WorldWideScience

Sample records for buried radioactive high

  1. Performance of a buried radioactive high level waste (HLW) glass after 24 years

    International Nuclear Information System (INIS)

    Jantzen, Carol M.; Kaplan, Daniel I.; Bibler, Ned E.; Peeler, David K.; John Plodinec, M.

    2008-01-01

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in a lysimeter in the SRS burial ground for 24 years. Lysimeter leachate data was available for the first 8 years. The glass was exhumed in 2004. The glass was predicted to be very durable and laboratory tests confirmed this. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with results of other laboratory and field tests. Radionuclide profiling for alpha, beta, and 137 Cs indicated that Pu was not enriched in the soil while 137 Cs and 9 deg. C Sr were enriched in the first few centimeters surrounding the glass. Lysimeter leachate data indicated that 9 deg. C Sr and 137 Cs leaching from the glass was diffusion controlled

  2. Method of burying vessel containing radioactive waste

    International Nuclear Information System (INIS)

    Koga, Yoshihito.

    1989-01-01

    A float having an inert gas sealed therein is attached to a tightly closed vessel containing radioactive wastes. The vessel is inserted and kept in a small hole for burying the tightly closed vessel in an excavated shaft in rocks such as of granite or rock salts, while filling bentonite as shielding material therearound. In this case, the float is so adjusted that the apparent specific gravity is made equal or nearer between the tightly closed vessel and the bentonite, so that the rightly closed vessel does not sink and cause direct contact with the rocks even if bentonite flows due to earthquakes, etc. This can prevent radioactivity contamination through water in the rocks. (S.K.)

  3. The leaching of radioactivity from highly radioactive glass blocks buried below the water table: fifteen years of results

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1976-03-01

    The results from two test burials of high-level fission products incorporated into nepheline syenite glass indicate that the nuclear wastes from fuel processing for a 30,000 MWe nuclear power industry could be incorporated into such glass and stored beneath the water table in the waste management area of Chalk River Nuclear Laboratories (CRNL) without harm to the environment. (author)

  4. Radiotoxic hazard measure for buried solid radioactive waste

    International Nuclear Information System (INIS)

    Hamstra, J.

    1975-01-01

    The radiotoxic hazards resulting from the disposal of highlevel reprocessing wastes into a deep geological formation are reviewed. The term radiotoxic hazard measure (RHM), used to measure the hazard from buried radioactive wastes, is based on the maximum radionuclide concentration permissible in water. Calculations are made of the RHM levels for the high-level reprocessing wastes of both light-water-reactor and fast breeder reactor fuels. In comparing these RHM levels with that for the natural activity of an equivalent amount of uranium ore and its mill tailings, it is concluded that an actual additional radiotoxic hazard for buried high-level reprocessing waste only exists for the first 300 to 500 years after burial. (U.S.)

  5. Gamma ray energy spectrum of a buried radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Massey, N B

    1957-07-01

    Because of current attempts to utilize airborne gamma-ray scintillation spectrometers as a means of detecting and identifying buried radioactive mineral deposits, it has become important to study the effects of multiple scattering on the gamma-ray energy spectrum of a source buried in a semi-infinite medium. A series of ten experiments was made. First a scintillation detector was located in air at a fixed distance above a 250 microcurie cobalt-60 source suspended in a large tank. The level of water was raised from 25 cm below the source to 50 cm above, and the gamma-ray energy spectrum was observed. It was found that the high energy portion of the cobalt-60 spectrum remained identifiable even when the source was submerged more than five half-lengths. Further, the ratio of the counting rate of the total incident gamma radiation to the counting rate of the primary 1.33 MeV radiation was found to be very nearly linearly proportional to the depth of water cover. This leads to an empirical method for determining the depth of burial of a cobalt-60 point source. (author)

  6. 'Hydrotechnical' problems of burying radioactive waste

    International Nuclear Information System (INIS)

    Nagy, Z.; Buday, G.

    2008-01-01

    The paper describes the design and construction problems of an underground storage facility of nuclear wastes. Special attention ids paid to the role of underground water. After detailed surveys the construction works of the Hungarian Radioactive Waste Storage Facility at Bataapati begun in 2005. The construction of the two 1700 m long inclines are near to the level of the planned storage chambers, today. (TRA)

  7. Super analog computer for evaluating the safety of buried radioactive waste

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1980-01-01

    It is argued that the past use of digital computer programs for evaluating the safety of buried radioactive waste has been largely wasteful and dangerously delusive. It is suggested to use actual rocks as the analog of buried waste. The problem of comparable rates of leaching of radioactive waste and of natural rock is discussed. Two examples are given of the use of natural rock as an ''analog computer'': one for high-level radioactive waste, and one for low-level radioactive waste. Digital computers have not contributed anything to two crucial questions: Can shafts be securely sealed. Does the heat crack the rock or have important effects on its chemistry. 4 refs

  8. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 8: Review of processes near a buried waste canister

    International Nuclear Information System (INIS)

    Lanza, F.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and infomation exchange among the Member countries participating in the NEA Seabed Working Group. This report investigates the phenomena arriving in the proximity of the waste package immersed in the sea sediments

  9. Summary of northern Atlantic coastal plain hydrology and its relation to disposal of high-level radioactive waste in buried crystalline rock; a preliminary appraisal

    Science.gov (United States)

    Lloyd, O.B.; Larson, J.D.; Davis, R.W.

    1985-01-01

    Interpretation of available hydrologic data suggests that some areas beneath the Coastal Plain in the States of Delaware, Maryland, New Jersey, North Carolina, and Virginia might have some potential for the disposal of nuclear waste in crystalline rock that is buried beneath the Coastal Plain sediments. The areas of major interest occur where the top of the basement rock lies between 1,000 and 4,000 feet below sea level, the aquifer(s) immediately above the basement rock are saturated with saline water, confining material overlies the saline water bearing aquifer(s), and groundwater flow in the saline water aquifer(s) can be established. Preliminary data on (1) the distribution and thickness of the lowermost aquifers and confining beds, (2) the distribution of hydraulic conductivity in the lowermost aquifers, (3) estimated hydraulic heads and inferred direction of lateral groundwater flow for 1980, and (4) the distribution of saline water and brine, indicate eastern parts of the study area relatively best meet most of the criteria proposed for sediments that would overlie any potential buried crystalline-rock disposal site.

  10. Exhumation of radioactive solid wastes buried for fourteen years

    International Nuclear Information System (INIS)

    Horton, J.H.

    1977-03-01

    Twenty-five linear feet of a low-level beta-gamma waste trench was excavated fourteen years after the waste was buried. The waste included wood, steel, plastics, cotton cloth, rubber, and paper. Cardboard boxes not enclosed in plastic were the only materials to deteriorate visibly. Apparently, decades would be required for all cellulose materials to decompose, and plastics and metals would survive indefinitely

  11. Basic prerequisites and the practice of using deep water tables for burying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    In the USSR, creating reservoirs for liquid radioactive wastes is one of the promising methods of safely disposing of them in deep water tables, in zones with a standing regime or a slow rate of subterranean water exchange. The results of investigations and the practice of burying (the wastes) indicate the reliability and effectiveness of such a method of final waste disposal when the basic requirements of environmental protection are observed. Geological formations and collector strata that guarantee the localization of the liquid radioactive wastes placed in them for many tens and even hundreds of thousands of years can be studied and chosen in different regions. The basic requirements and criteria to which the geological structures and collector strata must correspond for ensuring the safe burial of wastes have been formulated. Wastes are buried only after a comprehensive, scientifically based evaluation of the sanitary-radiation safety for this generation and future ones, taking into account the burial regime and the physico-chemical processes that accompany combining wastes with rocks and stratal waters, as well as the time of holding wastes to maximum permissible concentrations. Positive and negative factors that characterize the method are analyzed. Possible emergency situations with subterranean burial are evaluated. The composition and methods of the geological survey, hydrodynamic, geophysical, physico-chemical and sanitary-radiation investigations; methods of calculating and predicting the movement of wastes underground;methods of preparing wastes for burial and chemical methods of restoring the suitability of wells; design characteristics and conditions of preparing wells for use; methods of estimating heating and processes of radiolysis for a medium containing highly radioactive wastes; methods of operational and remote control of the burial process and the condition of the ambient medium, etc. are briefly examined

  12. Buried for ever. The US experience of radioactive waste disposal

    International Nuclear Information System (INIS)

    Resnikoff, Marvin.

    1987-01-01

    The United States is the largest producer of radioactive wastes and has considerable experience, not all good, of shallow disposal methods for low level wastes. Indeed, as a result of leakage and contamination, three sites have been closed down and there is concern over another site, at Barnwell in South Carolina. This chapter analyses the geological and technical problems of each of the sites from the viewpoint of the environmental pressure group, the Sienna Club. The sites are at Maxey Flats, Kentucky; Sheffield, Illinois; West Valley, New York; Barnwell; Richland, Washington and Beatly, Nevada. The problems have been those situated in the humid, northern regions where there has been excessive ground water, degradation of waste containers, subsidence and erosion, the presence of chelating agents and a lack of stabilisation and funding for long-term care. In the semi-arid western sites the problems are fewer. However, the cost of transporting the waste to them is high. It is suggested that some of the low-level wastes should be reclassified as high-level wastes and should be disposed of deep underground. (UK)

  13. Buried pipeline leak-detection technique and instruments using radioactive tracers

    International Nuclear Information System (INIS)

    Zhou Shuxuan; Lu Qingqian; Tang Yonghua

    1987-01-01

    For detecting and locating leaks on buried pipelines, a leak-detection technique and related instruments have been developed. Some quantity of fluid mixed with a radioactive tracer is injected. After the pipeline is cleaned, a leak-detector is put into and moves along the pipline to monitor the leaked radioactivity and to record both the radioactive signal and the time signal on a magnetic tape. From the signal curves, it can be judged whether there are any leaks on the pipeline and, if any, where they are

  14. A leak-detection instrument for long buried pipelines based on radioactive tracer measurements

    International Nuclear Information System (INIS)

    Lu Qingqian; Zhou Shuxuan; Tang Yonghua; Sun Xiaolei; Hu Xusheng; Li Deyi; Yin Liqiang

    1987-01-01

    The instrument introduced provides a means for leak detection of long buried pipelines based on the radioactive tracer technique. The principle, block diagram and performances for the instrument are described. The leak-detecting method and the determination of some related parameters are also presented. Leak-detection sensitivity of the instrument is 185 kBq (5 μCi). Accuracy for leak localization is within 2.5 m (per km). It is suitable for the buried light oil (gasoline, kerosene, diesel oil) and industrial water pipelines with a diameter of 15 or 20 cm. The detection length for a single operation reaches up to 50 km

  15. Buried for ever: The US experience of radioactive waste disposal

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1987-01-01

    The United States is the largest producer of radioactive wastes, and has considerable experience with shallow disposal methods. This experience is mixed, with major problems of leakage and contamination occurring in those sites in the wetter eastern part of the country. As a result three sites have been closed down, and there is concern about the potential hazards at the remaining eastern site at Barnwell, South Carolina. This paper, written from the perspective of the national environmental pressure group, the Sierra Club, analyses the geological and technical problems at each of the sites, and suggests the lessons that can be learned from this experience

  16. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.

    Science.gov (United States)

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-02-08

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.

  17. Spotting Radioactive Sources Buried Underground Using an Airborne Radiation Monitoring System

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Wengrowicz, U.; Beck, A.; Marcus, E.; Tirosh, D.

    2002-01-01

    This article provides theoretical background concerning the capability of the Airborne Radiation Monitoring System [1]to detect fission products buried at 1-meter depth under the ground surface,at a flight altitude of 100 meters above ground.The 137 Cs source was used as a typical fission product. The System monitors radioactive contamination in the air or on the ground using two 2 inch NaI(Tl) scintillation detectors and computerized accessories for analysis purposes

  18. Processing vessel for high level radioactive wastes

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi

    1998-01-01

    Upon transferring an overpack having canisters containing high level radioactive wastes sealed therein and burying it into an underground processing hole, an outer shell vessel comprising a steel plate to be fit and contained in the processing hole is formed. A bury-back layer made of dug earth and sand which had been discharged upon forming the processing hole is formed on the inner circumferential wall of the outer shell vessel. A buffer layer having a predetermined thickness is formed on the inner side of the bury-back layer, and the overpack is contained in the hollow portion surrounded by the layer. The opened upper portion of the hollow portion is covered with the buffer layer and the bury-back layer. Since the processing vessel having a shielding performance previously formed on the ground, the state of packing can be observed. In addition, since an operator can directly operates upon transportation and burying of the high level radioactive wastes, remote control is no more necessary. (T.M.)

  19. A proposed alternative approach for protection of inadvertent human intruders from buried Department of Energy low level radioactive wastes

    International Nuclear Information System (INIS)

    Cochran, J.R.

    1995-01-01

    The burial of radioactive wastes creates a legacy. To limit the impact of this legacy on future generations, we establish and comply with performance objectives. This paper reviews performance objectives for the long-term isolation of buried radioactive wastes; identifies regulatorly-defined performance objectives for protecting the inadvertent human intruder (IHI) from buried low-level radioactive waste (LLW); (3) discusses a shortcoming of the current approach; and (4) offers an alternative approach for protecting the IHI. This alternative approach is written specifically for the burial of US Department of Energy (DOE) wastes at the Nevada Test Site (NTS), although the approach might be applied at other DOE burial sites

  20. Fate of gaseous tritium and carbon-14 released from buried low-level radioactive waste

    International Nuclear Information System (INIS)

    Striegl, R.G.

    1988-01-01

    Microbial decomposition, chemical degradation, and volatilization of buried low-level radioactive waste results in the release of gases containing tritium ( 3 H) and carbon-14 ( 14 C) to the surrounding environment. Water vapor, carbon dioxide, and methane that contain 3 H or 14 C are primary products of microbial decomposition of the waste. Depending on the composition of the waste source, chemical degradation and volatilization of waste also may result in the production of a variety of radioactive gases and organic vapors. Movement of the gases in materials that surround waste trenches is affected by physical, geochemical, and biological mechanisms including sorption, gas-water-mineral reactions, isotopic dilution, microbial consumption, and bioaccumulation. These mechanisms either may transfer 3 H and 14 C to solids and infiltrating water or may result in the accumulation of the radionuclides in plant or animal tissue. Gaseous 3 H or 14 C that is not transferred to other forms is ultimately released to the atmosphere

  1. Training requirements and responsibilities for the Buried Waste Integrated Demonstration at the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Vega, H.G.; French, S.B.; Rick, D.L.

    1992-09-01

    The Buried Waste Integrated Demonstration (BWID) is scheduled to conduct intrusive (hydropunch screening tests, bore hole installation, soil sampling, etc.) and nonintrusive (geophysical surveys) studies at the Radioactive Waste Management Complex (RWMC). These studies and activities will be limited to specific locations at the RWMC. The duration of these activities will vary, but most tasks are not expected to exceed 90 days. The BWID personnel requested that the Waste Management Operational Support Group establish the training requirements and training responsibilities for BWID personnel and BWID subcontractor personnel. This document specifies these training requirements and responsibilities. While the responsibilities of BWID and the RWMC are, in general, defined in the interface agreement, the training elements are based on regulatory requirements, DOE orders, DOE-ID guidance, state law, and the nature of the work to be performed

  2. The Thermal Regime Around Buried Submarine High-Voltage Cables

    Science.gov (United States)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  3. SEARCH AND MAPPING OF THE OLD BURIED TAILINGS WITH RADIOACTIVE WASTES AT THE URBAN TERRITORY.

    Science.gov (United States)

    Molchanov, O I; Soroka, Y N; Podrezov, A A; Soroka, M N

    2017-11-01

    The article presents results of investigation on search and mapping of the old buried tailings with radioactive wastes on the territory of Kamianske City. For solving the problem used complex of methods. These methods are as follows: soil-gas 222Rn measurement and measurement of 222Rn flux density from the ground surface, gamma-radiation survey, prospecting drilling, gamma-ray logging and laboratory analysis of radionuclides. The leading method in this complex was the method of soil-gas 222Rn measurement. Using this method location of the tailings has been precisely defined. The tailings boundaries have been contoured in the plan. Other methods permitted to define such parameters as thickness of the wastes, their volume (~330 000 m3), radionuclide and chemical composition. It was found that radioactive residues occur at a depth from 2 to 11 m and contain in its composition 226Ra, 210Pb and 210Po in the range from 8370 to 37 270 Bq kg-1. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Search and mapping of the old buried tailings with radioactive wastes at the urban territory

    International Nuclear Information System (INIS)

    Molchanov, O. I.; Soroka, Y. N.; Podrezov, A. A.; Soroka, M. N.

    2017-01-01

    The article presents results of investigation on search and mapping of the old buried tailings with radioactive wastes on the territory of Kamianske City. For solving the problem used complex of methods. These methods are as follows: soil-gas 222 Rn measurement and measurement of 222 Rn flux density from the ground surface, gamma-radiation survey, prospecting drilling, gamma-ray logging and laboratory analysis of radionuclides. The leading method in this complex was the method of soil-gas 222 Rn measurement. Using this method location of the tailings has been precisely defined. The tailings boundaries have been contoured in the plan. Other methods permitted to define such parameters as thickness of the wastes, their volume (∼330 000 m 3 ), radionuclide and chemical composition. It was found that radioactive residues occur at a depth from 2 to 11 m and contain in its composition 226 Ra, 210 Pb and 210 Po in the range from 8370 to 37270 Bq kg -1 .(authors)

  5. Grouting as a remedial technique for buried low-level radioactive wastes

    International Nuclear Information System (INIS)

    Spalding, B.P.; Hyder, L.K.; Munro, I.L.

    1985-01-01

    Seven grout formulations were tested in the laboratory for their ability to penetrate and to reduce the hydraulic conductivities of soils used as backfills for shallow land burial trenches. Soils from two sites, in Oak Ridge, TN, and Maxey Flats, KY were used and both are classified as Typic Dystrochrepts. Three soluble grout formulations (sodium silicate, polypropenamide [polyacrylamide], and 1,3-Benzenediol [resorcinol]-formaldehyde) were able to both penetrate soil and sand columns and reduce hydraulic conductivities from initial values of ca. 10 -4 m s -1 to -8 m s -1 . Three particulate grouts (lime [calcium oxide]-fly ash, fly ash-cement-bentonite, and bentonite alone) could not penetrate columns; such formulations would, therefore, be difficult to inject into closed burial trenches. Field demonstrations with both sodium silicate and polyacrylamide showed that grout could be distributed throughout a burial trench and that waste-backfill hydraulic conductivity could be reduced several orders of magnitude. Field grouting with polyacrylamide reduced the mean hydraulic conductivity of nine intratrench monitoring wells from 10 -4 to 10 -8 m s -1 . Grouting of low-level radioactive solid waste in situ, therefore, should be an effective technique to correct situations where leaching of buried wastes has or will result in groundwater contamination

  6. High dose implantations of antimony for buried layer applications

    International Nuclear Information System (INIS)

    Gailliard, J.P.; Dupuy, M.; Garcia, M.; Roussin, J.C.

    1978-01-01

    Electrical and physical properties of high dose implantations of antimony in silicon have been studied for use in buried layer applications. The results have been obtained both on and oriented silicon wafers. Following implantations which lead to amorphization we perform an annealing at 600 0 C for 10 mn in order to recrystallize the layer. The observed electrical properties (μ, R) show that the concentration of electrically active antimony ions is greater than that predicted from the solubility of antimony in silicon. Further annealing (in the range 1050 0 - 1200 0 ) induces: firstly a precipitation of the Sb and secondly a diffusion and dissolution of the precipitates. There is a different evolution of the defects in the and silicon slices. T.E.M. reveals no defects in the wafers after one hour annealing at 1200 0 C, whereas defects and twins remain in wafers. Having obtained the evolution of R with time and temperature it is then determined the implantation and annealing conditions which lead to the low resistivity (R = 10) needed for buried layer applications. Results with very many industrially made devices are discussed

  7. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Corey, J.C.; Adriano, D.C.; Decker, O.D.; Griggs, R.D.

    1989-01-01

    Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months

  8. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  9. Amersham's high radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Caulkin, S

    1984-11-01

    An account is given of the history, organisation and work of Amersham International, to produce radioactive and other products for use in medical diagnosis and therapy, in research in the life sciences, and in industrial processes and control systems. The account covers the developments from the war-time work of Thorium Ltd., on naturally occurring radioactive materials, through the post-war expansion into the field of artificial radioisotopes, as the Radiochemical Centre (part of the UK Atomic Energy Authority), to the recent reorganisation and privatization. The width of the range of activities and products available is emphasised, with examples.

  10. Amersham's high radioactivity

    International Nuclear Information System (INIS)

    Caulkin, S.

    1984-01-01

    An account is given of the history, organisation and work of Amersham International, to produce radioactive and other products for use in medical diagnosis and therapy, in research in the life sciences, and in industrial processes and control systems. The account covers the developments from the war-time work of Thorium Ltd., on naturally occurring radioactive materials, through the post-war expansion into the field of artificial radioisotopes, as the Radiochemical Centre (part of the UK Atomic Energy Authority), to the recent reorganisation and privatization. The width of the range of activities and products available is emphasised, with examples. (U.K.)

  11. High ion temperatures from buried layers irradiated with Vulcan Petawatt

    International Nuclear Information System (INIS)

    Karsch, S.; Schreiber, J.; Willingale, L.; Lancaster, K.; Habara, H.; Nilson, P.; Gopal, A.; Wei, M. S.; Stoeckl, C.; Evans, R.; Clarke, R.; Heathcote, R.; Najmudin, Z.; Krushelnick, K.; Neely, D.; Norreys, P. A.

    2005-01-01

    Deuteron acceleration from CH/CD/CH layer targets irradiated with PW laser pulses has been studied using. Thomson parabola spectrometers and neutron TOF spectroscopy. The measured ion and neutron spectra reveal significant MeV deuteron acceleration from the deeply buried CD layer, which scales with the thickness of the overlying CH layer. While the neutron spectra reveal the scaling of the thermal heating with target thickness, the ion spectra indicate the presence of an efficient nonthermal acceleration mechanism inside. the bulk. Possible explanations will be discussed. (Author)

  12. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  13. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  14. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  15. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    International Nuclear Information System (INIS)

    Zhang Wen-Tong; Wu Li-Juan; Qiao Ming; Luo Xiao-Rong; Zhang Bo; Li Zhao-Ji

    2012-01-01

    A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and −587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Fernald's dilemma: Do we recycle the radioactively contaminated metals, or do we bury them?

    International Nuclear Information System (INIS)

    Yuracko, K.L.; Hadley, S.W.; Perlack, R.D.

    1996-01-01

    During the past five years, a number of U.S. Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of large accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder supported manner. The potential health and safety risks to both workers and the public have been addressed. The question remains; can products be fabricated from RSM in a cost efficient and market competitive manner? This paper presents a methodology for use within DOE to evaluate the costs and benefits of recycling and reusing some RSM, rather than disposing of this RSM in an approved burial site. This life cycle decision methodology, developed by both the Oak Ridge National Laboratory (ORNL) and DOE Fernald is the focus of the following analysis

  17. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    International Nuclear Information System (INIS)

    Arora, H.S.; Tamura, T.; Boegly, W.J.

    1980-09-01

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references

  18. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  19. High-level radioactive wastes

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1982-10-01

    This bibliography contains 812 citations on high-level radioactive wastes included in the Department of Energy's Energy Data Base from January 1981 through July 1982. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  20. Review of Detection and Monitoring Systems for Buried High Pressure Pipelines: Final Report

    OpenAIRE

    Asadollahi Dolatabad, Saeid; Doree, Andries G.; olde Scholtenhuis, Léon Luc; Vahdatikhaki, Faridaddin

    2017-01-01

    The Netherlands has approximately two million kilometers of underground cables and pipelines. One specific type of buried infrastructure is the distribution network of hazardous material such as gas, oil, and chemicals (‘transportleiding gevaarlijke stoffen’). This network comprises 22.000 kilometers of high-pressure transportation pipelines. Because they are located under the ground, these pipelines are subject to excavation damages. Incidents in them Belgian Gellingen (2004) and German Ludw...

  1. A high voltage SOI pLDMOS with a partial interface equipotential floating buried layer

    International Nuclear Information System (INIS)

    Wu Lijuan; Zhang Wentong; Zhang Bo; Li Zhaoji

    2013-01-01

    A novel silicon-on-insulator (SOI) high-voltage pLDMOS is presented with a partial interface equipotential floating buried layer (FBL) and its analytical model is analyzed in this paper. The surface heavily doped p-top layers, interface floating buried N + /P + layers, and three-step field plates are designed carefully in the FBL SOI pLDMOS to optimize the electric field distribution of the drift region and reduce the specific resistance. On the condition of ESIMOX (epoxy separated by implanted oxygen), it has been shown that the breakdown voltage of the FBL SOI pLDMOS is increased from −232 V of the conventional SOI to −425 V and the specific resistance R on,sp is reduced from 0.88 to 0.2424 Ω·cm 2 . (semiconductor devices)

  2. Suggestions on R and D work of high-level radioactive waste disposal in China

    International Nuclear Information System (INIS)

    Xu Guoqing

    2012-01-01

    The difference between repository and generic underground facilities is described. Some differences and similarities of site selection between the low and medium radioactive waste disposal, nuclear power station and high-level radioactive waste repository are also discussed here. We trend to extremely emphasize the safety of high-level radioactive waste disposal because of high toxicity, long half-life and long safety disposal period of this kind of radioactive wastes; because radioactive waste in the repository is of high specific activities and buried in depth, it would be difficult to meddle with its safety. In case of repository system being destroyed, the author considers that in the stages of regional and area site selection, the first task is to investigate regional tectonic stability. Some problems about disposal options and others are also discussed in this paper. (author)

  3. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  4. Development and testing of techniques for in-ground stabilization, size reduction, and safe removal of radioactive wastes stored in containments buried in ground

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Christodoulou, Apostolos

    2013-01-01

    Since the 1950's radioactive wastes from a number of laboratories have been stored below ground at the Hanford site, Washington State, USA, in vertical pipe units (VPUs) made of five 200 litre drums without tops or bottoms, and in caissons, made out of corrugated pipe, or concrete and typically 2,500 mm in diameter. The VPU's are buried of the order of 2,100 mm below grade, and the caissons are buried of the order of 6,000 mm below grade. The waste contains fuel pieces, fission products, and a range of chemicals used in the laboratory processes. This can include various energetic reactants such as un-reacted sodium potassium (NaK), potassium superoxide (KO 2 ), and picric acid, as well as quantities of other liquids. The integrity of the containments is considered to present unacceptable risks from leakage of radioactivity to the environment. This paper describes the successful development and full scale testing of in-ground augering equipment, grouting systems and removal equipment for remediation and removal of the VPUs, and the initial development work to test the utilization of the same basic augering and grouting techniques for the stabilization, size reduction and removal of caissons. (authors)

  5. Flask for highly radioactive substances

    International Nuclear Information System (INIS)

    1980-01-01

    The flask for highly radioactive substances described in this invention comprises a thick steel cylinder with leak proof closures at both ends and made up of several coaxial rings in rolled sheet steel, fitted into each other and welded to each other along their edges. The inner ring is preferably in sheet steel with a lining on its internal side, for instance a stainless steel lining. Likewise the outer ring is preferably in sheet steel with a covering on its outer side. The cylindrical body of the flask is welded by its lower end to a forged steel bottom and by its upper end to a forged steel ring. The bottom can also be made with several partitions. This forged steel ring has an inside peripheral shoulder and the upper end of the flask is closed in a leak proof manner by an initial forged steel plus resting on this shoulder and bolted to it and by a second plug bolted to the free end of this ring [fr

  6. Effects of buried high-Z layers on fast electron propagation

    International Nuclear Information System (INIS)

    Yang, Xiaohu; Zhuo, Hongbin; Ma, Yanyun; Shao, Fuqiu; Xu, Han; Yin Yan; Borghesi, M.

    2014-01-01

    The transport through high density plasmas of relativistic electron beams generated by ultra-intense laser-plasma interaction has potential applications in laser-driven ion acceleration and in the fast igniter scheme for inertial confinement fusion. By extending a prior model [A.R. Bell, J.R. Davies, S.M. Guerin, Phys. Rev. E 58, 2471 (1998)], the magnetic field generated during the transport of a fast electron beam driven by an ultra-intense laser in a solid target is derived analytically and applied to estimate the effect of such field on fast electron propagation through a buried high-Z layer in a lower-Z target. It is found that the effect gets weaker with the increase of the depth of the buried layer, the divergence of the fast electrons, and the laser intensity, indicating that magnetic field effects on the fast electron divergence as measured from K a X-ray emission may need to be considered for moderate laser intensities. On the basis of the calculations, some considerations are made on how one can mitigate the effect of the magnetic field generated at the interface. (authors)

  7. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  8. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  9. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  10. Risks, costs and benefits analysis for exhumation of buried radioactive materials at a nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Kirk, J.S.; Moore, R.A.; Huston, T.E.

    1996-01-01

    A Risks, Costs and Benefits analysis provides a tool for selecting a cost-effective remedial action alternative. This analysis can help avoid transferring risks to other populations and can objectively measure the benefits of a specific remedial action project. This paper describes the methods and results of a Risks, Costs and Benefits analysis performed at a nuclear fuel fabrication facility. The analysis examined exhuming and transporting radioactive waste to an offsite disposal facility. Risks evaluated for the remedial action project were divided into two categories: risks posed to the worker and risks posed to public health. Risks to workers included exposure to radioactive contaminants during excavation and packaging of waste materials and the use of heavy machinery. Potential public health risks included exposure to radioactive materials during transport from the exhumation site to the disposal facility. Methods included use of site-specific and published data, and existing computer models. Occupational risks were quantified using data from similar onsite remedial action projects. Computer modeling was used to evaluate public health risks from transporting radioactive materials; the consequences or probability of traffic accidents; and radiation exposure to potential inhabitants occupying the site considering various land use scenarios. A costs analysis was based on data obtained from similar onsite remedial action projects. Scenarios used to identify benefits resulting from the remedial action project included (1) an evaluation of reduction in risks to human health; (2) cost reductions associated with the unrestricted release of the property; and (3) benefits identified by evaluating regulatory mandates applicable to decommissioning. This paper will provide an overview of the methods used and a discussion of the results of a Risks, Costs and Benefits analysis for a site-specific remedial action scenario

  11. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  12. Electrochemical deposition of buried contacts in high-efficiency crystalline silicon photovoltaic cells

    DEFF Research Database (Denmark)

    Jensen, Jens Arne Dahl; Møller, Per; Bruton, Tim

    2003-01-01

    This article reports on a newly developed method for electrochemical deposition of buried Cu contacts in Si-based photovoltaic ~PV! cells. Contact grooves, 20 mm wide by 40 mm deep, were laser-cut into Si PV cells, hereafter applied with a thin electroless NiP base and subsequently filled with Cu...... by electrochemical deposition at a rate of up to 10 mm per min. With the newly developed process, void-free, superconformal Cu-filling of the laser-cut grooves was observed by scanning electron microscopy and focused ion beam techniques. The Cu microstructure in grooves showed both bottom and sidewall texture......, with a grain-size decreasing from the center to the edges of the buried Cu contacts and a pronounced lateral growth outside the laser-cut grooves. The measured specific contact resistances of the buried contacts was better than the production standard. Overall performance of the new PV cells was equal...

  13. DOE's plan for buried transuranic (TRU) contaminated waste

    International Nuclear Information System (INIS)

    Mathur, J.; D'Ambrosia, J.; Sease, J.

    1987-01-01

    Prior to 1970, TRU-contaminated waste was buried as low-level radioactive waste. In the Defense Waste Management Plan issued in 1983, the plan for this buried TRU-contaminated waste was to monitor the buried waste, take remedial actions, and to periodically evaluate the safety of the waste. In March 1986, the General Accounting Office (GAO) recommended that the Department of Energy (DOE) provide specific plans and cost estimates related to buried TRU-contaminated waste. This plan is in direct response to the GAO request. Buried TRU-contaminated waste and TRU-contaminated soil are located in numerous inactive disposal units at five DOE sites. The total volume of this material is estimated to be about 300,000 to 500,000 m 3 . The DOE plan for TRU-contaminated buried waste and TRU-contaminated soil is to characterize the disposal units; assess the potential impacts from the waste on workers, the surrounding population, and the environment; evaluate the need for remedial actions; assess the remedial action alternatives; and implement and verify the remedial actions as appropriate. Cost estimates for remedial actions for the buried TRU-contaminated waste are highly uncertain, but they range from several hundred million to the order of $10 billion

  14. The buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1991-01-01

    There are numerous locations throughout the Department of Energy (DOE) Complex where wastes have been buried in the ground or stored for future disposal. Much of this buried waste is contaminated with hazardous and radioactive materials. An extensive research program has been initiated at the Idaho National Engineering Laboratory (INEL) to develop and demonstrate advanced remediation techniques for DOE Complex buried waste. The purpose of the Buried Waste Integrated Demonstration (BWID), is to develop a scientifically sound and deployable remediation system consisting of advanced technologies which address the buried waste characteristics of the DOE Complex. This comprehensive remediation system win include technologies for the entire remediation cycle (cradle-to-grave). Technologies developed and demonstrated within the BWID will be transferred to the DOE Complex sites with buried waste, to private industry, and to universities. Multidirectional technology transfer is encouraged by the BWID. Identification and evaluation of plausible technological solutions are an ongoing activity of the BWID. A number of technologies are currently under development throughout the DOE Complex, private industry, and universities. Technology integration mechanisms have been established by BWID to facilitate collaborative research and demonstration of applicable remedial technologies for buried waste. Successful completion of the BWID will result in the development of a proven and deployable system at the INEL and other DOE Complex buried waste sites, thereby supporting the DOE Complex's environmental restoration objectives

  15. High-level radioactive wastes. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations

  16. Disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Costello, J M [Australian Atomic Energy Commission Research Establishment, Lucas Heights

    1982-03-01

    The aims and options for the management and disposal of highly radioactive wastes contained in spent fuel from the generation of nuclear power are outlined. The status of developments in reprocessing, waste solidification and geologic burial in major countries is reviewed. Some generic assessments of the potential radiological impacts from geologic repositories are discussed, and a perspective is suggested on risks from radiation.

  17. Review of Detection and Monitoring Systems for Buried High Pressure Pipelines : Final Report

    NARCIS (Netherlands)

    Asadollahi Dolatabad, Saeid; Doree, Andries G.; olde Scholtenhuis, Léon Luc; Vahdatikhaki, Faridaddin

    2017-01-01

    The Netherlands has approximately two million kilometers of underground cables and pipelines. One specific type of buried infrastructure is the distribution network of hazardous material such as gas, oil, and chemicals (‘transportleiding gevaarlijke stoffen’). This network comprises 22.000

  18. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  19. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  20. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  1. Radioactive waste repository of high ecological safety

    International Nuclear Information System (INIS)

    Sobolev, I.; Barinov, A.; Prozorov, L.

    2000-01-01

    With the purpose to construct a radioactive waste repository of high ecological safety and reliable containment, MosNPO 'Radon' specialists have developed an advanced type repository - large diameter well (LBD) one. A project is started for the development of a technology for LDW repository construction and pilot operation of the new repository for 25-30 years. The 2 LDW repositories constructed at the 'Radon' site and the developed monitoring system are described

  2. High-level radioactive wastes. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, L.H. (ed.)

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  3. Intergenerational ethics of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Nagoya Univ., Graduate School of Engineering, Nagoya, Aichi (Japan); Nasu, Akiko; Maruyama, Yoshihiro [Shibaura Inst. of Tech., Tokyo (Japan)

    2003-03-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  4. Intergenerational ethics of high level radioactive waste

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Nasu, Akiko; Maruyama, Yoshihiro

    2003-01-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  5. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  6. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  7. Security of highly radioactive sources in Nepal

    International Nuclear Information System (INIS)

    Shrestha, Kamal K.

    2010-01-01

    Subsequent to 9/11, concerned countries and UN agencies have taken especial interest in the security of highly radioactive sources throughout the world. The IAEA Nuclear Security Plan (2006-2009) consequently made as a result of UN Security Council Resolution 1540 is binding to all States. The Global Threat Reduction Initiative (GTRI) of the US and the Global Threat Reduction Programme (GTRP) of UK have assisted the four hospitals in Nepal having more than 1,000 Curies of radioactivity in their Cobalt-60 sources used for teletherapy. The physical upgrade of the security of the nuclear materials has also been launched in Nepal for prevention of theft with malicious intention or threats. In this presentation, the radioisotopes in Nepal that comes under different categories according to TECDOC-1355 of IAEA will be described. Problems and issues regarding the security and protection of radioactive sources at hospitals, academic and research institutions that could be prevalent in many developing counties too will be discussed by taking a case study of one of the cancer hospitals in Kathmandu valley. (author)

  8. Glasses used for the high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-06-01

    High level radioactive wastes generated by the reprocessing of spent fuels is an important concern in the conditioning of radioactive wastes. This paper deals with the status of the knowledge about glasses used for the treatment of these liquids [fr

  9. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  11. High-resolution subsurface imaging and neural network recognition: Non-intrusive buried substance location. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M.

    1997-01-26

    A high-frequency, high-resolution electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) elimination of electric-field interference at high frequencies, (5) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (6) rapid neural network interpretation at the field site, and (7) visualization of complex structures during the survey. Four major experiments were conducted with the system: (1) Data were collected for several targets in our physical modeling facility. (2) The authors tested the system over targets buried in soil. (3) The authors conducted an extensive survey at the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The location of the buried waste, category of waste, and thickness of the clay cap were successfully mapped. (4) The authors ran surveys over the acid pit at INEL. This was an operational survey over a hot site. The interpreted low-resistivity region correlated closely with the known extent of the acid pit.

  12. High-resolution subsurface imaging and neural network recognition: Non-intrusive buried substance location. Final report

    International Nuclear Information System (INIS)

    Sternberg, B.K.; Poulton, M.M.

    1997-01-01

    A high-frequency, high-resolution electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) elimination of electric-field interference at high frequencies, (5) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (6) rapid neural network interpretation at the field site, and (7) visualization of complex structures during the survey. Four major experiments were conducted with the system: (1) Data were collected for several targets in our physical modeling facility. (2) The authors tested the system over targets buried in soil. (3) The authors conducted an extensive survey at the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The location of the buried waste, category of waste, and thickness of the clay cap were successfully mapped. (4) The authors ran surveys over the acid pit at INEL. This was an operational survey over a hot site. The interpreted low-resistivity region correlated closely with the known extent of the acid pit

  13. High-resolution subsurface imaging and neural network recognition: Non-intrusive buried substance location. Final report, January 26, 1997

    International Nuclear Information System (INIS)

    Sternberg, B.K.; Poulton, M.M.

    1998-01-01

    A high-frequency, high-resolution electromagnetic (EIVI) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHZ), (4) elimination of electric-field interference at high frequencies, (5) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (6) rapid neural network interpretation at the field site, and (7) visualization of complex structures during the survey. Four major experiments were conducted with the system: (1) Data were collected for several targets in our physical modeling facility. (2) We tested the system over targets buried in soil. (3) We conducted an extensive survey at the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The location of the buried waste, category of waste, and thickness of the clay cap were successfully mapped. (4) We ran surveys over the acid pit at INEL. This was an operational survey over a hot site. The interpreted low-resistivity region correlated closely with the known extent of the acid pit

  14. High performance 1.3 μm buried crescent lasers and LEDs for fiber optic links

    International Nuclear Information System (INIS)

    Fu, R.J.; Chan, E.Y.; Hong, C.S.

    1989-01-01

    Self-aligned buried crescent heterostructure (BCH) semiconductor lasers and LEDs have been successfully developed as superb light sources for fiber optic communications. The fabrication and performance characteristics of these InGaAsP/InP lasers and LEDs are described. For lasers, the threshold currents as low as 10 mA and differential quantum efficiencies as high as 50% are achieved. For LEDs, the output powers at 150 mA are higher than 1 mW. Good far field patterns are obtained in both the LEDs and lasers. Measured I-V, L-I, spectrum and far field patterns are presented

  15. Research of high energy radioactivity identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  16. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  17. Cementification for radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide

    International Nuclear Information System (INIS)

    Miyamoto, Shinya; Sato, Tatsuaki; Sasoh, Michitaka; Sakurai, Jiro; Takada, Takao

    2005-01-01

    For the cementification of radioactive waste that has large concentrations of sodium sulfate and radioactive nuclide, a way of fixation for sulfate ion was studied comprising the pH control of water in contact with the cement solid, and the removal of the excess water from the cement matrix to prevent hydrogen gas generation with radiolysis. It was confirmed that the sulfate ion concentration in the contacted water with the cement solid is decreased with the formation of ettringite or barium sulfate before solidification, the pH value of the pore water in the cement solid can control less than 12.5 by the application of zeolite and a low-alkali cement such as alumina cement or fly ash mixed cement, and removal of the excess water from the cement matrix by heating is possible with aggregate addition. Consequently, radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide can be solidified with cementitious materials. (author)

  18. Management of high level radioactive waste

    International Nuclear Information System (INIS)

    Redon, A.; Mamelle, J.; Chambon, M.

    1977-01-01

    The world wide needs in reprocessing will reach the value of 10.000 t/y of irradiated fuels, in the mid of the 80's. Several countries will have planned, in their nuclear programme, the construction of reprocessing plants with a 1500 t/y capacity, corresponding to 50.000 MWe installed. At such a level, the solidification of the radioactive waste will become imperative. For this reason, all efforts, in France, have been directed towards the realization of industrial plants able of solidifying the fission products as a glassy material. The advantages of this decision, and the reasons for it are presented. The continuing development work, and the conditions and methods of storing the high-level wastes prior to solidification, and of the interim storage (for thermal decay) and the ultimate disposal after solidification are described [fr

  19. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  20. Storage facility for highly radioactive solid waste

    International Nuclear Information System (INIS)

    Kitano, Shozo

    1996-01-01

    A heat insulation plate is disposed at an intermediate portion between a ceiling wall of a storage chamber and an upper plate of a storage pit in parallel with them. A large number of highly radioactive solid wastes contained in canisters are contained in the storage pit. Cooling air is introduced from an air suction port, passes a channel on the upper side of the heat insulation plate formed by the ceiling of the storage chamber and the heat insulation plate, and flows from a flow channel on the side of the wall of the storage chamber to the lower portion of the storage pit. Afterheat is removed by the air flown from the lower portion to ventilation tubes at the outer side of container tubes. The air heated to a high temperature through the flow channel on the lower side of the heat insulation plate between the heat insulation plate and the upper plate of the storage pit, and is exhausted to an exhaustion port. Further, a portion of a heat insulation plate as a boundary between the cooling air and a high temperature air formed on the upper portion of the storage pit is formed as a heat transfer plate, so that the heat of the high temperature air is removed by the cooling air flowing the upper flow channel. This can prevent heating of the ceiling wall of the storage chamber. (I.N.)

  1. Buried MoO x/Ag Electrode Enables High-Efficiency Organic/Silicon Heterojunction Solar Cells with a High Fill Factor.

    Science.gov (United States)

    Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2018-04-25

    Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.

  2. Ocean disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    1983-01-01

    This study confirms, subject to limitations of current knowledge, the engineering feasibility of free fall penetrators for High Level Radioactive Waste disposal in deep ocean seabed sediments. Restricted sediment property information is presently the principal bar to an unqualified statement of feasibility. A 10m minimum embedment and a 500 year engineered barrier waste containment life are identified as appropriate basic penetrator design criteria at this stage. A range of designs are considered in which the length, weight and cross section of the penetrator are varied. Penetrators from 3m to 20m long and 2t to 100t in weight constructed of material types and thicknesses to give a 500 year containment life are evaluated. The report concludes that the greatest degree of confidence is associated with performance predictions for 75 to 200 mm thick soft iron and welded joints. A range of lengths and capacities from a 3m long single waste canister penetrator to a 20m long 12 canister design are identified as meriting further study. Estimated embedment depths for this range of penetrator designs lie between 12m and 90m. Alternative manufacture, transport and launch operations are assessed and recommendations are made. (author)

  3. Hypothetical accidents at disposal facilities for high-level liquid radioactive wastes and pulps

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Zagainov, V.A.; Lishnikov, A.A.; Nazin, E.R.

    1994-01-01

    Four accidents are postulated and analyzed for interim storage of high-level, liquid radioactive wastes at a fuel reprocessing facility. Normal waste storage operation is based on wastes stored in steel drums, partially buried in concrete canyons, and equipped with heat exchangers for cooling and ventilation systems for removal of explosive gases and vapors. The accident scenarios analyzed are: (1) shutdown of ventilation with open entrance and exit ventilation pipes, (2) shutdown of ventilation with closed entrance and exit ventilation pipes, (3) shutdown of the cooling system with normally functioning ventilation, and (4) simultaneous cooling and ventilation system failure (worst case). A mathematical model was developed and used to calculate radiation consequences of various accidents. Results are briefly presented for the worst case scenario and compared to an actual accident for model validation. 17 refs., 3 figs., 1 tab

  4. High-level radioactive waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Liikala, R.C.

    1974-01-01

    High-level radioactive waste in the U.S. will be converted to an encapsulated solid and shipped to a Federal repository for retrievable storage for extended periods. Meanwhile the development of concepts for ultimate disposal of the waste which the Federal Government would manage is being actively pursued. A number of promising concepts have been proposed, for which there is high confidence that one or more will be suitable for long-term, ultimate disposal. Initial evaluations of technical (or theoretical) feasibility for the various waste disposal concepts show that in the broad category, (i.e., geologic, seabed, ice sheet, extraterrestrial, and transmutation) all meet the criteria for judging feasibility, though a few alternatives within these categories do not. Preliminary cost estimates show that, although many millions of dollars may be required, the cost for even the most exotic concepts is small relative to the total cost of electric power generation. For example, the cost estimates for terrestrial disposal concepts are less than 1 percent of the total generating costs. The cost for actinide transmutation is estimated at around 1 percent of generation costs, while actinide element disposal in space is less than 5 percent of generating costs. Thus neither technical feasibility nor cost seems to be a no-go factor in selecting a waste management system. The seabed, ice sheet, and space disposal concepts face international policy constraints. The information being developed currently in safety, environmental concern, and public response will be important factors in determining which concepts appear most promising for further development

  5. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  6. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  7. Way of thinking and method of promotion of disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1993-01-01

    It is decided that the high level waste separated from spent fuel is solidified with glass, stored for 30-50 years to cool it down, and the final disposal is done under the responsibility of the government. As to the final disposal of high level waste, the method of enclosing glass-solidified waste in robust containers and burying them in deep stable strata to isolate from human environment is considered to be the safest. The significance of fuel reprocessing is the proper and safe separation and control of high level waste besides the reuse of unburned uranium and newly formed plutonium in spent fuel. The features of the high level waste solids are that their amount to be generated is little, the radioactivity attenuates with the lapse of time, the heat generation decreases with the lapse of time, and they are hard to elute and move. In order to prevent radioactive substances from appearing in human environment by being dissolved in groundwater, those are isolated with the combination of natural and artificial barriers. The requirements for the barriers are discussed. The research and development are in progress on the establishment of stratum disposal technology, the evaluation of suitability of geological environment and the selection of expected disposal grounds. (K.I.)

  8. High quality factor GaAs microcavity with buried bullseye defects

    DEFF Research Database (Denmark)

    Winkler, K.; Gregersen, Niels; Hayrynen, T.

    2018-01-01

    The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid...

  9. Design of buried concrete encasements

    International Nuclear Information System (INIS)

    Drake, R.M.

    1989-01-01

    The operation of many Department of Energy (DOE) sites requires the transfer of radioactive liquid products from one location to another. DOE Order 6430.1A requires that the transfer pipelines be designed and constructed so that any leakage can be detected and contained before it reaches the environment. One design option often considered to meet this requirement is to place the pipeline in a stainless steel-lined, buried concrete encasement. This provides the engineer with the design challenge to integrate standard structural design principles with unique DOE requirements. The complete design of a buried concrete encasement must consider seismic effects, leak detection, leak confinement, radiation shielding, thermal effects, pipe supports, and constructability. This paper contains a brief discussion of each of these design considerations, based on experience gained during the design of concrete encasements for the Process Facilities Modifications (PFM) project at Hanford

  10. High quality factor GaAs microcavity with buried bullseye defects

    Science.gov (United States)

    Winkler, K.; Gregersen, N.; Häyrynen, T.; Bradel, B.; Schade, A.; Emmerling, M.; Kamp, M.; Höfling, S.; Schneider, C.

    2018-05-01

    The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid-state vertical microcavity, which allows for confinement of the electromagnetic field in the lateral direction without deep etching. The confinement originates from a local elongation of the cavity layer imprinted in a shallow etch and epitaxial overgrowth technique. We show that it is possible to improve the quality factor of such microcavities by a specific in-plane bullseye geometry consisting of a set of concentric rings with subwavelength dimensions. This design results in a smooth effective lateral photonic potential and therefore in a reduction of lateral scattering losses, which makes it highly appealing for experiments in the framework of exciton-polariton physics demanding tight spatial confinement.

  11. Technical career opportunities in high-level radioactive waste management

    International Nuclear Information System (INIS)

    1993-01-01

    Technical career opportunities in high-level radioactive waste management are briefly described in the areas of: Hydrology; geology; biological sciences; mathematics; engineering; heavy equipment operation; and skilled labor and crafts

  12. TNX Burying Ground: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated

  13. Field demonstration of in situ treatment of buried low-level radioactive solid waste with caustic soda and soda ash to immobilize 90Sr

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1984-02-01

    A low-level radioactive solid waste disposal trench was injected on four occasions with solutions of caustic soda, soda ash, caustic soda, and lime/soda ash, respectively. Because investigations had indicated that 90 Sr could be coprecipitated with soil calcium carbonate by treatment with soda ash, this demonstration was undertaken as a test of its technical feasibility. After concentrations of 90 Sr and water hardness decreased within the intratrench monitoring wells; one well at the foot of the trench decreased from over 100 to a persistent level of less than 10 kBq of 90 Sr per liter. Recharge of 90 Sr from the trench to a sump immediately below was reduced by about 90%. Water hardness and 90 Sr concentrations were strongly correlated through time within each monitoring well, indicating that 90 Sr behaved as a tracer for soil calcium and magnesium. The disappearance of 90 Sr from the trench water, therefore, was an in situ water softening. Soil samples retrieved from the trench indicated that as much as 98% of the total 90 Sr was present as a coprecipitate with calcium carbonate. The hydrologic characterization of this trench indicated an average void space of 41% and an average trench-wall hydraulic conductivity of 3.4 x 10 -7 m/s. Sampling of the trench's discharge contamination plume indicated that it had resulted from a combination of subsurface seepage and bathtub overflow during infrequent periods of intense precipitation. A generic assessment of soda ash treatment indicated that treatment would be most effective for soils of high cation exchange capacity with either low ( 80%) basic cation saturation of that cation exchange capacity

  14. New evolution on the high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Koumoto, Harumi

    2001-01-01

    On nuclear power generation, spent fuel is formed and reaches to about 30 ton from a 1 million kW class large power plant. As some nations deal with the spent fuel itself to waste, Japan adopts a reprocessing and recycling route to recover uranium and plutonium reusable for nuclear fuels by reprocessing of the spent fuels. As waste liquid containing about one ton of cinder (fission product) formed by nuclear fission after its recovery, a glass solid solidifying this to a stable glassy state is called the high level radioactive wastes (HLW). As it has extremely high radioactivity which continues for long term in spite of its decay with elapsing time, safety security must be paid enough attention to its countermeasure. Therefore, as a result of long-term research and development in Japan as well as in many other nations, it is admitted to be the most preferable countermeasure to bury HLW into deep stratum to safely isolate from human life environment for its scientific and technical method. Here was introduced on a framework of its disposal business in Japan of which preparation rapidly advanced as a turning point of 2000 at a center of its technical and regulative advancement. (G.K.)

  15. Implementation of the buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Merrill, S.K.

    1992-01-01

    The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring

  16. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  17. The IAEA's high level radioactive waste management programme

    International Nuclear Information System (INIS)

    Saire, D.E.

    1994-01-01

    This paper presents the different activities that are performed under the International Atomic Energy Agency's (IAEA) high level radioactive waste management programme. The Agency's programme is composed of five main activities (information exchange, international safety standards, R ampersand D activities, advisory services and special projects) which are described in the paper. Special emphasis is placed on the RADioactive WAste Safety Standards (RADWASS) programme which was implemented in 1991 to document international consensus that exists on the safe management of radioactive waste. The paper also raises the question about the need for regional repositories to serve certain countries that do not have the resources or infrastructure to construct a national repository

  18. Aspects of possible magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Amos, R.; Perry, F.; Self, S.; Vaniman, D.

    1982-10-01

    The Nevada Test Site (NTS) region is located within the central section of a north-northeast-trending basaltic volcanic belt of late Cenozoic age, a part of the Quaternary volcanic province of the Great Basin. Future volcanism within the belt represents a potential hazard to storage of high-level radioactive waste within a buried repository located in the southwestern NTS. The hazards of future volcanism in the region are being characterized through a combination of volcanic hazards studies, probability determinations, and consequence analyses. Basaltic activity within the NTS regions is divided into two age groups consisting of relatively large-volume silicic cycle basalts (8 to 10 Myr) and rift basalts (< 8 to 0.3 Myr). This paper describes the processes of basaltic magmatism ranging from derivation of basalt melts at depth, through ascent through the upper mantle and crust, to surface eruption. Each stage in the evolution and dispersal of basaltic magma is described, and the disruption and potential dispersal of stored radioactive waste is evaluated. These data document areas of knowns and unknowns in the processes of basaltic volcanisms and provide background data necessary to assist calculations of radiation release levels due to disruption of a repository. 9 figures, 11 tables

  19. Dose for background radioactivity in areas with high radioactivity levels in the Pinar del Rio province

    International Nuclear Information System (INIS)

    Alcaide Orpi, J.; Oliveira Acosta, J.; Valdes Hernadez, G.M.; Leal Ramirez, M.R.; Blanco Jorrin, N.

    1998-01-01

    The objective the work is to know the areas with high natural radiation doses, for they were used it the data obtained by the studies it has more than enough favorability for radioactive minerals carried out in different regions to the Pinar del Rio province in the 1986 to 1993 years and the doses calculations they were carried out according to the effective methodology

  20. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  1. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  2. Remote technologies for buried waste retrieval

    International Nuclear Information System (INIS)

    Smith, A.M.; Rice, P.

    1995-01-01

    The DOE is evaluating what should be done with this buried waste. Although the radioactive waste is not particularly mobile unless airborne, some of it was buried with volatile organics and/or other substances that tend to spread easily to surrounding soil or water tables. Volatile organics are hazardous materials (such as trichloroethylene) and require clean-up at certain levels in drinking water. There is concern that the buried volatile organics will spread into the water table and contaminate drinking water. Because of this, the DOE is considering options for handling this buried waste and reducing the risks of spreading or exposure. There are two primary options: containment and stabilization, or retrieval. Containment and stabilization systems would include systems that would leave the waste where it is, but contain and stabilize it so that the radioactive and hazardous materials would not spread to the surrounding soil, water, or air. For example, an in situ vitrification system could be used to melt the waste into a composite glass-like material that would not leach into the surrounding soil, water, or air. Retrieval systems are those that would remove the waste from its burial location for treatment and/or repackaging for long term storage. The objective of this project was to develop and demonstrate remote technologies that would minimize dust generation and the spread of airborne contaminants during buried waste retrieval. Remote technologies are essential for the retrieval of buried waste because they remove workers from the hazardous environment and provide greater automation, reducing the chances of human error. Minimizing dust generation is also essential to increased safety for the workers and the environment during buried waste retrieval. The main contaminants within the waste are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides, which are easily suspended in air and spread if disturbed

  3. High-level radioactive waste disposal type and theoretical analyses

    International Nuclear Information System (INIS)

    Lu Yingfa; Wu Yanchun; Luo Xianqi; Cui Yujun

    2006-01-01

    Study of high-level radioactive waste disposal is necessary for the nuclear electrical development; the determination of nuclear waste depository type is one of importance safety. Based on the high-level radioactive disposal type, the relative research subjects are proposed, then the fundamental research characteristics of nuclear waste disposition, for instance: mechanical and hydraulic properties of rock mass, saturated and unsaturated seepage, chemical behaviors, behavior of special soil, and gas behavior, etc. are introduced, the relative coupling equations are suggested, and a one dimensional result is proposed. (authors)

  4. Permanent disposal by burial of highly radioactive wastes incorporated into glass

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1967-01-01

    A method has been developed at Chalk River for incorporating high-level fission product wastes from nuclear fuel processing into glass blocks for ultimate disposal. Nitric acid solutions of fission products were mixed with nepheline-syenite and lime in crucibles and fired in a kiln to a temperature of 1350 o C to form a glass with high resistance to leaching. Two test disposals of glass blocks were made into the ground below the water table. The first, in August 1958, contained about 300 Ci in 25 blocks of a highly resistant glass. The second, in May 1960, contained about 1100 Ci in 25 blocks of a less resistant formulation. Monitoring of the two tests has continued for eight and six years respectively. A soil sampling programme has indicated that the leaching rate tended to decrease with time and is now less than 10 -10 g/cm 2 per day, or two orders of magnitude lower than that predicted from laboratory leaching tests. These results indicate that the method is suitable for permanent disposal of high-level nuclear wastes and that the blocks could be buried unprotected in a controlled area, even in saturated sand of low exchange capacity. Burial above the saturated zone in an and region would result in even less release of radioactivity from the glass. (author)

  5. Measurements of radioactive dust in high altitude air

    International Nuclear Information System (INIS)

    Kobayashi, Mika; Kohara, Eri; Muronoi, Naohiro; Masuda, Yousuke; Midou, Tomotaka; Ishida, Yukiko; Shimizu, Toshihiko; Saga, Minoru; Endo, Hiromu

    2012-01-01

    The radioactivity in samples of airborne dust was measured. The samples had been collected at high altitude by the Japan Air Self-Defense Force. The data were obtained for the gross beta activity, gamma nuclide determination and radiochemical analysis. It was shown that there was no appreciable difference between the activity levels obtained in this time and in the year before. Seasonal variations were not very pronounced. It was found that the radioactivity at high altitude had been stable at a low level. Radioactive gases (gaseous radioiodine and xenon gas) were not detected. This report does not include the result on radionuclide measurements that Technical Research and Development Institute executed for examining the nuclear emergency situation at Fukushima Daiichi and Daini nuclear power plants after Tohoku Region Pacific Ocean Earthquake on March 11, 2011. (author)

  6. Radioactivity

    International Nuclear Information System (INIS)

    Chelet, Y.

    2006-01-01

    The beginning of this book explains the why and how of the radioactivity, with a presentation of the different modes of disintegration. Are tackled the reports between radioactivity and time before explaining how the mass-energy equivalence appears during disintegrations. Two chapters treat natural radioisotopes and artificial ones. This book makes an important part to the use of radioisotopes in medicine (scintigraphy, radiotherapy), in archaeology and earth sciences (dating) before giving an inventory of radioactive products that form in the nuclear power plants. (N.C.)

  7. Radioactivity

    International Nuclear Information System (INIS)

    2002-01-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  8. Basic approach to the disposal of low level radioactive waste generated from nuclear reactors containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Moriyama, Yoshinori

    1998-01-01

    Low level radioactive wastes (LLW) generated from nuclear reactors are classified into three categories: LLW containing comparatively high radioactivity; low level radioactive waste; very low level radioactive waste. Spent control rods, part of ion exchange resin and parts of core internals are examples of LLW containing comparatively high radioactivity. The Advisory Committee of Atomic Energy Commission published the report 'Basic Approach to the Disposal of LLW from Nuclear Reactors Containing Comparatively High Radioactivity' in October 1998. The main points of the proposed concept of disposal are as follows: dispose of underground deep enough not be disturb common land use (e.g. 50 to 100 m deep); dispose of underground where radionuclides migrate very slowly; dispose of with artificial engineered barrier which has the same function as the concrete pit; control human activities such as land use of disposal site for a few hundreds years. (author)

  9. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Espejo, J.M.; Beceiro, A.R.

    1992-01-01

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) has been limited liability company to be responsible for the management of all kind of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high - level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international cooperation are also included

  10. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  11. ''Project Crystal'' for ultimate storage of highly radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    NAGRA (The National Association for storage of radioactive waste) in Baden has launched in North Switzerland an extensive geological research program. The current research program, under the title of ''Project Crystal'', aims at providing the scientific knowledge which is required for the assessment of the suitability of the crystalline sub-soil of North Switzerland for the ultimate storage of highly radioactive waste. Safety and feasibility of such ultimate storage are in the forefront of preoccupations. Scientific institutes of France, Germany, USA and Canada are cooperating more particularly on boring research and laboratory analyses. Technical data are given on the USA and German installations used. (P.F.K.)

  12. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  13. Radioactivity monitor for high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Reeve, D.R.; Crozier, A.

    1977-01-01

    The coupling of a homogeneous radioactivity monitor to a liquid chromatograph involves compromises between the sensitivity of the monitor and the resolution and speed of analysis of the chromatograph. The theoretical relationships between these parameters are considered and expressions derived which make it possible to calculate suitable monitor operating conditions for most types of high-performance liquid chromatography

  14. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    Fehringer, D.J.

    1985-10-01

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  15. OCRWM [Office of Civilian Radioactive Waste Management] publications catalog on high-level radioactive waste management

    International Nuclear Information System (INIS)

    1987-07-01

    The US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) is publishing this catalog to provide citations of selected technical and public information on the subject of high-level radioactive waste management. The catalog is a resource and reference tool. It will be updated and printed annually. The online catalog will be available for review through OCRWM's Product Record System (PRS) and can eventually be made available to the public. The printed catalog version is suitable for libraries and those individuals needing either a broad base of information or a particular source; the computerized catalog version provides the most current information resources available, since updates to citations will be made as they are received. The number of documents suitable for listing in this catalog is expected to grow significantly each year

  16. International high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Lin, W.

    1996-01-01

    Although nuclear technologies benefit everyone, the associated nuclear wastes are a widespread and rapidly growing problem. Nuclear power plants are in operation in 25 countries, and are under construction in others. Developing countries are hungry for electricity to promote economic growth; industrialized countries are eager to export nuclear technologies and equipment. These two ingredients, combined with the rapid shrinkage of worldwide fossil fuel reserves, will increase the utilization of nuclear power. All countries utilizing nuclear power produce at least a few tens of tons of spent fuel per year. That spent fuel (and reprocessing products, if any) constitutes high-level nuclear waste. Toxicity, long half-life, and immunity to chemical degradation make such waste an almost permanent threat to human beings. This report discusses the advantages of utilizing repositories for disposal of nuclear wastes

  17. On risk assessment of high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Smith, C.F.; Kastenberg, W.E.

    1976-01-01

    One of the major concerns with the continued growth of the nuclear power industry is the production of the high level radioactive wastes. The risks associated with the disposal of these wastes derives from the potential for release of radioactive materials into the environment. The development of a methodology for risk analysis is carried out. The methodology suggested involves the probabilistic analysis of a general accident consequence distribution. In this analysis, the frequency aspect of the distribution is treated separately from the normalized probability function. In the final stage of the analysis, the frequency and probability characteristics of the distribution are recombined to provide an estimate of the risk. The characterization of the radioactive source term is accomplished using the ORIGEN computer code. Calculations are carried out for various reactor types and fuel cycles, and the overall waste hazard for a projected 35 year nuclear power program is determined. An index of relative nuclide hazard appropriate to problems involving the management of high level radioactive wastes is developed. As an illustration of the methodology, risk analyses are made for two proposed methods for waste management: extraterrestrial disposal and interim surface storage. The results of these analyses indicate that, within the assumptions used, the risks of these management schemes are small compared with natural background radiation doses. (Auth.)

  18. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  19. Managing commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1983-01-01

    The article is a summary of issues raised during US Congress deliberations on nuclear waste policy legislation. It is suggested that, if history is not to repeat itself, and the current stalemate on nuclear waste is not to continue, a comprehensive policy is needed that addresses the near-term problems of interim storage as part of an explicit and credible program for dealing with the longer term problem of developing a final isolation system. Such a policy must: 1) adequately address the concerns and win the support of all the major interested parties, and 2) adopt a conservative technical and institutional approach - one that places high priority on avoiding the problems that have repeatedly beset the program in the past. It is concluded that a broadly supported comprehensive policy would contain three major elements, each designed to address one of the key questions concerning Federal credibility: commitment in law to the goals of a comprehensive policy; credible institutional mechanisms for meeting goals; and credible measures for addressing the specific concerns of the states and the various publics. Such a policy is described in detail. (Auth.)

  20. Development of cermets for high-level radioactive waste fixation

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1979-01-01

    A method is currently under development for the solidification and fixation of commercial and defense high-level radioactive wastes in the form of ceramic particles encapsulated by metal, i.e., a cermet. The chemical and physical processing techniques which have been developed and the properties of the resulting cermet bodies are described in this paper. These cermets have the advantages of high thermal conductivity and low leach rates

  1. The puzzle of nuclear wastes. Radioactive threat to your health..

    International Nuclear Information System (INIS)

    2007-01-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on what is radioactivity, the radioactive materials as a risk for living organisms, nuclear wastes all over France (list and map of the storage sites, power plants and fuel cycle centers), nuclear wastes at every step of the nuclear connection, the insolvable problem of high activity wastes, burying nuclear wastes in order to better forget them, radioactivity as a time bomb for our health, radioactive effluents as an under-estimated risk, artificial radioactivity already responsible for the death of 61 million people in the world, and so on

  2. Buried Waste Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities

  3. Predicted peak temperature-rises around a high-level radioactive waste canister emplaced in the deep ocean bed

    International Nuclear Information System (INIS)

    Kipp, K.L.

    1978-06-01

    A simple mathematical model of heat conduction was used to evaluate the peak temperature-rise along the wall of a canister of high-level radioactive waste buried in deep ocean sediment. Three different amounts of vitrified waste, corresponding to standard Harvest, large Harvest, and AVM canisters, and three different waste loadings were studied. Peak temperature-rise was computed for the nine cases as a function of canister geometry and storage time between reprocessing and burial. Lower waste loadings or longer storage times than initially envisaged are necessary to prevent the peak temperature-rise from exceeding 200 0 C. The use of longer, thinner cylinders only modestly reduces the storage time for a given peak temperature. Effects of stacking of waste canisters and of close-packing were also studied. (author)

  4. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It represents a major update and expansion of the Analysis presented to Congress in our summary report, Managing Commercial High-Level Radioactive Waste, published in April of 1982 (NWPA). This new report is intended to contribute to the implementation of NWPA, and in particular to Congressional review of three major documents that DOE will submit to the 99th Congress: a Mission Plan for the waste management program; a monitored retrievable storage (MRS) proposal; and a report on mechanisms for financing and managing the waste program. The assessment was originally focused on the ocean disposal of nuclear waste. OTA later broadened the study to include all aspects of high-level waste disposal. The major findings of the original analysis were published in OTA's 1982 summary report

  5. The Radioactive Waste Management course: 14 High-yield editions

    International Nuclear Information System (INIS)

    Alonso, A.; Gallego, E.; Marco, M. L.; Falcon, S.

    2003-01-01

    The doctorate course on Radioactive Waste Management was initiated in February 1988, by initiative of the Chair of Nuclear Technology, under the sponsoring of the national radioactive waste management company (ENRESA), in a fruitful collaboration between the Institute Artigas of the Technical School of Industrial Engineering and the Institute of Formation on Energy of the research centre CIEMAT. The course is also offered as a post-graduate through both institutes. After completion of fourteen consecutive editions in 2002, the course constituted a landmark in the field of nuclear education in Spain. The last edition offered, along 35 lessons published in two books, the general aspects of generation, treatment and conditioning of radioactive wastes, the basic Safety and Radiological Protection criteria, the detailed technical questions of the management of both low-intermediate.activity and the high-activity level, together with the wastes generated during decommissioning and dismantling of installations, as well as the general and institutional aspects. Experts in each field, belonging either to ENRESA, CIEMAT, the Nuclear Safety Council, the UPM and the industry, present such wide programme. A technical visit to the low and intermediate radioactive waste repository of El Cabril was also offered to the participants as part of the course, as in previous years the visit to the dismantling workers of Vandellos I NPP. More than 500 engineers and graduates in different science branches have participated in the course along 14 years, with both students and professionals belonging to ENRESA, the Nuclear Safety Council, CIEMAT and other research centers, hospitals, civil protection at different levels, service and engineering companies related with the radioactive waste management. Altogether, it is possible to say, as the title is expressed, that the course has given in these 14 years a high-production yield. (Author)

  6. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  7. Permanent burying method for product

    International Nuclear Information System (INIS)

    Sakai, Goro; Sakata, Noboru; Hironaka, Yoshikazu; Shigematsu, Kazuo; Yurugi, Masahiro; Minami, Masayoshi; Yoshisaki, Masato.

    1995-01-01

    In a method of permanently burying an object by filling and solidifying a cement mortar in gaps between each of objects to be buried underground, cement mortar is filled into gaps, which comprises water at a unit amount determined as from 200 to 250kg/m 3 , a cement at low water/cement ratio (%) of from 70 to 400%, and contains fine powder having an average grain size of not greater than 100μm (not containing cement) of 50 to 800kg/m 3 , fine aggregates of 800 to 1200kg/m 3 , UERAN gum (a bio-gum powder produced by aerobic fermentation of alcaligenes-bacteria) of 20g/m 3 to 1.3kg/m 3 , a dispersing agent of 0 to 40kg/m 3 , a swelling agent of 0 to 40kg/m 3 . Then if the mortar blended with the UERAN gum is injected, any gaps can be filled tightly, no breeding is caused and since the amount of cement is small, it does not suffer from temperature cracking. Therefore, the state of filling is kept permanently, and environmental pollution caused by radioactive wastes can be prevented. (N.H.)

  8. Preliminary hydrogeologic evaluation of the Cincinnati Arch region for underground high-level radioactive waste disposal, Indiana, Kentucky , and Ohio

    Science.gov (United States)

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)

  9. Preliminary hydrogeologic evaluation of the Cincinnati arch region for underground high-level radioactive waste disposal, Indiana, Kentucky, and Ohio

    International Nuclear Information System (INIS)

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. 39 refs., 9 figs., 3 tabs

  10. Remote ignitability analysis of high-level radioactive waste

    International Nuclear Information System (INIS)

    Lundholm, C.W.; Morgan, J.M.; Shurtliff, R.M.; Trejo, L.E.

    1992-09-01

    The Idaho Chemical Processing Plant (ICPP), was used to reprocess nuclear fuel from government owned reactors to recover the unused uranium-235. These processes generated highly radioactive liquid wastes which are stored in large underground tanks prior to being calcined into a granular solid. The Resource Conservation and Recovery Act (RCRA) and state/federal clean air statutes require waste characterization of these high level radioactive wastes for regulatory permitting and waste treatment purposes. The determination of the characteristic of ignitability is part of the required analyses prior to calcination and waste treatment. To perform this analysis in a radiologically safe manner, a remoted instrument was needed. The remote ignitability Method and Instrument will meet the 60 deg. C. requirement as prescribed for the ignitability in method 1020 of SW-846. The method for remote use will be equivalent to method 1020 of SW-846

  11. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  12. Alternatives evaluation of high activity radioactive wastes disposal

    International Nuclear Information System (INIS)

    Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    Different alternatives considered in the world to be used as barriers to isolate the high level radioactive from the environment wastes produced during the electric energy generation of nuclear origin are presented. Engineering and geologic barriers, are analyzed, considering nuclear fuel cycles with or without plutonium recycling; to that purpose the consideration of elements such as durability and resistance of the various engineering, availability of the fabrication processes, associated radiological impact, geological media apt to be used as geological barrier. Finally, the scopes of the Feasibility Study and Engineering draft are presented for the construction of a repository for high-level radioactive wastes, for the Argentine Nuclear Program needs, which contemplates the construction of six nuclear power plants with a potential installed towards the year 2000 GW( e ), with natural and/or lowly enriched uranium power plants and recycling of plutonium generated in the cycle. (Author) [es

  13. High temperature mass spectrometry for thermodynamic study of radioactive materials

    International Nuclear Information System (INIS)

    Pattoret, Andre; Philippot, Joseph; Pesme, Olivier.

    1983-01-01

    Thermodynamic properties and evaporation kinetics are essential data to evaluate the nuclear fuel behaviour under accidental conditions. High temperature mass spectrometry appears as a valuable method to set up a such assessment. However, because of size, complexity and radioactivity of the irradiated samples, important improvements of the classical method are required. The device built in CEN/FAR to overcome these problems is described; performances and possible applications out of the nuclear safety field are presented [fr

  14. A very high energy imaging for radioactive wastes processing

    International Nuclear Information System (INIS)

    Moulin, V.; Pettier, J.L.

    2004-01-01

    The X imaging occurs at a lot of steps of the radioactive wastes processing: selection for conditioning, physical characterization with a view to radiological characterization, quality control of the product before storage, transport or disposal. Size and volume of the objects considered here necessitate to work with very high energy systems. Here is shown, through some examples, in which conditions this X imaging is carried out as well as the contribution of the obtained images. (O.M.)

  15. High level radioactive wastes: Considerations on final disposal

    International Nuclear Information System (INIS)

    Ciallella, Norberto R.

    2000-01-01

    When at the beginnings of the decade of the 80 the National Commission on Atomic Energy (CNEA) in Argentina decided to study the destination of the high level radioactive wastes, was began many investigations, analysis and multidisciplinary evaluations that be origin to a study of characteristics never before carried out in Argentina. For the first time in the country was faced the study of an environmental eventual problem, several decades before that the problem was presented. The elimination of the high level radioactive wastes in the technological aspects was taken in advance, avoiding to transfer the problems to the future generations. The decision was based, not only in technical evaluations but also in ethical premises, since it was considered that the future generations may enjoy the benefits of the nuclear energy and not should be solve the problem. The CNEA in Argentina in 1980 decided to begin a feasibility study and preliminary engineering project for the construction of the final disposal of high level radioactive wastes

  16. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  17. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  18. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600 degrees C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation

  19. Prospects for high-power radioactive beam facilities worldwide

    CERN Document Server

    Nolen, Jerry A

    2003-01-01

    Advances in accelerators, targets, ion sources, and experimental instrumentation are making possible ever more powerful facilities for basic and applied research with short-lived radioactive isotopes. There are several current generation facilities, based on a variety of technologies, operating worldwide. These include, for example, those based on the in-flight method such as the recently upgraded National Superconducting Cyclotron Laboratory at Michigan State University, the facility at RIKEN in Japan, GANIL in Caen, France, and GSI in Darmstadt, Germany. Present facilities based on the Isotope-Separator On-Line method include, for example, the ISOLDE laboratory at CERN, HRIBF at Oak Ridge, and the new high-power facility ISAC at TRIUMF in Vancouver. Next-generation facilities include the Radioactive-Ion Factory upgrade of RIKEN to higher energy and intensity and the upgrade of ISAC to a higher energy secondary beam; both of these projects are in progress. A new project, LINAG, to upgrade the capabilities at...

  20. Vitrification of high-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Lutze, W.

    1993-12-01

    The main objective is to summarize work conducted on glasses as waste forms for high-level radioactive fission product solutions up to the late 1980's (section I and II). Section III addresses the question, whether waste forms designed for the immobilization of radioactive residues can be used for the same purpose for hazardous wastes. Of particular interest are those types of hazardous wastes, e.g., fly ashes from municipal combustion plants, easy to convert into glasses or ceramic materials. A large number of base glass compositions has been studied to vitrify waste from reprocessing but only borosilicate glasses with melting temperatures between 1100 C and 1200 C and very good hydrolytic stability is used today. (orig./HP) [de

  1. High-level radioactive waste incorporation into (special) cements

    International Nuclear Information System (INIS)

    Roy, D.M.; Gouda, G.R.

    1978-01-01

    A feasibility study has demonstrated that very strong, durable, relatively impermeable cylinders may be prepared by hot pressing combinations of cements with simulated radioactive waste solids. While the properties have not been studied exhaustively, the results suggest an optional method for immobilization and isolation of radioactive waste. Samples prepared with calcium aluminate cements appeared to have properties superior to those with Portland cements. Four simulated radioactive waste compositions having high rare-earth oxide contents, and some containing a large excess of NaNO 3 , were studied. Modest temperatures [423 to 673 K (150 to 400 0 C)] were used for hot pressing at pressures from 178 to 345 MPa. Dense strong very low porosity specimens resulted when mixtures containing from 10 to 50% waste were hot pressed, incorporating also a small percentage of water. In addition, high-strength cement cylinders were prepared with the waste solid (approximately 20 wt% waste) in a separate core and were very resistant to leaching by water near its boiling point. With this configuration, even the NaNO 3 -containing wastes were resistant to leaching by water

  2. Risk assessments for the disposal of high level radioactive wastes

    International Nuclear Information System (INIS)

    Smith, C.F.

    1975-01-01

    The risks associated with the disposal of high level wastes derive from the potential for release of radioactive materials into the environment. The assessment of these risks requires a methodology for risk analysis, an identification of the radioactive sources, and a method by which to express the relative hazard of the various radionuclides that comprise the high level waste. The development of a methodology for risk analysis is carried out after a review of previous work in the area of probabilistic risk assessment. The methodology suggested involves the probabilistic analysis of a general accident consequence distribution. In this analysis, the frequency aspect of the distribution is treated separately from the normalized probability function. At the final stage of the analysis, the frequency and probability characteristics of the distribution are recombined to provide an estimate of the risk. The characterization of the radioactive source term is accomplished using the ORIGEN computer code. Calculations are carried out for various reactor types and fuel cycles, and the overall waste hazard for a projected thirty-five year nuclear power program is determined

  3. Buried Craters of Utopia

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  4. Material chemistry challenges in vitrification of high level radioactive waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2008-01-01

    Full text: Nuclear technology with an affective environmental management plan and focused attention on safety measures is a much cleaner source of electricity generation as compared to other sources. With this perspective, India has undertaken nuclear energy program to share substantial part of future need of power. Safe containment and isolation of nuclear waste from human environment is an indispensable part of this programme. Majority of radioactivity in the entire nuclear fuel cycle is high level radioactive liquid waste (HLW), which is getting generated during reprocessing of spent nuclear fuels. A three stage strategy for management of HLW has been adopted in India. This involves (i) immobilization of waste oxides in stable and inert solid matrices, (ii) interim retrievable storage of the conditioned waste product under continuous cooling and (iii) disposal in deep geological formation. Borosilicate glass matrix has been adopted in India for immobilization of HLW. Material issue are very important during the entire process of waste immobilization. Performance of the materials used in nuclear waste management determines its safety/hazards. Material chemistry therefore has a significant bearing on immobilization science and its technological development for management of HLW. The choice of suitable waste form to deploy for nuclear waste immobilization is difficult decision and the durability of the conditioned product is not the sole criterion. In any immobilization process, where radioactive materials are involved, the process and operational conditions play an important role in final selection of a suitable glass formulation. In remotely operated vitrification process, study of chemistry of materials like glass, melter, materials of construction of other equipment under high temperature and hostile corrosive condition assume significance for safe and un-interrupted vitrification of radioactive to ensure its isolation waste from human environment. The present

  5. High-level radioactive waste in Canada. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab

  6. Solidification of high-level radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1979-06-01

    A panel on waste solidification was formed at the request of the Nuclear Regulatory Commission to study the scientific and technological problems associated with the conversion of liquid and semiliquid high-level radioactive wastes into a stable form suitable for transportation and disposition. Conclusions reached and recommendations made are as follows. Many solid forms described in this report could meet standards as stringent as those currently applied to the handling, storage, and transportation of spent fuel assemblies. Solid waste forms should be selected only in the context of the total radioactive waste management system. Many solid forms are likely to be satisfactory for use in an appropriately designed system, The current United States policy of deferring the reprocessing of commercial reactor fuel provides additional time for R and D solidification technology for this class of wastes. Defense wastes which are relatively low in radioactivity and thermal power density can best be solidified by low-temperature processes. For solidification of fresh commercial wastes that are high in specific activity and thermal power density, the Panel recommends that, in addition to glass, the use of fully-crystalline ceramics and metal-matrix forms be actively considered. Preliminary analysis of the characteristics of spent fuel pins indicates that they may be eligible for consideration as a waste form. Because the differences in potential health hazards to the public resulting from the use of various solid form and disposal options are likely to be small, the Panel concludes that cost, reliability, and health hazards to operating personnel will be major considerations in choosing among the options that can meet safety requiremens. The Panel recommends that responsibility for all radioactive waste management operations (including solidification R and D) should be centralized

  7. High-level radioactive waste in Canada. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, R [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab.

  8. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  9. Development of methods to extralt and solidify highly radioactive waste

    International Nuclear Information System (INIS)

    Arnek, R.; Persson, A.; Faelth, L.; Annehed, H.

    1977-06-01

    Zeolites are proposed as selective ion exchange materials to extract highly radioactive fission products as cesium 137 and strontium 90, and corrosion products. The zeolites 13X, F and PC showed a high adsorption capacity for cesium and strontium. A heat treatment at 800-1300 degrees C for about two hours gave a vitrified material. The chemical resistance of the heat treated zeolites was tested in a soxhlets-apparatus, were a streaming solution at 100 degrees C was in contact with the zeolite for 1-2 days. For all cases, the amount of dissolved strontium was below the detection threshold.(L.K.)

  10. High-level radioactive waste disposal in the deep ocean

    International Nuclear Information System (INIS)

    Hill, H.W.

    1977-01-01

    A joint programme has begun between the Fisheries Laboratory, Lowestoft and the Institute of Oceanographic Sciences, Wormley to study the dispersion of radioactivity in the deep ocean arising from the possible dumping of high level waste on the sea bed in vitrified-glass form which would permit slow leakage over a long term scale. The programme consists firstly of the development of a simple diffusion/advection model for the dispersion of radioactivity in a closed and finite ocean, which overcomes many of the criticisms of the earlier model proposed by Webb and Morley. Preliminary results from this new model are comparable to those of the Webb-Morley model for radio isotopes with half-lives of 10-300 years but are considerably more restrictive outside this range, particularly for those which are much longer-lived. The second part of the programme, towards which the emphasis is directed, concerns the field programme planned to measure the advection and diffusion parameters in the deeper layers of the ocean to provide realistic input parameters to the model and increase our fundamental understanding of the environment in which the radioactive materials may be released. The first cruises of the programme will take place in late 1976 and involve deep current meter deployments and float dispersion experiments around the present NEA dump site with some sediment sampling, so that adsorption experiments can be started on typical deep sea sediments. The programme will expand the number of long-term deep moored stations over the next five years and include further float experiments, CTD profiling, and other physical oceanography. In the second half of the 5-year programme, attempts will be made to measure diffusion parameters in the deeper layers of the ocean using radioactive tracers

  11. Behavior of highly radioactive iodine on charcoal in moist air

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Manning, S.R.; Martin, W.J.

    1976-01-01

    The behavior of highly radioactive iodine adsorbed on charcoal exposed to moist air (110 torr water vapor partial pressure) was investigated in a series of six experiments. The amount of radioactive 130 I on the well-insulated 28-cm 3 bed ranged from 50 to 570 Ci, and the relative humidity was 47 percent at the bed inlet temperature of 70 0 C. Radioactive iodine was released from the test beds at a continuous fractional release rate of approximately 7 x 10 -6 /hr for all types of charcoal tested. The chemical form of the released iodine was such that it was very highly penetrating with respect to the nine different types of commercial impregnated charcoals tested in backup collection beds. Two types of silver-nitrate-coated adsorption materials behaved similarly to the charcoals. Silver-exchanged type 13-X molecular sieve adsorbers were 20 to 50 times more efficient for adsorbing the highly penetrating iodine, but not as efficient as normally found for collecting methyl iodide. The chemical form of the highly penetrating iodine was not determined. When the moist air velocity was decreased from 28.5 fpm (25 0 C) to as low as 0.71 fpm (25 0 C), the charcoal bed temperature rose slowly and reached the ignition temperature in three of the experiments. At 0.71 fpm (25 0 C) the ignited charcoal beds reached maximum temperatures of 430 to 470 0 C because of the limited oxygen supply. The charcoal exposed for four years at Oak Ridge ignited at 283 0 C compared with 368 0 C for unused charcoal from the same batch. Two of the experiments used charcoal containing 1 or 2 percent TEDA (triethylene-diamine) and a proprietary flame retardant. The oxidation and ignition behavior of these charcoals did not appear to be affected adversely by the presence of the TEDA

  12. In situ vitrification on buried waste

    International Nuclear Information System (INIS)

    Bates, S.O.

    1992-01-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG ampersand G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA

  13. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It is intended to contribute to the implementation of Nuclear Waste Policy Act of 1982 (NWPA). The major conclusion of that review is that NWPA provides sufficient authority for developing and operating a waste management system based on disposal in geologic repositories. Substantial new authority for other facilities will not be required unless major unexpected problems with geologic disposal are encountered. OTA also concludes that DOE's Draft Mission Plan published in 1984 falls short of its potential for enhancing the credibility and acceptability of the waste management program

  14. The high level and long lived radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents the main conclusions of 15 years of researches managed by the CEA. This report is the preliminary version of the 2005 final report. It presents the main conclusions of the actions on the axis 1 and 3 of the law of the 30 December 1991. The synthesis report on the axis 1 concerns results obtained on the long lived radionuclides separation and transmutation in high level and long lived radioactive wastes. the synthesis report on the axis 3 presents results obtained by the processes of conditioning and of ground and underground long term storage. (A.L.B.)

  15. A critically educated public explores high level radioactive waste management

    International Nuclear Information System (INIS)

    Blum, J.E.

    1994-01-01

    It is vital to the citizens of Nevada that they and their children are given an opportunity to explore all sides of the characterization of Yucca Mountain as a potential repository site for spent nuclear fuel. The state-wide, national and international implications demand a reasoned and complete approach to this issue, which has become emotionally and irrationally charged and fueled by incomplete perception and information. The purpose of this paper is to provide curriculum suggestions and recommend concomitant policy developments that will lead to the implementation of a Critical Thinking (CT) approach to High Level Radioactive Waste Management

  16. Developing procedures for the handling of highly radioactive materials

    International Nuclear Information System (INIS)

    Wagner, M.L.

    1994-01-01

    Handling procedures for highly radioactive materials must be analyzed for the reduction of radiation dose. In keeping with ALARA principles, time, distance, and shielding must be used to maximum benefit during the job. After an initial risk assessment is accomplished, job pre-planning meetings and cold open-quotes walk-throughsclose quotes are held in order to engineer the best workable procedure given allocated resources, and to reduce personnel exposure. This paper shows the relationship between each step in the job development, over a number of actual jobs, drawing out how subtle changes in practice can affect the individual and team radiation dose

  17. Safe disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-10-01

    Current strategies in most countries favour the immobilisation of high-level radioactive wastes in borosilicate glasses, and their burial in large, centralised, mined repositories. Strong public opposition has been encountered because of concerns over safety and socio-political issues. The author develops a new disposal strategy, based on immobilisation of wastes in an extremely resistant ceramic, SYNROC, combined with burial in an array of widely dispersed, very deep drill holes. It is demonstrated that the difficulties encountered by conventional disposal strategies can be overcome by this new approach.

  18. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  19. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  20. International program to study subseabed disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables

  1. Design concepts of definitive disposal for high level radioactive wastes

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Alonso V, G.

    2007-01-01

    It is excessively known the importance about finding a solution for the handling and disposition of radioactive waste of all level. However, the polemic is centered in the administration of high level radioactive waste and the worn out fuel, forgetting that the more important volumes of waste its are generated in the categories of low level wastes or of very low level. Depending on the waste that will be confined and of the costs, several technological modalities of definitive disposition exist, in function of the depth of the confinement. The concept of deep geologic storage, technological option proposed more than 40 years ago, it is a concept of isolation of waste of long half life placed in a deep underground installation dug in geologic formations that are characterized by their high stability and their low flow of underground water. In the last decades, they have registered countless progresses in technical and scientific aspects of the geologic storage, making it a reliable technical solution supported with many years of scientific work carried out by numerous institutions in the entire world. In this work the design concepts that apply some countries for the high level waste disposal that its liberate heat are revised and the different geologic formations that have been considered for the storage of this type of wastes. (Author)

  2. Managing commercial high-level radioactive waste: summary

    International Nuclear Information System (INIS)

    1982-04-01

    This summary presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste - an issue that has been debated over the last decade and that now appears to be moving toward major congressional action. After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue. The continued lack of final isolation facilities has raised two key problems that underlie debates about radioactive waste policy. First, some question the continued use of nuclear power until it is shown that safe final isolation for the resulting wastes can and will be accomplished, and argue that the failure to develop final isolation facilities is evidence that it may be an insoluble problem. Second, because there are no reprocessing facilities or federal waste isolation facilities to accept spent fuel, existing reactors are running out of spent fuel storage space, and by 1986 some may face a risk of shutting down for some period. Most of the 72,000 metric tons of spent fuel expected to be generated by the year 2000 will still be in temporary storage at that time. While it is possible that utilities could provide all necessary additional storage at reactor sites before existing basins are filled, some supplemental storage may be needed if there are delays in their efforts

  3. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Cotton, T.

    1985-01-01

    With the passage of the Nuclear Waste Policy Act of 1982 (NWPA), Congress for the first time established in law a comprehensive Federal policy for commercial high-level radioactive waste management, including interim storage and permanent disposal. NWPA provides sufficient authority for developing and operating a high-level radioactive waste management system based on disposal in mined geologic repositories. Authorization for other types of waste facilities will not be required unless major problems with geologic disposal are discovered, and studies to date have identified no insurmountable technical obstacles to developing geologic repositories. The NWPA requires the Department of Energy (DOE) to submit to Congress three key documents: (1) a Mission Plan, containing both a waste management plan with a schedule for transferring waste to Federal facilities and an implementation program for choosing sites and developing technologies to carry out that plan; (2) a monitored retrievable storage (MRS) proposal, to include a site-specific design for a long-term federal storage facility, an evaluation of whether such an MRS facility is needed and feasible, and an analysis of how an MRS facility would be integrated with the repository program if authorized by Congress; and (3) a study of alternative institutional mechanisms for financing and managing the radioactive waste system, including the option of establishing an independent waste management organization outside of DOE. The Mission Plan and the report on alternative institutional mechanisms were submitted to the 99th US Congress in 1985. The MRS proposal is to be submitted in early 1986. Each of these documents is discussed following an overview of the Nuclear Waste Policy Act of 1982

  4. Spent Fuel and High-Level Radioactive Waste Transportation Report

    International Nuclear Information System (INIS)

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  5. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    1993-01-01

    On February 17,1989, the Midwestern Office of The Council of State Governments and the US Department of Energy entered into a cooperative agreement authorizing the initiation of the Midwestern High-Level Radioactive Waste Transportation Project. The transportation project continued to receive funding from DOE through amendments to the original cooperative agreement, with December 31, 1993, marking the end of the initial 5-year period. This progress report reflects the work completed by the Midwestern Office from February 17,1989, through December 31,1993. In accordance with the scopes of work governing the period covered by this report, the Midwestern Office of The Council of State Governments has worked closely with the Midwestern High-Level Radioactive Waste Committee. Project staff have facilitated all eight of the committee's meetings and have represented the committee at meetings of DOE's Transportation Coordination Group (TCG) and Transportation External Coordination Working Group (TEC/WG). Staff have also prepared and submitted comments on DOE activities on behalf of the committee. In addition to working with the committee, project staff have prepared and distributed 20 reports, including some revised reports (see Attachment 1). Staff have also developed a library of reference materials for the benefit of committee members, state officials, and other interested parties. To publicize the library, and to make it more accessible to potential users, project staff have prepared and distributed regular notices of resource availability

  6. Risk communication system for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kugo, Akihide; Uda, Akinobu; Shimoda, Hirosi; Yoshikawa, Hidekazu; Ito, Kyoko; Wakabayashi, Yasunaga

    2005-01-01

    In order to gain a better understanding and acceptance of the task of implementing high level radioactive waste disposal, a study on new communication system about social risk information has been initiated by noticing the rapid expansion of Internet in the society. First, text mining method was introduced to identify the core public interest, examining public comments on the technical report of high level radioactive waste disposal. Then we designed the dialog-mode contents based on the theory of norm activation by Schwartz. Finally, the discussion board was mounted on the web site. By constructing such web communication system which includes knowledge base contents, introspective contents, and interactive discussion board, we conducted the experiment for verifying the principles such as that the basic technical knowledge and trust, and social ethics are indispensable in this process to close the perception gap between nuclear specialists and the general public. The participants of the experiment increased their interest in the topics with which they were not familiar and actively posted their opinions on the BBS. The dialog-mode contents were significantly more effective than the knowledge-based contents in promoting introspection that brought people into a greater awareness of problems such as social dilemma. (author)

  7. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  8. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  9. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  10. The development of a high level radioactive waste management strategy

    International Nuclear Information System (INIS)

    Beale, H.

    1979-11-01

    The management of high level radioactive waste, from the removal of spent fuel from reactors to final disposal of vitrified waste, involves a complex choice of operational variables which interact one with another. If the various operations are designed and developed in isolation it will almost certainly lead to suboptimal choice. Management of highly active waste should therefore be viewed as a complete system and analysed in such a way that account is taken of the interactions between the various operations. This system must have clearly defined and agreed objectives as well as criteria against which performance can be judged. A thorough analysis of the system will provide a framework within which the necessary research and development can be carried out in a co-ordinated fashion and lead to an optimised strategy for managing highly active wastes. (author)

  11. Trace radioactive measurement in foodstuffs using high purity germanium detector

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Racho, Joseph Michael D.; Castaneda, Soledad S.; Almoneda, Rosalina V.; Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.

    2010-01-01

    Trace radioactivity in food has been seriously considered sources of potential harm after the accidental radioactive releases in the last decades which led to contamination of the food chain. Countermeasures are being used to reduce the radiological health risk to the population and to ensure that public safety and international commitments are met. Investigation of radioactive traces in foods was carried out by gamma-ray spectrometry. The radionuclides being measured were fission products 1 37Cs and 1 34Cs and naturally occurring 4 0Κ. Gamma-ray measurements were performed using a hybrid gamma-ray counting system with coaxial p-type Tennelec High Purity Germanium (HPGe) detector with relative efficiency of 18.4%. Channels were calibrated to energies using a standard check source with 1 37Cs and 6 0Co present. Self-shielding within samples was taken into account by comparing directly with reference standards of similar matrix and geometry. Efficiencies of radionuclides of interests were accounted in calculating the activity concentrations in the samples. Efficiency calibration curve was generated using an in-house validated program called FINDPEAK, a least-square method that fits a polynomial up to sixth-order of equation. Lower Limits of Detection (LLD) obtained for both 1 37Cs and 1 34Cs ranges from 1-6 Bq/Kg depending on the sample matrix. In the last five years, there have been no foodstuffs analyzed exceeded the local and international regulatory limit of 1000Bq/Kg for the summed activities of 1 37Cs and 1 34Cs. (author)

  12. Hydrogen gettering the overpressure gas from highly radioactive liquids

    International Nuclear Information System (INIS)

    Riley, D.L.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined

  13. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology.

  14. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  15. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  16. Options for the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Laughton, A.S.; Webb, G.A.M.

    1977-01-01

    The management of radioactive waste within the fuel cycle, especially the high-level wastes from reprocessing of nuclear fuel, is currently a matter of particular concern. In the short term (meaning a timescale of tens of years) management by engineered storage is considered to provide a satisfactory solution. Beyond this, however, the two main alternative options which are considered in the paper are: (a) disposal by burial into geologic formations on land; and (b) disposal by emplacement into or onto the seabed. Status of our present knowledge on the land and seabed disposal options is reviewed together with an assessment of the extent to which their reliability and safety can be judged on presently available information. Further information is needed on the environmental behaviour of radioactivity in the form of solidified waste in both situations in order to provide a more complete, scientific assessment. Work done so far has clarified the areas where further research is most needed - for instance modelling of the environmental transfer processes associated with the seabed option. This is discussed together with an indication of the research programmes which are now being pursued

  17. Canadian high-level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Allan, C.J.; Gray, B.R.

    1992-01-01

    In Canada responsibility for the management of radioactive wastes rests with the producer of those wastes. This fundamental principle applies to such diverse wastes as uranium mine and mill tailings, low-level wastes from universities and hospitals, wastes produced at nuclear research establishments, and wastes produced at nuclear generating stations. The federal government has accepted responsibility for historical wastes for which the original producer can no longer be held accountable. Management of radioactive wastes is subject to the regulatory control of the Atomic Energy Control Board, the federal agency responsible for regulating the nuclear industry. In this paper the authors summarize the current situation concerning the management of high level (used nuclear fuel) wastes. In 1981 the two governments also announced that selection of a disposal site would not proceed, and responsibility for site selection and operation would not be assigned until the Concept for used fuel disposal had been reviewed and assessed. Thus the concept assessment is generic rather than site specific. The Concept that has been developed has been designed to conform with safety and performance criteria established by the Atomic Energy Control Board. It is based on burial deep in plutonic rock of the Canadian Shield, using a multi-barrier approach with a series of engineered and natural barriers: these include the waste form, container, buffer and backfill, and the host rock

  18. What are Spent Nuclear Fuel and High-Level Radioactive Waste?

    International Nuclear Information System (INIS)

    2002-01-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository

  19. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  20. Buried waste remediation: A new application for in situ vitrification

    International Nuclear Information System (INIS)

    Kindle, C.H.; Thompson, L.E.

    1991-04-01

    Buried wastes represent a significant environmental concern and a major financial and technological challenge facing many private firms, local and state governments, and federal agencies. Numerous radioactive and hazardous mixed buried waste sites managed by the US Department of Energy (DOE) require timely clean up to comply with state or federal environmental regulations. Hazardous wastes, biomedical wastes, and common household wastes disposed at many municipal landfills represent a significant environmental health concern. New programs and regulations that result in a greater reduction of waste via recycling and stricter controls regarding generation and disposal of many wastes will help to stem the environmental consequences of wastes currently being generated. Groundwater contamination, methane generation, and potential exposures to biohazards and chemically hazardous materials from inadvertent intrusion will continue to be potential environmental health consequences until effective and permanent closure is achieved. In situ vitrification (ISV) is being considered by the DOE as a permanent closure option for radioactive buried waste sites. The results of several ISV tests on simulated and actual buried wastes conducted during 1990 are presented here. The test results illustrate the feasibility of the ISV process for permanent remediation and closure of buried waste sites in commercial landfills. The tests were successful in immobilizing or destroying hazardous and radioactive contaminants while providing up to 75 vol % waste reduction. 6 refs., 7 figs., 5 tabs

  1. Study on the High Volume Reduction of Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hong; Sik, Kang Il; Seok, Hong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ho, Jeon Gil [RADIN Co. Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    The solidification of radioactive wastes by the mixing method always increases their volume due to the limitation of incorporation ratio (waste/solidification agent). But if the powdered wastes can be compacted as the high density pellets and also the pellets can be filled up in a waste drum as much as possible while solidifying them with a very sticky solidification agent including a void formed in the filling step of pellets, it might be more desirable to reduce the waste volume as compared with the mixing method. So in this study, we designed and manufactured a high volume reduction machine which has the special size and shape of a pellet pocket, which the pellets can be extracted from easily and filled up in a large amount in drum, a pressurizing device to press 2 rolls, and the uniform feeding device of powder to the roll tyre. Some operational parameters which affect the formation of pellets from a powder were investigated, and then the volume reduction of a powder was evaluated. The briquetting machine, popular in general industry, was modified to apply for the volume reduction of the powered radioactive wastes (dried concentrate, sludge, spent ion-exchange resin, ash, depleted uranium powder, and etc.). In this developed high volume reduction machine, the capacity was 25 ∼ 62.5 kg/h at the optimum conditions, and the estimated volume reduction was about 2.95 (2.74/0.93) on the basis of between a powder (bulk density = 0.93 g/cm{sup 3}) and the pellet (2.74 g/cm{sup 3}). But on the basis of 200L drum, the calculated volume reduction was about 1.34 in consideration of a void volume originated in the filling step of the pellets.

  2. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Dantoin, T.S.

    1990-12-01

    For more than half a century, the Council of State Governments has served as a common ground for the states of the nation. The Council is a nonprofit, state-supported and -directed service organization that provides research and resources, identifies trends, supplies answers and creates a network for legislative, executive and judicial branch representatives. This List of Available Resources was prepared with the support of the US Department of Energy, Cooperative Agreement No. DE-FC02-89CH10402. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. The purpose of the agreement, and reports issued pursuant to it, is to identify and analyze regional issues pertaining to the transportation of high-level radioactive waste and to inform Midwestern state officials with respect to technical issues and regulatory concerns related to waste transportation

  3. Recovery of Cs from high level radioactive waste

    International Nuclear Information System (INIS)

    Kumar, Amar; Kaushik, C.P.; Raj, K.; Varshney, Lalit

    2008-01-01

    Separation of Cs + from HLW restricts the personal radiation exposure during the vitrification and prevents thermal deformation of conditioned waste matrix during storage because of the high calorific power of 134 Cs (13.18 W/g) and 137 Cs (0.417 W/g) which would markedly reduce the storage cost. Separation will also reduce its volatility during vitrification and extent of migration from the vitrified mass in repository. In addition 137 Cs has enormous applications as radiation sources in food preservation, sterilization of medical products, brachy therapy, blood irradiation, hygienization of sewage sludge etc. The use of 137 Cs (T 1/2 = 30 years) in place of 60 Co (T 1/2 = 5.2 years) will also reduce the shielding requirement and frequency of source replenishment which will ease the handling/transportation of radioactive source

  4. Transmutation of high-level radioactive waste - Perspectives

    CERN Document Server

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  5. Monitoring of geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    2001-04-01

    Geological repositories for disposal of high level radioactive waste are designed to provide isolation of the waste from human environment for many thousands of years. This report discusses the possible purposes for monitoring geological repositories at the different stages of a repository programme, the use that may be made of the information obtained and the techniques that might be applied. This report focuses on the different objectives that monitoring might have at various stages of a programme, from the initiation of work on a candidate site, to the period after repository closure. Each objective may require somewhat different types of information, or may use the same information in different ways. Having evaluated monitoring requirements, the report concludes with a brief evaluation of available monitoring techniques

  6. High-level radioactive-waste-disposal investigations in Texas

    International Nuclear Information System (INIS)

    Smith, R.D.

    1983-01-01

    The Texas Energy and Natural Resources Advisory Council (TENRAC) was designated in 1980 to coordinate the interaction between the State of Texas and the federal government relating to the high-level radioactive waste disposal issue. This report was prepared to summarize the many aspects of that issue with particular emphasis on the activities in Texas. The report is intended to provide a comprehensive introduction for individuals with little or no previous exposure to the issue and to provide a broader perspective for those individuals who have addressed specific aspects of the issue but have not had the opportunity to study it in a broader context. Following the introduction, contents of this report are as follows: (1) general status of major repository siting investigations in the US; (2) detailed review of Texas studies; (3) possible facilities to be sited in Texas; (4) current Texas policy; (5) federal regulations; and (6) federal legislation. 9 figures, 2 tables

  7. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This study presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. Broad in scope and balanced in approach, its coverage extends from technological and organizational questions to political ramifications...the environmental impact of building repositories...and even dealing with Indian tribes affected by repository site selection and development. Emphasis is on workable strategies for implementing the National Waste Policy Act of 1982, including a mission plan for the program...a monitored retrievable storage proposal...and a report on mechanisms for financing and managing the program. Nine appendicies are included. They furnish additional data on such topics as policymaking, history, and the system issues resolved in NWPA

  8. High-level radioactive waste disposal problem in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    This presentation on radioactive waste management in Russia discusses criteria for the selection of disposal sites, how the various types of waste should be contained and stored, and gives a list showing the liable owner, type, volume, activity and storage place of the present amount of radioactive waste. The bulk of this waste, in volume and radioactivity, is at the enterprises of Minatom of the Russian Federation

  9. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  10. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  11. Measurement of gross beta radioactivity in high-level liquid waste

    International Nuclear Information System (INIS)

    Lu Feng; Lin Cansheng; Zhang Xianzi; Chen Guoan; Zhang Chonghai

    1992-01-01

    Using beta plastic scintillation counter of low level background, gross beta radioactivity of twelve samples for high-level liquid waste is determined directly. Beta efficiency curves of plastic scintillation counter for four mass thickness are calibrated in advance. Determining gross beta radioactivity, gross efficiency of the scintillation counter for various energy beta ray is calculated via weighted mean method with the ratio of radioactivity for each nuclide. The ratio of radioactivity for nuclides which have gamma disintegration is determined in terms of the radioactivity measured by gamma spectrometer. The ratio of the radioactivity for 90 Sr which has purity beta disintegration is calculated in terms of half life time approximation. The ratio of the radioactivity for 147 Pm which also has purity disintegration is calculated by means of apparent cooling-time approximation. The uncertainty of results for the present work is about +-15%

  12. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  13. Microstructure of buried CoSi2 layers formed by high-dose Co implantation into (100) and (111) Si substrates

    International Nuclear Information System (INIS)

    Bulle-Lieuwma, C.W.T.; Van Ommen, A.H.; Vandenhoudt, D.E.W.; Ottenheim, J.J.M.; de Jong, A.F.

    1991-01-01

    Heteroepitaxial Si/CoSi 2 /Si structures have been synthesized by implanting 170-keV Co + with doses in the range 1--3x10 17 Co + ions/cm 2 into (100) and (111) Si substrates and subsequent annealing. The microstructure of both the as-implanted and annealed structures is investigated in great detail by transmission electron microscopy, high-resolution electron microscopy, and x-ray diffraction. In the as-implanted samples, the Co is present as CoSi 2 precipitates, occurring both in aligned (A-type) and twinned (B-type) orientation. For the highest dose, a continuous layer of stoichiometric CoSi 2 is already formed during implantation. It is found that the formation of a connected layer, already during implantation, is crucial for the formation of a buried CoSi 2 layer upon subsequent annealing. Particular attention is given to the coordination of the interfacial Co atoms at the Si/CoSi 2 (111) interfaces of both types of precipitates. We find that the interfacial Co atoms at the A-type interfaces are fully sevenfold coordinated, whereas at the B-type interfaces they appear to be eightfold coordinated

  14. Management of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    2002-09-01

    The objective of this report is to provide all people involved in the handling and management of high activity sources with sufficient information about processes that are required for the safe management of spent high activity radioactive sources (SHARS). This includes examples of spent source management that are already taking place and also a description of the range of appropriate options that are available for each stage in the management process. This report also aims to identify the important issues to be addressed in order to develop a waste management strategy as part of the integrated management strategy that takes account of international experience and the guidance and principles that have been learned from that experience. This report relates specifically to SHARS, which are spent sources that have the potential, with short exposures, to produce acute health effects if handled incorrectly. In addition, they may also incur significant economic costs in any retrieval or environmental remediation operation, following loss of or damage to such a source. The report provides guidance on the technical, administrative and economic issues associated with SHARS from the moment they cease to be in use through to disposal, including temporary storage, transport, conditioning and interim storage

  15. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  16. Control of high level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs

  17. The principal radionuclides in high level radioactive waste management

    International Nuclear Information System (INIS)

    Mulyanto

    1998-01-01

    The principal radionuclides in high level radioactive waste management. The selection of the principal radionuclides in the high level waste (HLW) management was developed in order to improve the disposal scenario of HLW. In this study the unified criteria for selection of the principal radionuclides were proposed as; (1) the value of hazard index estimated by annual limit of intake (ALI) for long-term tendency,(2) the relative dose factor related to adsorbed migration rate transferred by ground water, and (3) heat generation in the repository. From this study it can be concluded that the principal radionuclides in the HLW management were minor actinide (MA=Np, Am, Cm, etc), Tc, I, Cs and Sr, based on the unified basic criteria introduced in this study. The remaining short-lived fission product (SLFPs), after the selected nuclides are removed, should be immobilized and solidified in a glass matrix. Potential risk due to the remaining SLFPs can be lower than that of uranium ore after about 300 year. (author)

  18. Natural analogues for processes affecting disposal of high-level radioactive waste in the vadose zone

    Science.gov (United States)

    Stuckless, J. S.

    2003-04-01

    Natural analogues can contribute to understanding and predicting the performance of subsystems and processes affecting a mined geologic repository for high-level radioactive waste in several ways. Most importantly, analogues provide tests for various aspects of systems of a repository at dimensional scales and time spans that cannot be attained by experimental study. In addition, they provide a means for the general public to judge the predicted performance of a potential high-level nuclear waste repository in familiar terms such that the average person can assess the anticipated long-term performance and other scientific conclusions. Hydrologists working on the Yucca Mountain Project (currently the U.S. Department of Energy's Office of Repository Development) have modeled the flow of water through the vadose zone at Yucca Mountain, Nevada and particularly the interaction of vadose-zone water with mined openings. Analogues from both natural and anthropogenic examples confirm the prediction that most of the water moving through the vadose zone will move through the host rock and around tunnels. This can be seen both quantitatively where direct comparison between seepage and net infiltration has been made and qualitatively by the excellent degree of preservation of archaeologic artifacts in underground openings. The latter include Paleolithic cave paintings in southwestern Europe, murals and artifacts in Egyptian tombs, painted subterranean Buddhist temples in India and China, and painted underground churches in Cappadocia, Turkey. Natural analogues also suggest that this diversion mechanism is more effective in porous media than in fractured media. Observations from natural analogues are also consistent with the modeled decrease in the percentage of infiltration that becomes seepage with a decrease in amount of infiltration. Finally, analogues, such as tombs that have ben partially filled by mud flows, suggest that the same capillary forces that keep water in the

  19. Development of high-frequency induction melting system for radioactive solid wastes

    International Nuclear Information System (INIS)

    Kawaguchi, Ichiro; Yamazaki, Seichiro; Takahashi, Noriaki; Kugai, Katsutoshi; Yokozawa, Minoru

    2004-01-01

    Kawasaki Heavy Industries, Ltd. developed an active insulation (AI) method radiofrequency melting system as a new melting treatment system of radioactive solid wastes and proved production of waste satisfied the treatment performances and burying by repeating many practical melting tests. The melting vessel uses a low-priced ceramic canister with nonelectrical conductivity, which is able to treat wastes with large amount of inorganic substances. The wastes melted in the canister is taken out the canister itself from radiofrequency melting reactor and solidified after cooling. The cool canister is stored in 2001 metal drum filling up a gap with mortal for laying underground. New radiofrequency melting reactor, 1/3 scale melting test, estimation of scale effects, melting tests for practical use and the total system are explained. (S.Y.)

  20. The disposal of high-level radioactive waste. Vol. 1

    International Nuclear Information System (INIS)

    Parker, F.L.; Broshears, R.E.; Pasztor, J.

    1984-01-01

    The Beijer Institute received request from the Swedish Board for Spent Nuclear Fuel (Naemnden for Anvaent Kaernbraensle - NAK) to undertake an international review of the major programmes which were currently making arrangements for the future disposal of high-level radioactive wastes and spent nuclear fuel. The request was accepted, a detailed proposal was worked out and agreed to by NAK, for a critical technical review which concentrated on the following three main tasks: 1. a 'state-of-the-art' review of selected ongoing disposal programmes, both national and international; 2. an assessment of the scientific and technical controversies involved, and 3. recommendations for further research in this field. This review work was to be built on a survey of the available technical literature which was to serve as a basis for a series of detailed interviews, consultations and discussions with scientific and technical experts in Japan, Canada, USA, Belgium, Federal Republic of Germany, France, Switzerland and the United Kingdom. This first volume contains: disposal options; review of the state-of-the-art (international activities, national programs); analysis of waste disposal systems. (orig./HP)

  1. Radioactivity in the groundwater of a high background radiation area.

    Science.gov (United States)

    Shabana, E I; Kinsara, A A

    2014-11-01

    Natural radioactivity was measured in groundwater samples collected from 37 wells scattered in an inhabited area of high natural background radiation, in a purpose of radiation protection. The study area is adjacent to Aja heights of granitic composition in Hail province, Saudi Arabia. Initial screening for gross α and gross β activities showed levels exceeded the national regulation limits set out for gross α and gross β activities in drinking water. The gross α activity ranged from 0.17 to 5.41 Bq L(-)(1) with an average value of 2.15 Bq L(-)(1), whereas gross β activity ranged from 0.48 to 5.16 Bq L(-)(1), with an average value of 2.60 Bq L(-)(1). The detail analyses indicated that the groundwater of this province is contaminated with uranium and radium ((226)Ra and (228)Ra). The average activity concentrations of (238)U, (234)U, (226)Ra and (228)Ra were 0.40, 0.77, 0.29 and 0.46 Bq L(-)(1), respectively. The higher uranium content was found in the samples of granitic aquifers, whereas the higher radium content was found in the samples of sandstone aquifers. Based on the obtained results, mechanism of leaching of the predominant radionuclides has been discussed in detail. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  3. Characterization and remediation of highly radioactive contaminated soil at Hanford

    International Nuclear Information System (INIS)

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion

  4. Use of strontium isotopes to identify buried water main leakage into groundwater in a highly urbanized coastal area.

    Science.gov (United States)

    Leung, Chi-Man; Jiao, Jiu Jimmy

    2006-11-01

    Previous studies indicate that the local aquifer systems in the Mid-Levels, a highly urbanized coastal area in Hong Kong, have commonly been affected by leakage from water mains. The identification of leakage locations was done by conventional water quality parameters including major and trace elements. However, these parameters may lead to ambiguous results and fail to identify leakage locations especially where the leakage is from drinking water mains because the chemical composition of drinking water is similar to that of natural groundwater. In this study, natural groundwater, seepage in the developed spaces, leakage from water mains, and parent aquifer materials were measured for strontium isotope (87Sr/86Sr) compositions to explore the feasibility of using these ratios to better constrain the seepage sources. The results show that the 87Sr/86Sr ratios of natural groundwater and leakage from water mains are distinctly different and thus, they can provide additional information on the sources of seepage in developed spaces. A classification system based on the aqueous 87Sr/86Sr ratio is proposed for seepage source identification.

  5. Review Of Concrete Biodeterioration In Relation To Buried Nuclear Waste

    International Nuclear Information System (INIS)

    Turick, C.

    2012-01-01

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  6. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  7. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level (radioactive) waste (HLW) as (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel...that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission...determines...requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph B. The approach also results in definitions of other wastes classes, i.e., transuranic (TRU) and low-level waste (LLW). The basic waste classification scheme that results from the quantitative definitions of highly radioactive and requires permanent isolation is depicted. The concentrations of radionuclides that correspond to these two boundaries, and that may be used to classify radioactive wastes, are given

  8. Deep geologic storage of high level radioactive wastes: conceptual generic designs

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the studies on deep geologic storage of radioactive wastes and specially for the high-level radioactive wastes. The study is focussed to the geotechnical assessment and generic-conceptual designs. Methodology analysis, geotechnical feasibility, costs and operation are studied

  9. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  10. Risk comparison of different treatment and disposal strategies of high level liquid radioactive waste

    International Nuclear Information System (INIS)

    Fang Dong

    1997-01-01

    The risk of different treatment and disposal strategies of high level liquid radioactive waste from spent fuel reprocessing is estimated and compared. The conclusions obtained are that risk difference from these strategies is very small and high level liquid waste can be reduced to middle and low level waste, if the decontamination factor for 99 Tc is large enough, which is the largest risk contributor in the high level radioactive waste from spent fuel reprocessing. It is also shown that the risk of high level radioactive waste could be reduced by the technical strategy of combining partitioning and transmutation

  11. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE's development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE's Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade

  12. Some historical background to the IAEA Definition and Recommendations concerning high-level radioactive wastes or other high-level radioactive matter unsuitable for dumping at sea

    International Nuclear Information System (INIS)

    Nishiwaki, Y.

    1981-01-01

    The need for internationally acceptable standards and regulations for preventing pollution of the sea by radioactive materials was recognized by the United Nations Conference on the Law of the Sea, which adopted the Convention on the High Seas in April 1958. Article 25 of the Convention provides that ''every State shall take measures to prevent pollution of the seas from the dumping of radioactive wastes, taking into account any standards and regulations which may be formulated by the competent international organizations.'' The Conference also adopted a resolution recommending that the IAEA pursue studies and take action to assist States in controlling the discharge of radioactive materials into the sea. When the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter was adopted at the Intergovernmental Conference in London, 1972, the IAEA was given specific responsibilities to define criteria and standards for dealing with the questions of sea disposal of radioactive wastes. The IAEA Definition and Recommendations concerning ''high-level radioactive wastes or other high-level radioactive matter unsuitable for dumping at sea'' identify material, the radioactive content of which is at such a level that the Parties to the Convention would wish to prevent any participating State from issuing a special permit even after a detailed appraisal of the safety of the proposed operation, and even for the sector of the marine environment furthest removed from man, i.e. the deep sea with depth greater than 4000 m. Some historical background to these problems is discussed and some of the Japanese findings of the deep sea survey in the Pacific are introduced for comparison with the North Atlantic data which formed a basis of the IAEA Definition and Recommendations for the London Dumping Convention

  13. Electrical properties and radiation hardness of SOI systems with multilayer buried dielectric

    International Nuclear Information System (INIS)

    Barchuk, I.P.; Kilchitskaya, V.I.; Lysenko, V.S.

    1997-01-01

    In this work SOI structures with buried SiO 2 -Si 3 N 4 -SiO 2 layers have been fabricated by the ZMR-technique with the aim of improving the total dose radiation hardness of the buried dielectric layer. To optimize the fabrication process, buried layers were investigated by secondary ion mass spectrometry before and after the ZMR process, and the obtained results were compared with electrical measurements. It is shown that optimization of the preparation processes of the initial buried dielectric layers provides ZMR SOI structures with multilayer buried isolation, which are of high quality for both Si film interfaces. Particular attention is paid to the investigation of radiation-induced charge trapping in buried insulators. Buried isolation structures with a nitride layer exhibit significant reduction of radiation-induced positive charge as compared to classical buried SiO 2 layers produced by either the ZMR or the SIMOX technique

  14. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level radioactive waste (HLW) as: (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel....that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission....determines....requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph (B). The approach also results in definitions of other waste classes, i.e., transuranic (TRU) and low-level waste (LLW). A basic waste classification scheme results from the quantitative definitions

  15. Chernobyl radioactivity and high altitude air-particulate monitoring at Islamabad

    International Nuclear Information System (INIS)

    Bhatti, M.S.; Ihsanullah; Shafiq, M.; Perveen, N.; Orfi, S.D.

    1987-11-01

    High altitude sampling of air particulates for radioactivity monitoring was conducted at Islamabad after the CHERNOBYL accident. Smears from aeroplanes flying at varying altitudes were collected and analysed for fresh fission products mainly gamma emitters e.g. Ru-103 and Cs-137 etc. The maximum radioactivity observed was of the order of 15Bq/sample for Ru-103 and 9Bq/sample for Cs-137 respectively. The study was purely qualitative in nature indicated the presence of fresh fission radioactivity at high altitudes over Islamabad. For quantitative measurements at high altitudes sophisticated instrumentation/procedure needs to be adopted. (author)

  16. Evaluation of S-type fiberglass composites for use in high-level radioactive waste environments

    International Nuclear Information System (INIS)

    Parra, S.A.

    1996-01-01

    Two types of S-type fiberglass materials were evaluated for use in a high-level radioactive waste environment. The S-type fiberglass composites tested were in the form of tubes and were exposed to a simulated high-level radioactive waste environment consisting of corrosive chemicals, high gamma radiation, and elevated temperatures. The physical properties of the exposed and unexposed tube samples were compared to determine the effects of the simulated environment on the S-type fiberglass composites

  17. Performance of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  18. Particle size of radioactive aerosols generated during machine operation in high-energy proton accelerators

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kanda, Yukio; Kondo, Kenjiro; Endo, Akira

    2000-01-01

    In high-energy accelerators, non-radioactive aerosols are abundantly generated due to high radiation doses during machine operation. Under such a condition, radioactive atoms, which are produced through various nuclear reactions in the air of accelerator tunnels, form radioactive aerosols. These aerosols might be inhaled by workers who enter the tunnel just after the beam stop. Their particle size is very important information for estimation of internal exposure doses. In this work, focusing on typical radionuclides such as 7 Be and 24 Na, their particle size distributions are studied. An aluminum chamber was placed in the EP2 beam line of the 12-GeV proton synchrotron at High Energy Accelerator Research Organization (KEK). Aerosol-free air was introduced to the chamber, and aerosols formed in the chamber were sampled during machine operation. A screen-type diffusion battery was employed in the aerosol-size analysis. Assuming that the aerosols have log-normal size distributions, their size distributions were obtained from the radioactivity concentrations at the entrance and exit of the diffusion battery. Radioactivity of the aerosols was measured with Ge detector system, and concentrations of non-radioactive aerosols were obtained using condensation particle counter (CPC). The aerosol size (radius) for 7 Be and 24 Na was found to be 0.01-0.04 μm, and was always larger than that for non-radioactive aerosols. The concentration of non-radioactive aerosols was found to be 10 6 - 10 7 particles/cm 3 . The size for radioactive aerosols was much smaller than ordinary atmospheric aerosols. Internal doses due to inhalation of the radioactive aerosols were estimated, based on the respiratory tract model of ICRP Pub. 66. (author)

  19. Redistribution of natural radioactive elements resulting from animal and plant life activity in regions with high radioactivity

    International Nuclear Information System (INIS)

    Malslov, V.I.; Maslova, K.I.; Alexakhin, R.M.

    1980-01-01

    A quantitative assessment is made of the influence of plant and animal life on the migration and redistribution of naturally occurring radionuclides in several localized areas with unusually high soil concentrations of 226 Ra, 238 U, or 232 Th. In the taiga and tundra zones examined, the effects of radionuclide accumulation in certain plant species and of the feeding and burrowing habits of small mammals were particularly significant. The observed regularities have predictive applications in assessing the redistribution of radionuclides in regions of high radioactivity

  20. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR.

    Science.gov (United States)

    Blazejak, Anna; Schippers, Axel

    2010-05-01

    Sequences of members of the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi are frequently found in 16S rRNA gene clone libraries obtained from marine sediments. Using a newly designed quantitative, real-time PCR assay, these bacterial groups were jointly quantified in samples from near-surface and deeply buried marine sediments from the Peru margin, the Black Sea, and a forearc basin off the island of Sumatra. In near-surface sediments, sequences of the JS-1 as well as Anaerolineae- and Caldilineae-related Bacteria were quantified with significantly lower 16S rRNA gene copy numbers than the sequences of total Bacteria. In contrast, in deeply buried sediments below approximately 1 m depth, similar quantities of the 16S rRNA gene copies of these specific groups and Bacteria were found. This finding indicates that JS-1 and Anaerolineae- and Caldilineae-related Bacteria might dominate the bacterial community in deeply buried marine sediments and thus seem to play an important ecological role in the deep biosphere.

  1. Characterization and vitrification of Hanford radioactive high level wastes

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-01-01

    Radioactive Neutralized Current Acid Waste (NCAW) samples from the Hanford waste tanks have been chemically, radiochemically and physically characterized. The wastes were processed according to the Hanford Waste vitrification Plant (HWVP) flowsheet, and characterized after each process step. The waste glasses were sectioned and leach tested. Chemical, radiochemical and physical properties of the waste will be presented and compared to nonradioactive simulant data and the HWVP reference composition and properties

  2. Risk and cost tradeoffs for remote retrieval of buried waste

    International Nuclear Information System (INIS)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-01-01

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program's technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste

  3. Risk and cost tradeoffs for remote retrieval of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  4. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  5. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  6. Elementary migration around the Oklo nuclear reactors. Implications for high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Menet-Dressayre, C.; Menager, M.T.

    1993-01-01

    The study of Uranium and rare earths near the reactors has displayed the radioelements transfer in the reactors neighbourhood. The main implications for high level radioactive wastes disposal in geological formations are discussed. 12 refs

  7. Assay for dihydroorotase using high-performance liquid chromatography with radioactivity detection

    International Nuclear Information System (INIS)

    Mehdi, S.; Wiseman, J.S.

    1989-01-01

    An assay for measuring dihydroorotase activity was devised. Radiolabeled substrate and product were separated by high-performance liquid chromatography using a reverse-phase column with ion-pairing, and the radioactivity was quantitated by flow detection

  8. Neotectonic movement feature in preselection area for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Huang Xianfang; Gao Yang; He Jianguo; Li Jianzhong; Gao Honglei; Xu Guoqing

    2010-01-01

    Neotectonic activity intensity is an important criteria for evaluating high level radioactive waste repository. The guiding ideology, methods and application of neotectonic study are elaborated in the paper. According to comparison research between the south and north part of east Tianshan area, the south part of east Tianshan is regarded as relative stable or relative weak in neotectonic movement in Neogene period and was selected as preselection area for high level radioactive waste repository. (authors)

  9. Hydrological performance assessment on siting the high level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Wang Ju; Wang Zhiming; Su Rui; Lv Chuanhe; Zong Zihua

    2007-01-01

    Based on the research experiences in China and some developed countries in the world, the processes and methods on hydrological performance assessment for the siting of high radioactive repository are discussed in this paper. The methods and contents of hydrological performance assessment are discussed respectively for region, area and site hydrological investigation stages. At the same time, the hydrological performance assessment of the potential site for high level radioactive waste in China is introduced. (authors)

  10. Storing solid radioactive wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate

  11. Remote detection of radioactive material using high-power pulsed electromagnetic radiation.

    Science.gov (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi

    2017-05-09

    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.

  12. Issues related to the USEPA probabilistic standard for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Okrent, D.

    1993-01-01

    This paper asks whether some of the fundamental bases for the 1985 USEPA standard on disposal of high level radioactive wastes (40 CFR Part 191) warrant re-examination. Similar questions also apply to the bases for the radioactive waste disposal requirements proposed by most other countries. It is suggested that the issue of intergenerational equity has been dealt with from too narrow a perspective. Not only should radioactive and nonradioactive hazardous waste disposal be regulated from a consistent philosophic basis, but the regulation of waste disposal itself should be embedded in the broader issues of intergenerational conservation of options, conservation of quality, and conservation of access. (author). 25 refs

  13. Studies on radioactivities of dust samples in the air at high altitudes

    International Nuclear Information System (INIS)

    Kohara, Eri; Muronoi, Naohiro

    2015-01-01

    The radioactivity concentrations of airborne dust samples were studied. The samples had been collected at high altitude by the Japan Air Self-Defense Force from April 2013 to March 2014. The obtained data were used for gross beta radioactivity analysis and gamma nuclide analysis. It is shown that cesium 137 was mainly detected at the 10 km and 3 km altitude of central area of Japan in several samples. Gaseous radioiodine was not detected in all the samples. Radioactive xenon was detected but the concentration did not show significant difference to the background level. (author)

  14. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  15. Radiation Sialadenitis Induced by High-dose Radioactive Iodine Therapy

    International Nuclear Information System (INIS)

    Jeong, Shin Young; Lee, Jaetae

    2010-01-01

    Radioactive iodine ( 131 I) is accumulated in the thyroid tissue and plays an important role in the treatment of differentiated papillary and follicular cancers after thyroidectomy. Simultaneously, 131 I is concentrated in the salivary glands and secreted into the saliva. Dose-related damage to the salivary parenchyma results from the 131 I irradiation. Salivary gland swelling and pain, usually involving the parotid, can be seen. The symptoms may develop immediately after a therapeutic dose of 131 I and/or months later and progress in intensity with time. In conjunction with the radiation sialadenitis, secondary complications reported include xerostomia, taste alterations, infection, increases in caries, facial nerve involvement, candidiasis, and neoplasia. Prevention of 131 I sialadenitis may involve the use of sialogogic agents to hasten the transit time of the radioactive iodine through the salivary glands. However, studies are not available to delineate the efficacy of this approach. Treatment of the varied complications that may develop encompass numerous approaches and include gland massage, sialogogic agents, duct probing, antibiotics, mouthwashes, good oral hygiene, and adequate hydration. Recently interventional sialoendoscopy has been introduced an effective tool for the management of patients with 131 I-induced sialadenitis that is unresponsive to medical treatment.

  16. Radiation Sialadenitis Induced by High-dose Radioactive Iodine Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Shin Young; Lee, Jaetae [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2010-06-15

    Radioactive iodine ({sup 131}I) is accumulated in the thyroid tissue and plays an important role in the treatment of differentiated papillary and follicular cancers after thyroidectomy. Simultaneously, {sup 131}I is concentrated in the salivary glands and secreted into the saliva. Dose-related damage to the salivary parenchyma results from the {sup 131}I irradiation. Salivary gland swelling and pain, usually involving the parotid, can be seen. The symptoms may develop immediately after a therapeutic dose of {sup 131}I and/or months later and progress in intensity with time. In conjunction with the radiation sialadenitis, secondary complications reported include xerostomia, taste alterations, infection, increases in caries, facial nerve involvement, candidiasis, and neoplasia. Prevention of {sup 131}I sialadenitis may involve the use of sialogogic agents to hasten the transit time of the radioactive iodine through the salivary glands. However, studies are not available to delineate the efficacy of this approach. Treatment of the varied complications that may develop encompass numerous approaches and include gland massage, sialogogic agents, duct probing, antibiotics, mouthwashes, good oral hygiene, and adequate hydration. Recently interventional sialoendoscopy has been introduced an effective tool for the management of patients with {sup 131}I-induced sialadenitis that is unresponsive to medical treatment.

  17. Seismic induced earth pressures in buried vaults

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.

    1994-01-01

    The magnitude and distribution of earth pressures acting on buried structures and induced by a seismic event are considered in this paper. A soil-structure-interaction analysis is performed for typical Department of Energy high level waste storage tanks using a lumped parameter model. The resulting soil pressure distributions are determined and compared with the static soil pressure to assess the design significance of the seismic induced soil pressures. It is found that seismic pressures do not control design unless the peak ground acceleration exceeds about 0.3 G. The effect of soil non linearities (resulting from local soil failure) are also found to have little effect on the predictions of the seismic response of the buried structure. The seismic induced pressures are found to be very similar to those predicted using the elastic model in ASCE 4-86

  18. Radioactive airborne species formed in the air in high energy accelerator tunnels

    International Nuclear Information System (INIS)

    Kondo, K.

    2005-01-01

    Many radioactive airborne species have been observed in the air of high energy accelerator tunnels during machine operation. Radiation protection against these induced airborne radioactivities is one of the key issues for radiation safety, especially at high-energy and high-intense proton accelerators such as the J-PARC (Japan Proton Accelerator Research Complex, Joint project of KEK and JAERI), which is now under construction at the TOKAI site of JAERI. Information on the chemical forms and particle sizes of airborne radioactivities is essential for the estimation of internal doses. For that purpose, the study on radioactive airborne species formed in the air of beam-line tunnels at high-energy accelerators have been extensively conducted by our group. For Be-7, Na-24, S-38, Cl-38,-39, C-11, and N-13, formed by various types of nuclear reactions including nuclear spallation reactions, their aerosol and gaseous fractions are determined by a filter technique. A parallel plate diffusion battery is used for the measurement of aerosol size distributions, and the formation of radioactive aerosols is explained by the attachment of radionuclides to ambient non-radioactive aerosols which are formed through radiation induced reactions. The chemical forms of gaseous species are also determined by using a selective collection method based on a filter technique. A review is given of the physico-chemical properties of these airborne radionuclides produced in the air of accelerator beam-line tunnels.

  19. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1987-06-01

    This report presents a proposal for quantitative and generally applicable risk-based definitions of high-level and other radioactive wastes. On the basis of historical descriptions and definitions of high-level waste (HLW), in which HLW has been defined in terms of its source as waste from reprocessing of spent nuclear fuel, we propose a more general definition based on the concept that HLW has two distinct attributes: HLW is (1) highly radioactive and (2) requires permanent isolation. This concept leads to a two-dimensional waste classification system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with shorter-term risks due to high levels of decay heat and external radiation. We define wastes that require permanent isolation as wastes with concentrations of radionuclides exceeding the Class-C limits that are generally acceptable for near-surface land disposal, as specified in the US Nuclear Regulatory Commission's rulemaking 10 CFR Part 61 and its supporting documentation. HLW then is waste requiring permanent isolation that also is highly radioactive, and we define ''highly radioactive'' as a decay heat (power density) in the waste greater than 50 W/m 3 or an external radiation dose rate at a distance of 1 m from the waste greater than 100 rem/h (1 Sv/h), whichever is the more restrictive. This proposal also results in a definition of Transuranic (TRU) Waste and Equivalent as waste that requires permanent isolation but is not highly radioactive and a definition of low-level waste (LLW) as waste that does not require permanent isolation without regard to whether or not it is highly radioactive

  20. Nuclear waste--does burying it bury the problem

    International Nuclear Information System (INIS)

    Thomas, R.A.

    1979-01-01

    This article discusses the Department of Energy (DOE)'s undergrounsd nuclear waste repository which is scheduled for startup in 1981 in New Mexico, and tries to explain why this project is being plagued by delays and uncertainties. The facility, known as the Waste Isolation Pilot Plant (WIPP), faces such problems as the question of the geologic security of the tentative site, citizens' objections about the location, as well as some licensing problems and concerns about overland transport of the large amounts of highly radioactive wastes that will fill the repository

  1. Social transactions with future generations for the management of high level radioactive waste in deep repositories: Reflections on institutional control and retrievability

    International Nuclear Information System (INIS)

    Heriard Dubreuil, G.; Schieber, C.; Schneider, T.; Viala, M.

    1999-01-01

    The management of high level radioactive waste and spent fuel is a key issue and one of the most sensitive aspect of radioactive waste management. Recognising that it is the responsibility of our generation to find a way to isolate the waste, deep geological disposals have been envisaged to provide a definitive solution to the problem, in order to avoid 'undue burden on future generations'. However, even if they are buried, the wastes still exist and human intrusion is still possible as well as releases into the environment in the very far future. At the same time, the ongoing reflections on the ethical aspects of disposals show that it is of great worth that we guarantee future generations the same right of control and responsibility that we ourselves enjoy. This paper presents some reflections on the social transactions associated with the management and design of geological repositories. It is focused on the mission of institutional control in the transmission to future generation of a safety patrimony, composed of the know-how and techniques that permit the human community to 'domesticate' and control the risk. As it appears that the efficiency and the confidence in the control system rely mainly on the capability of implementing corrective actions, some considerations on the role, the consequences and the implementation of retrievability are also presented

  2. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  3. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  4. Legal aspects of sub-seabed disposal of radioactive waste

    International Nuclear Information System (INIS)

    Reyners, P.

    1981-10-01

    In connection with methods for disposal of highly radioactive waste, that consisting of burying such waste in the sub-seabed arouses an increasingly marked interest among specialists. Apart from the technical difficulties still to be overcome and current safety assessments, this method gives rise to quite considerable legal and political problems. Their solution will undoubtedly have a bearing on its chances of being implemented. (NEA) [fr

  5. Large-sized and highly radioactive 3H and 109Cd Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Shibata, S.; Kawakami, H.; Kato, S.

    1994-02-01

    A device for the deposition of a radioactive Langmuir-Blodgett (LB) film was developed with the use of: (1) a modified horizontal lifting method, (2) an extremely shallow trough, and (3) a surface pressure-generating system without piston oil. It made a precious radioactive subphase solution repeatedly usable while keeping its radioactivity concentration as high as possible. Any large-size thin films can be prepared by just changing the trough size. Two monomolecular-layers of Y-type films of cadmium [ 3 H] icosanoate and 109 Cd icosanoate were built up as 3 H and 109 Cd β-sources for electron spectroscopy with intensities of 1.5 GBq (40 mCi) and 7.4 MBq (200 μCi), respectively, and a size of 65x200 mm 2 . Excellent uniformity of the distribution of deposited radioactivity was confirmed by autoradiography and photometry. (author)

  6. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  7. Radioactive waste immobilization in protective ceramic forms by the HIP method at high pressures

    International Nuclear Information System (INIS)

    Sayenko, S.Yu.; Kantsedal, V.P.; Tarasov, R.V.; Starchenko, V.A.; Lyubtsev, R.I.

    1993-01-01

    Intense research activities have been carried out in recent years at the Kharkov Institute of Physics and Technology (KIPT) to develop the method of hot isostatic pressing (HIP) for immobilizing radioactive (primarily, high-level) wastes. With this method, the radioactive material is immobilized in a matrix under the simultaneous action of high pressures (up to 6,000 atm) and appropriate temperatures. The process has 2 variants: (1) radioactive wastes are treated as powders of oxides resulting from calcination during chemical treatment of spent fuel. In this case the radioactive material enters into the crystalline structure of the immobilized matrix or is distributed in the matrix as a homogeneous mixture; (2) protective barrier layers are pressed on spent fuel rods or their pieces as radioactive wastes, by the HIP method (fuel rod encapsulation in a protective form). Based on numerous results from various studies, the authors suggest that various ceramic compositions should be used as protective materials. Here the authors report two trends of their investigations: (1) development of ecologically clean process equipments for radioactive waste treatment by the HIP method; (2) manufacture of promising protective ceramic compositions and investigation of their physico-mechanical properties

  8. Removal of radioactivity and safe vegetables cultivation from highly radioactivity polluted soil in Fukushima using photosynthetic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Kei; Okagawa, Masakazu; Takeno, Kenji; Shinkawa, Hidenori; Sasaki, Ken

    2015-01-01

    The soil pollution caused by radioactive substances released from the accident of TEPCO Fukushima Daiichi Nuclear Power Station has been still serious interference against agricultural reconstruction. This study used the soil contaminated with high radioactivity (13,602∼87,181 Bq/kg) in Namie Town, Fukushima Prefecture, and performed decontamination using photosynthetic bacteria in a simple outdoor practical test using a 60 L container. Using the soil after decontamination, the authors cultivated vegetables such as komatsuna (Japanese mustard spinach), and bok choy, the results of which are reported. As photosynthetic bacteria, Rhodobacter shaerodes SSI species was used. This paper describes the cultivation method of bacteria, preparation method of immobilization grain, decontamination method, and cultivation method of vegetables. As a result of the experiment, the decontamination efficient of the soil was between 59.5 to 73.3%, and cultured vegetables passed the edible reference value (edible criteria for infants: 50 Bq/kg FW), which was the success of the experiment. (A.O.)

  9. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  10. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  11. Current status of high level radioactive waste disposal in Japan and foreign countries

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Tanabe, Hiromi; Inagaki, Yusuke; Ishida, Hisahiro; Kato, Osamu; Kurata, Mitsuyuki; Yamachika, Hidehiko

    2002-01-01

    At a time point of 2002, there is no country actually disposing high level radioactive wastes into grounds, but in most of countries legislative preparation and practicing agents are carried out and site selection is promoted together with energetic advancement of its R and Ds. As disposal methods of the high level radioactive wastes, various methods such as space disposal, oceanic bottom disposal, ice bed disposal, ground disposal, and so on have been examined. And, a processing technology called partitioning and transmutation technology separating long-lived radionuclides from liquid high level radioactive waste and transmutation into short-lived or harmless radionuclides has also been studied. Here was introduced their wrestling conditions in Japan and main foreign countries, as a special issue of the Current status of high level radioactive waste disposal in Japan and foreign countries'. The high level radioactive wastes (glassification solids or spent nuclear fuels) are wastes always formed by nuclear power generation and establishment of technologies is an important subject for nuclear fuel cycle. (G.K.)

  12. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Decamps, F.

    1993-01-01

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heat producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type

  13. Dry decontamination technology development for high radioactive contaminant application - Development of residual radiation assessment methodology for high radioactive facility decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. J.; Hong, D. S.; Jeong, H. Y. [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    Humidity around the concrete structure can make the moisture distribution within the concrete. Moisture content of the structure will change due to the diffusion process with time. Radioactive material on the surface of concrete will eventually diffuse into the porous concrete and contaminates the internal region of the concrete. In this study, we have assumed two different diffusion processes depending on the different moisture content. One is for slow diffusion process near the surface and the other is for fast diffusion process in deep region. We have developed the mathematical diffusion model for the two different diffusion regions and the corresponding analytic solutions for the two regions are obtained. 19 refs., 15 figs., 9 tabs. (Author)

  14. Locating a buried magnetic dipole

    Energy Technology Data Exchange (ETDEWEB)

    Caffey, T.W.H.

    1977-01-01

    The theoretical basis and required computations for locating a buried magnetic dipole are outlined. The results are compared with measurements made with a tiltable coil lowered to a depth of 20 m in a vertical borehole within a three-layered earth. this work has application to the rescue of trapped miners. 3 figures, 1 table. (RWR)

  15. The Buried Town of Beaver.

    Science.gov (United States)

    Jostad, Karen

    Local history as source material for environmental education is uniquely portrayed in this resource kit. Utilizing a Winona County Historical Society publication, "The Beaver Story" and accompanied by a teacher's guide, "The Buried Town of Beaver," and other teaching aids, a case study of the area can be developed. Based on the reminiscences of…

  16. Michigan high-level radioactive waste program. Technical progress report for 1985

    International Nuclear Information System (INIS)

    1986-01-01

    In 1985, five crystalline rock formations located in Michigan's Upper Peninsula were under consideration in the regional phase of the Department of Energy's (DOE) search for the site of the nation's second high-level radioactive waste repository. The Michigan Department of Public Health has been designated by the Governor as lead state agency in matters related to high-level radioactive waste (HLRW). Mr. Lee E. Jager, Chief of the Department's Bureau of Environmental and Occupational Health, has been designated as the state contact person in this matter, and the Bureau's Division of Radiological Health, Office of Radioactive Waste Management (ORWM), has been designated to provide staff support. Recognizing that adequate state involvement in the various aspects of the Federal high-level radioactive waste (HLRW) programs would require a range of expertise beyond the scope of any single state agency, Governor Blanchard established the High-Level Radioactive Waste Task Force in 1983. In support of the Task Force efforts concerning the implementation of its change, the Department negotiated and concluded an agreement with the DOE, under which federal funds are provided to support state HLRW activities. This report outlines state activities for the calendar year 1985, funded under that agreement

  17. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  18. The disposal of high level radioactive wastes. Proposed solutions and uses in Brazil

    International Nuclear Information System (INIS)

    Toledo, J.F.A.

    1992-06-01

    The characteristics of high level radioactive waste produced in nuclear plants similar to that used in Brazil is presented. Subsequently it is described the international experience, and the way to apply such knowledge to the Brazilian situation, defining the magnitude of the problem, applying a methodology to select sites, and choosing areas for the location of a repository. Once such areas are defined, it is presented the behaviour of rock mass, similar to those found in the brazilian territory, based on the requirements for a high radioactive waste repository site. Finally, two Projects are presented for countries with lithologies similar to that of Brazil. The first one is choosing sites for a high radioactive waste repository program, and the second is an investigation of rock mass responses program. (author)

  19. Synthetic hydrogeological study on Beishan preselected area for high-level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Ji Ruili; Wang Hailong; Liu Shufen; Zong Zihua; Dong Jiannan; Zhang Ming

    2014-01-01

    On the basis of large scale field hydrogeological investigation, synthetic hydrogeological studies related to groundwater system characteristics, permeability of rock bodies, groundwater dynamic, hydrogeochemistry, isotopic hydrology, CFC's of groundwater and groundwater flow field simulation were carried out for Beishan area, Gansu province. According to analysis on a large amount of hydrogeological data, the characteristics of groundwater circulation, groundwater hydrodynamics and hydrgeochemistry were described and the suitability of Beishan area as the potential area of high-level radioactive waste disposal was evaluated in the paper. Through this study, the hydrogeological study and evaluation methods in the siting of China's high level radioactive waste repository were set up. Furthermore, the important hydrogeological scientific evidence was provided for optimal site filtration of China's high-level radioactive waste repository in Beishan area. (authors)

  20. Radioactive wastes - inventories and classification

    International Nuclear Information System (INIS)

    Brennecke, P.; Hollmann, A.

    1992-01-01

    A survey is given of the origins, types, conditioning, inventories, and expected abundance of radioactive wastes in the future in the Federal Republic of Germany. The Federal Government's radioactive waste disposal scheme provides that radioactive wastes be buried in deep geological formations which are expected to ensure a maintenance-free, unlimited and safe disposal without intentional excavation of the wastes at a later date. (orig./BBR) [de

  1. The development of a strategy for the management of high level radioactive wastes

    International Nuclear Information System (INIS)

    Beale, H.

    1981-07-01

    An assessment is made of the options available for the management of high level radioactive wastes. This preliminary study leads to the conclusion that the high active liquor should be vitrified at the earliest possible date and points to the advantages of storing the vitrified waste for an extended period in reinforced concrete casks. (author)

  2. Removal of overburden soils from buried waste sites

    International Nuclear Information System (INIS)

    Rice, P.M.

    1994-01-01

    Transuranic (TRU) waste buried in pits and trenches is covered with a soil cap, or overburden, to shed water. During retrieval operations, the overburden (expected to be clean) must be removed carefully to avoid breaching the soil/waste matrix within a pit or trench and to confine any possible local spot contamination. This necessitates removal in precise (7.6- to 15.25-cm) increments with a high degree of accuracy. In addition, during overburden removal the overburden must be characterized to a depth that exceeds each cut of soil. A field demonstration was conducted to evaluate a technology for removing overburden soils a the Radioactive Waste Management Complex (RWMC), Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL). The demonstration evaluated equipment performance and techniques for removing overburden soil and controlling contamination and dust. To evaluate the performance of these techniques during removal operations, personnel took air particulate samples, physical measurements of the soil cuts, maneuverability measurements, and rate of soil removal data. The overburden was spiked at specific locations and depths with rare earth tracers to provide a medium for evaluating samples. Analysis to determine the precision and accuracy of the soil removal, amount of dust generated, and potential spread of contamination was performed

  3. Study on engineering economics of China high-level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Qu Jun; Guo Zongzhi; Yang Lirong; Hu Jiang

    2012-01-01

    In this paper, based on the research and analysis about the repository construction cost of the European, US and Japan, together with the concept design pattern of China's high level radioactive waste repository, the preliminary economic analysis of China is presented. Meanwhile, combining with China's nuclear power development layout and picking-up policy of spent fuel fund, the preliminary measurement concerning the capital resource of high level radioactive waste disposal is implemented, which contribute to the conclusion initiatively that the spent fuel fund could meet the need of the financial demand of disposal cost. (authors)

  4. Selection of the host rock for high level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Jin Yuanxin; Wang Wenguang; Chen Zhangru

    2001-01-01

    The authors has briefly introduced the experiences of the host rock selection and the host rock types in other countries for high level radioactive waste repository. The potential host rocks in China are investigated. They include granite, tuff, clay, basalt, salt, and loess. The report has expounded the distributions, scale, thickness, mineral and chemical composition, construction, petrogenesis and the ages of the rock. The possibility of these rocks as the host rock has been studied. The six pieces of distribution map of potential rocks have been made up. Through the synthetical study, it is considered that granite as the host rock of high level radioactive waste repository is possible

  5. Treatment and Storage of High-Level Radioactive Wastes. Proceedings of the Symposium on Treatment and Storage of High-Level Radioactive Wastes

    International Nuclear Information System (INIS)

    1963-01-01

    A variety of radioactive materials having no immediate use result from the utilization of atomic energy. The manner in which these materials are handled has repercussions on reactor economy and technology, on the health and safety of persons and populations and on atomic legislation. Excellent progress has been made in developing a technology capable of safely and economically dealing with these materials so that no immediate problems exist. The highly radioactive ''wastes'' arising from the reprocessing of irradiated fuel pose long-range problems, however, and methods for the ultimate disposal of these wastes must be developed and evaluated. Such development and evaluation can be materially assisted by providing the scientists doing the work with an opportunity of exchanging ideas and information on their experience. Therefore, the IAEA, as part of its programme of promoting nuclear technology, convened in Vienna from 8-12 October 1962 the Symposium on the Treatment and Storage of High-level Radioactive Wastes. The Symposium was attended by 130 scientists from 19 countries and two international organizations. Thirty-three papers were presented and discussed in full and formed a background for a panel discussion of chairmen near the end of the Symposium. The papers and a record of the discussions are published in this single volume. It is hoped that the information thus recorded will achieve the desired purpose of assisting the peaceful development of atomic energy

  6. Human genetics studies in areas of high natural radiation. IV. Research in radioactive areas

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Maia, A [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil). Departamento de Genetica

    1974-01-01

    A review is made on researches performed in areas with high levels of natural radioactivity. Some considerations are made on the importance and difficulties involved in projects of this kind. Although there is no doubt that natural radioactivity is one of the causes of the so-called spontaneous mutations, the practical demonstration of this assertion is extremely complex. Projects trying to correlate high levels of natural radioactivity with the occurrence of cancer (in general, or specific), leukemia, congenital malformations (in general or specific), neuro-vegetative disturbs, sex ratio, mortality, and physical development, as well as other characteristics. Some researches with animals are also mentioned, and references are given for plant studies. A critical analysis is made of some works relating to human populations.

  7. Radioactive Waste Management Research Program Plan for high-level waste: 1987

    International Nuclear Information System (INIS)

    1987-05-01

    This plan will identify and resolve technical and scientific issues involved in the NRC's licensing and regulation of disposal systems intended to isolate high level hazardous radioactive wastes (HLW) from the human environment. The plan describes the program goals, discusses the research approach to be used, lays out peer review procedures, discusses the history and development of the high level radioactive waste problem and the research effort to date and describes study objectives and research programs in the areas of materials and engineering, hydrology and geochemistry, and compliance assessment and modeling. The plan also details the cooperative interactions with international waste management research programs. Proposed Earth Science Seismotectonic Research Program plan for radioactive waste facilities is appended

  8. Human genetics studies in areas of high natural radiation.IV. Research in radioactive areas

    International Nuclear Information System (INIS)

    Freire-Maia, A.

    1974-01-01

    A review is made on researches performed in areas with high levels of natural radioactivity. Some considerations are made on the importance and difficulties involved in projects of this kind. Although there is no doubt that natural radioactivity is one of the causes of the so-called spontaneous mutations, the practical demonstration of this assertion is extremely complex. Projects trying to correlate high levels of natural radioactivity with the occurrence of cancer (in general, or specific), leukemia, congenital malformations (in general or specific), neuro-vegetative disturbs, sex ratio, mortality, and physical development, as well as other characteristics. Some researches with animals are also mentioned, and references are given for plant studies. A critical analysis is made of some works relating to human populations [pt

  9. Comparative consideration and design of a security depot for high radioactive glass-enclosed materials

    International Nuclear Information System (INIS)

    Jaroni, U.

    1985-01-01

    From the beginning of 1990 the COGEMA shall supply glass-enclosed high radioactive waste of the reprocessing of German fuel elements back to the Federal Republic of Germany. As to this time the final waste storage in the salt stock of Gorleben will not be available the glass cannisters have to be deposited above ground. First a comparison is made out of a number of proposed storage concepts for the deposition of HAW-glass blocks. The safety technical behaviour of the facility is considered. On the basis of the gained results a new facility design is presented, which can take 450 glass cannisters in a discoid built up cast-steel vessel and makes possible the utilization of the resulting radioactive heat of dissociation. During the development of this concept besides a compact, reasonable method of building and the thermodynamic behaviour of the storage the aspect of high security against release of radioactive materials was emphasized. (orig.) [de

  10. Hydrodynamic analysis and design of high-level radioactive waste disposal model penetrators

    International Nuclear Information System (INIS)

    Visintini, L.; Mazazzi, R.; Murray, C.N.

    1991-01-01

    The Commission of the European Communities is studying in the framework of the NEA/OECD Internationally Co-ordinational Seabed Programme the feasibility of using deep ocean sedimentary geological formations as a final disposal medium for vitrified high level waste and fuel elements. At present, two options are being considered for the embedment of such wastes in the sediment column, drilling and free fall penetrators. In the second case, the high level waste would be contained in specially designed drums which would be placed into torpedo-shaped projectiles. These penetrators would then be launched from a semi-submersible platform or ship and allowed to fall freely through the water column (≅ 5 km depth) and to bury themselves within the sediment column. The present article reports some work which has been carried out by the Joint Research Centre, Ispra Establishment on designing large model penetrators for tests at two sites in the North Atlantic

  11. Cementation of liquid radioactive waste with high content of borate salts

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    The report reviews the ways of optimization of cementation of boron-containing liquid radioactive waste. The most common way to hardening the low-level liquid radioactive waste (LRW) is the cementation. However, boron-containing liquid radioactive waste with low pH values cannot be cemented without alkaline additives, to neutralize acid forms of borate compounds. Cement setting without additives happens only on 14-56 days, the compounds have low strength, and hence an insufficient reliability of radionuclides fixation in the cement matrix. The alkaline additives increase the volume of the final cement compound which enhances financial and operational costs. In order to control the speed of hardening of cement solution with a boron-containing liquid radioactive waste and to remove the components that prevent hardening of cement solution, it is proposed an electromagnetic treatment of LRW in the vortex layer of ferromagnetic particles. The results of infrared spectroscopy show, that electromagnetic treatment of liquid radioactive waste changes the ionic forms of the borates and raises the pH due to the dissociation of the oxygen and hydrogen bonds in the aqueous solutions of the boron compounds. The various types of ferromagnetic activators of the vortex layer have been investigated, including the highly dispersed nano-powders and the magnetic phases of the iron oxides. It has been determined the technological parameters of the electromagnetic treatment of liquid radioactive waste and the subsequent cementation of this type of LRW. By using the method of scanning electron microscopy it has been shown, that the nano-particles of magnetic phases of the ferric oxides are involved in phase formation of hydro-aluminum-calcium ferrites in the early stages of hardening and improving strength of the cement compounds with liquid radioactive waste. (authors)

  12. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1989-01-01

    On the basis of the definition of high-level wastes (HLW) in the Nuclear Waste Policy Act of 1982 and previous descriptions of reprocessing wastes, a definition is proposed based on the concept that HLW is any waste which is highly radioactive and requires permanent isolation. This conceptual definition of HLW leads to a two-dimensional waste classification system in which one axis, related to 'highly radioactive', is associated with shorter-term risks from waste management and disposal due to high levels of decay heat and external radiation, and the other axis, related to 'requires permanent isolation', is associated with longer-term risks from waste disposal. Wastes that are highly radioactive are defined quantitatively as wastes with a decay heat (power density) greater than 50 W/m 3 or an external dose-equivalent rate greater than 100 rem/h (1 Sv/h) at a distance of 1 m from the waste, whichever is more restrictive. Wastes that require permanent isolation are defined quantitatively as wastes with concentrations of radionuclides greater than the Class-C limits that are generally acceptable for near-surface land disposal, as obtained from the Nuclear Regulatory Commission's 10 CFR Part 61 and its associated methodology. This proposal leads to similar definitions of two other waste classes: transuranic (TRU) waste and equivalent is any waste that requires permanent isolation but is not highly radioactive; and low-level waste (LLW) is any waste that does not require permanent isolation, without regard to whether or not it is highly radioactive. 31 refs.; 3 figs.; 4 tabs

  13. Halftone display, particularly for a high resolution radioactivity distribution detection system

    International Nuclear Information System (INIS)

    Grenier, R.P.

    1977-01-01

    A device is described for presenting a halftone pictorial presentation composed of dot picture elements by selectively controlling the number of dot picture elements per unit area at locations on a display. In a high resolution radioactivity distribution detection system, the number of detected radioactive elements at XY locations of an array of sensing devices are fed to a computer and stored at corresponding address locations. The number of radioactive events detected at each address location is normalized into Gray scale coded signals as a function of the greatest number of radioactive events detected at any one address location. The normalized Gray scale coded signals are applied to a display for controlling the number of dot picture elements per unit area presented at corresponding XY locations on the display. The number of radioactive events detected at XY locations of the array are presented on the display as a halftone pictorial representation; the greatest number of picture dot elements per unit are being presented as a brighter image

  14. Electromagnetic scattering from buried objects

    International Nuclear Information System (INIS)

    Brock, B.C.; Sorensen, K.W.

    1994-10-01

    Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations

  15. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2010-01-01

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus 94 Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for 94 Ag.

  16. Proton radioactivity at non-collective prolate shape in high spin state of {sup 94}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta, E-mail: mamta.a4@gmail.co [UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai 400 098 (India)

    2010-10-11

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus {sup 94}Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for {sup 94}Ag.

  17. Modeling for speciation of radionuclides in waste packages with high-level radioactive wastes

    International Nuclear Information System (INIS)

    Weyand, Torben; Bracke, Guido; Seher, Holger

    2016-10-01

    Based on a literature search on radioactive waste inventories adequate thermodynamic data for model inventories were derived for geochemical model calculations using PHREEQC in order to determine the solid phase composition of high-level radioactive wastes in different containers. The calculations were performed for different model inventories (PWR-MOX, PWR-UO2, BWR-MOX, BMR-UO2) assuming intact containers under reduction conditions. The effect of a defect in the container on the solid phase composition was considered in variation calculations assuming air contact induced oxidation.

  18. An integrated approach to strategic planning in the civilian high-level radioactive waste management program

    International Nuclear Information System (INIS)

    Sprecher, W.M.; Katz, J.; Redmond, R.J.

    1992-01-01

    This paper describes the approach that the Office of Civilian Radioactive Waste Management (OCRWM) of the Department of Energy (DOE) is taking to the task of strategic planning for the civilian high-level radioactive waste management program. It highlights selected planning products and activities that have emerged over the past year. It demonstrates that this approach is an integrated one, both in the sense of being systematic on the program level but also as a component of DOE strategic planning efforts. Lastly, it indicates that OCRWM strategic planning takes place in a dynamic environment and consequently is a process that is still evolving in response to the demands placed upon it

  19. High resolution line for secondary radioactive beams at the U400M cyclotron

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    For implementation of an experimental program for studying nuclear reactions with radioactive ion beams in the energy domain of 20 through 80 MeV · A the high resolution beam line ACCULINNA was put into commissioning on a primary beam line of the JINR U-400M cyclotron. By means of nuclear fragmentation of the 14 N beam with the energy of 51 MeV · A on the 170 mg/cm 2 carbon target radioactive beams of 6 He, 8 He and 8 B were obtained. Possibilities of further development of the set-up are discussed. 6 refs., 7 figs., 2 tabs

  20. Study of casks shielded with heavy metal to transport highly radioactive substances

    International Nuclear Information System (INIS)

    Lucchesi, R.F.; Hara, D.H.S.; Martinez, L.G.; Mucsi, C.S.; Rossi, J.L.

    2014-01-01

    Nowadays, Brazil relies on casks produced abroad for transportation in its territory of substances that are sources of high radioactivity, especially the Mo-99. The product of the radioactive decay of the Mo-99 is the Tc-99m, which is used in nuclear medicine for administration to humans in the form of injectable radioactive drugs for the image diagnosis of numerous pathologies. This paper aims to study the existing casks in order to propose materials for the construction of the core part as shielding against gamma radiation. To this purpose, the existing literature on the subject was studied, as well as evaluation of existing and available casks. The study was focused on the core of which is made of heavy metals, especially depleted uranium for shielding the emitted radiation. (author)

  1. Charging and coagulation of water aerosols with negligible addition of high-radioactive droplets

    International Nuclear Information System (INIS)

    Vasil'eva, N.L.; Sedova, G.L.; Chernyj, L.T.

    1994-01-01

    The mechanics of electrocoagulation of water aerosols with negligible admixture of high-radioactive droplets is considered. A corresponding mathematical model has been worked out which describes the processes of ionization, electrification and coagulation of radioactive aerosols. Numerical studies are carried out for a series of typical aerosols on the time dependence of ion concentrations, charge and pure droplet concentrations, as well as the charge and radius of radioactive droplets. It is shown that coagulation can give rise to the growth of droplet radius from 5-10 μm up to 30-40 μm for a 10 4 s period f time, and therefore it can play a considerable role in the development of aerosols with droplet radius up to 20 μm when gravitational coagulation is insignificant

  2. Two decades of research in the Brazilian areas of high natural radioactivity

    International Nuclear Information System (INIS)

    Cullen, T.L.; Paschoa, A.S.; Franca, E.P.; Costa-Ribeiro, C.; Barcinski, M.; Eisenbud, M.

    1980-01-01

    A review is made of the most important findings obtained in the decades 1960-1980 in the Brazilian regions of high natural radioactivity. The research was carried out by three university groups: Pontificia Universidade Catolica do Rio de Janeiro, Universidade Federal do Rio de Janeiro and New York Universisity. (Author) [pt

  3. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  4. IAEA coordinated research program on the evaluation of solidified high-level radioactive waste products

    International Nuclear Information System (INIS)

    Grover, J.R.; Schneider, K.J.

    1979-01-01

    A coordinated research program on the evaluation of solidified high-level radioactive waste products has been active with the IAEA since 1976. The program's objectives are to integrate research and to provide a data bank on an international basis in this subject area. Results and considerations to date are presented

  5. The Michigan high-level radioactive waste program: Final technical progress report

    International Nuclear Information System (INIS)

    1987-01-01

    This report comprises the state of Michigan's final technical report on the location of a proposed high-level radioactive waste disposal site. Included are a list of Michigan's efforts to review the DOE proposal and a detailed report on the application of geographic information systems analysis techniques to the review process

  6. Plan of deep underground construction for investigations on high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Mayanovskij, M.S.

    1996-01-01

    The program of studies of the Japanese PNC corporation on construction of deep underground storage for high-level radioactive wastes is presented. The program is intended for 20 years. The total construction costs equal about 20 billion yen. The total cost of the project is equal to 60 billion yen. The underground part is planned to reach 1000 m depth

  7. Safety principles and technical criteria for the underground disposal of high level radioactive wastes

    International Nuclear Information System (INIS)

    1989-01-01

    The main objective of this book is to set out an internationally agreed set of principles and criteria for the design of deep underground repositories for the disposal of high level radioactive wastes. This book is concerned with the post-closure period. Consideration of the operational requirements which must be met when wastes are being handled, stored and emplaced are not therefore included

  8. ORNL shielded facilities capable of remote handling of highly radioactive beta--gamma emitting materials

    International Nuclear Information System (INIS)

    Whitson, W.R.

    1977-09-01

    A survey of ORNL facilities having adequate shielding and containment for the remote handling of experimental quantities of highly radioactive beta-gamma emitting materials is summarized. Portions of the detailed descriptions of these facilities previously published in ORNL/TM-1268 are still valid and are repeated

  9. Hydrogeological investigation for sitting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Lv Chuanhe

    2005-01-01

    Based on the research experiences of our country and some developed countries in the world, the purpose, process and methods, as well as the function of hydrogeological investigation for sitting disposal repository for high radioactive waste are discussed. Meanwhile, the topic related to the acquisition of hydrogeological parameters is described as well, aiming at providing reference for the future study. (authors)

  10. Electric devices used in radioactive handling enclosures of the high activity laboratory

    International Nuclear Information System (INIS)

    Gaigeot, F.; Laurent, H.

    1958-08-01

    This report describes several electric, electronic and electromechanical assemblies which are used in radioactive handling enclosures. The authors propose an overview of existing or foreseen devices: a device to lift covers, a brightness comparator, a high voltage device to perform electrophoresis, a level sensor or regulator device, a regulation device to control under-pressure in an enclosure [fr

  11. Performance criteria for solidified high-level radioactive wastes. Environmental impact statement. Revision 1

    International Nuclear Information System (INIS)

    1977-09-01

    This draft Environmental Impact Statement on performance criteria for solidified high-level radioactive wastes (PCSHLW) covers: considerations for PCSHLW development, the proposed rulemaking, characteristics of the PCSHLW, environmental impacts of the proposed PCSHLW, alternatives to the PCSHLW criteria, and cost/benefit/risk evaluation. Five appendices are included to support the technical data required in the Environmental Impact Statement

  12. China's deep geological disposal program for high level radioactive waste, background and status 1998

    International Nuclear Information System (INIS)

    Ju Wang; Xu Guoqing; Guo Yonghai

    2001-01-01

    This paper presents the background and progress made in the study of China's high level radioactive waste, including site screening, site evaluation, the study on radionuclide migration, bentonite, natural analogue studies, and performance assessment, etc. The study on Beishan area, the potential area for China's geological repository, is also presented in this paper. (author)

  13. The determination of cesium and rubidium in highly radioactive waste liquid

    International Nuclear Information System (INIS)

    Wei Songsheng

    1991-01-01

    Cesium and rubidium in high-level waste liquid were determined by atomic absorption spectrometry with the instrument modified for analyzing radioactive samples. The results show that the method is effective and safe. The error of the method is less than +- 3%, and it has been used in the production of cesium

  14. Surface storage of vitrified high-level radioactive waste in reinforced-concrete casks

    International Nuclear Information System (INIS)

    Beale, H.; George, M.W.; Robertson, T.J.M.

    1982-06-01

    The feasibility of storing canisters containing vitrified high level radioactive waste in reinforced concrete casks is examined. This preliminary study identifies the limitations and probable cost of such a store and leads to the conclusion that the concept is feasible. (author)

  15. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  16. High-gradient magnetic separation for the treatment of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Ebner, A.D.; Ritter, J.A.; Nunez, L.

    1999-01-01

    Argonne National Laboratory is developing an open-gradient magnetic separation (OGMS) system to fractionate and remove nonglass-forming species from high-level radioactive wastes (HLW); however, to avoid clogging, OGMS may require high-gradient magnetic separation (HGMS) as a pretreatment to remove the most magnetic species from the HLW. In this study, the feasibility of using HGMS in the pretreatment of HLW was demonstrated. A HLW simulant of hanford's C-103 tank waste, which contained precipitate hydroxides and oxides of Fe, Al, Si, and Ca, was used. Preliminary fractionation results from a 0.3-T bench-scale HGMS unit showed that a significant amount of Fe could be removed from the HLW simulant. Between 1 and 2% of the total Fe in the sludge was removed during each stage, with over 18.5% removed in the 13 stages that were carried out. Also, in each stage, the magnetically retained fraction contained about 20% more Fe than the untreated HLW; however, it also contained a significant amount of SiO 2 in relatively large particles. This indicated that SiO 2 was acting possibly as a nucleation agent for Fe (i.e., an Fe adsorbent) and that the fractionation was based more on size than on magnetic susceptibility

  17. High-level radioactive waste repositories site selection plan

    International Nuclear Information System (INIS)

    Castanon, A.; Recreo, F.

    1985-01-01

    A general vision of the high level nuclear waste (HLNW) and/or nuclear spent fuel facilities site selection processes is given, according to the main international nuclear safety regulatory organisms quidelines and the experience from those countries which have reached a larger development of their national nuclear programs. (author)

  18. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  19. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  20. Final disposal of high-level radioactive waste. State of knowledge and development for safety assessment

    International Nuclear Information System (INIS)

    Sato, Seichi; Muraoka, Susumu; Murano, Toru

    1995-01-01

    In Europe and USA, the formation disposal of high level radioactive waste entered the stage of doing the activities aiming at its execution. Also in Japan, the storage of high level waste began in the spring of 1995. Regarding the utilization of nuclear power, the establishment of the technology for disposing radioactive waste is the subject of fist priority, and the stage that requires its social recognition has set in. There are the features of formation disposal in that the disposal is in the state of confining extremely large amount of radioactivity, and that the assessment of long term safety exceeding tens of thousands years is demanded. The amount of occurrence and the main nuclides of high level radioactive waste, the disposal as seen in the Coady report and in the IAEA standard, the selection of dispersion or confinement and the selection of passive system or long term human participation, the reason why formation disposal is selected, the features of formation disposal and the way of advancing the research, the general techniques of safety assessment, artificial barriers and natural barriers for formation disposal, and the subjects of formation disposal are described. (K.I.) 57 refs

  1. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  2. Crystalline matter for solidification of highly radioactive wastes

    International Nuclear Information System (INIS)

    Grauer, R.

    1984-02-01

    Highly active wastes from reprocessed nuclear fuels must be incorporated into a solid chemically resistant inorganic matrix prior to final storage. One possible alternative to glassification is to embed the complex oxide mixture in a crystalline ceramic. A discussion from the structural and chemical viewpoint is presented giving guidelines for the selection and development of such a product. The chemical and phase composition concerning the most important developments are described. SYNROC is the most highly developed solid ceramic that has been evaluated to date for power reactor wastes. However, its testing and development so far has been restricted to simulated inactive materials. One of the most important aspects of solid high activity wastes is their behaviour in water. SYNROC reacts more slowly than glasses with water at temperatures over 100 0 C. Its low release of actinides under these conditions is remarkable. At temperatures under 100 0 C the important nuclide Cs 137 is released from SYNROC and from glasses at comparable rates. These assertions concerning chemical stability are however based on short term experiments, which have not considered the possibly complex interactions occurring during final storage. The information is therefore insufficient to describe the basic model required to predict long term behaviour under final storage conditions. Finally the report makes recommendations for a further programme of work. (Auth.)

  3. On barrier performance of high compaction bentonite in facilities of disposing high level radioactive wastes in formation

    International Nuclear Information System (INIS)

    Ikeda, Hidefumi; Komada, Hiroya

    1989-01-01

    As for the method of disposing high level radioactive wastes generated in the reprocessing of spent fuel, at present formation disposal is regarded as most promising. The most important point in this formation disposal is to prevent the leak of radioactive nuclides within the disposal facilities into bedrocks and their move to the zone of human life. As the method of formation disposal, the canisters containing high level radioactive wastes are placed in the horizontal or vertical holes for disposal dug from horizontal tunnels which are several hundreds m underground, and the tunnels and disposal holes are filled again. For this filling material, the barrier performance to prevent and retard the leak of radioactive nuclides out of the disposal facilities is expected, and the characteristics of low water permeability, the adsorption of nuclides and long term stability are required. However, due to the decay heat of wastes just after the disposal, high temperature and drying condition arises, and this must be taken in consideration. The characteristics required for filling materials and the selection of the materials, the features and classification of bentonite, the properties of high compaction bentonite, and the move of water, heat and nuclides in high compaction bentonite are reported.(Kako, I.)

  4. High sensitivity on-line monitor for radioactive effluent

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Toshimi [Tohoku Electric Power Co. Ltd., Sendai (Japan); Ishizuka, Akira; Abe, Eisuke; Inoue, Yasuhiko; Fujii, Masaaki; Kitaguchi, Hiroshi; Doi, Akira

    1983-04-01

    A new approach for a highly sensitive effluent monitor is presented. The free flow type monitor, which consists of a straightener, nozzle, monitoring section and ..gamma..-ray detector, is demonstrated to be effective in providing long term stability. The 160 start-and-stop cycles of effluent discharge were repeated in a 120-h testing period. Results showed a background increase was not observed for the free flow type monitor. The background count rate was calibrated to the lowest detection limit to be 2.2 x 10/sup -2/ Bq/ml for a 300 s measurement time.

  5. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  6. Fluidized bed system for calcination of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Pande, D P; Prasad, T L; Yadgiri, N K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    During the operation of nuclear facilities significant quantities of radiochemical liquid effluents of different concentrations and varying chemical compositions are generated. These effluents contain activated radionuclides, corrosion products and fission products. The advantage of feeding the waste in solid form into the vitrifying equipment are multifold. Efforts are therefore made in many countries to calcine the high level waste, and obtain waste in the oxide form before the same is mixed with glass forming additives and fed into the melter unit. An experimental rig for fluidized bed calcination is constructed for carrying out the detailed investigation of this process, in order to adopt the same for plant scale application. To achieve better gas-solid contact and avoid raining down of solids, a distributor of bubble cap type was designed. A review of existing experience at various laboratories and design of new experimental facility for development of calciners are given. (author). 11 refs., 5 figs.

  7. HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.; Stippler, R.

    1988-01-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in an one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. The project is funded by the BMFT and the CEC and carrier out in close co-operation with the Netherlands Energy Research Foundation (ECN)

  8. The HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.

    1988-04-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  9. The HAW Project. Test disposal of highly radioactive radiation sources in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Mueller-Lyda, I.; Raynal, M.; Major, J.C.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt a five years test disposal of thirty highly radioactive canisters is planned in the Asse salt mine in the Federal Republic of Germany. The thirty canisters containing the radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwith of heat generation and gamma radiation of real HAW will be emplaced in six boreholes located in two galleries at the 800-m-level. Two electrical heater tests were already started in November 1988 and are continuously surveyed in respect of the thermomechanical and geochemical response of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and successfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. For gamma dose and dose rate measurements in the test field measuring systems consisting of ionization chambers as well as solid state dosemeters were developed and tested. 70 refs

  10. IAEA Helps Remove Highly Radioactive Material from Five South American Countries

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) has helped remove 27 disused highly radioactive sources from five South American countries in a significant step forward for nuclear safety and security in the region. It was the largest such project ever facilitated by the IAEA. The material, mainly used for medical purposes such as treating cancer and sterilizing instruments, was transported to Germany and the United States for recycling. Canada, where some of the sources were manufactured, funded the project upon requests for IAEA support from Bolivia, Ecuador, Paraguay, Peru and Uruguay. The sealed Cobalt-60 and Caesium-137 sources pose safety and security risks when no longer in use, according to Raja Adnan, Director of the IAEA’s Division of Nuclear Security. “The removal of this large number of radioactive sources has significantly reduced those risks in the five countries,” Adnan said. In recent years, the IAEA has assisted Bosnia and Herzegovina, Cameroon, Costa Rica, Honduras, Lebanon, Morocco, Tunisia and Uzbekistan in the removal of disused sources. The South American operation was the largest the IAEA has so far coordinated in terms of both the number of highly radioactive sources and countries involved. While nuclear safety and security are national responsibilities, the IAEA helps Member States upon request to meet these responsibilities through training, technical advice, peer reviews and other advisory services. Such efforts may include support for Member States in implementing the safe and cost-effective recovery, conditioning, storage, disposal or transportation of disused sealed radioactive sources (DSRS).

  11. Buried Waste Program (BWP) data qualification manual

    International Nuclear Information System (INIS)

    Casey, C.; Larson, R.A.; Harris, G.A.

    1989-06-01

    The Data Qualification Manual (DQM) has been developed to discuss the process required to qualify data generated for the Buried Waste Program (BWP). The data from the BWP tasks conducted at the Radioactive Waste Management Complex (RWMC) and elsewhere will lead to remedial decisions being made which are governed by federal regulations administered by the Environmental Protection Agency (EPA). Data qualification is the process of insuring that only data of planned and known qualities are used to make a decision or answer a question. Although it is the Data Integrity Review Committee's (DIRC) responsibility to insure that the quality of all BWP data is ultimately verified and validated, all personnel who participate in the data gathering process will affect the quality of the data and must be responsible for knowing what is required to produce data of the planned quality. Therefore this manual is addressed to all participants in a data-gathering task. This manual discusses requirements to support data qualification in several areas, including: the sampling and analysis plan; data quality objectives and PARCC goals; sample custody documentation; quality assurance; assembly of the data qualification package; and existing data. 23 refs., 4 figs., 6 tabs

  12. Concentration of High Level Radioactive Liquid Waste. Basic data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Juvenelle, A.; Masson, M.; Garrido, M.H. [DEN/VRH/DRCP/SCPS/LPCP, BP 17171 - 30207 Bagnols sur Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: In order to enhance its knowledge about the concentration of high level liquid waste (HLLW) from the nuclear fuel reprocessing process, a program of studies was defined by Cea. In a large field of acidity, it proposes to characterize the concentrated solution and the obtained precipitates versus the concentration factor. Four steps are considered: quantification of the salting-out effect on the concentrate acidity, acquisition of solubility data, precipitates characterisation versus the concentration factor through aging tests and concentration experimentation starting from simulated fission products solutions. The first results, reported here, connect the acidity of the concentrated solution to the concentration factor and allow us to precise the field of acidity (4 to 12 N) for the next experiments. In this field, solubility data of various elements (Ba, Sr, Zr...) are separately measured at room temperature, in nitric acid in a first time, then in the presence of various species present in medium (TBP, PO{sub 4}{sup 3-}). The reactions between these various elements are then investigated (formation of insoluble mixed compounds) by following the concentration cations in solution and characterising the precipitates. (authors)

  13. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  14. High-level radioactive waste fixation in sintered vitreous matrix

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    The safe storage of high-level wastes from fuel elements reprocessing includes, as a first step, the fixation of the same in materials having a good resistance to the leaching in aqueous medium, such as borosilicate glass. As an alternative to the usual method of the molten glasses, a procedure for the sintering of a powdered glass and waste mixture at lower temperatures (600-700 deg C) has been developed, which minimizes the volatilization of active compounds during the process. Two glasses matrices of different composition and characteristics were used, to which the simulated wastes were added in the ratio of a 10% in weight of oxides. Two sintering techniques were employed 1: cold pressing and further sintering; 2: hot pressing and sintering under pressure. The densities were measured, the microstructure of the samples was analyzed and leaching essays were made in distilled water. The pellet's microstructure was observed by means of optical microscopy, by reflection in polished samples and by transparency in thin slices. The presence of crystalline compounds was analyzed by means of x rays and electron microprobe. The results have shown the convenience to continue with hot pressing essays, because a denser product with a higher resistance to the leaching is thus obtained. (M.E.L.) [es

  15. Location iron-Mantua an area with high securities gives natural radioactivity

    International Nuclear Information System (INIS)

    Alcaide Orpi, J.; Oliveira Acosta, J.; Valdes Hernadez, G.M.; Leal Ramirez, M.R.; Blanco Jorrin, N.

    1998-01-01

    The work shows the high natural radioactivity and the concentration to the natural radioelements (U,Th, Ra, K) it is exists in the sulfurous Hierro Mantua location. The objective is to know the possible radiological risk to that would be subjected the workers during the mining exploitation, because the high gamma radiation doses that could receive and to the risks product the internal contamination due to the inhalation the radon 222 and uranium aerosols and particles

  16. Remote sampling and analysis of highly radioactive samples in shielded boxes

    International Nuclear Information System (INIS)

    Kirpikov, D.A.; Miroshnichenko, I.V.; Pykhteev, O.Yu.

    2010-01-01

    The sampling procedure used for highly radioactive coolant water is associated with high risk of personnel irradiation and uncontrolled radioactive contamination. Remote sample manipulation with provision for proper radiation shielding is intended for safety enhancement of the sampling procedure. The sampling lines are located in an isolated compartment, a shielded box. Various equipment which enables remote or automatic sample manipulation is used for this purpose. The main issues of development of the shielded box equipment intended for a wider ranger of remote chemical analyses and manipulation techniques for highly radioactive water samples are considered in the paper. There were three principal directions of work: Transfer of chemical analysis performed in the laboratory inside the shielded box; Prevalence of computer-aided and remote techniques of highly radioactive sample manipulation inside the shielded box; and, Increase in control over sampling and determination of thermal-hydraulic parameters of the coolant water in the sampling lines. The developed equipment and solutions enable remote chemical analysis in the restricted volume of the shielded box by using ion-chromatographic, amperometrical, fluorimetric, flow injection, phototurbidimetric, conductometric and potentiometric methods. Extent of control performed in the shielded box is determined taking into account the requirements of the regulatory documents as well as feasibility and cost of the technical adaptation of various methods to the shielded box conditions. The work resulted in highly precise determination of more than 15 indexes of the coolant water quality performed in on-line mode in the shielded box. It averages to 80% of the total extent of control performed at the prototype reactor plants. The novel solutions for highly radioactive sample handling are implemented in the shielded box (for example, packaging, sample transportation to the laboratory, volume measurement). The shielded box is

  17. BATATA: a buried muon hodoscope

    International Nuclear Information System (INIS)

    Sanchez, F.; Supanitsky, A. D.; Medina-Tanco, G.; Paic, G.; Salazar, M. E. Patino; D'Olivo, J. C.; Molina, R. Alfaro

    2009-01-01

    Muon hodoscopes have several applications, ranging from astrophysics to fundamental particle physics. In this work, we present a detector dedicated to the study, at ground level, of the main signals of cosmic-ray induced showers above 6 PeV. The whole detector is composed by a set of three parallel dual-layer scintillator planes buried at fix depths ranging from 120 g/cm 2 to 600 g/cm 2 and by a triangular array of water cerenkov detectors located nearby on ground.

  18. Environmental Radioactivity. Chapter 4

    International Nuclear Information System (INIS)

    Muhamat Omar; Ismail Sulaiman; Zalina Laili

    2015-01-01

    This chapter explains several things which consist radioactivity measurements, regular and high background radioactivity, radioactive contaminated soil and radioactivity in fertilizers, rocks, building materials, food, water, environments, sediments, flora and fauna. Besides, the natural radioactive gas concentration of radon and toron in the environment also been discussed specifically in this chapter.

  19. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  20. Numerical Model of Fluid Flow through Heterogeneous Rock for High Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Shirai, M.; Chiba, R.; Takahashi, T.; Hashida, T.; Fomin, S.; Chugunov, V.; Niibori, Y.

    2007-01-01

    An international consensus has emerged that deep geological disposal on land is one of the most appropriate means for high level radioactive wastes (HLW). The fluid transport is slow and radioactive elements are dangerous, so it's impossible to experiment over thousands of years. Instead, numerical model in such natural barrier as fractured underground needs to be considered. Field observations reveal that the equation with fractional derivative is more appropriate for describing physical phenomena than the equation which is based on the Fick's law. Thus, non-Fickian diffusion into inhomogeneous underground appears to be important in the assessment of HLW disposal. A solute transport equation with fractional derivative has been suggested and discussed in literature. However, no attempts were made to apply this equation for modeling of HLW disposal with account for the radioactive decay. In this study, we suggest the use of a novel fractional advection-diffusion equation which accounts for the effect of radioactive disintegration and for interactions between major, macro pores and fractal micro pores. This model is fundamentally different from previous proposed model of HLW, particularly in utilizing fractional derivative. Breakthrough curves numerically obtained by the present model are presented for a variety of rock types with respect to some important nuclides. Results of the calculation showed that for longer distance our model tends to be more conservative than the conventional Fickian model, therefore our model can be said to be safer

  1. Development of FOODSEYE, a high-speed screening system for radioactivity in foods

    International Nuclear Information System (INIS)

    Mizuta, Tetsuro; Tachibana, Kazushige; Kobayashi, Susumu

    2012-01-01

    We employed the radiation measurement technology utilized for positron emission tomography in nuclear medicine to develop FOODSEYE, a high-speed screening system for radioactivity in food. FOODSEYE enables high-speed screening designed to measure the concentration of radioactive cesium (Bq/kg) in food and determine with a certainty of at least 99% whether a given test article conforms to safety standards established by the Ministry of Health, Labour and Welfare of Japan. The system is comprised of BGO detectors that detect gamma rays with high sensitivity, a shielded construction to reduce noise components from outside sources of radiation (background radiation), a conveyor belt for efficient conveyance of test articles, and a touch screen panel for easy operation and display of results. This design allows the FOODSEYE system to measure trace amounts of radioactivity with high precision. The precision of the system was verified using 30-kg bags of rice tested in Nihonmatsu City in Fukushima Prefecture, Japan. The measurements results obtained with FOODSEYE correlated with, and were within the range of measurement error of, measurement results obtained using a germanium semiconductor detector. The system was also capable of screening one test article per 5 seconds at a standard value of 100 Bq/kg. This article details the system structure, performance and results of verification tests performed using the FOODSEYE high-speed screening system. (author)

  2. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  3. Inspection device for buried equipment

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1994-01-01

    In an inspection device for a buried equipment, a rail is suspended at the upper portion of a vessel of a pit-vessel type pump buried in a plant building floor, and a truck movable vertical in the vessel along the rail, and an ultrasonic wave probe contained in the truck and urged to the vessel by an electromagnet are disposed. In addition, an elevator moving vertically along a shaft is disposed, and an arm having the ultrasonic probe disposed at the end portion and driven by a piston are disposed to the elevator. The ultrasonic wave probe moves vertically together with the truck along the rail in the vessel while being urged to the vessel by the electromagnet to inspect and measure the state at the inner and outer surfaces of the vessel. Further, the length of the arm is controlled so as to set a predetermined distance between the ultrasonic wave probe and the vessel. Subsequently, the elevator is moved vertically along a shaft passing through a shaft hole of a mount, and the shaft is rotated thereby enabling to inspect and measure the state of the inner and outer surfaces of the vessel. (N.H.)

  4. Buried penis: classification surgical approach.

    Science.gov (United States)

    Hadidi, Ahmed T

    2014-02-01

    The purpose of this study was to describe morphological classification of congenital buried penis (BP) and present a versatile surgical approach for correction. Sixty-one patients referred with BP were classified into 3 grades according to morphological findings: Grade 1-29 patients with Longer Inner Prepuce (LIP) only, Grade II-20 patients who presented with LIP associated with indrawn penis that required division of the fundiform and suspensory ligaments, and Grade III-12 patients who had in addition to the above, excess supra-pubic fat. A ventral midline penile incision extending from the tip of prepuce down to the penoscrotal junction was used in all patients. The operation was tailored according to the BP Grade. All patients underwent circumcision. Mean follow up was 3 years (range 1 to 10). All 61 patients had an abnormally long inner prepuce (LIP). Forty-seven patients had a short penile shaft. Early improvement was noted in all cases. Satisfactory results were achieved in all 29 patients in grade I and in 27 patients in grades II and III. Five children (Grades II and III) required further surgery (9%). Congenital buried penis is a spectrum characterized by LIP and may include in addition; short penile shaft, abnormal attachment of fundiform, and suspensory ligaments and excess supra-pubic fat. Congenital Mega Prepuce (CMP) is a variant of Grade I BP, with LIP characterized by intermittent ballooning of the genital area. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Buried Waste Integrated Demonstration Plan

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented

  6. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  7. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  8. Buried Waste Integrated Demonstration FY-93 Deployment Plan

    International Nuclear Information System (INIS)

    Bonnenberg, R.W.; Heard, R.E.; Milam, L.M.; Watson, L.R.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year 1993 effort will deploy seven major field demonstrations at the Idaho National Engineering Laboratory's (INEL's) Radioactive Waste Management Complex Cold Test Pit. These major demonstrations are Remote Characterization System, Remote Excavation System, Overburden Removal, Waste Isolation, Contamination Control Unit, Rapid Monitoring Unit, and Fixation of Soil Surface Contamination. This document is the basic operational planning document for BWID deployment of the INEL field demonstrations. Additional sections deal briefly with four nonINEL field and laboratory demonstrations (Buried Waste Retrieval, Arc Melter Vitrification, Graphite DC Plasma Arc Melter, and Fixed Hearth Plasma Process) and with four INEL laboratory demonstrations (Electrostatic Curtain, Thermal Kinetics, Multiaxis Crane Control System, and Dig-Face Characterization)

  9. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  10. Measurement of residual radioactivity in cooper exposed to high energy heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjoo; Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Uwamino, Yoshitomo; Ito, Sachiko; Fukumura, Akifumi

    1999-03-01

    The residual radioactivities produced by high energy heavy ions have been measured using the heavy ion beams of the Heavy Ion Medical Accelerator (HIMAC) at National Institute of Radiological Sciences. The spatial distribution of residual radioactivities in 3.5 cm, 5.5 cm and 10 cm thick copper targets of 10 cm x 10 cm size bombarded by 290 MeV/u, 400 MeV/u-{sup 12}C ion beams and 400 MeV/u-{sup 20}Ne ion beam, respectively, were obtained by measuring the gamma-ray activities of 0.5 mm thick copper foil inserted in the target with a high purity Ge detector after about 1 hour to 6 hours irradiation. (author)

  11. Technical development for geological disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sugino, Hiroyuki; Kawakami, Susumu; Yamanaka, Yumiko

    1997-01-01

    Technical developments for geological disposal of high-level radioactive wastes materials research and design technique for engineered barriers (overpack and buffer material) were studied to evaluate more reliable disposal systems for high-level radioactive wastes. A lifetime prediction model for the maximum corrosion depth of carbon steel was developed. A preferable alloys evaluation method for crevice corrosion was established for titanium. Swelling pressure and water permeability of bentonite as a buffer material was measured, and coupled hydro-thermo-mechanical analysis code for bentonite was also studied. The CIP (cold isostatic pressing) method for monolithically formed buffer material was tested. A concept study on operation equipment for the disposal site was performed. Activities of microorganisms involved in underground performance were investigated. (author)

  12. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 4: Engineering

    International Nuclear Information System (INIS)

    Hickerson, J.; Freeman, T.J.; Boisson, J.Y.; Murray, C.N.; Gera, F.; Nakamura, H.; Nieuwenhuis, J.D.; Schaller, K.H.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This report summarizes work performed to develop and evaluate engineering methods of emplacing high level radioactive waste in stable, deep ocean sediments. It includes results of desktop studies, laboratory experiments and field tests conducted in deep water

  13. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition

  14. Risk management and organizational systems for high-level radioactive waste disposal: Issues and priorities

    International Nuclear Information System (INIS)

    Emel, J.; Cook, B.; Kasperson, R.; Brown, H.; Guble, R.; Himmelberger, J.; Tuller, S.

    1988-09-01

    The discussion to follow explores the nature of the high-level radioactive waste disposal tasks and their implications for the design and organizational structure of effective risk management systems. We organize this discussion in a set of interrelated tasks that draw upon both relevant theory and accumulated experience. Specifically these tasks are to assess the management implications of the high levels of technical and social uncertainty that characterize the technology and mission; to identify the elements of organizational theory that bear upon risk management system design; to explore these theoretical issues in the context of two hypothetical risk scenarios associated with radioactive waste disposal; to consider the appropriate role of engineered and geological barriers; to examine briefly issues implicit in DOE's past waste management performance, with special attention to the Hanford facility; and to suggest findings and recommendations that require further attention. 74 refs

  15. Field test of radioactive high efficiency filter and filter exchange techniques of fuel cycle examination facility

    International Nuclear Information System (INIS)

    Hwang, Yong Hwa; Lee, Hyung Kwon; Chun, Young Bum; Park, Dae Gyu; Ahn, Sang Bok; Chu, Yong Sun; Kim, Eun Ka.

    1997-12-01

    The development of high efficiency filter was started to protect human beings from the contamination of radioactive particles, toxic gases and bacillus, and its gradual performance increment led to the fabrication of Ultra Low Penetration Air Filter (ULPA) today. The application field of ULPA has been spread not only to the air conditioning of nuclear power facilities, semiconductor industries, life science, optics, medical care and general facilities but also to the core of ultra-precision facilities. Periodic performance test on the filters is essential to extend its life-time through effective maintenance. Especially, the bank test on HEPA filter of nuclear facilities handling radioactive materials is required for environmental safety. Nowadays, the bank test technology has been reached to the utilization of a minimized portable detecting instruments and the evaluation techniques can provide high confidence in the area of particle distribution and leakage test efficiency. (author). 16 refs., 13 tabs., 14 figs

  16. Southern routes for high-level radioactive waste: Agencies, contacts, and designations

    International Nuclear Information System (INIS)

    1991-05-01

    The Southern Routes for High-Level Radioactive Waste: Agencies, Contacts and Designations is a compendium of sixteen southern states' routing programs for the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source and scope of the agencies' rulemaking authority. Additionally, the state agency and contact designated by the state's governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed. This report also examines alternative route designations made by southern states and the lessons that were learned from the designation process

  17. Isolation of transplutonium elements from high-level radioactive wastes using diphenyl(dibutylcarbamoylmethyl)phosphine oxide

    International Nuclear Information System (INIS)

    Chmutova, M.K.; Litvina, M.N.; Pribylova, G.A.; Ivanova, L.A.; Myasoedov, B.F.; Smirnov, I.V.; Shadrin, A.Yu.

    1999-01-01

    Consequent stages of development of principal technological scheme of extraction separation of transplutonium elements from high-level radioactive wastes of spent fuel reprocessing are presented. Approach to reagent selection from the series of carbamoylmethylphosphine oxides is based. Distribution of transplutonium elements and accompanying elements between model solution of high-level radioactive wastes and solution of reagent in organic solvent is investigated. Methods of separation of transplutonium elements, reextraction of transplutonium elements together with rare earth elements are developed. Principal technological scheme of transplutonium elements separation from nonevaporated raffinates of spent fuel of WWER type reactors and method of separation of transplutonium and rare earth elements in weakly acid reextract with the use of liquid chromatography with free immobile phase are proposed [ru

  18. A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources

    Energy Technology Data Exchange (ETDEWEB)

    Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

    2014-07-01

    The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on

  19. Bentonite-like material sealing to high-level radioactive wastes storage

    International Nuclear Information System (INIS)

    Linares, J.; Linares Gonzalez, J.; Huertas Garcia, F.; Reyes Camacho.

    1993-01-01

    Among the most used materials for sealing of radioactive waste storage, bentonite shows a high number of advantages because of its plasticity, thermal and hydraulic conductivity, etc. The paper makes a review on different Spanish deposits of bentonite and their stability. Most of studies are focussed on the volcanic region at Cabo de Gata (Almeria). That area offers the most productive hydrothermal bentonite deposits in Spain

  20. Novel reprocessing methods with nuclide separation for volume reduction of high level radioactive waste

    International Nuclear Information System (INIS)

    Suzuki, Tatsuya

    2015-01-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposing system consists of the dissolution process, the reprocessing process, the MA separation process, and nuclide separation processes. In our proposing processes, the pyridine resin is used as a main separation media. We expect that our proposing will contribute to that volume reduction of high level radioactive waste by combining the transmutation techniques, usage of valuable elements, and so on. (author)

  1. ENTRIA 2014. Memorandum on the disposal of high-level radioactive residuals

    International Nuclear Information System (INIS)

    Roehlig, Klaus-Juergen; Walther, Clemens; Bach, Friedrich-Wilhelm

    2014-01-01

    The memorandum on the disposal of high-level radioactive residuals covers the following issues: description of the problem: a ''wicked problem'', risks and NIMBY, the site selection law, international boundary conditions; disposal strategy and types of facilities: safety and reversibility, long-term surface storage, deep storage; risk and safety; procedural justice and the site selection process; social innovations and the requirement of long-term institutions; conclusion - central stress fields.

  2. Targets for production of high-intensity radioactive ion-beams

    International Nuclear Information System (INIS)

    Hagebo, E.; Hoff, P.; Steffensen, K.

    1991-01-01

    The recent developments of target systems for production of high intensity radioactive ion-beams at the ISOLDE mass separators is described. Methods for chemically selective production through separation of molecular ions are outlined and the effects of the addition of reactive gases has been studied. Results and further possible applications in the light element region are discussed. (author) 10 refs.; 9 figs.; 1 tab

  3. Current R and D Status on High-Level Radioactive Waste Disposal in Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Hwang, Yong Soo

    2008-11-15

    Current R and D status of such countries moving forward as the United States, Sweden, France, Japan and a few other countries for high-level radioactive waste (HLW) disposal in deep geological formation has been reviewed. Even though no HLW repositories have not practically constructed nor operated yet, lots of related R and D are being proceeded in many countries as well as in Korea. Through this brief review further progress is anticipated in this related R and D area in Korea.

  4. Human intrusion into geologic repositories for high-level radioactive waste: potential and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, F X [Nuclear Regulatory Commission, Washington, DC (USA). Office of Nuclear Regulatory Research

    1981-12-01

    Isolation of high-level radioactive waste over long periods of time requires protection not only from natural events and processes, but also from the deliberate or inadvertent activities of future societies. This paper evaluates the likelihood of inadvertent human intrusion due to the loss of societal memory of the repository site. In addition measures to prevent inadvertent intrusion, and to guide future societies in any decision to deliberately intrude into the repository are suggested.

  5. Storage facility for radioactive wastes

    International Nuclear Information System (INIS)

    Okada, Kyo

    1998-01-01

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  6. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  7. Toward improvements of the education concerning radiation, radioactivity, and nuclear energy in high schools in Japan

    International Nuclear Information System (INIS)

    Matsuura, Tatsuo

    1996-01-01

    Despite the high scientific and technical level of research and practical applications of radiation, radioactivity, and nuclear energy in Japan, the level of education concerning these matters at primary school and junior and high schools seems to be considerably behind the world, according to a recent comparative survey among six European countries and Japan. It has also been found that the description of these matters in current textbooks of science and social studies in senior high schools in Japan is generally not satisfactory, both in scope and in correctness. There are many reasons for this observation. One is the fact that many Japanese people including writers of textbooks have an excessive fear for radiation and radioactivity, and consequently are critical of the use of nuclear energy. Another is that Japanese teachers also have similar feeling and tend to avoid teaching about such controversial subject. This comes from the educational policy of Monbusho, Ministry of Education, Science and Culture; the nuclear-related matters are not being given an appropriate educational position, despite their importance in the national energy policy determined by the Atomic Energy Commission of Japan. In addition, there are several unfortunate educational circumstances. These include, limitations of hours of teaching allotted to the subject of science, the system of choosing curricula among several menus in the subject, the shortage of experimental instruments available in classroom, the severe safety regulation in handling even a very small amount of radioactivity, extraordinary fear for radiation and radioactivity by students, teachers, and their supervisors, the rare appearance of these topics in the problems at the entrance examination of universities. This paper discusses various ways to correct the situation and reports on our recent activities for improving means of education such as textbooks and the official guidelines. (J.P.N.)

  8. Methods for estimating costs of transporting spent fuel and defense high-level radioactive waste for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Darrough, M.E.; Lilly, M.J.

    1989-01-01

    The US Department of Energy (DOE), through the Office of Civilian Radioactive Waste Management, is planning and developing a transportation program for the shipment of spent fuel and defense high-level waste from current storage locations to the site of the mined geologic repository. In addition to its responsibility for providing a safe transportation system, the DOE will assure that the transportation program will function with the other system components to create an integrated waste management system. In meeting these objectives, the DOE will use private industry to the maximum extent practicable and in a manner that is cost effective. This paper discusses various methodologies used for estimating costs for the national radioactive waste transportation system. Estimating these transportation costs is a complex effort, as the high-level radioactive waste transportation system, itself, will be complex. Spent fuel and high-level waste will be transported from more than 100 nuclear power plants and defense sites across the continental US, using multiple transport modes (truck, rail, and barge/rail) and varying sizes and types of casks. Advance notification to corridor states will be given and scheduling will need to be coordinated with utilities, carriers, state and local officials, and the DOE waste acceptance facilities. Additionally, the waste forms will vary in terms of reactor type, size, weight, age, radioactivity, and temperature

  9. Radioactive waste processing container

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    A radioactive waste processing container used for processing radioactive wastes into solidification products suitable to disposal such as underground burying or ocean discarding is constituted by using cements. As the cements, calcium sulfoaluminate clinker mainly comprising calcium sulfoaluminate compound; 3CaO 3Al 2 O 3 CaSO 4 , Portland cement and aqueous blast furnace slug is used for instance. Calciumhydroxide formed from the Portland cement is consumed for hydration of the calcium sulfoaluminate clinker. According, calcium hydroxide is substantially eliminated in the cement constituent layer of the container. With such a constitution, damages such as crackings and peelings are less caused, to improve durability and safety. (I.N.)

  10. Uncertainties in the geological disposal for high-level radioactive waste

    International Nuclear Information System (INIS)

    Liu Xiaodong; Wang Changxuan

    2008-01-01

    Geological disposal, referring to the disposal of high-level solid radioactive waste in a facility located underground in a stable geological formation, was considered the most favourable methods to provide long term isolation of the radionuclides in the waste from the biosphere, and was adopted by IAEA and the developed nations with nuclear facilities. Over 50 years studies have been proved the technical feasibility of geological disposal for radioactive waste. However, there are many subjective and objective uncertainties on development, operation and closure of a geological disposal facility. For providing flexibility in responding to new technical information, advances in waste management and materials technologies, and in enabling social, economic and political aspects to be addressed, it is necessary to evaluate the uncertainties for all the R and D steps of a geological disposal program. (authors)

  11. Glass as a medium for the ultimate disposal of highly radioactive waste

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-09-01

    The conversion of high level radioactive liquid wastes into glass is now considered in every nuclear country. The glass composition must take into account the components of the solutions and be formulated in order to meet certain requirements, mainly those necessary for safe further disposal. The compositions of these glasses, all borosilicates, are consequently unusual. Heat due to β γ decay generates some devitrification but it has not yet been demonstrated that this is detrimental. β irradiation has minor effects on the glass structure but the effect of α emitters is not presently totally investigated. If stored energy consequenses are negligible, further experiments must be carried out to ascertain the effect of helium build up or the behaviour of the mechanical properties. Processes of industrial interest have been developped and a plant has already produced radioactive glass blocks for 5 years

  12. The structures and stability of media intended for the immobilization of high level radioactive waste

    International Nuclear Information System (INIS)

    Tempest, P.A.

    1979-05-01

    High level radioactive waste contains about 40 different elements and, in time, many of these elements are transformed by radioactive decay into different-sized atoms with new chemical properties. The suitability of ordered crystal structures and unordered glass structures as media for immobilising the waste elements is compared. The structural properties of a mixture of synthetic minerals (SYNROC) are described and the various minerals' ability to accommodate ions of different radii and charge assessed. Similary the unordered structure of glass is examined and the probability of the glass remaining non-crystalline during manufacture and storage taken into account. Alternative glassification technologies in the form of the French AVM continuous process and the UK HARVEST batch processes are described and compared, and their likely effect on the structural properties of the final solid glass block considered. (author)

  13. The State of the Art of the Borehole Disposal Concept for High Level Radioactive Waste

    International Nuclear Information System (INIS)

    Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5 km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

  14. Designing shafts for handling high-level radioactive wastes in mined geologic repositories

    International Nuclear Information System (INIS)

    Hambley, D.F.; Morris, J.R.

    1988-01-01

    Waste package conceptual designs developed in the United States by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management are the basis for specifying the dimensions and weights of the waste package and transfer cask combinations to be hoisted in the waste handling shafts in mined geologic repositories for high-level radioactive waste. The hoist, conveyance, counterweight, and hoist ropes are then sized. Also taken into consideration are overwind and underwind arrestors and safety features required by the U.S. Nuclear Regulatory Commission. Other design features such as braking systems, chairing system design, and hoisting speed are considered in specifying waste hoisting system parameters for example repository sites

  15. Elicitation and use of expert judgment in performance assessment for high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Bonano, E.J.; Hora, S.C.; Keeney, R.L.; von Winterfeldt, D.

    1990-05-01

    This report presents the concept of formalizing the elicitation and use of expert judgment in the performance assessment of high-level radioactive waste (HLW) repositories in deep geologic formations. The report begins with a discussion of characteristics (advantages and disadvantages) of formalizing expert judgment examples of previous uses of expert judgment in radioactive waste programs, criteria that can assist in deciding when to formalize expert judgment, and the relationship of formal use of expert judgment to data collection and modeling. The current state of the art with respect to the elicitation, use, and communication of formal expert judgment is presented. The report concludes with a discussion on potential applications of formal expert judgment in performance assessment of HLW repositories. 93 refs

  16. JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Mikazu; Azuma, Jiro; Shibata, Masahiro [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Isolation Research Division, Tokai, Ibaraki (Japan)

    1999-11-01

    This report is a summary of status, frozen datasets, and future tasks of the JNC (Japan Nuclear Cycle Development Institute) thermodynamic database (JNC-TDB) for assessing performance of high-level radioactive waste in geological environments. The JNC-TDB development was carried out after the first progress report on geological disposal research in Japan (H-3). In the development, thermodynamic data (equilibrium constants at 25degC, I=0) for important radioactive elements were selected/determined based on original experimental data using different models (e.g., SIT, Pitzer). As a result, the reliability and traceability of the data for most of the important elements were improved over those of the PNC-TDB used in H-3 report. For detailed information of data analysis and selections for each element, see the JNC technical reports listed in this document. (author)

  17. High-sensitivity determination of radioactive cesium in Japanese foodstuffs. 3 years after the Fukushima accident

    International Nuclear Information System (INIS)

    Katsumi Shozugawa; Mayumi Hori; Motoyuki Matsuo

    2016-01-01

    We analyzed 134 Cs, 137 Cs and 40 K in 96 foodstuffs in supermarkets with high sensitivity over 3 years after Fukushima accident. Milk, yoghurt, rice, tea, salmon, cereal, blueberry, miso, and apples had a trace of 134 Cs and 137 Cs from 10 -3 to 100 Bq/kg, however, some mushrooms that were bought in the outer Fukushima prefecture were contaminated by radioactive cesium over the regulatory limit (100 Bq/kg). In view of the 134 Cs/ 137 Cs radioactivity ratio, we can conclude that 137 Cs detected in remote areas 300 km or more from Fukushima Nuclear power plant contained activity from Pre-Fukushima events such as Chernobyl accident (1986) and atmospheric nuclear explosions (from 1945). (author)

  18. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.

    2004-01-01

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas

  19. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1989-01-01

    Following the ''First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop

  20. CIGeO geological disposal for high-level radioactive waste in France

    International Nuclear Information System (INIS)

    Ouzounian, Gerald; Bolia, Jelana

    2014-01-01

    Andra is the sole French organization responsible for the radioactive waste management in the country. Its work relies extensively on the legal basis provided by several major laws (Waste Act of 1991 and the Planning Act of 2006), which shaped the main principles of the waste management strategy and determined the corresponding implementation tools. Andra's industrial activities are essentially based around three of its national disposal facilities. Two of these operational facilities, by their design and comprehensive monitoring system, are considered worldwide as solid and proven reference solutions for the concerned types of radioactive waste. Andra is also charged with designing a future deep geological repository for intermediate-level long-lived and high-level waste and researching potential management and disposal solutions for the graphite and radium-bearing waste. The purpose of this article is to update the information to the readers about the Cigeo geological disposal project for high-level radioactive waste in France (authors)

  1. DCHAIN-SP 2001: High energy particle induced radioactivity calculation code

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Maekawa, Fujio; Kasugai, Yoshimi; Takada, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kosako, Kazuaki [Sumitomo Atomic Energy Industries, Ltd., Tokyo (Japan)

    2001-03-01

    For the purpose of contribution to safety design calculations for induced radioactivities in the JAERI/KEK high-intensity proton accelerator project facilities, the DCHAIN-SP which calculates the high energy particle induced radioactivity has been updated to DCHAIN-SP 2001. The following three items were improved: (1) Fission yield data are included to apply the code to experimental facility design for nuclear transmutation of long-lived radioactive waste where fissionable materials are treated. (2) Activation cross section data below 20 MeV are revised. In particular, attentions are paid to cross section data of materials which have close relation to the facilities, i.e., mercury, lead and bismuth, and to tritium production cross sections which are important in terms of safety of the facilities. (3) User-interface for input/output data is sophisticated to perform calculations more efficiently than that in the previous version. Information needed for use of the code is attached in Appendices; the DCHAIN-SP 2001 manual, the procedures of installation and execution of DCHAIN-SP, and sample problems. (author)

  2. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  3. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  4. A process for ensuring regulatory compliance at the INEL`s buried waste integrated demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, P.G.; Watson, L.R.; Blacker, P.B. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1993-03-01

    The Buried Waste Integrated Demonstration Program is funded by the Department of Energy Office of Technology Development. The mission of this Integrated Demonstration is to identify, evaluate, and demonstrate a suite of innovative technologies for the remediation of radioactive and hazardous waste buried throughout the DOE complex between 1950 and 1970. The program approach to development of a long-range strategy for improving buried waste remediation capabilities is to combine systems analysis with already identified remediation needs for DOE complex buried waste. The systems analysis effort has produced several configuration options (a top-level block diagram of a cradle-to-grave remediation system) capable of remediating the transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory. Technologies for demonstration are selected using three criteria: (a) the ability to satisfy a specific buried waste need, (b) the ability to satisfy functional and operational requirements defined for functional sub-elements in a configuration option, and (c) performance against Comprehensive Environmental Restoration and Compensation Liability Act selection criteria, such as effectiveness, implementability, and cost. Early demonstrations experienced problems with missed requirements, prompting the Buried Waste Integrated Demonstration Program Office to organize a Corrective Action Team to identify the cause and recommend corrective actions. The result of this team effort is the focus of this paper.

  5. Problems related to final disposal of high-level radioactive waste in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    According to this presentation, the radioactivity of the total amount of radioactive waste accumulated in Russia to date is 1.5*10 9 Ci and of spent fuel 4.5*10 9 Ci. A table is given that shows the source, type, volume activity and storage type under the responsibility of the different departments and enterprises. 99.9% of the wastes are accumulated at the enterprises of Minatom of the Russian Federation. Some companies inject their liquid wastes from ionisation sources and intermediate liquid waste from the nuclear power industry into deep-seated reliably isolated aquifers. The Mayak plant has released liquid low-level and intermediate wastes into artificial reservoirs and Lake Karachay. Liquid high-level wastes are always stored in special tanks at interim storage facilities. A large number of nuclear submarines are laid up in North-Western Russia and East Russia, with spent fuel still in place as the interim storages in these regions are filled up and there are no conditioning plants. Underground disposal is considered the best way of isolating radioactive waste for as long as it is hazardous to the environment. Two new technologies are discussed. One involves including long-lived isotopes in high-stable mineral matrices, the other uses selective separation from the bulk of wastes. The matrices should be disposed of deep in the Earth's crust, at least 2-3 km down. Liquid waste of caesium-strontium fraction must be transformed into glass-like form and stored underground at a depth of a few hundred metres. Short-lived low level and intermediate level wastes should be conditioned and then deposited in subsurface ferroconcrete repositories constructed in clays. Finally, the presentation discusses the selection of sites and conditions for radioactive waste disposal. Two sites are discussed, the Mayak plant and a possible site at Mining Chemical Combine in Krasnoyarsk-26

  6. High polymer-based composite containers for the disposal/storage of high radioactive waste

    International Nuclear Information System (INIS)

    Miedema, I.

    2001-01-01

    Spent fuel disposal is one of the hottest topics in nuclear news, getting considerable amount of media coverage around the world. Canada as well as many other countries with nuclear electric generation plants has therefore been pushed to develop policy on this issue. One of the proposed and most widely supported strategies is to dispose of this so-called waste permanently in deep underground vaults. Through the use of engineered barriers including vault seals, vault composition, backfill and sophisticated containers this radioactive matter is isolated from the natural environment. According to a design developed by Atomic Energy of Canada, the seclusion must be maintained for approximately 500 years, which is a representative length of time it takes for the radioactive elements to decay to natural background levels. The purpose of the current study is to determine the feasibility of using poly(ether ether ketone), an advanced polymer, and continuous carbon fibre in a consolidated composite as a principal container component. Feasibility was determined by simulating the ultimate radioactive environment that the containers will be exposed to by exposing test specimens to neutron and gamma radiation fields at various temperatures (20 o C - 75 o C) for a variety of time intervals. (author)

  7. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  8. Key radionuclides and parameters that determine performance of geologic repositories for high-level radioactive wastes

    International Nuclear Information System (INIS)

    Joonhong Ahn; Atsuyuki Suzuki

    1993-01-01

    This paper presents results of a mathematical analysis for performance of the engineered barriers of high-level radioactive waste repositories. The main body of the mathematical model developed in this study is mass transport of actinides in a bentonite region. In an analysis of actinide transport, radioactive decay chain and effects of low solubilities must be taken into account. In many previous models for mass transport in engineered barriers including radioactive decay chain, however, boundary conditions at the interface between the waste form and the bentonite region cannot be determined flexibly. In some models, solubility-limited boundary condition is assumed for all the members in a chain. In order to investigate what are key radionuclides and parameters that control performance of engineered barriers of a geologic repository, we must evaluate mass transport with the source boundary condition determined by a detailed analysis on mass transfer at the boundary. In this study, we developed a mathematical model, which can determine whether the inner boundary condition is solubility-limited or congruent release, based on a mathematical analysis for mass transfer at the glass dissolution location, and how long the solubility-limited boundary condition applies. Based on the mathematical model, we point out radionuclides and parameters that have primary influences on the performance of a repository, and investigate a reasonable strategy for coupling geologic disposal and partitioning of those key radionuclides from the standpoint of reducing hazard of geologic disposal. (authors). 4 tabs., 2 figs., 8 refs

  9. High-level radioactive waste isolation by incorporation in silicate rock

    International Nuclear Information System (INIS)

    Schwartz, L.L.; Cohen, J.J.; Lewis, A.E.; Braun, R.L.

    1978-01-01

    A number of technical possibilities for isolating high-level radioactive materials have been theoretically investigated at various times and places. Isolating such wastes deep underground to ensure long term removal from the biosphere is one such possibility. The present concept involves as a first step creating the necessary void space at considerable depth, say 2 to 5 km, in a very-low-permeability silicate medium such as shale. Waste in dry, calcined or vitrified form is then lowered into the void space, and the access hole or shaft sealed. Energy released by the radioactive decay raises the temperature to a point where the surrounding rock begins to melt. The waste is then dissolved in it. The extent of this melt region grows until the heat generated is balanced by conduction away from the molten zone. Resolidification then begins, and ends when the radioactive decay has progressed to the point that the temperature falls below the melting point of the rock-waste solution. Calculations are presented showing the growth and resolidification process. A nuclear explosion is one way of creating the void space. (author)

  10. The importance of international cooperation in the field of high level radioactive waste management

    International Nuclear Information System (INIS)

    Isaacs, Thomas H.

    1992-01-01

    This paper discusses the importance of international collaboration in the field of radioactive waste management and points out how cooperation has benefited the U.S. civilian waste management program. The U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) oversees the handling, transportation, storage, and final deposition of high-level radioactive wastes for the U.S. commercial sector. Because OCRWM shares many of the same waste management concerns as various other countries with nuclear programs, and since one country's waste management program will ultimately have an impact on the waste management programs of other countries, it is clearly in the interest of all countries to work together in search of solutions to common waste management problems. To facilitate this. cooperation, OCRWM is a participating member of international organizations, such as the IAEA and the OECD/NEA. OCRWM further has in place several bilateral agreements with various individual countries and with the Commission of the European Communities (CEC). Other international waste management initiatives are also currently being considered. (author)

  11. Long-lived high and intermediate level radioactive wastes: defining the context, stakes and perspectives

    International Nuclear Information System (INIS)

    2006-01-01

    The French law from December 30, 1991 has defined an ambitious 15 years program of researches in order to explore the different possible paths for the long-term management of long-lived high and intermediate level radioactive wastes. The law foresees also that at the end of the 15 years research program, a project of law will be prepared by the French government and transmitted to the European parliament in 2006. A public debate has been organized and emceed in 2005 in order dialogue with the general public and to gather its questions, remarks and fears. In the framework of their contribution to this debate, the ministries of industry and environment have prepared this document which answers some key questions about radioactive waste management: where do wastes come from, what are the risks, how are they managed today in France and in foreign countries, what are the results of the researches carried out during 15 years, what are the advantages and drawbacks of each waste management solution considered, what is the perspective of application of each solution, what is the position of experts, what will be the decision process. This synthetic document supplies some reference marks to better understand these different points. Some pedagogical files about radioactivity, fuel cycle, and nuclear industry activities are attached to the document. (J.S.)

  12. Risk analysis of transporting vitrified high-level radioactive waste by train

    International Nuclear Information System (INIS)

    Schneider, K.A.; Merz, E.

    1983-01-01

    Reprocessing plants (RPPs) and final disposal sites for vitrified high level radioactive waste (HLW) will be at distant locations in the Federal Republic of Germany (FRG). HLW will also have to be shipped from RPPs located in foreign countries to a final disposal site in the FRG. Thus transportation of HLW on public routes will become necessary. A model of an HLW shipping system is presented which meets the needs of an established nuclear industry. Reference ages of the HLW were assumed to range between about 5 years and about 50 years. Thus HLW shipping systems covering this period are analyzed. The safety of nuclear installations is ensured by means of a design according to the design based accident. The same applies to shipping casks for radioactive materials (RAM) according to the IAEA Regulations. The aim of this work was to make as complete as reasonably possible an estimate of the risk of shipping HLW. The safety of the system was therefore analyzed by means of probabilistic risk assessment. Release of radioactive material due to transportation accidents is considered. 5 references, 5 figures, 6 tables

  13. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM

    Science.gov (United States)

    Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D'Agostino, M.; Belmusto, G.

    2017-01-01

    In this article natural radioactivity measurements and dosimetric evaluations in soil samples contaminated by Naturally Occurring Radioactive Materials (NORM) are made, in order to assess any possible radiological hazard for the population and for workers professionally exposed to ionizing radiations. Investigated samples came from the district of Crotone, Calabria region, South of Italy. The natural radioactivity investigation was performed by high-resolution gamma-ray spectrometry. From the measured gamma spectra, activity concentrations were determined for 226Ra , 234-mPa , 224Ra , 228Ac and 40K and compared with their clearance levels for NORM. The total effective dose was calculated for each sample as due to the committed effective dose for inhalation and to the effective dose from external irradiation. The sum of the total effective doses estimated for all investigated samples was compared to the action levels provided by the Italian legislation (D.Lgs.230/95 and subsequent modifications) for the population members (0.3mSv/y) and for professionally exposed workers (1mSv/y). It was found to be less than the limit of no radiological significance (10μSv/y).

  14. Workshops for state review of site suitability criteria for high-level radioactive waste repositories: analysis and recommendations

    International Nuclear Information System (INIS)

    1978-02-01

    The responses from various discussion groups on site suitability criteria for high-level radioactive waste repositories are presented. The consensus, principal concern, and minority opinion on each issue are given. The visual aids used in the workshop are included

  15. Reference design and operations for deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-01-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  16. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  17. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  18. Studies on site characterization methodologies for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Ju; Guo Yonghai; Chen Weiming

    2008-01-01

    This paper presents the final achievement of the project 'Studies of Site-specific Geological Environment for High Level Waste Disposal and Performance Assessment Methodology, Part Ⅰ: Studies on Site Characterization Methodologies for High Level Radioactive Waste Disposal', which is a 'Key Scientific and Technological Pre-Research Project for National Defense' during 2001-2005. The study area is Beishan area, Gansu Province, NW China--the most potential site for China's underground research laboratory and high level radioactive waste repository. The boreholes BS01, BS2, BS03 and BS04 drilled in fractured granite media in Beishan are used to conduct comprehensive studies on site characterization methodologies, including: bore hole drilling method, in situ measurement methods of hydrogeological parameters, underground water sampling technology, hydrogeochemical logging method, geo-stress measurement method, acoustic borehole televiewer measurement method, borehole radar measurement method, fault stability evaluation methods and rock joint evaluation method. The execution of the project has resulted in the establishment of an 'Integrated Methodological System for Site Characterization in Granite Site for High Level Radioactive Waste Repository' and the 8 key methodologies for site characterization: bore hole drilling method with minimum disturbance to rock mass, measurement method for hydrogeological parameters of fracture granite mass, in situ groundwater sampling methods from bore holes in fractured granite mass, fracture measurement methods by borehole televiewer and bore radar system, hydrogeochemical logging, low permeability measurement methods, geophysical methods for rock mass evaluation, modeling methods for rock joints. Those methods are comprehensive, advanced, innovative, practical, reliable and of high accuracy. The comprehensive utilization of those methods in granite mass will help to obtain systematic parameters of

  19. Electron spin resonance characterization of trapping centers in Unibond reg-sign buried oxides

    International Nuclear Information System (INIS)

    Conley, J.F. Jr.; Lenahan, P.M.; Wallace, B.D.

    1996-01-01

    Electron spin resonance and capacitance vs. voltage measurements are used to evaluate the radiation response of Unibond buried oxides. When damaged by hole injection, it is found that Unibond reg-sign buried oxides exhibit a rough correspondence between E' centers and positive charge as well as generation of P b centers at the Unibond buried oxide/Si interface. In these respects, Unibond buried oxides qualitatively resemble thermal SiO 2 . However, a hydrogen complexed E' center known as the 74 G doublet is also detected in the Unibond buried oxides. This defect is not detectable in thermal SiO 2 under similar circumstances. Since the presence of 74 G doublet center is generally indicative of very high hydrogen content and since hydrogen is clearly a significant participant in radiation damage, this result suggests a qualitative difference between the radiation response of Unibond and thermal SiO 2 . Unibond results are also compared and contrasted with similar investigations on separation-by-implanted-oxygen (SIMOX) buried oxides. Although the charge trapping response of Unibond buried oxides may be inferior to that of radiation hardened thermal SiO 2 , it appears to be more simple and superior to that of SIMOX buried oxides

  20. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  1. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  2. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  3. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  4. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  5. Melter development needs assessment for RWMC buried wastes

    International Nuclear Information System (INIS)

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended

  6. Identification of buried victims in natural disaster with GPR method

    Science.gov (United States)

    Dewi, Rianty Kusuma; Kurniawan, Adityo; Taqwantara, Reyhan Fariz; Iskandar, Farras M.; Naufal, Taufiq Ziyan; Widodo

    2017-07-01

    Indonesian is one of the most seismically active regions in the world and has very complicated plate convergence because there is meeting point of several tectonic plates. The complexity of tectonic features causes a lot of natural disasters such as landslides, tsunamis, earth quakes, volcanoes eruption, etc. Sometimes, the disasters occurs in high populated area and causing thousands to millions of victim been buried under the rumble. Unfortunately, the evacuation still uses the conventional method such using rescue dogs whereas the sensitivity of smell is decrease when the victims buried under the level of the ground. The purpose of this study is to detect buried bodies using GPR method, so it can enhance the effectiveness and the efficiency in looking for the disaster victims. GPR method is used because it can investigate things under the ground. A detailed GPR research has been done in Cikutra Graveyard, Bandung, with corpse buried two week until two years before the research. The radar profiles from this research showed amplitude contras anomaly between the new corpse and the old ones. We obtained the amplitude contras at 1.2-1.4 meters under the surface. This method proved to be effective but still need more attention on undulated surface and non-soil areas.

  7. Protection of Buried Pipe under Repeated Loading by Geocell Reinforcement

    Science.gov (United States)

    Khalaj, Omid; Joz Darabi, N.; Moghaddas Tafreshi, S. N.; Mašek, Bohuslav

    2017-12-01

    With increase in cities’ population and development of urbane life, passing buried pipelines near ground’s surface is inevitable in urban areas, roads, subways and highways. This paper presents the results of three-dimensional full scale model tests on high-density polyethylene (HDPE) pipe with diameter of 250 mm in geocell reinforced soil, subjected to repeated loading to simulate the vehicle loads. The effect of geocell’s pocket size (55*55 mm and 110*110 mm) and embedment depth of buried pipe (1.5 and 2 times pipe diameter) in improving the behaviour of buried pipes was investigated. The geocell’s height of 100 mm was used in all tests. The repeated load of 800 kPa was applied on circular loading plate with diameter of 250 mm. The results show that the pipe displacement, soil surface settlement and transferred pressure on the pipe’s crown has been influenced significantly upon the use of geocells. For example, the vertical diametric strain (VDS) and soil surface settlement (SSS), in a way that using a geocell with pocket size of 110*110 mm reduces by 27% and 43%, respectively, compared with the unreinforced one. Meanwhile, by increasing buried depth of pipe from 1.5D to 2D, the use of geocell of 110*110 mm delivers about 50% reduction in SSS and VDS, compared with the unreinforced soil.

  8. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  9. Managing the nation's high-level radioactive waste: key issues and recommendations

    International Nuclear Information System (INIS)

    1981-07-01

    To date, no unified national plan has been adopted to develop and implement a comprehensive system of management and disposal of high-level radioactive waste in the United States. Growing public concern about this problem has resulted in a number of recent efforts to develop a national high-level waste management policy. The 96th Congress strove to resolve the central issues, but ultimately failed to pass legislation, partly because of disagreements about the appropriate role of states in the siting of repositories for military waste. Outside government, a number of organizations convened representatives of diverse groups concerned with national high-level radioactive waste management to seek agreement on the major elements of national policy. One such organization was RESOLVE, Center for Environmental Conflict Resolution, which in May 1981 was merged into The Conservation Foundation. RESOLVE convened Forum II, a series of discussions among representatives of environmental, industrial, governmental, and citizen interest groups, in 1981 specifically to address the issues blocking Congressional agreement on high-level waste policy. This report contains the recommendations which resulted from these deliberations. Reprocessing, interim storage, respository development, and licensing requirements are addressed. Federal, state, and public participation in decision making are also discussed

  10. Long-term management of high-level radioactive waste. The meaning of a demonstration

    International Nuclear Information System (INIS)

    1983-01-01

    The ''demonstration'' of the safe management of high level radioactive waste is a prerequisite for the further development of nuclear energy. It is therefore essential to be clear about both the meaning of the term ''demonstration'' and the practical means to satisfy this request. In the complex sequence of operations necessary to the safe management of high level waste, short term activities can be directly demonstrated. For longer term activities, such as the long term isolation of radioactive waste in deep undergroung structures, demonstration must be indirect. The ''demonstration'' of deep underground disposal for high level radioactive waste involves two steps: one direct, to prove that the system could be built, operated and closed safely and at acceptable costs, and one indirect, to make a convincing evaluation of the system's performance and long term safety on the basis of predictive analyses confirmed by a body of varied technical and scienfic data, much of it deriving from experimental work. The assessment of the evidence collected from current operations, existing experience in related fields and specific research and development activities, calls for specialized scientific expertise. Uncertainties in far future situations and probabilistic events can be taken into account in a scientific assessment. Competent national authorithies will have to satisfy themselves that the proposed waste management solutions can meet long term safety objectives. An element of judgement will always be needed in determining the acceptability of a waste disposal concept. However, the level of confidence in our ability to predict the performance of waste management systems will increase as supporting evidence is collected from current research and development activities and as our predictive techniques improve

  11. Application of GIS in siting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao

    2010-01-01

    High level radioactive waste geo-disposal is directly related to environment protection and Sustainable Utilization of nuclear energy. To ensure both success and long-term safe disposal of the high level-radioactive waste, finding suitable sites is an important step in the research. Meanwhile, siting and evaluation the geo-disposal repository for high level-radioactive waste need a wide range of relevant information, including geology and geophysical surveys data, geochemistry data and other geoscience data in the field. At the same time, some of the data has its spatial property. Geographic information system (GIS) have a role to play in all geographic and spatial aspects of the development and management of the siting disposal repository. GIS has greatly enhanced our ability to store, analyze and communicate accounts of the information. This study was conducted to compare the more suitable sites for the repository using GIS -based on the data which belongs to the preselected area in BeiShan, Gansu Province, China. First, the data of the pre-selected site is captured by GIS and stored in the geoscience database. Then, according to the relevant guide line in the field, the analysis models based on GIS are build. There are some thematic layers of the sites character grouped into two basic type, namely social factors(town, traffic and nuclear plant) and natural factors (water, land and animals and plants).In the paper, a series of GIS models was developed to compare the pre-selected areas in order to make optimal decision. This study shows that with appropriate and enough information GIS used in modeling is a powerful tool for site selection for disposal repository. (authors)

  12. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    International Nuclear Information System (INIS)

    Knox, C.A.; Farnsworth, R.K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In this facility, which is installed in a radiochemical cell, small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. Initial operations were completed with nonradioactive, simulated waste solutions (Knox, Siemens and Berger 1981). The first radioactive operations in this facility were performed with a simulated, commercial waste composition containing tracer levels of 99 Tc and 131 I. This report describes the facility and test operations and presents the results of the behavior of 131 I and 99 Tc during solidification of radioactive liquid wastes. During the spray calcination of commercial high-level liquid waste spiked with 99 Tc and 131 I, there was a 0.3 wt% loss of particulates, a 0.15 wt% loss of 99 Tc and a 31 wt% loss of 131 I past the sintered-metal filters. These filters and a venturi scrubber were very efficient in removing particulates and 99 Tc from the off-gas stream. Liquid scrubbers were not efficient in removing 131 I, as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents will be needed to remove iodine. For all future RLSWTF operations where iodine is present, a silver zeolite adsorber will be used

  13. Estimative of the soil amount ingested by cattle in high natural radioactive region

    International Nuclear Information System (INIS)

    Rosa, Roosevelt; Silva, Lucia H.C.; Taddei, Maria H.T.

    1997-01-01

    Considering that Pocos de Caldas is a region of high natural radioactivity, where many environmental impacts have been studied, 27 samples of cattle faeces and 24 samples of local soil were collected and analyzed for Ti concentrations, during dry and rain periods. Using this element as an indicator, the percentage of soil ingestion by cattle were estimated for three management practices: confined, semi-confined and free. The results showed the management practices influence on the cattle soil ingestion percentage, and the importance of this pathway in the environmental impact assessment. (author). 7 refs., 1 tab

  14. Formulation of SYNROC-D additives for Savannah River Plant high-level radioactive waste

    International Nuclear Information System (INIS)

    Ryerson, F.J.; Burr, K.; Rozsa, R.

    1981-12-01

    SYNROC-D is a multiphase ceramic waste form consisting of nepheline, zirconolite, perovskite, and spinel. It has been formulated for the immobilization of high-level radioactive wastes now stored at Savannah River Plant (SRP) near Aiken, South Carolina. This report utilizes existing experimental data to develop a method for calculating additives to these waste products. This method calculates additions based on variations of mineral compositions as a function of sludge composition and radionuclide partitioning among the SYNROC phases. Based on these calculations, a FORTRAN program called ADSYN has been developed to determine the proper reagent proportions to be added to the SRP sludges

  15. Performance assessment overview for subseabed disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Klett, R.D.

    1997-06-01

    The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed

  16. New mass-spectrometric facility for the analysis of highly radioactive samples

    International Nuclear Information System (INIS)

    Warmack, R.J.; Landau, L.; Christie, W.H.; Carter, J.A.

    1981-01-01

    A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained

  17. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    International Nuclear Information System (INIS)

    R.A. Levich; J.S. Stuckless

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation

  18. General conceptual design study for a high-level radioactive waste repository in a granite formation

    International Nuclear Information System (INIS)

    1982-01-01

    The object of the general conceptual design study for a high level radioactive wastes repository in a deep lying granite formation is to ensure that technology available in 1980 is suitable for building, operating and finally closing such a repository. It is feasible to build and operate a 1000 m deep repository, located in a granite batholith, receiving 30000 AVM canisters (after 30 years surface cooling), the disposal rate being 1000 canisters per year. Cost of the operation amounts to 1,3% of the corresponding amount of electricity. The building, operating and final closing phases will take 81 years

  19. Exhibit of ADS transmutation system to-Handle MA contained in Highly Radioactive Waste

    International Nuclear Information System (INIS)

    Marsodi; Lasman, A.N.; Nishihara, K.; Marsongkohadi; Su'ud, Z.

    2002-01-01

    This ADS transmutation system consists of a high intensity proton beam accelerator, spallation target, and sub-critical reactor core. The general approach was conducted using N-15 fuel to choose a strategy for destroying or minimizing the dangerously radioactive waste using a fast neutron spectrum. The fuel of this system was put surrounding the target with the some composition, i.e. the composition of MOX from PWR reactor spent-fuel with 5 year cooling time. Basic characteristics of this system have been conducted based on analysis of neutronics calculation results using ATRAS codes system

  20. Cognition of high-level radioactive waste disposal in the Tokyo metropolitan area

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    2010-01-01

    In Japan, the disposal of high-level radioactive waste (HLW) produced by nuclear power generation is an urgent issue. Recently, some questionnaire surveys were conducted. Especially the surveys in the Tokyo metropolitan area which were conducted by AESJ include the fulfilling questions concerning HLW relatively. In this paper, the author shows the results of surveys by AESJ. These results show that the issue concerning HLW is not so much concern for the respondents by comparison with many kinds of issues in the society. They also show that female respondents have less understanding about HLW disposal and have more degree of anxiety against HLW and disposal than male respondents. (author)

  1. Corrosion models for predictions of performance of high-level radioactive-waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-11-01

    The present plan for disposal of high-level radioactive waste in the US is to seal it in containers before emplacement in a geologic repository. A proposed site at Yucca Mountain, Nevada, is being evaluated for its suitability as a geologic repository. The containers will probably be made of either an austenitic or a copper-based alloy. Models of alloy degradation are being used to predict the long-term performance of the containers under repository conditions. The models are of uniform oxidation and corrosion, localized corrosion, and stress corrosion cracking, and are applicable to worst-case scenarios of container degradation. This paper reviews several of the models.

  2. Alternative processes for managing existing commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    1976-04-01

    A number of alternatives are discussed for managing high-level radioactive waste presently stored at the West Valley, New York, plant owned by Nuclear Fuel Services, Inc. These alternatives (liquid storage, conversion to cement, shale fracturing, shale cement, calcination, aqueous silicate, conversion to glass, and salt cake) are limited to concepts presently under active investigation by ERDA. Each waste management option is described and examined regarding the status of the technology; its applications to managing NFS waste; its advantages and disadvantages; the research and development needed to implement the option; safety considerations; and estimated costs and time to implement the process

  3. Study of heat diffusion in a granitic geologic formation of high level radioactive wastes

    International Nuclear Information System (INIS)

    Goldstein, S.; Juignet, N.

    1980-06-01

    Thermal study of granitic underground storage of vitrified high level radioactive wastes in a regular network of shafts and galleries. The aim is to show influence on temperature rise of the geologic formation of main parameters to define the storage zone and to determine the network dimension in function of the rock properties. Two models were studied allowing a rapid variation of geometrical and physical parameters. A numerical method using finite element method or Green functions were used for calculations. Temperatures are determined either for the whole storage site or a unit cell of the lattice [fr

  4. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  5. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    Science.gov (United States)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  6. An environmental impact assessment for sea transport of high level radioactive waste

    International Nuclear Information System (INIS)

    Watabe, N.; Kohno, Y.; Tsumune, D.; Saegusa, T.; Ohnuma, H.

    1996-01-01

    This work was carried out to study the safety evaluation in a hypothetical submergence accident onto the seabed, prior to the international maritime transport between Europe and Japan in 1995. In this study, inadmissibly conservative assumptions were omitted in order to construct adequate accident scenarios from the engineering aspect. Input data of source terms of high level vitrified wastes, various flow coefficients in the sea, and other factors were thoroughly examined and, finally a new concept of a solution method for radioactive nuclides concentration was proposed with regard to oceanography. (Author)

  7. Mercury reduction and removal during high-level radioactive waste processing and vitrification

    International Nuclear Information System (INIS)

    Eibling, R.E.; Fowler, J.R.

    1981-01-01

    A reference process for immobilizing the high-level radioactive waste in borosilicate glass has been developed at the Savannah River Plant. This waste contains a substantial amount of mercury from separations processing. Because mercury will not remain in borosilicate glass at the processing temperature, mercury must be removed before vitrification or must be handled in the off-gas system. A process has been developed to remove mercury by reduction with formic acid prior to vitrification. Additional benefits of formic acid treatment include improved sludge handling and glass melter redox control

  8. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    International Nuclear Information System (INIS)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-01-01

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed

  9. High energy proton-induced radioactivity in HgI2 crystals

    International Nuclear Information System (INIS)

    Porras, E.; Ferrero, J.L.; Sanchez, F.; Ruiz, J.A.; Lei, F.

    1995-01-01

    Mercuric iodide (HgI 2 ) semiconductor crystals are generating a lot of interest as room temperature solid state detectors for hard X-ray astronomy observations. For these applications one of the most important background sources is the cosmic proton induced radioactivity in the detector material. In order to study this background noise contribution a 1x1x1 cm HgI 2 crystal was irradiated with high energy protons. The resulting long-lived unstable isotopes and their production rates have been identified and compared with Monte Carlo simulations. ((orig.))

  10. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  11. High level radioactive waste repositories. Task 3. Review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A review is presented of proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository appropriate to the U.K. context, with particular reference to waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development.

  12. Surgical treatment of buried penis.

    Science.gov (United States)

    Lipszyc, E; Pfister, C; Liard, A; Mitrofanoff, P

    1997-10-01

    The buried penis is a rare congenital entity, whose treatment is surgical. There are few publications concerning this matter. The authors report on their experience in 10 cases (1990-1995). In this abnormality, the tip of the glans does not project from the pubic or scrotal skin. It is due to: 1) an excessive development of the penile fascia which retracts the penis; 2) insufficient attachment of the penile skin at the base of the penis; 3) often excessive prepubic fat worsens the appearance of the abnormality but does not by itself totally explain it; 4) a tight phimosis is often present. Surgical treatment is necessary because this aspect tends to persist even after puberty. One cannot indeed count on the development at the age of puberty, neither on the diminution of the fat, nor on the simple cure of the phimosis. One must above all ban circumcision which causes the risk of eliminating the skin necessary for reconstruction. The surgical procedure will comprise: 1) a longitudinal dorsal incision extended circumferentially; 2) resection of the thickened fascia penis; 3) anchoring of the deep face of the dermis to the proximal part of the fascia penis at the base of the penis. This surgical procedure has always brought a significant improvement to the appearance of the penis.

  13. Detection of water leakage in buried pipes using infrared technology; a comparative study of using high and low resolution infrared cameras for evaluating distant remote detection

    OpenAIRE

    Shakmak, B; Al-Habaibeh, A

    2015-01-01

    Water is one of the most precious commodities around the world. However, significant amount of water is lost daily in many countries through broken and leaking pipes. This paper investigates the use of low and high resolution infrared systems to detect water leakage in relatively dry countries. The overall aim is to develop a non-contact and high speed system that could be used to detect leakage in pipes remotely via the effect of the change in humidity on the temperature of the ground due to...

  14. Bioavailability of caesium-137 from chernozem soils with high and low levels of radioactive contamination

    Science.gov (United States)

    Paramonova, Tatiana; Shamshurina, Eugenia; Machaeva, Ekaterina; Belyaev, Vladimir

    2014-05-01

    Bioavailability of Cs-137 in "soil-plant" system of radioactively contaminated terrestrial ecosystems is the most important factor in the understanding of ecological situation. There are many factors affecting the features of Cs-137 biogeochemical cycle: period since an accident, type and intensity of radioactive fallout, general properties of landscape and the specifics of soil and plant covers, etc. In order to evaluate the importance of soil contamination level for the process of Cs-137 translocation from soil to plant the research in forest-steppe areas of Russia with similar natural properties, but contrasting high (Tula region) and low (Kursk region) levels of radioactive Chernobyl fallout (about 25 years after accident) was conducted. Soil cover of both sites is presented by chernozems with bulk density 1.1-1.2 g/cm3, 6-7% humus and neutral pH 6.5-7.2; plant cover under investigation consist of dry and wet meadows with bioproductivity 1.6-2.5 kg/m2 and 85-90% of biomass concentrated underground, that is typical for Russian forest-steppe landscapes. At the same time levels of soil regional contamination with Cs-137 differ by an order - 620-710 Bq/kg (210-250 kBq/m2) in Tula region and 30-55 Bq/kg (10-20 kBq/m2) in Kursk region. At a higher level of soil radioactive contamination specific activity of Cs-137 in vegetation of meadows is noticeably increased (103-160 Bq/kg in Tula region versus 12-14 Bq/kg in Kursk region) with correlation coefficient r 0.87. Increasing of Cs-137 in the underground parts of plants plays a decisive role in this process, while the specific radionuclide's activity in the aboveground parts of different sites is almost invariant (and ubiquitously roots contain 2-5 times more Cs-137 than shoots). The values of transfer factors for Cs-137 (the ratio of the specific Cs-137 activities in the plant tissue and in the soil) at various levels of soil radioactive contamination vary within a relatively narrow range 0.1-0.4, that confirms the

  15. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    International Nuclear Information System (INIS)

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  16. Induced fission track distribution from highly radioactive particles in fallout materials

    International Nuclear Information System (INIS)

    Hashimoto, Tetsuo; Okada, Tatemichi

    1987-01-01

    Some highly radioactive fallout particles (GPs) from the 19th Chinese nuclear detonation were followed to the neutron irradiation in a reactor after sandwiched with mica detectors. The interesting star-like fission track patterns were revealed on the etched surface of the mica detectors. The simple chemical separation procedure for the GPs was applied for the separation of U and Pu as fissile elements and the both resultant fractions were examined with the similar high sensitive fission tracking detection. Subsequently, a representative track pattern from a black spherical particle was subjected to the determination of fissile nuclide content; comparing the total fission events evaluated on the basis of the numerical calculation of track densities with the total thermal neutron fluence. The results implied that the uranium is responsible for the main fissile nuclide remaining within a particle as unfissioned fractions and should be certainly enriched with respect to U-235 within such small fallout particles. This sophisticated method was also applied to determine the dead GPs, which have been highly radioactive particles just after the detonations, in the rain and snow-residual materials. Many induced star-like fission tracks verified certainly that there remains a lot of dead particles in the atmosheric environment till nowadays. (author)

  17. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  18. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  19. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  20. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  1. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  2. Development of a teleoperated backhoe for buried waste excavation

    International Nuclear Information System (INIS)

    Burks, B.L.; Killough, S.M.; Thompson, D.H.

    1992-01-01

    For nearly five decades the United States (US) Department of Energy (DOE) and its predecessor agencies have engaged in broad-based research and development activities as well as nuclear weapons component production. As a by-product of these activities, large quantities of waste materials have been granted. One of the most common approaches used for solid waste storage was to bury waste containers in pits and trenches. With the current emphasis on environmental restoration, DOE now plans to either retrieve much of the legacy of buried waste or stabilize the waste in place via in situ vitrification or other means. Because of the variety of materials that have been buried over the years, the hazards of retrieval are significant if performed using conventional manned operations. The potential hazards, in addition to radiation exposure, include pyrophorics, toxic chemicals, and explosives. Although manifests exist for much of the buried waste, these records are often incomplete compared to today's requirements. Because of the potential hazards and uncertainty about waste contents and container integrity, it is highly desirable to excavate these wastes using remotely operated equipment. In this paper the authors describe the development of a teleoperated military tractor called the Small Emplacement Excavator (SEE). Development of the SEE is being funded jointly by both DOE and the US Army. The DOE sponsor is the Office of Technology Development (OTD) Robotics Program. The US Army sponsor is the Program Manager for Ammunition Logistics, Picatinny Arsenal. The primary interest for DOE is in the application to remote excavation of buried waste, while the primary emphasis for the US Army is in the remote retrieval of unexploded ordnance. Technical requirements for these two tasks are very similar and, therefore, justify a joint development project. 1 ref

  3. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  4. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  5. Performance evaluation of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  6. 47 CFR 32.2423 - Buried cable.

    Science.gov (United States)

    2010-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a... of cleaning manholes and ducts in connection with construction work and the cost of permits and...

  7. SPRAYED CLAY TECHNOLOGY FOR THE DEEP REPOSITORY OF HIGH-LEVEL RADIOACTIVE WASTE

    Directory of Open Access Journals (Sweden)

    Lucie Hausmannová

    2012-07-01

    Full Text Available The sealing barrier will play very important role in the Czech disposal concept of high level radioactive waste. It follows Swedish SKB3 design where granitic rock environment will host the repository. Swelling clay based materials as the most favorable for sealing purposes were selected. Such clays must fulfill certain requirements (e.g. on swelling properties, hydraulic conductivity or plasticity and must be stable for thousands of years. Better sealing behavior is obtained when the clay is compacted. Technology of the seal construction can vary according to its target dry density. Very high dry density is needed for buffer (sealing around entire canister with radioactive waste. Less strict requirements are on material backfilling the access galleries. It allows compaction to lower dry density than in case of buffer. One of potential technology for backfilling is to compact clay layers in most of the gallery profile by common compaction machines (rollers etc. and to spray clay into the uppermost part afterwards. The paper introduces the research works on sprayed clay technology performed at the Centre of Experimental Geotechnics of the Czech Technical University in Prague. Large scale in situ demonstration of filling of short drift in the Josef Gallery is also mentioned.

  8. Management of commercial high-level and transuranium-contaminated radioactive wastes. Environmental statement

    International Nuclear Information System (INIS)

    1974-09-01

    This Draft Environmental Statement is issued to assess the environmental impact of the AEC's program to manage commercial high-level and transuranium-contaminated radioactive wastes. These are the types of commercial radioactive wastes for which AEC custody is required by present or anticipated regulations. The program consists of three basic parts: development of a Retrievable Surface Storage Facility (RSSF) for commercial high-level waste, using existing technology; evaluating geological formations and sites for the development of a Geological Disposal Pilot Plant (GDPP) which would lead to permanent disposal; and providing retrievable storage for the transuranium-contaminated waste pending availability of permanent disposal. Consideration has been given to all environmental aspects of the program, using waste generation projections through the year 2000. Radiological and other impacts of implementing the program are expected to be minimal, but will be discussed in further environmental statements which will support budget actions for specific repositories. The alternatives discussed in this Draft Environmental Statement are presented. (U.S.)

  9. Radioactivity in food crops from high background radiation area in southwest area

    International Nuclear Information System (INIS)

    Shanthi, G.; Maniyan, C.G.; Allan Gnana Raj, G.; Thampi Thanka Kumaran, J.

    2009-01-01

    The study was carried out to evaluate radioactive concentration in food crops grown in naturally high-background radiation areas in southwest India. Seventeen varieties of food crops were collected from different parts of Kanyakumari district. The gross alpha and beta activities of the collected samples were measured using alpha scintillation counter and low beta counter respectively. The alpha activity was maximum in tapioca (497± 72 Bq kg -1 ) and the beta activity was maximum in paddy grain (10,946±583 Bq kg -1 ). The gamma activity of the food samples was studied by measuring the activity concentration of the radionuclides ( 226 Ra, 228 Th, 238 U, 40 K) in the food crops. The radioactivity content of the food crops from high-background radiation area was higher when compared to similar samples collected from low-background radiation area. The daily radionuclide intake from the food crops grown and consumed by the public was 127.696 Bq and daily internal dose resulting from ingestion of radionuclides in food was 2.34 μSv. (author)

  10. Natural analogues to the conditions around a final repository for high-level radioactive waste

    International Nuclear Information System (INIS)

    Smellie, J.A.T.

    1984-12-01

    This report documents the proceedings resulting from a Workshop held at Lake Geneva, Wisconsin, USA, from 1-3 October, 1984. The theme of the Workshop was entitled 'Natural analogues to the conditions around a final repository for high-level radioactive waste', and was restricted to ultimate disposal in a crystalline bedrock environment. The Workshop provided an important first step in co-ordinating and focussing different national and individual interests and approaches towards natural analogue studies. One of the points highlighted at the concluding forum of the meeting was the necessity to first define the geochemical processes which are assumed to occur after disposal of the radioactive waste, and then locate suitable analogue systems which can be used to test the mechanisms of one, or a simple combination of these geochemical processes. Even accepting that the choice of which geochemical process(es) to be selected for validation will be sensitive to individual national disposal strategies, farfield radionuclide retardation mechanisms in the geosphere were considered to be a central topic of importance, and should therefore be given high priority. At this early stage in the development of natural analogue studies it was not possible to cover all the important aspects. In retrospect, the role of the models should have received more attention; bridging the gap between geoscientists and the modellers was seen as being of prime importance in future meetings of this nature. (author)

  11. Study on quality assurance for high-level radioactive waste disposal project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2005-01-01

    The U.S. Department of Energy (DOE) has developed comparatively detailed quality assurance requirements for the high-level radioactive waste disposal systems. Quality assurance is recognized as a key issue for confidence building and smooth implementation of the HLW program in Japan, and Japan is at an initial phase of repository development. Then the quality assurance requirements at site research and site selection, site characterization, and site suitability analysis used in the Yucca Mountain project were examined in detail and comprehensive descriptions were developed using flow charts. Additionally, the applicability to the Japan high-level radioactive waste disposal project was studied. The examination and study were performed for the following QA requirements: The requirements that have the relative importance at site research and site selection, site characterization, and site suitability analysis (such as planning and performing scientific investigations, sample control, data control, model development and use, technical report review, software control, and control of the electric management of data). The requirements that have the relative importance at the whole repository phases (such as quality assurance program, document control, and control of quality assurance records). (author)

  12. Behavior of radioactive organic iodide in an atmosphere of High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Nakashima, Mikio; Sagawa, Chiaki; Masaki, Nobuyuki; Hirabayashi, Takakuni; Aratono, Yasuyuki

    1990-06-01

    Formation and decomposition behavior of radioactive organic iodide have been studied in an atmosphere of High Temperature Gas-cooled Reactor (High Temperature Engineering Test Reactor, HTTR). Na 125 I was chosen for radioactive iodine source instead of CsI diffusing from coated fuel particles. Na 125 I adsorbed on graphite was heated in pure He and He containing O 2 or H 2 O atmosphere. The results obtained are as follows. It was proved that organic iodide was formed with organic radicals released from graphite even in He atmosphere. Thus, the interchange rate of inorganic iodide with organic iodide was remarkably decreased with prolonged preheat-treatment period at 1000degC. Organic iodide formed was easily decomposed by its recirculation into hot reaction tube kept at 900degC. When organic iodide was passed through powdered graphite bed, more than 70% was decomposed at 90degC. Oxygen and water vapour intermixed in He suppressed the interchange rate of inorganic iodide with organic iodide. These results suggest that organic iodide rarely exists in the pressure vessel under normal operating condition of HTTR, and, under hypothetical accident condition of HTTR, organic iodide fraction never exceeds the value used for a safety assessment of light water reactor. (author)

  13. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  14. Between atomic and nuclear physics: radioactive decays of highly-charged ions

    International Nuclear Information System (INIS)

    Atanasov, Dinko; Bosch, Fritz; Brandau, Carsten; Chen, Xiangcheng; Dillmann, Iris; Gao, Bingshui; Geissel, Hans; Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Kozhuharov, Christophor; Litvinov, Sergey A; Litvinov, Yuri A; Münzenberg, Gottfried; Blaum, Klaus; Bühler, Paul; Faestermann, Thomas; Gernhäuser, Roman; Izumikawa, Takuji; Kurcewicz, Jan; Ma, Xinwen

    2015-01-01

    Highly charged radioactive ions can be stored for extended periods of time in storage rings which allows for precision measurements of their decay modes. The straightforward motivation for performing such studies is that fully ionised nuclei or few-electron ions can be viewed as clean quantum-mechanical systems, in which the interactions of the many electrons can be either excluded or treated precisely. Thus, the influence of the electron shell on the decay probability can be investigated. Another important motivation is stellar nucleosynthesis, which proceeds at high temperatures and the involved atoms are therefore highly ionised. Presented here is a compact review of the relevant experiments conducted at heavy-ion storage rings. Furthermore, we outline the perspectives for future experiments at new-generation storage-ring facilities. (paper)

  15. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Presgrove, S.B.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref

  16. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    International Nuclear Information System (INIS)

    Bickford, D.F.; Ondrejcin, R.S.; Salley, L.

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments

  17. Methods of Disposing Of High-Level Radioactive Waste: A Review

    International Nuclear Information System (INIS)

    Abumurade, K.

    2002-01-01

    High level nuclear waste from both commercial reactors and defense industry presents a difficult problem to the scientific community as well as the public. The solutions to this problem is still debatable both technically and ethically. There are few methods proposed for disposing of high level waste. Each method has its own advantages and disadvantages. However, the very deep underground geologic repository is the best choice for disposing of high-level radioactive wastes. The cost benefit equation of nuclear power production and its waste is discussed. However, the public should be educated about this matter to minimize the gap between them and the nuclear power community including scientists industry, and governments. (Author) 15 refs., 4 tabs., 1 fig

  18. High-level radioactive waste management in the United States. Background and status: 1996

    International Nuclear Information System (INIS)

    Dyer, J.R.

    1996-01-01

    The US high-level radioactive waste disposal program is investigating a site at Yucca Mountain, Nevada, to determine whether or not it is a suitable location for the development of a deep mined geologic repository. At this time, the US program is investigating a single site, although in the past, the program involved successive screening and comparison of alternate locations. The United States civilian reactor programs do not reprocess spent fuel; the high-level waste repository will be designed for the emplacement or spent fuel and a limited amount of vitrified high-level wastes from previous reprocessing in the US. The legislation enabling the US program also contains provisions for a Monitored Retrievable Storage facility, which could provide temporary storage of spent fuel accepted for disposal, and improve the flexibility of the repository development schedule

  19. Submission of the national commission of the public debate on the options concerning the long life high and medium activity radioactive wastes management

    International Nuclear Information System (INIS)

    2006-01-01

    This document deals with the presentation of a public debate on the radioactive wastes management and the opportunities of its organization. It presents successively the long life high and medium activity radioactive wastes, the today radioactive wastes management policy and some questions and topics which could be discussed during the debate. (A.L.B.)

  20. Safety and radiation protection aspects of the management of radioactive wastes of high level activity

    International Nuclear Information System (INIS)

    Candes, P.; Pradel, J.

    1977-01-01

    Appropriate consideration is given in France to safety and protection problems to be solved from the production up to the final disposal of radioactive wastes of high level activity. The first stage of the work consisted in emphasizing the various technical options. Different strategies appear to be possible, taking into account technical, political, and psychological difficulties. This results in evaluating the safety problems to be solved in the framework of those strategies. In this field, the main safety and protection principles do not differ from those which apply to other nuclear facilities. Nevertheless, duration is in most cases a quite different factor (thousands or millions of years). The question is then raised of evaluating the importance to be given to very remote consequences, both at philosophical and scientific levels. As a first result of those considerations, the application of the ''barrier'' concept is recommended. This concept is familiar to safety specialists. Different barriers for which particular problems are listed and evaluated, are defined. Another results with regard to radiation protection principles is to consider that if safety provisions should lead to a containment of radioactive products as efficient as possible, it would not be realistic to consider such a containment as absolute, in particular for disposal durations arising to thousands of years. It is therefore assumed that a limited radioactivity transfer should be taken into account, and its consequences for environment and man be calculated. This is especially true in the study of an appropriate site for final storage, and the study should necessarily include a detailed investigation of the retention characteristics of soil layers, and the implementation of appropriate models giving a sufficiently accurate evaluation of the consequences of transfers, including those related to the effect of various elements after their arrival into the biosphere. The authors review the

  1. High level radioactive waste siting processes: critical lessons from Canadian siting successes

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1996-01-01

    While not without controversy, Canada's Crown Corporations, municipalities, agencies and private companies have had success in siting and achieving approval for operating: toxic and hazardous waste facilities; dry radioactive materials storage facilities; the Federal low-level radioactive waste disposal facility; and, several large and small domestic landfills. The cumulative experience gained from these siting and approval processes provides valuable advice in support of the siting and approval of high-level radioactive disposal facilities. Among the critical elements for the success of these siting efforts are: 1) the tinting, scope and character of the siting process reflects the cultural and social values of affected people; 2) the siting and approval processes has integrity -- characterized as rational processes in pursuit of the public interest; 3) sufficient time and resources are dedicated to listening carefully and examining issues seen to be important by the public; 4) all information is shared -- even if the information is potentially detrimental to the approval of the facility; 5) proponent has a prioritized multiple focus on 'health, safety and environment issues', on 'insuring that the environmental assessment process is socially acceptable' as well as on the 'approval considerations'; 6) the implementing agency seeks cooperation and win-win solutions with the local community; 7) the community has the option of opting-out of the process and the do-nothing and/or the not here option continues to be considered by the proponent; 8) local emergency response people are well-trained and accepting of the facility; 9) the community has a strong role in determining the terms, conditions and compensation related to the future facility. (author)

  2. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    Science.gov (United States)

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Safety and protection aspects of the management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Candes, P.; Pradel, J.

    1977-01-01

    Appropriate consideration is given in France to safety and protection problems to be solved from production up to the final disposal of high-level radioactive wastes. The first stage of this work consisted in emphasizing the various technical options. Different strategies appear to be possible, taking into account the technical, political and psychological difficulties. This results in evaluating the safety problems to be solved in the framework of those strategies. In this field the main safety and protection principles do not differ from those applying to other nuclear facilities. Nevertheless, the factor of time is in most cases quite different (thousands or millions of years). The question is then raised of evaluating the importance to be given to very remote consequences, both at philosophical and at scientific levels. As a first result of these considerations, the application of the barrier concept is recommended. This concept is familiar to safety specialists. Different barriers, for which particular problems are listed and evaluated, are defined. Another result with regard to radiation protection principles is to consider that if safety provisions should lead to as efficient a containment of radioactive products as possible, it would not be realistic to consider such a containment as absolute, in particular for disposal lasting anything up to thousands of years. It is therefore assumed that a limited radioactivity transfer should be taken into account, and its consequences for the environment and man calculated. This is especially true in the study of an appropriate site for final storage, and the study should necessarily include a detailed investigation of the retention characteristics of soil layers, and the implementation of appropriate models giving a sufficiently accurate evaluation of the consequences of transfers, including those related to the effect of various elements after their arrival into the biosphere. The authors review the different

  4. Radiological protection aspects of geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Kimura, Hideo

    1992-01-01

    A high-level radioactive waste, generated at a nuclear fuel reprocessing plant, will be disposed of deep, i.e., several hundred meters, within geological formations, to isolate it from the human environment. Since the waste contains significant amounts of long-lived radionuclides, such as Tc-99, I-129, Cs-135 and transuranic elements, the safety of its disposal, particularly as regards the requirement for the radiological protection of human and his environment even in the far future, is one of the essential subjects of all countries engaged in nuclear power production. The radiological protection system has long been established and applied to regulate radiation exposures to the public associated with a relatively short-term release of radioactive materials, during normal and accidental conditions, from nuclear installations such as a power plant and reprocessing plant. Radioactive waste disposal, which potentially offers a long-term radiological consequence on the public, inevitably produces a specific requirement, from the standpoint of radiological protection, that individuals and populations in the future should be accorded at least a current level of the protection. This requirement has caused a serious debate, among the community of radiological protection, on how to establish radiological protection standards and criteria, and how to establish safety assessment methodologies to demonstrate compliance with them. We have discussed in this paper on specific items such as numerical guides to indicate radiological consequences, time frames over which calculations of the consequences are to be carried out, uncertainties to be involved in the calculations, and safety assessment methodologies. (author)

  5. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    International Nuclear Information System (INIS)

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition

  6. Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields

    CERN Document Server

    Endo, A; Noguchi, H; Tanaka, S; Iida, T; Furuichi, S; Kanda, Y; Oki, Y

    2003-01-01

    The size distributions of sup 3 sup 8 Cl, sup 3 sup 9 Cl, sup 8 sup 2 Br and sup 8 sup 4 Br aerosols generated by irradiations of argon and krypton gases containing di-octyl phthalate (DOP) aerosols with 45 MeV and 65 MeV quasi-monoenergetic neutrons were measured in order to study the formation mechanism of radioactive particles in high energy radiation fields. The effects of the size distribution of the radioactive aerosols on the size of the added DOP aerosols, the energy of the neutrons and the kinds of nuclides were studied. The observed size distributions of the radioactive particles were explained by attachment of the radioactive atoms generated by the neutron-induced reactions to the DOP aerosols. (author)

  7. Plastic Zone Analysis of Deep-Buried, Noncircular Tunnel and Application on the High-Speed Railway in the Karst Area

    Directory of Open Access Journals (Sweden)

    Hai Shi

    2017-01-01

    Full Text Available With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.

  8. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Farnsworth, R.K.

    1997-01-01

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m 3 of transuranic (TRU) waste is co-mingled with over 170,000 m 3 of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste

  9. Outline of facility for studying high level radioactive materials (CPF) and study programmes

    International Nuclear Information System (INIS)

    Sakamoto, Motoi

    1983-01-01

    The Chemical Processing Facility for studying high level radioactive materials in Tokai Works of Power Reactor and Nuclear Fuel Development Corp. is a facility for fundamental studies centering around hot cells, necessary for the development of fuel recycle techniques for fast breeder reactors, an important point of nuclear fuel cycle, and of the techniques for processing and disposing high level radioactive liquid wastes. The operation of the facility was started in 1982, for both the system A (the test of fuel recycle for fast breeder reactors) and the system B (the test of vitrification of high level liquid wastes). In this report, the outline of the facility, the contents of testings and the reflection of the results are described. For the fuel recycle test, the hot test of the spent fuel pins of JOYO MK-1 core was started, and now the uranium and plutonium extraction test is underway. The scheduled tests are fuel solubility, the confirmation of residual properties in fuel melting, the confirmation of extracting conditions, the electrolytic reduction of plutonium, off-gas behaviour and the test of material reliability. For the test of vitrification of high level liquid wastes, the fundamental test on the solidifying techniques for the actual high level wastes eluted from the Tokai reprocessing plant has been started, and the following tests are programmed: Assessment of the properties of actual liquid wastes, denitration and concentration test, vitrification test, off-gas treatment test, the test of evaluating solidified wastes, and the test of storing solidified wastes. These test results are programmed to be reflected to the safety deliberation and the demonstration operation of a vitrification pilot plant. (Wakatsuki, Y.)

  10. Radioactive waste processing field

    International Nuclear Information System (INIS)

    Ito, Minoru.

    1993-01-01

    Storing space for radioactive wastes (storage tunnels) are formed underground of the sea bottom along coast. A plurality of boreholes through which sea water flows are pored vertically in a direction intersecting underground streams of brine in the ground between the tunnels and seaside. Sea water introduction pipes are joined to the upper side walls of the boreholes. The sea water introduction pipes have introduction ports protruded under the sea level of the coastal sea area region. Since sea water flows from the introduction ports to the boreholes passing through the sea water introduction pipes, sea water is always filled in the boreholes. Therefore, brine is sufficiently supplied toward the land by sea water from the boreholes, the underground stream of brine is negligibly small. This can prevent radioactive contamination due to flow of the underground water when radioactive wastes are buried in the underground near coast. (I.N.)

  11. A perspective on demonstrating compliance with standards for disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Smith, E.D.; O'Kelley, G.D.; Sjoreen, A.L.

    1985-01-01

    A perspective which the authors have developed on the problem of demonstrating that geologic repositories for the disposal of high-level radioactive wastes will comply with system performance standards is discussed. Their viewpoint arises from a concern that the U.S. Environmental Protection Agency's proposed environmental standard for high-level waste disposal appears to require demonstrations of compliance which are incompatible with scientific knowledge; i.e., the standard does not take into account the likely importance of unquantifiable and unresolvable uncertainty in repository performance-assessment models. A general approach to demonstrations of compliance is proposed which is thought to be compatible with the kinds of technical information that will be available for judging long-term repository performance. The authors' approach emphasizes the importance of investigating alternative conceptual models and lines of reasoning in evaluating repository performance and the importance of subjective scientific judgment in the decision-making process. (Auth.)

  12. Test methods for selection of materials of construction for high-level radioactive waste vitrification. Revision

    International Nuclear Information System (INIS)

    Bickford, D.F.; Corbett, R.A.; Morrison, W.S.

    1986-01-01

    Candidate materials of construction were evaluated for a facility at the Department of Energy's Savannah River Plant to vitrify high-level radioactive waste. Limited operating experience was available under the corrosive conditions of the complex vitrification process. The objective of the testing program was to provide a high degree of assurance that equipment will meet or exceed design lifetimes. To meet this objective in reasonable time and minimum cost, a program was designed consisting of a combination of coupon immersion and electrochemical laboratory tests and pilot-scale tests. Stainless steels and nickel-based alloys were tested. Alloys that were most resistant to general and local attack contained nickel, molybdenum (>9%), and chromium (where Cr + Mo > 30%). Alloy C-276 was selected as the reference material for process equipment. Stellite 6 was selected for abrasive service in the presence of formic acid. Alloy 690 and ALLCORR were selected for specific applications

  13. Development of knowledge building program concerning about high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Yamada, Kazuhiro; Takase, Hiroyasu

    2005-01-01

    Acquirement of knowledge about the high-level radioactive waste (HLW) disposal is one of the important factors for public to determine the social acceptance of HLW disposal. However in Japan, public do not have knowledge about HLW and its disposal sufficiently. In this work, we developed the knowledge building program concerning about HLW disposal based on Nonaka, and Takeuchi's SECI spiral model in knowledge management, and carried to the experiment on this program. In the results, we found that the participants' knowledge about the HLW disposal increased and changed from misunderstanding' or 'assuming' to 'facts' or 'consideration' through this experimental program. These results said that the experimental program leads participants to have higher quality of knowledge about the HLW disposal. In consequence, this knowledge building program may be effective in the acquirement of high quality knowledge. (author)

  14. Human factors programs for high-level radioactive waste handling systems

    International Nuclear Information System (INIS)

    Pond, D.J.

    1992-01-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples form other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process

  15. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Yang Tianxiao; Liu Shufen

    2001-01-01

    Groundwater is the major carrier for radionuclide migration in the high-level radioactive waste disposal. For this reason the hydrogeological study is one of the main contents in repository siting. According to the field investigation which has been carried out during the last few years and some data from the previous study, the author describes the general hydrogeological situation and groundwater circulation, as well as chemical characteristics of groundwater in Beishan preselected area, Gansu province. The research shows that main hydrogeological characteristics of the Beishan area is water-bearing character, low permeability and slow water movement while the major chemical feature of groundwater is high mineralization. This recognition will provide an important basis for repository siting in the site area

  16. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 2: Radiological assessment

    International Nuclear Information System (INIS)

    Marsily, G. de; Berhendt, V.; Ensminger, D.; Flebus, C.; Hutchinson, B.; Kane, P.; Karpf, A.; Klett, R.; Mobbs, S.; Poulin, M.; Stanner, D.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This report presents the results of the radiological assessment which consists in estimating the detriment to man and to the environment which could result from the disposal of high level nuclear waste within seabed sediments in the deep oceans

  17. Human factors programs for high-level radioactive waste handling systems

    International Nuclear Information System (INIS)

    Pond, D.J.

    1992-04-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples from other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process

  18. Corrosion behaviour of container materials for geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Accary, A.

    1985-01-01

    The disposal of high level radioactive waste in geological formations, based on the multibarrier concept, may include the use of a container as one of the engineered barriers. In this report the requirements imposed on this container and the possible degradation processes are reviewed. Further on an overview is given of the research being carried out by various research centres in the European Community on the assessment of the corrosion behaviour of candidate container materials. The results obtained on a number of materials under various testing conditions are summarized and evaluated. As a result, three promising materials have been selected for a detailed joint testing programme. It concerns two highly corrosion resistant alloys, resp. Ti-Pd (0.2 Pd%) and Hastelloy C4 and one consumable material namely a low carbon steel. Finally the possibilities of modelling the corrosion phenomena are discussed

  19. Radioactivities evaluation code system for high temperature gas cooled reactors during normal operation

    International Nuclear Information System (INIS)

    Ogura, Kenji; Morimoto, Toshio; Suzuki, Katsuo.

    1979-01-01

    A radioactivity evaluation code system for high temperature gas-cooled reactors during normal operation was developed to study the behavior of fission products (FP) in the plants. The system consists of a code for the calculation of diffusion of FPs in fuel (FIPERX), a code for the deposition of FPs in primary cooling system (PLATO), a code for the transfer and emission of FPs in nuclear power plants (FIPPI-2), and a code for the exposure dose due to emitted FPs (FEDOSE). The FIPERX code can calculate the changes in the course of time FP of the distribution of FP concentration, the distribution of FP flow, the distribution of FP partial pressure, and the emission rate of FP into coolant. The amount of deposition of FPs and their distribution in primary cooling system can be evaluated by the PLATO code. The FIPPI-2 code can be used for the estimation of the amount of FPs in nuclear power plants and the amount of emitted FPs from the plants. The exposure dose of residents around nuclear power plants in case of the operation of the plants is calculated by the FEDOSE code. This code evaluates the dose due to the external exposure in the normal operation and in the accident, and the internal dose by the inhalation of radioactive plume and foods. Further studies of this code system by the comparison with the experimental data are considered. (Kato, T.)

  20. High Level Radioactive Waste Management: Proceedings of the second annual international conference

    International Nuclear Information System (INIS)

    1991-01-01

    The final disposal of high level radioactive waste (HLW) has been one of the most arduous problems facing the nuclear industry. This issue has many facets, which are addressed in these proceedings. The papers herein contain the most current information regarding the conditioning and disposal of HLW. Most of the needs are technical in nature, such as the best form of the waste, the integrity of storage containers, design and construction of a repository, and characterization of the geology of a repository to provide assurance that radioactive and other hazardous materials will not reach the surrounding environment. Many of the papers discuss non-US programs. Continued international cooperation and technology exchange is essential. There are other concerns that must be addressed before the final emplacement of HLW. Some of the other issues addressed in these proceedings are conformance to regulations, transportation, socioeconomics, and public education. Any impediments in these areas must be resolved along with the scientific issues before final waste disposal. This conference provides a forum for information exchange. The papers in these proceedings will provide the basis for future planning and decisions. Continued cooperation of the technical community will ultimately result in the safe disposal of HLW. Individual abstracts are indexed separately for the data base

  1. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    International Nuclear Information System (INIS)

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m 3 of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of 137 Cs and 90 Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details

  2. Disposal of low-level radioactive waste using high-calcium fly ash. Final report

    International Nuclear Information System (INIS)

    Cogburn, C.O.; Hodgson, L.M.; Ragland, R.C.

    1986-04-01

    The feasibility of using calcium-rich fly ash from coal-fired power plants in the disposal of low-level radioactive waste was examined. The proposed areas of use were: (1) fly-ash cement as a trench lining material; (2) fly ash as a backfill material; and (3) fly ash as a liquid waste solidifier. The physical properties of fly-ash cement were determined to be adequate for trench liner construction, with compressive strengths attaining greater than 3000 psi. Hydraulic conductivities were determined to be less than that for clay mineral deposits, and were on the order of 10 -7 cm/sec, with some observed values as low as 10 -9 cm/sec. Removal of radioisotopes from acidified solutions by fly ash was good for all elements tested except cesium. The removal of cesium by fly ash was similar to that of montmorillonite clay. The corrosive effects on metals in fly ash environments was determined to be slight, if not non-existent. Coatings at the fly-ash/metal interfaces were observed which appeared to inhibit or diminish corrosion. The study has indicated that high-calcium fly ash appears to offer considerable potential for improved retention of low-level radioactive wastes in shallow land disposal sites. Further tests are needed to determine optimum methods of use. 8 refs., 4 figs., 7 tabs

  3. Necessary contents of public outreach for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kanzaki, Noriko; Okamoto, Koji

    2011-01-01

    Nuclear power generation is one of the solutions for global warming. However, the nuclear power generation technology can not be completed unless the disposal method of the radioactive waste is decided. Various actions are performed about the High Level Radioactive Waste (HLW) disposal in particular in each country. However, planning of HLW disposal site was not successful, except Finland and Sweden. In Japan, geological disposal of HLW was selected. The operating body and the capital management body are also decided. Up to the present, no municipality apply the disposal site candidate. An important social element for HLW disposal is careful explanation and communication for municipality. For this purpose, a symposium to explain necessity of HLW is held in each district in Japan. The symposium is not successful, because of lack of carefulness to local situation considered. In this study, we evaluates the questionnaire by the symposium attendee to extract the idea and requests by the local people. With these questionnaire, the responsibility of the government should be more enhanced. Also, the detail answer to the people's questions are needed. Using these knowledge, the HLW disposal social acceptance has been discussed. (author)

  4. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    International Nuclear Information System (INIS)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia; Kim, J.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10. Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste

  5. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    Science.gov (United States)

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  6. An HMS/TRAC analysis of a high-level radioactive waste tank

    International Nuclear Information System (INIS)

    Travis, J.R.; Nichols, B.D.; Spore, J.W.; Wilson, T.L.

    1991-01-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen and nitrous oxide mixtures that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste material. The slurry is covered by a thick crust composed of sodium nitrate and nitrite salts. Significant amounts of the combustible and reactant gases are produced over a 3- to 4-month period before the crust ruptures and the gases are vented into the air cover gas space above the crust. Postulating an ignition of the hydrogen/nitrous oxide/air mixture after this venting into the cover gas, we have calculated the pressure and temperature loading on the double-walled waste tank with the three-dimensional, time-dependent fluid dynamics coupled with chemical kinetics HMS (Hydrogen Mixing Studies) computer code. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during steady-state operation. We have modeled the ventilation system with TRAC (the Transient Reactor Analysis Code), and we have coupled these two best-estimate accident analysis tools to provide the ventilation response to pressure and temperatures generated by the hydrogen burn. Significant pressures are produced by this event, and the threat to the tank's integrity currently is being evaluated. 3 refs., 4 figs

  7. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Miller, D.H.; Carter, J.T.

    1992-01-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from 800 μg of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values

  8. The air transport of radioactive material in large quantities or with high activity

    International Nuclear Information System (INIS)

    1993-04-01

    The present TECDOC is a mixture of new regulatory provisions for the air transport of large quantities of radioactive material, explanatory and background material for these new provisions and other issues which have been discussed by the various technical committees, advisory groups and consultants that contributed to its development. It represents the broad consensus that has been reached between IAEA Member States on the major fundamental issues related to air transport of radioactive material with high potential hazard. The most visible novelty in the TECDOC is the proposal to introduce a new package type, the Type C package. The material contained in the TECDOC will be subject to further scrutiny by Member States and be cognizant international organizations. It is intended that the new regulatory provisions will be incorporated in the new, comprehensively revised Edition of the Regulations, due in 1996. To let the regulatory provisions proper stand out from background material it is printed in italics throughout the TECDOC. 33 refs, 6 figs

  9. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chatterjee, A.; Llacer, J.

    1981-01-01

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11 C and 19 Ne beams, but the short half-life of 19 Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  10. Quantitative performance allocation of multi-barrier system for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahn, Joon-Hong; Ikeda, Takao; Ohe, Toshiaki

    1995-01-01

    Performance assessment of each barrier consisting of geologic disposal system for high-level radioactive wastes is carried out quantitatively, and key radionuclides and parameters are pointed out. Chemical compositions and solubilities of radionuclides under repository conditions are determined by PHREEQE code staring from compositions of granitic groundwater observed in Japan. Glass dissolution analysis based on mass transfer theory and precipitation analysis have been done in order to determine the inner boundary condition for radionuclide diffusion through a bentonite-filled buffer region, where multi-member decay chain and isotopic sharing of solubility at the inner boundary are considered. Natural barrier is treated as homogeneous porous rock, or porous rock with infinite planar fractures. Performance of each barrier is evaluated in terms of non-dimensionalized hazard defined as the ratio of annual radioactivity release from each barrier to the annual limit on intake. At the outer edge of the engineered barriers, 239 Pu is the key unclide to the performance, whereas at the exit of the natural barrier, weakly-sorbing fission product nuclides such as 135 Cs, 129 I and 99 Tc dominate the hazard. (author) 50 refs

  11. Interspecific Interactions and the Scope for Parent-Offspring Conflict: High Mite Density Temporarily Changes the Trade-Off between Offspring Size and Number in the Burying Beetle, Nicrophorus vespilloides.

    Directory of Open Access Journals (Sweden)

    Ornela De Gasperin

    Full Text Available Parents have a limited amount of resources to invest in reproduction and commonly trade-off how much they invest in offspring size (or quality versus brood size. A negative relationship between offspring size and number has been shown in numerous taxa and it underpins evolutionary conflicts of interest between parents and their young. For example, previous work on vertebrates shows that selection favours mothers that produce more offspring, at the expense of individual offspring size, yet favours offspring that have relatively few siblings and therefore attain a greater size at independence. Here we analyse how this trade-off is temporarily affected by stochastic variation in the intensity of interspecific interactions. We examined the effect of the mite Poecilochirus carabi on the relationship between offspring size and number in the burying beetle, Nicrophorus vespilloides. We manipulated the initial number of mites in the reproductive event (by introducing either no mites, 4 mites, 10 mites, or 16 mites, and assessed the effect on the brood. We found a similar trade-off between offspring size and number in all treatments, except in the '16 mite' treatment where the correlation between offspring number and size flattened considerably. This effect arose because larvae in small broods failed to attain a high mass by dispersal. Our results show that variation in the intensity of interspecific interactions can temporarily change the strength of the trade-off between offspring size and number. In this study, high densities of mites prevented individual offspring from attaining their optimal weight, thus potentially temporarily biasing the outcome of parent-offspring conflict in favour of parents.

  12. Interspecific Interactions and the Scope for Parent-Offspring Conflict: High Mite Density Temporarily Changes the Trade-Off between Offspring Size and Number in the Burying Beetle, Nicrophorus vespilloides.

    Science.gov (United States)

    De Gasperin, Ornela; Kilner, Rebecca M

    2016-01-01

    Parents have a limited amount of resources to invest in reproduction and commonly trade-off how much they invest in offspring size (or quality) versus brood size. A negative relationship between offspring size and number has been shown in numerous taxa and it underpins evolutionary conflicts of interest between parents and their young. For example, previous work on vertebrates shows that selection favours mothers that produce more offspring, at the expense of individual offspring size, yet favours offspring that have relatively few siblings and therefore attain a greater size at independence. Here we analyse how this trade-off is temporarily affected by stochastic variation in the intensity of interspecific interactions. We examined the effect of the mite Poecilochirus carabi on the relationship between offspring size and number in the burying beetle, Nicrophorus vespilloides. We manipulated the initial number of mites in the reproductive event (by introducing either no mites, 4 mites, 10 mites, or 16 mites), and assessed the effect on the brood. We found a similar trade-off between offspring size and number in all treatments, except in the '16 mite' treatment where the correlation between offspring number and size flattened considerably. This effect arose because larvae in small broods failed to attain a high mass by dispersal. Our results show that variation in the intensity of interspecific interactions can temporarily change the strength of the trade-off between offspring size and number. In this study, high densities of mites prevented individual offspring from attaining their optimal weight, thus potentially temporarily biasing the outcome of parent-offspring conflict in favour of parents.

  13. Ultra thin buried oxide layers formed by low dose Simox process

    Energy Technology Data Exchange (ETDEWEB)

    Aspar, B.; Pudda, C.; Papon, A.M. [CEA Centre d`Etudes de Grenoble, 38 (France). Lab. d`Electronique et d`Instrumentation; Auberton Herve, A.J.; Lamure, J.M. [SOITEC, 38 - Grenoble (France)

    1994-12-31

    Oxygen low dose implantation is studied for two implantation energies. For 190 keV, a continuous buried oxide layer is obtained with a high dislocation density in the top silicon layer due to SiO{sub 2} precipitates. For 120 keV, this silicon layer is free of SiO{sub 2} precipitate and has a low dislocation density. Low density of pin-holes is observed in the buried oxide. The influence of silicon islands in the buried oxide on the breakdown electric fields is discussed. (authors). 6 refs., 5 figs.

  14. Pannus Is the New Prepuce? Penile Cancer in a Buried Phallus

    Directory of Open Access Journals (Sweden)

    Jared Manwaring

    2015-01-01

    Full Text Available Two males presented to our urology department with complaints of bleeding and malodor from buried phallus within a suprapubic fat pad. Although both men had neonatal circumcisions, advanced penile carcinoma was found in both men. Formal penectomies showed high grade, poorly differentiated squamous cell carcinoma invading the corporal bodies and urethra. Buried penis represents a difficulty in early detection of suspicious lesions but may also provide an environment susceptible to poor hygiene and subsequent chronic inflammation. Patients with buried penis may be at a higher risk for development of invasive penile cancer and may benefit from regular and thorough genital exams.

  15. Ultra thin buried oxide layers formed by low dose Simox process

    International Nuclear Information System (INIS)

    Aspar, B.; Pudda, C.; Papon, A.M.

    1994-01-01

    Oxygen low dose implantation is studied for two implantation energies. For 190 keV, a continuous buried oxide layer is obtained with a high dislocation density in the top silicon layer due to SiO 2 precipitates. For 120 keV, this silicon layer is free of SiO 2 precipitate and has a low dislocation density. Low density of pin-holes is observed in the buried oxide. The influence of silicon islands in the buried oxide on the breakdown electric fields is discussed. (authors). 6 refs., 5 figs

  16. Descriptive summary of airblast effects for buried cratering detonations

    International Nuclear Information System (INIS)

    Snell, C.M.

    1976-01-01

    Detonation of a buried nuclear or high-explosive charge induces an airblast signal in the air above the explosion site. The waveform of this signal may be complex, involving features created by ground surface motion effects, venting and expansion of gas from the explosive cavity, and energy release through an unstemmed or partly stemmed emplacement hole. The basic physical mechanisms responsible for the airblast pulse and some of the techniques commonly used to predict airblast effects are described

  17. The Blackfoot 111 buried geophone experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewicz, D.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1999-07-01

    As an important difference between a VSP and a conventional survey is the presence of the near-surface layer in the latter, it is possible that overburden materials are particularly attenuative to shear waves, causing an observed narrower bandwidth of converted waves in a seismic experiment conducted in the Blackfoot oil field. The Blackfoot III buried geophone experiment tested this hypothesis by recording data with three component geophones buried to various depths in the near surface. By avoiding a portion of the near surface, buried geophones might avoid a certain amount of attenuation, resulting in a better bandwidth and hence vertical resolution for P-S reflections in particular. Accessory seismic studies of near-surface velocity and impedance were made using the buried geophone data, made possible by the unique geometry of the experiment. The P-P processed data had comparable data quality at all geophone depths, whereas the processed surface P-S data had superior quality over data from the buried phones. This was a result of greater amounts of mode leakage and lower raw reflection amplitudes in the buried phones. No systematic improvement in P-S or P-P reflection bandwidth was noted for deeper geophones; inconsistent geophone coupling was partly a factor in this observation. Raw reflection amplitudes through the near surface are controlled mainly by the impedance of near-surface sediments. Near-surface velocities are typical for unconsolidated overburden for the western 2/3 of the buried receiver line, but increases to values more typical of unweathered bedrock for the eastern 1/3. This probably shows a thinning of the overburden layer in this area. 2 refs.

  18. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity

    International Nuclear Information System (INIS)

    Donner, R.V.; Potirakis, S.M.; Barbosa, S.M.; Matos, J.A.O.; Pereira, A.J.S.C.; Neves, L.J.M.F.

    2015-01-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. (authors)

  19. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  20. A metallic buried interconnect process for through-wafer interconnection

    International Nuclear Information System (INIS)

    Ji, Chang-Hyeon; Herrault, Florian; Allen, Mark G

    2008-01-01

    In this paper, we present the design, fabrication process and experimental results of electroplated metal interconnects buried at the bottom of deep silicon trenches with vertical sidewalls. A manual spray-coating process along with a unique trench-formation process has been developed for the electroplating of a metal interconnection structure at the bottom surface of the deep trenches. The silicon etch process combines the isotropic dry etch process and conventional Bosch process to fabricate a deep trench with angled top-side edges and vertical sidewalls. The resulting trench structure, in contrast to the trenches fabricated by wet anisotropic etching, enables spray-coated photoresist patterning with good sidewall and top-side edge coverage while maintaining the ability to form a high-density array of deep trenches without excessive widening of the trench opening. A photoresist spray-coating process was developed and optimized for the formation of electroplating mold at the bottom of 300 µm deep trenches having vertical sidewalls. A diluted positive tone photoresist with relatively high solid content and multiple coating with baking between coating steps has been experimentally proven to provide high quality sidewall and edge coverage. To validate the buried interconnect approach, a three-dimensional daisy chain structure having a buried interconnect as the bottom connector and traces on the wafer surface as the top conductor has been designed and fabricated

  1. Standard format and content for a license application to store spent fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    1989-09-01

    Subpart B, ''License Application, Form, and Contents,'' of 10 CFR Part 72, ''Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste,'' specifies the information to be covered in an application for a license to store spent fuel in an independent spent fuel storage installation (ISFSI) or to store spent fuel and high-level radioactive waste in a monitored retrievable storage facility (MRS). However, Part 72 does not specify the format to be followed in the license application. This regulatory guide suggests a format acceptable to the NRC staff for submitting the information specified in Part 72 for license application to store spent fuel in an ISFSI or to store spent fuel and high-level radioactive waste in an MRS

  2. NRC regulations for disposal of high-level radioactive wastes in geologic repositories: technical criteria

    International Nuclear Information System (INIS)

    Martin, J.B.; Bell, M.J.; Regnier, E.P.

    1983-01-01

    The Nuclear Regulatory Commission is promulgating regulations specifying the technical criteria fo disposal of high-level radioactive wastes in geologic repositories. The proposed rule was published for public comment in July 1981. Public comments have been received and considered by the Commission staff. The Commission will soon approve and publish a revised final rule. While the final rule being considered by the Commission is fundamentally the same as the proposed rule, provisions have been added to permit flexibility in the application of numerical criteria, some detailed design requirements have been deleted, and other changes have been made in response to comments. The rule is consistent with the recently enacted Nuclear Waste Policy Act of 1982

  3. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    Science.gov (United States)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  4. An underground research tunnel for the validation of high-level radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Kwon, S.; Park, S. I.; Park, J. H.; Cho, W. J.; Han, P. S.

    2005-01-01

    In order to dispose of high-level radioactive waste(HLW) safely in geological formations, it is necessary to assess the feasibility, safety, appropriateness, and stability of the disposal concept at an underground research site, which is constructed in the same geological formation as the host rock. In this study, minimum requirements and the conceptual design for an efficient construction of a small scale URL, which is named URT, were derived based on a literature review. To confirm the validity of the conceptual design for construction at KAERI, a geological survey including a seismic refraction survey, electronic resistivity survey, borehole drilling, and in situ and laboratory tests were carried out. Based on the results, it was possible to design URT effectively with a consideration of the site characterization. The construction of URT was started in May 2005 and the first stage of the construction of the access tunnel could be successfully completed in Aug. 2005

  5. Alpha spectrum profiling of plutonium in leached simulated high-level radioactive waste-glass

    International Nuclear Information System (INIS)

    Diamond, H.; Friedman, A.M.

    1981-01-01

    Low-geometry X-ray spectra from /sup 239/Pu and /sup 237/Np, incorporated into simulated high-level radioactive waste-glass, were transformed into depth distributions for these elements. Changes in the depth profiles were observed for a series of static leachings in 75/degree/C water. Radiochemical assay of the leach solutions revealed that little neptunium or plutonium was leached, and that the amount leached was independent of leaching time. The depth profiles of the leached specimens showed that there was selective leaching of nonradioactive components of the glass, concentrating the remaining neptunium and plutonium in a broad zone near (but not at) the glass surface. Eventual redeposition of nonradioactive material onto the glass surface inhibited further leaching

  6. Risk communication by utilizing environmental ethics as meta-cognition for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kugo, Akihide; Uda, Akinobu; Shimoda, Hiroshi; Yoshikawa, Hidekazu; Ito, Kyoko; Wakabayashi, Yasunaga

    2005-01-01

    Though the high level radioactive waste disposal policy in Japan has been clearly stated, this issue is still unfamiliar with the general public, who tend to make a social decision based on heuristics. Therefore, much effort such as developing risk communication system is required to restrain the general public from making a negative decision which may bring social dilemma. However, societal consensus on acceptable disposal practice will be very difficult to attain in a short period of time. The purpose of this research was to verify the effect of web risk communication model which has dialog-mode contents with environmental ethics as a meta-cognition and a bulletin board system in light of developing objective risk cognition. The experimental result suggested that this model was able to inspire subjective norm and introspection towards the necessity of pro-social behaviors more effectively than a one-way lecture. (author)

  7. Methodology of safety assessment and sensitivity analysis for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1995-01-01

    A deterministic safety assessment methodology has been developed to evaluate long-term radiological consequences associated with geologic disposal of high-level radioactive waste, and to demonstrate a generic feasibility of geologic disposal. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. A computer code system GSRW thus developed is based on a non site-specific model, and consists of a set of sub-modules for calculating the release of radionuclides from engineered barriers, the transport of radionuclides in and through the geosphere, the behavior of radionuclides in the biosphere, and radiation exposures of the public. In order to identify the important parameters of the assessment models, an automated procedure for sensitivity analysis based on the Differential Algebra method has been developed to apply to the GSRW. (author)

  8. Method for evaluating building materials with a high content of radioactivity

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    In order to avoid increased radiation doses to the population due to the introduction of building materials with an unusually high content of radioactivity, a method for evaluating building materials has been developed. An expression for the gamma radiation due to radium, thorium and potassium 40 has been proposed by a Scandinavian group. When this value for a given material does not exceed 1, then no restriction is placed. Should it exceed 1, then the material is subjected to further investigation. Similarly, since the radon concentration depends on the radium content, an expression for this is proposed. Should this be less than unity the material may be sold freely. Should it exceed unity, further investigations must be made. Measurements have also been made on the exhalation of radon from concrete, and the results are given. An expression including this exhalation rate and the ventilation rate, giving the radon concentration is given. (JIW)

  9. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-01-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl 11 O 18 and Ce 2 SiO 5 . The leaching rate of cerium over a period of 28 days was 10 −5 –10 −6 g/(m 2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products

  10. Social stakes of the reversibility in the deep storage of high level radioactive wastes

    International Nuclear Information System (INIS)

    Heriard-Dubreuil, G.; Schieber, C.; Schneider, T.

    1998-06-01

    This document proposes a study of the conditions which surrounded the reversibility introduction in high activity wastes deep storage at an international scale, as well as a reflexion on the social stakes associated there. In France, the law of december 30, 1991 concerning the research on the radioactive wastes prescribes '' the study of possibilities retrieval or non retrieval storage in deep geological deposits''. The analysis of the reversibility associated social stakes emphasizes the necessity to prevent irreversible consequences, to take care to the choices reversibility, to preserve the future generations autonomy. Thus to elaborate a more satisfactory solution between deep disposal and surface storage, a deep storage, capable of gradually evolution, concept is defined. (A.L.B.)

  11. Effect of coupling behavior on groundwater flow for geological disposal of radioactive high level waste

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kobayashi, Akira; Ohnishi, Yuzo; Chijimatsu, Masakazu

    2003-01-01

    In order to estimate the effects of coupled thermal-hydraulic-mechanical phenomena in near-field for geological disposal of high-level radioactive waste on a vast groundwater flow system, a far-field analysis was simulated based on the results of the simulation of coupled phenomena in near-field using averaged tensor and heat flux. From the results of the coupled analyses of near-field and far-field it was clarified that groundwater flow system was influenced by coupled phenomena in near-field. Moreover, it can be said that groundwater flux into a disposal tunnel is regarded as a complement to safety assessment of a disposal because it strongly correlates with traveling time of groundwater. (author)

  12. Regulatory strategies for high-level radioactive waste management in nine countries: Final report

    International Nuclear Information System (INIS)

    1987-12-01

    This report provides information on the regulatory strategies being developed or implemented in nine countries for the management and disposal of spent nuclear fuel and high-level radioactive waste. The study was performed by International Energy Associates Limited on behalf of Pacific Northwest Laboratories and the US Department of Energy. IEAL obtained information for this report from the regulatory authorities in each country, who also later reviewed drafts of the respective country sections of the report. The nine countries surveyed were Belgium, Canada, the Federal Republic of Germany, France, Japan, Sweden, Switzerland, the United Kingdom and the United States. These countries were selected for study because they are among the largest producers of nuclear energy in the world today and have aggressive programs for spent fuel management and waste disposal

  13. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    International Nuclear Information System (INIS)

    Wyrwas, R. B.

    2016-01-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  14. Challenges of characterization of radioactive waste with High composition variability and their consequences measurement methodology

    International Nuclear Information System (INIS)

    Lexa, D.

    2014-01-01

    Radioactive waste characterization is a key step in every nuclear decommissioning project. It normally relies on a combination of facility operational history with results of destructive and non-destructive analysis. A particularly challenging situation arises when historical waste from a nuclear research facility is to be characterized, meaning little or no radiological information is available and the composition of the waste is highly variable. The nuclide vector concept is of limited utility, resulting in increased requirements placed on both the extent and performance of destructive and non-destructive analysis. Specific challenges are illustrated on an example of the decommissioning project underway at the Joint Research Center of the European Commission in Ispra. (author)

  15. The disposal of high level radioactive waste and the need for assessing the radiological impact

    International Nuclear Information System (INIS)

    Johansson, G.; Haegg, C.

    1990-01-01

    Different options for the disposal of high level radioactive waste are being considered in several different countries. When assessing the possible future impact of these disposal concepts, very large uncertainties are associated with the predictions. These uncertainties include scenario representation, conceptual and mathematical modelling, parameter evaluation and finally the interpretation of the results. Some of these uncertainties cannot be eliminated regardless of research efforts, e.g. the evolution of the society and the environment. The paper discusses in general terms to what extent uncertainties in the predictions could be reduced and in the light of this discussion the authors present their point of view regarding the fruitfulness of assessing radiological impact in the far future. (orig.)

  16. Sample performance assessment of a high-level radioactive waste repository: sensitivity analysis

    International Nuclear Information System (INIS)

    Tkaczyk, A.

    2001-01-01

    The Yucca Mountain Project (YMP) is the USA's first attempt at long-term storage of High-Level Radioactive Waste (HLW). In theory, the reasoning for such a repository seems sound. In practice, there are many scenarios and cases to be considered while putting such a project into effect. Since a goal of YMP is to minimize dangers associated with long-term storage of HLW, it is important to estimate the dose rate to which current and future generations will be subjected. The lifetime of the repository is simulated to indicate the radiation dose rate to the maximally exposed individual; it is assumed that if the maximally exposed individual would not be harmed by the annual dose, the remaining population will be at even smaller risk. The determination of what levels of exposure can be deemed harmless is a concern, and the results from the simulations as compared against various regulations are discussed. (author)

  17. Studies of high-level radioactive waste form performance at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Banba, Tsunetaka; Kamizono, Hiroshi; Mitamura, Hisayoshi

    1992-02-01

    The recent studies of high-level radioactive waste form at Japan Atomic Energy Research Institute can be classified into the following three categories; (1) Study on the leaching behavior of the nuclear waste glass placing the focus on the alteration layer and the chemical composition of leachant for the prediction of the long-term corrosion of the waste glass. (2) Study on the radiation (alpha-radiation) effects which have relation to the long-term stability of the nuclear waste glass. (3) Study on the long-term self-irradiation damage of a SYNROC waste form using a curium-doped sample. In the present report, the recent results corresponding to the above categories are described. (author)

  18. Remote operation of microwave systems for solids content analysis and chemical dissolution in highly radioactive environments

    International Nuclear Information System (INIS)

    Sturcken, E.F.; Floyd, T.S.; Manchester, D.P.

    1986-10-01

    Microwave systems provide quick and easy determination of solids content of samples in high-level radioactive cells. In addition, dissolution of samples is much faster when employing microwave techniques. These are great advantages because work in cells,using master-slave manipulators through leaded glass walls, is normally slower by an order of magnitude than direct contact methods. This paper describes the modifiction of a moisture/solids analyzer microwave system and a drying/digestion microwave system for remote operation in radiation environments. The moisture/solids analyzer has operated satisfactorily for over a year in a gamma radiation field of 1000 roentgens per hour and the drying/digestion system is ready for installation in a cell

  19. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  20. System analysis methods for geological repository of high level radioactive waste in granite

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju; Li Yunfeng; Jin Yuanxin; Zhao Honggang

    2009-01-01

    Taking Beishan granite site as an example, this paper proposes the conceptual and structural design of repository for high level radioactive waste at first. Then the function, structure, environment and evolution of the repository are described by the methodology of system analysis. Based on these designs and descriptions, a calculation model for the repository is developed with software GoldSim. At last, this calculation model is applied to emulate the space-time distribution of repository radiotoxicity, to analyze the sensitivity of parameters in the model, to optimize the design parameters, and to predict and assess the repository performance. The results of this study can provide technical supports for resources allocation and coordination of R and D projects. (authors)