamic mathematical modeling and certain engineering principles to biological systems to integrate mechanism with phenomenon and, importantly, to revise clinical practice. This study will review the existing applications of TSB in the areas of inflammation and wound healing, relate them to specific areas of interest to the burn community, and present an integrated framework that links TSB with traditional burn research.

  16. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    is optimized to utilize the maximum waste heat recovery. The Genetic algorithm and fmincon active-set algorithm are used to optimize the design and operation parameters for the two steam cycles. The optimization aims to find the theoretically optimal combination of the pressure levels and pinch......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two...

  17. DEKRA: New basis for testing of engines, exhaust systems and powertrains; DEKRA: Neue Versuchsbasis fuer Motor, Abgas und Antriebsstrang

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R. [Dekra Automotive Test Center (Germany); Engeljehringer, K. [AVL List GmbH (Germany)

    2004-02-01

    Demands on internal combustion engines are getting increasingly rigid in terms of exhaust emissions and fuel consumptions. For the type testing authorities, this means ever higher accuracies of measurement and reproducibility of test results. In cooperation with the AVL List GmbH, a new exhaust laboratory was constructed at the Dekra Automobil Test Center. [German] An Verbrennungsmotoren werden immer hoehere Anforderungen hinsichtlich der Abgasemission und des Kraftstoffverbrauchs gestellt. Die stete Verschaerfung der gesetzlichen Grenzwerte und Pruefvorschriften stellt nicht nur die Fahrzeug- und Motorenhersteller, sondern auch die Typpruefstellen vor immer anspruchsvollere Aufgaben bezueglich der Messgenauigkeit und Reproduzierbarkeit der Testergebnisse. Im Dekra Automobil Test Center entstand in Zusammenarbeit mit der AVL List GmbH ein neues Abgaslabor. (orig.)

  18. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  19. Toxicity of Exhaust Gases and Particles from IC-Engines -- International Activities Survey (EngToxIn)

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, J. [University for Applied Sciences, Biel-Bienne (Switzerland)

    2011-09-15

    Exhaust gases from engines, as well as from other combustion -- and industrial processes contain different gaseous, semi volatile and solid compounds which are toxic. Some of these compounds are not regarded by the respective legislations; some new substances may appear, due to the progressing technical developments and new systems of exhaust gas aftertreatment. The toxical effects of exhaust gases as whole aerosols (i.e. all gaseous components together with particle matter and nanoparticles) can be investigated in a global way, by exposing the living cells, or cell cultures to the aerosol, which means a simultaneous superposition of all toxic effects from all active components. On several places researchers showed, that this method offers more objective results of validation of toxicity, than other methods used up to date. It also enables a relatively quick insight in the toxic effects with consideration of all superimposed influences of the aerosol. This new methodology can be applied for all kinds of emission sources. It bears potentials of giving new contributions to the present state of knowledge in this domain and can in some cases lead to a change of paradigma. The present report gives short information about the activities concerning the research on toxicity of exhaust gases from IC-engines in different countries. It also gives some ideas about research of information sources. It can be stated that there are worldwide a lot of activities concerning health effects. They have different objectives, different approaches and methodologies and rarely the results can be directly compared to each other. Nevertheless there also are some common lines and with appropriate efforts there are possible ways to establish the harmonised biological test procedures.

  20. Effects of antioxidant additives on exhaust emissions reduction in compression ignition engine fueled with methyl ester of annona oil

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study, biodiesel is a cleaner burning alternative fuel to the Neat diesel fuel. However, several studies are pointed out that increase in NOx emission for biodiesel when compared with the Neat diesel fuel. The aim of the present study is to analyze the effect of antioxidant (p-phenylenediamine on engine emissions of a Diesel engine fuelled with methyl ester of annona oil. The antioxidant is mixed in various concentrations (0.010 to 0.040% (w/w with methyl ester of annona oil. Result shows that antioxidant additive mixture (MEAO+P200 is effective in control of NOx and HC emission of methyl ester of annona oil fuelled engine without doing any engine modification.

  1. Computer aided engineering in exhaust aftertreatment systems design. Pt. 1. Spark ignition engine; Computergestuetzter Entwurf von Abgas-Nachbehandlungskonzepten. T. 1. Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelos, A.M.; Koltsakis, G.C.; Kandylas, I.P. [Aristotelian Univ. of Thessaloniki (Greece)

    1999-02-01

    At the Aristotle University Thessaloniki, Greece, an integrated Computer Aided Engineering (CAE) methodology assisting the design of SI-engine exhaust aftertreatment systems employing the following computational tools was developed: A computer code which models transient exhaust system heat transfer, a tuneable computer code which models the transient operation of a three-way catalytic converter, a database containing chemical kinetics data for a variety of catalyst formulations, and a methodology for ageing assessment calculations. Application of the CAE methodology, which aids the exhaust aftertreatment system design engineer to meet the upcoming, increasingly stringent emission standards, is high-lighted by referring to a number of representative case studies. (orig.) [Deutsch] An der Aristoteles-Universitaet Thessaloniki, Griechenland, wurde eine computergestuetzte Methode (CAE) entwickelt, die den Entwurf und die Konstruktion von Abgasnachbehandlungskonzepten unterstuetzt. Die Methode setzt auf die folgenden Rechenmodelle und Datenbanken: Ein Rechenmodell zur Berechnung des Waermeuebergangs in Motorabgassystemen, ein Rechenmodell zur Abschaetzung des Katalysatorgegendrucks, eine Datenbank mit den chemischen Kinetikdaten fuer die verschiedenen Typen von Dreiwegekatalysatoren und eine computergestuetzte Prozedur zur Abschaetzung des Alterungsverhaltens von Dreiwegekatalysatoren. Integrierte CAE-Methoden koennen beim Entwurf von modernen Abgasnachbehandlungssystemen angewandt werden, um die Entwicklungszeit und -kosten betraechtlich zu reduzieren. (orig.)

  2. Evaluation of Energy Saving Characteristics of a High-Efficient Cogeneration System Utilizing Gas Engine Exhaust Heat

    Science.gov (United States)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) utilizing high temperature exhaust gas from a gas engine is proposed. In the proposed CGS, saturated steam produced in the gas engine is superheated with a super heater utilizing regenerative burner and used to drive a steam turbine generator. The heat energy is supplied by extracting steam from the steam turbine and turbine outlet low-temperature steam. Both of the energy saving characteristics of the proposed CGS and a CGS constructed by using the original gas engine (GE-CGS) were investigated and compared, by taking a case where energy for office buildings was supplied by the conventional energy systems. It was shown that the proposed CGS has energy saving rate of 24.5%, higher than 1.83 times, compared with that of the original GE-CGS.

  3. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    Science.gov (United States)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  4. A Preliminary Study on Designing and Testing of an Absorption Refrigeration Cycle Powered by Exhaust Gas of Combustion Engine

    Science.gov (United States)

    Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson

    2017-03-01

    In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.

  5. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  6. On-line Analysis of Diesel Engine Exhaust Gases by Selected Ion Flow Tube Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Dabill, D.; Cocker, J.; Rajan, B.

    2004-01-01

    Roč. 18, - (2004), s. 2830-2838 ISSN 0951-4198 Institutional research plan: CEZ:AV0Z4040901 Keywords : diesel exhaust analysis * NOx compounds * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.750, year: 2004

  7. Constraining the heterogeneous loss of O3 on soot particles with observations in jet engine exhaust plumes

    Science.gov (United States)

    Gao, R. S.; Kärcher, B.; Keim, E. R.; Fahey, D. W.

    In situ measurements in the engine exhaust of a Concorde supersonic aircraft in the lower stratosphere are used to constrain heterogeneous reaction rates on soot particles in a plume model. Upper limit values are obtained for the product of the reactive uptake coefficients of O3 and NO2 and the mean surface area of individual soot particles using the model and the well-established O3-N2O correlation in the lower stratosphere. The low reactivity value obtained for O3 implies that soot reactions cannot account for ozone trends in the lower stratosphere.

  8. Theoretical and Measured Attenuation of Mufflers at Room Temperature Without Flow, with Comments on Engine-exhaust Muffler Design

    Science.gov (United States)

    Davis, Don D , Jr; Stevens, George L , Jr; Moore, Dewey; Stokes, George M

    1953-01-01

    Equations are presented for the attenuation characteristics of several types of mufflers. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers and the results are compared with theory. The experiments were made at room temperature without flow and the sound source was a loud-speaker. A method is given for including the tail pipe in the calculations. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts have been included for the assistance of the designer.

  9. Development of coaxial speaker-like non-contact electrostatic sensor for aviation engine exhaust electrostatic character research

    Directory of Open Access Journals (Sweden)

    Du Zhaoheng

    2015-01-01

    Full Text Available Electrostatic sensor is the most important equipment in aero-engine exhaust electrostatic character research. By comparing a variety of sensor test programs, the coaxial speaker-like noncontact electrostatic sensor program is proposed. Numerical simulation analysis indicates the electric field distribution of electrostatic sensor, the influence principle of gap width, outer diameter, center diameter, angle and other factors on the sensor capacitance values which identify the key indicators of electrostatic sensor. The experiment test shows that the simulation analysis is in good agreement with the experimental results.

  10. Effect of lower and higher alcohol fuel synergies in biofuel blends and exhaust treatment system on emissions from CI engine.

    Science.gov (United States)

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Martin, Leenus Jesu; Beddhannan, Nagalingam

    2017-11-01

    The present study deals with performance, emission and combustion studies in a single cylinder CI engine with lower and higher alcohol fuel synergies with biofuel blends and exhaust treatment system. Karanja oil methyl ester (KOME), widely available biofuel in India, and orange oil (ORG), a low carbon biofuel, were taken for this study, and equal volume blend was prepared for testing. Methanol (M) and n-pentanol (P) was taken as lower and higher alcohol and blended 20% by volume with KOME-ORG blend. Activated carbon-based exhaust treatment indigenous system was designed and tested with KOME-ORG + M20 and KOME-ORG + P20 blend. The tests were carried out at various load conditions at a constant speed of 1500 rpm. The study revealed that considering performance, emission and combustion studies, KOME-ORG + M20 + activated carbon are found optimum in reducing NO, smoke and CO2 emission. Compared to KOME, for KOME-ORG + M20 + activated carbon, NO emission is reduced from 10.25 to 7.85 g/kWh, the smoke emission is reduced from 49.4 to 28.9%, and CO2 emission is reduced from 1098.84 to 580.68 g/kWh. However, with exhaust treatment system, an increase in HC and CO emissions and reduced thermal efficiency is observed due to backpressure effects.

  11. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... adopting the gas turbine engine test procedures of the International Civil Aviation Organization (ICAO... regulations, the FAA proposed and the EPA accepted the idea that referring to these engines as exceptions to...

  12. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    Science.gov (United States)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  13. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  14. EFFECT OF ETHANOL ADDITION WITH CASHEW NUT SHELL LIQUID ON ENGINE COMBUSTION AND EXHAUST EMISSION IN A DI DIESEL ENGINE

    OpenAIRE

    A.VELMURUGAN; M.LOGANATHAN

    2012-01-01

    In this study, biofuel, diesel and ethanol blends (BDEB) were tested in a single cylinder direct-injection diesel engine to investigate the engine combustion, performance and emission characteristics of the engine under five engine loads at the speed of 1500 rpm. Here the ethanol is used as an additive to enhance the engine combustion. The mixture of Commercial diesel fuel, biofuel from Cashew Nut Shell Liquid (CNSL) and ethanol mixture called BDEB is used to run the direct injection diesel e...

  15. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  16. Research on the Compatibility of the Cooling Unit in an Automotive Exhaust-based Thermoelectric Generator and Engine Cooling System

    Science.gov (United States)

    Deng, Y. D.; Liu, X.; Chen, S.; Xing, H. B.; Su, C. Q.

    2014-06-01

    The temperature difference between the hot and cold sides of thermoelectric modules is a key factor affecting the conversion efficiency of an automotive exhaust-based thermoelectric generator (TEG). In the work discussed in this paper the compatibility of TEG cooling unit and engine cooling system was studied on the basis of the heat transfer characteristics of the TEG. A new engine-cooling system in which a TEG cooling unit was inserted was simulated at high power and high vehicle speed, and at high power and low vehicle speed, to obtain temperatures and flow rates of critical inlets and outlets. The results show that coolant temperature exceeds its boiling point at high power and low vehicle speed, so the new system cannot meet cooling requirements under these conditions. Measures for improvement to optimize the cooling system are proposed, and provide a basis for future research.

  17. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  18. Effect of Installation of Mixer/Ejector Nozzles on the Core Flow Exhaust of High-Bypass-Ratio Turbofan Engines

    Science.gov (United States)

    Harrington, Douglas E.

    1998-01-01

    The aerospace industry is currently investigating the effect of installing mixer/ejector nozzles on the core flow exhaust of high-bypass-ratio turbofan engines. This effort includes both full-scale engine tests at sea level conditions and subscale tests in static test facilities. Subscale model tests are to be conducted prior to full-scale testing. With this approach, model results can be analyzed and compared with analytical predications. Problem areas can then be identified and design changes made and verified in subscale prior to committing to any final design configurations for engine ground tests. One of the subscale model test programs for the integrated mixer/ejector development was a joint test conducted by the NASA Lewis Research Center and Pratt & Whitney Aircraft. This test was conducted to study various mixer/ejector nozzle configurations installed on the core flow exhaust of advanced, high-bypass-ratio turbofan engines for subsonic, commercial applications. The mixer/ejector concept involves the introduction of largescale, low-loss, streamwise vortices that entrain large amounts of secondary air and rapidly mix it with the primary stream. This results in increased ejector pumping relative to conventional ejectors and in more complete mixing within the ejector shroud. The latter improves thrust performance through the efficient energy exchange between the primary and secondary streams. This experimental program was completed in April 1997 in Lewis' CE-22 static test facility. Variables tested included the nozzle area ratio (A9/A8), which ranged from 1.6 to 3.0. This ratio was varied by increasing or decreasing the nozzle throat area, A8. Primary nozzles tested included both lobed mixers and conical primaries. These configurations were tested with and without an outer shroud, and the shroud position was varied by inserting spacers in it. In addition, data were acquired with and without secondary flow.

  19. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  20. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  1. Evaluation of complementary technologies to reduce bio engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, J.H.

    2003-09-01

    This report summaries the results of a study examining the technical and economic feasibility of exhaust gas treatment technologies for reducing emissions from diesel engines burning pyrolysis oil to within internationally recognised limits. Details are given of the burning of pyrolysis oils in reciprocating engines, the reviewing of information on pyrolysis oils and engines, and the aim to produce detailed information for securing investment for a British funded diesel project. The burning of the pyrolysis oils in an oxygen-rich atmosphere to allow efficient combustion with acceptable exhaust emission limits is discussed along with the problems caused by the deterioration of the injection system.

  2. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN)

    National Research Council Canada - National Science Library

    Prasada Rao, K; Victor Babu, T; Anuradha, G; Appa Rao, B.V

    ...) engine fueled with Rice Bran Methyl Ester (RBME) with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN) modeling...

  3. Influence of number and size of particles on the health risk from diesel and Otto engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, U.; Boehncke, A.; Mangelsdorf, I. (Fraunhofer-Institut fuer Toxikologie und Aerosolforschung, Hannover (Germany))

    1999-01-01

    On behalf of the German Umweltbundesamt (Federal Environmental Protection Agency), a comparative risk assessment is being carried out by the Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, in cooperation with the German IFEU, (Institut fuer Energie- und Umweltforschung, Heidelberg), FoBiG (Forschungs- und Beratungsinstitut Gefahrstoffe GmbH, Freiburg) and Prof. Pott and Dr. Roller, Duesseldorf. Passenger cars with either gasoline or diesel engines as well as city busses with either CNG (Compressed Natural Gas) or diesel motor, are compared with regard to relevant exhaust components (including e.g. particulate matter, NO[sub x] and benzene) and current and future European emission standards. This risk assessment is based on emission rates for the individual exhaust components which have been deduced by IFEU from model calculations for the various European emission standards. These are connected mathematically with reference concentrations for the toxic effects of individual components and Unit Risks for their carcinogenic properties, so that a comparison of the toxic and carcinogenic potencies of the individual exhaust components is possible for the different motor types. A reference concentration of 3.5 [mu]g/m[sup 3] for the insoluble particle core and 5 [mu]g/m[sup 3] for the total particles, as derived by the WHO and US EPA, are used for the calculations in the risk assessment. The basis of the Unit Risk for the carcinogenic effects is 1 x 10[sup -4] [mu]g/m[sup 3] for the insoluble particle core and 7 x 10[sup -5] [mu]g/m[sup 3] for the total particles as derived by the German LAI (Laenderausschuss Immissionsschutz). Since the project is currently not yet finished, the main results are given briefly and qualitatively. (orig.)

  4. Influence of number and size of particles on the health risk from diesel and Otto engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, U.; Boehncke, A.; Mangelsdorf, I. [Fraunhofer-Institut fuer Toxikologie und Aerosolforschung, Hannover (Germany)

    1999-11-01

    On behalf of the German Umweltbundesamt (Federal Environmental Protection Agency), a comparative risk assessment is being carried out by the Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, in cooperation with the German IFEU, (Institut fuer Energie- und Umweltforschung, Heidelberg), FoBiG (Forschungs- und Beratungsinstitut Gefahrstoffe GmbH, Freiburg) and Prof. Pott and Dr. Roller, Duesseldorf. Passenger cars with either gasoline or diesel engines as well as city busses with either CNG (Compressed Natural Gas) or diesel motor, are compared with regard to relevant exhaust components (including e.g. particulate matter, NO{sub x} and benzene) and current and future European emission standards. This risk assessment is based on emission rates for the individual exhaust components which have been deduced by IFEU from model calculations for the various European emission standards. These are connected mathematically with reference concentrations for the toxic effects of individual components and Unit Risks for their carcinogenic properties, so that a comparison of the toxic and carcinogenic potencies of the individual exhaust components is possible for the different motor types. A reference concentration of 3.5 {mu}g/m{sup 3} for the insoluble particle core and 5 {mu}g/m{sup 3} for the total particles, as derived by the WHO and US EPA, are used for the calculations in the risk assessment. The basis of the Unit Risk for the carcinogenic effects is 1 x 10{sup -4} {mu}g/m{sup 3} for the insoluble particle core and 7 x 10{sup -5} {mu}g/m{sup 3} for the total particles as derived by the German LAI (Laenderausschuss Immissionsschutz). Since the project is currently not yet finished, the main results are given briefly and qualitatively. (orig.)

  5. Effects of phosphorus-containing engine oil additives on exhaust oxidation catalyst degradation

    Energy Technology Data Exchange (ETDEWEB)

    Caracciolo, F.; Spearot, J.A.

    1976-01-01

    Catalyst deterioration caused by phosphorus-containing engine oil additives was investigated using a variety of engine oil blends in a steady-state engine-dynamometer test. The reductions in hydrocarbon and carbon monoxide conversion in the 200-hour test were related to two parameters: (1) the quantity of phosphorus in the oil added to the engine, and (2) the amount of phosphorus on the catalyst at the end of the test. Catalyst degradation relative to the first parameter differed from that relative to the second because the two parameters were not directly related. Specifically, catalyst conversion efficiency decreased nonlinearly with the amount of oil-derived phosphorus added to the engine, but linearly with the amount of oil-derived phosphorus found on the catalyst. A higher percentage of phosphorus added to the engine was found on the catalyst with oils containing tricresylphosphate (TCP) than with oils containing zinc dialkyldithiophosphate (ZDP). For a fixed amount of phosphorus on the catalyst, however, oils containing ZDP were more harmful to catalyst performance than oils containing TCP. For most oils containing ZDP, phosphorus was observed to accumulate in sump oil during engine operation. As a result, less phosphorus than that added to the engine was responsible for the decrease in catalyst conversion efficiencies observed with these oils.

  6. Computer aided engineering in exhaust aftertreatment sytems design. Part 2: Diesel engines; Computergestuetzter Entwurf von Abgas-Nachbehandlungskonzepten. Teil 2: Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelos, A.M.; Koltsakis, G.C.; Kandylas, I.P. [Aristoteles Univ., Thessaloniki (Greece)

    1999-03-01

    In the field of diesel engines, there is growing interest in CAE methods for low-emission concepts, as newly developed mathematical models become more and more efficient. The design of diesel exhaust systems must take three general concepts into account: the oxidation catalyst, the particulate filter and the DeNO{sub x} catalyst. A CAE methodology developed at the Aristotle University in Thessaloniki, Greece, to aid engineers in designing exhaust systems is presented in this paper. The methodology is based on the following computational tools: a transient exhaust system heat transfer code, a transient oxidation and DeNO{sub x} catalytic converter code, a catalyst kinetics database for the various types of oxidation and DeNO{sub x} catalytic converters and a computational tool for calculating the loading and regeneration of diesel filters with and without catalytic support. (orig.) [Deutsch] Im Bereich der Dieselmotoren nimmt das Interesse an computergestuetzten CAE-Methoden fuer Niedrigemissionskonzepte zu, da neu entwickelte mathematische Modelle immer leistungsfaehiger werden. Der Entwurf von Dieselabgassystemen muss drei allgemeine Konzepte beruecksichtigen: Oxidationskatalysator, Partikelfilter und DeNO{sub x}-Katalysator. Eine an der Aristoteles Universitaet Thessaloniki, Griechenland, entwickelte computergestuetzte Methode, die den Entwurf von Abgassystemen unterstuetzten kann, wird im Folgenden dargestellt. Die Methode basiert auf folgenden Rechenmodellen: ein Modell zur Berechnung des Waermeuebergangs im Abgassystem, ein Rechenmodell zur Bestimmung des Instationaerverhaltens des Oxidations- und des DeNO{sub x}-Katalysators, eine Datenbank mit den chemischen Kinetikdaten fuer die verschiedenen Typen von Oxidations- und DeNO{sub x}-Katalysatoren sowie ein Rechenmodell zur Berechnung der Beladung und Regenerierung von Dieselfiltern mit oder ohne katalytische Unterstuetzung. (orig.)

  7. EU-project AEROJET. Non-intrusive measurements of aircraft engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, K.; Heland, J. [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany); Burrows, R. [Rolls-Royce Ltd. (United Kingdom). Engine Support Lab.; Bernard, M. [AUXITROL, S.A. (France). Aerospace Equipment Div.; Bishop, G. [British Aerospace (United Kingdom). Sowerby Research Centre; Lindermeir, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e. V. (DLR), Bonn (Germany). Inst. fuer Optoelektronik; Lister, D.H. [Defence and Research Agency, Hants (United Kingdom). Propulsion and Development Dept.; Wiesen, P. [Bergische Univ. Wuppertal (Gesamthochshule) (Germany); Hilton, M. [University of Reading (United Kingdom). Dept. of Physics

    1997-12-31

    The main goal of the AEROJET programme is to demonstrate the equivalence of remote measurement techniques to conventional extractive methods for both gaseous and particulate measurements. The different remote measurement techniques are compared and calibrated. A demonstrator measurement system for exhaust gases, temperature and particulates including data-analysis software is regarded as result of this project. Non-intrusive measurements are the method of choice within the AEROJET project promising to avoid the disadvantages of the gas sampling techniques which are currently used. Different ground based non-intrusive measurement methods are demonstrated during a final evaluation phase. Several non-intrusive techniques are compared with conventional gas sampling and analysis techniques. (R.P.) 3 refs.

  8. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  9. Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization

    Science.gov (United States)

    Serres, Nicolas

    2010-11-09

    A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

  10. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  11. Effects of Exhaust Gas Recirculation on Performance and Emission Characteristic of SI Engine using Hydrogen and CNG Blends

    Science.gov (United States)

    Nitnaware, Pravin Tukaram; Suryawanshi, Jiwak G.

    2018-01-01

    This paper shows exhaust gas recirculation (EGR) effects on multi-cylinder bi-fuel SI engine using blends of 0, 5, 10 and 15% hydrogen by energy with CNG. All trials are performed at a speed of 3000, 3500 and 4000 rpm with EGR rate of 0, 5, 10 and 15%, with equal spark timing and injection pressure of 2.6 bar. At specific hydrogen percentage with increase in EGR rate NOx emission reduces drastically and increases with increase in hydrogen addition. Hydrocarbon (HC) and carbon monoxide (CO) emission decreases with increase in speed and hydrogen addition. There is considerable improvement in brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) at 15% EGR rate. At 3000 rpm, 5% EGR rate with 5% hydrogen had shown maximum cylinder pressure. Brake specific fuel consumption (b.s.f.c) increased with increase in EGR rate and decreased with increase in hydrogen addition for all speeds.

  12. Exhaust Composition in a Small Internal Combustion Engine Using FTIR Spectroscopy

    Science.gov (United States)

    2015-06-18

    Captain, USAF Committee Membership: Dr. Marc D. Polanka (Chairman) Dr. Andrew W. Caswell (Member) Dr. Paul I. King (Member) Major James Rutledge, PhD...drivetrain on the small engine research bench . A correction and calibration model was developed for brake power collected by the dynamometer. Mechanical e...engine test bench , setup of much of the experimental diagnostics required during my research, and for challenging me to look at many problems dif

  13. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN)

    OpenAIRE

    K. Prasada Rao; T. Victor Babu; Anuradha, G.; B.V. Appa Rao

    2016-01-01

    Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI) engine fueled with Rice Bran Methyl Ester (RBME) with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN) modeling. The study used IDI engine experimental data to evaluat...

  14. Numerical analysis of C.I engine to control emissions using exhaust gas recirculation and advanced start of inject

    Directory of Open Access Journals (Sweden)

    P. Kashyap Chowdary

    2016-06-01

    Full Text Available As major limitation of diesel engines is the high soot and nitrogen oxide emissions which cannot be reduced totally with only conventional catalytic converters today, varying fuel characteristics became a focus of interest to meet the pollution emission legislations as they require very few or no changes in existing engine model. The present work deals with, numerical analysis of combined effect of Advanced Start of Injection (SOI and Exhaust Gas Re-circulation (EGR on performance and emissions which were studied, by performing numerical analysis on a Caterpillar 3401 single cylinder C.I engine model at constant speed using diesel as fuel via three dimensional computational fluid dynamics (CFD procedures and validated with experimental data. The SOI is advanced from 11° Crank angle bTDC to 14.5° Crank angle bTDC and EGR as a fraction is increased from 0% to 10%. The modified conditions of these parameters resulted in simultaneous reduction of NOx and Soot.

  15. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  16. Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain

    Energy Technology Data Exchange (ETDEWEB)

    Berlo, Damien van; Albrecht, Catrin; Krutmann, Jean; Schins, Roel P.F. [Institut fuer Umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universitaet Duesseldorf GmbH, Duesseldorf (Germany); Knaapen, Ad M.; Schooten, Frederik-Jan van [Maastricht University, Department of Health Risk Analysis and Toxicology, Maastricht (Netherlands); Cassee, Flemming R.; Gerlofs-Nijland, Miriam E.; Kooter, Ingeborg M. [National Institute for Public Health and the Environment (RIVM), Centre for Environmental Health, Bilthoven (Netherlands); Palomero-Gallagher, Nicola [Research Center Juelich, Institute of Neurosciences and Medicine (INM-2), Juelich (Germany); Bidmon, Hans-Juergen [Heinrich-Heine-University, C and O Vogt Institute for Brain Research, Duesseldorf (Germany)

    2010-07-15

    Combustion-derived nanoparticles, such as diesel engine exhaust particles, have been implicated in the adverse health effects of particulate air pollution. Recent studies suggest that inhaled nanoparticles may also reach and/or affect the brain. The aim of our study was to comparatively evaluate the effects of short-term diesel engine exhaust (DEE) inhalation exposure on rat brain and lung. After 4 or 18 h recovery from a 2 h nose-only exposure to DEE (1.9 mg/m{sup 3}), the mRNA expressions of heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and cytochrome P450 1A1 (CYP1A1) were investigated in lung as well as in pituitary gland, hypothalamus, olfactory bulb, olfactory tubercles, cerebral cortex, and cerebellum. HO-1 protein expression in brain was investigated by immunohistochemistry and ELISA. In the lung, 4 h post-exposure, CYP1A1 and iNOS mRNA levels were increased, while 18 h post-exposure HO-1 was increased. In the pituitary at 4 h post-exposure, both CYP1A1 and HO-1 were increased; HO-1 was also elevated in the olfactory tuberculum at this time point. At 18 h post-exposure, increased expression of HO-1 and COX-2 was observed in cerebral cortex and cerebellum, respectively. Induction of HO-1 protein was not observed after DEE exposure. Bronchoalveolar lavage analysis of inflammatory cell influx, TNF-{alpha}, and IL-6 indicated that the mRNA expression changes occurred in the absence of lung inflammation. Our study shows that a single, short-term inhalation exposure to DEE triggers region-specific gene expression changes in rat brain to an extent comparable to those observed in the lung. (orig.)

  17. Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission

    Energy Technology Data Exchange (ETDEWEB)

    Arpa, Orhan [Dicle University, Mechanical Engineering Department, Diyarbakir (Turkey); Yumrutas, Recep [University of Gaziantep, Mechanical Engineering Department, Gaziantep (Turkey); Argunhan, Zeki [University of Batman, Mechanical Engineering Department, Batman (Turkey)

    2010-10-15

    In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation. (author)

  18. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    Science.gov (United States)

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  19. Aerotrace. Measurement of trace species in the exhaust of aero engines

    Energy Technology Data Exchange (ETDEWEB)

    Cottington, R.V. [DRA, Farnborough (United Kingdom)

    1997-12-31

    There is growing evidence that trace species, both gaseous and particulate, play an important role in the chemistry of the atmosphere. Very little is currently known about the nature and concentration of these species emitted by aircraft engines. The purpose of AEROTRACE, therefore, is to make representative measurements of trace species emissions, such as particulates, hydrocarbon constituents and various nitrogen compounds, from engine combustors over the entire flight altitude range from ground level to cruise conditions. An overview of the programme and progress to date is presented. (author)

  20. Impact of Diesel Engine Exhaust Gases on Environmental Pollution and Human Health

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2004-07-01

    Full Text Available Fine particles that can be found in the exhaust gases of dieselengines and have a diameter of 2. 5 !Jl1l and ultra-fine particlesof 0.1 !Jl1l in diameter are mainly products of the combustionprocess. Experiments on animals have proven that theparticulates from the ambient air can cause damage to thelungs and can even end fatally. Therefore, it is necessary to reducethe mass of fine particles in the atmosphere and the numberof ultra-fine particles. Numerous studies of experiments onanimals have proven the toxicity of these particles. The air saturatedby particles resulted in cardio-pulmonary diseases in animalmodels. The epidemiological studies have shown the interdependenceof the increase in mortality and morbidity, especiallyin the elderly and persons suffering from respiratory ailmentsand cardio-vascular diseases. A hypothesis has been setthat the ultra-fine particles cause inflammatory reactions in alveoliand interstitium resulting in the increase of blood coagulationand deterioration of the condition in persons sufferingfrom the problems in cardio-vascular system.

  1. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    Science.gov (United States)

    Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  2. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ... definition that existed before the final rule and was overlooked. The FAA is issuing this technical amendment... aircraft engines which, in the EPA Administrator's judgment, causes or contributes to air pollution that... the final rule. 2. Sec. 34.1--Definitions In the definition of ``Standard day conditions,'' the value...

  3. Exhaust Emission Characteristics of Heavy Duty Diesel Engine During Cold and Warm Start

    Directory of Open Access Journals (Sweden)

    YANG Rong

    2014-07-01

    Full Text Available Through experiment conducted on a six cylinder direct injection diesel engine with SCR catalyst, effects of coolant temperature on rail pressure, injection quantity, excess air coefficient and emissions characteristics during cold and warm start were investigated. The results showed that, the maximum injection quantity during a starting event was several times higher than idling operation mode, so was the maximal opacity in the cold and warm starting process. When coolant temperature rose up to above 20℃, NOX emissions in the starting process exhibited peculiar rise which was times higher than idling mode. Compared with engine warm start, rail pressure, cycle fuel quantity, opacity, CO and HC emissions during engine cold start were higher in the course from their transient maximal values towards stabilized idling status. NOX in the same transient course, however, were lower in cold start. As coolant temperature rose, the maximal and the idling value of rail pressure and cycle fuel injection quantity during diesel engine starting process decreased gradually, the excess air coefficient increased to a certain degree, and the maximal and idling values of NOX increased gradually.

  4. Absence of multiplicative interactions between occupational lung carcinogens and tobacco smoking: a systematic review involving asbestos, crystalline silica and diesel engine exhaust emissions

    National Research Council Canada - National Science Library

    El Zoghbi, Mohamad; Salameh, Pascale; Stücker, Isabelle; Brochard, Patrick; Delva, Fleur; Lacourt, Aude

    ...]. Many of them are found in occupational settings such as all forms of asbestos, crystalline silica and diesel engine exhaust emissions, which are among the top most frequent occupational exposures [8-11]. The rate of smoking is higher among blue-collar workers than white-collar workers [12]. Thus a significant proportion of workers are concomitantl...

  5. Emission and performance analysis on the effect of exhaust gas recirculation in alcohol-biodiesel aspirated research diesel engine.

    Science.gov (United States)

    Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Devarajan, Yuvarajan; Radhakrishnan, Santhanakrishnan

    2018-02-21

    In this study, the effect of blending pentanol to biodiesel derived from mahua oil on emissions and performance pattern of a diesel engine under exhaust gas recirculation (EGR) mode was examined and compared with diesel. The purpose of this study is to improve the feasibility of employing biofuels as a potential alternative in an unmodified diesel engine. Two pentanol-biodiesel blends denoted as MOBD90P10 and MOBD80P20 which matches to 10 and 20 vol% of pentanol in biodiesel, respectively, were used as fuel in research engine at 10 and 20% EGR rates. Pentanol is chosen as a higher alcohol owing to its improved in-built properties than the other first-generation alcohols such as ethanol or methanol. Experimental results show that the pentanol and biodiesel blends (MOBD90P10 and MOBD80P20) have slightly higher brake thermal efficiency (0.2-0.4%) and lower brake-specific fuel consumption (0.6 to 1.1%) than that of neat biodiesel (MOBD100) at all engine loads. Nitrogen oxide (NOx) emission and smoke emission are reduced by 3.3-3.9 and 5.1-6.4% for pentanol and biodiesel blends compared to neat biodiesel. Introduction of pentanol to biodiesel reduces the unburned hydrocarbon (2.1-3.6%) and carbon monoxide emissions (3.1-4.2%) considerably. In addition, at 20% EGR rate, smoke, NO X emissions, and BTE drop by 7.8, 5.1, and 4.4% respectively. However, CO, HC emissions, and BSFC increased by 2.1, 2.8, and 3.8%, respectively, when compared to 0% EGR rate.

  6. Control of harmful hydrocarbon species in the exhaust of modern advanced GDI engines

    Science.gov (United States)

    Hasan, A. O.; Abu-jrai, A.; Turner, D.; Tsolakis, A.; Xu, H. M.; Golunski, S. E.; Herreros, J. M.

    2016-03-01

    A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C5-C11, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NOx with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NOx control. The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.

  7. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  8. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  9. 46 CFR 169.609 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Exhaust systems. 169.609 Section 169.609 Shipping COAST... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... Yacht Council, Inc. Standard P-1, “Safe Installation of Exhaust Systems for Propulsion and Auxiliary...

  10. Exhaust Gas Analysis and Parametric Study of Ethanol Blended Gasoline Fuel in Spark Ignition Engine

    OpenAIRE

    Jitendra kumar

    2013-01-01

    It is well known that the future availability of energy resources, as well as the need for reducing CO2 emissions from the fuels used has increased the need for the utilization of regenerative fuels. This research is done taking commercial gasoline as reference which is originally blended with 5% ethanol. Hence 5%, 10%, 15%, 20% ethanol blended with Gasoline initially was tested in SI engines. Physical properties relevant to the fuel were determined for the four blends of gasoline. A four cy...

  11. EFFECTS OF USING PHASE CHANGE MATERIALS ON THE COLD START EXHAUST EMİSSİONS CHARACTERİSTİCS OF DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Ferhat Kaya

    2016-05-01

    Full Text Available During the last two decades, the diesel engine performance and drivability have significantly improved with the latest technologic developments. Nevertheless, one of the disadvantageous of diesel engines is related to the difficulties for starting at cold conditions, particularly in the conditions where the ambient temperature is near or below 0ºC. Additionally, the harmful exhaust emissions are also at significantly important levels during the cold start conditions. Most of carbon monoxide (CO emissions from diesel engines are produced during the engine warm-up period.  In order to improve cold start characteristics of diesel engines, many measures have been proposed, such as glow plugs and air heaters in air intake lines.In this study, in order to increase the cold start performance and improve the exhaust emission characteristics of a direct injection diesel engine, phase change materials (PCMs have been used.PCMs have high heats of fusion and they can absorb latent energy before melting. During the phase change, temperature of PCMs remains nearly constant. In this study, a PCMs was used with the 45-51ºC melting temperature band in a heat exchanger. Hot water from an external source was circulated in the exchanger to carry out the experiments in the same conditions and was used as heat source in order to melt the PCMs.Engine intake air has been passed through the exchanger before engine intake manifold.  During the engine cooling period, the PCM in the produced heat exchanger have increased the cooling time period of engine intake air.An experimental setup has been established to observe the cold start characteristics of the two cylinder diesel engine with and without using the produced exchanger. Temperature measurements from different points, CO exhaust emissions, engine speed and in cylinder pressure measurements have been used to evaluate the contribution of exchanger and increasing the intake air temperature by using the PCMs. The

  12. Storage of Nitrous Oxide (NOx in Diesel Engine Exhaust Gas using Alumina-Based Catalysts: Preparation, Characterization, and Testing

    Directory of Open Access Journals (Sweden)

    A. Alsobaai

    2017-03-01

    Full Text Available This work investigated the nitrous oxide (NOx storage process using alumina-based catalysts (K2 O/Al2 O3 , CaO/Al2 O3,  and BaO/Al2 O3 . The feed was a synthetic exhaust gas containing 1,000 ppm of nitrogen monoxide (NO, 1,000 ppm i-C4 H10 , and an 8% O2  and N2  balance. The catalyst was carried out at temperatures between 250–450°C and a contact time of 20 minutes. It was found that NOx was effectively adsorbed in the presence of oxygen. The NOx storage capacity of K2 O/Al2 O3 was higher than that of BaO/Al2 O3.  The NOx storage capacity for K2 O/Al2 O3  decreased with increasing temperature and achieved a maximum at 250°C. Potassium loading higher than 15% in the catalyst negatively affected the morphological properties. The combination of Ba and K loading in the catalyst led to an improvement in the catalytic activity compared to its single metal catalysts. As a conclusion, mixed metal oxide was a potential catalyst for de-NOx process in meeting the stringent diesel engine exhaust emissions regulations. The catalysts were characterized by a number of techniques and measurements, such as X-ray diffraction (XRD, electron affinity (EA, a scanning electron microscope (SEM, Brunner-Emmett-Teller (BET to measure surface area, and pore volume and pore size distribution assessments.

  13. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  14. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    Science.gov (United States)

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen

    2012-06-05

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced

  15. Reduction of diesel engine emissions through the recirculation of cooled exhaust gas; Senkung von Diesel-Emissionen durch Rueckfuehrung von gekuehltem Abgas

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, R. [Behr GmbH und Co., Stuttgart (Germany). Entwicklungsteam Abgaswaermeuebertrager

    1997-09-01

    More stringent exhaust regulations for diesel engines which will come into force in Europe (Euro III, 1999) and the USA (2004) will necessitate new methods of reducing emissions, one of which entails the recirculation of cooled exhaust gas. By this process, a certain volume of the exhaust gas is bled off upstream of the turbine, cooled by the engine coolant and remixed with the combustion air down-stream of the intercooler. By contrast with other methods of exhaust gas purification, such as a lean-NO{sub x} catalytic converter, this process needs no second activating agent, such as urea, and, in comparison with a modification of the combustion process, only slightly more fuel. The heat transfer system developed by Behr, which uses the engine coolant to cool the exhaust gas, is capable of withstanding the high temperatures and pressures in the forward section of the exhaust system, is resistant to the sulphuric acid in diesel condensation and, despite its compact design, exhibits a low level of flow resistance. Its exceptional cooling capacity is achieved by a new heat transfer system employing `winglet` turbulence generators. These reduce deposits of soot and other particles on the walls of the heat exchanger to a considerable extent, thereby contributing to its long-term efficiency. (orig.) [Deutsch] Durch die Einfuehrung neuer, strengerer Abgasvorschriften fuer Dieselmotoren 1999 in Europa und 2004 in den USA ruecken neue Techniken zur Emissionssenkung ins Blickfeld. Eine davon ist die gekuehlte Abgasrueckfuehrung, die eine Emissionssenkung bei nur minimalem Anstieg des Kraftstoffverbrauchs erlaubt. An den Waermeuebertrager fuer solch ein System werden hinsichtlich kompakter Bauweise und Leistung, Temperaturbestaendigkeit, Verschutzungs-Unempfindlichkeit und Korrosionsbestaendigkeit hohe Anforderungen gestellt. Der von Behr entwickelte Abgas-Kuehlmittel-Waermeuebertrager erfuellt diese Anforderungen und zeichnet sich durch eine hohe Leistungsdichte aus. Dies

  16. Exhaust bypass flow control for exhaust heat recovery

    Science.gov (United States)

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  17. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  18. The atomization and burning of biofuels in the combustion chambers of gas turbine engines

    Science.gov (United States)

    Maiorova, A. I.; Vasil’ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.

    2017-11-01

    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  19. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines.

    Science.gov (United States)

    Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen

    2015-05-01

    The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. Effects of Specific Fuel Consumption and Exhaust Emissions of Four Stroke Diesel Engine with CuO/Water Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Senthilraja S.

    2017-03-01

    Full Text Available This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2% of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx, exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.

  2. The Effect of Humidity on the Knock Behavior in a Medium BMEP Lean-Burn High-Speed Gas Engine

    NARCIS (Netherlands)

    van Essen, Vincent Martijn; Gersen, Sander; van Dijk, Gerco; Mundt, Torsten; Levinsky, Howard

    2016-01-01

    The effects of air humidity on the knock characteristics of fuels are investigated in a lean-burn, high-speed medium BMEP engine fueled with a CH4 + 4.7 mole% C3H8 gas mixture. Experiments are carried out with humidity ratios ranging from 4.3 to 11 g H2O/kg dry air. The measured pressure profiles at

  3. 40 CFR 1051.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Science.gov (United States)

    2010-07-01

    ... catalytic converters, use a multiplicative deterioration factor for exhaust emissions. A multiplicative... considered in compliance with the applicable numerical exhaust emission standards in subpart B of this part... durability demonstration. (Note: if you participate in the ABT program in subpart H of this part, your FELs...

  4. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni

    2017-01-01

    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  5. Absence of multiplicative interactions between occupational lung carcinogens and tobacco smoking: a systematic review involving asbestos, crystalline silica and diesel engine exhaust emissions

    OpenAIRE

    El Zoghbi, Mohamad; Salameh, Pascale; Stücker, Isabelle; Brochard, Patrick; Delva, Fleur; Lacourt, Aude

    2016-01-01

    Background Tobacco smoking is the main cause of lung cancer, but it is not the sole causal factor. Significant proportions of workers are smokers and exposed to occupational lung carcinogens. This study aims to systematically review the statistical interaction between occupational lung carcinogens and tobacco smoking, in particular asbestos, crystalline silica and diesel engine exhaust emissions. Methods Articles were identified using Scopus, PubMed, and Web of Science, and were limited to th...

  6. Exhaust gas bypass valve control for thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  7. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  8. [Association of etheno-DNA adduct and DNA methylation level among workers exposed to diesel engine exhaust].

    Science.gov (United States)

    Shen, M L; He, Z N; Zhang, X; Duan, H W; Niu, Y; Bin, P; Ye, M; Meng, T; Dai, Y F; Yu, S F; Chen, W; Zheng, Y X

    2017-06-06

    Objective: To investigate the association between etheno-DNA adduct and the promoter of DNA methylation levels of cyclin dependent kinase inhibitor 2A (P16), Ras association domain family 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in workers with occupational exposure to diesel engine exhaust (DEE). Methods: We recruited 124 diesel engine testing workers as DEE exposure group and 112 water pump operator in the same area as control group in Henan province in 2012 using cluster sampling. The demographic data were obtained by questionnaire survey; urine after work and venous blood samples were collected from each subject. The urinary etheno-DNA adducts were detected using UPLC-MS/MS, including 1,N6-etheno-2'-deoxyadenosine (εdA) and 3,N4-etheno-2'-deoxycytidine(εdC). The DNA methylation levels of P16, RASSF1A, and MGMT were evaluated using bisulfite-pyrosequencing assay. The percentage of methylation was expressed as the 5-methylcytosine (5mC) over the sum of cytosines (%5mC). Spearman correlation and multiple linear regression were applied to analyze the association between etheno-DNA adducts and DNA methylation of P16, RASSF1A, and MGMT. Results: The median (P(25)-P(75)) of urinary εdA level was 230.00 (98.04-470.91) pmol/g creatinine in DEE exposure group, and 102.10 (49.95-194.48) creatinine in control group. The level of εdA was higher in DEE exposure group than control group (P0.05) . Multiple linear regression confirmed the negative correlation between εdA and DNA methylation levels of P16, RASSF1A, and MGMT in non-smoking group (β (95%CI) was -0.068 (-0.132--0.003), -0.082 (-0.159--0.004) and -0.048 (-0.090--0.007), P values were 0.039, 0.039 and 0.024, respectively). Moreover, εdC was negative associated with DNA methylation level of MGMT in non-smoking group (β (95%CI) was -0.094 (-0.179--0.008), P=0.032). Conclusion: DEE exposure could induce the increased of εdA and decreased of DNA methylation levels of P16, RASSF1A and MGMT.

  9. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain

    Directory of Open Access Journals (Sweden)

    Wang Kate

    2010-05-01

    Full Text Available Abstract Background The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM, present in air pollution, and enhancement of central nervous system proinflammatory markers. In the present study, the association between exposure to air pollution (AP, derived from a specific source (diesel engine, and neuroinflammation was investigated. To elucidate whether specific regions of the brain are more susceptible to exposure to diesel-derived AP, various loci of the brain were separately analyzed. Rats were exposed for 6 hrs a day, 5 days a week, for 4 weeks to diesel engine exhaust (DEE using a nose-only exposure chamber. The day after the final exposure, the brain was dissected into the following regions: cerebellum, frontal cortex, hippocampus, olfactory bulb and tubercles, and the striatum. Results Baseline levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α and interleukin-1 alpha (IL-1α were dependent on the region analyzed and increased in the striatum after exposure to DEE. In addition, baseline level of activation of the transcription factors (NF-κB and (AP-1 was also region dependent but the levels were not significantly altered after exposure to DEE. A similar, though not significant, trend was seen with the mRNA expression levels of TNF-α and TNF Receptor-subtype I (TNF-RI. Conclusions Our results indicate that different brain regions may be uniquely responsive to changes induced by exposure to DEE. This study once more underscores the role of neuroinflammation in response to ambient air pollution

  10. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    Science.gov (United States)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  11. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.

  12. Investigating the ionosphere response to exhaust products of ``Progress'' cargo spacecraft engines on the basis of Irkutsk Incoherent Scatter Radar data

    Science.gov (United States)

    Shpynev, Boris; Alsatkin, Sergei; Khakhinov, Vitaliy; Lebedev, Valentin

    2017-04-01

    The FSUE Central Research Institute of Machine Building (TsNIIMash), Rocket and Space Corporation "Energia", and Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) jointly conducted the active space experiment "Radar-Progress" in 2007-2015. During this experiment, we used the Irkutsk Incoherent Scatter Ra-dar to study space-time characteristics of ionospheric disturbances generated by exhaust products of "Progress" cargo spacecraft engines. As the basic effect during exhaust product injection we consider the formation of new centers for recombination of ambient ionospheric ions O+ on molecules of water and carbon dioxide. This produces an ionization "hole" in the region of injection. In nighttime conditions when the majority of experiments were performed, this hole was filled by hydrogen ions from the plasmasphere, thus the ion composition in the vicinity of the hole and incoherent scatter spectra were changed. For successful obser-vation of the ionization hole dynamics, the critical fac-tors are the degree of radar antenna diagram filling by exhaust products and the velocity of the thermospheric neutral wind, which makes exhaust gases move from the antenna diagram. These two factors lead to poor repeatability of successful experiments. Successful experiments recorded a decrease in electron density up to 35 % in the hole that existed for 30 min. The lifetime of the region with high concentration of H+ ions can be as long as one hour.

  13. Analysis of attitudes toward the source of progenitor cells in tissue-engineered products for use in burns compared with other disease states.

    Science.gov (United States)

    Clover, Anthony J P; O'Neill, Billy Lane; Kumar, Arun H S

    2012-01-01

    The first trials using progenitor cells to improve burn wound healing are beginning. However, there remains a paucity of data on patients' opinions of the source of stem cells. In this study, 279 patients attending plastic surgery/burns outpatient and medical outpatient clinics were questioned to assess willingness to accept a tissue-engineered skin product derived from a variety of sources. Levels of acceptance for the use of progenitor cells derived from these sources for treatment across a range of disease states (burns, Parkinson's disease, diabetes, and for cosmetic use) were also assessed. Overall, 80% of those questioned would accept a tissue-engineered product. Autologous cells were the preferred choice of cells (acute burns 94%, diabetes 95%, Parkinson's 93.9%). Allogeneic cells were still widely accepted (acute burns 67%, diabetes 66.7%, Parkinson's 69.2%). There was no difference observed between plastic surgical patients and medical patients in acceptance of cell therapy for burns, Parkinson's disease, or diabetes. There is good potential acceptance for the use of both autologous and allogeneic cells for the treatment of acute burns and burns' scarring as well as in diabetes and Parkinson's disease. Disease state does not appear to influence overall acceptability and choice of cells. © 2012 by the Wound Healing Society.

  14. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...

  15. Observations of primary and secondary emissions in a B747 exhaust plume in the upper troposphere and inferred engine exit plane OH concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H.; Schulte, P.; Tremmel, H.G.; Ziereis, H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F.; Droste-Franke, B.; Klemm, M.; Schneider, J. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    1997-12-31

    The speciation of NO{sub y} exhaust emissions in the near-field plume of a B747 cruising at 9.2 km was measured in situ using the DLR Falcon research aircraft instrumented with a chemical ionisation mass spectrometer of MPI-K and a chemiluminescence NO detector of DLR. In addition, CO{sub 2} was measured providing a dilution factor for the exhaust species. Observed maximum peak concentrations above background in the plume 60 s after emission were 25.4 ppmv (CO{sub 2}), 184 ppbv (NO), 2.6 ppbv (HNO{sub 2}), and 1.3 ppbv (HNO{sub 3}). The observations were used to infer the initial OH concentration (15.4 ppmv) and NO{sub 2}/NO{sub x} ratio (0.08) at the engine exit by back calculations using a chemistry box model. (author) 20 refs.

  16. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  17. Toxicity of Exhaust Gases and Particles from IC-Engines – International Activities Survey (EngToxIn). 2nd Information Report for IEA Implementing Agreement AMF

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, J. [University for Applied Sciences, Biel-Bienne (Switzerland)

    2012-10-15

    Exhaust gases from engines, as well as from other technical combustion processes contain gaseous, semi volatile and solid compounds which are toxic. Some of these compounds are not yet limited by the respective legislations; but may need to be based on ongoing health research findings and some new substances did appear recently, due to the progressing technical developments providing new systems of exhaust gas aftertreatment. A new approach described here is that the toxic effects of exhaust gases as an aerosol containing gaseous components as well as particulate matter and nanoparticles can be investigated in a global way, by exposing the living cells, or cell cultures to the aerosol, which means a simultaneous superposition of all toxic effects from all active components. At several research sites it has been showed, that this method offers more objective results of validation of toxicity, than other methods used until now. It also enables a relatively quick insight in the toxic effects with consideration of all superimposed influences of the aerosol. This new methodology can be applied for all kinds of emission sources. It also bears the potential of giving new contributions to the present state of knowledge in this domain and can in some cases lead to a change of paradigma. The present report gives information about activities concerning the research on toxicity of exhaust gases from IC-engines in different countries. It also gives some ideas about the available information sources. The general situation and the basic information have not changed much so the chapters 1 and 2 are repeated from the last year report, [1] with only a few modifications. We observe fast increasing research activities concerning health effects worldwide. They have different objectives, different approaches and methodologies and sometimes the results can be directly compared to each other. There are mostly common lines and with appropriate efforts there might be possible ways to

  18. LPG gaseous phase electronic port injection on performance, emission and combustion characteristics of Lean Burn SI Engine

    Science.gov (United States)

    Bhasker J, Pradeep; E, Porpatham

    2016-08-01

    Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.

  19. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  20. Exhaust gas emission from two-stroke engines in private cars and motorcycles in West Germany. Abgasemissionen von Zweitaktmotoren in Personenkraftwagen und Motorraedern der Bundesrepublik Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, C. (Rheinisch-Westfaelischer Technischer Ueberwachungs-Verein e.V., Essen (Germany, F.R.). Inst. fuer Fahrzeugtechnik)

    1990-01-01

    The proportion of motorised cycles is only about 10% of the stock of cars in West Germany, but their harmful emission are not negligible, as these two-wheeled vehicles are mainly driven in towns or near towns. The emission of carbon monoxide, hydrocarbons and nitrogen oxides and also of particle-bound, polycyclic, aromatic hydrocarbons was therefore determined in the driving cycle and at constant speeds. The results obtained can be seen from many diagrams. Some measures to reduce the emission of harmful substances were tried on a series of 2-stroke engines (250 cc). These included postcombustion, oxidation catalyst, blowing in additional air, manually controlled additional carburettor or a combination of these measures. From our present state of knowledge, a simple 2-stroke engine cannot comply with the requirements regarding exhaust gas emission behaviour and fuel consumption. Such a 2-stroke engine will in future have to have direct, electronically controlled injection and probably a combined slot and valve controlled common flow flushing, together with a catalytic exhaust gas treatment system. (orig.).

  1. Investigation of PCDD/F emissions from mobile source diesel engines: impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations.

    Science.gov (United States)

    Liu, Z Gerald; Wall, John C; Barge, Patrick; Dettmann, Melissa E; Ottinger, Nathan A

    2011-04-01

    This study investigated the impact of copper zeolite selective catalytic reduction (SCR) catalysts and exhaust aftertreatment configurations on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from mobile source diesel engines. Emissions of PCDD/Fs, reported as the weighted sum of 17 congeners called the toxic equivalency quotient (TEQ), were measured using a modified EPA Method 0023A in the absence and presence of exhaust aftertreatment. Engine-out emissions were measured as a reference, while aftertreatment configurations included various combinations of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), Cu-zeolite SCR, Fe-zeolite SCR, ammonia oxidation catalyst (AMOX), and aqueous urea dosing. In addition, different chlorine concentrations were evaluated. Results showed that all aftertreatment configurations reduced PCDD/F emissions in comparison to the engine-out reference, consistent with reduction mechanisms such as thermal decomposition or combined trapping and hydrogenolysis reported in the literature. Similarly low PCDD/F emissions from the DOC-DPF and the DOC-DPF-SCR configurations indicated that PCDD/F reduction primarily occurred in the DOC-DPF with no noticeable contribution from either the Cu- or Fe-zeolite SCR systems. Furthermore, experiments performed with high chlorine concentration provided no evidence that chlorine content has an impact on the catalytic synthesis of PCDD/Fs for the chlorine levels investigated in this study.

  2. Value Analysis of Engine Maintenance Scheduling relative to Fuel Burn and Minimal Operating Costs

    NARCIS (Netherlands)

    Curran, R.; Van der Zwan, F.M.; Ouwehand, A.; Ghijs, S.S.A.

    2010-01-01

    The paper presents the results from a study in collaboration with an airline that looked at modeling the relationship of maintenance and fuel burn costs relative to minimizing the life cycle cost relative to schedule. The work has verified that the bucket theory presented in the paper is a correct

  3. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Science.gov (United States)

    2010-07-01

    ... technology. Also, you may use an additive deterioration factor for exhaust emissions for a particular... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD... the deterioration factor. If the factor is less than one, use one. (2) Additive deterioration factor...

  4. 40 CFR 1039.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Science.gov (United States)

    2010-07-01

    ...-hour test point. For example, if you use aftertreatment technology that controls emissions of a... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... deterioration factors as follows: (1) Additive deterioration factor for exhaust emissions. Except as specified...

  5. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    Science.gov (United States)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  6. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  7. Impact of intake CO 2 addition and exhaust gas recirculation on NO x emissions and soot reactivity in a common rail diesel engine

    KAUST Repository

    Al-Qurashi, Khalid

    2012-10-18

    The impact of intake CO 2 addition and exhaust gas recirculation (EGR) on engine combustion characteristics, NO x emissions, and soot oxidative reactivity was studied in a common rail diesel engine equipped with a cooled EGR system. The engine test results and the heat release analysis show that the reduced flame temperature, induced by the reduction of the oxygen concentration (dilution effect) is the dominant mechanism via which CO 2 and EGR lower NO x emissions in diesel engines. On the other hand, the collected soot from the engine tests was examined for its oxidative reactivity using a thermogravimetric analyzer (TGA). Results show that EGR has a significant effect on soot reactivity and results in higher initial active sites compared to the CO 2 case. We conclude that the reduced flame temperature (thermal effect) which is a consequence of the dilution effect is responsible for the observed increase in soot reactivity. These results confirm observations from our past work on flame soot, which showed that the peak adiabatic flame temperature is the governing factor affecting soot reactivity. These findings imply that driving the combustion concepts toward low temperature is favorable to effectively control engine pollutants, including soot reactivity. © 2012 American Chemical Society.

  8. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  9. New concepts for exhaust gas turbo charging of a four-cylinder direct injection Otto engine; Neue Konzepte zur Abgasturboaufladung eines direkteinspritzenden Vierzylinder-Ottomotors

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Tilo

    2008-07-01

    This work is supposed to be understood as a contribution to developing a new generation of Otto engines, which meet the increasing ecological and economical demands. The charge concept has a key position in this development. Its design in particular at the four cylinder engine that dominates the market and whose charge changes are very specific, proves to be a special challenge. Based upon known techniques new concepts are developed in this work by means of numeric simulation and experiments and then compared with each other under stationary and transient conditions. On the one hand several exhaust gas turbo chargers in form a register and a two-phase charging are combined with a variable control of the outlet valves, on the other hand the shock-back-up changing is evaluated combined with a biturbo system as well as a twin-current turbine. (orig.)

  10. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    Science.gov (United States)

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  11. EHMS: Exhaust Heat Management System

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, T.; Schmidt, M.; Weinbrenner, M.; Geskes, P. [Behr GmbH und Co. KG, Stuttgart (Germany)

    2006-07-01

    Pollutant concentrations in diesel engines are reduced by cooling of the recirculated exhaust. This reduces emissions and particulate matter. The cooler technology can also be used for heating the passenger compartment faster and more economically. The authors present a model ready for seral production, including an exhaust flap for bypass control for use as auxiliary heating system. Further applications in gasoline engines are pointed out. (orig.)

  12. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arsie Ivan

    2015-01-01

    Full Text Available In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer expectations on performance and comfort. On the other hand, the large number of control variables to be tuned imposes a massive recourse to the experimental testing which is poorly sustainable in terms of time and money. In order to reduce the experimental effort and the time to market, the application of simulation models for EMS calibration has become fundamental. Predictive models, validated against a limited amount of experimental data, allow performing detailed analysis on the influence of engine control variables on pollutants, comfort and performance. In this paper, a simulation analysis on the impact of injection pattern and Exhaust Gas Recirculation (EGR rate on fuel consumption, combustion noise, NO and soot emissions is presented for an automotive Common-Rail Diesel engine. Simulations are accomplished by means of a quasi-dimensional multi-zone model of in-cylinder processes. Furthermore a methodology for in-cylinder pressure processing is presented to estimate combustion noise contribution to radiated noise. Model validation is carried out by comparing simulated in-cylinder pressure traces and exhaust emissions with experimental data measured at the test bench in steady-state conditions. Effects of control variables on engine performance, noise and pollutants are analyzed by imposing significant deviation of EGR rate and injection pattern (i.e. rail pressure, start-of-injection, number of injections. The results evidence that quasi-dimensional in

  13. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  14. Implementation of an experimental pilot reproducing the fouling of the exhaust gas recirculation system in diesel engines

    Directory of Open Access Journals (Sweden)

    Crepeau Gérald

    2012-04-01

    Full Text Available The European emission standards EURO 5 and EURO 6 define more stringent acceptable limits for exhaust emissions of new vehicles. The Exhaust Gas Recirculation (EGR system is a partial but essential solution for lowering the emission of nitrogen oxides and soot particulates. Yet, due to a more intensive use than in the past, the fouling of the EGR system is increased. Ensuring the reliability of the EGR system becomes a main challenge. In partnership with PSA Peugeot Citroën, we designed an experimental setup that mimics an operating EGR system. Its distinctive features are (1 its ability to reproduce precisely the operating conditions and (2 its ability to measure the temperature field on the heat exchanger surface with an Infra Red camera for detecting in real time the evolution of the fooling deposit based on its thermal resistance. Numerical codes are used in conjunction with this experimental setup to determine the evolution of the fouling thickness from its thermal resistance.

  15. Effects of Diesel Engine Exhaust Origin Secondary Organic Aerosols on Novel Object Recognition Ability and Maternal Behavior in BALB/C Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2014-10-01

    Full Text Available Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control, DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-D-aspartate (NMDA receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER-a, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus

  16. Radon-induced lung cancer deaths may be overestimated due to failure to account for confounding by exposure to diesel engine exhaust in BEIR VI miner studies.

    Science.gov (United States)

    Cao, Xiaodong; MacNaughton, Piers; Laurent, Jose Cedeno; Allen, Joseph G

    2017-01-01

    EPA reported that radon is the second leading cause of lung cancer in the United States, killing 21,100 people per year. EPA relies on the BEIR VI models, based on an evaluation of radon exposure and lung cancer risk in studies of miners. But these models did not account for co-exposure to diesel exhaust, a known human carcinogen recently classified by IARC. It is probable then that a portion of the lung cancer deaths in the miner cohorts are originally attributable to the exposure to diesel rather than radon. To re-evaluate EPA's radon attributable lung cancer estimates accounting for diesel exposure information in the miner cohorts. We used estimates of historical diesel concentrations, combined with diesel exposure-response functions, to estimate the risks of lung cancer attributable to diesel engine exhaust (DEE) exposure in the miner studies. We re-calculated the fatal lung cancer risk attributable to radon after accounting for risk from diesel and re-estimated the number of U.S. deaths associated with radon in the U.S. using EPA's methodology. Considering the probable confounding with DEE exposure and using the same estimate of baseline mortality from 1989-91 that the EPA currently uses in their calculations, we estimate that radon-induced lung cancer deaths per year are 15,600 (95% CI: 14,300, 17,000)- 19,300 (95% CI: 18,800, 20,000) in the U.S. population, a reduction of 9%-26%. The death estimates would be 12,900-15,900 using 2014 baseline vital statistics. We recommend further research on re-evaluating the health effects of exposure to radon that accounts for new information on diesel exhaust carcinogenicity in BEIR VI models, up-to-date vital statistics and new epidemiological evidence from residential studies.

  17. The Feasibility of Detecting a Burner-Can Burn-Through by Means of CO, CO2, Pressure, and Air Temperature Levels in a Jet Engine Nacelle.

    Science.gov (United States)

    feasibility of detecting a burn-through by monitoring the carbon monoxide (CO), carbon dioxide (CO2), a pressure level, or air temperature in the nacelle...before, during, and after engine case rupture. Results of the tests indicated that CO, CO2, pressure, and air temperature in the nacelle cannot be

  18. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  19. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Science.gov (United States)

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION... hydrocarbons in this section based on the following types of hydrocarbon emissions for engines powered by the... engine family if the average service life of your vehicles is longer than the minimum value, as follows...

  20. The two-stroke poppet valve engine. Part 2: Numerical investigations of intake and exhaust flow behaviour

    Science.gov (United States)

    Kamili Zahidi, M.; Razali Hanipah, M.

    2017-10-01

    A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper presents the model and simulation result of three-dimensional (3D) port flow investigation of a two-stroke poppet valve engine. The objective of the investigation is to conduct a numerical investigation on port flow performance of two-stroke poppet valve engine and compare the results obtained from the experimental investigation. The model is to be used for the future numerical study of the engine. The volume flow rate results have been compared with the results obtained experimentally as presented in first part of this paper. The model has shown good agreement in terms of the flow rate at initial and final valve lifts but reduced by about 50% during half-lift region.

  1. An experimental investigation of a lean-burn natural-gas pre-chamber spark ignition engine for cogeneration; Swiss Motor. Modification d'un moteur diesel pour le fonctionnement au gaz naturel en cogeneration. Fonctionnement avec prechambre de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Roethlisberger, R.; Favrat, D.

    2001-07-01

    This thesis presented at the Department of Mechanical Engineering of the Swiss Federal Institute of Technology in Lausanne describes the conversion and testing of a commercial diesel engine for use as a lean-burn, natural gas, pre-chamber, spark ignition engine with a rated power of 150 kW, in combined heat and power (CHP) plants. The objective of the investigations - to evaluate the potential of reducing exhaust gas emissions - is discussed in detail with respect to NO{sub x} and CO emissions. The approach adopted includes both experimental work and numerical simulation. The report describes the testing facilities used. The results obtained with experimental spark-plug configurations based on simulation results are presented and the influence of various pre-chamber configuration variants are discussed. The results of the tests are presented and the significant reduction of NO{sub x}, CO and unburned-hydrocarbon (THC) emissions are discussed. The authors state that the engine, which achieves a fuel efficiency of more than 36.5%, fulfils the Swiss requirements on exhaust gas emissions. Also, ways of compensating for the slight loss in fuel-conversion efficiency in the pre-chamber configuration are discussed.

  2. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60k-lb Thrust Fastrac Rocket Engine

    Science.gov (United States)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location about equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal to 0.7 micrograms/cubic cm and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal to 2.200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  3. Test/QA plan for the verification testing of diesel exhaust catalysts, particulate filters and engine modification control technologies for highway and nonroad use diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  4. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    Science.gov (United States)

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  5. Absence of multiplicative interactions between occupational lung carcinogens and tobacco smoking: a systematic review involving asbestos, crystalline silica and diesel engine exhaust emissions

    Directory of Open Access Journals (Sweden)

    Mohamad El Zoghbi

    2017-02-01

    Full Text Available Abstract Background Tobacco smoking is the main cause of lung cancer, but it is not the sole causal factor. Significant proportions of workers are smokers and exposed to occupational lung carcinogens. This study aims to systematically review the statistical interaction between occupational lung carcinogens and tobacco smoking, in particular asbestos, crystalline silica and diesel engine exhaust emissions. Methods Articles were identified using Scopus, PubMed, and Web of Science, and were limited to those published in English or French, without limitation of time. The reference list of selected studies was reviewed to identify other relevant papers. One reviewer selected the articles based on the inclusion and exclusion criteria. Two reviewers checked the eligibility of articles to be included in the systematic review. Data were extracted by one reviewer and revised by two other reviewers. Cohorts and case–control studies were analyzed separately. The risk of bias was evaluated for each study based on the outcome. The results of the interaction between the tobacco smoking and each carcinogen was evaluated and reported separately. Results Fifteen original studies were included for asbestos-smoking interaction, seven for silica-smoking interaction and two for diesel-smoking interaction. The results suggested the absence of multiplicative interaction between the three occupational lung carcinogens and smoking. There is no enough evidence from the literature to conclude for the additive interaction. We believe there is a limited risk of publication bias as several studies reporting negative results were published. Conclusion There are no multiplicative interactions between tobacco smoking and occupational lung carcinogens, in particular asbestos, crystalline silica and diesel engine exhaust emissions. Even though, specific programs should be developed and promoted to reduce concomitantly the exposure to occupational lung carcinogens and tobacco

  6. Absence of multiplicative interactions between occupational lung carcinogens and tobacco smoking: a systematic review involving asbestos, crystalline silica and diesel engine exhaust emissions.

    Science.gov (United States)

    El Zoghbi, Mohamad; Salameh, Pascale; Stücker, Isabelle; Brochard, Patrick; Delva, Fleur; Lacourt, Aude

    2017-02-02

    Tobacco smoking is the main cause of lung cancer, but it is not the sole causal factor. Significant proportions of workers are smokers and exposed to occupational lung carcinogens. This study aims to systematically review the statistical interaction between occupational lung carcinogens and tobacco smoking, in particular asbestos, crystalline silica and diesel engine exhaust emissions. Articles were identified using Scopus, PubMed, and Web of Science, and were limited to those published in English or French, without limitation of time. The reference list of selected studies was reviewed to identify other relevant papers. One reviewer selected the articles based on the inclusion and exclusion criteria. Two reviewers checked the eligibility of articles to be included in the systematic review. Data were extracted by one reviewer and revised by two other reviewers. Cohorts and case-control studies were analyzed separately. The risk of bias was evaluated for each study based on the outcome. The results of the interaction between the tobacco smoking and each carcinogen was evaluated and reported separately. Fifteen original studies were included for asbestos-smoking interaction, seven for silica-smoking interaction and two for diesel-smoking interaction. The results suggested the absence of multiplicative interaction between the three occupational lung carcinogens and smoking. There is no enough evidence from the literature to conclude for the additive interaction. We believe there is a limited risk of publication bias as several studies reporting negative results were published. There are no multiplicative interactions between tobacco smoking and occupational lung carcinogens, in particular asbestos, crystalline silica and diesel engine exhaust emissions. Even though, specific programs should be developed and promoted to reduce concomitantly the exposure to occupational lung carcinogens and tobacco smoking.

  7. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  8. Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine

    KAUST Repository

    Kozarac, Darko

    2016-09-12

    The use of highly reactive fuel as an ignition promoter enables operation of biogas fueled homogeneous charge compression ignition (HCCI) engine at low intake temperatures with practical control of combustion phasing. In order to gain some insight into this operation mode the influence of addition of n-heptane on combustion, performance, emissions and control of combustion phasing of a biogas fueled HCCI engine is experimentally researched and presented in this paper. Additionally, the performance analysis of the practical engine solution for such operation is estimated by using the numerical simulation of entire engine. The results showed that the introduction of highly reactive fuel results with a significant change in operating conditions and with a change in optimum combustion phasing. The addition of n-heptane resulted in lower nitrogen oxides and increased carbon monoxide emissions, while the unburned hydrocarbons emissions were strongly influenced by combustion phasing and at optimal conditions are lowered compared to pure biogas operation. The results also showed a practical operation range for strategies that use equivalence ratio as a control of load. Simulation results showed that the difference in performance between pure biogas and n-heptane/biogas operation is even greater when the practical engine solution is taken into account.

  9. Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations

    Science.gov (United States)

    Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.

  10. Effect of nozzle hole size coupling with exhaust gas re-circulation on the engine emission perfomance based on KH-ACT spray model

    Directory of Open Access Journals (Sweden)

    Zhang Liang

    2015-01-01

    Full Text Available To research an effective measure of reducing the Soot and NOx in engine at the same time, different nozzle hole diameters coupled with exhaust gas recirculation (EGR were adopted in this study based on KH-ACT spray breakup model, which takes the aerodynamic-induced ,cavitation-induced and turbulence-induced breakup into account. The SAGE detailed chemistry combustion and the new atomization model used in the simulation have been verified with the experiment data from a YN4100QBZL engine. Different diesel nozzles was adopted in the study combined with different EGR rates ranging from 0% to 40%. The simulation results show that the NOx emission could be reduced effectively for both small(0.1mm and large(0.15mm diesel nozzle when increasing EGR ratio. The soot emission increases for the small nozzle hole size as the EGR increasing. However, when it comes to the large diesel nozzle, the emission increases slightly first and decrease quickly when the EGR rate above 20%.

  11. 14 CFR 29.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 29.1125 Section 29... exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff may have stagnant...

  12. 14 CFR 25.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 25.1125 Section 25... exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... provisions wherever it is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff...

  13. The pollution from diesel engines - the particulate matter current experiences and future needs; A poluicao gerada por maquinas de combustao interna movidas a diesel - a questao dos particulados. Estrategias atuais para a reducao e controle das emissoes e tendencias futuras

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Silvana [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Quimica]. E-mail: braun@rdc.puc-rio.br; Appel, Lucia Gorenstin [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Schmal, Martin [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2004-06-01

    The exhaust emissions of vehicles greatly contribute to environmental pollution. Diesel engines are extremely fuel-efficient. However, the exhaust compounds emitted by diesel engines are both a health hazard and a nuisance to the public. This paper gives an overview of the emission control of particulates from diesel exhaust compounds. The worldwide emission standards are summarized. Possible devices for reducing diesel pollutants are discussed. It is clear that after-treatment devices are necessary. Catalytic converters that collect particulates from diesel exhaust and promote the catalytic burn-off are examined. Finally, recent trends in diesel particulate emission control by novel catalysts are presented. (author)

  14. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    , they can migrate far away from their source and they can even spread into the blood circulation and the brain. Transition metals on the surface of particles together with carcinogenic compounds found in the PM have been shown to cause cancer. Diesel ultra-fine particles are mainly elemental carbon, organic carbon and sulphuric acid. Sulphur still exists in diesel fuel in certain regions and if the amount of sulphur in the fuel is reduced, particles are reduced as well. Metallic compounds originate mainly from the lubrication oil, but also from the fuel and engine wear. In urban areas the amounts of particles are usually higher than in rural areas. Regulations for air quality in urban areas have been set to protect people living in the cities. Regulations are also becoming stricter in the field of internal combustion engines and particle numbers along with their mass are regulated in the EURO 6 standard. Diesel PM can be reduced by several means. Reformulating the fuel and lubrication oil directly influences PM emissions while different aftertreatment systems can be used to remove PM from the engine exhaust gases. With a well-optimized injection system, burning is more complete and PM emissions are also reduced. Exposure to particles can be decreased by avoiding busy roads where the level of particles is usually high, having a hobby that involves less exertion and decreasing exercise time. Outdoor activities should be reduced when PM concentration in the air is high. (orig.)

  15. Effects of injection timing on nonlinear dynamics of the combustion process in the lean-burn premixed natural gas engine

    Science.gov (United States)

    Ding, Shun-Liang; Song, En-Zhe; Yang, Li-Ping; Yao, Chong; Ma, Xiu-Zhen

    2017-02-01

    The nonlinear dynamics of the combustion process in the lean-burn premixed natural gas engine are studied in this paper. Based on nonlinear dynamic theory, the complexity of the combustion process is analyzed under different injection timing conditions. The phase spaces are reconstructed for the experimentally obtained in-cylinder pressure real-time series and the return maps are plotted for the IMEP time series. The results of phase space reconstruction manifest that the attractors are limited to the finite range in the reconstructed phase space. The attractors have a folded and twist geometry structure. The attractors under medium injection timing conditions are looser and more complex. The return maps indicate the coexistence of the stochastic and deterministic components in the patterns combustion process. With the injection timing increasing, there are both a transition from stochastic to deterministic and a transition from deterministic to stochastic, forming the region of deterministic behavior. The largest Lyapunov exponents (LLE) for in-cylinder pressure time series are calculated and the coefficients of variations (COV) of IMEP are also analyzed. The results express that the LLE values are positive. There are a "steep increase" and a "steep decrease" for the LLE and COV values as the injection timing increasing.

  16. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Science.gov (United States)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  17. Development of a tissue-engineered human oral mucosa equivalent based on an acellular allogeneic dermal matrix: a preliminary report of clinical application to burn wounds.

    Science.gov (United States)

    Iida, Takuya; Takami, Yoshihiro; Yamaguchi, Ryo; Shimazaki, Shuji; Harii, Kiyonori

    2005-01-01

    Tissue-engineered skin equivalents composed of epidermal and dermal components have been widely investigated for coverage of full-thickness skin defects. We developed a tissue-engineered oral mucosa equivalent based on an acellular allogeneic dermal matrix and investigated its characteristics. We also tried and assessed its preliminary clinical application. Human oral mucosal keratinocytes were separated from a piece of oral mucosa and cultured in a chemically-defined medium. The keratinocytes were seeded on to the acellular allogeneic dermal matrix and cultured. Histologically, the mucosa equivalent had a well-stratified epithelial layer. Immunohistochemical study showed that it was similar to normal oral mucosa. We applied this equivalent in one case with an extensive burn wound. The equivalent was transplanted three weeks after the harvest of the patient's oral mucosa and about 30% of the graft finally survived. We conclude that this new oral mucosa equivalent could become a therapeutic option for the treatment of extensive burns.

  18. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    Science.gov (United States)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  19. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  20. Vehicle exhaust treatment using electrical discharge and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, R.G.; Balmer, M.L.; Barlow, S.E.; Orlando, T.M. [Pacific Northwest National Lab., Richland, WA (United States); Goulette, D.; Hoard, J. [Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.

    1997-12-31

    Current 3-way catalytic converters have proven quite effective at removing NO{sub x} from the exhaust of spark ignition vehicles operating near stoichiometric air-to-fuel ratios. However, diesel engines typically operate at very high air-to-fuel ratios. Under such lean burn conditions current catalytic converters are ineffective for NO{sub x} removal. As a result, considerable effort has been made to develop a viable lean NO{sub x} catalyst. Although some materials have been shown to reduce NO{sub x} under lean burn conditions, none exhibit the necessary activity and stability at the high temperatures and humidities found in typical engine exhaust,. As a result, alternative technologies are being explored in an effort to solve the so-called lean NO{sub x} problem. Packed-bed barrier discharge systems are well suited to take advantage of plasma-surface interactions due to the large number of contaminant surface collisions in the bed. The close proximity of the active surface to transient species produced by the plasma may lead to favorable chemistry at considerably lower temperatures than required by thermal catalysts. The authors present data in this paper illustrating that the identity and surface properties of the packing material can alter the discharge-driven chemistry in synthetic leanburn exhaust mixtures. Results using non-porous glass beads as the packing material suggest the limits of NO{sub x} reduction using purely gas phase discharge chemistry. By comparison, encouraging results are reported for several alternative packing materials.

  1. Effect of turbulence intermittence on the structure of laser beams intersecting an aero-engine jet exhaust

    Science.gov (United States)

    Sirazetdinov, Vladmir S.; Dmitriev, Dmitry I.; Ivanova, Inga V.; Titterton, David H.

    2003-03-01

    The results of studying laser beam propagation through a turbulent jet close to the jet lateral boundary, i.e. the zone, where intermittence of turbulent stae of air medium can be expcetd, are presented. In the experiments laser beams with diameters of 10 and 30 mm and wavelengths of λ = 1.06 and 0.53 microns crossed the jet in transverse direction not far from the engine nozzle. For the purpose of comparison, similar experiments for laser beams propagation through the central area of the jet were carried out. As a result of processing a large array of 'instantaneous' far-field images of the beams, the probability of light pulses with only weakly distorted spatial structure during propagation through the jet was determined. It has been shown that for a λ=1.06 μm and 30 mm diameter beams. For propagation of the ten-millimeter beam this probability is found to be ~0.02. In the case of the 'half-micron' beam propagation through the jet under similar conditions the probability for the occurrence of 'quasi-regular' pulses is very small in all the experimental situations. The analysis of the experimental data provides evidence for conclusion that successions of such 'quasi-regular' pulses obey Poisson's or binomial statistics.

  2. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn.

    Science.gov (United States)

    Luo, Hailang; Lu, Yongbo; Wu, Tiantian; Zhang, Mi; Zhang, Yongjie; Jin, Yan

    2013-09-01

    Although acellular corneas have been reported to be a potential substitute for allogeneic cornea transplantation to treat corneal injury, severe corneal injury is hard to repair due to inflammation and neovascularization. The use of the amniotic membrane as a graft in ocular surface reconstruction has become widespread because of the anti-inflammatory and anti-angiogenic properties of amniotic epithelial cells (AECs). Our objective was to construct a tissue-engineered cornea (TEC) composed of an acellular porcine cornea (APC) and AECs to repair severe corneal injury. Corneal cells were completely removed from the prepared APC, and the microstructure, mechanical properties, and stability of a natural porcine cornea (NPC) was maintained. In vitro, MTT and flow cytometry analyses showed that the APC did not negatively affect cell viability and apoptosis. In vivo, corneal pocket and subcutaneous transplantation demonstrated that the APC was incapable of trigging accepted immune response. AECs isolated from the human amniotic membrane have proliferation potential and present healthy morphology before 6 passages. After 7 days of culture on the surface of the APC, the AECs were stratified into 5-6 layers. We found that the AECs reconstituted the basement membrane that had been disrupted by the decellularization process. ELISA results showed that after culturing the TEC, the culture medium contained anti-inflammatory and anti-angiogenic growth factors, such as MIF, IL6, Fas-L, and PDEF. Finally, the results of lamellar keratoplasty to treat an alkali burn showed that the transplanted TEC was transparent and completely inoculated into the host cornea. However, the transplanted APC was degraded due to host rejection. Therefore, we conclude that a TEC composed of AECs and an APC holds great potential for the repair of severe corneal injury. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Burning Feet

    Science.gov (United States)

    Symptoms Burning feet By Mayo Clinic Staff Burning feet — the sensation that your feet are painfully hot — can be mild or severe. In some cases, your burning feet may be so painful that the pain interferes ...

  4. Role of snow and cold environment in the fate and effects of nanoparticles and select organic pollutants from gasoline engine exhaust.

    Science.gov (United States)

    Nazarenko, Yevgen; Kurien, Uday; Nepotchatykh, Oleg; Rangel-Alvarado, Rodrigo B; Ariya, Parisa A

    2016-02-01

    Exposure to vehicle exhaust can drive up to 70 % of excess lifetime cancer incidences due to air pollution in urban environments. Little is known about how exhaust-derived particles and organic pollutants, implicated in adverse health effects, are affected by freezing ambient temperatures and the presence of snow. Airborne particles and (semi)volatile organic constituents in dilute exhaust were studied in a novel low-temperature environmental chamber system containing natural urban snow under controlled cold environmental conditions. The presence of snow altered the aerosol size distributions of dilute exhaust in the 10 nm to 10 μm range and decreased the number density of the nanoparticulate (pollutant content in snow, has potential to alter health effects of human exposure to vehicle exhaust.

  5. Methodology for the focused design of exhaust tailpipe sound for vehicles with combustion engines. Case study: 'Sound Engineering' for sports vehicles; Methode zur gezielten Gestaltung des Muendungsgeraeuschs von Fahrzeugen mit Verbrennungsmotor - 'Sound Engineering' am Beispiel von Sportfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Rammoser, D.; Waibel, L. [Ricardo Deutschland GmbH (Germany)

    2007-07-01

    The subjective acoustic impression of a vehicle is strongly influenced by the exhaust tailpipe orifice noise. Depending on the customer target group and market segment the sound may be desired to be sporty or comfortable, rough or harmonic and in all cases it must fullfill the characteristics of the brand. The components that determine the quality of the sound are located near the engine at the front of the exhaust system. The available packaging space is there usually limited and must be specified together with the other engine peripheral parts and aggregates at an early stage of the vehicle development. This article shows an example of exhaust sound development for a 6 cylinder vehicle, to demonstrate what possibilities exist for sound development and how this can be supported by 1D gas dynamic prediction and subjective evaluation with simulated sound samples. Considering the fundamentals of music harmony, an analysis of the pressure pulse sequences in the front part of the exhaust system has been carried out to investigate the influence of the relevant parameters for the sound characteristics. (orig.)

  6. Waste Oil Burn-Off in Coast Guard Powerplants : Waste Oil Filtering Systems and Diesel Engine Performance

    Science.gov (United States)

    1976-06-01

    This report documents two tasks of a continuing study to determine the feasibility of burning waste lubricating oils in Coast Guard powerplants. The first task evaluated the effectiveness of two treatment devices for the clean-up of waste lubricating...

  7. Secondary combustion system for wood burning stove

    Energy Technology Data Exchange (ETDEWEB)

    von Conta, P.E.W.

    1986-12-16

    This patent describes an improved secondary combustion system for combusting the exhaust gases exiting from a fire box in a wood burning stove comprising: an insulated conduit defining an exhaust passageway leading from an intake opening to an exit opening; screen means interposed across the exhaust passageway in the vicinity of the intake opening to impart a rapid acceleration to a gas stream entering the exhaust passageway; rotation means to impart a rotation to the gas stream in a first portion of the exhaust passageway; counter-rotation means to impart a counter-rotation to the gas stream in a second portion of the exhaust passageway; deceleration means to decelerate the gas stream in the second portion of the exhaust passageway; and secondary air means to inject a source of secondary air into the exhaust passageway.

  8. Associations between DNA methylation in DNA damage response-related genes and cytokinesis-block micronucleus cytome index in diesel engine exhaust-exposed workers.

    Science.gov (United States)

    Zhang, Xiao; Li, Jie; He, Zhini; Duan, Huawei; Gao, Weimin; Wang, Haisheng; Yu, Shanfa; Chen, Wen; Zheng, Yuxin

    2016-08-01

    Recently, diesel engine exhaust (DEE) was reclassified as a known carcinogen to humans. DNA methylation alterations in DNA damage response (DDR)-related genes have the potential to affect DEE exposure-related cancer risk. However, the evidence regarding the association between DEE exposure and methylation alterations in DDR-related genes is limited. In 117 DEE-exposed workers and 112 non-DEE-exposed workers, we measured urinary concentrations of six mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). We also determined the methylation levels of three DDR-related genes (p16, RASSF1A, and MGMT) and LINE-1 by bisulfite-pyrosequencing assay. We found that DEE-exposed workers exhibited significantly lower mean promoter methylation levels of p16, RASSF1A, and MGMT than non-DEE-exposed workers (all p methylation in p16, RASSF1A, and MGMT decreased by 0.36 % [95 % confidential interval (CI): -0.60, -0.11 %], 0.46 % (95 % CI: -0.79, -0.14 %), and 0.55 % (95 % CI: -0.95, -0.15 %), respectively, in association with highest versus lowest quartile of urinary summed OH-PAHs. In addition, p16, RASSF1A, MGMT, and LINE-1 methylation levels showed negative correlations with cytokinesis-block micronucleus cytome index which was previously measured in the same workers (all p < 0.05). In conclusion, our results clearly indicated that DEE exposure and increased genetic damage were associated with hypomethylation of p16, RASSF1A, and MGMT. Future studies with larger sample size are needed to confirm these associations.

  9. Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

    Energy Technology Data Exchange (ETDEWEB)

    Balmer, M. Lou (Pacific Northwest National Laboratory (PNNL)); Tonkyn, Russell (Battelle Pacific Northwest Laboratories (BPNL)); Maupin, Gary; Yoon, Steven; Kolwaite, Ana (PNNL); Barlow, Stephen (BPNL); Domingo, Norberto; Storey, John M. (Oak Ridge National Laboratory); Hoard, John Wm. (Ford Research Laboratory); Howden, Ken (U.S. Dept. of Energy)

    2000-04-01

    There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  10. Dépollution des gaz d'échappement des moteurs diesel au moyen de pots catalytiques Depolluting Exhaust Gases from Diesel Engines by Catalytic Mufflers

    Directory of Open Access Journals (Sweden)

    Goldenberg E.

    2006-11-01

    Full Text Available On présente dans cet article les résultats d'une première série de recherches sur la dépollution des gaz d'échappement des moteurs diesel au moyen de pots catalytiques. L'efficacité des catalyseurs à base de platine pour l'oxydation du monoxyde de carbone et des hydrocarbures imbrûlés a pu être établie par des essais sur banc moteur et sur véhicule. L'emploi de certaines phases actives à base de métaux non nobles permet d'autre part d'abaisser la température de début d'oxydation des particules de suie de 380 à 250 °C environ, avec, entre 250 et 350 °C, élimination de 15 à 20 % des produits piégés. L'essai de divers media filtrants a mis en évidence l'importance des phénomènes d'adsorption des revêtements en alumine et a orienté la recherche vers de nouveaux supports pour filtres catalytiques. This article describes the results of a first series of research on the depollution of exhaust gases from diesel engines by catalytic mufflers. The effectiveness of platinum-base catalysts for the oxidation of carbon monoxide and unburned hydrocarbons was determined by test on an engine test bed and on vehicles on the road. The use of some active non-noble metal phases reduced on the other hand the starting oxidation temperature of soot particulates from 380°C to about 250°C, eliminating 15 to 20% of the trapped products between 250 and 350° C. Tests of different filtering media revealed the importance of adsorption phenomena on alumina coatings and directed research toward new supports for catalytic filters.

  11. UV Absorption Measurements of Nitric Oxide Compared to Probe Sampling Data for Measurements in a Turbine Engine Exhaust at Simulated Altitude Conditions

    National Research Council Canada - National Science Library

    Howard, R

    1997-01-01

    .... NO-UV absorption measurements, using both resonance and continuum lamps, were made through several chords of the exhaust flow near the nozzle exit plane as a part of a larger effort to characterize...

  12. The Burn-Out Syndrome.

    Science.gov (United States)

    Sullivan, Ruth Christ

    1979-01-01

    An article is presented on the "burn-out" of parents, particularly those of autistic children (i.e., the exhaustion of their psychological and/or physical resources as a result of long and intense caring for their children), along with the comments and responses of five parents and professionals. (DLS)

  13. Method for removing soot from exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    2018-01-16

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine and collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).

  14. Visualisation of Gasoline and Exhaust Gases Distribution in a 4-Valve Si Engine; Effects of Stratification on Combustion and Pollutants Visualisation de la répartition du carburant et des gaz brûlés dans un moteur à 4 soupapes à allumage commandé ; effet de la stratification sur la combustion et les polluants

    Directory of Open Access Journals (Sweden)

    Deschamps B.

    2006-12-01

    Full Text Available sAn indirect method to map the burned gases in SI engine has been developed. It is based on visualisation by Laser Induced Fluorescence of the unburned mixture seeded with biacetyl. Both internally and externally recirculated burned gases are monitored. This diagnostic is complementary to the LIF technique applied to measure the gasoline distribution. These LIF gasoline and burned gases measurements are applied in a 4-valve optical access SI engine for a large range of operating conditions. These include variations of both fuel injection and burned gas recirculation modes causing different types of stratification leading to very distinct heat release and exhaust emissions characteristics. Tumble level and spark location are also modified. The observation of the actual stratification in the engine forms a sound basis explanation of the engine performance. Parameters allowing an optimisation of NOx and HC levels can be inferred, and in particular the effectiveness of recirculation and fuel injection strategies. The conclusions are confirmed by measurements in a single engine cylinder conventional head with the same geometry. Une méthode indirecte pour cartographier les gaz brûlés dans un moteur à allumage commandé a été développée. Elle est fondée sur une visualisation à partir de la fluorescence induite par laser (LIF du mélange air-carburant non brûlé et ensemencé avec du biacétyl. Les gaz brûlés provenant à la fois des recirculations internes et externes sont observés. Ce type de diagnostic est complémentaire des techniques de LIF utilisées pour observer la distribution du carburant. Ces mesures de concentration sont réalisées dans un moteur à 4 soupapes avec accès optiques, pour une gamme étendue de conditions opératoires. Celles-ci comprennent des variations des modes d'injection du carburant et des modes de recirculation des gaz brûlés, provoquant ainsi différents types de stratifications qui correspondent

  15. Burns dressings.

    Science.gov (United States)

    Douglas, Helen E; Wood, Fiona

    2017-03-01

    Burn injuries are common and costly; each year, there are more than 200,000 cases, costing the Australian community $150 million. Management of smaller burn injuries in the community can be improved by appropriate first aid, good burn dressings and wound management. This can reduce the risk of the burn becoming deeper or infected, and can potentially reduce the requirement for specialist review or surgery. The objective of this article is to provide healthcare professionals with information about the pathophysiology of burn wound progression. This information includes the aims of burn wound dressings and indications for different types of dressings in different burn depths, advantages of blister debridement, and the reasoning behind advice given to patients after healing of the burn wound. This article provides a framework used by the State Burn Service of Western Australia, by which clinicians can understand the needs of a specific burn wound and apply these principles when choosing an appropriate burn dressing for their patient. Every intervention in the journey of a patient with a burn injury affects their eventual outcome. By managing all burn injuries effectively at every single step, we can reduce burn injury morbidity as a community.

  16. 14 CFR 23.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 23.1125 Section 23... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and...

  17. CO2 absorption characteristics of monoethanol amine aqueous solution and recovery of CO2 from marine engine exhaust; Monoethanol amine suiyoeki no CO2 kyushu tokusei to hakuyo kikan no CO2 kaishu

    Energy Technology Data Exchange (ETDEWEB)

    Ikame, M.; Suga, S.; Hiraoka, K.; Kumakura, T. [Ship Research Inst., Tokyo (Japan)

    1994-04-13

    Investigations were made on characteristics of CO2 absorption into monoethanol amine aqueous solution under normal pressure as a method of recovering CO2, the CO2 concentration and effect of the accompanying gases. Furthermore, assuming a large marine diesel engine using methanol as a fuel, the experimental result was used to discuss a size of the CO2 absorbing device. Assuming exhaust gases from a methanol-fueled diesel engine and steam reformed gas of methanol, from which CO2 is to be recovered, the experiment used two kinds of accompanying gases, N2 and H2, and the CO2 concentrations of 5% to 25% by volume. The relationship between the CO2 material balance and the substance movement between gas and liquid based on the double boundary film theory was put into order to derive an experiment equation. This equation was capable of expression with an error of less than {plus_minus}35%. This paper indicates by using the experimental result a method to derive the size of an absorbing and filling layer for CO2 in exhaust gases from a methanol fueled marine diesel engine. Given an example, the volume of the filling layer in the absorption column is required to be about 12% of the engine volume of 770m{sup 3}, and the absorption flow rate to be 65.4kg/s. 4 refs., 6 figs., 1 tab.

  18. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  19. Pollution odorante par les moteurs Diesel. Mesure des odeurs d'échappement Odorous Pollution by Diesel Engines. Measuring Exhaust Odors

    Directory of Open Access Journals (Sweden)

    Degobert P.

    2006-11-01

    Full Text Available Les études de mesure d'odeur Diesel ont commencé en 1956 aux États-Unis, en particulier pour réduire le niveau odorant des autobus. Cet article expose d'abord les mécanismes de formation des odorants puis les études américaines, qui ont abouti en 1973 à l'odorimètre Arthur D. Little, basé sur l'analyse par chromatographie liquide de l'échappement, et ses corrélations avec les données sensorielles recueillies dans des conditions particulières. Les économies d'énergie dans les villes européennes entraînent un accroissement du nombre de véhicules Diesel, ce qui peut amener un niveau odorant incompatible avec le bien-être. C'est pourquoi l'Institut Français du Pétrole (IFP étudie actuellement les odeurs Diesel, pour mettre au point des méthodes de mesure fiables, partant de la chromatographie liquide type Arthur D. Little (ADL et de l'évaluation sensorielle. Les résultats actuels montrent qu'à moins de progrès importants en analyse chimique, l'évaluation sensorielle reste la méthode la plus fiable. Les perspectives futures basées sur l'olfactomètre différentiel Mac Leod sont présentées. Research was beg un in the United States in 1956 on the medsurementof diesel engine odors, and especially on reducing the odor from diesel city buses. This article begins by describing the mechanisms of odor formation and then goes on ta, review US research which resulted in the Arthur D. Little odormeter in 1973, based on a liquid chromatography analysis of exhaust and its corrélations with sensory data gathered under specific conditions. Energy conservation in European cities is tending ta, increase the number of diesel vehicles and possibly ta, create an odor level that is incompatible with humal well-being. This is why Institut Français du Pétrole (IFP is now investigating diesel eng ine odors for the purpose of developing reliable measuring methods based on liquid chromatography of the Arthur D. Little (ADl type and on

  20. Aircraft specific exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lecht, M.; Deidewig, F.; Doepelheuer, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Antriebstechnik

    1997-12-01

    The objective of this work to calculate essential species of aircraft emissions has been approached by a combination of different tasks. First of all engine performance and emission correlation has been modelled taking sea level static measurements from the engine certification process as a reference. At second a flight simulation program has been modified to couple aircraft and engine performance along a flight mission profile. By this for a selected number of aircraft/engine combinations the emissions of NO{sub x}, CO and HC as well as fuel burn for short, medium and long haul flights have been calculated and finally adapted to a specified format of flight distance and altitude increments. Sensitivity studies of the change of emissions along the cruise section showed a 30% decrease of the NO{sub x} emission rate until the end of cruise. Differences of ambient air temperature from ISA conditions will have a substantial impact on NO{sub x}, CO and HC emissions rather than on mission fuel. (orig.) 144 figs., 42 tabs., 497 refs.

  1. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    Science.gov (United States)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  2. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Hence, in order to meet the envi- ronmental legislations, it is highly desirable to reduce the amount of NOx in the exhaust gas. 275 .... (i) Hot EGR: Exhaust gas is recirculated without being cooled, resulting in increased intake ... is mounted on the inlet pipe between the air filter and the inlet manifold of the engine as shown in ...

  3. Performance and exhaust emissions from an engine operating with soybean and radish bio diesel; Desempenho e emissoes na exaustao de um motor operando com biodiesel de soja e nabo forrageiro

    Energy Technology Data Exchange (ETDEWEB)

    Geanezi, Henrique Avelhaneda; Campos, Inacio Loiola Pereira; Diogo, Andre Luis; Valle, Ramon Molina [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)], e-mail: avelhaneda@yahoo.com.br, e-mail: inaciolpcampos@terra.com.br, e-mail: andreufmg2000@yahoo.com.br; Rodrigues, Vander Ferreira [Fundacao Centro Tecnologico de Minas Gerais (CETEC), Belo Horizonte, MG (Brazil)], e-mail: vander.rodrigues@cetec.br, e-mail: ramon@demec.ufmg.br; Sodre, Jose Ricardo [Pontificia Universidade Catolica de Minas Gerais (PUC-Minas), Belo Horizonte, MG (Brazil)], e-mail: ricardo@pucminas.br

    2006-07-01

    Performance and pollutant emissions from an engine operating on bio diesel blends from two different oleaginous plants are compared to results from operation on diesel oil. Full load tests were performed in an engine fuelled by bio diesel from wild radish, soybean and blends of 50% bio diesel from these origins with 50% metropolitan diesel oil. Performance and emissions tests were carried out according to NBR ISO 1585 standard and smoke was measured according to NBR 13037 standard. The performance parameters analyzed were torque, power, and specific fuel consumption. Exhaust CO, HC, NOX, and smoke emissions were also analyzed. The results indicate the most adequate fuel mixture for emissions improvement without penalizing engine performance. Generally, there was a small performance reduction for the bio diesel blends, in comparison to metropolitan diesel oil. With respect to pollutant emissions, the results showed a significant reduction for most of the bio diesel mixtures from the two tested sources. (author)

  4. Iatrogenic Burns

    Directory of Open Access Journals (Sweden)

    Burak Kaya

    2016-03-01

    Full Text Available Iatrogenic burns are rare complications that can occur after using medical devices and chemicals in hospitals. Usually, these burns are deep and cause additional morbidity to patients. In this article, 6 iatrogenic burn patients referred to our department are presented, and predisposing factors and preventive measures are discussed.

  5. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    Science.gov (United States)

    Aardahl, Christopher L [Richland, WA; Balmer-Miller, Mari Lou [West Richland, WA; Chanda, Ashok [Peoria, IL; Habeger, Craig F [West Richland, WA; Koshkarian, Kent A [Peoria, IL; Park, Paul W [Peoria, IL

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  6. Method for treating engine exhaust by use of hydrothermally stable, low-temperature NO.sub.x reduction NH3-SCR catalysts

    Science.gov (United States)

    Narula, Chaitanya K.; Yang, Xiaofan

    2017-07-04

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  7. Burn Rehabilitation

    Directory of Open Access Journals (Sweden)

    Koray Aydemir

    2011-07-01

    Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7

  8. Management of burn wounds.

    Science.gov (United States)

    Schiestl, Clemens; Meuli, Martin; Trop, Marija; Neuhaus, Kathrin

    2013-10-01

    Small and moderate scalds in toddlers are still the most frequent thermal injuries the pediatric surgeons have to face today. Over the last years, surgical treatment of these patients has changed in many aspects. Due to new dressing materials and new surgical treatment strategies that are particularly suitable for children, today, far better functional and aesthetic long-term results are possible. While small and moderate thermal injuries can be treated in most European pediatric surgical departments, the severely burned child must be transferred to a specialized, ideally pediatric, burn center, where a well-trained multidisciplinary team under the leadership of a (ideally pediatric) burn surgeon cares for these highly demanding patients. In future, tissue engineered full thickness skin analogues will most likely play an important role, in pediatric burn as well as postburn reconstructive surgery. Georg Thieme Verlag KG Stuttgart · New York.

  9. Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating

    KAUST Repository

    Mannaa, Ossama

    2016-05-04

    Laminar burning velocities of fuels for advanced combustion engines (FACE) C gasoline and of several blends of surrogate toluene reference fuels (TRFs) (n-heptane, iso-octane, and toluene mixtures) of the same research octane number are presented. Effects of ethanol addition on laminar flame speed of FACE-C and its surrogate are addressed. Measurements were conducted using a constant volume spherical combustion vessel in the constant pressure, stable flame regime at an initial temperature of 358 K and initial pressures up to 0.6 MPa with the equivalence ratios ranging from 0.8 to 1.6. Comparable values in the laminar burning velocities were measured for the FACE-C gasoline and the proposed surrogate fuel (17.60% n-heptane + 77.40% iso-octane + 5% toluene) over the range of experimental conditions. Sensitivity of flame propagation to total stretch rate effects and thermo-diffusive instability was quantified by determining Markstein length. Two percentages of an oxygenated fuel of ethanol as an additive, namely, 60 vol% and 85 vol% were investigated. The addition of ethanol to FACE-C and its surrogate TRF-1 (17.60% n-heptane + 77.40% iso-octane + 5% toluene) resulted in a relatively similar increase in the laminar burning velocities. The high-pressure measured values of Markstein length for the studied fuels blended with ethanol showed minimal influence of ethanol addition on the flame’s response to stretch rate and thermo-diffusive instability. © 2016 Taylor & Francis.

  10. Effects of rocket exhaust products in the thermosphere and ionsphere

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, J.; Sutherland, C.D.

    1980-02-01

    This paper reviews the current state of understanding of the problem of ionospheric F-layer depletions produced by chemical effects of the exhaust gases from large rockets, with particular emphasis on the Heavy Lift Launch Vehicles (HLLV) proposed for use in the construction of solar power satellites. The currently planned HLLV flight profile calls for main second-stage propulsion confined to altitudes below 124 km, and a brief orbit circularization maneuver at apogee. The second stage engines deposit 9 x 10/sup 31/ H/sub 2/O and H/sub 2/ molecules between 74 and 124 km. Model computations show that they diffuse gradually into the ionospheric F region, where they lead to weak but widespread and persistent depletions of ionization and continuous production of H atoms. The orbit circularization burn deposits 9 x 10/sup 29/ exhaust molecules at about 480-km altitude. These react rapidly with the F2 region 0/sup +/ ions, leading to a substantial (factor-of-three) reduction in plasma density, which extends over a 1000- by 2000-km region and persists for four to five hours. For purposes of computer model verification, a computation is included representing the Skylab I launch, for which observational data exist. The computations and data are compared, and the computer model is described.

  11. Linkages from DOE’s Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics LLC., Haddonfield, NC (United States)

    2011-06-01

    This report uses bibliometric analysis, supported by interview and review of documents and databases, to trace linkages from knowledge outputs resulting from DOE's advances in vehicle engine combustion to downstream innovations in commercial diesel engines and other areas. This analysis covers the period from 1974 through 2008 (and in some cases to early 2009).

  12. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  13. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  14. Conventional engine technology. Volume 3: Comparisons and future potential

    Science.gov (United States)

    Dowdy, M. W.

    1981-01-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  15. [Burn out syndrome in oncology].

    Science.gov (United States)

    Schraub, Simon; Marx, E

    2004-09-01

    SEPS or burnout syndrome was described among health care workers. Oncology care givers--physicians and nurses--can be concerned. Burnout is a chronical stress reaction. Emotional exhaustion and depersonalisation are more prevalent than low personal accomplishment. Burnout is essentially assessed by questionnaires. Oncologists report an higher level of burnout, than AIDS medical or palliative care staff. Causes of burn out are numerous: insufficient personal time, sense of failure,... followed by poorly management and difficulties in staff or institution relationships. Prevention and therapy of burn out can be considered on three levels: personal, (psychotherapy, advices on health way of life), team (improvement in communication) and institution (support meetings and talking groups).

  16. The exhaust heat management system; Das Abgaswaerme-Management

    Energy Technology Data Exchange (ETDEWEB)

    Geskes, P.; Strauss, T. [Behr GmbH und Co., Stuttgart (Germany)

    2006-10-15

    Behr uses EGR coolers in its Exhaust Heat Management System (EHMS) to obtain exhaust enthalpy, helping to heat up the vehicle cabin faster, or to reduce the power train warm-up phase. In today's DI diesel and DI gasoline engines, auxiliary heating is essential to ensure thermal comfort, since fuel-efficient vehicles no longer transmit sufficient heat to the coolant. By modifying the internal engine combustion, which produces much higher exhaust temperatures, auxiliary heating by th exhaust heat can provide extremely high thermal output in conjunction with just a slight increase in fuel consumption. (orig.)

  17. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef

    2013-01-01

    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  18. [Ocular burns].

    Science.gov (United States)

    Merle, H; Gérard, M; Schrage, N

    2008-09-01

    Ocular or thermal burns account for 7.7%-18% of ocular trauma. The majority of victims are young. The burns occur in the setting of accidents at work or in the home, or during a physical attack. Chemical burns by strong acids or bases are responsible for the most serious injuries. Associated with the destruction of limbal stem cells, they present as recurrent epithelial ulcerations, chronic stromal ulcers, deep stromal revascularization, conjunctival overlap, or even corneal perforation. The initial clinical exam is sometimes difficult to perform in the presence of burning symptoms. Nevertheless, it enables the physician to classify the injury, establish a prognosis, and most importantly, guide the therapeutic management. The Roper-Hall modification of the Hughes classification system is the most widely utilized, broken down into stages based on the size of the stromal opacity and the extent of possible limbal ischemia. This classification is now favorably supplemented by those proposed by Dua and Wagoner, which are based on the extent of the limbal stem cell deficiency. The prognosis of the more serious forms of ocular burns has markedly improved over the last decade because of a better understanding of the physiology of the corneal epithelium. Surgical techniques aimed at restoring the destroyed limbal stem cells have altered the prognosis of severe corneal burns. In order to decrease the incidence of burns, prevention, particularly in industry, is essential.

  19. Hyperventilation and exhaustion syndrome.

    Science.gov (United States)

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-12-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called 'Grounding', a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients' average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = -3.48, df = 42, p exhaustion (Karolinska Exhaustion Scale KES r = 0.772, p exhaustion scores and scores of depression and anxiety. The conclusion is that hyperventilation is common in exhaustion syndrome patients and that it can be reduced by systematic physical therapy such as Grounding. © 2013 The Authors. Scandinavian Journal of Caring Sciences published by John Wiley & Sons Ltd on behalf of Nordic College of Caring Science.

  20. Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Madsen, Ulla; Breum, N. O.; Nielsen, Peter V.

    Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation...

  1. Immune Exhaustion and Transplantation.

    Science.gov (United States)

    Sanchez-Fueyo, A; Markmann, J F

    2016-07-01

    Exhaustion of lymphocyte function through chronic exposure to a high load of foreign antigen is well established for chronic viral infection and antitumor immunity and has been found to be associated with a distinct molecular program and characteristic cell surface phenotype. Although exhaustion has most commonly been studied in the context of CD8 viral responses, recent studies indicate that chronic antigen exposure may affect B cells, NK cells and CD4 T cells in a parallel manner. Limited information is available regarding the extent of lymphocyte exhaustion development in the transplant setting and its impact on anti-graft alloreactivity. By analogy to the persistence of a foreign virus, the large mass of alloantigen presented by an allograft in chronic residence could provide an ideal setting for exhausting donor-reactive T cells. The extent of T cell exhaustion occurring with various allografts, the kinetics of its development, whether exhaustion is influenced positively or negatively by different immunosuppressants, and the impact of exhaustion on graft survival and tolerance development remains a fertile area for investigation. Harnessing or encouraging the natural processes of exhaustion may provide a novel means to promote graft survival and transplantation tolerance. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Boosting devices with integral features for recirculating exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  3. Quantification of benzene, toluene, ethylbenzene and o-xylene in internal combustion engine exhaust with time-weighted average solid phase microextraction and gas chromatography mass spectrometry.

    Science.gov (United States)

    Baimatova, Nassiba; Koziel, Jacek A; Kenessov, Bulat

    2015-05-11

    A new and simple method for benzene, toluene, ethylbenzene and o-xylene (BTEX) quantification in vehicle exhaust was developed based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating. The rationale was to develop a method based on existing and proven SPME technology that is feasible for field adaptation in developing countries. Passive sampling with SPME fiber retracted into the needle extracted nearly two orders of magnitude less mass (n) compared with exposed fiber (outside of needle) and sampling was in a time weighted-averaging (TWA) mode. Both the sampling time (t) and fiber retraction depth (Z) were adjusted to quantify a wider range of Cgas. Extraction and quantification is conducted in a non-equilibrium mode. Effects of Cgas, t, Z and T were tested. In addition, contribution of n extracted by metallic surfaces of needle assembly without SPME coating was studied. Effects of sample storage time on n loss was studied. Retracted TWA-SPME extractions followed the theoretical model. Extracted n of BTEX was proportional to Cgas, t, Dg, T and inversely proportional to Z. Method detection limits were 1.8, 2.7, 2.1 and 5.2 mg m(-3) (0.51, 0.83, 0.66 and 1.62 ppm) for BTEX, respectively. The contribution of extraction onto metallic surfaces was reproducible and influenced by Cgas and t and less so by T and by the Z. The new method was applied to measure BTEX in the exhaust gas of a Ford Crown Victoria 1995 and compared with a whole gas and direct injection method. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice.

    Science.gov (United States)

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Maekawa, Fumihiko; Yanagisawa, Rie; Furuyama, Akiko; Tsukahara, Shinji; Fujitani, Yuji; Hirano, Seishiro

    2015-06-30

    The aims of our present study were to establish a novel olfactory-based spatial learning test and to examine the effects of exposure to nano-sized diesel exhaust-origin secondary organic aerosol (SOA), a model environmental pollutant, on the learning performance in preweaning mice. Pregnant BALB/c mice were exposed to clean air, diesel exhaust (DE), or DE-origin SOA (DE-SOA) from gestational day 14 to postnatal day (PND) 10 in exposure chambers. On PND 11, the preweaning mice were examined by the olfactory-based spatial learning test. After completion of the spatial learning test, the hippocampus from each mouse was removed and examined for the expressions of neurological and immunological markers using real-time RT-PCR. In the test phase of the study, the mice exposed to DE or DE-SOA took a longer time to reach the target as compared to the control mice. The expression levels of neurological markers such as the N -methyl-d-aspartate (NMDA) receptor subunits NR1 and NR2B, and of immunological markers such as TNF-α, COX2, and Iba1 were significantly increased in the hippocampi of the DE-SOA-exposed preweaning mice as compared to the control mice. Our results indicate that DE-SOA exposure in utero and in the neonatal period may affect the olfactory-based spatial learning behavior in preweaning mice by modulating the expressions of memory function-related pathway genes and inflammatory markers in the hippocampus.

  5. Review and Assessment of Reduced Emissions/Clean Burning Diesel Engines for Integration into the Army Inventory.

    Science.gov (United States)

    1983-05-12

    information about those engines which would be commercially available in April 1983. Provide manufacturers with questionnaries upon which to provide...June 1981. 26. Remarks on the Question: "In what way does our lack of knowledge of the athmospheric chemistry relevent to automotive emissions...HORSEPOWER HC(GM/HR)=7.26086957 *AT 37.5 HORSEPOWER HC(GM/HR)=8.34782609 EAT 50 HORSEPOWER HC(GM/HR)=9.5 FORKLIFT OPERATING CYCLE FOR AN 8 HOUR SHIFT IS

  6. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing

    Energy Technology Data Exchange (ETDEWEB)

    Adam, T.W. [European Commission Joint Research Centre, Institute for Environment and Sustainability, Transport and Air Quality Unit, Ispra, VA (Italy); Clairotte, M.; Manfredi, U.; Carriero, M.; Martini, G.; Krasenbrink, A.; Astorga, C. [European Commission Joint Research Centre, Institute for Environment and Sustainability, Transport and Air Quality Unit, Ispra, VA (Italy); European Commission Joint Research Centre, Institute for Energy and Transport, Sustainable Transport Unit, Ispra, Varese (Italy); Streibel, T.; Pommeres, A.; Sklorz, M. [University of Rostock, Analytical Chemistry/Joint Mass Spectrometry Centre, Institute of Chemistry, Rostock (Germany); Elsasser, M.; Zimmermann, R. [Cooperation Group Complex Molecular Systems (CMA)/Joint Mass Spectrometry Centre (JMSC), Neuherberg (Germany); University of Rostock, Analytical Chemistry/Joint Mass Spectrometry Centre, Institute of Chemistry, Rostock (Germany)

    2012-07-15

    Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated. (orig.)

  7. Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust.

    Science.gov (United States)

    Rudell, B; Blomberg, A; Helleday, R; Ledin, M C; Lundbäck, B; Stjernberg, N; Hörstedt, P; Sandström, T

    1999-08-01

    Air pollution particulates have been identified as having adverse effects on respiratory health. The present study was undertaken to further clarify the effects of diesel exhaust on bronchoalveolar cells and soluble components in normal healthy subjects. The study was also designed to evaluate whether a ceramic particle trap at the end of the tail pipe, from an idling engine, would reduce indices of airway inflammation. The study comprised three exposures in all 10 healthy never smoking subjects; air, diluted diesel exhaust, and diluted diesel exhaust filtered with a ceramic particle trap. The exposures were given for 1 hour in randomised order about 3 weeks apart. The diesel exhaust exposure apperatus has previously been carefully developed and evaluated. Bronchoalveolar lavage was performed 24 hours after exposures and the lavage fluids from the bronchial and bronchoalveolar region were analysed for cells and soluble components. The particle trap reduced the mean steady state number of particles by 50%, but the concentrations of the other measured compounds were almost unchanged. It was found that diesel exhaust caused an increase in neutrophils in airway lavage, together with an adverse influence on the phagocytosis by alveolar macrophages in vitro. Furthermore, the diesel exhaust was found to be able to induce a migration of alveolar macrophages into the airspaces, together with reduction in CD3+CD25+ cells. (CD = cluster of differentiation) The use of the specific ceramic particle trap at the end of the tail pipe was not sufficient to completely abolish these effects when interacting with the exhaust from an idling vehicle. The current study showed that exposure to diesel exhaust may induce neutrophil and alveolar macrophage recruitment into the airways and suppress alveolar macrophage function. The particle trap did not cause significant reduction of effects induced by diesel exhaust compared with unfiltered diesel exhaust. Further studies are warranted to

  8. Propane-Fueled Jet Engine

    Science.gov (United States)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.

    2001-04-01

    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu

  9. Full-scale experimental studies on mechanical smoke exhaust efficiency in an underground corridor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H.; Li, Y.Z.; Huo, R.; Yi, L. [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui (China); Chow, W.K. [The Hong Kong Polytechnic University, Hong Kong (China). Department of Building Services Engineering

    2006-12-15

    Full-scale burning tests were conducted in a full-scale underground long corridor with beamed ceiling and smooth ceiling. The influence of air-supply opening position on the smoke exhaust efficiency was studied. The operation time of the smoke exhaust fan was also discussed to obtain a better smoke exhaust. Results showed that the smoke exhaust would be more efficient when air-supply openings were some distance away from the smoke exhaust openings. When the air-supply opening was near the smoke exhaust opening, even with larger smoke exhaust rate, it still gave poor smoke control results. Two comparing tests on the effects of operation time indicated that it would give poor smoke control ability when the smoke exhaust system operated too early. Finally, some future research topics were also discussed in this paper. (author)

  10. A new concept for exhaust diffusers of altitude test cells

    Science.gov (United States)

    Parikh, P. G.; Sarohia, V.

    1984-01-01

    A new exhaust diffuser concept for jet engine altitude test cells which greatly reduces operating power and cost requirements for exhausters is discussed. The concept utilizes the capture duct as an efficient diffuser only, while evacuating the secondary air via a separate path using an auxiliary suction system. Implementation of the concept would reduce the peak exhauster power requirement during a TF-30 altitude test by 48 percent and the overall exhaust power cost of the test program by 41 percent. The design accommodates various engine sizes and can achieve optimum pressure recovery performance during both A/B and IRP modes of engine operation. The pressure recovery performance of the proposed exhaust diffusers does not deteriorate with increasing cooling air fraction. The disadvantages of the proposed scheme are: increased mechanical complexity of the extended variable geometry diffuser duct and the need for an auxiliary suction system for evacuating cell-cooling air.

  11. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    Science.gov (United States)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  12. Pneumatic injection system using a hot exhaust gases, developed in Institute of Automobiles and Internal Combustion Engines of Cracow University of Technology

    Science.gov (United States)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The article concerns research carried out by the Krakow University of Technology on the concept of a pneumatic fuel injection spark ignition engines. In this artkule an example of an application of this type of power to the Wankel's engine, together with a description of its design and operating principles and the benefits of its use. The work was carried out over many years by Prof. Stanislaw Jarnuszkiewicz despite the development of many patents but not widely used in engines. Authors who were involved in the team-work of the team of Prof. Jarnuszkiewicz, after conducting exploratory studies, believed that this solution has development potential and this will be presented in future articles.

  13. Burning Issue: Handling Household Burns

    Science.gov (United States)

    ... to injury. , as your immune system shifts into gear. “The immune system response is intended to limit ... maintain blood pressure. Grafting—placing healthy skin on top of the burn wound—might help promote new ...

  14. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  15. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography.

    Science.gov (United States)

    Ma, Lin; Li, Xuesong; Sanders, Scott T; Caswell, Andrew W; Roy, Sukesh; Plemmons, David H; Gord, James R

    2013-01-14

    This paper describes a novel laser diagnostic and its demonstration in a practical aero-propulsion engine (General Electric J85). The diagnostic technique, named hyperspectral tomography (HT), enables simultaneous 2-dimensional (2D) imaging of temperature and water-vapor concentration at 225 spatial grid points with a temporal response up to 50 kHz. To our knowledge, this is the first time that such sensing capabilities have been reported. This paper introduces the principles of the HT techniques, reports its operation and application in a J85 engine, and discusses its perspective for the study of high-speed reactive flows.

  16. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... drum type exhaust gas steam boiler must have a feed water control system. The system must automatically... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS...

  17. 33 CFR 331.12 - Exhaustion of administrative remedies.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Exhaustion of administrative remedies. 331.12 Section 331.12 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE APPEAL PROCESS § 331.12 Exhaustion of administrative remedies. No...

  18. Effects of N/C Ratio on Solidification Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels for Exhaust Components of Gasoline Engines

    Science.gov (United States)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2017-03-01

    In order to comply with more stringent environmental and fuel consumption regulations, novel Nb-bearing austenitic heat-resistant cast steels that withstand exhaust temperatures as high as 1,323 K (1,050 °C) is urgently demanded from automotive industries. In the current research, the solidification behavior of these alloys with variations of N/C ratio is investigated. Directional solidification methods were carried out to examine the microstructural development in mushy zones. Computational thermodynamic calculations under partial equilibrium conditions were performed to predict the solidification sequence of different phases. Microstructural characterization of the mushy zones indicates that N/C ratio significantly influenced the stability of γ-austenite and the precipitation temperature of NbC/Nb(C,N), thereby altering the solidification path, as well as the morphology and distribution of NbC/Nb(C,N) and γ-ferrite. The solidification sequence of different phases predicted by thermodynamic software agreed well with the experimental results, except the specific precipitation temperatures. The generated data and fundamental understanding will be helpful for the application of computational thermodynamic methods to predict the as-cast microstructure of Nb-bearing austenitic heat-resistant steels.

  19. Modeling thermal burns due to airbag deployment.

    Science.gov (United States)

    Mercer, G N; Sidhu, H S

    2005-12-01

    Automotive airbags are now a widely accepted safety measure designed to reduce morbidity associated with motor vehicle accidents. Their usage is increasing with multiple airbags (driver, passenger and side curtain) being fitted to many vehicles. However the deployment of airbags has been identified as causing injuries in some instances including minor burns. There are three mechanisms for thermal burns due to an airbag; contact with the hot expelled gases from the airbag, contact with the hot airbag itself and melting of clothing from either of these contacts. A mathematical model is used here to predict the likelihood and severity of the first two types of burns. It is shown that direct contact with high temperature exhaust gases venting from the airbag can indeed lead to burns and that burns from contacting the hot airbag material are possible but far less likely to occur.

  20. NK Cell Exhaustion

    Science.gov (United States)

    Bi, Jiacheng; Tian, Zhigang

    2017-01-01

    Natural killer cells are important effector lymphocytes of the innate immune system, playing critical roles in antitumor and anti-infection host defense. Tumor progression or chronic infections, however, usually leads to exhaustion of NK cells, thus limiting the antitumor/infection potential of NK cells. In many tumors or chronic infections, multiple mechanisms might contribute to the exhaustion of NK cells, such as dysregulated NK cell receptors signaling, as well as suppressive effects by regulatory cells or soluble factors within the microenvironment. Better understanding of the characteristics, as well as the underlying mechanisms of NK cell exhaustion, not only should increase our understanding of the basic biology of NK cells but also could reveal novel NK cell-based antitumor/infection targets. Here, we provide an overview of our current knowledge on NK cell exhaustion in tumors, and in chronic infections. PMID:28702032

  1. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due

    2015-01-01

    This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...... studies for final analysis and interpretation. Twelve studies could be included in the data synthesis. Results: We found clear evidence that the prospect of exhaustion of benefits results in a significantly increased incentive for finding work. Discussion: The theoretical suggestion that the prospect...... of exhaustion of benefits results in an increased incentive for finding work has been confirmed empirically by measures from seven different European countries, the United States, and Canada. The results are robust in the sense that sensitivity analyses evidenced no appreciable changes in the results. We found...

  2. Immune Exhaustion and Transplantation

    National Research Council Canada - National Science Library

    Sanchez‐Fueyo, A; Markmann, J. F

    2016-01-01

    Exhaustion of lymphocyte function through chronic exposure to a high load of foreign antigen is well established for chronic viral infection and antitumor immunity and has been found to be associated...

  3. Ultraviolet photographic pyrometer used in rocket exhaust analysis

    Science.gov (United States)

    Levin, B. P.

    1966-01-01

    Ultraviolet photographic pyrometer investigates the role of carbon as a thermal radiator and determines the geometry, location, and progress of afterburning phenomena in the exhaust plume of rocket engines using liquid oxygen/RP-1 as propellant.

  4. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  5. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    Energy Technology Data Exchange (ETDEWEB)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  6. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.64 Sampling and analytical procedures for measuring gaseous exhaust emissions. (a) The system and...

  7. Technical Analysis Ballast Water Treatment By Using Economizer Utilizing Main Engines Exhaust Heat To Comply With International Ship Ballast Water Management At Mv. Leader Win

    Directory of Open Access Journals (Sweden)

    Hari Prastowo

    2017-03-01

    Full Text Available Based on the International Ballast Water Management regulations (IBWM, waste water ballast itself has the attention of some researchers to reduce the amount of waste species present in the ballast water with a variety of methods, as of biological, physical, mechanical, and chemical. The decision-making tools such as ballast water heater, flow-through system and others where possible these tools can minimize waste species in ballast water at a certain temperature or pressure of the flow according to the calculations. This study was aimed to calculate and analysis the effectiveness of the system treatment between Option 1 (Economizer & Bundle and Option 2 (Economizer & Heat Excharger then it will compare. First option is using economizer and bundles to transfer a heat from a source heat of exhaust gas then medium by thermal oil circulated. The second option is using economizer and heat excharger where a same heat source , but sea water from ballast tank sirculated to heat excharger. And from economizer to heat excharger is using thermal oil as a heat medium. For all calculation and anaalysis is using softwere HTRI. First option having a duty 2.503 MegaWatts at economizer and 1.9567 MegaWatts at bundles. Over design 2.01% at Economizer and 7.1%5 at bundles. Pessure drop 63.287 kPa at thermal oil after economizer and 68.196 kPa after bundles. Treatment time to this option is 44.424 hors. Second option having a duty 3.38 MegaWatts at economizer and 3.1227 MegaWatts at heat excharger. Over design 5.85% at Economizer and 3.49%5 at heat excharger. Pessure drop 38.697 kPa at thermal oil after economizer and 28.476 kPa after heat excharger. Treatment time to second option is 42.03 hours. Option 2 (Economizer & Heat Excharger is more optimum than option in analytical techniques. By analysis of treatment system, are expected this thesis can be applied to either the MV. Leader Win Vessel to comply with the operational needs according to standard

  8. Integrated Analysis of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland

    Large commercial ships such as container vessels and bulk carriers are propelledby low-speed, uniow scavenged two-stroke diesel engines. An integralin-cylinder process in this type of engine is the scavenging process, where the burned gases from the combustion process are evacuated through...... the exhaust valve and replaced with fresh air for the subsequent compression stroke. The scavenging air enters the cylinder via inlet ports which are uncovered by the piston at bottom dead center (BDC). The exhaust gases are then displaced bythe fresh air entering the cylinder. The scavenging ports are cut...... in the center of the ow, which might lead to a local decit in axial velocity and the formation of central recirculation zones, known as vortex breakdown. Ever more stringent emission legislations over the last 10-15 years have changed the engine lay out diagram in the pursuit of an engine which is both fuel...

  9. Burns: dressings

    Science.gov (United States)

    2015-01-01

    Introduction Burns are classified according to depth. This overview concerns the treatments for partial-thickness burns, which can be expected or have the potential to heal spontaneously (superficial partial-thickness and mid-dermal partial-thickness burns). Injuries that involve the deeper part of the dermis and require surgical treatments to achieve healing are not the focus of this overview. Methods and outcomes We conducted a systematic overview and aimed to answer the following clinical question: What are the effects of treatments for partial-thickness burns? We searched: Medline, Embase, The Cochrane Library, and other important databases up to January 2014 (BMJ Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this review). Results At this update, searching of electronic databases retrieved 322 studies. After deduplication and removal of conference abstracts, 193 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 160 studies and the further review of 33 full publications. Of the 33 full articles evaluated, two systematic reviews and two RCTs were added at this update. We performed a GRADE evaluation for 30 PICO combinations. Conclusions In this systematic overview, we categorised the efficacy for 10 interventions, based on information relating to the effectiveness and safety of alginate dressing, biosynthetic dressing, chlorhexidine-impregnated paraffin gauze dressing, hydrocolloid dressing, hydrogel dressing, paraffin gauze dressing, polyurethane film, silicone-coated nylon dressing, silver-impregnated dressing, and silver sulfadiazine cream. PMID:26173045

  10. Diesel emission reduction using internal exhaust gas recirculation

    Science.gov (United States)

    He, Xin [Denver, CO; Durrett, Russell P [Bloomfield Hills, MI

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  11. Comparative analysis of emission characteristics and noise test of an I.C. engine using different biodiesel blends

    Science.gov (United States)

    Hossain, Md. Alamgir; Rahman, Fariha; Mamun, Maliha; Naznin, Sadia; Rashid, Adib Bin

    2017-12-01

    Biodiesel is a captivating renewable resource providing the potential to reduce particulate emissions in compressionignition engines. A comparative study is conducted to evaluate the effects of using biodiesel on exhaust emissions. Exhaust smokiness, noise and exhaust regulated gas emissions such as carbon di oxides, carbon monoxide and oxygen are measured. It is observed that methanol-biodiesel blends (mustard oil, palm oil) cause reduction of emissions remarkably. Most of the harmful pollutants in the exhaust are reduced significantly with the use of methanol blended fuels. Reduction in CO emission is more with mustard oil blend compared to palm oil blend. Comparatively clean smoke is observed with biodiesel than diesel. It is also observed that, there is a decrease of noise while performing with biodiesel blends which is around 78 dB whereas noise caused by diesel is 80 dB. Biodiesel, more importantly mustard oil is a clean burning fuel that does not contribute to the net increase of carbon dioxide.

  12. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of exhaust-gas composition. 36.43... TRANSPORTATION EQUIPMENT Test Requirements § 36.43 Determination of exhaust-gas composition. (a) Samples shall be taken to determine the composition of the exhaust gas while the engine is operated at loads and speeds...

  13. Study on the utilization of the energy produced by the exhaust gases and the cooling water of a internal combustion engine; Estudo do aproveitamento da energia obtida pelos gases de escapamento e pela agua de resfriamento de um motor de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre Luiz dos; Arroyo, Narciso Angel Ramos [Santa Catarina Univ., Florianopolis (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Motores Termicos]. E-mail: als2000@tutopia.com.br; arroyo@sinmec.ufsc.br

    2000-07-01

    This work is about heat balance of an automotive internal combustion engine of 4 cylinders, using ethylic alcohol, and utilize the energy obtained in the exhaust gas and the water cooling system. This paper show an theoretical - experimental model for use this energy in an absorption refrigeration system using the work fluid water and Li Br. In this paper are analyzed engines charges of 30%, 50% and 100%. The results shows that for this charges and for any speed of the engines, the energy obtained in the evaporator are significant. (author)

  14. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    for current two-stroke swing engine is estimated as about 2.5 ms, which can be used in the prescribed burned mass fraction profile that follows the Wiebe's function. Finally, a 2D CFD code for compressible flow has been developed to study wave interactions in the engine and header system. It is found that with realistic working conditions, for a two-stroke swing engine, certain expansion waves can be created by the exhaust gas flows and the chamber pressure can reach as low as 5 psi below one atmosphere, which helps fill fresh reactant charge. The results also show that to obtain appropriate header tuning for the current two-stroke swing engine, the length of the header neck is about 40 cm.

  15. Part 3. Assessment of genotoxicity and oxidative stress after exposure to diesel exhaust from U.S. 2007-compliant diesel engines: report on 1- and 3-month exposures in the ACES bioassay.

    Science.gov (United States)

    Hallberg, L M; Ward, J B; Hernandez, C; Ameredes, B T; Wickliffe, J K

    2012-09-01

    Human health hazards due to diesel exhaust (DE*) exposure have been associated with both solvent and combustion components. In the past, diesel engine exhaust components have been linked to increased mutagenicity in cultures of Salmonella typhimurium and mammalian cells (Tokiwa and Ohnishi 1986). In addition, DE has been shown to increase both the incidence of tumors and the induction of 8-hydroxy-deoxyguanosine adducts (8-OHdG) in ICR mice (Ichinose et al. 1997). Furthermore, DE is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) and particulates. One such PAH, 3-nitrobenzanthrone (3-NBA), has been identified in DE and found in urban air. 3-NBA has been observed to induce micronucleus formation in DNA of human hepatoma cells (Lamy et al. 2004). The purpose of the current research, which is part of the Advanced Collaborative Emissions Study (ACES), a multidisciplinary program being carried out by the Health Effects Institute and the Coordinating Research Council, is to determine whether improvements in the engineering of heavy-duty diesel engines reduce the oxidative stress and genotoxic risk associated with exposure to DE components. To this end, the genotoxicity and oxidative stress of DE from an improved diesel engine was evaluated in bioassays of tissues from Wistar Han rats and C57BL/6 mice exposed to DE. Genotoxicity was measured as strand breaks using an alkaline-modified comet assay. To correlate possible DNA damage found by the comet assay, measurement of DNA-adduct formation was evaluated by a competitive enzyme-linked immunosorbent assay (ELISA) to determine the levels of free 8-OHdG found in the serum of the animals exposed to DE. 8-OHdG is a specific modified base indicating an oxidative type of DNA damage to DNA nucleotides. In addition, a thiobarbituric acid reactive substances (TBARS) assay was used to assess oxidative stress and damage in the form of lipid peroxidation in the hippocampus region of the brains of DE

  16. CO{sub 2}-fertilization via exhaust gas treatment of reciprocating gas engines: developments and experiences; Fertilisation au CO{sub 2} par traitement des gaz provenant de moteurs a gaz alternatifs: developpement et experience

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, M.; Hoving, K.; Klimstra, J.; Top, H. [N.V. Nederlandse Gasunie (Netherlands)

    2000-07-01

    The Dutch climate is such that greenhouses are used to produce vegetables, flowers and other plants. To heat the greenhouse, boilers and combined heat and power systems (CHP) are used. CHP has a better fuel utilisation than a boiler because of the simultaneously production of heat and power. In a greenhouse, CO{sub 2} has to be added to compensate the CO{sub 2} consumed by the plants to grow. Higher CO{sub 2} concentration than ambient are being used to increase plant growth and yield. The use of 'clean' flue gas from boilers was common practice but nowadays flue gas of engines can be used after cleaning. Exhaust gas cleaning systems (EGC) based on a Selective Reduction Catalyst and an Oxidation Catalyst make this possible. This paper describes the principle of these EGCs, gives insight into the important parameters which determine the required cleanliness and discusses the research results of Gasunie Research on this topic. It is found that different catalyst makes have their own specific behaviour depending on the monolith and active material and the how the catalyst is manufactured, mechanical mixed or impregnated. The use of CHP gives a high fuel utilisation and, in combination with EGC, increased crop yields. This results in an even more efficient use of the primary fuel, natural gas. (authors)

  17. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of ...

  18. Aerodynamic Control of Exhaust

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    In the autumn of 1985 the Unive!Sity of Aalborg was approached by the manufacturer C. P. Aaberg, who had obtained aerodynilmic control of the exhaust by means of injection. The remaining investigations comprising optimizations of the system with regard to effect, consumption, requirements...

  19. Développement d'un moteur 4-soupapes fonctionnant en mélange dilué. Une nouvelle approche basée sur l'optimisation de l'aérodynamique interne Application of Flow Field Optimization to Lean Burn Engine Development. A New Approach Based on Internal Flow Field Optimization

    Directory of Open Access Journals (Sweden)

    Henriot S.

    2006-11-01

    emissions, and in lower specific fuel consumption. On the other hand, unburnt hydrocarbon (HC emissions generally increase, which implies the use of an oxidation catalyst if the antipollution standards become too severe. The first phase was to analyze the interactions between fluid dynamics and combustion, which determine the capability of this engine to run with a lean or dilute mixture. The methodology relies on complementary means :(a Three-dimensional computer code (KIVA. (b Optical diagnostics (Laser Doppler Velocimetry. (c Single-cylinder engine equipped with conventional measurement systems. Three dimensional modeling is used to predict and to optimize fluid motion in the cylinder for different intake configurations. The most important parameters influencing the stability of initial combustion are found to be the direction and magnitude of the mean velocity at the spark location, and the turbulence level. We should note that this flow field optimization is also applicable for operation with any dilute mixture (diluted by exhaust gases for example. The question of the minimization of the cyclic variability remains. The most favorable configuration for lean-burn operation was a pent-roof combustion chamber with a single operating intake valve. Fluid motion in this engine is characterized by the combination of a swirling and a tumbling motion and can be described as an inclined tumble. This motion leads to a flow at the spark plug location directed along the edge of the cylinder head. Moreover, the turbulence level is optimal for a high burning rate and low cycleto-cycle instability. The second phase was to apply this solution to a multicylinder system. The main difficulties came from the variability between cylinders, which was amplified during lean-burn operation. Each cylinder must be independently controlled (spark timing, sequential injection, fuel-air ratio, etc. . Moreover, an increased spark gap is needed in order to reproduce the performance (i. e. efficiency

  20. Diesel exhaust pollution: chemical monitoring and cytotoxicity assessment

    Directory of Open Access Journals (Sweden)

    Lucky Joeng

    2015-07-01

    Full Text Available Diesel engines are a significant source of nitrogen oxides (NOx and particulate matter (PM which may cause adverse health effects on the cardiovascular and pulmonary systems. There is little consistency between many studies to establish which engine parameter is a key factor to determine the toxicity of diesel exhaust. The aim of this study was to correlate engine operating systems with cytotoxicity using human cells. A dynamic direct exposure system containing human cells grown at the air liquid interface (ALI was employed to expose human derived cells to diesel exhaust emitted under a range of engine loads. To determine correlation between engine load and cytotoxicity, concentrations of NOx and carbon (organic and elemental were measured. Comparison between filtered and unfiltered exhaust was also made. To assess cytotoxicity and determine mechanisms responsible for toxic effects, various bioassays measuring a range of endpoints were used including: cell metabolism (MTS, cell energy production (ATP and cell lysosome integrity (NRU. The human cells selected in this study were lung (A549 and liver (HepG2 derived cells to detect if observed cytotoxicity was basal (i.e. affect all cell types or organ-specific. Results showed that NOx gas concentrations increased as engine load increased which resulted in significant cytotoxicity to both A549 and HepG2 cells. In contrast carbon measurements remained relatively constant across loads with no observable significant difference in cytotoxicity by filtering diesel exhaust. This result suggests that the gaseous component of diesel exhaust may contribute higher cytotoxicity than the particulate component. Post exposure incubation was an important factor to consider as only gaseous components of diesel exhaust exhibited observable immediate effects. Our findings suggest engine torque as a reliable indicator of cytotoxicity on human cells. The advantages of the dynamic direct exposure method include a more

  1. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.|info:eu-repo/dai/nl/304838233; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  2. Parametric Study of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland; Mayer, Stefan

    2015-01-01

    Large commercial ships such as container vesselsand bulk carriers are propelled by low-speed, uniflowscavenged two-stroke diesel engines. The integral in-cylinderprocess in this type of engine is the scavenging process,where the burned gas from the combustion process isevacuated through the exhaust...... in axial velocity and the formation ofcentral recirculation zones, known as vortex breakdown. Thispaper will present a CFD analysis of the scavenging process ina MAN B&W two-stroke diesel engine. The study include aparameter sweep where the operating conditions such as airamount, port timing and scavenging...... pressure are varied. TheCFD model comprise the full geometry from scavenge receiverto exhaust receiver. Asymmetric inlet and outlet conditions isincluded as well as the dynamics of a moving piston and valve.Time resolved boundary conditions corresponding tomeasurements from an operating, full scale...

  3. Process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. Verfahren zur Herstellung eines Filterstoffes zur Reinigung von industriellen oder Brennkraftmaschinen-Abgasen und ein hiernach hergestellter Filterstoff

    Energy Technology Data Exchange (ETDEWEB)

    Bumbalek, A.

    1986-01-02

    This is a process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. The filter material is manufactured from the mineralized combustion product of peel of tropical fruits burnt at a temperature of 820/sup 0/C to 840/sup 0/C in an oxidising atmosphere excluding the production of carbon, particularly using banana skins and orange peels, which product is granulated with carrier materials or compressed.

  4. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  5. Diesel exhaust exposures in port workers.

    Science.gov (United States)

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number

  6. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  7. Investigation of Diesel Exhaust Gas Toxicity on Transient Modes

    Directory of Open Access Journals (Sweden)

    Ivashchenko Nikolay Antonovich

    2014-12-01

    Full Text Available Currently, the generation of heat engines and their control systems are based on ecological indices such as the toxicity of the fulfilled gases. When designing motors, software packages are widely used. These software packages provide the ability to calculate the workflow of engine at steady-state conditions. The definition of indicators emissions is a difficult task. The distribution statistics of the modes shows that the engines of the transport units work on unsteady modes most of the time. The calculation of toxicity indicators is even less developed. In this article experimental and numeric study of the diesel engine with turbocharger exhaust toxicity was considered. As a result of the experimental study, which was conducted with single-cylinder diesel engine compartment simulated work on the transient state, working process characteristics of a diesel engine were obtained, including carbon and nitrogen oxides concentrations. Functional dependencies of concentrations of toxic exhaust components, such as carbon and nitrogen oxides, on excess air ratio and exhaust temperature were obtained. Diesel engine transient processes were simulated using developed mathematical dynamic model of combined engine in locomotive power plant with a change in control signal (position of locomotive driver’s controller and external influence signal (resistance moment. The analysis of exhaust gas toxicity was conducted.

  8. Model Tests of Multiple Nozzle Exhaust Gas Eductor Systems for Gas Turbine Powered Ships

    Science.gov (United States)

    1977-06-01

    of Mechanical Engineering Dean of Science and Engineering 2 NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral Isham Linder J. R. Borsting...impingement on mast-mounted equipment within the exhaust gas plume and the infra-red signature of the hot exhaust gas. An effective means of reducing

  9. Chemical burn or reaction

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000059.htm Chemical burn or reaction To use the sharing features on ... the burned area from pressure and friction. Minor chemical burns will generally heal without further treatment. However, if ...

  10. CATALYTIC REDUCTION TECHNIQUES FOR POST-COMBUSTION DIESEL EXHAUST EMISSIONS

    OpenAIRE

    KESKİN, Ahmet; EMİROĞLU, Alaattin Osman

    2016-01-01

    Stiff exhaust emission regulations set for limiting the air pollution caused by motor vehicles have oriented the producers and researchers to investigate new techniques to reduce exhaust emissions. The main pollutants caused by diesel engines are particle matters (PM), nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxides (CO). Among the preventive actions to keep the emissions caused by motor vehicles at a certain level are enhancing the fuel quality, preventing the pollutant format...

  11. Propagation of light through ship exhaust plumes

    Science.gov (United States)

    van Iersel, M.; Mack, A.; van Eijk, A. M. J.; Schleijpen, H. M. A.

    2014-10-01

    Looking through the atmosphere, it is sometimes difficult to see the details of an object. Effects like scintillation and blur are the cause of these difficulties. Exhaust plumes of e.g. a ship can cause extreme scintillation and blur, making it even harder to see the details of what lies behind the plume. Exhaust plumes come in different shapes, sizes, and opaqueness and depending on atmospheric parameters like wind speed and direction, as well as engine settings (power, gas or diesel, etc.). A CFD model is used to determine the plume's flow field outside the stack on the basis of exhaust flow properties, the interaction with the superstructure of the ship, the meteorological conditions and the interaction of ship's motion and atmospheric wind fields. A modified version of the NIRATAM code performs the gas radiation calculations and provides the radiant intensity of the (hot) exhaust gases and the transmission of the atmosphere around the plume is modeled with MODTRAN. This allows assessing the irradiance of a sensor positioned at some distance from the ship and its plume, as function of the conditions that influence the spatial distribution and thermal properties of the plume. Furthermore, an assessment can be made of the probability of detecting objects behind the plume. This plume module will be incorporated in the TNO EOSTAR-model, which provides estimates of detection range and image quality of EO-sensors under varying meteorological conditions.

  12. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    Science.gov (United States)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  13. Laser diagnosis and plasma technology: fundamentals for reduction of emissions and fuel consumption in DI internal combustion engines. Diagnostics of the exhaust treatment in microwave excited discharges. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Diagnostik des Schadstoffabbaus in Mikrowellenentladungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ehlbeck, J.; Pasch, E.

    2000-12-01

    There are several concepts for the compliance with exhaust requirements for modern car engines, some of them based on plasma technology. For an efficient use of plasma in the field of exhaust treatment an excellent knowledge of the plasma properties and parameters is essential. Therefore it is the aim of this project to examine the example of the microwave excited plasmajet with wet synthetic and real exhaust. Of special interest is the mixing zone of the plasmajet which is operated in a bypass principle. The investigations are performed with the coherent anti-Stokes Raman scattering (CARS), an thermographic camera and thermocouples. For the measurements of the exhaust composition an exhaust gas-analysator is used. The experiments have delivered valuable data for the modelling of the mixing zone. In preliminary experiments it has been shown, that a new concept of exhaust injection into the mixing zone has the possibility to overcome a severe limitation of the plasmajet technique. The technology examined in this project offers interesting and promising concepts for the exhaust treatment of modern car engines. A real application in a car implies further extensive work. (orig.) [German] Fuer die Loesung der Abgasanforderungen, die an moderne Motoren gestellt werden, sind inzwischen einige Konzepte erarbeitet worden, die teilweise auf dem Einsatz eines Plasmas basieren, von denen sich aber z.Z. noch keines durchgesetzt hat. Um ein Plasma zielgerichtet auf eine Abgasreinigung einzusetzen, ist eine genaue Kenntnis der Eigenschaften und Parameter erforderlich. Daher war es Ziel dieses Projektes, speziell am Beispiel des mikrowellenangeregten Plasmajets sowohl angefeuchtetes synthetisches als auch reales Abgas zu untersuchen. Vom besonderen Interesse war hierbei die Mischungszone des im Bypass-Prinzip betriebenen Plasmajets. Zur Untersuchung wurde die kohaerente anti-Stokes Raman Streuung (CARS), eine Thermographie-Kamera und Thermolelemente eingesetzt. Fuer die

  14. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  15. Conversion of a diesel engine to a spark ignition natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  16. First Aid: Burns

    Science.gov (United States)

    ... to the Gynecologist? Blood Test: Thyroid Peroxidase Antibodies First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Scald burns from ... THIS TOPIC Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns Household Safety: Preventing ...

  17. Minor burns - aftercare

    Science.gov (United States)

    ... If this is not possible, put a cool, clean wet cloth on the burn, or soak the burn in a cool water bath for 5 minutes. ... After the burn is cooled, make sure it is a minor burn. If it is deeper, ... You may put a thin layer of ointment, such as petroleum ...

  18. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  19. Exposure of BALB/c mice to diesel engine exhaust origin secondary organic aer-osol (DE-SOA during the developmental stages impairs the social behavior in adult life of the males

    Directory of Open Access Journals (Sweden)

    Tin-Tin eWin-Shwe

    2016-01-01

    Full Text Available Secondary organic aerosol (SOA is a component of particulate matter (PM 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE originated SOA (DE-SOA affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the de-velopmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control, DE, DE-SOA and gas without any particulate matter in the inhala-tion chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty pref-erence as well as social interaction were remarkably impaired, expression levels of es-trogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, ex-pression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxi-city and impair social behavior in the males.

  20. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males.

    Science.gov (United States)

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2015-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males.

  1. Survey of modern power plants driven by diesel and gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, S. [Turku Polytechnic, Turku (Finland)

    1997-12-31

    This report surveys the latest technology of power plants driven by reciprocating internal combustion (IC) engines, from information collected from publications made mainly during the 1990`s. Diesel and gas engines are considered competitive prime movers in power production due mainly to their high full- and part-load brake thermal efficiency, ability to burn different fuels, short construction time and fast start-ups. The market for engine power plants has grown rapidly, with estimated total orders for reciprocating engines of 1 MW output and more reaching the 5000 unit level, (10 GW), between June 1995 and May 1996. Industrialized countries much prefer combined heat and power (CHP) production. Intense interest has been shown in recent years in alternative gas fuels; natural gas appears to be the most promising, but liquid petroleum gas, gas from sewage disposal plants, landfill gas and other biogases, as well as wood gas have also been recognized as other alternatives. Liquid alternatives such as fuels and pyrolysis oil have also been mentioned, in addition to information on coal burning engines. The percentage of gas engines used has increased and different ones are being developed, based on either the traditional spark ignition (SI), dual-fuel technology or the more recent high pressure gas injection system. In cold climates, energy production is largely based on CHP plants. Waste heat is utilized for local, regional or district heating or for industrial uses like drying, heating, cooling etc. Even radiative and convective heat from gen-set surfaces are employed, and boilers are used with exhaust outlet temperatures of below dew point. Combined cycle schemes, including turbo compound systems and steam turbines, are also incorporated into engine power plants in order to increase output and efficiency. Two-stroke, low-speed diesel engine plants show the highest electric efficiencies, with combined cycle plants reaching up to 54 %, while gas engine plants achieved

  2. Experimental study on exhaust gas after treatment using limestone

    Directory of Open Access Journals (Sweden)

    Sakhrieh Ahmad

    2013-01-01

    Full Text Available In this study a simple low-cost exhaust gas after-treatment filter using limestone was developed and tested on a four cylinder DI diesel engine coupled with dynamometer under variable engine running conditions. Limestone was placed in cast iron housing through which exhaust gases passes. The concentration of both carbon dioxide and nitrogen oxides were measured with and without the filter in place. It was found that both pollutants were decreased significantly when the filter is in place, with no increase in the fuel consumption rate.

  3. Energy efficient engine preliminary design and integration study

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.E.

    1978-11-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  4. Study on direct measurement of diesel exhaust gas flow rate. Development of ultrasonic exhaust gas flowmeter; Diesel hai gas ryuryo no chokusetsu sokuteiho ni kansuru kenkyu. Choonpa hai gas ryuryokeino kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, A.; Takamoto, M.; Yamzaki, H. [National Research Laboratory of Meteology, Tsukuba (Japan); Hosoi, K. [Japan Automobile Research Institute Inc., Tsukuba (Japan); Arai, S.; Shimizu, K. [Kaijo Corp., Tokyo (Japan)

    2000-02-25

    The partial flow dilution method is one of the typical measurement methods for particulate matter emission from diesel engines. In this method, exhaust gas at a transient flow rate should be transferred to a dilution tunnel at a constant ratio of exhaust gas. The present partial flow dilution method is used under steady-state engine operating conditions in lieu of direct flow rate measurement of exhaust gas. A more practical control of exhaust emission is, however, required world widely; therefore development of an exhaust gas flowmeter is indispensable in the partial flow dilution method for transient engine operating conditions. An ultrasonic exhaust gas flowmeter has been developed and been demonstrated to be capable of measuring the exhaust gas flow rate with sufficient accuracy. (author)

  5. Development of alternative ship propulsion in terms of exhaust emissions

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław

    2016-01-01

    Full Text Available The introduction of new emission limits for exhaust emissions of ship engines contributes to the development of new powertrain solutions. New solutions in the simplest approach concern the reduction of the concentration of sulfur in motor fuels. Typically, the aforementioned fuels have a lower value of viscosity which causes a number of supply system problems. It is becoming more and more common to use fuel cells in engine rooms of various types of marine vessels. Unlike conventional systems that use internal combustion engines, these systems have zero exhaust emissions. Hydrogen, methanol, methane and other substances may be used as a fuel in fuel cells. However, so far the best operating parameters are manifested by cells powered by hydrogen, which is associated with difficulties in obtaining and storing this fuel. Therefore, the use of turbine engines allows the obtaining of large operating and environmental advantages. The paper presents a comparison of the ecological parameters of turbine and piston engines.

  6. Part 2. Assessment of genotoxicity after exposure to diesel exhaust from U.S. 2007-compliant diesel engines: report on 1- and 3-month exposures in the ACES bioassay.

    Science.gov (United States)

    Bemis, Jeffrey C; Torous, Dorothea K; Dertinger, Stephen D

    2012-09-01

    Micronucleus (MN*) formation is a well-established endpoint in genetic toxicology; studies designed to examine MN formation in vivo have been conducted for decades. Conditions that cause double-strand breaks or disrupt the proper segregation of chromosomes during division result in an increase in MN frequency. Thus this endpoint is commonly employed in preclinical studies designed to assess the potential risks of human exposure to a myriad of chemical and physical agents, including inhaled diesel exhaust (DE). As part of the Advanced Collaborative Emissions Study (ACES) this investigation examined the potential of inhaled DE to induce chromosome damage in chronically exposed rodents. The ACES design included exposure of both rats and mice to DE derived from 2007-compliant heavy-duty engines. The exposure conditions consisted of air control and dilutions of DE resulting in three levels of exposure. At specified times, blood samples were collected, fixed, and shipped by the bioassay staff to Litron Laboratories for further processing and analysis. Significant improvements have been made to MN scoring by using objective, automated methods such as flow cytometry, which allows for the detection of micronucleated reticulocytes (MN-RET), micronucleated normochromatic erythrocytes (MN-NCE), and reticulocytes (RETs) in peripheral blood samples from mice and rats. By using a simple staining procedure coupled with rapid and efficient analysis, many more cells were examined in less time than was possible in traditional, microscopy-based MN assays. Thus, for each sample, 20,000 RETs were scored for the presence of MN. In the chronic-exposure bioassay, blood samples were obtained from independent groups of exposed animals at specific time points throughout the course of the entire study. This automated method is supported by numerous regulatory guidelines and meets the requirements for an Organization of Economic Cooperation and Development (OECD)-compliant assay for

  7. Modeling and Control Systems Design for Air Intake System of Diesel Engines for Improvement of Transient Characteristic

    Science.gov (United States)

    Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji

    For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.

  8. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmark....... METHODS: We included burn patients referred to the NBC in a three-months period. Patient records were systematically analyzed and compared with the national guidelines for referral of burn injured patients. RESULTS: A total of 97 burn injured patients were transferred for treatment at the NBC and the most...... common reason for referral was partial thickness burn exceeding 3% estimated area of burn (55% of the patients) while facial burns (32%) and inhalational injury (25%) were other common reasons. We found that 29 (30%) of the referrals were considered potentially unnecessary according to the guidelines...

  9. Controlling exhaust gas recirculation

    Science.gov (United States)

    Zurlo, James Richard [Madison, WI; Konkle, Kevin Paul [West Bend, WI; May, Andrew [Milwaukee, WI

    2012-01-31

    In controlling an engine, an amount of an intake charge provided, during operation of the engine, to a combustion chamber of the engine is determined. The intake charge includes an air component, a fuel component and a diluent component. An amount of the air component of the intake charge is determined. An amount of the diluent component of the intake charge is determined utilizing the amount of the intake charge, the amount of the air component and, in some instances, the amount of the fuel component. An amount of a diluent supplied to the intake charge is adjusted based at least in part on the determined amount of diluent component of the intake charge.

  10. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included

  11. CARBONYL CONTENT OF DIESEL EXHAUST FROM TWO SOURCES AND POSSIBLE IMPLICATIONS FOR CELL RESPONSES

    Science.gov (United States)

    Diesel exhaust is known to cause health effects including increases in lung inflammation and altered immunological parameters. The diesel exhausts used in our studies were collected into ice-cooled PBS from a diesel engine running at idle speed (DE2A) or at full load (DE5A). P...

  12. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... to the predictions of four conceptual models that describe the burning mechanism of multicomponent fuels. Based on the comparisons, hydrocarbon liquids were found to be best described by the Equilibrium Flash Vaporization model, showing a constant gas composition and gasification rate. The multicomponent fuels...... followed the diffusion-limited gasification model, showing a change in the hydrocarbon composition of the fuel and its evaporating gases, as well as a decreasing gasification rate, as the burning progressed. This burning mechanism implies that the residue composition and burning efficiency mainly depend...

  13. Burns - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Burns URL of this page: https://medlineplus.gov/languages/burns.html Other topics A-Z Expand Section ...

  14. An experimental investigation of exhaust emission from agricultural tractors

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Rashid; Rabbani, Hekmat; Lorestani, Ali Nejat; Javadikia, Payam; Jaliliantabar, Farzad [Mechanics of Agricultural Machinery Department, Razi University of Kermanshah (Iran, Islamic Republic of)

    2013-07-01

    Agricultural machinery is an important source of emission of air pollutant in rural locations. Emissions of a specific tractor engine mainly depend on engine speed. Various driving methods and use of implements with different work capacities can affect the engine load. This study deals with the effects of types of tractors and operation conditions on engine emission. In this study two types of agricultural tractors (MF285 and U650) and some tillage implements such as centrifugal type spreader, boom type sprayer and rotary tiller were employed. Some of the exhausted gases from both tractors in each condition were measured such as, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2) and nitrogen oxide (NO). Engine oil temperature was measured at every step for both types of tractors. Difference between steady-state condition and operation conditions was evaluated. The results showed all exhaust gases that measured and engine oil temperature at every operation conditions are higher than steady-state condition. A general conclusion of the work was that, using various implements and employing different types of tractors effect on engine emissions. The results of variance analysis showed all exhausted gases had a significant relationship with types of implements used at 1%. Also, all exhausted gases except CO had a significant relationship with types of tractors. A further conclusion was that NO emission increased as engine oil temperature increased. The final conclusion was about the difference between MF285 and U650; using U650 at operation conditions is better than MF285 in terms of pollution.

  15. Economics of pediatric burns.

    Science.gov (United States)

    Bass, Michael J; Phillips, Linda G

    2008-07-01

    Sustaining a burn injury sets in motion a cycle of pain, disfigurement, and a search for survival. In pediatric burns, the injury extends to the parents where fear, ignorance, and helplessness forever change their lives. Pediatric burn injuries are caused by fire, hot liquids, clothing irons, hair curlers, caustic substances like drain cleaner, the grounding of an electrical source, and exposure to radiation. Efficiency in the delivery of pediatric burn care is critical. Maximizing resource utilization means continual self-evaluation and economic analysis of therapeutic modalities. Griffiths et al found that most childhood burns are due to scalds, which can be treated for $1061 per percent burn. Paddock et al reduced the cost of treating superficial pediatric burns and reduced the length of stay in hospital using silver-impregnated gauze over traditional methods. Barrett et al found improved cosmesis of skin grafts using cultured epithelial autografts but at a substantially increased cost. Corpron et al showed that pediatric burn units that treat burns >10% total body surface area and operative treatment of pediatric burns regardless of size generate positive revenue. There is a paucity of evidentiary pediatric burn economic data. More research is needed to address areas of pediatric burn care inefficiency. Improving knowledge of cost in all health care endeavors will create competition and drive down expenditures.

  16. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from

  17. Particulate Emissions Hazards Associated with Fueling Heat Engines

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  18. Sampling and measurement methods for diesel exhaust aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ristimaeki, J.

    2006-07-01

    Awareness of adverse health effects of urban aerosols has increased general interest in aerosol sources. As diesel engines are one significant urban anthropogenic particle source, diesel aerosols have been under intense research during the last decades. This thesis discusses the measurement issues related to the diesel exhaust particles, focusing on the effective density measurement with Elpi-Sumps and Tda-Elpi methods and presents some additional performance issues not discussed in the papers. As the emergence of volatile nanoparticles in the diesel exhaust is sensitive to prevailing circumstances there is a need to properly control the dilution parameters in laboratory measurements in order to obtain repeatable and reproducible results. In addition to the dilution parameters, the effect of ambient temperature on the light duty vehicle exhaust particulate emission was studied. It was found that turbo charged diesel engines were relatively insensitive to changes in ambient temperature whereas particle emissions from naturally aspirated gasoline vehicles were significantly increased at low temperatures. The measurement of effective density and mass of aerosol particles with Dma and impactor was studied and applied to characterisation of diesel exhaust particles. The Tda-Elpi method was used for determination of the volatile mass of diesel exhaust particles as a function of particle size. Based on the measurement results, condensation was suggested to be the main phenomena driving volatile mass transfer to the exhaust particles. Identification of the process and the separation of volatile and solid mass may become important as some health effect studies suggest the volatile fraction to be a key component causing the biological effects of diesel exhaust particles. (orig.)

  19. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  20. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Science.gov (United States)

    2010-07-01

    ... orm fuel. (1) Crankcase flow rate. If engines are not subject to crankcase controls under the standard-setting part, you may calculate raw exhaust flow based on n int orm fuel using one of the following: (i...

  1. 2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.

    2000-12-11

    The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

  2. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke exhaust emissions. The system and procedures for sampling and...

  3. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Science.gov (United States)

    2010-07-01

    ... travel greater than 10 inches. (E) Engine displacement greater than 50 cc. (F) The absence of a... engines that have total displacement of 70 cc or less to the exhaust emission standards in § 1051.615... first. For off-highway motorcycles with engines that have total displacement of 70 cc or less, the...

  4. In optics humidity compensation in NDIR exhaust gas measurements of NO2

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Buchner, Rainer; Clausen, Sønnik

    2015-01-01

    NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA.......NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA....

  5. Solar powered high voltage energization for vehicular exhaust cleaning: A step towards possible retrofitting in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Rajanikanth, B.S.; Mohapatro, Sankarsan [High Voltage Lab, Indian Institute of Science, Bangalore-560012 (India); Umanand, L. [CEDT, Indian Institute of Science, Bangalore-560012 (India)

    2009-03-15

    This paper proposes a novel way of generating high voltage for electric discharge plasma in controlling NO{sub x} emission in diesel engine exhaust. A solar powered high frequency electric discharge topology has been suggested that will improve the size and specific energy density required when compared to the traditional repetitive pulse or 50 Hz AC energization. This methodology has been designed, fabricated and experimentally verified by conducting studies on real diesel engine exhaust. (author)

  6. 49 CFR 325.91 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...

  7. Burn mortality in Iraq.

    Science.gov (United States)

    Qader, Ari Raheem

    2012-08-01

    Mortality rates are important outcome parameters after burn, and can serve as objective end points for quality control. Causes of death after severe burn have changed over time. In a prospective study, eight hundred and eighty-four burn patients were admitted to the Burns and Plastic surgery Hospital in Sulaimani-Kurdistan region of Iraq in 2009. Age, gender, nationality, cause of burn, extent of injury, cause of death and mortality rate were tabulated and analyzed, 338 (38.2%) were male and 546 (61.8%) were female. The highest number of cases occurred in January, with the highest short period incidence occurring in April. Out of 884 cases, 260 persons died. Burn injuries were more frequent and larger with higher mortality in females than in males. Flame was the major cause of burns. Self-inflicted burns were noted mainly in young women. A large number of burns which affect children and females, occur in the domestic setting and could have been prevented. Therefore, it is necessary to implement programs for health education relating to prevention of burn injuries focusing on the domestic setting. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  8. Nutritional Therapy in Burns

    Directory of Open Access Journals (Sweden)

    Muzaffer Durmuş

    2016-12-01

    Full Text Available A burn is characterized by the damage to one’s body tissues caused by heat, chemicals, electricity, or radiation. The incidence of burn injuries has recently been decreasing. However, it is a fact that burns constitute a significant problem all over the world, with a few million people being affected by burns each year. A burn is an extensive trauma that affects the whole organism and determines the prognosis through its physiopathology. The case of the burn patient is also characterized by the acute phase response. Since burn patients have a non-functional skin barrier, they experience loss of liquids, minerals, proteins and electrolytes. They can also develop protein, energy and micro-nutrition deficiencies due to intense catabolic processes, infections and increased bodily needs in case of wound healing. Therefore, nutritional therapy is one of the major steps that need to be monitored from the initial moments of the burn injury through to the end of the burn treatment. This study focuses on the significance of nutritional therapy for burn patients in the light of current literature.

  9. [The pain from burns].

    Science.gov (United States)

    Latarjet, J

    2002-03-01

    The painful events associated with the treatment of a severe burn can, because of their long-lasting and repetitive characteristics, be one of the most excruciating experiences in clinical practice. Moreover, burn pain has been shown to be detrimental to burn patients. Although nociception and peripheral hyperalgesia are considered the major causes of burn pain, the study of more hypothetical mechanisms like central hyperalgesia and neuropathic pain may lead to a better understanding of burn pain symptoms and to new therapeutic approaches. Continuous pain and intermittent pain due to therapeutic procedures are two distinct components of burn pain. They have to be evaluated and managed separately. Although continuous pain is by far less severe than intermittent pain, the treatment is, in both cases, essentially pharmacological relying basically on opioids. Because of wide intra- and inter-individual variations, protocols will have to leave large possibilities of adaptation for each case, systematic pain evaluation being mandatory to achieve the best risk/benefit ratio. Surprisingly, the dose of medication decreases only slowly with time, a burn often remaining painful for long periods after healing. Non pharmacological treatments are often useful and sometimes indispensable adjuncts; but their rationale and their feasibility depends entirely on previous optimal pharmacological control of burn pain. Several recent studies show that burn pain management is inadequate in most burn centres.

  10. Motor Vehicle Exhaust Gas Suicide.

    Science.gov (United States)

    Routley, Virginia

    2007-01-01

    In many motorized countries, inhalation of carbon monoxide from motor vehicle exhaust gas (MVEG) has been one of the leading methods of suicide. In some countries it remains so (e.g., Australia 16.0% of suicides in 2005). Relative to other methods it is a planned method and one often used by middle-aged males. The study provides a review of countermeasures aimed at restricting this method of suicide. The prevention measures identified were catalytic converters (introduced to reduce carbon monoxide for environmental reasons); in-cabin sensors; exhaust pipe modification; automatic idling stops; and helpline signage at suicide "hotspots." Catalytic converters are now in 90% of new vehicles worldwide and literature supports them being associated with a reduction in exhaust-gassing suicides. There remain, however, accounts of exhaust-gas fatalities in modern vehicles, whether accidentally or by suicide. These deaths and also crashes from fatigue could potentially be prevented by in-cabin multi-gas sensors, these having been developed to the prototype stage. Helpline signage at an exhaust-gassing suicide "hotspot" had some success in reducing suicides. The evidence on method substitution and whether a reduction in MVEG suicides causes a reduction in total suicides is inconsistent.

  11. Burns and epilepsy.

    Science.gov (United States)

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group.

  12. Ecological assessment of the environmental impacts of the kerosene burning in jet turbines and its improvement assessment.

    Science.gov (United States)

    Geldermann, J; Gabriel, R; Rentz, O

    1999-01-01

    The burning of kerosene in jet turbines is investigated for two reference flights with a Boeing 747-400 and an Airbus A320-200, representing the typical Lufthansa planes for long and middle distance. The ecological evaluation is performed by Life Cycle Assessment (LCA). Formation of condensation trails, which is a specific environmental impact caused by air traffic, has to be considered in addition to established LCA impact categories. Based on the ecological assessment, an improvement assessment is performed. Environmental performance of diesel fuel during the combustion in car engines is analysed based on available publications. The relevant parameters for the environmental impact of the combustion of diesel (aromatics content, reduction of sulphur content, the reduction of the density and raising of the cetane number) are discussed with regard to improvements of the exhaust qualities of kerosene. A reduction of the aromatics content promises to improve the emission of soot which should be further investigated.

  13. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  14. Management of Hand Burns

    Directory of Open Access Journals (Sweden)

    Fatih Irmak

    2017-09-01

    Full Text Available Objective: The hand is one of the most frequently affected body parts by burn injuries with a rate of 80% among all burn wounds. Early and effective treatment ensures the best chance of survival as well as a good functional prognosis. The aim of this study was to determine the epidemiology, variation, relationship between etiology and hospital stay, clinical features, and management of hand burns. Material and Methods: This retrospective study was conducted the University of Health Sciences; Şişli Hamidiye Etfal Application and Research Center, Departmant of Plastic, Reconstructive and Aesthetic Surgery and the Intensive Burn Care Unit between April 2009 and April 2014. Burns were assessed based on etiology, anatomical location, percentage of total body surface area affected, and depth of injury. Treatment was categorized as conservative, elective operative, or urgent operative. Results: In the study period, 788 patients were admitted to our Burn Unit. Of these, 240 were females (30.5% and 548 were males (69.5%. The most common type of burn injury in this study was thermal injury (695 cases; 88.2%, followed by electrical injury (67 cases; 8.5%, and chemical, frictional or unknown injuries (26 cases; 3.3%. Majority (more than 85% of the patients had second-degree burns, and some had third-degree burns. Conclusions: Burns commonly affect the hands, and many functional problems may develop if appropriate basic treatments are neglected. The best treatment for burns is prevention. Appropriate indoor arrangement and simple but effective measures that can be taken at home can significantly reduce burn trauma exposure.

  15. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  16. Pediatric facial burns.

    Science.gov (United States)

    Kung, Theodore A; Gosain, Arun K

    2008-07-01

    Despite major advances in the area of burn management, burn injury continues to be a leading cause of pediatric mortality and morbidity. Facial burns in particular are devastating to the affected child and result in numerous physical and psychosocial sequelae. Although many of the principles of adult burn management can be applied to a pediatric patient with facial burns, the surgeon must be cognizant of several important differences. Facial burns and subsequent scar formation can drastically affect the growth potential of a child's face. Structures such as the nose and teeth may become deformed due to abnormal external forces caused by contractures. Serious complications such as occlusion amblyopia and microstomia must be anticipated and urgently addressed to avert permanent consequences, whereas other reconstructive procedures can be delayed until scar maturation occurs. Furthermore, because young children are actively developing the concept of self, severe facial burns can alter a child's sense of identity and place the child at high risk for future emotional and psychologic disturbances. Surgical reconstruction of burn wounds should proceed only after thorough planning and may involve a variety of skin graft, flap, and tissue expansion techniques. The most favorable outcome is achieved when facial resurfacing is performed with respect to the aesthetic units of the face. Children with facial burns remain a considerable challenge to their caregivers, and these patients require long-term care by a multidisciplinary team of physicians and therapists to optimize functional, cosmetic, and psychosocial outcomes.

  17. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  18. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    Science.gov (United States)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  19. Pollutant monitoring of aircraft exhaust with multispectral imaging

    Science.gov (United States)

    Berkson, Emily E.; Messinger, David W.

    2016-10-01

    Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.

  20. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  1. Biodiesel exhaust: the need for a systematic approach to health effects research.

    Science.gov (United States)

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure. © 2015 Asian Pacific Society of Respirology.

  2. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  3. Exhaust Gas Scrubber Washwater Effluent

    Science.gov (United States)

    2011-11-01

    10 Sulfur Content of Certain Liquid Fuels Exhaust Gas Scrubber Washwater Effluent...diesel and gasoline components DIN Dissolved inorganic nitrogen THC Total hydrocarbon TKN Total Kjeldahl nitrogen HEM Hexane extractable...Benefit Analysis to support the impact assessment accompanying the revision of Directive 1999/32/EC on the sulfur content of certain liquid fuels

  4. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  5. Burns and Fire Safety

    Science.gov (United States)

    ... Cairns BA, et al. Etiology and outcome of pediatric burns. J Pediatr Surg. 1996; 31(3): 329-33. ... RT, Feldman JA, McMillon M. Tap water scald burns in children. Pediatrics. 1978; 62(1): 1-7. 10 Baptiste MS, ...

  6. Are burns photographs useful?

    Science.gov (United States)

    Nelson, L; Boyle, M; Taggart, I; Watson, S

    2006-11-01

    Routine photography of all patients admitted to the West of Scotland Regional Burns Unit was introduced in 2003. To date, there are few burns units to evaluate the usefulness of photographs taken. To assess the usefulness of photographs of patients admitted to the burns unit to various members of the multidisciplinary team. A questionnaire was completed by hospital staff involved in the management of burns patients over a 3-month period. A total of 43 questionnaires were completed. The majority of questionnaires were completed by nursing staff (55%) followed by medical staff (23%); physiotherapy (5%); anaesthetists (7%); theatre staff (5%); students (2%); dietician (2%). About 98% of respondents agreed that photographs were useful overall, particularly for teaching purposes. About 9% disagreed that photographs were useful for assessment due to difficulty in assessing depth of burn. About 72% agreed that the photographs were useful for patient management and improve patient care. About 88% agreed that all patients should have photographs available in future. Advantages of photographs include; moving and handling of patients; patient positioning in theatre; reviewing wound healing and complications. They are useful for assessing site, size and type of burn. Disadvantages include difficulty in assessing depth of burn, technical factors, and unavailability out of hours. Photographs of burns patients are useful overall to all members of the multidisciplinary team.

  7. Treating and Preventing Burns

    Science.gov (United States)

    ... Listen Español Text Size Email Print Share Burn Treatment & Prevention Tips for Families Page Content ​There are many different causes of serious burns in children, including sunburn , hot water or other hot liquids, and those due to ...

  8. Pain in burn patients.

    Science.gov (United States)

    Latarjet, J; Choinère, M

    1995-08-01

    While severe pain is a constant component of the burn injury, inadequate pain management has been shown to be detrimental to burn patients. Pain-generating mechanisms in burns include nociception, primary and secondary hyperalgesia and neuropathy. The clinical studies of burn pain characteristics reveal very clear-cut differences between continuous pain and pain due to therapeutic procedures which have to be treated separately. Some of the main features of burn pain are: (1) its long-lasting course, often exceeding healing time, (2) the repetition of highly nociceptive procedures which can lead to severe psychological disturbances if pain control is inappropriate. Pharmaco-therapy with opioids is the mainstay for analgesia in burned patients, but non-pharmacological techniques may be useful adjuncts. Routine pain evaluation is mandatory for efficient and safe analgesia. Special attention must be given to pain in burned children which remains too often underestimated and undertreated. More educational efforts from physicians and nursing staff are necessary to improve pain management in burned patients.

  9. [Chickenpox, burns and grafts].

    Science.gov (United States)

    Rojas Zegers, J; Fidel Avendaño, L

    1979-01-01

    An outbreak of chickenpox that occurred at the Burns Repair Surgery Unit, Department of Children's Surgery, Hospital R. del Río, between June and November, 1975, is reported. 27 cases of burned children were studied, including analysis of correlations of the stages and outcome of the disease (varicela), the trauma (burns) and the graft (repair surgery). As a result, the authors emphasize the following findings: 1. Burns and their repair are not aggravating factors for varicella. In a small number of cases the exanthema looked more confluent in the graft surgical areas and in the first degree burns healing spontaneously. 2. Usually there was an uneventful outcome of graft repair surgery on a varicella patient, either during the incubation period, the acme or the convalescence. 3. The fact that the outmost intensity of secondary viremia of varicella occurs before the onset of exanthemia, that is, during the late incubation period, is confirmed.

  10. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  11. Análise por cromatografia gasosa de BTEX nas emissões de motor de combustão interna alimentado com diesel e mistura diesel-biodiesel (B10 Analysis of BTEX in the emissions from an internal combustion engine burning diesel oil and diesel-biodiesel mixture (B10 by gas chromatography

    Directory of Open Access Journals (Sweden)

    Sérgio L. Ferreira

    2008-01-01

    Full Text Available This paper describes the procedures for analysing pollutant gases emitted by engines, such as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene by using high resolution gas chromatography (HRGC. For IC engine burning, in a broad sense, the use of the B10 mixture reduces drastically the emissions of aromatic compounds. Especially for benzene the reduction of concentrations occurs at the level of about 24.5%. Although a concentration value below 1 µg mL-1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.

  12. Thermoelectric system for an engine

    Science.gov (United States)

    Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

    2010-06-22

    An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

  13. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well......-suited for industrial ventilation purposes. With the REEXS principle it is possible to create a flow pattern in front of the exhaust opening which will have a considerable influence on the general flow in a given room....

  14. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    NARCIS (Netherlands)

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    Bacground: Cerium oxide (CeO 2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE -/-) mice were exposed by inhalation to diluted exhaust (1.7mg/m

  15. A Study on the Combustion Performance of Diesel Engines with O2 and CO2 Suction

    Directory of Open Access Journals (Sweden)

    Qinming Tan

    2016-01-01

    Full Text Available Based on the chemical reaction mechanism of fuel combustion, NOx in the diesel emissions is mainly generated from N2 inside the burning environment of engine cylinder. Taking the gas mixture, O2 and CO2, as the intake air, nitrogen-free intake is accessible, and through simulative calculations and experiments, researchers can make a study of the ignition and combustion performances of the engines. Taking a type of “4135ACa” diesel engine as the research object, the study suggested the following: in the environment of O2 and CO2, only when the volume fraction of O2 reaches 45% can the engine be ignited and kept running; engine operation became more steady after its O2 percentage increased to 50%. There is no NOx emission of engine’s nitrogen-free combustion, despite some black particles in the exhaust gas. So, the bottleneck of “NOx-Soot” emission is successfully transformed into how to optimize the combustion performance of engines. Additionally, through simulative calculations, influences of the O2 volume fraction on the nitrogen-free combustion performance have been researched; results suggested that it can help promote the burning efficiency with the increase of O2. When it reached 60%, its heat output in the cylinder has been equal to that under the operation condition of air intake. Therefore, nitrogen-free combustion can be used in some NOx control area, especially to some power plant which worked underwater. The huge gas consumption can be recycled from exhaust gas by closed cycle.

  16. Burning mouth and saliva.

    Science.gov (United States)

    Chimenos-Kustner, Eduardo; Marques-Soares, Maria Sueli

    2002-01-01

    Stomatodynia is the complaint of burning, tickling or itching of the oral cavity, and can be associated with other oral and non-oral signs and symptoms. However, the oral mucosa often appears normal, with no apparent underlying organic cause to account for the symptomatology. The etiology is unknown, though evidence points to the participation of numerous local, systemic and psychological factors. Among the local factors, saliva may play an important role in the symptoms of burning mouth. Saliva possesses specific rheological properties as a result of its chemical, physical and biological characteristics - these properties being essential for maintaining balanced conditions within the oral cavity. Patients with burning mouth present evidence of changes in salivary composition and flow, as well as a probable alteration in the oral mucosal sensory perception related particularly to dry mouth and taste alterations. On the other hand, alterations in salivary composition appear to reflect on its viscosity and symptomatology of burning mouth. Saliva is a field open to much research related to burning mouth, and knowledge of its properties (e.g., viscosity) merits special attention in view of its apparent relationship to the symptoms of burning mouth. The present study describes our clinical experience with burning mouth, and discusses some of the aspects pointing to salivary alterations as one of the most important factors underlying stomatodynia.

  17. Three-dimensional numerical simulation of the exhaust stroke of a single-cylinder four-stroke ICE

    Energy Technology Data Exchange (ETDEWEB)

    Ogorevc, T.; Sekavcnik, M. [Ljubljana Univ. (Slovenia). Lab. for Heat and Power; Katrasnik, T. [Ljubljana Univ. (Slovenia). Lab. for Internal Combustion Engines; Zun, I. [Ljubljana Univ. (Slovenia). Lab. for Fluid Dynamics and Thermodynamics

    2009-09-15

    In this paper an extensive CFD simulation of the exhaust stroke of a single-cylinder fourstroke ICE, including the entire exhaust manifold is described. Guidelines for the implementation of the full threedimensional model of the discussed process are included. The simulation involves the time-dependent flow of exhaust gases through the exhaust valve and the flow dynamics within the 2.2-m-long, straight exhaust pipe during the period when the valve is closed. Also the intake port with the intake valve is being coupled during the valves' overlap period. The model geometry corresponds exactly to the actual engine geometry. The movement of the mesh follows the measured kinematics of the piston and the valves. The data obtained from the experimental environment was used for both the initialization and the validation of the computations. It was found that the phenomena affecting the dynamics of the exhaust flow are extremely three-dimensional and should be treated as such. In particular, the flow through the exhaust valve and the heat transfer along the exhaust pipe were influenced greatly by the effects of cold, fresh air breaking into the exhaust pipe in the period after the EVC. The presented study is the basis for future three-dimensional investigations of the entropy-generation rate along the exhaust system, including the exhaust valve. (orig.)

  18. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    Science.gov (United States)

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  19. Electrophysiologic Study of Exhaustive Exercise

    Directory of Open Access Journals (Sweden)

    MA Babaee Bigi

    2010-12-01

    Full Text Available Background: Exhaustive exercise is well known to pose a variety ofhealth hazards, such as sudden cardiac death reported in ultra-marathon runners.Depressed parasympathetic tone is associated with increased risk of suddencardiac death, thus parasympathetic withdrawal in post-exercise phase may be ahigh risk period for sudden death. To date, the effect on cardiacelectrophysiology after exhaustive strenuous exercise has not been described.The aim of this study was to evaluate the impact of severe exhaustive exerciseon cardiac electrophysiology.Methods: The subjects in ranger training were invited to participatein this prospective study. The parameters measured consisted of PR interval, QRSduration, and macro T wave alternans as well as corrected QT, QTc dispersion,Tpeak –Tend interval and Tpeak –Tend dispersion.Results: The study group consisted of 40 consecutive male rangers whocompleted training and the control group (22 healthy age and height matched malesubjects. In regard to electrocardiographic criteria, no differences were foundbetween rangers before and after training program. In respect of therepolarization markers, there were no significant differences between therangers before and after training program.

  20. Acoustic Performance of Exhaust Muffler based Genetic Algorithms and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Wang Xiao Li

    2013-07-01

    Full Text Available The noise level was one of the important indicators as a measure of the quality and performance of the diesel engine, exhaust noise in diesel engines machine noise accounted for an important proportion of installed performance exhaust mufflerwas an effective way to control exhaust noise. This article using orthogonal test program was to the muffler structure parameters as input to the sound pressure level and diesel fuel each output artificial neural network (BP network learning sample. Matlab artificial neural network toolbox to complete the training of the network, and better noise performance and fuel consumption rate performance muffler internal structure parameters combination was obtained through genetic algorithm gifted collaborative validation of artificial neural networks and genetic algorithms to optimize application exhaust muffler design is entirely feasible

  1. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  2. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  3. The role of HO_x in super- and subsonic aircraft exhaust plumes

    OpenAIRE

    Hanisco, T. F.; Wennberg, P. O.; R. C. Cohen; J. G. Anderson; D. W. Fahey; Keim, E. R; Gao, R. S.; Wamsley, R. C.; Donnelly, S. G.; Del Negro, L. A.; R. J. Salawitch; Kelly, K. K.; Proffitt, M.H.

    1997-01-01

    The generation of sulfuric acid aerosols in aircraft exhaust has emerged as a critical issue in determining the impact of supersonic aircraft on stratospheric ozone. It has long been held that the first step in the mechanism of aerosol formation is the oxidation of SO_(2) emitted from the engine by OH in the exhaust plume. We report in situ measurements of OH and HO_(2) in the exhaust plumes of a supersonic (Air France Concorde) and a subsonic (NASA ER-2) aircraft in the lower stratosphere. T...

  4. Burning Mouth Syndrome

    Science.gov (United States)

    ... NIDCR Home Oral Health Diseases and Conditions Gum Disease TMJ Disorders Oral Cancer Dry Mouth Burning Mouth Tooth Decay See All Oral Complications of Systemic Diseases Cancer Treatment Developmental Disabilities Diabetes Heart Disease HIV/ ...

  5. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  6. American Burn Association

    Science.gov (United States)

    ... is the premier educational event for the entire burn care team. Submit an abstract or session idea, exhibit or sponsor the meeting, or plan to attend. Find out more about the 50th Annual Meeting in Chicago, ...

  7. Burns (For Parents)

    Science.gov (United States)

    ... oven. The liquid may heat unevenly, resulting in pockets of breast milk or formula that can scald a baby's mouth. Screen fireplaces and wood-burning stoves. Radiators and electric baseboard heaters may ...

  8. Burn Wise Awareness Kit

    Science.gov (United States)

    Health and safety outreach materials in the form of an awareness kit. Designed specifically for state, local, and tribal air agencies working to reduce wood smoke pollution, it includes best burn tips, social media m

  9. 76 FR 77108 - Airworthiness Directives; International Aero Engines Turbofan Engines

    Science.gov (United States)

    2011-12-12

    ... Engines Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for International Aero Engines (IAE) V2500-A1... engines. This AD was prompted by three reports of high- pressure turbine (HPT) case burn-through events...

  10. Smartphone applications in burns.

    Science.gov (United States)

    Wurzer, Paul; Parvizi, Daryousch; Lumenta, David B; Giretzlehner, Michael; Branski, Ludwik K; Finnerty, Celeste C; Herndon, David N; Tuca, Alexandru; Rappl, Thomas; Smolle, Christian; Kamolz, Lars P

    2015-08-01

    Since the introduction of applications (apps) for smartphones, the popularity of medical apps has been rising. The aim of this review was to demonstrate the current availability of apps related to burns on Google's Android and Apple's iOS store as well as to include a review of their developers, features, and costs. A systematic online review of Google Play Store and Apple's App Store was performed by using the following search terms: "burn," "burns," "thermal," and the German word "Verbrennung." All apps that were programmed for use as medical apps for burns were included. The review was performed from 25 February until 1 March 2014. A closer look at the free and paid calculation apps including a standardized patient was performed. Four types of apps were identified: calculators, information apps, book/journal apps, and games. In Google Play Store, 31 apps were related to burns, of which 20 were calculation apps (eight for estimating the total body surface area (TBSA) and nine for total fluid requirement (TFR)). In Apple's App Store, under the category of medicine, 39 apps were related to burns, of which 21 were calculation apps (19 for estimating the TBSA and 17 for calculating the TFR). In 19 out of 32 available calculation apps, our study showed a correlation of the calculated TFR compared to our standardized patient. The review demonstrated that many apps for medical burns are available in both common app stores. Even free available calculation apps may provide a more objective and reproducible procedure compared to manual/subjective estimations, although there is still a lack of data security especially in personal data entered in calculation apps. Further clinical studies including smartphone apps for burns should be performed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  11. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    Science.gov (United States)

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  12. Ball lightning burn.

    Science.gov (United States)

    Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

    2003-05-01

    Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications.

  13. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third......-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear...... neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice...

  14. Management of pediatric hand burns.

    Science.gov (United States)

    Liodaki, Eirini; Kisch, Tobias; Mauss, Karl L; Senyaman, Oezge; Kraemer, Robert; Mailänder, Peter; Wünsch, Lutz; Stang, Felix

    2015-04-01

    Hand burns are common in the pediatric population. Optimal hand function is a crucial component of a high-quality survival after burn injury. This can only be achieved with a coordinated approach to the injuries. The aim of this study was to review the management algorithm and outcomes of pediatric hand burns at our institution. In total, 70 children fulfilling our study criteria were treated for a burn hand injury in our Burn Care Center between January 2008 and May 2013. 14 of the 70 pediatric patients underwent surgery because of the depth of the hand burns. The management algorithm depending on the depth of the burn is described. Two patients underwent correction surgery due to burn contractures later. For a successful outcome of the burned hand, the interdisciplinary involvement and cooperation of the plastic and pediatric surgeon, hand therapist, burn team, patient and their parents are crucial.

  15. 20 CFR 636.5 - Exhaustion of grantee level procedure.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Exhaustion of grantee level procedure. 636.5..., INVESTIGATIONS AND HEARINGS § 636.5 Exhaustion of grantee level procedure. (a) Exhaustion required. No... have been exhausted. (b) Exhaustion exceptions. Complainants who have not exhausted the procedures at...

  16. Burn Patient Expectations from Nurses

    OpenAIRE

    Sibel Yilmaz sahin; Umran Dal; Gulsen Vural

    2014-01-01

    AIM: Burn is a kind of painful trauma that requires a long period of treatment and also changes patients body image. For this reason, nursing care of burn patients is very important. In this study in order to provide qualified care to the burned patients, patient and #8217;s expectations from nurses were aimed to be established. METHODS: Patients and #8217; expectations were evaluated on 101 patients with burn in Ministry of Health Ankara Numune Education and Research Hospital Burn Servic...

  17. The Effect on Performance and Exhaust Emissions of Adding Cotton Oil Methyl Ester to Diesel Fuel

    OpenAIRE

    Kahraman, Ali; Ciniviz, Murat; Örs, İlker; Oğuz, Hidayet

    2016-01-01

    In the study, engine performance and exhaust emissions of diesel fuel and cotton oil methyl ester (COME) blends at proportions of 2%, %5 and 10% (v/v) have been investigated. The engine was fuelled with COME–diesel blends and pure diesel when running the engine at six different engine speed (1000,1200, 1400, 1600, 1800, 2000 rpm) and at full load. Test results are presented engine torque and specific fuel consumption (SCF) as engine performance, and Carbon monoxide (CO), Hydrocarbon (HC), smo...

  18. Laboratories for the 21st Century: Best Practices; Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This guide provides general information on specifying acceptable exhaust and intake designs. It also provides various quantitative approaches that can be used to determine expected concentration levels resulting from exhaust system emissions. In addition, the guide describes methodologies that can be employed to operate laboratory exhaust systems in a safe and energy efficient manner by using variable air volume (VAV) technology. The guide, one in a series on best practices for laboratories, was produced by Laboratories for the 21st Century (Labs21), a joint program of the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE). Geared toward architects, engineers, and facility managers, the guides contain information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories. Studies show a direct relationship between indoor air quality and the health and productivity of building occupants. Historically, the study and protection of indoor air quality focused on emission sources emanating from within the building. For example, to ensure that the worker is not exposed to toxic chemicals, 'as manufactured' and 'as installed' containment specifications are required for fume hoods. However, emissions from external sources, which may be re-ingested into the building through closed circuiting between the building's exhaust stacks and air intakes, are an often overlooked aspect of indoor air quality.

  19. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    Energy Technology Data Exchange (ETDEWEB)

    Keith Hohn; Sarah R. Nuss-Warren

    2011-08-31

    This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

  20. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  1. Effective method for extinguishing fires during the burning of methane in an exhaustcd area

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, A.L.; Zrelyi, N.D.; Aleinikova, G.M.; Privalov, N.I.

    1979-01-01

    A description is given of the use of degasification for the purpose of extinguishing fires associated with the burning of methane in an exhausted area. The general principles are given for determining the parameters of the degasification wells in the event of accidents. Recommendations are gien for the operation of degasification systems in mines for extinguishing fires.

  2. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Mosser, Benoit; Huber, Daniel

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertaint...

  3. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    NARCIS (Netherlands)

    Bedding, T.R.; Mosser, B.; Huber, D.; Montalbán, J.; Beck, P.; Christensen-Dalsgaard, J.; Elsworth, Y.P.; García, R.A.; Miglio, A.; Stello, D.; White, T.R.; de Ridder, J.; Hekker, S.; Aerts, C.; Barban, C.; Belkacem, K.; Broomhall, A.M.; Brown, T.M.; Buzasi, D.L.; Carrier, F.; Chaplin, W.J.; Di Mauro, M.P.; Dupret, M.-A.; Frandsen, S.; Gilliland, R.L.; Goupil, M.J.; Jenkins, J.M.; Kallinger, T.; Kawaler, S.; Kjeldsen, H.; Mathur, S.; Noels, A.; Silva Aguirre, V.; Ventura, P.

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties

  4. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  5. Low-Load Limit in a Diesel-Ignited Gas Engine

    Directory of Open Access Journals (Sweden)

    Richard Hutter

    2017-09-01

    Full Text Available The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

  6. Engine Certification and Compliance Testing

    Science.gov (United States)

    The National Vehicle and Fuel Emissions Laboratory (NVFEL) tests a portion of all heavy-duty diesel and small gasoline engines intended for sale in the United States to confirm compliance with EPA’s exhaust emissions standards.

  7. Engine design optimization for running on ethanol with low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gjirja, S. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Thermo- and Fluid Dynamics

    1996-05-01

    The aim of this project was to optimize the Volvo AH10A245 engine design parameters for ethanol fuel with Beraid (Trade mark of the ignition improver manufactured by the Akzo Nobel Surface Chemistry AB). The method used was engine testing with variation of design, performance, and other functional parameters, which affect the engine thermodynamics, and exhaust gas composition. The first design parameter, which was tested and optimized was the compression ratio, which was optimized at the ratio of 23:1. In order to prevail the fuel spray impingement, which might affect the unburned or partially burned emissions (CO), the combustion chamber was redesigned to a straight-side wall bowl in piston. Furthermore, the injector position was optimized by means of lifting or descending it few millimeters. The best emission levels was achieved with the injector lift of 1.00 mm. The inlet air temperature was optimized for lower emissions by removing the intercooler thermostat. Injector nozzles with different cross section areas of holes were tested, and the 6 holes injector nozzles with smaller cross sectional area, compared with base nozzles, were selected. The engine performance was maintained for lower engine rated speed 2000 (instead of 2200 rpm for conventional engine) and lower intermediate speed 1250 (instead of 1320 rpm for conventional engine). Such engine performance optimization was followed by the improved specific fuel consumption, and lower emissions compared with conventional speeds. The backpressure governor, desperately needed during the first phase of engine design optimization was, finally avoided. It can only be used as in the conventional diesel engine. 7 refs, 26 figs, 18 tabs, 7 appendices

  8. Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust.

    Science.gov (United States)

    Zhang, Changbin; He, Hong; Shuai, Shijin; Wang, Jianxin

    2007-05-01

    The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.

  9. Description of broadband structure-borne and airborne noise transmission from the powertrain (engine-gear combination including engine intake and exhaust system) in modern combustion process as well as new systems for variable control of gas exchange. Binaural transfer path analysis and synthesis. Interim report; Beschreibung der breitbandigen Koerper- und Luftschallausbreitung aus dem Powertrain (Motor-Getriebe-Verband inklusive Ansaug- und Abgasanlage) bei modernen Verbrennungsverfahren sowie neuer Systeme zur variablen Ladungswechselsteuerung. Binaurale Transferpfadanalyse und -synthese. Zwischenbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sottek, R. [HEAD acoustics GmbH, Herzogenrath (Germany); Behler, G.; Kellert, T. [RWTH Aachen (DE). Inst. fuer Technische Akustik (ITA); Bernhard, U.

    2004-07-01

    The modern combustion procedures and new valve train generations lead to a different temporal and spectral behaviour of the vibrations between the interfaces of a powertrain and the adjoining structures and at the same time to a different airborne sound radiation via the engine compartment and the orifices and component surfaces at the intake and exhaust system into the passenger compartment. The influence of the high-frequency components on the vehicle interior noise becomes more and more important. Coupling and mass effects have to be taken into consideration now, because otherwise results might increasingly be misinterpreted. Previous methods including the binaural transfer path analysis and synthesis do not take account of these effects. This research project shall fill this gap. Regarding the airborne sound component the engine compartment can at best be considered as a pressure chamber for low frequencies only. However, for higher frequencies the positions of the partial sound sources, the corresponding transfer functions, near-field effects and modal structures in the engine compartment become increasingly relevant. In this project these influencing parameters shall be classified with regard to quality and quantity. This knowledge is also of fundamental interest for the determination of the primary sound sources on the test bench and the transferability of the results to the vehicle. The most important aim of this project is to develop simplified models for the structure-borne and airborne noise transmission from a precise and complex database and to reduce them to the essential by means of parameter studies. In the final stage of the project, the complicated fine structures of the transfer functions will be reduced to a few model functions, similar to the procedure of the modal analysis. From this simple model a ''black box'' will be derived which is the basis for simulating driving conditions, applying modifications and judging them

  10. Exposure Control Indoors with Wearable Personal Exhaust Unit

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Barova, Maria I.; Melikov, Arsen Krikor

    2013-01-01

    A wearable personalized ventilation (PV) unit to reduce the risk from airborne disease contamination is reported. The PV unit consists of a nozzle, installed on a headset, which is used to locally exhaust the exhaled air before it mixes with the surroundings. Experiments at 22 °C were performed i...... engineering control method that can reduce the spread of pathogen laden air from sick occupants in densely occupied spaces, i.e. cinemas, public transportation, office buildings etc.......A wearable personalized ventilation (PV) unit to reduce the risk from airborne disease contamination is reported. The PV unit consists of a nozzle, installed on a headset, which is used to locally exhaust the exhaled air before it mixes with the surroundings. Experiments at 22 °C were performed...

  11. Burning mouth disorder

    Directory of Open Access Journals (Sweden)

    Anand Bala

    2012-01-01

    Full Text Available Burning mouth disorder (BMD is a burning or stinging sensation affecting the oral mucosa, lips and/or tongue, in the absence of clinically visible mucosal lesions. There is a strong female predilection, with the age of onset being approximately 50 years. Affected patients often present with multiple oral complaints, including burning, dryness and taste alterations. The causes of BMD are multifactorial and remain poorly understood. Recently, there has been a resurgence of interest in this disorder with the discovery that the pain of burning mouth syndrome (BMS may be neuropathic in origin and originate both centrally and peripherally. The most common sites of burning are the anterior tongue, anterior hard palate and lower lip, but the distribution of oral sites affected does not appear to affect the natural history of the disorder or the response to treatment BMS may persist for many years. This article provides updated information on BMS and presents a new model, based on taste dysfunction, for its pathogenesis.

  12. Burn injuries and pregnancy.

    Science.gov (United States)

    Kennedy, Betsy B; Baird, Suzanne McMurtry; Troiano, Nan H

    2008-01-01

    Although burn injuries during pregnancy are considered relatively rare, the exact incidence is not known. Multiple factors influence morbidity and mortality resulting from burn injuries during pregnancy. These factors include the depth and size of the burn, the woman's underlying health and age, and the estimated gestational age of the fetus. Associated inhalation injury and development of other significant secondary complications also influence maternal and fetal outcomes. Successful burn care requires a team approach in which almost every healthcare discipline is represented. Initial care is almost always provided by a specially trained emergency medical team in an out-of-hospital setting. During this phase, the ability of the team to communicate with emergency hospital personnel facilitates appropriate clinical management at the scene. In addition, continued communication regarding the woman's status and responses to treatment allows critical care specialists within the hospital to ensure that necessary personnel and resources are available when the patient arrives. From the time the pregnant woman is admitted to a hospital for additional acute and critical care through the extensive process of rehabilitation from burn injuries, providing care often evokes strong emotions and requires specialized skills to achieve the most positive outcomes.

  13. Hand chemical burns.

    Science.gov (United States)

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. T Cell Exhaustion During Persistent Viral Infections

    Science.gov (United States)

    Kahan, Shannon M.; Wherry, E. John; Zajac, Allan J.

    2015-01-01

    Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control. PMID:25620767

  15. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    Science.gov (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  16. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

    Science.gov (United States)

    Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E

    2017-03-15

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  17. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

    Science.gov (United States)

    Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.

    2017-03-01

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  18. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2017-02-01

    Full Text Available Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF. The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  19. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  20. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.