WorldWideScience

Sample records for buried waste sites

  1. Remote characterization system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Mapping of buried objects and chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development's robotics integrated program has initiated a project to develop and demonstrate a remotely controlled sensor and vehicle system, named the remote characterization system (RCS) to obtain highly precise and timely subsurface data to support characterization of waste sites. Site characterization surveys using the RCS will be safer, more cost effective, more accurate, and more complete than surveys being performed with current methods. The RCS project is staffed by a coordinated team from five DOE laboratories and will produce meaningful demonstrations at buried waste sites within the next 2 yr. An advisory group composed of site users and technologists has been identified to ensure that the RCS is responsive to site user requirements. Technology transfer to potential users and to industry is planned as part of the program

  2. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Farnsworth, R.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  3. Field-scale permeation testing of jet-grouted buried waste sites

    International Nuclear Information System (INIS)

    The Idaho National Engineering Laboratory (INEL) conducted field-scale hydraulic conductivity testing of simulated buried waste sites with improved confinement. The improved confinement was achieved by jet grouting the buried waste, thus creating solid monoliths. The hydraulic conductivity of the monoliths was determined using both the packer technique and the falling head method. The testing was performed on simulated buried waste sites utilizing a variety of encapsulating grouts, including high-sulfate-resistant Portland cement, TECT, (a proprietary iron oxide cement) and molten paraffin. By creating monoliths using in-situ jet grouting of encapsulating materials, the waste is simultaneously protected from subsidence and contained against further migration of contaminants. At the INEL alone there is 56,000 m3 of buried transuranic waste commingled with 170,000--224,000 m3 of soil in shallow land burial. One of the options for this buried waste is to improve the confinement and leave it in place for final disposal. Knowledge of the hydraulic conductivity for these monoliths is important for decision-makers. The packer tests involved coring the monolith, sealing off positions within the core with inflatable packers, applying pressurized water to the matrix behind the seal, and observing the water flow rate. The falling head tests were performed in full-scale 3-m-diameter, 3-m-high field-scale permeameters. In these permeameters, both water inflow and outflow were measured and equated to a hydraulic conductivity

  4. Buried Waste Integrated Demonstration

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities

  5. A remote characterization system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data

  6. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites

    International Nuclear Information System (INIS)

    The objectives of this research project were to lay the foundation for further improvement in the use of geophysical methods for detection of buried wastes, and to increase the information content derived from surveys. Also, an important goal was to move from mere detection to characterization of buried wastes. The technical approach to achieve these objectives consisted of: (1) Collect a data set of high spatial density; (2) Acquire data with multiple sensors and integrate the interpretations inferred from the various sensors; (3) Test a simplified time domain electromagnetic system; and (4) Develop imaging and display formats of geophysical data readily understood by environmental scientists and engineers. The breadth of application of this work is far reaching. Not only are uncontrolled waste pits and trenches, abandoned underground storage tanks, and pipelines found throughout most US DOE facilities, but also at military installations and industrial facilities. Moreover, controlled land disposal sites may contain ''hot spots'' where drums and hazardous material may have been buried. The technologies addressed by the R ampersand D will benefit all of these activities

  7. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  8. Fifth in situ vitrification engineering-scale test of simulated INEL buried waste sites

    International Nuclear Information System (INIS)

    In September 1990, an engineering-scale in situ vitrification (ISV) test was conducted on sealed canisters containing a combined mixture of buried waste materials expected to be present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). The test was part of a Pacific Northwest Laboratory (PNL) program to assist INEL in treatability studies of the potential application of ISV to mixed transuranic wastes at the INEL SDA. The purpose of this test was to determine the effect of a close-packed layer of sealed containers on ISV processing performance. Specific objectives included determining (1) the effect of releases from sealed containers on hood plenum pressure and temperature, (2) the release pressure ad temperatures of the sealed canisters, (3) the relationships between canister depressurization and melt encapsulation, (4) the resulting glass and soil quality, (5) the potential effects of thermal transport due to a canister layer, (6) the effects on particle entrainment of differing angles of approach for the ISV melt front, and (7) the effects of these canisters on the volatilization of voltatile and semivolatile contaminants into the hood plenum

  9. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  10. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milli-Sievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can meet

  11. DOE complex buried waste characterization assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  12. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.

  13. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  14. A demonstration of remote survey and characterization of a buried waste site using the SRIP [Soldier Robot Interface Project] testbed

    International Nuclear Information System (INIS)

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER ampersand WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs

  15. A demonstration of remote survey and characterization of a buried waste site using the SRIP (Soldier Robot Interface Project) testbed

    Energy Technology Data Exchange (ETDEWEB)

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs.

  16. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  17. Buried Waste Integrated Demonstration Plan

    International Nuclear Information System (INIS)

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented

  18. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites. Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-08

    The objectives of this research project were to lay the foundation for further improvement in the use of geophysical methods for detection of buried wastes, and to increase the information content derived from surveys. Also, an important goal was to move from mere detection to characterization of buried wastes. The technical approach to achieve these objectives consisted of: (1) Collect a data set of high spatial density; (2) Acquire data with multiple sensors and integrate the interpretations inferred from the various sensors; (3) Test a simplified time domain electromagnetic system; and (4) Develop imaging and display formats of geophysical data readily understood by environmental scientists and engineers. The breadth of application of this work is far reaching. Not only are uncontrolled waste pits and trenches, abandoned underground storage tanks, and pipelines found throughout most US DOE facilities, but also at military installations and industrial facilities. Moreover, controlled land disposal sites may contain ``hot spots`` where drums and hazardous material may have been buried. The technologies addressed by the R&D will benefit all of these activities.

  19. Remote technologies for buried waste retrieval

    International Nuclear Information System (INIS)

    The DOE is evaluating what should be done with this buried waste. Although the radioactive waste is not particularly mobile unless airborne, some of it was buried with volatile organics and/or other substances that tend to spread easily to surrounding soil or water tables. Volatile organics are hazardous materials (such as trichloroethylene) and require clean-up at certain levels in drinking water. There is concern that the buried volatile organics will spread into the water table and contaminate drinking water. Because of this, the DOE is considering options for handling this buried waste and reducing the risks of spreading or exposure. There are two primary options: containment and stabilization, or retrieval. Containment and stabilization systems would include systems that would leave the waste where it is, but contain and stabilize it so that the radioactive and hazardous materials would not spread to the surrounding soil, water, or air. For example, an in situ vitrification system could be used to melt the waste into a composite glass-like material that would not leach into the surrounding soil, water, or air. Retrieval systems are those that would remove the waste from its burial location for treatment and/or repackaging for long term storage. The objective of this project was to develop and demonstrate remote technologies that would minimize dust generation and the spread of airborne contaminants during buried waste retrieval. Remote technologies are essential for the retrieval of buried waste because they remove workers from the hazardous environment and provide greater automation, reducing the chances of human error. Minimizing dust generation is also essential to increased safety for the workers and the environment during buried waste retrieval. The main contaminants within the waste are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides, which are easily suspended in air and spread if disturbed

  20. In situ grouting of buried transuranic waste

    International Nuclear Information System (INIS)

    This task is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34,000 liters of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. The grout was also completely contained within the two trenches as no grout constituents were observed in the 12 perimeter ground water monitoring wells. Polyacrylamide grout was selected for field demonstration over polyacrylate grout because of its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty of controlling the set time of the acrylate polymerization process in the presence of potassium ferricyanide. Based on preliminary degradation monitoring, polyacrylamide was estimated to have a microbiological half-life of 115 years in the test soil. However, this calculated value is likely to be conservatively low because microbial degradation of the grout set accelerator or residual monomer may be contributing most to the measured microbial respiration. Addition work, using 14C-labeled acrylate and acrylamide grouts, is being carried out to more accurately estimate the grouts' microbiological half-life

  1. Xenon Isotope Releases from Buried Transuranic Waste

    Science.gov (United States)

    Dresel, P. E.; Waichler, S. R.; Kennedy, B. M.; Hayes, J. C.; McIntyre, J. I.; Giles, J. R.; Sondrup, A. J.

    2004-12-01

    Xenon is an inert rare gas produced as a fission product in nuclear reactors and through spontaneous fission of some transuranic isotopes. Thus, xenon will be released from buried transuranic waste. Two complementary methods are used to measure xenon isotopes: radiometric analysis for short-lived radioxenon isotopes and mass spectrometry for detection of stable xenon isotopes. Initial measurements near disposal facilities at the U.S. Department of Energy's Hanford Site show radioxenon and stable xenon isotopic signatures that are indicative of transuranic waste. Radioxenon analysis has greater sensitivity due to the lower background concentrations and indicates spontaneous fission due to the short half life of the isotopes. Stable isotope ratios may be used to distinguish irradiated fuel sources from pure spontaneous fission sources and are not as dependent on rapid release from the waste form. The release rate is dependent on the type of waste and container integrity and is the greatest unknown in application of this technique. Numerical multi-phase transport modeling of burial grounds at the Idaho National Engineering and Environmental Laboratory indicates that, under generalized conditions, the radioxenon isotopes will diffuse away from the waste and be found in the soil cap and adjacent to the burial ground at levels many orders of magnitude above the detection limit.

  2. Buried waste integrated demonstration FY 94 deployment plan

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document

  3. Buried waste integrated demonstration FY 94 deployment plan

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  4. American burying beetle site records : Valentine NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is specific site records of American burying beetle on Valentine Nationl Wildlife Refuge to date. It includes a map of site location. A discussion...

  5. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-29

    Under Contract between US DOE Idaho National Engineering Laboratory (INEL) and the Blackhawk Geosciences Division of Coleman Research Corporation (BGD-CRC), geophysical investigations were conducted to improve the detection of buried wastes. Site characterization is a costly and time consuming process with the most costly components being drilling, sampling, and chemical analysis of samples. There is a focused effort at US DOE and other agencies to investigate methodologies that reduce costs and shorten the time between characterization and clean-up. These methodologies take the form of employing non-invasive (geophysical) and minimal invasive (e.g., cone penetrometer driving) techniques of characterization, and implementing a near real-time, rational decision-making process (Expedited Site Characterization). Over the Cold Test Pit (CTP) at INEL, data were acquired with multiple sensors on a dense grid. Over the CTP the interpretations inferred from geophysical data are compared with the known placement of various waste forms in the pit. The geophysical sensors employed were magnetics, frequency and time domain electromagnetics, and ground penetrating radar. Also, because of the high data density acquired, filtering and other data processing and imaging techniques were tested. The conclusions derived from the geophysical surveys were that pit boundaries, berms between cells within the pit, and individual objects placed in the pit were best mapped by the new Geonics EM61 time domain EM metal detector. Part of the reason for the effectiveness of the time domain metal detector is that objects buried in the pit are dominantly metallic. Also, the utility of geophysical data is significantly enhanced by dimensional and 3-dimensional imaging formats. These images will particularly assist remediation engineers in visualizing buried wastes.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  7. Buried Waste Integrated Demonstration stakeholder involvement model

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94

  8. Buried Waste Integrated Demonstration test objectives

    International Nuclear Information System (INIS)

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the US Department of Energy complex. To accomplish this mission of identifying technology solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY) 1991. This document provides the test objectives against which the demonstrations will be tested during FY-93

  9. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device

  10. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Bennett, D.W. [Pacific Northwest Lab., Richland, WA (United States); Martinson, L. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bingham, D.N.; Anderson, A.A. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device.

  11. Buried Waste Integrated Demonstration Strategy Plan

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report

  12. Field test plan: Buried waste technologies, Fiscal Year 1995

    International Nuclear Information System (INIS)

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management

  13. Strategic management of health risks posed by buried transuranic wastes

    International Nuclear Information System (INIS)

    A strategy is presented for reducing health risks at sites contaminated with buried transuranic (TRU) wastes by first taking measures to immobilize the contaminants until the second step, final action, becomes cost-effective and poses less risk to the remediation workers. The first step of this strategy does not preclude further action if it is warranted and is in harmony with environmental laws and regulations

  14. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R ampersand D) demonstrations, non-INEL R ampersand D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document

  15. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  16. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  17. Virtual environmental applications for buried waste characterization technology evaluation report

    International Nuclear Information System (INIS)

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year

  18. Virtual environmental applications for buried waste characterization technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  19. Buried Waste Integrated Demonstration lessons learned: 1993 technology demonstrations

    International Nuclear Information System (INIS)

    An integrated technology demonstration was conducted by the Buried Waste Integrated Demonstration (BWID) at the Idaho National Engineering Laboratory Cold Test Pit in the summer of 1993. This program and demonstration was sponsored by the US Department of Energy Office of Technology Development. The demonstration included six technologies representing a synergistic system for the characterization and retrieval of a buried hazardous waste site. The integrated technology demonstration proved very successful and a summary of the technical accomplishments is presented. Upon completion of the integrated technology demonstration, cognizant program personnel participated in a lessons learned exercise. This exercise was conducted at the Simplot Decision Support Center at Idaho State University and lessons learned activity captured additional information relative to the integration of technologies for demonstration purposes. This information will be used by BWID to enhance program planning and strengthen future technology demonstrations

  20. In situ grouting of buried transuranic waste with polyacrylamide

    International Nuclear Information System (INIS)

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs

  1. Buried waste integrated demonstration technology integration process

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  2. Buried waste integrated demonstration technology integration process

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  3. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  4. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  5. Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, B.P.; Gilbert, J.; Heiser, J.

    1999-01-01

    In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site.

  6. End effectors and attachments for buried waste excavation equipment

    Energy Technology Data Exchange (ETDEWEB)

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  7. End effectors and attachments for buried waste excavation equipment

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER ampersand WM) Department's needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications

  8. Melter development needs assessment for RWMC buried wastes

    International Nuclear Information System (INIS)

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended

  9. Risk and cost tradeoffs for remote retrieval of buried waste

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program's technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste

  10. Risk and cost tradeoffs for remote retrieval of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  11. Development of a teleoperated backhoe for buried waste excavation

    International Nuclear Information System (INIS)

    For nearly five decades the United States (US) Department of Energy (DOE) and its predecessor agencies have engaged in broad-based research and development activities as well as nuclear weapons component production. As a by-product of these activities, large quantities of waste materials have been granted. One of the most common approaches used for solid waste storage was to bury waste containers in pits and trenches. With the current emphasis on environmental restoration, DOE now plans to either retrieve much of the legacy of buried waste or stabilize the waste in place via in situ vitrification or other means. Because of the variety of materials that have been buried over the years, the hazards of retrieval are significant if performed using conventional manned operations. The potential hazards, in addition to radiation exposure, include pyrophorics, toxic chemicals, and explosives. Although manifests exist for much of the buried waste, these records are often incomplete compared to today's requirements. Because of the potential hazards and uncertainty about waste contents and container integrity, it is highly desirable to excavate these wastes using remotely operated equipment. In this paper the authors describe the development of a teleoperated military tractor called the Small Emplacement Excavator (SEE). Development of the SEE is being funded jointly by both DOE and the US Army. The DOE sponsor is the Office of Technology Development (OTD) Robotics Program. The US Army sponsor is the Program Manager for Ammunition Logistics, Picatinny Arsenal. The primary interest for DOE is in the application to remote excavation of buried waste, while the primary emphasis for the US Army is in the remote retrieval of unexploded ordnance. Technical requirements for these two tasks are very similar and, therefore, justify a joint development project. 1 ref

  12. Current disposal planning for dry active wastes at Rokkasho Site

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuo [Japan Nuclear Fuel Ltd., Aomori (Japan)

    1997-02-01

    In nuclear power stations, two kinds of low level radioactive wastes are generated: `uniform solidified waste` in which waste liquid, spent resin and so on are uniformly solidified and `solid waste` in which metals, lagging materials, plastics and others are solidified. In Rokkasho Low Level Radioactive Waste Burying Center, the burying facility for the first period for the uniform solidified waste started the operation in December, 1992, and this time as the second period plan, it has been planned to increase No. 2 waste burying facility for the solid waste. The kinds of the radioactive waste solidified in containers to be buried are the solid state radioactive waste generated by the operation of nuclear power stations and that generated accompanying the operation of this facility. The wastes are classified, cut, pressed and melted as occasion demands so that cement filling material is easily filled in containers, and solidified in the containers. As for the waste to be buried, at the time of its acceptance, 6 months or longer have elapsed since its generation in nuclear power stations, and the surface dose equivalent rate does not exceed 10 mSv/h. The acceptance plan and the expected number of burying, the total radioactivity of buried waste, and the location, geological and hydraulic features, the structure and facilities of waste burying facilities, the method of burying, the management of waste burying site and the evaluation of dose equivalent are reported. (K.I.)

  13. Current disposal planning for dry active wastes at Rokkasho Site

    International Nuclear Information System (INIS)

    In nuclear power stations, two kinds of low level radioactive wastes are generated: 'uniform solidified waste' in which waste liquid, spent resin and so on are uniformly solidified and 'solid waste' in which metals, lagging materials, plastics and others are solidified. In Rokkasho Low Level Radioactive Waste Burying Center, the burying facility for the first period for the uniform solidified waste started the operation in December, 1992, and this time as the second period plan, it has been planned to increase No. 2 waste burying facility for the solid waste. The kinds of the radioactive waste solidified in containers to be buried are the solid state radioactive waste generated by the operation of nuclear power stations and that generated accompanying the operation of this facility. The wastes are classified, cut, pressed and melted as occasion demands so that cement filling material is easily filled in containers, and solidified in the containers. As for the waste to be buried, at the time of its acceptance, 6 months or longer have elapsed since its generation in nuclear power stations, and the surface dose equivalent rate does not exceed 10 mSv/h. The acceptance plan and the expected number of burying, the total radioactivity of buried waste, and the location, geological and hydraulic features, the structure and facilities of waste burying facilities, the method of burying, the management of waste burying site and the evaluation of dose equivalent are reported. (K.I.)

  14. Buried Waste Integrated Demonstration Technology Preparedness and Status Report Guidance

    International Nuclear Information System (INIS)

    A Technology Preparedness and Status Report is required for each Technical Task Plan funded by the Buried Waste Integrated Demonstration. This document provides guidance for the preparation of that report. Major sections of the report will include a subset of the need for the technology, objectives of the demonstration, technology description and readiness evaluation, demonstration requirements, and preparedness checklist and action plan

  15. 'Hydrotechnical' problems of burying radioactive waste

    International Nuclear Information System (INIS)

    The paper describes the design and construction problems of an underground storage facility of nuclear wastes. Special attention ids paid to the role of underground water. After detailed surveys the construction works of the Hungarian Radioactive Waste Storage Facility at Bataapati begun in 2005. The construction of the two 1700 m long inclines are near to the level of the planned storage chambers, today. (TRA)

  16. Can nuclear wastes be buried at sea

    International Nuclear Information System (INIS)

    A preliminary assessment, recently carried out by the National Radiological Protection Board, of the radiological consequences of the disposal of highly radioactive wastes on the ocean floor is considered. This assessment was concerned chiefly with developing a model describing how radioactive material deposited on the floor of the deep ocean could eventually lead to the irradiation of man, especially through food chains. It was assumed that the waste from the power programme will be incorporated into a glass material to form a solidified product and that this solidified waste will be stored for 10 years following reprocessing. Vitrifying processes for waste are described. The main routes for return of radioactivity to man considered are; consumption of near-surface fish, consumption of deep-sea fish, consumption of food derived from plankton, exposure to contaminated coastal sediments, and inhalation of resuspended activity from coastal sediments. It was found that the dominant route of individual and collective exposure for all nuclides was from consuming food derived from marine plankton. It is felt that there are many uncertainties to be resolved before the disposal of high-level radioactive waste on the ocean floor is acceptable. (U.K.)

  17. A proposed alternative approach for protection of inadvertent human intruders from buried Department of Energy low level radioactive wastes

    International Nuclear Information System (INIS)

    The burial of radioactive wastes creates a legacy. To limit the impact of this legacy on future generations, we establish and comply with performance objectives. This paper reviews performance objectives for the long-term isolation of buried radioactive wastes; identifies regulatorly-defined performance objectives for protecting the inadvertent human intruder (IHI) from buried low-level radioactive waste (LLW); (3) discusses a shortcoming of the current approach; and (4) offers an alternative approach for protecting the IHI. This alternative approach is written specifically for the burial of US Department of Energy (DOE) wastes at the Nevada Test Site (NTS), although the approach might be applied at other DOE burial sites

  18. FY-94 buried waste integrated demonstration program report

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER/WM) needs and objectives. This document summarizes previous demonstrations and describes the FY-94 BWID technology development and demonstration activities. Sponsored by the DOE Office of Technology Development (OTD), BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process

  19. FY-94 buried waste integrated demonstration program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER/WM) needs and objectives. This document summarizes previous demonstrations and describes the FY-94 BWID technology development and demonstration activities. Sponsored by the DOE Office of Technology Development (OTD), BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process.

  20. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  1. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  2. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    D.F. Nickelson; D.K. Jorgensen; J.J. Jessmore; R.A. Hyde; R.K. Farnsworth

    1999-02-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE's Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  3. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Douglas Kay; Nickelson, David Frank; Nickelson, Reva Anne; Farnsworth, Richard Kent; Jessmore, James Joseph

    1999-03-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE’s Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  4. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    International Nuclear Information System (INIS)

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report

  5. Buried transuranic wastes at ORNL: Review of past estimates and reconciliation with current data

    International Nuclear Information System (INIS)

    Inventories of buried (generally meaning disposed of) transuranic (TRU) wastes at Oak Ridge National Laboratory (ORNL) have been estimated for site remediation and waste management planning over a period of about two decades. Estimates were required because of inadequate waste characterization and incomplete disposal records. For a variety of reasons, including changing definitions of TRU wastes, differing objectives for the estimates, and poor historical data, the published results have sometimes been in conflict. The purpose of this review was (1) to attempt to explain both the rationale for and differences among the various estimates, and (2) to update the estimates based on more recent information obtained from waste characterization and from evaluations of ORNL waste data bases and historical records. The latter included information obtained from an expert panel's review and reconciliation of inconsistencies in data identified during preparation of the ORNL input for the third revision of the Baseline Inventory Report for the Waste Isolation Pilot Plant. The results summarize current understanding of the relationship between past estimates of buried TRU wastes and provide the most up-to-date information on recorded burials thereafter. The limitations of available information on the latter and thus the need for improved waste characterization are highlighted

  6. In situ grouting for improved confinement of buried tru waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    To reports that in situ grouting was experimentally examined as an improved confinement technique for buried transuranic (TRU) waste in a simulated waste trench at the Idaho National Engineering Laboratory (INEL). Prior to 1970, the INEL Radioactive Waste Management Complex (RWMC) served as a disposal site for defense-generated TRU waste. Between 1953 and 1970, approximately 56,000 m3 of TRU waste were buried in shallow-land-filled trenches. As part of the Department of Energy's (DOE's) charter for managing the TRU waste, improved confinement techniques are being examined as a long-term management alternative. The object of the INEL in situ grouting study was to examine the capability of the in situ grouting technique to reduce voids in the waste and to hydrologically isolate the waste. To be considered a successful candidate for long-term confinement of the TRU waste, the acceptance criterion was that the grouted trench have a hydraulic conductivity no more than 1 x 10-8 cm/s, which is 100 times less than the undisturbed soil of the RWMC. In addition, the injected grout must reduce accessible voids by 80%

  7. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  8. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  9. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests.

  10. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    International Nuclear Information System (INIS)

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests

  11. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  12. Report for slot cutter proof-of-principle test, Buried Waste Containment System project. Revision 1

    International Nuclear Information System (INIS)

    Several million cubic feet of hazardous and radioactive waste was buried in shallow pits and trenches within many US Department of Energy (US DOE) sites. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. Many of the hazardous materials in these waste sites are migrating into groundwater systems through plumes and leaching. On-site containment is one of the options being considered for prevention of waste migration. This report describes the results of a proof-of-principle test conducted to demonstrate technology for containing waste. This proof-of-principle test, conducted at the RAHCO International, Inc., facility in the summer of 1997, evaluated equipment techniques for cutting a horizontal slot beneath an existing waste site. The slot would theoretically be used by complementary equipment designed to place a cement barrier under the waste. The technology evaluated consisted of a slot cutting mechanism, muck handling system, thrust system, and instrumentation. Data were gathered and analyzed to evaluate the performance parameters

  13. Report for slot cutter proof-of-principle test, Buried Waste Containment System project. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-21

    Several million cubic feet of hazardous and radioactive waste was buried in shallow pits and trenches within many US Department of Energy (US DOE) sites. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. Many of the hazardous materials in these waste sites are migrating into groundwater systems through plumes and leaching. On-site containment is one of the options being considered for prevention of waste migration. This report describes the results of a proof-of-principle test conducted to demonstrate technology for containing waste. This proof-of-principle test, conducted at the RAHCO International, Inc., facility in the summer of 1997, evaluated equipment techniques for cutting a horizontal slot beneath an existing waste site. The slot would theoretically be used by complementary equipment designed to place a cement barrier under the waste. The technology evaluated consisted of a slot cutting mechanism, muck handling system, thrust system, and instrumentation. Data were gathered and analyzed to evaluate the performance parameters.

  14. Successfully burying low-level waste for fun and profit

    International Nuclear Information System (INIS)

    The state of Washington, now receiving more than half the nation's waste, is here to provide a practical review of the benefits of having a low-level waste disposal site and to provide our perspective on how the state of Washington carries out its responsibilities through regulation of that disposal site. This information is offered in the hope that it may be useful to other states when they accept their responsibility to provide for the disposal of their low-level radioactive waste. The 1980 Low-Level Waste Policy Act very directly gave the responsibility for finding and developing new waste disposal capacity to the states. Through the process of compacting, the states have begun to accept this responsibility. From Washington's perspective, however, the progress shown to date, especially in some states generating very large amounts of waste, has not been adequate to meet the 1986 deadline

  15. In-situ containment and stabilization of buried waste

    International Nuclear Information System (INIS)

    In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect

  16. Graphite electrode DC arc technology program for buried waste treatment

    International Nuclear Information System (INIS)

    The goal of the program is to apply EPI's Arc Furnace to the processing of Subsurface Disposal Area (SDA) waste from Idaho National Engineering Laboratory. This is being facilitated through the Department of Energy's Buried Waste Integrated Demonstration (BWID) program. A second objective is to apply the diagnostics capability of MIT's Plasma Fusion Center to the understanding of the high temperature processes taking place in the furnace. This diagnostics technology has promise for being applicable in other thermal treatment processes. The program has two parts, a test series in an engineering-scale DC arc furnace which was conducted in an EPI furnace installed at the Plasma Fusion Center and a pilot-scale unit which is under construction at MIT. This pilot-scale furnace will be capable of operating in a continuous feed and continuous tap mode. Included in this work is the development and implementation of diagnostics to evaluate high temperature processes such as DC arc technology. This technology can be used as an effective stabilization process for Superfund wastes

  17. In situ containment and stabilization of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  18. Development of robotics technology for remote characterization and remediationof buried waste

    International Nuclear Information System (INIS)

    Detection, characterization, and excavation of buried objects and materials are important steps in the restoration of subsurface disposal sites. The US Department of Energy (DOE), through its Buried Waste Robotics Program, is developing a Remote Characterization System (RCS) to address the needs of remote subsurface characterization and, in a joint program with the US Army, is developing a teleoperated excavator. Development of the RCS is based on recent DOE remote characterization testing and demonstrations performed at Oak Ridge National Laboratory and Idaho National Engineering Laboratory. The RCS, which will be developed and refined over a two- to three-year period, is designed to (1) increase safety by removing on-site personnel from hazardous areas, (2) remotely acquire real-time data from multiple sensors, (3) increase cost-effectiveness and productivity by partial automation of the data collection process and by gathering and evaluating data from multiple sensors in real time, and (4) reduce costs for other waste-related development programs through joint development efforts and reusable standardized subsystems. For retrieval of characterized waste, the Small Emplacement Excavator, an existing US Army backhoe that is being converted to teleoperated control, will be used to demonstrate the feasibility of retrofitting commercial equipment for high-performance remote operations

  19. Radiation and Electromagnetic Induction Data Fusion for Detection of Buried Radioactive Metal Waste - 12282

    International Nuclear Information System (INIS)

    At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with survey data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)

  20. A process for ensuring regulatory compliance at the INEL`s buried waste integrated demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, P.G.; Watson, L.R.; Blacker, P.B. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1993-03-01

    The Buried Waste Integrated Demonstration Program is funded by the Department of Energy Office of Technology Development. The mission of this Integrated Demonstration is to identify, evaluate, and demonstrate a suite of innovative technologies for the remediation of radioactive and hazardous waste buried throughout the DOE complex between 1950 and 1970. The program approach to development of a long-range strategy for improving buried waste remediation capabilities is to combine systems analysis with already identified remediation needs for DOE complex buried waste. The systems analysis effort has produced several configuration options (a top-level block diagram of a cradle-to-grave remediation system) capable of remediating the transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory. Technologies for demonstration are selected using three criteria: (a) the ability to satisfy a specific buried waste need, (b) the ability to satisfy functional and operational requirements defined for functional sub-elements in a configuration option, and (c) performance against Comprehensive Environmental Restoration and Compensation Liability Act selection criteria, such as effectiveness, implementability, and cost. Early demonstrations experienced problems with missed requirements, prompting the Buried Waste Integrated Demonstration Program Office to organize a Corrective Action Team to identify the cause and recommend corrective actions. The result of this team effort is the focus of this paper.

  1. Latex-modified grouts for in-situ stabilization of buried transuranic/mixed waste

    International Nuclear Information System (INIS)

    The Department of Applied Science at Brookhaven national Laboratory was requested to investigate latex-modified grouts for in-situ stabilization of buried TRU/mixed waste for INEL. The waste exists in shallow trenches that were backfilled with soil. The objective was to formulate latex-modified grouts for use with the jet grouting technique to enable in-situ stabilization of buried waste. The stabilized waste was either to be left in place or retrieved for further processing. Grouting prior to retrieval reduces the potential release of contaminants. Rheological properties of latex-modified grouts were investigated and compared with those of conventional neat cement grouts used for jet grouting

  2. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    International Nuclear Information System (INIS)

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600 degrees C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation

  3. Assessment of incineration and melting treatment technologies for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Geimer, R.; Hertzler, T.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  4. Training requirements and responsibilities for the Buried Waste Integrated Demonstration at the Radioactive Waste Management Complex

    Energy Technology Data Exchange (ETDEWEB)

    Vega, H.G.; French, S.B.; Rick, D.L.

    1992-09-01

    The Buried Waste Integrated Demonstration (BWID) is scheduled to conduct intrusive (hydropunch screening tests, bore hole installation, soil sampling, etc.) and nonintrusive (geophysical surveys) studies at the Radioactive Waste Management Complex (RWMC). These studies and activities will be limited to specific locations at the RWMC. The duration of these activities will vary, but most tasks are not expected to exceed 90 days. The BWID personnel requested that the Waste Management Operational Support Group establish the training requirements and training responsibilities for BWID personnel and BWID subcontractor personnel. This document specifies these training requirements and responsibilities. While the responsibilities of BWID and the RWMC are, in general, defined in the interface agreement, the training elements are based on regulatory requirements, DOE orders, DOE-ID guidance, state law, and the nature of the work to be performed.

  5. Training requirements and responsibilities for the Buried Waste Integrated Demonstration at the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) is scheduled to conduct intrusive (hydropunch screening tests, bore hole installation, soil sampling, etc.) and nonintrusive (geophysical surveys) studies at the Radioactive Waste Management Complex (RWMC). These studies and activities will be limited to specific locations at the RWMC. The duration of these activities will vary, but most tasks are not expected to exceed 90 days. The BWID personnel requested that the Waste Management Operational Support Group establish the training requirements and training responsibilities for BWID personnel and BWID subcontractor personnel. This document specifies these training requirements and responsibilities. While the responsibilities of BWID and the RWMC are, in general, defined in the interface agreement, the training elements are based on regulatory requirements, DOE orders, DOE-ID guidance, state law, and the nature of the work to be performed

  6. Regulatory issues and assumptions associated with barriers in the vadose zone surrounding buried waste

    International Nuclear Information System (INIS)

    One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. The barrier material should be compatible with soil and waste conditions specific to the site and have as low an effective diffusivity as is reasonably achievable to minimize or inhibit transport of moisture and contaminants. This report addresses the regulatory issues associated with the use of non-traditional organic polymer barriers as well as the use of soil-bentonite or cement-bentonite mixtures for such barriers, considering barriers constructed from these latter materials to be a regulatory baseline. The regulatory issues fall into two categories. The first category consists of issues associated with the acceptability of such barriers to the EPA as a method for achieving site or performanceimprovement. The second category encompasses those regulatory issues concerning health, safety and the environment which must be addressed regarding barrier installation and performance, especially if non-traditional materials are to be used

  7. Selective retrieval of buried waste using mobile robot manipulator systems

    International Nuclear Information System (INIS)

    Hazardous operations which involve the dextrous manipulation of dangerous materials in the field have, in the past, been completed by technicians. Use of humans in such hazardous operations is under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. Remote systems are needed to accomplish many tasks such as the clean up of waste sites in which the exposure of personnel to radiation, chemical, explosive, and other hazardous constituents is unacceptable. Traditional remote manual field operations have, unfortunately, proven to have very low productivity when compared with unencumbered human operators. Recent advances in the integration of wars and computing into the control of remotely operated equipment have shown great promise for reducing the cost of remote systems while providing faster and safer remote systems. This paper discusses applications of such advances to remote field operations

  8. Super analog computer for evaluating the safety of buried radioactive waste

    International Nuclear Information System (INIS)

    It is argued that the past use of digital computer programs for evaluating the safety of buried radioactive waste has been largely wasteful and dangerously delusive. It is suggested to use actual rocks as the analog of buried waste. The problem of comparable rates of leaching of radioactive waste and of natural rock is discussed. Two examples are given of the use of natural rock as an ''analog computer'': one for high-level radioactive waste, and one for low-level radioactive waste. Digital computers have not contributed anything to two crucial questions: Can shafts be securely sealed. Does the heat crack the rock or have important effects on its chemistry. 4 refs

  9. Defense Waste Management Plan for buried transuranic-contaminated waste, transuranic-contaminated soil, and difficult-to-certify transuranic waste

    International Nuclear Information System (INIS)

    GAO recommended that DOE provide specific plans for permanent disposal of buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; cost estimates for permanent disposal of all TRU waste, including the options for the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; and specific discussions of environmental and safety issues for the permanent disposal of TRU waste. Purpose of this document is to respond to the GAO recommendations by providing plans and cost estimates for the long-term isolation of the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste. This report also provides cost estimates for processing and certifying stored and newly generated TRU waste, decontaminating and decommissioning TRU waste processing facilities, and interim operations

  10. Hydraulic and thermal properties of soil samples from the buried waste test facility

    International Nuclear Information System (INIS)

    In shallow land burial, the most common disposal method for low-level waste, waste containers are placed in shallow trenches and covered with natural sediment material. To design such a facility requires an in-depth understanding of the infiltration and evaporation processes taking place at the soil surface and the effect these processes have on the amount of water cycling through a burial zone. At the DOE Hanford Site in Richland, Washington, a field installation called the Buried Waste Test Facility (BWTF) has been constructed to study unsaturated soil water and contaminant transport. PNL is collecting data at the BWTF to help explain soil water movement at shallow depths, and specifically evaporation from bare sols. The data presented here represent the initial phase of a cooperative effort between PNL and Washington State University to use data collected at the BWFT to study the evaporated process and how it relates to the design of shallow land burial grounds. The method of chthe fraction of a specific element leached can be determined al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  11. Geohydrologic technology developments for retired radioactive waste burial site decommissioning

    International Nuclear Information System (INIS)

    Terminal disposition of radioactive wastes in shallow-land disposal sites requires waste containment in the partially saturated geohydrologic system until such time as radioisotopes in the buried waste reach innocuous levels as a result of decay. In order to assure waste containment, technologies must be developed to characterize and monitor retired, operational, and future burial sites. This paper discusses examples of geophysical, geochemical, and geohydrologic field and laboratory instrument systems and methods used to assess burial sites. From results and applications of these systems and methods, examples of recommendations for future design of shallow-land burial sites are presented

  12. Buried waste integrated demonstration fiscal year 1992 close-out report

    International Nuclear Information System (INIS)

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially-available baseline technologies form a comprehensive remediation system for the effective and efficient remediation of buried waste disposed of throughout the US Department of Energy complex. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY)-91. This report summarizes the activities of the BWID Program during FY-92

  13. On permission of waste-burying business in Tokai Research Establishment, Japan Atomic Energy Research Institute (Answer)

    International Nuclear Information System (INIS)

    As to this case written in the title which was inquired on July 19, 1994, from the prime minister, and changed partly on November 21, 1994, the Nuclear Safety Commission answered to the prime minister as follows after the prudent deliberation. As for the application of the criteria for permission, the technical capability is adequate, and the results of the examination of safety by the expert committee for examining nuclear fuel safety is adequate. It was judged that the safety after the permission of this waste-burying business can be secured. The expert committee reported on the policy of the investigation and deliberation, and the contents of the investigation and deliberation, such as the basic location conditions, namely, site, weather, ground, hydraulics, earthquakes and social environment, the radioactive wastes to be buried, the method of determining radioactivity concentration, the expected time of changing the measures to be taken for security, the safety design for the waste-burying facility related to radiation control, environment safety, earthquakes, fires and explosion, the loss of electric power and the standards and criteria to be conformed, and the assessment of dose equivalent in normal state, after finishing the period of control and safety evaluation, and the course of the investigation and deliberation. (K.I.)

  14. Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management's technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies' effectiveness over the complete range of expected wastestream compositions

  15. Characteristics of transuranic waste at Department of Energy sites

    International Nuclear Information System (INIS)

    This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981

  16. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    International Nuclear Information System (INIS)

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment's capability to control contamination spread

  17. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.M.; Rice, P.; Hyde, R. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Peterson, R. [RAHCO International, Spokane, WA (United States)

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment`s capability to control contamination spread.

  18. Remotely controlled vehicles and systems for integrated remediation of buried tru wastes

    International Nuclear Information System (INIS)

    This paper describes the design, implementation and testing of remotely controlled vehicle systems developed for cooperative retrieval and transportation of Transuranic (TRU) buried wastes. The systems described are for the control of a Remote Excavator (REMEX), a Self Guided Transfer Vehicle (SGTV), a Remotely Controlled Materials Handling System and a Virtual Environment for Remote Operations (VERO), using imaging by a 3D Laser Camera

  19. PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

    2008-05-05

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

  20. Buried waste integrated demonstration Fiscal Year 1993 close-out report

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated BWID at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during FY-93

  1. Regulatory issues and assumptions associated with polymers for subsurface barriers surrounding buried waste

    International Nuclear Information System (INIS)

    One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. Subsurface barriers will improve remediation performance by removing pathways for contaminant transport due to groundwater movement, meteorological water infiltration, vapor- and gas-phase transport, transpiration, etc. Subsurface barriers may be used to open-quotes directclose quotes contaminant movement to collection sumps/lysimeters in cases of unexpected remediation failures or transport mechanisms, to contain leakage from underground storage tanks, and to restrict in-situ soil cleanup operation and chemicals. Brookhaven National Laboratory is currently investigating advanced polymer materials for subsurface barriers. This report addresses the regulatory aspects of using of non-traditional polymer materials as well as soil-bentonite or cement-bentonite mixtures for such barriers. The regulatory issues fall into two categories. The first category consists of issues associated with the acceptability of subsurface barriers to the Environmental Protection Agency (EPA) as a method for achieving waste site performance improvement. The second category encompasses those regulatory issues concerning health, safety and the environment which must be addressed regarding barrier installation and performance, especially if non-traditional materials are to be used. Since many of EPA's concerns regarding subsurface barriers focus on the chemicals used during installation of these barriers the authors discuss the results of a search of the Federal Register and the Code of Federal Regulations for references in Titles 29 and 40 pertaining to key chemicals likely to be utilized in installing non-traditional barrier materials. The use of polymeric materials in the construction industry has been accomplished with full compliance with the applicable health, safety, and environmental regulations

  2. Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. This document describes the Environment, Safety, Health, and Quality requirements for conducting BWID activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to BWID operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program Plans, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and System and Performance audits as they apply to the BWID Program

  3. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    Energy Technology Data Exchange (ETDEWEB)

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  4. A system to control contamination during retrieval of buried TRU waste

    International Nuclear Information System (INIS)

    This paper discusses design features of a contamination control system for use during retrieval of buried transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL). Between 1952 and 1970 over 56,000m3 of primarily Rocky Mats Plant (RFP) generated TRU waste was stored at the INEL in shallow land filled pits and trenches, which consisted of sludges, cloth, paper, metal, wood, concrete, and asphalt contaminated with micron-sized, oxidized particles of plutonium and americium. Retrieval for final disposal is one of the options being considered for this buried waste. This contamination control system is an important subsystem of an overall retrieval system design involving containment buildings, remotely controlled excavators and transporters, separation systems, and final disposal options. The main contaminants to be controlled are plutonium and americium compounds associated with the TRU waste. The contamination control system is comprised of the Dust Suppression System (DSS) and a Rapid Monitoring System (RMS). The DSS is a grouping of subsystems including: (a) the inner building laminar flow ventilation system (b) the Lifting and Moving System (LAMS) which provides mobility for (c) the Contamination Suppression System (CSS). The RMS consists of state-of-the-art air monitors and detection systems for measuring loose contamination. To complement and guide the design effort, engineering background experimental studies were performed on the DSS and RMS. The results of these studies are summarized along with a discussion of the general design features. 6 refs., 1 fig

  5. Palaeodemographic and palaeopathological characteristics of individuals buried in three Bronze Age sites from southern Croatia

    OpenAIRE

    Novak, M; V. Vyroubal; Ž. Bedić

    2011-01-01

    The purpose of this study is to reconstruct paleodemographic and paleopathological characteristics of sixteen individuals (three subadults, seven males and six females) buried in three Bronze Age sites (Crip, Matkovići, and Veliki Vanik) located in southern Croatia. The analysed sample is characterised by the presence of pathological changes which are often associated with stressful episodes such as anaemia, inadequate nutrition, infectious diseases and the occurrence of parasites. Cribra or...

  6. Buried Waste Integrated Demonstration fiscal Year 1994 close-out report

    International Nuclear Information System (INIS)

    The Buried Waste integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Department of Energy Office of Technology Development initiated BMD at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during Fiscal Year 1994. In Fiscal Year 1995, these activities are transitioning into the Landfill Stabilization Focus Area

  7. Hanford Site Secondary Waste Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  8. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs

  9. TNX Burying Ground: Environmental information document

    International Nuclear Information System (INIS)

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated

  10. TNX Burying Ground: Environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

  11. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B. [Los Alamos National Lab., NM (United States); Lewis, A.; David, N. [Environmental Research Inst. of Michigan, Santa Fe, NM (United States)

    1996-04-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico.

  12. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  13. Treatment of simulated INEL buried wastes using a graphite electrode DC arc furnace

    International Nuclear Information System (INIS)

    A program has been established under the auspices of the Department of Energy (DOE), Office of Technology Development (OTD), to develop the graphite electrode DC arc technology for the application of treating buried heterogenous solid wastes. A three way open-quotes National Laboratory-University-Industryclose quotes partnership was formed to develop this technology in the most timely and cost effective manner. This program is presently testing a newly fabricated pilot-scale DC arc furnace with associated diagnostics at the Plasma Fusion Center at the Massachusetts Institute of Technology. Initial testing in a smaller engineering scale furnace has established the viability of this technology for the treatment of solid heterogeneous wastes. Two diagnostic tools were developed under this program which support the evaluation of the DC arc technology. The diagnostics provide for both spatially resolved temperature measurements within the furnace and real time monitoring of the furnace metal emissions

  14. Buried Waste Integrated Demonstration Commercialization Action Plans second quarter, FY-94

    International Nuclear Information System (INIS)

    The Federal Government is extremely good at creating knowledge and developing new technology. However, our declining market share in many industries points to a weakness in our ability to successfully commercialize new discoveries. BWID assembled a team of qualified experts with expertise in technology transfer and broad-based technology knowledge to assist with this effort. Five new technologies were chosen to develop commercialization action plans. They include Dig-Face Characterization, Imaging Infrared Interferometer for Waste Characterization, Tensor Magnetic Gradiometer, Very Early Time Electromagnetic System, and Virtual Environment Generation of Buried Waste. Each plan includes a short description of the technology, a market overview, a list of potential customers, a description of competitors and the technology's competitive advantage, the status of intellectual property, the status of technology transfer, a table of action items, commercialization contacts, and program contacts

  15. The principles of burying radioactive waste: basic physical and thermomechanical properties of geological formations

    International Nuclear Information System (INIS)

    After a review of the various types of radioactive wastes (short and long lives), the principles of radioactive waste storage in geologic structures are detailed: water is the main vector of migration so radionuclides are buried at depth within a medium of very low permeability and hydraulic gradient; the geological medium must retain its integrity during all the duration of their activity; its very age is obviously the guarantee of its future, but tectonic movements, erosion, climate must not deteriorate it in any way nor break down its structure. The thermomechanical effects are examined for each host medium such as plastic media (salt, clay) and brittle media (granite, shale) with an estimation of the long term and very long term rheological properties. 4 figs., 1 tab., 21 refs

  16. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  17. MANAGEING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

    International Nuclear Information System (INIS)

    United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO2), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective roll in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics

  18. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 3

    International Nuclear Information System (INIS)

    This is the third volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report

  19. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 2

    International Nuclear Information System (INIS)

    This is the second volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report

  20. Principles of geological substantiation for toxic waste disposal facilities sites selection

    International Nuclear Information System (INIS)

    Industrial, domestic and military activities result in accumulation of toxic and hazardous waste. Disposal of these waste comprises two main approaches: technological processing (utilization and destruction) and landfill. According to concepts and programs of advanced countries technological solutions are preferable, but in fact over 70 % of waste are buried in storages, prevailingly of near surface type. The target of this paper is to present principles of geological substantiation of sites selection for toxic and hazardous waste isolation facilities location. (author)

  1. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    International Nuclear Information System (INIS)

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR

  2. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Peter T.; Starmer, R. John

    2003-02-27

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR

  3. Graphite electrode dc arc technology development for treatment of buried wastes

    International Nuclear Information System (INIS)

    A ''National Laboratory-University-Industrial'' three-way partnership has been established between the Pacific Northwest Laboratory (PNL), Massachusetts Institute of Technology (MIT), and Electro-Pyrolysis, Inc. (EPI) to develop graphite electrode DC arc technology for the treatment of buried wastes. This paper outlines the PNL-MIT-EPI program describing a series of engineering-scale DC arc furnace tests conducted in an EPI furnace at the Plasma Fusion Center at MIT, and a description of the second phase of this program involving the design, fabrication, and testing of a pilot-scale DC arc furnace. Included in this work is the development and implementation of diagnostics to evaluate and optimize high temperature thermal processes such as the DC arc technology

  4. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  5. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  6. Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites.

    Science.gov (United States)

    Wang, P-H; De Sancho, D; Best, R B; Blumberger, J

    2016-01-01

    The diffusion of ligands to actives sites of proteins is essential to enzyme catalysis and many cellular signaling processes. In this contribution we review our recently developed methodology for calculation of rate constants for diffusion and binding of small molecules to buried protein active sites. The diffusive dynamics of the ligand obtained from molecular dynamics simulation is coarse grained and described by a Markov state model. Diffusion and binding rate constants are then obtained either from the reactive flux formalism or by fitting the time-dependent population of the Markov state model to a phenomenological rate law. The method is illustrated by applications to diffusion of substrate and inhibitors in [NiFe] hydrogenase, CO-dehydrogenase, and myoglobin. We also discuss a recently developed sensitivity analysis that allows one to identify hot spots in proteins, where mutations are expected to have the strongest effects on ligand diffusion rates. PMID:27497172

  7. Evaluation of Xenon Gas Detection as a Means for Identifying Buried Transuranic Waste at the Radioactive Waste Management Complex, Idaho National Environmental and Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P Evan; Waichler, Scott R.

    2004-04-01

    Xenon is produced as a fission product in nuclear reactors and through spontaneous fission of some transuranic (TRU) isotopes. Xenon gas is nearly inert and will be released from buried TRU waste. This document describes and evaluates the potential for analyzing xenon isotopes in soil gas to detect TRU waste in the subsurface at the Idaho National Environmental and Engineering Laboratory's Radioactive Waste Management Complex.

  8. In situ containment and stabilization of buried waste. Annual report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  9. Integrated geophysical measurements on a test site for detection of buried steel drums

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-04-01

    Full Text Available Geophysical methods are increasingly used to detect and locate illegal waste disposal and buried toxic steel drums. This study describes the results of a test carried out in clayey-sandy ground where 12 empty steel drums had previously been buried at 4-5 m below ground level. This test was carried out with three geophysical methods for steel-drum detection: a magnetometric survey, electrical resistivity tomography with different arrays, and a multifrequency frequency-domain electromagnetic induction survey. The data show that as partially expected, the magnetometric and electromagnetic induction surveys detected the actual steel drums buried in the subsurface, while the electrical resistivity tomography mainly detected the changes in some of the physical properties of the terrain connected with the digging operations, rather than the actual presence of the steel drums.

  1. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    International Nuclear Information System (INIS)

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests

  2. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  3. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  4. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  5. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  6. Preparations for Retrieval of Buried Waste at Material Disposal Area B

    International Nuclear Information System (INIS)

    Material Disposal Area B, a hazard category 3 nuclear facility, is scheduled for excavation and the removal of its contents. Wastes and excavated soils will be characterized for disposal at approved off-site waste disposal facilities. Since there were no waste disposal records, understanding the context of the historic operations at MDA B was essential to understanding what wastes were disposed of and what hazards these would pose during retrieval. The operational history of MDA B is tied to the earliest history of the Laboratory, the scope and urgency of World War II, the transition to the Atomic Energy Commission in January 1947, and the start of the cold war. A report was compiled that summarized the development of the process chemistry, metallurgy, and other research and production activities at the Laboratory during the 1944 to 1948 time frame that provided a perspective of the work conducted; the scale of those processes; and the handling of spent chemicals and contaminated items in lieu of waste disposal records. By 1947, all laboratories had established waste disposal procedures that required laboratory and salvage wastes to be boxed and sealed. Large items or equipment were to be wrapped with paper or placed in wooden crates. Most wastes were placed in cardboard boxes and were simply piled into the active trench. Bulldozers were used to cover the material with fill dirt on a weekly basis. No effort was made to separate waste types or loads, or to compact the wastes under the soil cover. Using the historical information and a statistical analysis of the plutonium inventory, LANL prepared a documented safety analysis for the waste retrieval activities at MDA B, in accordance with DOE Standard 1120-2005, Integration of Environment, Safety, and Health into Facility Disposition Activities, and the provisions of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response. The selected hazard controls for the MDA B project consist of passive design

  7. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  8. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  9. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification

  10. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system

  11. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.1012 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to man

  12. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper will discuss the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration will take place at a cold site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington

  13. Characteristics of Soil Fertility of Buried Ancient Paddy at Chuodun Site in Yangtze River Delta, China

    Institute of Scientific and Technical Information of China (English)

    LU Jia; HU Zheng-yi; CAO Zhi-hong; YANG Lin-zhang; LIN Xian-gui; DONG Yuan-hua; DING Jin-long; ZHENG Yun-fei

    2006-01-01

    Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, JiangsuProvince, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6 000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m2 with an average of 5.2 m2. The paddy soils with > 5 000 pellets phytolith g-1 soil were termed intensively cultivated paddy soils (ICPS) and those with < 5 000 pellets phytolith g-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.

  14. Site characterization data for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic conditions in SWSA-6 for use in further studies related to assessing compliance with 5820.2. Burial operations in SWSA-6 began in 1969 on a limited scale, and full operation was initiated in 1973. Since that time, ca. 29,100 m3 of low-level waste containing ca. 251,000 Ci of activity has been buried in SWSA-6. No transuranic waste has been disposed of in SWSA-6; rather this waste is retrievably stored in SWSA-5. Estimates of the remaining usable space in SWSA-6 vary; however, in 1982 sufficient useful land was reported for about 10 more years of operation. Analysis of the information available on SWSA-6 indicates that more information is required to evaluate the surface water hydrology, the geology at depths below the burial trenches, and the nature and extent of soils within the site. Also, a monitoring network will be required to allow detection of potential contaminant movement in groundwater. Although these are the most obvious needs, a number of specific measurements must be made to evaluate the spatial heterogeneity of the site and to provide background information for geohydrological modeling. Some indication of the nature of these measurements is included

  15. Remaining Sites Verification Package for 132-H-1, 116-H Reactor Stack Burial Site. Attachment to Waste Site Reclassification Form 2006-053

    International Nuclear Information System (INIS)

    The 132-H-1 waste site includes the 116-H exhaust stack burial trench and the buried stack foundation (which contains an embedded vertical 15-cm (6-in) condensate drain line). The 116-H reactor exhaust stack and foundation were decommissioned and demolished using explosives in 1983, with the rubble buried in situ beneath clean fill at least 1 m (3.3 ft) thick. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling

  16. Remaining Sites Verification Package for 132-H-1, 116-H Reactor Stack Burial Site, Waste Site Reclassification Form 2006-053

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2007-06-26

    The 132-H-1 waste site includes the 116-H exhaust stack burial trench and the buried stack foundation (which contains an embedded vertical 15-cm (6-in) condensate drain line). The 116-H reactor exhaust stack and foundation were decommissioned and demolished using explosives in 1983, with the rubble buried in situ beneath clean fill at least 1 m (3.3 ft) thick. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

  17. Engineering-scale in situ vitrification tests of simulated Oak Ridge National Laboratory buried wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process for remediation of Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory, a public meeting was held on the proposed plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and environment. The US Department of Energy (DOE) in conjunction with the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated.

  18. Engineering-scale in situ vitrification tests of simulated Oak Ridge National Laboratory buried wastes

    International Nuclear Information System (INIS)

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process for remediation of Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory, a public meeting was held on the proposed plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and environment. The US Department of Energy (DOE) in conjunction with the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated

  19. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  20. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  1. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  2. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  3. Nevada Test Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-10-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  4. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  5. Hazardous waste operational plan for site 300

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  6. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  7. Closure Letter Report for Corrective Action Unit 496: Buried Rocket Site - Antelope Lake

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-05-01

    A Streamlined Approach for Environmental Restoration (SAFER) Plan for investigation and closure of CAU 496, Corrective Action Site (CAS) TA-55-008-TAAL (Buried Rocket), at the Tonopah Test Range (TTR), was approved by the Nevada Department of Environmental Protection (NDEP) on July 21,2004. Approval to transfer CAS TA-55-008-TAAL from CAU 496 to CAU 4000 (No Further Action Sites) was approved by NDEP on December 21, 2005, based on the assumption that the rocket did not present any environmental concern. The approval letter included the following condition: ''NDEP understands, from the NNSA/NSO letter dated November 30,2005, that a search will be conducted for the rocket during the planned characterization of other sites at the Tonopah Test Range and, if found, the rocket will be removed as a housekeeping measure''. NDEP and U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office personnel located the rocket on Mid Lake during a site visit to TTR, and a request to transfer CAS TA-55-008-TAAL from CAU 4000 back to CAU 496 was approved by NDEP on September 11,2006. CAS TA-55-008-TAAL was added to the ''Federal Facility Agreement and Consent Order'' of 1996, based on an interview with a retired TTR worker in 1993. The original interview documented that a rocket was launched from Area 9 to Antelope Lake and was never recovered due to the high frequency of rocket tests being conducted during this timeframe. The interviewee recalled the rocket being an M-55 or N-55 (the M-50 ''Honest John'' rocket was used extensively at TTR from the 1960s to early 1980s). A review of previously conducted interviews with former TTR personnel indicated that the interviewees confused information from several sites. The location of the CAU 496 rocket on Mid Lake is directly south of the TTR rocket launch facility in Area 9 and is consistent with information gathered on the lost rocket during recent

  8. Closure Letter Report for Corrective Action Unit 496: Buried Rocket Site - Antelope Lake (TTR)

    International Nuclear Information System (INIS)

    A Streamlined Approach for Environmental Restoration (SAFER) Plan for investigation and closure of CAU 496, Corrective Action Site (CAS) TA-55-008-TAAL (Buried Rocket), at the Tonopah Test Range (TTR), was approved by the Nevada Department of Environmental Protection (NDEP) on July 21,2004. Approval to transfer CAS TA-55-008-TAAL from CAU 496 to CAU 4000 (No Further Action Sites) was approved by NDEP on December 21, 2005, based on the assumption that the rocket did not present any environmental concern. The approval letter included the following condition: ''NDEP understands, from the NNSA/NSO letter dated November 30,2005, that a search will be conducted for the rocket during the planned characterization of other sites at the Tonopah Test Range and, if found, the rocket will be removed as a housekeeping measure''. NDEP and U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office personnel located the rocket on Mid Lake during a site visit to TTR, and a request to transfer CAS TA-55-008-TAAL from CAU 4000 back to CAU 496 was approved by NDEP on September 11,2006. CAS TA-55-008-TAAL was added to the ''Federal Facility Agreement and Consent Order'' of 1996, based on an interview with a retired TTR worker in 1993. The original interview documented that a rocket was launched from Area 9 to Antelope Lake and was never recovered due to the high frequency of rocket tests being conducted during this timeframe. The interviewee recalled the rocket being an M-55 or N-55 (the M-50 ''Honest John'' rocket was used extensively at TTR from the 1960s to early 1980s). A review of previously conducted interviews with former TTR personnel indicated that the interviewees confused information from several sites. The location of the CAU 496 rocket on Mid Lake is directly south of the TTR rocket launch facility in Area 9 and is consistent with information gathered on the lost rocket during recent interviews. Most pertinently, an interview in 2005 with a

  9. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  10. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  11. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  12. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  13. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  14. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report presents a comprehensive inventory of the radiological and nonradiological contaminants in waste buried or projected to be buried from 1984 through 2003 in the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The project to compile the inventory is referred to as the recent and projected data task. The inventory was compiled primarily for use in a baseline risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act. The compiled information may also be useful for environmental remediation activities that might be necessary at the RWMC. The information that was compiled has been entered into a database termed CIDRA-the Contaminant Inventory Database for Risk Assessment. The inventory information was organized according to waste generator and divided into waste streams for each generator. The inventory is based on waste information that was available in facility operating records, technical and programmatic reports, shipping records, and waste generator forecasts. Additional information was obtained by reviewing the plant operations that originally generated the waste, by interviewing personnel formerly employed as operators, and by performing nuclear physics and engineering calculations. In addition to contaminant inventories, information was compiled on the physical and chemical characteristics and the packaging of the 99 waste streams. The inventory information for waste projected to be buried at the SDA in the future was obtained from waste generator forecasts. The completeness of the contaminant inventories was confirmed by comparing them against inventories in previous reports and in other databases, and against the list of contaminants detected in environmental monitoring performed at the RWMC.

  15. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 1

    International Nuclear Information System (INIS)

    This report presents a comprehensive inventory of the radiological and nonradiological contaminants in waste buried or projected to be buried from 1984 through 2003 in the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The project to compile the inventory is referred to as the recent and projected data task. The inventory was compiled primarily for use in a baseline risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act. The compiled information may also be useful for environmental remediation activities that might be necessary at the RWMC. The information that was compiled has been entered into a database termed CIDRA-the Contaminant Inventory Database for Risk Assessment. The inventory information was organized according to waste generator and divided into waste streams for each generator. The inventory is based on waste information that was available in facility operating records, technical and programmatic reports, shipping records, and waste generator forecasts. Additional information was obtained by reviewing the plant operations that originally generated the waste, by interviewing personnel formerly employed as operators, and by performing nuclear physics and engineering calculations. In addition to contaminant inventories, information was compiled on the physical and chemical characteristics and the packaging of the 99 waste streams. The inventory information for waste projected to be buried at the SDA in the future was obtained from waste generator forecasts. The completeness of the contaminant inventories was confirmed by comparing them against inventories in previous reports and in other databases, and against the list of contaminants detected in environmental monitoring performed at the RWMC

  16. Leaching of Cs and Sr from sewage sludge ash buried in a landfill site

    International Nuclear Information System (INIS)

    Radionuclide contamination from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant has been found in sewage sludge ash produced in eastern Japan. When such contaminated waste contains less than 8,000 Bq/kg radiocesium, it is being disposed in controlled landfill sites. In order to assess the possible spread of the radionuclides by their leaching from the landfill sites, it is important to know the leaching behavior of the radionuclides from the sewage sludge ash and factors influencing the leaching behavior. In this study, leaching experiments using stable Cs and Sr were conducted for sewage sludge ash under several conditions to investigate effects of chemical composition of leachate, pH, and solid/liquid ratio on Cs and Sr leaching behaviors. In the pH range from 6 to 12, the leaching ratio of Cs or Sr was less than 5.2 or 0.21%, respectively. Additionally, the leaching ratio of Sr decreased with increasing pH of the leachate. In contrast, the higher the pH in the leachate was, the higher the leaching ratio of Cs was. Finally, possible radionuclide leaching from contaminated sewage sludge ash and then radionuclide concentrations in an actual landfill leachate were assessed. It could be suggested that 90Sr leaching from the landfill site had the least effect on the environment, whereas 134+137Cs leaching needed to be taken into account for spreading radioactive materials from the landfill site to the environment. (author)

  17. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  18. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  19. File: contaminated sites and old radioactive wastes

    International Nuclear Information System (INIS)

    The present file treats old wastes and contaminated sites. The purpose is to realize an inventory of sites in relation with the right of future generations in matter of radioactive wastes management. The military and civil sites are reviewed, the nuclear and conventional industry, the french and foreign practices are compared. The process of site rehabilitation is exposed, in practice and administration procedures. (N.C.)

  20. In-situ containment and stabilization of buried waste: Annual report FY 1994

    International Nuclear Information System (INIS)

    The two landfills of specific interest are the Chemical Waste Landfill (CWL) and the Mixed Waste Landfill (MWL), both located at Sandia National Laboratory. The work is comprised of two subtasks: (1) In-Situ Barriers and (2) In-Situ Stabilization of Contaminated Soils. The main environmental concern at the CWL is a chromium plume resulting from disposal of chromic acid and chromic sulfuric acid into unlined pits. This program has investigated means of in-situ stabilization of chromium contaminated soils and placement of containment barriers around the CWL. The MWL contains a plume of tritiated water. In-situ immobilization of tritiated water with cementitious grouts was not considered to be a method with a high probability of success and was not pursued. This is discussed further in Section 5.0. Containment barriers for the tritium plume were investigated. FY 94 work focused on stabilization of chromium contaminated soil with blast furnace slag modified grouts to bypass the stage of pre-reduction of Cr(6), barriers for tritiated water containment at the MWL, continued study of barriers for the CWL, and jet grouting field trials for CWL barriers at an uncontaminated site at SNL. Cores from the FY 93 permeation grouting field trails were also tested in FY 94

  1. Solid waste management complex site development plan

    International Nuclear Information System (INIS)

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  2. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed

  3. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  4. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  5. In-situ containment of buried waste at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, B.P. [Sandia National Labs., Albuquerque, NM (United States); Heiser, J. [Brookhaven National Lab., Upton, NY (United States); Stewart, W.; Phillips, S. [Applied Geotechnical Engineering and Construction, Inc., Richland, WA (United States)

    1997-12-31

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale {open_quotes}cold test{close_quotes} demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL.

  6. In-situ containment of buried waste at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale 'cold test' demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL

  7. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca2+, Mg2+, K+, Na+, HCO3-, CO32-, SO42-, Cl-, S2-

  8. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  9. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  10. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  11. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  12. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  13. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  14. Site selection criteria for shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Twelve site selection criteria are presented. These are: (1) site shall be of sufficient area and depth to accommodate the projected volume of waste and a three dimensional buffer zone; (2) site should allow waste to be buried either completely above or below the transition zone between the unsaturated and saturated zones; (3) site should be located where flooding will not jeopardize performance; (4) site should be located where erosion will not jeopardize performance; (5) site should be located in areas where hydrogeologic conditions allow reliable performance prediction; (6) site should be located where geologic hazards will not jeopardize performance; (7) site should be selected with considerations given to those characteristics of earth materials and water chemistry that favor increased residence times and/or attenuation of radionuclide concentrations within site boundaries; (8) site should be selected with consideration given to current and projected population distributions; (9) site should be selected with consideration given to current and projected land use and resource development; (10) site should be selected with consideration given to location of waste generation, access to all-weather highway and rail routes, and access utilities; (11) site should be selected consistent with federal laws and regulations; (12) site should not be located within areas that are protected from such use by federal laws and regulations. These criteria are considered preliminary and do not necessarily represent the position of the Department of Energy's Low-Level Waste Management Program

  15. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  16. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  17. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks

  18. Characterisation of Radioactive Waste located at Shelter Industrial Site

    International Nuclear Information System (INIS)

    As a result of the accident at the unit 4 reactor at the Chernobyl Nuclear Power Plant on the 26 April 1986 there was widespread radioactive contamination of the surrounding area. The area immediately surrounding Unit 4, referred to as the Industrial Site, was very heavily contaminated with fuel and core debris ejected from the reactor. Immediate action was undertaken to reduce the local radiation hazard and mitigate the potential of secondary contamination of the environment. This action involved (a) the removal and collection of fuel fragments (b) removal of the top layer of soil around unit 4 and (c) preparation of a new surface over the Industrial Site. This new surface is referred to colloquially as the Techno-genic Layer. This report provides an overview of a project undertaken for DG-Environment of European Commission by a Consortium consisting of SGN (France) and AEA Technology (UK) working in collaboration with the Organisation, National Academy of Sciences of Ukraine; the Interdisciplinary Scientific and Technical Centre Shelter''. The project consisted of 3 Phases and a total of 14 Tasks. The main purpose of Phase 1 was to review previous work and available information and data on the contamination of the Industrial Site, construction of the Techno-genic Layer, Buttress and Pioneer Walls. Phase 2 was directed at additional measurements being carried out on existing boreholes and core samples to improve and/or substantiate existing information and data. Estimation of likely radioactive waste arisings, recovery procedures and a generalised strategy with indicative costs for the management of the waste was also covered by Phase 2. In Phase 3 new boreholes (3 off) were drilled and subsequently investigated. The justification behind Phase 3 was the desire/need to obtain more reliable information on the so-called high-active waste buried in the Industrial Site. (author)

  19. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  20. Preliminary systems design study assessment report. [Evaluation of using specific technologies and system concepts for testing the buried waste and the surrounding contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Feizollahi, F. (Bechtel National, Inc., San Francisco, CA (United States)); Del Signore, J.C. (Ebasco Environmental, Richland, WA (United States))

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  1. Burying uncertainty: Risk and the case against geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    The author of this book asserts that moral and ethical issues must be considered in the development of nuclear waste disposal policies. The book develops this theme showing that to date no technology has provided a fool-proof method of isolating high-level nuclear wastes and that technological advances alone will not increase public acceptance. She supports a plan for the federal government to negotiate construction of MRS facilities that would safely house high-level nuclear waste for about 100 years, providing a temporary solution and a moral and ethical alternative to permanent storage

  2. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 105 m3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 1018 Bq (170 MCi) of various radionuclides including 90Sr, 99Tc, 137Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 104 m3 of liquid (mainly) and solid wastes; approximately 4 x 1018Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  3. Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods

    OpenAIRE

    Dijkgraaf, Elbert; Herman R. J. Vollebergh

    2003-01-01

    This paper uses private and environmental cost data for the Netherlands to evaluate the social cost of two final waste disposal methods, landfilling versus incineration using waste-to-energy (WTE) plants. The data only provide some support for the widespread policy preference for incineration over landfilling if the analysis is restricted to environmental costs alone. Private costs, however, are so much higher for incineration, that landfilling is the social cost minimizing option at the marg...

  4. A NEW DAWN FOR THE BURIED GARBAGE? : AN INVESTIGATION OF THE MARKETABILITY FOR PREVIOUSLY DISPOSED WASTE

    OpenAIRE

    Johansson, Nils; Krook, Joakim; Frändegård, Per

    2015-01-01

    This paper examines the market potential of disposed waste, a resource that is increasingly emphasized as a future mine. A framework with gate requirements of various outlets was developed and contrasted with excavated waste sorted in an advanced recycling facility. Only the smallest fraction by percentage had an outlet, the metals (8%), which were sold according a lower quality class. The other fractions (92%) were not accepted for incineration, construction materials or even re-deposition. ...

  5. Siting Patterns of Nuclear Waste Repositories.

    Science.gov (United States)

    Solomon, Barry D.; Shelley, Fred M.

    1988-01-01

    Provides an inventory of international radioactive waste-management policies and repository siting decisions for North America, Central and South America, Europe, Asia, and Africa. This discussion stresses the important role of demographic, geologic, and political factors in siting decisions. (Author/BSR)

  6. Hazardous Waste Sites not making the final EPA National Priority List of Hazardous Waste Sites

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — These are sites from EPA CERCLIS list that are not final National-Priority-List Hazardous Waste sites. The data was obtained from EPA's LandView CDs.

  7. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    42,500 m3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  8. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  9. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  10. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    International Nuclear Information System (INIS)

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste

  11. Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C

    2012-06-25

    Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.

  12. Update on environmental site assessment requirements at drilling waste sites

    International Nuclear Information System (INIS)

    Details of recent changes to environmental site assessment (ESA) requirements at drilling waste sites were presented. Drilling wastes are typically disposed of into soil on the well site or adjacent forested or agricultural land. Wastes can become a source of contamination if the disposal is improperly conducted. Drilling fluids are often saline and contain other additives such as heavy metals and hydrocarbons. Alberta Environment's reclamation certification program has instituted changes representing an increased focus on ensuring that well sites are free of contamination. ESAs must focus on potential areas of contamination, including drilling waste disposal areas. Three compliance options were presented in a guidance document for assessing drilling waste disposal areas. Option 1 was to be used to complete a Phase 1 ESA for disposal areas that have Alberta Energy and Utility Board (EUB) Guide 50 notification information available. Option 2 provides Phase 1 ESA requirements for sites that do not have Guide 50 notification information. Option 3 provided specific Phase 2 ESA requirements for drilling waste disposal areas. Consultants, members of industry and regulators have identified a number of additions and clarifications that could improve the document. Methods for assessing the impact of drill stem test returns under Options 1 and 2 are now being considered. It was observed that lime and gypsum have caused confusion as research now suggests they have less influence on waste salinity than has been assumed in the salt calculations. It was concluded that members of the Canadian Association of Petroleum Producers (CAPP) intend to gather data to further assess the influences of lime and gypsum, as well as data to evaluate the relationships between barium analytical data and barite calculations. Other amendments will include: the ability to use actual mix ratios in the calculations; improved guidance for sampling sumps; and general revisions to improve clarity

  13. Myth of nuclear explosions at waste disposal sites

    International Nuclear Information System (INIS)

    Approximately 25 years ago, an event is said to have occurred in the plains immediately west of the southern Ural mountains of the Soviet Union that is being disputed to this very day. One person says it was an explosion of nuclear wastes buried in a waste disposal site; other people say it was an above-ground test of an atomic weapon; still others suspect that an alleged contaminated area (of unknown size or even existence) is the result of a series of careless procedures. Since the event, a number of articles about the disposal-site explosion hypothesis written by a Soviet exile living in the United Kingdom have been published. Although the Soviet scientist's training and background are in the biological sciences and his knowledge of nuclear physics or chemistry is limited, people who oppose the use of nuclear energy seem to want to believe what he says without question. The work of this Soviet biologist has received wide exposure both in the United Kingdom and the United States. This report presents arguments against the disposal-site explosion hypothesis. Included are discussions of the amounts of plutonium that would be in a disposal site, the amounts of plutonium that would be needed to reach criticality in a soil-water-plutonium mixture, and experiments and theoretical calculations on the behavior of such mixtures. Our quantitative analyses show that the postulated nuclear explosion is so improbable that it is essentially impossible and can be found only in the never-never land of an active imagination. 24 references, 14 figures, 5 tables

  14. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  15. Citizen participation in nuclear waste repository siting

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed.

  16. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    International Nuclear Information System (INIS)

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the ''hottest'' (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates for WAXFIX/paraffin do not indicate any immediate problems with the use of WAXFIX for grouting beryllium or other wastes in the SDA

  17. Comprehensive Geophysical Investigation over a Former Radioactive Waste Site, Hanford, Washington

    Science.gov (United States)

    Rucker, D. F.; Fink, J. B.; Glaser, D. R.; Gee, G. W.; Sweeney, M. K.

    2004-12-01

    Several geophysical methods were combined to characterize a technetium-99 (Tc-99) plume beneath a former radioactive waste site, including a magnetic gradiometry survey, a broadband multi-frequency electromagnetic survey and a high resolution resistivity (HRR) survey. The 50 acre site was previously used for the disposal of fission products formed during uranium processing, where high volumes of liquid mixed waste were discharged to unlined trenches over a two year period from 1956 to 1958. The magnetic and electromagnetic surveys identified buried infrastructure used during the construction of the disposal site. The HRR survey, which consisted of electrical resistivity measurements along transects parallel and perpendicular to a trench in the southern portion of the site, identified an electrically conductive plume coincident with Tc-99 data obtained from a nearby borehole. The data were used to confirm assumptions used in an unsaturated flow model, including recharge and hydraulic properties.

  18. Enhanced research in ground-penetrating radar and multisensor fusion with application to the detection and visualization of buried waste. Final report

    International Nuclear Information System (INIS)

    Recognizing the difficulty and importance of the landfill remediation problems faced by DOE, and the fact that no one sensor alone can provide complete environmental site characterization, a multidisciplinary team approach was chosen for this project. The authors have developed a multisensor fusion approach that is suitable for the wide variety of sensors available to DOE, that allows separate detection algorithms to be developed and custom-tailored to each sensor. This approach is currently being applied to the Geonics EM-61 and Coleman step-frequency radar data. High-resolution array processing techniques were developed for detecting and localizing buried waste containers. A soil characterization laboratory facility was developed using a HP-8510 network analyzer and near-field coaxial probe. Both internal and external calibration procedures were developed for de-embedding the frequency-dependent soil electrical parameters from the measurements. Dispersive soil propagation modeling algorithms were also developed for simulating wave propagation in dispersive soil media. A study was performed on the application of infrared sensors to the landfill remediation problem, particularly for providing information on volatile organic compounds (VOC's) in the atmosphere. A dust-emission lidar system is proposed for landfill remediation monitoring. Design specifications are outlined for a system which could be used to monitor dust emissions in a landfill remediation effort. The detailed results of the investigations are contained herein

  19. Enhanced research in ground-penetrating radar and multisensor fusion with application to the detection and visualization of buried waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Devney, A.J.; DiMarzio, C.; Kokar, M.; Miller, E.L.; Rappaport, C.M.; Weedon, W.H.

    1996-05-14

    Recognizing the difficulty and importance of the landfill remediation problems faced by DOE, and the fact that no one sensor alone can provide complete environmental site characterization, a multidisciplinary team approach was chosen for this project. The authors have developed a multisensor fusion approach that is suitable for the wide variety of sensors available to DOE, that allows separate detection algorithms to be developed and custom-tailored to each sensor. This approach is currently being applied to the Geonics EM-61 and Coleman step-frequency radar data. High-resolution array processing techniques were developed for detecting and localizing buried waste containers. A soil characterization laboratory facility was developed using a HP-8510 network analyzer and near-field coaxial probe. Both internal and external calibration procedures were developed for de-embedding the frequency-dependent soil electrical parameters from the measurements. Dispersive soil propagation modeling algorithms were also developed for simulating wave propagation in dispersive soil media. A study was performed on the application of infrared sensors to the landfill remediation problem, particularly for providing information on volatile organic compounds (VOC`s) in the atmosphere. A dust-emission lidar system is proposed for landfill remediation monitoring. Design specifications are outlined for a system which could be used to monitor dust emissions in a landfill remediation effort. The detailed results of the investigations are contained herein.

  20. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    International Nuclear Information System (INIS)

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references

  1. Fifty years of waste siting postponement

    International Nuclear Information System (INIS)

    Fifty years ago, when Enrico Fermi produced the first controlled nuclear chain reaction, he almost certainly realized he had created a material that could not be disposed of in ordinary ways. While records of radioactive waste disposal of the Curies, Becquerel, and others in the pre Stagg Field era are scattered, it appears likely that most of the waste material they produced was handled as ordinary garbage. There do not seem to be specific sites devoted to pre 1942 nuclear waste. This year marks five decades of attempts to solve the nuclear waste problem. By some measures, the solution is no closer than it was many years ago. If an attempt had been made in the late 1940s or 1950s, it would have been greeted with much less public outcry than today

  2. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  3. Predominant radoinuclides in Hanford site waste tanks

    International Nuclear Information System (INIS)

    Predominant radionuclides in Hanford Site waste tanks are determined. Predominant radionuclides are defined as those radionuclides presenting over 99 percent of the long-term or short-term risk to workers or members of the public. Predominant radionuclides are those for which best estimates of inventory are needed on a tank-by-tank basis

  4. Geotechnical measurements at the Maxey Flats, Kentucky low-level radioactive waste disposal site - lessons learned

    International Nuclear Information System (INIS)

    Prior to opening the Maxey Flats site in 1963, site selection investigations were conducted to assess basic geohydrologic characteristics of the site. These studies included the measurement of ground water levels and in-situ hydraulic conductivities at the site; however, testing of site materials did not include measurement of other geotechnical parameters of undisturbed and disturbed site materials. During the operation of the site, difficulties were encountered in maintaining the covers of filled trenches in a stable condition. Instabilities resulted from consolidation of the buried waste with subsequent settlement and disruption of the trench covers. Water accumulated in the completed trenches, and migration of contaminated water from one of the trenches occurred. The problems which have occurred at the Maxey Flats site and other sites have led to an appreciation of the need to understand the behavior of the site after use. This requires a knowledge of the geotechnical properties of site materials in both natural and disturbed states. Current practices include the measurement of these parameters and the design of critical disposal cell components to accommodate site conditions and materials properties. In retrospect, it is apparent that the studies at the Maxey Flats site should have included the measurement of consolidation properties of the disposed waste and backfill, and the hydraulic properties and shrink-swell characteristics of the cover soils. A knowledge of these parameters would have allowed the development of site designs and operating procedures which could have minimized the problems of trench cover instability and water accumulation

  5. Preliminary systems design study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and surrounding contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  6. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Citizen participation, which is both legally and morally mandated, must be an essential part of the nuclear waste repository siting process. The experience from siting other large-scale development projects suggests that a repository is unlikely to be sited without an effective citizen participation program to illustrate how the program can be based upon past lessons and principles derived from appropriate social science theory. To be effective, it must be based on open and mutally respectful communication between repository developers and local citizens and be guided by a trained and experienced community development professional

  7. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14C, 3H, 90Sr, 134137Cs, 60Co, 241Am, and 238239240Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  8. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase

  9. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  10. Identifying suitable piercement salt domes for nuclear waste storage sites

    International Nuclear Information System (INIS)

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes

  11. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  12. Compensation: Will it provide a waste site?

    International Nuclear Information System (INIS)

    Offering an attractive compensation package to persuade a community to voluntarily accept an otherwise undesirable facility may work in some cases, but it's not likely to work for high-level nuclear-waste disposal. The public perception of the risks involved and the public distrust of the institutions responsible for managing those risks are just too great. Much of the controversy stems from public perceptions that the site-selection process itself is unfair. Resentment builds when this occurs, and offers of compensation come to be labeled bribes or blood money. The driving force behind current nuclear-waste policy is intergenerational equity - the moral concept that the generation that produced the waste should dispose of it, permanently. Regardless of the moral appeal, doubts have been raised about the technical feasibility of this approach. Alternatives featuring intergenerational monetary compensation may better honor the commitment hor-ellipsis and reduce pressure to try to do what may be impossible

  13. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  14. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  15. Hanford Site Waste Storage Tank Information Notebook

    Energy Technology Data Exchange (ETDEWEB)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*.

  16. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    International Nuclear Information System (INIS)

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512

  17. A state viewpoint on waste repository siting

    International Nuclear Information System (INIS)

    There is continually growing concern over the DOE's implementation of the Nuclear Waste Policy Act, both from the institutional and technical standpoint. Not all parties are dissatisfied for the same reasons, yet there seems to be an increasing level of pessimism regarding the potential to develop a high-level nuclear waste disposal facility under the current confidence and credibility crisis that is being continually described to Congressional oversight committees. And the crisis appears to be just beginning with the prospect of major legal challenges to DOE's site selection activities and decisions only awaiting the release of the final Environmental Assessments. Already the site recommendation guidelines are the subject of a suit joined by nearly all affected interests in the first repository selection process, and some in the second. The site screening process, in advance of site nominations has been challenged and currently stand dismissed on the basis of a finding that the review was not timely. This decision is subject to appeal. It is our view that the intent and letter of the Nuclear Waste Policy Act demand technical excellence, which has yet to be exhibited relative to the nine sites now being narrowed for a selection of three to be recommended for site characterization. The Act also correctly recognized that without a public process involving, in a meaningful and substantive manner, all the affected parties, the essential element of public confidence is missing from the equation for success. Again, it is our view that the public process has been unacceptably compromised, to the point that public confidence has been severely wounded, maybe to an unrecoverable extent for the next few decades

  18. Virginia's experiences in siting radioactive waste facilities

    International Nuclear Information System (INIS)

    The Virginia public participation program was developed in conjunction with the 1982 siting study for disposal of low-level radioactive waste. The announcement of sixteen counties within the Piedmont Plateau area as the candidate region coincided with the Christmas holidays and was little noticed by the public. Attendance increased as siting activities progressed. The Virginia experience identified several key points to incorporate into the public participation program: identify the public to be solicited; define the level of commitment, both personnel and budget; identify budget constraints; and understand the legal requirements

  19. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, WIPP and TRAMPAC Acceptable.'' The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4).

  20. Rooting Characteristics of Vegetation near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, (3) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies

  1. Release of Halide Ions from the Buried Active Site of the Haloalkane Dehalogenase LinB Revealed by Stopped-Flow Fluorescence Analysis and Free Energy Calculations

    Czech Academy of Sciences Publication Activity Database

    Hladílková, Jana; Prokop, Z.; Chaloupková, R.; Damborský, J.; Jungwirth, Pavel

    2013-01-01

    Roč. 117, č. 46 (2013), s. 14329-14335. ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Grant ostatní: GA ČR(CZ) GAP207/12/0775 Institutional support: RVO:61388963 Keywords : access tunnel * buried active site * catalytic activity * enzyme mechanism * haloalkane dehalogenase * halide ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  2. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  3. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  4. Waste management units - Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  5. Electronic Denitration Savannah River Site Radioactive Waste

    International Nuclear Information System (INIS)

    Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations

  6. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  7. Geological Consideration for the Site Selection of Radioactive Waste at the PPTN Serpong Area

    International Nuclear Information System (INIS)

    Geological consideration is a main aspect in the exploration or selection of site for radioactive waste repository, because, really that repository site must be surrounded by geological system (geosphere). The objective of the site selection is to obtain a site which geologically capable to prevent the escape of waste pollution from repository to biosphere. Beside that the site must be free from geological processes which harmfull to longterm stability of the site. Descriptive analysis method was applied in this research and combined with evaluation by scoring methods. From the analysis result could be identified that PPTN Serpong morphologically consist of undulatory plains (elevation 80-100 m above msl), the lithology are alluvial deposits. Quarternary tuffs, pumiceous tuffs, clayey tuffs. sandy tuffs and limestone. The geological structure was supposed a horst and graben which buried more than 15 m since Pleistocene. Hydrological condition are moderately run-off, and the distance to the river is about 160 m. The depth of groundwater is 8.3 m, with parallel drainage system. Geological resources found in the site are land and groundwater. The most potential of geological hazard is supposed a rock mass movement. By the land evaluation could be concluded that PPTN Serpong area have moderate suitability for NSD site. (author)

  8. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  9. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    International Nuclear Information System (INIS)

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  10. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  11. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used.

  12. Existing data on the 216-Z liquid waste sites

    International Nuclear Information System (INIS)

    During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing data together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings

  13. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  14. Blasting at a Superfund chemical waste site

    International Nuclear Information System (INIS)

    During the summer of 1989, Maine Drilling and Blasting of Gardiner, Maine was contracted by Cayer Corporation of Harvard, Massachusetts to drill and blast an interceptor trench at the Nyanza Chemical Superfund Site in Ashland, Massachusetts. The interceptor trench was to be 1,365 feet long and to be blasted out of granite. The trench was to be 12 feet wide at the bottom with 1/1 slopes, the deepest cut being 30 feet deep. A French drain 12 feet wide by 15 to 35 feet deep was blasted below the main trench on a 2% slope from its center to each end. A French drain is an excavation where the rock is blasted but not dug. The trench would be used as a perimeter road with any ground water flow going through the French drain flowing to both ends of the trench. Being a Superfund project turned a simple blasting project into a regulatory nightmare. The US Environmental Protection Agency performed all the chemical related functions on site. The US Army Corps of Engineers was overseeing all related excavation and construction on site, as was the Massachusetts Department of Environmental Quality Engineering, the local Hazardous Wastes Council, and the local Fire Department. All parties had some input with the blasting and all issues had to be addressed. The paper outlines the project, how it was designed and completed. Also included is an outline of the blast plan to be submitted for approval, an outline of the Safety/Hazardous Waste training and a description of all the problems which arose during the project by various regulatory agencies

  15. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  16. Summary of climatic input for waste management site suitability criteria and state of progress

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G.L.

    1978-05-03

    Because groundwater movement can have important effects on buried nuclear wastes, hydrologists need to know if future climatic changes will influence the accuracy of groundwater flow calculations. Groundwater recharge (and therefore groundwater flow) depends on surface water balance. (Surface water balance equals precipitation less losses to evaporation, runoff, and storage.) To develop input data for modeling future climatic effects, we have made the following simplifying assumptions: (1) Climate (and therefore water balance) will behave in the future very much as it has in the past. (2) Groundwater recharge responds linearly to precipitation. (3) Future long-term climatic changes can be classified into groups or regimes that are similar to those of the past. Our current research is aimed at providing input data to the Waste Management Program's site suitability task. 16 figures, 1 table.

  17. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  18. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    Energy Technology Data Exchange (ETDEWEB)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2006-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  19. A CD with the wishes for the 21st century from thousands of readers of the science magazine "Newton", was buried at the Atlas construction site on 16.03.2000 (handling the CD: Giorgio Riviecco, Editor of "Newton")

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    A CD with the wishes for the 21st century from thousands of readers of the science magazine "Newton", was buried at the Atlas construction site on 16.03.2000 (handling the CD: Giorgio Riviecco, Editor of "Newton")

  20. Waste site grouping for 200 Areas soil investigations

    International Nuclear Information System (INIS)

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models

  1. Hazardous Material Storage Facilities and Sites - WASTE_SEPTAGE_SITES_IDEM_IN: Septage Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SEPTAGE_SITES_IDEM_IN is a point shapefile that contains septage waste site locations in Indiana, provided by personnel of Indiana Department of Environmental...

  2. Hanford Site liquid waste acceptance criteria

    International Nuclear Information System (INIS)

    This document provides the waste acceptance criteria for liquid waste managed by Waste Management Federal Services of Hanford, Inc. (WMH). These waste acceptance criteria address the various requirements to operate a facility in compliance with applicable environmental, safety, and operational requirements. This document also addresses the sitewide miscellaneous streams program

  3. Remediation of the low-level radioactive waste burial site at Williams Air Force Base

    International Nuclear Information System (INIS)

    The Air Force initiated a contract to develop and prepare detailed work plans for the removal of five concrete cylinders and associated field activities at site RW-11 at Williams AFB. Cylinders were believed to contain low-level radioactive waste including radium-luminous painted dials and radium-bearing parts. Although the general location of the cylinders was known, the exact configuration and contents of the cylinders was unknown. Plans included site preparation, excavation, monitoring, packaging, disposal, closure, and health and safety. The Health and Safety Plan was developed based on the premise that Radium 226 was the primary isotope of concern. The primary health hazard for workers and the public associated with site excavation was inhalation of airborne radioactive dust. Contingency plans were prepared in the event any radiation activity was detected above background levels or other radioactive isotopes were detected at the site. Criteria used to determine whether the site posed a threat to human health or the environment was based on an action level of 10 millirem Total Effective Dose Equivalent. Williams AFB is a closed installation that was placed on the Superfund National Priorities List. This paper discusses the plans what were developed to remove the buried waste, the execution of the plans, and closure of the site RW-11

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  5. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  6. Cleanup Verification Package for the 300-18 Waste Site

    International Nuclear Information System (INIS)

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete

  7. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    International Nuclear Information System (INIS)

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions

  8. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  9. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  10. Inactive waste sites at Hanford: The technical and management challenge

    International Nuclear Information System (INIS)

    This paper examines some of the key technical and management challenges facing the Hanford Site in developing a coordinated and consistent approach to the cleanup of inactive waste sites. These challenges are similar to those of the original Hanford Site selection and the development of nuclear technology some 45 years ago. To help in understanding these challenges, early Hanford Site history, onsite operations, past waste storage/disposal activities,and Hanford's approach to the characterization and cleanup of inactive waste sites are also described. 28 refs., 5 figs

  11. Risky business: Assessing cleanup plans for waste sites

    International Nuclear Information System (INIS)

    ORNL was chosen to perform human health and ecological risk assessments for DOE because of its risk assessment expertise. The U.S. Department of Energy's many production and research sites contain radioactive and hazardous wastes. These waste sites pose potential risks to the health and safety of remediation and waste management workers and the public. The risks, however, vary from site to site. Some sites undoubtedly present larger risks than others and should be cleaned up first. However, before the cleanup begins, DOE is required by law to prepare an environmental impact statement on any actions that may significantly affect the environment-even actions that would clean it up

  12. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  13. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  14. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  15. Storage of intermediate level waste at UKAEA sites

    International Nuclear Information System (INIS)

    This report describes the storage of wastes at UKAEA sites and accordingly contributes to the investigations conducted by the Department of the Environment into the Best Practicable Environmental Option (BPEO) for radioactive waste storage and/or disposal. This report on the storage of ILW should be read in conjunction with a similar NII funded CTS study for Licensed Sites in the UK. (author)

  16. Remaining Sites Verification Package for 132-D-3, 1608-D Effluent Pumping Station. Attchment to Waste Site Reclassification Form 2005-033

    International Nuclear Information System (INIS)

    Decommissioning and demolition of the 132-D-3 site, 1608-D Effluent Pumping Station was performed in 1986. Decommissioning included removal of equipment, water, and sludge for disposal as radioactive waste. The at- and below-grade structure was demolished to at least 1 m below grade and the resulting rubble buried in situ. The area was backfilled to grade with at least 1 m of clean fill and contoured to the surrounding terrain. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling

  17. Remaining Sites Verification Package for the 100-D-2 Lead Sheeting Waste Site, Waste Site Reclassification Form 2007-030

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2008-03-19

    The 100-D-2 Lead Sheeting waste site was located approximately 50 m southwest of the 185-D Building and approximately 16 m north of the east/west oriented road. The site consisted of a lead sheet covering a concrete pad. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  18. Site-Specific Waste Management Instruction - 100-DR-1 Group 2 Sites

    International Nuclear Information System (INIS)

    This site-specific waste management instruction (SSWMI) provides guidance for the management of wastes that may be generated during the excavation and remediation of the 100-DR-1 Group 2 sites. The management of waste generated as a result of these activities will be as directed in this SSWMI. This SSWMI will be revised to incorporate guidance for management of wastes encountered that are not addressed in this SSWMI

  19. Landfills, Hazardous Waste - WASTE_INDUSTRIAL_IDEM_IN: Industrial Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_INDUSTRIAL_IDEM_IN is a point shapefile that contains industrial waste site locations in Indiana, provided by personnel of Indiana Department of Environmental...

  20. Continuum soil modeling in the static analysis of buried structures

    International Nuclear Information System (INIS)

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analysis of buried structures with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the U.S. Department of Energy's Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement. In predicting the response of the buried high-heat single-shell waste-storage tank 241-C-106 to thermal cycling and significant surcharge loading, a Drucker-Prager plasticity model is used to address soil compliance and surcharge load distribution. Triaxial test data from the Hanford Site are used to derive soil model parameters, which are needed to describe the Drucker-Prager constitutive model

  1. On-site or off-site treatment of medical waste: a challenge

    OpenAIRE

    Taghipour, Hassan; Mohammadyarei, Taher; Asghari Jafarabadi, Mohamad; Asl Hashemi, Ahmad

    2014-01-01

    Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, com...

  2. Waste certification review program at the Savannah River Site

    International Nuclear Information System (INIS)

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators' waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988)

  3. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  4. Chemical pretreatment of Savannah River Site nuclear waste for disposal

    International Nuclear Information System (INIS)

    This work describes two processes, Extended Sludge Processing and In-Tank Precipitation, which have been developed and demonstrated at full-scale to pretreat the Savannah River Site High-Level Waste for permanent disposal. These processes will be carried out in waste storage tanks which have been modified for chemical processing. These processes will concentrate the radioactivity into a small volume for vitrification. The bulk of the waste will be sufficiently decontaminated such that it can be disposed of as a low-level waste. The decontaminated waste will be incorporated into a cement wasteform in the Saltstone Facility

  5. Savannah River Site Waste Management Program Plan, FY 1993

    International Nuclear Information System (INIS)

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes

  6. A common-sense probabilistic approach to assessing inadvertent human intrusion into low-level radioactive waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Each site disposing of low-level radioactive waste is required to prepare and maintain a site-specific performance assessment (1) to determine potential risks posed by waste management systems to the public, and the environment, and (2) to compare these risks to established performance objectives. The DOE Nevada Operations Office, Waste Management Program recently completed a one-year study of site-specific scenarios for inadvertent human intrusion by drilling into buried low-level radioactive waste sites, as part of ongoing performance assessment studies. Intrusion scenarios focus on possible penetration of buried waste through drilling for sources of groundwater. The probability of drilling penetration into waste was judged to be driven primarily by two settlement scenarios: (1) scattered individual homesteaders, and (2) a community scenario consisting of a cluster of settlers that share drilling and distribution systems for groundwater. Management control factors include institutional control, site knowledge, placards and markers, surface barriers, and subsurface barriers. The Subject Matter Experts concluded that institutional control and site knowledge may be important factors for the first few centuries, but are not significant over the evaluation period of 10,000 years. Surface barriers can be designed that would deter the siting of a drill rig over the waste site to an effectiveness of 95%. Subsurface barriers and placards and markers will not as effectively prevent inadvertent human intrusion. Homestead and community scenarios were considered by the panel to render a site-specific probability of around 10% for inadvertent human intrusion. If management controls are designed and implemented effectively, then the probability of inadvertent human intrusion can be reduced to less than 1%

  7. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  8. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  9. Possible sites for shallow burial of radioactive waste

    International Nuclear Information System (INIS)

    A desk study is reported of possible sites in England for shallow burial of suitable radioactive waste. No sites were visited. The criteria considered most important were: a suitable location should be a minimum of 2000 metres square; and the disposal stratum shall consist of clay or similar material of low permeability such that the waste can be isolated from groundwater systems. Other considerations are listed. A total of 233 sites were identified: these were reduced to 24 sites after assessing by a process of progressive elimination. More details of these 24 sites are given. (U.K.)

  10. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  11. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  12. Multi-point injection demonstration for solidification of shallow buried waste at Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The multi-point injection (MPI) technology is a precision, high-velocity jetting process for the in situ delivery of various agents to treat radiological and/or chemical wastes. A wide variety of waste forms can be treated, varying from heterogeneous waste dumped into shallow burial trenches to contaminated soils consisting of sands/gravels, silts/clays and soft rock. The robustness of the MPI system is linked to its broad range of applications which vary from in situ waste treatment to creation of both vertical and horizontal barriers. The only major constraint on the type of in situ treatment which can be delivered by the NTI system is that agents must be in a slurry form

  13. Waste Area Grouping 4 Site Investigation Sampling and Analysis Plan, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Waste Area Grouping (WAG) 4 is one of 17 WAGs within and associated with Oak Ridge National Laboratory (ORNL), on the Oak Ridge Reservation in Oak Ridge, Tennessee. WAG 4 is located along Lagoon Road south of the main facility at ORNL. WAG 4 is a shallow-waste burial site consisting of three separate areas: (1) Solid Waste Storage Area (SWSA) 4, a shallow-land burial ground containing radioactive and potentially hazardous wastes; (2) an experimental Pilot Pit Area, including a pilot-scale testing pit; and (3) sections of two abandoned underground pipelines formerly used for transporting liquid, low-level radioactive waste. In the 1950s, SWSA 4 received a variety of low-and high-activity wastes, including transuranic wastes, all buried in trenches and auger holes. Recent surface water data indicate that a significant amount of 90Sr is being released from the old burial trenches in SWSA 4. This release represents a significant portion of the ORNL off-site risk. In an effort to control the sources of the 90Sr release and to reduce the off-site risk, a site investigation is being implemented to locate the trenches containing the most prominent 90Sr sources. This investigation has been designed to gather site-specific data to confirm the locations of 90Sr sources responsible for most off-site releases, and to provide data to be used in evaluating potential interim remedial alternatives prepared to direct the site investigation of the SWSA 4 area at WAG 4

  14. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  15. Waste treatment at the La Hague and Marcoule sites

    International Nuclear Information System (INIS)

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema's plants

  16. 137Cs and 226Ra determination in soil and land snails from a radioactive waste site

    International Nuclear Information System (INIS)

    Environmental radioactivity studies related to nuclear facilities can provide information concerning the transfer of radionuclides to the surrounding soils, water and the local biota. A study of 226Ra, 137Cs and 40K content in soils and in land snails, Helix aspersa Mueller, has been performed at the confined Storage Centre for Radioactive Waste (Maquixco, Mexico). At this site, solid and liquid radioactive waste has been stored for two decades; tailing piles of radiometric ore also stood for some time before being buried in specific containers. The nuclear technique used was gamma spectrometry. Atomic absorption spectrophotometry was used for soil and land snails chemical analysis. The preliminary results obtained in soil samples show 226Ra and 137Cs values ranging from 88 to 19979? and from 89 to 4961 Bq/kg (dry wt.), respectively, depending on the sampling region. For the snails, 226Ra levels in shell samples up to a factor of 9 greater were obtained for the site samples as compared with reference samples collected 100 km away. The results are discussed as a function of the uranium ore tailings localization at the site; a preliminary estimation of concentration factors (soil/snail) is also intended

  17. Expected brine movement at potential nuclear waste repository salt sites

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  18. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  19. Partial epineural burying of nerve grafts with different sizes next to or distant from neurorrhaphy?s site: histological and electrophysiological studies in rat sciatic nerves

    Directory of Open Access Journals (Sweden)

    Cunha Marco Túlio Rodrigues da

    2001-01-01

    Full Text Available The aim of the present study was to compare and correlate histologically and electromyographically the effects of partial epineural burying of sural nerve segments in sectioned and sutured rat sciatic nerves. Sixty adult male Wistar rats were operated on 3 groups: Group 1, sural nerve graft, 9mm long, placed next to neurorrhaphy; Group 2, sural nerve graft, 9mm long, buryied 10mm distant from neurorrhaphy; Group 3, sural nerve graft, 18mm long, set next to neurorrhaphy. The morphological features were examined at light microscope after 3 months in 45 rats. The elements observed were: vascularization, vacuoles in nerve fibers, mastocytes and inflammatory infiltrate. The morphometry was made after 6 months in 15 rats from Group 1, 2 and 3, measuring external nerve fiber diameters and counting myelinated nerve fibers/mm². The electrophysiological study was perfomed after 6 months, registering maximum amplitude and frequency of EMG pontentials, at rest, in extensor digitorum longus muscle. Group 3 rats presented sciatic nerves better conserved morphologically and mean external nerve fiber diameters greater than those from Groups 1 and 2. There were no significant differences in density of nerve fibers/mm², and in the electrophysiological study in rats from Group 1, 2 and 3. The epineural burying of sural nerve grafts with greater length and placed next to the neurorrhaphy?s site had a significantly better regeneration of the histological features than the smaller ones distant from neurorrhaphy.

  20. Status of siting studies for a near surface repository site for radioactive wastes in the Philippines

    International Nuclear Information System (INIS)

    The Philippines, through the Philippine Nuclear Research Institute (PNRI), decided to conduct a study on siting a low level radioactive waste disposal facility. The infrastructure set up for this purpose, the radioactive waste disposal concept, the overall siting process, the methodology applied and preliminary results obtained are described in this paper. (author)

  1. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option

  2. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  3. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  4. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  5. Plant cover and water balance in gravel admixtures at an arid waste-burial site

    International Nuclear Information System (INIS)

    Isolation of radioactive waste buried in unsaturated zones will require long-term control of recharge and erosion. Soil covers control recharge at and sites by storing rainwater close enough to the surface to be removed by evapotranspiration. Surface layers of rock or gravel control erosion at sites with sparse vegetation, but can also alter plant habitat and cause recharge through interred waste. As an alternative, gravel mixed into the uppermost soil law may control erosion ever the king-term better than surface gravel layers. Gravel admixtures may also not influence plant establishment or sod water balance in waste-site covers. The interactive effects of gravel admixture concentration, vegetation, and precipitation on soil water content and plant cover were measured at the US Department of Energy's Hanford Site. Results support use of a combination of vegetation and gravel admixtures for erosion control. Vegetation seasonally depleted root zone water storage to about 6.5 volume % regardless of precipitation amount or the presence of gravel admixture amendments. In contrast, yearly increases in soil water storage as deep as 225 cm in plots without vegetation may be a leading indicator of recharge. The composition and abundance of vegetation changed over time and with precipitation amount, but was not influenced by gravel amendments. Seeded wheatgrasses [Agropyron sibericum Wilde and Agropyron dasystachyum (Hook.) Scribn.] established only when irrigated with twice average precipitation, but persisted after the irrigation ceased. Cheatgrass (Bromus tectorum L.) and Russian thistle (Salsola kali L.) colonized areas receiving both irrigation and ambient precipitation. Stands with wheatgrasses extracted water more rapidly and depleted soil water to lower levels than cheatgrass-dominated stands. Increases in gravel cover and near-surface gravel concentrations after 5 yr were evidence of the formation of a protective gravel veneer. 44 refs., 8 figs., 2 tabs

  6. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  7. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  8. Understanding the ecological background of rice agriculture on the Ningshao Plain during the Neolithic Age: pollen evidence from a buried paddy field at the Tianluoshan cultural site

    Science.gov (United States)

    Li, Chunhai; Zheng, Yunfei; Yu, Shiyong; Li, Yongxiang; Shen, Huadong

    2012-03-01

    The progressive rise of atmospheric CH4 level since 5 ka has been hypothesized to result from human agricultural activities that turned forested lands, which would otherwise be a carbon sink, into paddy fields. Increasing numbers of Neolithic cultural sites unearthed in coastal eastern China, providing unique opportunities to test this hypothesis. Here, we present detailed pollen data from a buried paddy field at Tianluoshan cultural site on the Ningshao Plain, eastern China, to reconstruct the ecological conditions associated with the establishment of paddy fields. Stratigraphic data, radiocarbon ages, and pollen analyses show that vegetation underwent six phases of evolution and paddy fields were developed from 7000 to 4200 cal. yr BP. We found no evidence of slash-and-burn agriculture at the study site. Together with no presence of the irrigation system, our pollen data suggest the paddy fields at this site originated from wetlands. Hence, our findings do not support the hypothesis that anthropogenic-induced deforestation play ed a significant role in the rise of the atmospheric CH4 rise since the middle Holocene.

  9. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  10. Modular risk analysis for assessing multiple waste sites

    International Nuclear Information System (INIS)

    Human-health impacts, especially to the surrounding public, are extremely difficult to assess at installations that contain multiple waste sites and a variety of mixed-waste constituents (e.g., organic, inorganic, and radioactive). These assessments must address different constituents, multiple waste sites, multiple release patterns, different transport pathways (i.e., groundwater, surface water, air, and overland soil), different receptor types and locations, various times of interest, population distributions, land-use patterns, baseline assessments, a variety of exposure scenarios, etc. Although the process is complex, two of the most important difficulties to overcome are associated with (1) establishing an approach that allows for modifying the source term, transport, or exposure component as an individual module without having to re-evaluate the entire installation-wide assessment (i.e., all modules simultaneously), and (2) displaying and communicating the results in an understandable and useable maimer to interested parties. An integrated, physics-based, compartmentalized approach, which is coupled to a Geographical Information System (GIS), captures the regional health impacts associated with multiple waste sites (e.g., hundreds to thousands of waste sites) at locations within and surrounding the installation. Utilizing a modular/GIS-based approach overcomes difficulties in (1) analyzing a wide variety of scenarios for multiple waste sites, and (2) communicating results from a complex human-health-impact analysis by capturing the essence of the assessment in a relatively elegant manner, so the meaning of the results can be quickly conveyed to all who review them

  11. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  12. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    International Nuclear Information System (INIS)

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method

  13. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  14. Identification of potential transuranic waste tanks at the Hanford Site

    International Nuclear Information System (INIS)

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document

  15. The Hanford site tank waste remediation system technical strategy

    International Nuclear Information System (INIS)

    The US Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of radioactive tank the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90S and 137Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. A Tank Waste Remediation System Program was established by the US DOE Energy in 1991 to safely manage and immobilize these wastes for permanent disposal of the high-level waste fraction in a geologic repository. The technical strategy to manage and dispose of these wastes has been revised and successfully negotiated with the regulatory agencies

  16. Hazardous Material Storage Facilities and Sites - WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN: Waste Site Locations for Disposal, Storage and Handling of Solid Waste and Hazardous Waste in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN is a point shapefile that contains waste site locations for the disposal, storage, and handling of solid and hazardous waste...

  17. Radiochemical measurements for evaluating air quality in the vicinity of low-level waste burial sites - the West Valley experience

    International Nuclear Information System (INIS)

    Radioactive wastes buried in the commercial low-level burial site at West Valley, New York, consist primarily of low-density, low-specific-activity wastes. Except for contaminated soil and building rubble the wastes were shipped and buried uncompacted in steel drums, wooden boxes, cardboard cartons, or concrete casks. The wet climate at West Valley led to decomposition of the containers and biodegradation of much of the organic material in the wastes. As anoxic conditions developed in the trenches, appreciable quantities of organic complexing agents formed in the trench water, and a variety of gaseous decomposition products formed in the void space within each trench. The escape of the gaseous decomposition products through the trench cover presents the most significant pathway for uncontrolled release of radioactivity from the trenches and the greatest impact on air quality at the now inoperative West Valley site. The radioactive gases HT, 85Kr, 14CH4, 3HCH3, 14CO, 14CO2, 222Rn, and 14C- and 3H-hydrocarbons were identified in the voids beneath the trench covers. Studies were conducted to identify radionuclides and chemical species vented to the atmosphere, to evaluate the mechanisms of venting, and to quantify the leak rate of each radioactive gas. These studies required specialized techniques for sample collection, species separation, and radionuclide measurement. A close relationship exists between the experimental data obtained and the computer models which were developed to estimate gas production rates in a trench and the transport to and escape from the surface of a trench. As a result, field measurements and computer calculations are found to be as important for post-closure characterization of the site as are the radiochemical measurements

  18. Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site, Waste Site Reclassification Form 2008-028

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-27

    The 120-F-1 waste site consisted of two dumping areas located 660 m southeast of the 105-F Reactor containing laboratory equipment and bottles, demolition debris, light bulbs and tubes, small batteries, small drums, and pesticide contaminated soil. It is probable that 108-F was the source of the debris but the material may have come from other locations within the 100-F Area. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. PMID:25002369

  20. Greater confinement disposal of high activity and special case wastes at the Nevada Test Site: A unified migration assessment approach

    International Nuclear Information System (INIS)

    The Department of Energy's Nevada Field Office has disposed of a small quantity of high activity and special case wastes using Greater Confinement Disposal facilities in Area 5 of the Nevada Test Site. Because some of these wastes are transuranic radioactive wastes, the Environmental Protection Agency standards for their disposal under 40 CFR Part 191 which requires a compliance assessment. In conducting the 40 CFR Part 191 compliance assessment, review of the Greater Confinement Disposal inventory revealed potentially land disposal restricted hazardous wastes. The regulatory options for disposing of land disposal restricted wastes consist of (1) treatment and monitoring, or (2) developing a no-migration petition. Given that the waste is already buried without treatment, a no-migration petition becomes the primary option. Based on a desire to minimize costs associated with site characterization and performance assessment, a single approach has been developed for assessing compliance with 40 CFR Part 191, DOE Order 5820.2A (which regulates low-level radioactive wastes contained in Greater Confinement Disposal facilities) and developing a no-migration petition. The approach consists of common points of compliance, common time frame for analysis, and common treatment of uncertainty. The procedure calls for conservative bias of modeling assumptions, including model input parameter distributions and adverse processes and events that can occur over the regulatory time frame, coupled with a quantitative treatment of data and parameter uncertainty. This approach provides a basis for a defensible regulatory decision. In addition, the process is iterative between modeling and site characterization activities, where the need for site characterization activities is based on a quantitative definition of the most important and uncertain parameters or assumptions

  1. Use of a state-of-the-art model in generic designs of shallow land repositories for low-level wastes

    International Nuclear Information System (INIS)

    A state of the art model is described for simulating hydrologic and soil erosion processes at shallow land waste disposal sites. Applications of the model in waste site selection and in the management of waste disposal sites are discussed relative to minimizing soil erosion of trench caps and percolation of soil water through trench caps into underlying buried wastes

  2. Waste transportation from production sites to deep geological repository

    International Nuclear Information System (INIS)

    In France, the 2006 Programme Act (No. 2006-739 June 28) on the Sustainable Management of Radioactive Materials and Wastes has set a goal for a start of deep geological repository operations in 2025, with an application in 2015, and a Parliament decision in 2016 on reversibility requirements. This objective requires reviewing the feasibility of waste transportation from production sites to the repository. The paper will firstly examine the transportation requirements for ILW-LL and HLW wastes, and show the need for IAEA Type B transport casks for those wastes. HLW wastes have already been transported, but ILW-LL wastes have seldom been transported. Some transportation casks are already under development by waste producers because some wastes have to be returned from Areva's reprocessing facility to their home countries. However a number of these wastes will need a specific development in order to ensure their transport to the repository. The large variety of these wastes will require either to develop specific casks model, either to develop some multipurpose casks models. Then, the repository operations will create some new nuclear routes and waste flows. Some annual flows may require new capacities for road or railway transports on some production sites. On the repository site, it is also important to examine how and where those transport might go. This might require creating new roads or railways infrastructures. A transport terminal will also be needed on site. Discussion on these topics will be part of a dialogue with local stakeholders. One other concern for ANDRA is to promote a sustainable development approach on these transports, which leads to favour as much as possible railroad transport. A last, but not least, concern is to optimize the investment in transport casks and in the other transport means such as trucks, trailers and wagons, and to ensure a fluent operation of the repository. This leads to analyze how a surface interim storage built on the

  3. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  4. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  5. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    International Nuclear Information System (INIS)

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies

  6. Radiological survey of the low-level radioactive waste burial site at the Palos Forest Preserve, Illinois

    International Nuclear Information System (INIS)

    Two landfill sites containing low-level radioactive waste material, Site A and Plot M, are located 14 miles southwest of Chicago, Illinois in the Palos Forest Preserve. Site A is the former location of the Argonne National Laboratory. Buried at Site A in 1956 were the dismantled reactor shells, building walls, and cooling towers from three of the world's first nuclear reactors. Plot M was used from 1943 to 1949 for burial of low-level radioactive wastes derived from Site A operations and from the University of Chicago Metallurgical Laboratory. Tritiated water was detected in 1973 in some of the Forest Preserve picnic wells located 500 to 1000 yards north of Plot M. An extensive surveillance program was initiated in 1976 to: (1) study the elevated tritium content of some picnic wells and its observed seasonal fluctuations, (2) establish if other radionuclides buried in Plot M or remaining at Site A have migrated, (3) establish the rate of groundwater movement in the glacial till and underlying dolomite aquifer, (4) determine the tritium content of the till and aquifer, and (5) predict future tritium levels in the well water. Several test wells were installed in the soil and dolomite bedrock to monitor radioactivity in groundwater, measure water levels, and provide other geohydrological information. Tritium has migrated from the Plot M burial trenches into the surrounding drift. The tritium plume, the contaminated zone in the drift in which tritium concentrations exceed 10 nanocuries per liter of water (nCi/L), has migrated at least 165 feet horizontally northward and 130 feet vertically downward to the bedrock surface. Small amounts of other radionuclides - uranium, plutonium, and strontium-90 - have been found in boreholes beneath the concrete cap covering Plot M, but not in the subsoil outside of the Plot. The radionuclide concentrations found to date are too low to result in any measureable radiation exposure to the public

  7. Site investigation report for Waste Area Grouping 4 at Oak Ridge National Laboratory. Volume 1, Text: Environmental Restoration Program

    International Nuclear Information System (INIS)

    Waste Area Grouping (WAG) 4 is one of 17 WAGs within and associated with Oak Ridge National Laboratory (ORNL). WAG 4 is located south of the main facility along Lagoon Road. WAG 4 consists of three separate areas: Solid Waste Storage Area (SWSA) 4, a shallow-land-burial ground containing radioactive and potentially hazardous wastes; an experimental Pilot Pit Area, which includes a pilot-scale testing pit; and sections of two abandoned underground pipelines used for transporting liquid, low-level, radioactive waste. SWSA 4 is the largest site at WAG 4, covering approximately 23 acres. In the 1950s, SWSA 4 received a variety of low- and high-activity wastes, including transuranic wastes, all buried in trenches and auger holes. Recent surface water data, collected during monitoring of the tributary to White Oak Creek as part of WAG 2 investigations as well as during previous studies conducted at WAG 4, indicate that a significant amount of 90Sr is being released from the old burial trenches in SWSA 4. This release represents a significant portion of the ORNL off-site risk (DOE 1993). With recent corrective measures the proportion of the release has increased in 1995. A detailed discussion of the site history and previous investigations is presented in the WAG 4 Preliminary Assessment Report, ORNL/ER-271 (Energy Systems 1994b). In an effort to control the sources of the 90Sr release and to reduce the off-site risk, a site investigation was initiated to pinpoint those trenches that are the most prominent 90Sr sources

  8. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  9. Conflict resolution in low-level waste facility siting

    International Nuclear Information System (INIS)

    Siting a low-level waste facility is only one part of the low-level waste management process. But it is a crucial part, a prism that focuses many of the other issues in low-level waste management. And, as the 1990 and 1992 milestones approach, siting has a urgency that makes the use of alternative dispute resolution (ADR) techniques especially appropriate, to avoid protracted and expensive litigation and to reach creative and durable solutions. Drawing upon literature in the ADR field, this paper discusses ADR techniques as they apply to low-level waste management and the groundwork that must be laid before they can be applied. It also discusses questions that can arise concerning the terms under which negotiations are carried out. The paper then give suggestions for achieving win/win negotiations. Potential objections to negotiated agreements and potential answers to those objections are reviewed, and some requisites for negotiation are given

  10. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  11. Status of siting a high level waste repository in France

    International Nuclear Information System (INIS)

    , institutes and research organizations. High-level long-lived waste from the nuclear power generation cycle in France is stabilized by reprocessing. After the uranium and plutonium present in the spent fuel are separated, the minor actinides and fission products are stabilized in a silica glass matrix. The hulls and endpieces, which were formerly immobilized in cement grout until 1995, are now compacted. Disposal studies demand the development of inventory models reflecting the quantities and grades of waste which will have to be disposed of at a given date. These models can be used to design the disposal structures and to evaluate long-term safety. They are prepared on the basis of existing waste and on future production hypotheses. To offer an idea, a simple model presumes the continuation of current production, both in quantity and grade, until 2040. The typical volumes considered in this model are: about 7600 m3 of vitrified waste; about 80,000 m3 of intermediate level waste; about 25,000 m3 of unreprocessed spent UOX and MOX fuel. Besides this simple model, other models, assuming no reprocessing after 2010, or total reprocessing, are also being investigated. The different alternatives for repository design are considered, with proposals of modular concepts offering relative simplicity of design, as well as architectural flexibility. The studies of the relevant disposal concepts cannot be conducted in generic terms. They demand the identification of the sites for which the development of concepts can fully exploit the actual geological characteristics. Methodological studies will nonetheless serve to identify the necessary basic research guidelines, and to characterize the sites from the angle of a preliminary idea of the requirements they will have to meet. The rest of the presentation shows the lessons drawn from the first siting attempts, the research process carried into practice, its progress and first results, and the future outlook. (author)

  12. Cleanup Verification Package for the 300-8 Waste Site

    International Nuclear Information System (INIS)

    This cleanup verification package documents completion of remedial action for the 300-8 waste site. This waste site was formerly used to stage scrap metal from the 300 Area in support of a program to recycle aluminum. This cleanup verification package documents completion of remedial action for the 300-8 waste site. The 300-8 site is located within the 300-FF-2 Operable Unit in the 300 Area of the Hanford Site in southeastern Washington State. The site was formerly used to stage scrap metal from the 300 Area in support of a program to recycle aluminum. Staging and loading activities at the site scattered scrap metal over an approximately 34,000-m2 (366,000-ft2) area, with residual metallic debris generally present within the top 0.4 m (1.5 ft) of soil. Site excavation and waste disposal are complete, and post-excavation geophysical surveys confirm the removal of residual metallic debris. The exposed surfaces have been sampled and analyzed to verify attainment of the remedial action goals. Results of the sampling, laboratory analyses, and data evaluations for the 300-8 site indicate that all remedial action objectives and goals for direct exposure, protection of groundwater, and protection of the Columbia River have been met for industrial land use (Table ES-1). Because residual soil concentrations indicated that cleanup levels for more stringent land uses may have been achieved for the 300-8 site, a supplemental evaluation was performed against unrestricted land-use cleanup objectives established in the Explanation of Significant Differences for the 300-FF-2 Operable Unit Record of Decision (EPA 2004). Results of the evaluation (Table ES-2) demonstrate that residual contaminant concentrations do not preclude any future uses (as bounded by the rural-residential scenario) and allow for unrestricted use of shallow zone soils (i.e., surface to 4.6 m (15 ft) deep). This site does not have a deep zone; therefore, no deep zone institutional controls are required. The site

  13. Remaining Sites Verification Package for the 128-B-3 Burn Pit Site, Waste Site Reclassification Form 2006-058

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-11-17

    The 128-B-3 waste site is a former burn and disposal site for the 100-B/C Area, located adjacent to the Columbia River. The 128-B-3 waste site has been remediated to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results of sampling at upland areas of the site also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  14. On-site vs off-site management of environmental restoration waste: A cost effectiveness analysis

    International Nuclear Information System (INIS)

    The Sandia National Laboratories Environmental Restoration Project is expected to generate relatively large volumes of hazardous waste as a result of cleanup operations. These volumes will exceed the Laboratories existing waste management capacity. This paper presents four options for managing remediation wastes, including three alternatives for on-site waste management utilizing a corrective action management unit (CAMU). Costs are estimated for each of the four options based on current volumetric estimates of hazardous waste. Cost equations are derived for each of the options with the variables being waste volumes, the major unknowns in the analysis. These equations provide a means to update cost estimates as volume estimates change. This approach may be helpful to others facing similar waste management decisions

  15. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  16. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    The Radioactive Waste Management Project (RWMP) at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste (MW). The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B Permit application, pertinent DOE guidelines governing waste acceptance criteria (WAC) and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with as low as reasonably achievable (ALARA) precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  17. Geotechnical hazards associated with closed municipal solid waste landfill sites

    Science.gov (United States)

    Powrie, W.; Richards, D.; Beaven, R.

    2015-09-01

    As pressure for new infrastructure and development grows, it is inevitable that building projects will encounter some of the c20,000 closed former solid waste landfills in the UK, many of which will have accepted municipal solid wastes (MSW). Construction on or across these sites brings a special set of geohazards associated with the potential for large and difficult to predict settlements, gas (and odour) release or generation, contaminated leachate and the breach of containment systems and other environmental controls. The presentation will discuss these issues with reference to recent research into understanding and predicting settlements in municipal solid waste landfills; assessing the total, current and residual gas potential of biodegradable wastes; the role of the hydraulic regime in the flushing of contaminants from the waste and the quality of leachate; and the need or otherwise for the long term integrity of engineered barriers and controls.

  18. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  19. Savannah River Site Waste Removal Program - Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Saldivar, E.

    2002-02-25

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  20. Modeling in support of Hanford site waste management

    International Nuclear Information System (INIS)

    The waste management practices for both radioactive and hazardous wastes at the Hanford Site are designed to comply with all applicable state and federal regulations. Results from numerical simulation models are used to assess the risk to human health and the environment. The numerical models simulate flow and transport of contaminants through the vadose zone and the underlying unconfined aquifer. Numerical simulation results from several studies are summarized

  1. Hanford site waste minimization and pollution prevention awareness program

    Energy Technology Data Exchange (ETDEWEB)

    Kirkendall, J.R.

    1996-09-23

    This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

  2. Treatment of Leachate of Savar Solid Waste Landfill Site

    OpenAIRE

    Arifuzzaman; Md. Mostafizur Rahman; Farhana Akhter,

    2013-01-01

    Landfill leachate is complex waste water with considerable variation in both quality and quantity. The composition and concentration of pollutants are influenced by the types of waste deposited, hydro geological factors and more significant by the age of the landfill site. In general, leachate is highly contaminated with organic contaminants measured as chemical oxygen demand (COD), biochemical oxygen demand (BOD) and also with high ammonium nitrogen concentration. Aerobic biological processe...

  3. A Decision Making Tool for Hazardous Waste Landfill Site Selection

    OpenAIRE

    P. Pandiyan; A. Murugesan; T. Vidhyadevi; S. Dineshkirupha; M. Pulikesi; Sivanesan, S

    2011-01-01

    Problem statement: Continuous global environmental crisis and degradation has been a challenge for the sustainability of living on earth. This threat was posed by industrialization, high products need, urbanization and population growth activities. As a result, the hazardous waste generation has tremendously increased. Approach: Landfill was one of the positive approaches to handle hazardous waste generated in great quantity. The appropriate selection of landfill site play...

  4. Management of radioactive wastes at power reactor sites in India

    International Nuclear Information System (INIS)

    Indian nuclear power programme, at the present stage, is based on natural uranium fuelled heavy water moderated CANDU type reactors except for the first nuclear power station consisting of two units of enriched uranium fuelled, light water moderated, BWR type of reactors. Some of the salient aspects of radioactive waste management at power reactor sites in India are discussed. Brief reviews are presented on treatment of wastes, their disposal and environmental aspects. Indian experience in power reactor waste management is also summarised identifying some of the areas needing further work. (auth.)

  5. Communication across 300 generations: deterring human interference with waste deposit sites

    International Nuclear Information System (INIS)

    The conditions attendant on the deep land burial of nuclear waste products raise a number of possible scenarios to cover the necessary 10,000 years of burial. However, no matter what kind of futuristic scenario obtains, it is desirable to develop an information system indicating the locale and nature of the deposit site and the types of materials stored, along with forewarnings not to interefere with the sites. A variety of such informational sites are suggested. Attention then turns to the recipients of such messages, recognizing from the outset that the psychological/perceptual makeup of individuals across the next 300 or so generations is virtually impossible to predict, particularly since new technologies may well alter that makeup in the furture. Nevertheless, current evidence suggests that certain human characteristics may be considered universal, and that these suggest the incorporation of selected sign signification into the message system. There are other such characteristics that, while probably not intrinsic, can probably be acquired with a minimum of formal training. That still leaves much of the message content to be deliberately created and, hence, learned. The common trefoil or other developed biohazardous signs emerge as the best candidates for a generic base symbol for the buried material

  6. Communication across 300 generations: deterring human interference with waste deposit sites

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, P.H.

    1984-04-01

    The conditions attendant on the deep land burial of nuclear waste products raise a number of possible scenarios to cover the necessary 10,000 years of burial. However, no matter what kind of futuristic scenario obtains, it is desirable to develop an information system indicating the locale and nature of the deposit site and the types of materials stored, along with forewarnings not to interefere with the sites. A variety of such informational sites are suggested. Attention then turns to the recipients of such messages, recognizing from the outset that the psychological/perceptual makeup of individuals across the next 300 or so generations is virtually impossible to predict, particularly since new technologies may well alter that makeup in the furture. Nevertheless, current evidence suggests that certain human characteristics may be considered universal, and that these suggest the incorporation of selected sign signification into the message system. There are other such characteristics that, while probably not intrinsic, can probably be acquired with a minimum of formal training. That still leaves much of the message content to be deliberately created and, hence, learned. The common trefoil or other developed biohazardous signs emerge as the best candidates for a generic base symbol for the buried material.

  7. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  8. Air quality monitoring at toxic waste sites: A Hanford perspective

    International Nuclear Information System (INIS)

    Air quality monitoring is being conducted as part of remedial investigation activities at waste sites in the 1100-EM-1 Operating Unit at the US Department of Energy's Hanford Site. Sampling is being conducted for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) (including pesticides and PCBs), metals, and asbestos. The monitoring program is being conducted in three phases: before, during, and after intrusive remedial investigation activities. At each waste site, battery-powered monitoring equipment is positioned at one location upwind of the site (to measure background concentrations of pollutants) and typically at two locations downwind of the site. Control samples are used to identify sample contamination that may occur during handling or analysis. All samples are analyzed using methods approved by the US Environmental Protection Agency. The results from the first phase of sampling have been assessed and are being used to upgrade sampling and laboratory analysis procedures. 5 refs

  9. Application of neural networks to waste site screening

    International Nuclear Information System (INIS)

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report

  10. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as (1) a tool for disseminating information about LLW management, (2) a vehicle that can foster communication, and (3) a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  11. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  12. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  13. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  14. Tank Waste Retrieval Lessons Learned at the Hanford Site

    International Nuclear Information System (INIS)

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft3 in 530,000 gallon or larger tanks; 30 ft3 in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  15. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  16. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2009-11-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age. Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits. Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08. Conclusions: Exposure to this waste disposal site was found associated with lower children’s growth indexes.

  17. Generic Study of Geosphere Contamination from Waste Disposal Site

    International Nuclear Information System (INIS)

    A working group from the IAEA (International Atomic Energy Authority)published a new study concerning waste acceptance criteria for near surface disposal. The study calculates the waste inventory values through off and on-site scenarios. The present work applied the results to assess the criteria, through an off-site scenarios of vault design from the acceptance criteria at El-Dabaa site, 150 Km west of Alexandria north Coast of Egypt. The present work deals with the study of the relation ship between the sealed faults parameters, which are detected from the integrated interpretation of the geophysical data and the seismic energy and its b-value were calculated. Two generic conservative scenarios were applied for the end of the institutional control period,. The first deals with the natural release of the radionuclides using the geophysical characteristics of the site, and the waste inventory resulting from the acceptance criteria to the nearest aquifer. The second considered an unexpected earthquake which creates crack in the reinforced concrete cover. The crack offered increases the infiltration rate inside the vault. A higher radionuclides release resulted from the vault to the nearest aquifer. From the two scenarios, the acceptance criteria, and the suitability of site for waste disposal are assessed by calculation of internal effective collective dose received by an individual using the water from the aquifer for domestic purposes

  18. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented

  19. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 8: Review of processes near a buried waste canister

    International Nuclear Information System (INIS)

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and infomation exchange among the Member countries participating in the NEA Seabed Working Group. This report investigates the phenomena arriving in the proximity of the waste package immersed in the sea sediments

  20. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    International Nuclear Information System (INIS)

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs

  1. Calcination/dissolution testing for Hanford Site tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Colby, S.A.; Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); McLaughlin, D.F. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States); Danielson, M.J. [Pacific Northwest Lab., Richland, WA (United States)

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack.

  2. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  3. Application of neural networks to waste site screening

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.; Kraft, T.; Hilton, J.M. [Science Applications International Corp., San Diego, CA (United States)

    1993-03-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach to site screening consists primarily of drilling, boreholes near contaminated site and chemically analyzing the extracted physical samples and processing the data. In addition, hydraulic and geochemical soil properties are obtained so that numerical simulation models can be used to interpret and extrapolate the field data. The objective of this work is to investigate the feasibility of using neural network techniques to reduce the cost of waste site screening. A successful technique may lead to an ability to reduce the number of boreholes and the number of samples analyzed from each borehole to properly screen the waste site. The analytic tool development described here is inexpensive because it makes use of neural network techniques that can interpolate rapidly and which can learn how to analyze data rather than having to be explicitly programmed. In the following sections, data collection and data analyses will be described, followed by a section on different neural network techniques used. The results will be presented and compared with mathematical model. Finally, the last section will summarize the research work performed and make several recommendations for future work.

  4. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  5. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  6. Preparations for Mixed Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    The Radioactive Waste Management Complex (RWMC) at the Nevada Test Site (NTS) is preparing for the receipt and disposal of low-level mixed waste (MV) generated within the U.S. Department of Energy (DOE) complex. The NTS maintains and develops disposal locations to accommodate various waste forms, and is engaged in developing verification and handling processes to ensure proper acceptance and disposal. Operations at the RWMC are focused on ensuring future disposal needs can be accommodated with a maximum benefit to risk ratio. This paper addresses the programmatic developments implemented at the NTS to accommodate the receipt, verification, and disposal of MW. The Radioactive Waste Acceptance Program (RWAP) has incorporated aspects of the Waste Analysis Plan (WAP) into the Nevada Test Site Waste Acceptance Criteria (NTSWAC). The verification program includes statistical sampling components that take into account waste form, program reliability, and other factors. The WAP allows for a conglomerate of verification techniques including visual examination, non-destructive examination, and chemical screening ensuring compliance with the NTSWAC. The WAP also provides for the acceptance of MW with most U.S. Environmental Protection Agency waste codes. The MW sent to the NTS for disposal must meet Land-Disposal Restriction standards. To support the verification processes outlined in the WAP, a Real-Time-Radiography (RTR) facility was constructed. Using a 450 keV, 5-mA tube-head system with a bridge and manipulator assembly, MW packages can undergo non-destructive examination (x-ray) at the RWMC. Prior to the NTS accepting the waste shipment, standard waste boxes, drums, and nominally sized bulk items can be manipulated on a cart and examined directly or skewed in real-time to ensure compliance with NTSWAC requirement s An existing MW disposal cell at the RWMC has been tailored to meet the requirements of a Category 2 non-reactor Nuclear Facility. In retrofitting an existing

  7. FIELD APPLICATIONS OF ROBOTIC SYSTEMS IN HAZARDOUS WASTE SITE OPERATIONS

    Science.gov (United States)

    The cleanup of hazardous waste sites is a challenging and complex field that offers numerous opportunities for the application of robotic technology. he contamination problem, long in the making, will take decades to resolve. ur ingenuity in developing robotic tools to assist in ...

  8. POTENTIAL FOR GULLS TO TRANSPORT BACTERIA FROM HUMAN WASTE SITES

    Science.gov (United States)

    This study was designed as a first step in assessing whether gulls visiting human waste sites can acquire human microorganisms and distribute them across the coastal landscape. Beaches, landfills, and a lagoon of treated wastewater located in a coastal Lake Michigan county were t...

  9. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  10. GROUTING TECHNIQUES IN BOTTOM SEALING OF HAZARDOUS WASTE SITES

    Science.gov (United States)

    Bottom sealing of hazardous waste sites involves the injection or insertion of an inert impermeable and continuous horizontal barrier in soil below the source of contamination. This type of containment strategy could be used in conjunction with other technology such as slurry wal...

  11. Site suitability criteria for solidified high level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-03-07

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized. (JRD)

  12. Organic geochemical studies at a commercial shallow-land disposal site of low-level nuclear waste

    International Nuclear Information System (INIS)

    The subsurface migration of radionuclides has been studied at a commercial, shallow-land burial site of low-level nuclear waste at Maxey Flats, Kentucky. A variety of radionuclides including 3H, 238239240Pu, 60Co, 137Cs and 90Sr have migrated short distances on-site (meters to tens of meters). A number of the mobile radionuclides, notably plutonium and 60Co, appear to exist as anionic species with organic properties. As a result, we have studied the organic geochemistry of radioactive leachates pumped from a number of waste burial trenches throughout the site. The major aim of the organic research is to elucidate the role of organic compounds in mediating the subsurface migration of the mobile radionuclides in groundwater. A survey study of the hydrophilic and hydrophobic organic content of the waste leachates has revealed that organic compounds are readily leached from the buried waste. Organic chelating agents like EDTA, HEDTA and ED3A are the major hydrophilic organic compounds in the leachates, their concentrations ranging from 78 ppB to 19,511 ppB. A number of carboxylic acids are also present in the leachates, ranging from 675 ppB to 8757 ppB, collectively. A variety of hydrophobic organic compounds including barbiturates and other aromatic compounds, presumably waste-derived, are also present in the leachates, generally at lower ppB concentrations. A detailed chemical speciation study, aimed at determining whether any of the organic compounds identified in the survey study are associated with the mobile radionuclides, was undertaken using leachate from one of the waste trenches. It is clear that EDTA is chelated to plutonium and 60Co in the leachate, potentially mobilizing these radionuclides. Other radionuclides, 137Cs and 90Sr, may be associated with polar organic compounds such as carboxylic acids. 14 references, 2 figures, 2 tables

  13. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  14. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the &apos

  15. Environmental Planning Strategies for Optimum Solid Waste Landfill Siting

    International Nuclear Information System (INIS)

    The use of environmental planning tools for optimum solid waste landfill siting taking into account all environmental implications was carried out by applying Life Cycle Analysis (LCA) to enhance the research information obtained from initial analysis using Geographical Information Systems (GIS). The objective of this study is to identify the most eco-friendly landfill site by conducting a LCA analysis upon 5 potential GIS generated sites which incorporated eleven important criteria related to the social, environmental, and economical factors. The LCA analysis utilized the daily distance covered by collection trucks among the 5 selected landfill sites to generate inventory data on total energy usage for each landfill sites. The planning and selection of the potential sites were facilitated after conducting environmental impact analysis upon the inventory data which showed the least environmental impact. (author)

  16. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  17. Incentives and the siting of radioactive waste facilities

    International Nuclear Information System (INIS)

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process

  18. Incentives and the siting of radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

  19. A Decision Making Tool for Hazardous Waste Landfill Site Selection

    Directory of Open Access Journals (Sweden)

    P. Pandiyan

    2011-01-01

    Full Text Available Problem statement: Continuous global environmental crisis and degradation has been a challenge for the sustainability of living on earth. This threat was posed by industrialization, high products need, urbanization and population growth activities. As a result, the hazardous waste generation has tremendously increased. Approach: Landfill was one of the positive approaches to handle hazardous waste generated in great quantity. The appropriate selection of landfill site played a major role to remediate the hazardous waste materials. Attributes to be considered for decision-making were selected based on literature, observations with weightage assigned to each attribute following the pair wise comparison method and sensitivity index on a scale of 0 to 1 based on attribute measurement. The attributes were then grouped and ranked following Delphi approach. Results: In environmental assessment, field based study of three landfill sites such as Melakottaiyur, Pachaiyankuppam and Gummidipoondi in Tamil Nadu, India were selected and the sites scored a Risk Index (RI of 298.75, 369.05 and 408.25 respectively. In economical assessment, economic viability related attributes were analyzed and the three landfill site such as Pachaiyankuppam, Melakottaiyur and Gummidipoondi scored a RI of 86.1, 94.3 and 131.5 respectively. Conclusion/Recommendations: In environmental assessment the landfill sites were shortlisted. In order to achieve economic sustainability of the landfill, economic viability related attributes has to be analyzed with high priority and weightage in economical assessment.

  20. Geohydrologic problems at shallow land hazardous waste sites

    International Nuclear Information System (INIS)

    Less-than-desirable geohydrologic containment has occurred at three commercially operated and three Dept. of Energy operated low-level radioactive waste disposal sites in the US. Studies of these sites indicate that the problems fall into eight general categories: bathtub effect (water accumulation in filled trenches), trench cap integrity, erosion, high water table, hydrogeologic complexity, flooding, complex leachate chemistry, and rapid radionuclide migration in ground water. Problems have been encountered in both high-permeability and low-permeability burial media. All these problems appear avoidable by applying more practical, comprehensive, and common sense earth-science guidelines outlined below for site selection and design: a very arid environment eliminates most problems; the bathtub effect can be avoided by using physically stable waste forms and by improving the design of the cap; acceptable humid-zone sites can be constructed in permeable media if the water table is sufficiently deep and capillary forces (the wick effect) are used to divert percolating water from the waste; and an important factor is to select sites in relatively simple geohydrologic environments to facilitate the prediction of their containment properties

  1. Alternatives to control subsidence at low-level radioactive waste burial sites

    International Nuclear Information System (INIS)

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have experienced geotechnical subsidence problems and may require stabilization. Ground surface manifestations of subsidence include: large cracks, basins, and cave-ins. Subsidence is primarily caused by void filling, and physicochemical degradation and solubilization of buried wastes. These surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass, pile driving and in situ incineration engineering alternatives were selected for further development

  2. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  3. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  4. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  5. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  6. Savannah River Laboratory Seepage Basins: Waste site assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Looney, B.B.; Nichols, R.L.

    1989-09-05

    This Waste Site Assessment for the SRL Seepage Basins is the second in a series of documents being prepared to support development of an appropriate closure plan for these basins. The closure of these basins will be designed to provide protection to human health and the environment and to meet the provisions of the Consent Decree. A Technical Data Summary for these basins has already been submitted as part of the Consent Decree. This Site Assessment Report includes a waste site characterization, and a discussion of closure options for the basins. A closure option is recommended in this report, but details of the recommended closure are not provided in this report since they will be provided in a subsequent closure plan. The closure plan is the third document required under the Consent Decree. 18 refs., 16 figs., 10 tabs.

  7. Site selection for the long term storage of radioactive wastes

    International Nuclear Information System (INIS)

    The choice of underground sites depends on safety-protection criteria (geology, seismicity, hydraulics, kind of rocks, permeability, absorption), social economic criteria (site of little economic, strategic or touristic interest and with a low population density) and last, technical economic criteria (geographical position, ease of construction and operation). The long term storage is tied to the types of waste, for those of low and medium activity it can be guaranteed in the sub-surface with present techniques at reasonable costs, the safety of the storage will be based on the quality of the barrier system linked to the depot. In the case of the alpha waste and even more so for the vitrified fission products stored in deep geological formations, the site barriers play an essential role. In practice it will be necessary to optimize the storage centre to unite the safety-protection imperatives with all the constraints

  8. Pyramiding tumuli waste disposal site and method of construction thereof

    International Nuclear Information System (INIS)

    This patent describes an improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear waste packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus

  9. Closure report for Corrective Action Unit 211, Area 15 EPA Farm waste sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 211 Area 15 Farm Waste Sties at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  10. Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit No.2 Waste Site. Attchment to Waste Site Reclassification Form 2005-038

    International Nuclear Information System (INIS)

    The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River

  11. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  12. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  13. Techniques for site investigations for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    The report provides a more detailed description of the capabilities and applications of the various earth science investigation techniques outlined in the IAEA Technical Reports Series Nos. 177, 215 and 216. These methods are generally appropriate during at least one of the stages of the assessment or selection of a site for any type of waste disposal facility, in shallow ground or in deep geological formations. This report is addressed to technical authorities responsible for or involved in planning, approving, executing and reviewing national waste disposal programmes. It may also help administrative authorities in this field to select appropriate techniques for obtaining the majority of the required information at minimum cost

  14. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  15. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta's K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports

  16. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  17. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2008-09-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age.Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits.Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08.

  18. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  19. Nuclear waste and social peace - Strategies of site selection for radioactive waste disposal. Proceeding

    International Nuclear Information System (INIS)

    In February 1999, BMU appointed a working party to establish site selection procedures for repositories (AkEnd) which was to develop a transparent procedure of finding and selecting sites for the final storage of all kinds of radioactive waste in Germany. The procedure finally proposed by AkEnd implies considerable uncertainty, inter alia, about its legal implementability, the time required, and funding. The discussion papers of the meeting ''atomic waste and social peace'' show a tightrope walk between society, clerical aspects and scientists taking into account also a right of say for critical citizens. (GL)

  20. Experience and related research and development in applying corrective measures at the major low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    A review was conducted of experience in responding to problems encountered in shallow land burial of low-level radioactive waste and in research and development related to these problems. The operating histories of eleven major disposal facilities were examined. Based on the review, it was apparent that the most effective corrective measures administered were those developed from an understanding of the site conditions which caused the problems. Accordingly, the information in this document has been organized around the major conditions which have caused problems at existing sites. These include: (1) unstable trench cover, (2) permeable trench cover, (3) subsidence, (4) ground water entering trenches, (5) intrusion by deep-rooted plants, (6) intrusion by burrowing animals, and (7) chemical and physical conditions in trench. Because the burial sites are located in regions that differ in climatologic, geologic, hydrologic, and biologic characteristics, there is variation in the severity of problems among the sites and in the nature of information concerning corrective efforts. Conditions associated with water-related problems have received a great deal of attention. For these, corrective measures have ranged from the creation of diversion systems for reducing the contact of surface water with the trench cover to the installation of seals designed to prevent infiltration from reaching the buried waste. On the other hand, corrective measures for conditions of subsidence or of intrusion by burrowing animals have had limited application and are currently under evaluation or are subjects of research and development activities. 50 references, 20 figures, 10 tables

  1. National experiences in siting waste management facilities in Sweden

    International Nuclear Information System (INIS)

    It is now more than 25 years since a co-ordinated nuclear waste management programme was set up in Sweden. Deep geological disposal of spent nuclear fuel in crystalline bedrock is the preferred option and an extensive R and D programme has been performed.A stepwise approach is being applied to development, technical demonstration and implementation of the disposal system. Siting related experiences within the Swedish programme encompass the following: - Deep drilling programme at 11 study sites (1977- 1985); - Siting of the intermediate storage facility for spent fuel, CLAB (1976-1979); - Siting of the final repository for low and medium level waste, SFR (1980-1983); - Siting of the Aespoe Hard Rock Laboratory, HRL (1986-1990); - Feasibility studies to site a deep repository for spent fuel on a voluntary basis in eight municipalities (1993-2001). Site specific investigations for the deep repository in two of these municipalities were started early this year (2002) following a clear majority vote within the concerned municipality councils in favour of further participation in the siting process. The past record of siting related activities in Sweden includes a wide variety of experiences. There are failures as well as successes, shortcomings as well as accomplishments.A general trend is that siting activities have gradually become more and more demanding. CLAB and SFR, 15 to 20 years ago, could be quite easily sited in a process of a few years, involving mainly the Swedish Nuclear Fuel and Waste Management Company (SKB), safety authorities and the directly concerned municipality. The siting of the deep repository has already been going on for some 10 years and it involves, on a much broader scale, many sectors of society and the interested public. A clear division of responsibilities between the stake holders, with the responsibility of the producers as a key component, has been of fundamental importance for the stability and transparency of the system for R and D

  2. SRS: Site ranking system for hazardous chemical and radioactive waste

    International Nuclear Information System (INIS)

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs

  3. Hanford Site waste minimization and pollution prevention awareness program plan

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G.

    1998-09-24

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site`s pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office`s (RL`s) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program.

  4. SRS: Site ranking system for hazardous chemical and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs.

  5. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    The site of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publicity controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Based on the available technologies, the effective siting of facilities is more of a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have generally failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. It is proposed in this paper that more readily acceptable solutions to siting hazardous waste facilities might result from the integration of two social science approaches: (1) social impact assessment, which seeks to define and mitigate problems, and (2) hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. This paper illustrates how this integration of approaches could be implemented

  6. Site selection and licensing issues: Southwest Compact low-level radioactive waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Grant, J.L.

    1989-11-01

    The low-level radioactive waste disposal site in California is being selected through a three-phase program. Phase 1 is a systematic statewide, regional, and local screening study. This program was conducted during 1986 and 1987, and culminated in the selection of three candidate sites fur further study. The candidate sites are identified as the Panamint, Silurian, and Ward Valley sites. Phase 2 comprises site characterization and environmental and socio-economic impact study activities at the three candidate sites. Based upon the site characterization studies, the candidate sites are ranked according to the desirability and conformance with regulatory requirements. Phase 3 comprises preparation of a license application for the selected candidate site. The license application will include a detailed characterization of the site, detailed design and operations plans for the proposed facility, and assessments of potential impacts of the site upon the environment and the local communities. Five types of siting criteria were developed to govern the site selection process. These types are: technical suitability exclusionary criteria, high-avoidance criteria beyond technical suitability requirements, discretionary criteria, public acceptance, and schedule requirements of the LLWR Policy Act Amendments. This paper discusses the application of the hydrological and geotechnical criteria during the siting and licensing studies in California. These criteria address site location and performance, and the degree to which present and future site behavior can be predicted. Primary regulatory requirements governing the suitability of a site are that the site must be hydrologically and geologically simple enough for the confident prediction of future behavior, and that the site must be stable enough that frequent or intensive maintenance of the closed site will not be required. This paper addresses the methods to measure site suitability at each stage of the process, methods to

  7. Gas Retention and Release from Hanford Site Sludge Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meacham, Joseph E.; Follett, Jordan R.; Gauglitz, Phillip A.; Wells, Beric E.; Schonewill, Philip P.

    2015-02-18

    Radioactive wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. Solid wastes can be divided into saltcake (mostly precipitated soluble sodium nitrate and nitrite salts with some interstitial liquid consisting of concentrated salt solutions) and sludge (mostly low solubility aluminum and iron compounds with relatively dilute interstitial liquid). Waste generates hydrogen through the radiolysis of water and organic compounds, radio-thermolytic decomposition of organic compounds, and corrosion of a tank’s carbon steel walls. Nonflammable gases, such as nitrous oxide and nitrogen, are also produced. Additional flammable gases (e.g., ammonia and methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks.

  8. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  9. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  10. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David B

    2014-02-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  11. Hazardous Material Storage Facilities and Sites - WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN: Active Permitted Solid Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN is a point shapefile that contains active permitted solid waste site locations in Indiana, provided by personnel of Indiana...

  12. Lessons Learned for Construction and Waste Water Management at Radioactive Waste Closure Site

    International Nuclear Information System (INIS)

    Environmental remediation of three different radioactive waste closure sites each required exhaustive characterization and evaluation of sampling and analytical information in resolving regulatory and technical issues that impact cleanup activities. One of the many regulatory and technical issues shared by all three and impacting the cleanup activities is the compliant management and discharge of waste waters generated and resulting from the remediation activities. Multiple options were available for each closure site in resolving waste water management challenges depending upon the base regulatory framework defined for the cleanup or closure of the site. These options are typically regulated by the federal Clean Water Act (CWA), with exemptions available under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA) or Memorandum of Understanding (MOU) between regulatory agencies. In general, all parties must demonstrate equivalent compliance when concerns related to the protection of the general public and the environment. As such, all options for management of waste water resulting from closure activities must demonstrate compliance to or equivalent actions under the CWA. The CWA provides for the National Pollution Discharge Elimination System (NPDES) that is typically maintained by individual states through permitting process to generators, public utilities, and more recently, construction sites. Of the three sites, different compliance strategies were employed for each. The approach for the Columbus Closure Project (CCP) was to initiate full scale compliance to the Ohio EPA General Construction Permit No. OHC000002. The CCP provided Notice of Intent (NOI) to the Ohio EPA to discharge under the general permit according to the regulator approved Storm Water Pollution Prevention Plan. For the second site, the Li Tungsten Superfund Site in Glen Cove, New York, the option

  13. Physical Composition, Nutrients and Contaminants of Typical Waste Dumping Sites

    Directory of Open Access Journals (Sweden)

    H. Meuser

    2011-01-01

    Full Text Available Problem statement: The composition of wastes is quite variable depending upon the generating source and mode of collection. Most of the material from the domestic activities will be organic in nature and contains essential plant nutrients, whereas the dumping material of commercial and industrial wastes usually contains appreciable amounts of heavy and potentially toxic metals and organic pollutants. Approach: Objective of the present study was to characterize the physico-chemical properties of the waste material and the distribution and extent of toxic pollutants in three selected typical dumping sites in the state of Haryana, India. Results: 62-65% of the waste fine material consisted of mineral particles and biodegradable organic waste, 20-25% consisted of construction and demolition waste and the remaining 10-15% were other materials such as study, plastic, metals, glass and timber, with an amount of polyethene of 3.4-5.7%. The ratio of the plant available concentrations of P, K and S and their total amounts were 3-7% for P and 1-4% for S, whereas the macronutrient potassium reached values of 29-39%. Metals As, Ba, Cd, Cr, Cu, Ni, Pb and Zn were present in all samples (total concentration in aqua regia extract. As, Ba, Ni and Pb did not show clear differences between the three investigates sites. Cd, Cr and Zn concentrations were high but different at the different sites (Cu maximum: 1,964 mg kg−1, Zn maximum: 2,200 mg kg−1. The mobility of the metals was calculated as the ratio of DTPA/aqua regia extraction. Cd showed the highest ratio (18-22%, while the other calculated metals showed much lower ratios (Cu 6.7, Pb 7.9 Ni 2.1, Zn 3.6 and Cr 0.5%. In general, PAH and benzo(apyrene concentrations fell below the detection limit. Also the phenol index did not exceed the detection limit of 1.2 mg kg−1 (with two exceptions. In 14 out of 36 samples a GC-MS screening was conducted in order to get an overview of the organic

  14. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    International Nuclear Information System (INIS)

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  15. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  16. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  17. Risk communication on the siting of radioactive waste management facility

    International Nuclear Information System (INIS)

    Siting of radioactive waste management facilities frequently raise arguments among stakeholders such as a municipal government and the residents. Risk communication is one of the useful methods of promoting mutual understanding on related risks among stakeholders. In Finland and Sweden, siting selection procedures of repositories for spent nuclear fuels have been carried out successfully with risk communication. The success reasons are analyzed based on the interviews with those who belong to the regulatory authorities and nuclear industries in both countries. Also, in this paper, risk communication among the Japan Radioisotope Association (JRIA), a local government and the general public, which was carried out during the establishment process of additional radioactive waste treatment facilities in Takizawa Village, Iwate Prefecture, is analyzed based on articles in newspapers and interviews with persons concerned. The analysis results showed that good risk communication was not carried out because of the lack of confidence on the JRIA, decision making rules, enough communication chances and economic benefits. In order to make good use of these experiences for the future establishment of radioactive waste management facilities, the lessons learned from these cases are summarized and proposals for good risk communication (establishment of exploratory committee and technical support system for decision making, and measurements to increase familiarity of radioactive waste) are discussed. (author)

  18. Risk analysis and solving the nuclear waste siting problem

    International Nuclear Information System (INIS)

    In spite of millions of dollars and countless human resources being expended on finding nuclear wastes sites, the search has proved extremely difficult for the nuclear industry. This may be due to the approach followed, rather than inadequacies in research or funding. A new approach to the problem, the reverse Dutch auction, is suggested. It retains some of the useful elements of the present system, but it also adds new ones. It allows natural market forces to set the level of compensation, rather than relying on close-door negotiations or theoretical calculations. Two flow charts show the pre-bid and post-bid steps of the reverse Duch auction system of Inhaber. It is assumed that a state wishes to site a waste facility somewhere in its boundaries. 22 refs., 3 figs

  19. Incentives and nuclear waste siting: Prospects and constraints

    International Nuclear Information System (INIS)

    Limited anecdotal evidence from existing incentive-based facility sitings, and from a survey of rural Wisconsin residents in 1980 regarding the acceptability of a nuclear waste repository, indicates that incentives may help ahcieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward), and prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. 54 references, 1 figure, 4 tables

  20. Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.S.Y.; Bernard, E.A.

    1991-12-01

    Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

  1. Waste-package release rates for site suitability studies

    International Nuclear Information System (INIS)

    Performance-assessment calculations in support of the site- suitability effort for the Yucca Mountain Project will address radionuclide transport arising from various disruptive scenarios. Here we present release rates of radionuclides from individual waste packages for scenarios involving various postulated forms of water intrusion, including increased infiltration rate as well as rock immediately surrounding an individual waste package becoming saturated with ground water. We examine: (1) effect of increased water infiltration rate on release rates; increases in radionuclide release rates resulting from water filling the annulus between the waste container and the surrounding rock, as well as water saturating the pores and fractures in the rock surrounding the waste package; (3) the effect of flow in fractures in the saturated rock on release rate; and (4) release of radionuclides to the mountain surface resulting from an exploratory borehole shaft intersecting a waste package. The radionuclides considered are Tc-99; I-129; Cs-135; Np- 237; Pu-239,240,242; and Am-241,243. Release rates are calculated for both the wet-drip bathtub and the wet-continuous water-contact modes, as described in the Working Group 2 report, applying equations as published by Sadeghi, et al., [1990] and as extended in the present report

  2. Biological toxicity evaluation of Hanford Site waste grouts

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 50 years of operation of the Hanford Site of the US Department of Energy near Richland, Washington. These wastes are currently stored onsite in single- and double-shell carbon steel tanks. To effectively handle and treat these wastes, their degree of toxicity must be determined. The disposal of the low-level radioactive liquid portion of the wastes involves mixing the wastes with pozzolanic blends to form grout. Potential environmental hazards posed by grouts are largely unknown. Biological evaluation of grout toxicity is needed to provide information on the potential risks of animal and plant exposure to the grouts. The fish, rat, and Microtox toxicity tests described herein indicate that the grouts formed from Formulations I and 2 are nonhazardous and nondangerous. Using the Microtox solid-phase protocol, both soluble and insoluble organic and inorganic toxicants in the grouts can be detected. This protocol may be used for rapid screening of environmental pollutants and toxicants

  3. Report on the workshop to review waste inventory, waste characteristics and reference site candidates

    International Nuclear Information System (INIS)

    There is a need of co-operation among Regional Co-operative Agreement (RCA) Member States in the field of low and intermediate level waste (LILW) disposal. An integrated approach is essential for successful establishment of LILW disposal facilities in RCA Member States. This would include: a) identification of waste inventory and characteristics; b) guidelines for implementation of LILW disposal; c) regulatory guidelines; d) safety assessment; e) quality assurance; and f) public acceptance. This project will focus on technical issues. The overall objective of the project, established in the project formulation meeting, is to assist RCA Member States in establishing national disposal activities for radioactive waste from nuclear applications by providing expert advice and training on techniques and methodology associated with planning and establishment of disposal facilities and to obtain improved knowledge of key staff members for the implementation of LILW disposal. The purpose of this workshop was to identify waste inventories, waste characteristics, site characteristics (generic or site specific) for disposal of LILW in RCA Member States of the project and identify conceptual reference site conditions and consider reference repository concepts preliminarily. Also the workshop was to establish an action plan of the next step. The workshop was held in Shanghai, China from 7 to 9 July 1997 and attended by 7 countries, i.e. Australia, China, Indonesia, Japan, Republic of Korea, Sri Lanka and Thailand. Refs, figs, tabs

  4. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  5. CLASSIFICATION OF THE MGR SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM

    International Nuclear Information System (INIS)

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site-generated radiological waste handling system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  6. Optimal Discounting of Benefits From Cleanup at Waste Sites

    OpenAIRE

    Lyon, Kenneth S.; Caliendo, Frank

    2005-01-01

    This paper uses a general equilibrium optimal growth model to discuss the role of optimal discounting of future benefits from cleanup at high level toxic waste sites. Cleanup simultaneously generates two streams of benefits. One of these is directly from utility and the other is indirectly from the added productivity of workers. We note that the optimal discount rate is different for these two types of benefits. Along the optimal path, the former are discounted at the rate of time preference ...

  7. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no

  8. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  9. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  10. Studies of infiltration and lead-soil interactions at the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Several studies were conducted to investigate the possibility of buried lead being transported by water in the unsaturated zone at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. All involved soil from a 37-m soil core collected at the RWMS. The core consisted primarily of sand and small pebbles, with occasional layers of loose rocks. Few buried soil horizons were observed, and the core showed no evidence of a carbonate layer that would act as a barrier to infiltration. Samples chosen from various depths in the soil core were analyzed chemically. Calcium and sulfate occurred in a prominent layer about 5 m below the surface. The concentration of soluble carbonate increased gradually with depth, while chloride concentrations decreased. Lead concentrations ranged from 1 to 2 mg/kg. Additional data from the soil core were combined with results of earlier field infiltration studies at two sites near the RWMS to estimate flow velocities for water in the unsaturated zone. Under normal (dry) conditions, the degree of saturation is so small that gravity drainage does not occur; water moves by vapor transport and capillary action. Significant water movement occurs only if the soil is at or near saturation. The results suggest that even continuously ponded water at the RWMS would take several months to infiltrate to the water table. Seven samples from the soil core were tested for their ability to adsorb lead. All took up lead with about the same intensity and capacity. Adsorption of lead by insoluble carbonate minerals and precipitation of lead by soluble carbonate in the soil at the RWMS should provide a barrier to lead migration. Finally, measurements were made of the corrosion rates of lead and steel in contact with soil samples from the core. Corrosion rates generally increased with increasing soil saturation at all depths. Under ambient soil conditions at the RWMS, corrosion rates would be low

  11. Site Cleanup of Radioactive Isotope Container Rinsing Pool and Surrounding Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Radioactive isotope container rinsing pool and surrounding environmental site was a place of fabrication of container, and package, transportation and storage of radioactive isotopes. A heavy contamination existed in this area for burying of some radioactive wastes.

  12. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    International Nuclear Information System (INIS)

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure

  13. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  14. The use of chemical and radionuclide risk estimates in site performance evaluation of mixed waste sites

    International Nuclear Information System (INIS)

    Many radioactive waste sites contain not only radioactive material but also varying amounts of chemical waste. The use of such procedures implies some risk at any exposure level, and thus requires that an exposure level be determined that corresponds to an acceptable risk to an individual or a population. Although the uncertainties and limitations of these methods are of concern, the assumption has been generally adopted that the human dose response for all carcinogens is linear, with no threshold occurring at low levels of exposure. With the move toward decontamination programs and clean-up of various mixed waste sites throughout the US, there is interest in the possibility that risk estimates calculated individually for radionuclides and for chemicals may be combined to reflect the total risk for each site. The purpose of this paper is to examine the feasibility of combining risk estimates during risk/benefit analyses. For a variety of reasons, the state of radiation risk assessment is more advanced than that of chemical risk assessment. The reasons for this disparity are summarized in this paper. Quantitative radiation risk assessment is currently being performed, but involves a high degree of uncertainty. Chemical risk assessment in general does not allow quantitative results bracketed by uncertainty analysis. Therefore, it is concluded that it is currently not possible to develop a useful, quantitative combined risk assessment for a mixed waste site, but that it may be possible to develop such a capability in the future

  15. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  16. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  17. Used nuclear materials at Savannah River Site: asset or waste?

    International Nuclear Information System (INIS)

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ''assets'' to worthless ''wastes''. In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as ''waste'' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  18. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  19. Design concept for the solid waste landfill site:a case study of Chuzhou City,China

    Institute of Scientific and Technical Information of China (English)

    Wu Wentao

    2006-01-01

    This paper introduces landfill site of Chuzhou domestic waste, to which the improved anaerobic hygienic burying technology is applied. Chuzhou City, situated between Yangtze River and Huai River, is a window city in the east of Anhui Province. A landfill site with a capacity of 400 ton per day is to be constructed according to the city development plan and the garbage amount. This paper summarizes the landfill location, landform, groundwater; surface water,landfill stratal configuration, dominant wind, and the major machinery equipment. The projects of anti-percolation,seepage collection, seepage disposal, rainwater discharge, biogas diversion are deeply studied. The advanced design principle of the landfills is summarized, which is environment-friendly, science-oriented and economy-based. Environ ment-friendly principle is implemented in the selection of landfill location, construction of all projects, sealing up project and perfecting environment monitoring system; science-oriented principle prescribes that the design, construction, and management should be science-oriented; the selection of landfill location, design, plan optimization, resource-saving measures and comprehensive utilization should be economy-based. Chuzhou domestic waste landfill site is qualified as a golden model in this paper.

  20. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  1. Waste Isolation Pilot Plant 2001 Site Environmental Report

    International Nuclear Information System (INIS)

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment

  2. Delegated democracy. Siting selection for the Swedish nuclear waste

    International Nuclear Information System (INIS)

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case studies can be described as delegated democracy. This means that a large

  3. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    International Nuclear Information System (INIS)

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee

  4. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lomenick, T.F.

    1996-03-01

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  5. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    International Nuclear Information System (INIS)

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste-type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium's chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these

  6. The disposal of Canada's nuclear fuel waste: site screening and site evaluation technology

    International Nuclear Information System (INIS)

    The concept for the disposal of Canada's nuclear fuel waste is to dispose of the waste in an underground vault, nominally at 500 m to 1000 m depth, at a suitable site in plutonic rock of the Canadian Shield. The feasibility of this concept and assessments of its impact on the environment and human health, will be documented by AECL in an Environmental Impact Statement (EIS). This report is one of nine primary references for the EIS. It describes the approach and methods that would be used during the siting stage of the disposal project to identify a preferred candidate disposal site and to confirm its suitability for constructing a disposal facility. The siting stage is divided into two distinct but closely related substages, site screening and site evaluation. Site screening would mainly involve reconnaissance investigations of siting regions of the Shield to identify potential candidate areas where suitable vault locations are likely to exist. Site screening would identify a small number of candidate areas where further detailed investigations were warranted. Site evaluation would involve progressively more detailed surface and subsurface investigations of the candidate areas to first identify potentially suitable vault locations within the candidate areas, and then characterize these potential disposal sites to identify the preferred candidate location for constructing the disposal vault. Site evaluation would conclude with the construction of exploratory shafts and tunnels at the preferred vault location, and underground characterization would be done to confirm the suitability of the preferred candidate site. An integrated program of geological, geophysical, hydrogeological, geochemical and geomechanical investigations would be implemented to obtain the geoscience information needed to assess the suitability of the candidate siting areas and candidate sites for locating a disposal vault. The candidate siting areas and candidate disposal vault sites would be

  7. Geologic mapping as a prerequisite to hazardous waste facility siting

    International Nuclear Information System (INIS)

    The nation's welfare is based on its capability to develop the mineral, water, and energy resources of the land. In addition, these resources must be developed with adequate consideration of environmental impact and the future welfare of the country. Geologic maps are an absolute necessity in the discovery and development of natural resources; for managing radioactive, toxic, and hazardous wastes; and for the assessment of hazards and risks such as those associated with volcanic action, earthquakes, landslides, and subsidence. Geologic maps are the basis for depicting rocks and rock materials, minerals, coal, oil, and water at or near the earth's surface. Hazardous waste facility projects require the preparation of detailed geologic maps. Throughout most of the USA, this type of mapping detail is not available. If these maps were available, it is estimated that the duration of an individual project could be reduced by at least one-fourth (1/4). Therefore, adequate site-specific mapping is required if one is to eliminate environmental problems associated with hazardous, toxic, radioactive, and municipal waste sites

  8. Waste immobilization demonstration program for the Hanford Site's Mixed Waste Facility

    International Nuclear Information System (INIS)

    This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation

  9. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, Robert R.

    2007-06-29

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  10. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Youngs RR

    2007-06-01

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  11. Design of buried concrete encasements

    International Nuclear Information System (INIS)

    The operation of many Department of Energy (DOE) sites requires the transfer of radioactive liquid products from one location to another. DOE Order 6430.1A requires that the transfer pipelines be designed and constructed so that any leakage can be detected and contained before it reaches the environment. One design option often considered to meet this requirement is to place the pipeline in a stainless steel-lined, buried concrete encasement. This provides the engineer with the design challenge to integrate standard structural design principles with unique DOE requirements. The complete design of a buried concrete encasement must consider seismic effects, leak detection, leak confinement, radiation shielding, thermal effects, pipe supports, and constructability. This paper contains a brief discussion of each of these design considerations, based on experience gained during the design of concrete encasements for the Process Facilities Modifications (PFM) project at Hanford

  12. Site remediation of three waste water surface impoundments

    International Nuclear Information System (INIS)

    EcoTek conducted an extensive remedial action feasibility study to determine the best way to treat 86,000 cubic feet of low-level radioactive waste sediment. This paper reports on the results of this study which showed the preferred method was to excavate with a floating dredge, dewater with a filter press, and package for burial at a licensed low-level radioactive waste site. A pilot-scale operation was designed, installed and operated for two months to verify the selected methodology. Additional testing was performed to optimize certain run times and to test various chemical additives. Detailed design of the production plant followed. Equipment procurement and construction are currently underway

  13. Microbial effects on radioactive wastes at SLB sites

    International Nuclear Information System (INIS)

    A significant fraction of DOE and commercially generated low-level radioactive waste consists of organic materials. These materials are subject to degradation by microorganisms present in the shallow land burial environment and may contribute to enhanced migration of radionuclides through the formation of gases, mobile complexes and bioaccumulation. This scanning study will determine the effects of microbial degradation at present disposal sites and their impact on shallow land burial performance criteria, trench construction and segregation of organic wastes. The main objective of this program is to determine the significant effects of microbial activities on shallow land burial (SLB). The program is in support of DOE/LLW Management program alpha milestones B, C, and D

  14. Savannah River Site Operating Experience with TRU Waste Retrieval

    International Nuclear Information System (INIS)

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads during the 1970s through the 1980s. These drums were subsequently covered with plywood, tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign, and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This paper will describe the operating experience and lessons learned from the SRS retrieval activities

  15. Automated Monitoring System for Waste Disposal Sites and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  16. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  17. Case history update: RCRA waste site remediation by telerobotic methods

    International Nuclear Information System (INIS)

    This paper presents a summary of the first 18 months of closure work at the Kerr Hollow Quarry site on the DOE reservation at Oak Ridge, Tennessee. Closure work includes recovery and processing of explosive, toxic and radioactive waste. As of January 1992, more than 10,000 items had been processed and removed from the quarry, exclusively by remotely operated equipment. Drums, buckets, tubing assemblies and other containers are being shredded to react any explosive contents. Concussion and projectiles are controlled by operating the shredder under 30 feet of water. The performance of the shredder, the effectiveness of the approach, production rates and maintenance requirements are addressed in the paper. To avoid exposing personnel to hazards, all work in the restricted area is done remotely. Two remotely operated vehicles were used to clear a pad, set a stand and install the 200-hp shredder. Some materials exposed by shredding are stable in water but react when exposed to air. In addition, radioactive items are mixed in with the other wastes. Safety considerations have therefore led to use of remote techniques for handling and examining materials after recovery. Deteriorated gas cylinders, which may contain pressurized toxic materials, are recovered and handled exclusively by remotely operated equipment. Waste retrieval work at the Kerr Hollow Quarry has proven the capability and cost-effectiveness of remotely operated equipment to deal with a wide variety of hazardous materials in an unstructured waste site environment. A mixture of radioactive materials, toxic chemicals, explosives and asbestos has been found and processed. Remotely operated vehicles have retrieved, sorted and processed more than 10,000 items including drums, buckets, pipe manifolds, gas cylinders and other containers

  18. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  19. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    International Nuclear Information System (INIS)

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  20. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    International Nuclear Information System (INIS)

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED)

  1. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  2. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R. (ed.)

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites. (DLC)

  3. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    International Nuclear Information System (INIS)

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites

  4. Site selection procedure for the final storage of radioactive waste?

    International Nuclear Information System (INIS)

    Since May, 22, 2002, Germany has had a licensed repository for radioactive waste, the former Konrad iron ore mine. The action brought against plans approval was dismissed by the Lower Saxony Higher Administrative Court at Lueneburg on March 8, 2006. The written reasons for the court ruling have been publicized in the meantime. The Lueneburg court recognized no appeal against its decision because it was unable to see any reasons for accepting an appeal on legal grounds. Among other factors, also the consideration played a role whether the plans approval decision under the Atomic Energy Act included the technical planning requirement to examine also alternative sites. Konrad could be commissioned if the competent minister so decided. However, in violation of the agreement achieved by nuclear power plant operators and the federal government in June 2001, Environment Minister Gabriel obviously does not want it to happen. Instead, he continues to pursue the plan announced by his predecessor in office several years earlier, i.e. to draft legislation about finding a 'best suited site' for a repository for radioactive waste. This raises the basic question whether legislation about site selection is necessary to solve the repository problem. The issue of a possible lack of legislation is discussed along with the legal situation of repositories determined in plans approval procedures. The ruling by the Lueneburg court about the Konrad repository is analyzed in detail. As far as the protective goals of the Atomic Energy Act are concerned, there is no indication of any lack of legislation which would have to be made up for by a procedural law about site selection. Existing laws offer sufficient assurance that only a site will chosen which meets the strict requirements under the Atomic Energy Act in material terms. (orig.)

  5. Geochemical investigations at Maxey Flats radioactive waste disposal site

    International Nuclear Information System (INIS)

    As part of the NRC efforts to develop a data base on source term characteristics for low level wastes, Brookhaven National Laboratory (BNL) has produced and analyzed a large amount of data on trench leachate chemistry at existing shallow land burial sites. In this report, we present the results of our investigations at the Maxey Flats, Kentucky disposal site. In particular, data on trench leachate chemistry are reviewed and discussed in terms of mechanisms and processes controlling the composition of trench solutes. Particular emphasis is placed on identifying both intra- and extra-trench factors and processes contributing to source term characteristics, modifications, and uncertainties. BNL research on the Maxey Flats disposal site has provided important information not only on the source term characteristics and the factors contributing to uncertainties in the source term but also some generic insights into such geochemical processes and controls as the mechanics of leachate formation, microbial degradation and development of anoxia, organic complexation and radionuclide mobility, redox inversion and modification of the source term, solubility constraints on solute chemistry, mineral authigenesis, corrosion products and radionuclide scavenging, and the role of organic complexants in geochemical partitioning of radionuclides. A knowledge of such processes and controls affecting the geochemical cycling of radionuclides as well as an understanding of the important factors that contribute to variability and uncertainties in the source term is essential for evaluating the performance of waste package and the site, making valid predictions of release for dose calculations, and for planning site performance monitoring as well as remedial actions. 43 references, 47 figures, 30 tables

  6. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  7. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    International Nuclear Information System (INIS)

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  8. Basalt Waste Isolation Project exploratory shaft site: Final reclamation report

    International Nuclear Information System (INIS)

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs

  9. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    International Nuclear Information System (INIS)

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey's Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m-3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release

  10. 1993 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    More important than waste generation numbers, the pollution prevention and waste minimization successes achieved at Hanford in 1993 have reduced waste and improved operations at the Site. Just a few of these projects are: A small research nuclear reactor, unused and destined for disposal as low level radioactive waste, was provided to a Texas University for their nuclear research program, avoiding 25 cubic meters of waste and saving $116,000. By changing the slope on a asphalt lot in front of a waste storage pad, run-off rainwater was prevented from becoming mixed low level waste water, preventing 40 cubic meters of waste and saving $750,000. Through more efficient electrostatic paint spraying equipment and a solvent recovery system, a paint shop reduced hazardous waste by 3,500 kilograms, saving $90,800. During the demolition of a large decommissioned building, more than 90% of the building's material was recycled by crushing the concrete for use on-Site and selling the steel to an off-Site recycler, avoiding a total of 12,600 metric tons of waste and saving $450,000. Additionally, several site-wide programs have avoided large quantities of waste, including the following: Through expansion of the paper and office waste recycling program which includes paper, cardboard, newspaper, and phone books, 516 metric tons of sanitary waste was reduced, saving $68,000. With the continued success of the excess chemicals program, which finds on-Site and off-Site customers for excess chemical materials, hazardous waste was reduced by 765,000 liters of liquid chemicals and 50 metric tons of solid chemicals, saving over $700,000 in disposal costs

  11. DEVELOPMENT OF MONITORING AND DIAGNOSTIC METHODS FOR ROBOTS USED IN REMEDIATION OF WASTE SITES

    Science.gov (United States)

    In the Environmental Restoration and Waste Management Program of the Department of Energy (DOE), extensive use of robots is planned for safe and efficient clean up of hazardous and radioactive waste sites. Robots operating at these waste sites will be exposed to a variety of life...

  12. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... treatment plant, septic system waste, or domestic sewage; (vii) Petroleum, including used crankcase oil from... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL...

  13. Progress in forming bottom barriers under waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.E. [Carter Technologies, Sugar Land, TX (United States)

    1997-12-31

    The paper describes an new method for the construction, verification, and maintenance of underground vaults to isolate and contain radioactive burial sites without excavation or drilling in contaminated areas. The paper begins with a discussion of previous full-scale field tests of horizontal barrier tools which utilized high pressure jetting technology. This is followed by a discussion of the TECT process, which cuts with an abrasive cable instead of high pressure jets. The new method is potentially applicable to more soil types than previous methods and can form very thick barriers. Both processes are performed from the perimeter of a site and require no penetration or disturbance of the active waste area. The paper also describes long-term verification methods to monitor barrier integrity passively.

  14. Siting a radioactive waste repository: what role for equity

    International Nuclear Information System (INIS)

    This chapter examines the major socio-economic impacts that may be expected in host communities from siting waste storage facilities and the adequacy of our understanding of these impacts, the equity problems likely to arise, lessons that can be learned from previous nuclear facility siting, and how society may best respond to the policy and management problem, given the imperfect understanding and large uncertainties involved. It concludes that appropriate public responses should be guided by three principles: 1 that risks should be avoided rather than mitigated; 2 that unavoidable risks should be accompanied by compensating benefits; and 3 that informed consent should be obtained for unavoidable risks. 19 references, 1 figure, 2 tables

  15. Soil gas surveying at low-level radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, A.B.; Moor, K.S.; Hull, L.C. [EG and G Idaho Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1989-11-01

    Soil gas sampling is a useful screening technique for determining whether volatile organic compounds are present at low-level radioactive waste burial sites. The technique was used at several DOE sites during the DOE Environmental Survey to determine the presence and extent of volatile organic compound contamination. The advantages of the soil gas sampling are that near real time data can be obtained, no excavation is required, safety concerns are relatively minor, costs are relatively low, and large amounts of data can be obtained rapidly on the contaminants that may pose the greatest threat to groundwater resources. The disadvantages are that the data are difficult to interpret and relate to soil concentrations and environmental standards. This paper discusses the experiences of INEL sampling and analysis personnel, the advantages and disadvantages of the technique, and makes recommendations for improving the sampling and analytical procedures.

  16. Mathematical Modelling of Leachate Production from Waste Contained Site

    Directory of Open Access Journals (Sweden)

    Ojolo S. Joshua

    2012-07-01

    Full Text Available In this work, mathematical models of leachate production from Waste Contained Site (WCS was developed and validated using the existing experimental data with aid of MATLAB, 2007a. When the leachate generation potentials (Lo were 100m3, 80m3 and 50m3, the maximum amount of leachate generated were about 2920m3, 2338m3 and 1461m3 for about 130 days respectively. It was noted that as the leachate percolates through a selected distance, the concentration keeps decreasing for one-dimensional flow in all the cases considered. Decreasing in concentration continues until a point was reached when the concentration was almost zero and later constant. The effects of diffusivity, amount of organic content present within the waste and gravity, as cases, were also considered in various occasions during the percolation. Comparison of their effects was also taken into account. In case of gravity at constant diffusivity, decrease in concentration was not rapid but gradually while much organic content in the waste caused the rate of leachate production to be rapid; hence, giving rise to a sharp sloped curve. It can be concluded that gravity influences the rate of change in the concentration of the leachate generation as the leachate percolate downward to the underground water. When the diffusivity and gravity are put into consideration, the concentration of the leachate decreases gradually and slowly.

  17. Remaining Sites Verification Package for the 100-D-2 Lead Sheeting Waste Site. Attachment to Waste Site Reclassification Form 2007-030

    International Nuclear Information System (INIS)

    The 100-D-2 Lead Sheeting waste site was located approximately 50 m southwest of the 185-D Building and approximately 16 m north of the east/west oriented road. The site consisted of a lead sheet covering a concrete pad. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  18. Remaining Sites Verification Package for the 100-B-23, 100-B/C Area Surface Debris. Attachment to Waste Site, Waste Site Reclassification Form 2008-027

    International Nuclear Information System (INIS)

    The 100-B-23, 100-B/C Surface Debris, waste consisted of multiple locations of surface debris and chemical stains that were identified during an Orphan Site Evaluation of the 100-B/C Area. Evaluation of the collected information for the surface debris features yielded four generic waste groupings: asbestos-containing material, lead debris, oil and oil filters, and treated wood. Focused verification sampling was performed concurrently with remediation. Site remediation was accomplished by selective removal of the suspect hazardous items and potentially impacted soils. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  19. Hydrological investigations of radioactive waste disposal site at PINSTECH

    International Nuclear Information System (INIS)

    Hydrological investigation of Radioactive Waste Disposal Site at PINSTECH was carried out to check the effectiveness of the existing monitoring wells, identify the locations for new wells and suggest design of the well for proper monitoring. For this purpose, five piezometers were installed. Soil samples of depth profiles were analyzed for grain size distribution and lithological logs were prepared. The soil texture is dominantly silty clay with minor fractions of fine sand and gravel. The strata do not vary significantly along the depth profiles. The hydraulic conductivity is extremely low. Therefore, the groundwater regime can be considered as an aquitard which is very suitable for disposal of wastes. From the data of piezometers and monitoring wells, water-table contour maps and groundwater flow nets were prepared. The existing monitoring wells are insufficient for surveillance of the site. Four additional wells are needed for more effective check of possible migration of radionuclides. Using the information on flow nets (hydraulic gradient, groundwater flow direction), proper locations of proposed additional monitoring well have been selected and design of the wells (casing dia.,depth, open area, slit size of the filter and grain size of gravel shroud etc.) has been suggested. (author)

  20. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    International Nuclear Information System (INIS)

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  1. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioecconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts, resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  2. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioeconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  3. Three multimedia models used at hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers

  4. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  5. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  6. Three multimedia models used at hazardous and radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C. [Brookhaven National Lab., Upton, NY (United States); Rambaugh, J.O.; Potter, S. [Geraghty and Miller, Inc., Plainview, NY (United States)

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.

  7. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  8. Making or breaking waste facility siting successes with a siting framework

    International Nuclear Information System (INIS)

    Waste facility siting successes depend on many linked factors of facility design and impacts, site characteristics, and community beliefs and values. A facility siting framework is constructed to combine important elements and cause-effect linkages that affect the siting outcome. The framework consists of three main components: (1) core elements of facility design, effects, and community beliefs, attitude and response; (2) contributing factors of site and community characteristics, community beliefs and values that affect the interpretation of the facility and its effects; and (3) siting management interventions to manage the process and facility impacts. The framework is applied in an unsuccessful and a successful siting case to determine the key elements that contribute to siting outcome: (1) thorough need justification for the facility from the proponent's and the community's perspective; (2) careful facility design and prediction of the impacts and to select impact management compensation measures; (3) screening and selection of communities where the beliefs and values are compatible with the type of facility and its effects, (4) cooperatively selected impact reduction (i.e., prevention, control, and mitigation) measures followed by compensation and incentives; and (5) intensive process management to balance the community characteristics and values with the proponent's efforts to plan, design, assess and manage impacts, and ultimately, gain approval of the facility. The siting framework provides a comprehensive and robust structure of key factors that contribute to siting outcome and, therefore, provides the tool to identify, evaluate, and design siting interventions to enhance the chances of successful siting outcome. 31 refs., 3 figs., 2 tabs

  9. Technologies for in situ immobilization and isolation of radioactive wastes at disposal and contaminated sites

    International Nuclear Information System (INIS)

    This report describes technologies that have been developed worldwide and the experiences applied to both waste disposal and contaminated sites. The term immobilization covers both solidification and embedding of wastes

  10. Replacement of the cross-site transfer system liquid waste transport alternatives evaluation, Project W-058

    International Nuclear Information System (INIS)

    This document examines high-/low-level radioactive liquid waste transport alternatives. Radioactive liquid waste will be transported from the 200 West Area to the 200 East Area and within the 200 East Areas for safe storage and disposal. The radioactive waste transport alternatives are the Aboveground Transport System (French LR-56 Cask System [3,800 L (1,000 gal)]), 19,000-L (5,000-gal) trailer tanker system, 75,700-L (20,000-gal) rail tanker system and Underground Transport System (buried pipe [unlimited transfer volume capability]). The evaluation focused on the following areas: initial project cost, operational cost, secondary waste generation, radiation exposure, and final decommissioning. The evaluation was based on the near term (1995 to 2005) estimated volume of 49.509 million L (13.063 million gal) and long term (1995 to 2028) estimated volume of 757.1 million L (200 million gal). The conclusion showed that the buried pipe (Underground Transport System) resulted in the lowest overall total cost for near and long term, the trailer container resulted in the highest total cost for near and long term, and the French truck was operationally impractical and cost prohibitive

  11. Disposal of VLLW at the Grand View, Idaho, hazardous waste site, USA

    International Nuclear Information System (INIS)

    This annex provides a case study of the Grand View, Idaho, hazardous waste site's experience obtaining permit approvals and disposing of very low activity radioactive waste. To date, the Idaho facility has accepted more than 1.3 million t of low activity material. While rare earth processors and other industry facilities have utilized the Grand View site for low activity waste, most waste has been shipped from federal government remediation projects involving large volumes of contaminated soil and debris

  12. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    David B. Hudson, Cathy A. Wills

    2006-08-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  13. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  14. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    Science.gov (United States)

    Flickinger, Edward L.; Nichols, J.D.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  15. Hazardous Material Storage Facilities and Sites - Commercial Hazardous Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Commercial Hazardous Waste Operation is a DEP primary facility type related to the Waste Management Hazardous Waste Program. The sub-facility types related to...

  16. SITE SUITABILITY ANALYSIS FOR SOLID WASTE DISPOSAL IN JALGAON CITY USING GEOINFORMATICS TECHNIQUES

    OpenAIRE

    Chetan D. Mahajan; Sameer M. Quresh; Mahendra H. Raut

    2014-01-01

    Waste management has become a global environmental concern and issue due to the large amount of waste being generated in urban areas. Improper waste management has led to both economic and environmental problems. Proper planning and efficient solid waste management is necessary in urban areas to prevent environmental, economic and health hazards. This study makes the use of advanced technologies like GIS and Remote Sensing to identify the suitable waste disposal sites ...

  17. Building of multilevel stakeholder consensus in radioactive waste repository siting

    International Nuclear Information System (INIS)

    This report considers the problem of multilevel consensus building for siting and construction of shared multinational/regional repositories for radioactive waste (RW) deep disposal. In the siting of a multinational repository there appears an essential innovative component of stakeholder consensus building, namely: to reach consent - political, social, economic, ecological - among international partners, in addition to solving the whole set of intra-national consensus building items. An entire partnering country is considered as a higher-level stakeholder - the national stakeholder, represented by the national government, being faced to simultaneous seeking an upward (international) and a downward (intra-national) consensus in a psychologically stressed environment, possibly being characterized by diverse political, economic and social interests. The following theses as a possible interdisciplinary approach towards building of shared understanding and stakeholder consensus on the international scale of RW disposal are forwarded and developed: a) building of international stakeholder consensus would be promoted by activating and diversifying on the international scale multilateral interactions between intra- and international stakeholders, including web-based networks of the RW disposal site investigations and decision-making, as well as networks for international cooperation among government authorities in nuclear safety, b) gradual progress in intergovernmental consensus and reaching multilateral agreements on shared deep repositories will be the result of democratic dialogue, via observing the whole set of various interests and common resolving of emerged controversies by using advanced synergetic approaches of conflict resolution, c) cross-cultural thinking and world perception, mental flexibility, creativity and knowledge are considered as basic prerogatives for gaining a higher level of mutual understanding and consensus for seeking further consensus, for

  18. Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522

    Energy Technology Data Exchange (ETDEWEB)

    Mctaggart, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila [Los Alamos National Laboratory; Gadbury, Casey [DOE

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has

  19. Burying nuclear trash where it will stay put. Second of four articles

    International Nuclear Information System (INIS)

    The issue of radioactive waste disposal threatening the growth of fission power is discussed. The challenge of burying such waste material has turned into an emotional debate by alarmists and it is feared that the government, which is responsible for waste disposal, may foul the job; e.g., the burial of wastes from atomic weapons programs has been postponed, and wastes have leaked into the ground from poorly designed temporary storage tanks. California, Maine, Wisconsin, and Iowa have imposed moratoria on new reactor starts until a satisfactory method of waste disposal has been demonstrated. The first demonstration of deep burial is scheduled for the mid- or late 1980s in a salt deposit near Carlsbad, New Mexico. The Federal government will then have to decide where to put permanent repositories, and 9 states have prohibited the burial of radioactive wastes within their borders. It takes centuries for radioactives wastes to decay, but they do decay. The industrial world routinely uses hundreds of dangerous materials (mercury, arsenic, etc.) that stay at full strength forever. These are usually dumped carelessly. Radioactive waste disposal will be far underground and sites carefully chosen. Some opponents of fission power agree that radioactive wastes can be interred safely. The only reason for hurrying a demonstration burial of reactor wastes is political. It would undercut the moratorium movement, and it will be at least 10 years before the results can be appraised. Various rock formations for storage have been assessed, with emphasis on the thick, flat beds of salt in Southwest US. Muchenergy remains in radioactive wastes, leading the author to say that burying fuel is foolish, since it may later have to be exhumed

  20. Uncertainty management in radioactive waste repository site assessment

    International Nuclear Information System (INIS)

    The problem of performance assessment of a site to serve as a repository for the final disposal of radioactive waste involves different types of uncertainties. Their main sources include the large temporal and spatial considerations over which safety of the system has to be ensured, our inability to completely understand and describe a very complex structure such as the repository system, lack of precision in the measured information etc. These issues underlie most of the problems faced when rigid probabilistic approaches are used. Nevertheless a framework is needed, that would allow for an optimal aggregation of the available knowledge and an efficient management of the various types of uncertainty involved. In this work a knowledge-based modelling of the repository selection process is proposed that through a consequence analysis, evaluates the potential impact that hypothetical scenarios will have on a candidate site. The model is organised around a hierarchical structure, relating the scenarios with the possible events and processes that characterise them, and the site parameters. The scheme provides for both crisp and fuzzy parameter values and uses fuzzy semantic unification and evidential support logic reference mechanisms. It is implemented using the artificial intelligence language FRIL and the interaction with the user is performed through a windows interface