WorldWideScience

Sample records for bunyaviridae

  1. PREVALENCE OF ARBOVIRUS ANTIBODIES AGAINST THE FAMILY Bunyaviridae IN WATER BUFFALOES

    Directory of Open Access Journals (Sweden)

    Alexandre Rosário Casseb

    2015-07-01

    Full Text Available The State of Pará comprises 26% of Brazilian Amazon region where a large diversity of arboviruses has been described. This study sought to assess the prevalence and distribution of haemagglutination-inhibition antibodies against antigens of nine different types of arbovirus of the Bunyaviridae family, where eight were Orthobunyavirus: Guaroa virus, Maguari virus, Tacaiuma virus, Utinga virus, Belem virus, Caraparu virus, Oropouche virus and Catu virus, and one Phlebovirus: Icoaraci virus in sera samples of water buffaloes in Pará State, Brazil. For all Arboviruses investigated there were antibodies, with the exception of Belem virus. Antibodies to Maguari virus were more prevalent (7.33%. The water buffaloes of the present study showed variable levels of antibodies in monotypic and heterotypic reactions that may indicate there are movements from most bunyavirus studied in domestic buffaloes in the state of Pará, and the Maguari virus presents the largest circulation. Therefore, further studies are needed to investigate the role of water buffalo in the maintenance and dispersal of arboviruses, as well as whether these viruses can cause disease in that species, especially in cases of birth defects and abortions.

  2. Isolation of Madre de Dios Virus (Orthobunyavirus; Bunyaviridae), an Oropouche Virus Species Reassortant, from a Monkey in Venezuela.

    Science.gov (United States)

    Navarro, Juan-Carlos; Giambalvo, Dileyvic; Hernandez, Rosa; Auguste, Albert J; Tesh, Robert B; Weaver, Scott C; Montañez, Humberto; Liria, Jonathan; Lima, Anderson; Travassos da Rosa, Jorge Fernando Soares; da Silva, Sandro P; Vasconcelos, Janaina M; Oliveira, Rodrigo; Vianez, João L S G; Nunes, Marcio R T

    2016-08-01

    Oropouche virus (OROV), genus Orthobunyavirus, family Bunyaviridae, is an important cause of human illness in tropical South America. Herein, we report the isolation, complete genome sequence, genetic characterization, and phylogenetic analysis of an OROV species reassortant, Madre de Dios virus (MDDV), obtained from a sick monkey (Cebus olivaceus Schomburgk) collected in a forest near Atapirire, a small rural village located in Anzoategui State, Venezuela. MDDV is one of a growing number of naturally occurring OROV species reassortants isolated in South America and was known previously only from southern Peru. PMID:27215299

  3. Development of FGI-106 as a broad-spectrum therapeutic with activity against members of the family Bunyaviridae

    Directory of Open Access Journals (Sweden)

    Darci R Smith

    2010-02-01

    Full Text Available Darci R Smith1, Monica Ogg1, Aura Garrison1, Abdul Yunus2, Anna Honko1, Josh Johnson1, Gene Olinger1, Lisa E Hensley1, Michael S Kinch1United States Army Medical Research Institute of Infectious Diseases (USAMRII D, Fort Detrick, MD, USA; 2Functional Genetics, Inc., Gaithersburg, MD, USAAbstract: The family Bunyaviridae is a diverse group of negative-strand RNA viruses that infect a wide range of arthropod vectors and animal hosts. Based on the continuing need for new therapeutics to treat bunyavirus infections, we evaluated the potential efficacy of FGI-106, a small-molecular compound that previously demonstrated activity against different RNA viruses. FGI-106 displayed substantial antiviral activity in cell-based assays of different bunyavirus family members, including Asian and South American hantaviruses (Hantaan virus and Andes virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, and Rift Valley fever virus. The pharmacokinetic profile of FGI-106 revealed sufficient exposure of the drug to critical target organs (lung, liver, kidney, and spleen, which are frequently the sites of bunyavirus replication. Consistent with these findings, FGI-106 treatment delivered via intraperitoneal injection prior to virus exposure was sufficient to delay the onset of Rift Valley fever virus infection in mouse-based models and to enhance survival in the face of an otherwise lethal infection. Altogether, these results suggest a potential opportunity for the use of FGI-106 to treat infections by members of the family Bunyaviridae.Keywords: Rift Valley fever virus, bunyavirus, hantavirus, antiviral, therapeutic

  4. Genomic and phylogenetic characterization of viruses included in the Manzanilla and Oropouche species complexes of the genus Orthobunyavirus, family Bunyaviridae.

    Science.gov (United States)

    Ladner, Jason T; Savji, Nazir; Lofts, Loreen; Travassos da Rosa, Amelia; Wiley, Michael R; Gestole, Marie C; Rosen, Gail E; Guzman, Hilda; Vasconcelos, Pedro F C; Nunes, Marcio R T; J Kochel, Tadeusz; Lipkin, W Ian; Tesh, Robert B; Palacios, Gustavo

    2014-05-01

    A thorough characterization of the genetic diversity of viruses present in vector and vertebrate host populations is essential for the early detection of and response to emerging pathogenic viruses, yet genetic characterization of many important viral groups remains incomplete. The Simbu serogroup of the genus Orthobunyavirus, family Bunyaviridae, is an example. The Simbu serogroup currently consists of a highly diverse group of related arboviruses that infect both humans and economically important livestock species. Here, we report complete genome sequences for 11 viruses within this group, with a focus on the large and poorly characterized Manzanilla and Oropouche species complexes. Phylogenetic and pairwise divergence analyses indicated the presence of high levels of genetic diversity within these two species complexes, on a par with that seen among the five other species complexes in the Simbu serogroup. Based on previously reported divergence thresholds between species, the data suggested that these two complexes should actually be divided into at least five species. Together these five species formed a distinct phylogenetic clade apart from the rest of the Simbu serogroup. Pairwise sequence divergences among viruses of this clade and viruses in other Simbu serogroup species complexes were similar to levels of divergence among the other orthobunyavirus serogroups. The genetic data also suggested relatively high levels of natural reassortment, with three potential reassortment events present, including two well-supported events involving viruses known to infect humans. PMID:24558222

  5. Caracterização e relacionamento antigênico de três novos Bunyavirus no grupo Anopheles A (Bunyaviridae dos arbovirus Characterization and antigenic relationship of three new Bunyavirus in the Anopheles A serogroup (Bunyaviridae of arboviruses

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Soares Travassos da Rosa

    1992-06-01

    Full Text Available São descritos o isolamento e a caracterização de três novos arbovirus isolados na região da Usina Hidro-Elétrica de Tucuruí (UHE-TUC. Os três novos arbovirus pertencem ao grupo Anopheles A(ANA, gênero Bunyavirus (família Bunyaviridae. Os vírus Tucuruí (TUC, Caraipé (CPE e Arumateua (ART são relacionados entre si e com o vírus Trombetas (TBT, formando dentro do grupo ANA um complexo chamado Trombetas. Os arbovirus TUC, CPE e ART foram obtidos a partir de lotes de mosquitos Anopheles (Nyssorhynchus sp capturados em Tucuruí, nas proximidades da usina hidrelétrica de Tucuruí, Estado do Pará, nos meses de fevereiro, agosto e outubro de 1984, respectivamente. Até o final de 1990 os vírus TUC, CPE e ART foram isolados 12, 32 e 28 vezes respectivamente, sempre na região da UHE-TUC, exceção feita ao vírus TUC, do qual se obteve uma amostra procedente de Balbina, onde também foi construída uma hidroelétrica. Até o presente, esses vírus só foram isolados a partir de mosquitos do grupo An. (Nys. principalmente, a partir das espécies An. (Nys. nuneztovari e An. (Nys. triannulatus também consideradas vetores secundários da malária na Amazônia Brasileira. Testes sorológicos executados com soros humanos e de diversas espécies de animais silvestres foram negativos, com exceção de um soro de um carnívoro de espécie Nasua nasua que neutralizou a amostra TUC em títulos de 2.6 índice logaritmico de neutralização (ILN.The isolation and characterization of three new viruses obtained from the Tucuruí hydroelectric dam region is repeated. These three agents belong to the Anopheles A serogroup, genus Bunyavirus, Bunyaviridae. The Tucuruí (TUC, Caraipe (CPE and Arumateua (ART viruses have close relationships with each other and with Trombetas (TBT virus, an Anopheles A virus previously isolated in the Amazon Region of Brazil. These viruses form the "Trombetas complex". TUC, CPE and ART viruses were obtained from pools of

  6. 布尼亚病毒及其引发的疾病%Bunyaviridae and Its Diseases

    Institute of Scientific and Technical Information of China (English)

    邵惠训

    2011-01-01

    The bunyaviridae family comprises more than 300 viruses. Membership is usually based on antigenic interrelatedness or morphological similarity. Disease characterized by fever, headache, weakness, myalgia, pulmonary edema. The family is divided into 5 genera; 1. Orthobunyavirus: Bunyamwera, La Cross, Tahyna virus, transmitted mainly by mosquitoes. 2. Hantavirus; Hantaan virus, transmission does not require insects. 3. Nairovirus; Dugbe virus infection of cattle in West Africa, transmitted by ticks. 4. Phlebovirus;Sandfly fever, Rift valley fever, transmitted by sandflies. 5. Tospovirus; Tomato spotted wilt virus,only infect plant and non-vertebrate. Man is not known to be a natural or reservoir for any of these viruses. Virions are 80 ~ 120 nm in diameter, 5 ~ 10 nm projections visible on the surface. Genome consists of 3 pieces of negative stranded RNA. Virion has 2 surface glycoproteins Cl and C2, with HA and virus neutralization epitopes. Bunyaviridae is a family of negative stranded RNA viruses. Though generally found in arthropode or rodents, certain viruses in this family occasionally infect humans. Bunyaviridae are vector-borne viruses. With the exception of Hantaviruses transmission occurs via an arthropod vector. Hantaviruses are transmitted through contact with mice feces. Crimean-Congo hemorrhagic fever virus is associated with high levels of morbidity and mortality, consequently handling of these viruses most occurs with a biosafe level 4 laboratory. Hantavirus or Hantavirus hemorrhagic fever, common in China, Korea, Scandinavia, Russia, and the American southwest, is associated with high fever, lung edema and pulmonary failture. Mortality is around 55% of laboratory diagnosis of bunya virus infections. Virus isolation-intra-cranialinoculation of suckling mice is thought to be the most sensitive system available for virus isolation. However sensitive cell culture systems are available such as Vero, Vero E6, A549 and mosquito cells. Once isolated the

  7. Caracterização e relacionamento antigênico de três novos Bunyavirus no grupo Anopheles A (Bunyaviridae) dos arbovirus

    OpenAIRE

    Rosa Jorge Fernando Soares Travassos da; Rosa Amélia Paes de Andrade Travassos da; Dégallier Nicolas; Vasconcelos Pedro Fernando da Costa

    1992-01-01

    São descritos o isolamento e a caracterização de três novos arbovirus isolados na região da Usina Hidro-Elétrica de Tucuruí (UHE-TUC). Os três novos arbovirus pertencem ao grupo Anopheles A(ANA), gênero Bunyavirus (família Bunyaviridae). Os vírus Tucuruí (TUC), Caraipé (CPE) e Arumateua (ART) são relacionados entre si e com o vírus Trombetas (TBT), formando dentro do grupo ANA um complexo chamado Trombetas. Os arbovirus TUC, CPE e ART foram obtidos a partir de lotes de mosquitos Anopheles (Ny...

  8. [Taxonomic status of the Burana virus (BURV) (Bunyaviridae, Nairovirus, Tamdy group) isolated from the ticks Haemaphysalis punctata Canestrini et Fanzago, 1877 and Haem. concinna Koch, 1844 (Ixodidae, Haemaphysalinae) in Kyrgyzstan].

    Science.gov (United States)

    L'vov, D K; Al'khovskiĭ, S V; Shchelkanov, M Iu; Shchetinin, A M; Deriabin, P G; Gitel'man, A K; Aristova, V A; Botikov, A G

    2014-01-01

    Complete genome sequence of the Burana virus (BURV) was determined using the next-generation sequencing approach (ID GenBank KF801651). The prototype strain of BURV LEIV-Krg760 was originally isolated from the ticks Haemaphysalis punctata Canestrini et Fanzago, 1877 (Ixodidae, Haemaphysalinae), collected from cows in Tokmak wildlife sanctuary, eastern part of the Chu valley (43 degrees 10' N, 74 degrees 40' E) near Burana village, Kirgizia, in April 1971. Molecular genetics and phylogenetic analyses showed that the BURV belonged to the Nairovirus genus, Bunyaviridae and is related to Tamdy virus (TAMV) that is also associated with the ixodidae ticks of pasture biocenosis in Central Asia. Previous studies showed that TAMV is the prototypic virus of new phylogenetic Tamdy group in the Nairovirus genus. Thus, BURV was classified as a new virus of the Tamdy group, Nairovirus, Bunyaviridae. PMID:25549462

  9. [Genetic characterization of the Sakhalin virus (SAKV), Paramushir virus (PMRV) (Sakhalin group, Nairovirus, Bunyaviridae), and Rukutama virus (RUKV) (Uukuniemi group, Phlebovirus, Bunyaviridae) isolated from the obligate parasites of the colonial sea-birds ticks Ixodes (Ceratixodes) uriae, White 1852 and I. signatus Birulya, 1895 in the water area of sea of the Okhotsk and Bering sea].

    Science.gov (United States)

    L'vov, D K; Al'khovskiĭ, S V; Shchelkanov, M Iu; Shchetinin, A M; Deriabin, P G; Aristova, V A; Gitel'man, A K; Samokhvalov, E I; Botikov, A G

    2014-01-01

    Full-length genomes of the Sakhalin virus (SAKH) and Paramushir virus (PRMV) (Sakhalin group, Nairovirus, Bunyaviridae) isolated from the ticks Ixodes uriae White 1852 were sequenced using the next-generation sequencing (Genbank ID: KF801659, KF801656). SAKV and PRMV have 81% identity for the part of RNA-dependent RNA-polymerase (RdRp) on the nucleotide level and 98.5% on the amino acid level. Full-length genome comparison shows that SAKV have, in average, from 25% (N-protein, S-segment) to 50% (RdRp, L-segment) similarity with the nairoviruses. The maximum value of the amino acid similarity (50.3% for RdRp) SAKV have with the Crimean-Congo hemorrhagic fever virus (CCHFV) and Dugbe virus (DUGV), which are also associated with the Ixodidae ticks. Another virus studied is Rukutama virus (RUKV) (isolated from ticks I. signatus Birulya, 1895) that recently was classified (based on morphology and antigenic reaction) to the Nairovirus genus, presumably to the Sakhalin group. In this work the genome of the RUKV was sequenced (KF892052-KF892054) and RUKV was classified as a member of the Uukuniemi group (Phlebovirus, Bunyaviridae). RUKV is closely related (93.0-95.5% similarity) with our previously described Komandory virus (KOMV). RUKV and KOMV form separate phylogenetic line neighbor of Manawa virus (MWAV) isolated from the ticks Argas abdussalami Hoogstraal et McCarthy, 1965 in Pakistan. The value of the similarity between RUCV and MWAV is 65-74% on the amino acid level. PMID:25335413

  10. Sequence diversity of the nucleoprotein gene of iris yellow spot virus (genus Tospovirus, family Bunyaviridae) isolates from the western region of the United States.

    Science.gov (United States)

    Pappu, H R; du Toit, L J; Schwartz, H F; Mohan, S K

    2006-05-01

    Iris yellow spot virus (IYSV), a tentative virus species in the genus Tospovirus and family Bunyaviridae, is considered a rapidly emerging threat to onion production in the western United States (US). The present study was undertaken to determine the sequence diversity of IYSV isolates from infected onion plants grown in California, Colorado, Idaho, Oregon, Utah and Washington. Using primers derived from the small RNA of IYSV, the complete sequence of the nucleoprotein (NP) gene of each isolate was determined and the sequences compared. In addition, a shallot isolate of IYSV from Washington was included in the study. The US isolates of IYSV shared a high degree of sequence identity (95 to 99%) with one another and to previously reported isolates. Phylogenetic analyses showed that with the exception of one isolate from central Oregon and one isolate from California, all the onion and shallot isolates from the western US clustered together. This cluster also included onion and lisianthus isolates from Japan. A second distinct cluster consisted of isolates from Australia (onion), Brazil (onion), Israel (lisianthus), Japan (alstroemeria), The Netherlands (iris) and Slovenia (leek). The IYSV isolates evaluated in this study appear to represent two distinct groups, one of which largely represents isolates from the western US. Understanding of the population structure of IYSV would potentially provide insights into the molecular epidemiology of this virus. PMID:16320007

  11. Characterization of the Bhanja Serogroup Viruses (Bunyaviridae): a Novel Species of the Genus Phlebovirus and Its Relationship with Other Emerging Tick-Borne Phleboviruses

    Science.gov (United States)

    Matsuno, Keita; Weisend, Carla; Travassos da Rosa, Amelia P. A.; Anzick, Sarah L.; Dahlstrom, Eric; Porcella, Stephen F.; Dorward, David W.; Yu, Xue-Jie; Tesh, Robert B.

    2013-01-01

    Bhanja virus (BHAV) and its antigenically close relatives Forecariah virus (FORV), Kismayo virus (KISV), and Palma virus (PALV) are thought to be members of the family Bunyaviridae, but they have not been assigned to a genus or species. Despite their broad geographical distribution and reports that BHAV causes sporadic cases of febrile illness and encephalitis in humans, the public health importance of the Bhanja serogroup viruses remains unclear, due in part to the lack of sequence and biochemical information for the virus proteins. In order to better define the molecular characteristics of this group, we determined the full-length sequences of the L, M, and S genome segments of multiple isolates of BHAV as well as FORV and PALV. The genome structures of these Bhanja viruses are similar to those of viruses belonging to the genus Phlebovirus. Functional domains and amino acid motifs in the viral proteins that are conserved among other known phleboviruses were also identified in proteins of the BHAV group. Phylogenetic and serological analyses revealed that the BHAVs are most closely related to the novel emerging tick-borne phleboviruses severe fever with thrombocytopenia syndrome virus and Heartland virus, which have recently been implicated as causing severe acute febrile illnesses associated with thrombocytopenia in humans in China and the United States. Our results indicate that the Bhanja serogroup viruses constitute a single novel species in the genus Phlebovirus. The results of this study should facilitate epidemiological surveillance for other, similar tick-borne phleboviruses that may represent unrecognized causes of febrile illness in humans. PMID:23325688

  12. Uso de células de Aedes albopictus C6/36 na propagação e classificação de arbovírus das famílias Togaviridae, Flaviviridae, Bunyaviridae e Rhabdoviridae

    OpenAIRE

    Luiz Tadeu Moraes Figueiredo

    1990-01-01

    Colônias de células de mosquito Aedes albopictus C6/36 foram infectadas com 23 arbovirus, sendo 19 destes existentes no Brasil, pertencentes às famílias Togaviridae, Flaviviridae, Bunyaviridae e Rhabdoviridae. A Replicação virai foi detectada por imunofluorescência indireta com todos os vírus estudados enquanto que o efeito citopático foi observado durante a infecção por alguns destes. No teste de imunofluorescência indireta utilizou-se fluidos ascíticos imunes de camundongos, específicos par...

  13. Caracterização e relacionamento antigênico de três novos Bunyavirus no grupo Anopheles A (Bunyaviridae dos arbovirus

    Directory of Open Access Journals (Sweden)

    Rosa Jorge Fernando Soares Travassos da

    1992-01-01

    Full Text Available São descritos o isolamento e a caracterização de três novos arbovirus isolados na região da Usina Hidro-Elétrica de Tucuruí (UHE-TUC. Os três novos arbovirus pertencem ao grupo Anopheles A(ANA, gênero Bunyavirus (família Bunyaviridae. Os vírus Tucuruí (TUC, Caraipé (CPE e Arumateua (ART são relacionados entre si e com o vírus Trombetas (TBT, formando dentro do grupo ANA um complexo chamado Trombetas. Os arbovirus TUC, CPE e ART foram obtidos a partir de lotes de mosquitos Anopheles (Nyssorhynchus sp capturados em Tucuruí, nas proximidades da usina hidrelétrica de Tucuruí, Estado do Pará, nos meses de fevereiro, agosto e outubro de 1984, respectivamente. Até o final de 1990 os vírus TUC, CPE e ART foram isolados 12, 32 e 28 vezes respectivamente, sempre na região da UHE-TUC, exceção feita ao vírus TUC, do qual se obteve uma amostra procedente de Balbina, onde também foi construída uma hidroelétrica. Até o presente, esses vírus só foram isolados a partir de mosquitos do grupo An. (Nys. principalmente, a partir das espécies An. (Nys. nuneztovari e An. (Nys. triannulatus também consideradas vetores secundários da malária na Amazônia Brasileira. Testes sorológicos executados com soros humanos e de diversas espécies de animais silvestres foram negativos, com exceção de um soro de um carnívoro de espécie Nasua nasua que neutralizou a amostra TUC em títulos de 2.6 índice logaritmico de neutralização (ILN.

  14. Caracterização e relacionamento antigênico de três novos Bunyavirus no grupo Anopheles A (Bunyaviridae dos arbovirus

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Soares Travassos da Rosa

    1992-06-01

    Full Text Available São descritos o isolamento e a caracterização de três novos arbovirus isolados na região da Usina Hidro-Elétrica de Tucuruí (UHE-TUC. Os três novos arbovirus pertencem ao grupo Anopheles A(ANA, gênero Bunyavirus (família Bunyaviridae. Os vírus Tucuruí (TUC, Caraipé (CPE e Arumateua (ART são relacionados entre si e com o vírus Trombetas (TBT, formando dentro do grupo ANA um complexo chamado Trombetas. Os arbovirus TUC, CPE e ART foram obtidos a partir de lotes de mosquitos Anopheles (Nyssorhynchus sp capturados em Tucuruí, nas proximidades da usina hidrelétrica de Tucuruí, Estado do Pará, nos meses de fevereiro, agosto e outubro de 1984, respectivamente. Até o final de 1990 os vírus TUC, CPE e ART foram isolados 12, 32 e 28 vezes respectivamente, sempre na região da UHE-TUC, exceção feita ao vírus TUC, do qual se obteve uma amostra procedente de Balbina, onde também foi construída uma hidroelétrica. Até o presente, esses vírus só foram isolados a partir de mosquitos do grupo An. (Nys. principalmente, a partir das espécies An. (Nys. nuneztovari e An. (Nys. triannulatus também consideradas vetores secundários da malária na Amazônia Brasileira. Testes sorológicos executados com soros humanos e de diversas espécies de animais silvestres foram negativos, com exceção de um soro de um carnívoro de espécie Nasua nasua que neutralizou a amostra TUC em títulos de 2.6 índice logaritmico de neutralização (ILN.

  15. Partial genetic characterization of Sedlec virus (Orthobunyavirus, Bunyaviridae)

    Czech Academy of Sciences Publication Activity Database

    Bakonyi, T.; Kolodziejek, J.; Rudolf, Ivo; Berčič, R.; Nowotny, N.; Hubálek, Zdeněk

    2013-01-01

    Roč. 19, October (2013), s. 244-249. ISSN 1567-1348 Institutional support: RVO:68081766 Keywords : Sedlec virus * Leanyer virus * Simbu group * Orthobunyavirus * Acrocephalus Subject RIV: EE - Microbiology, Virology Impact factor: 3.264, year: 2013

  16. Biogeography of tick-borne Bhanja virus (Bunyaviridae) in Europe

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk

    2009-01-01

    Roč. 2009, č. 372691 (2009), s. 1-11. ISSN 1687-708X Grant ostatní: 6th Framework Programme(XE) GOCE-2003-010284 EDEN Institutional research plan: CEZ:AV0Z60930519 Keywords : Bhanja virus * biogeography * arbovirus es Subject RIV: EE - Microbiology, Virology

  17. Aguacate virus, a new antigenic complex of the genus Phlebovirus (family Bunyaviridae).

    Science.gov (United States)

    Palacios, Gustavo; da Rosa, Amelia Travassos; Savji, Nazir; Sze, Wilson; Wick, Ivan; Guzman, Hilda; Hutchison, Stephen; Tesh, Robert; Lipkin, W Ian

    2011-06-01

    Genomic and antigenic characterization of Aguacate virus, a tentative species of the genus Phlebovirus, and three other unclassified viruses, Armero virus, Durania virus and Ixcanal virus, demonstrate a close relationship to one another. They are distinct from the other nine recognized species within the genus Phlebovirus. We propose to designate them as a new (tenth) serogroup or species (Aguacate virus) within the genus. The four viruses were all isolated from phlebotomine sandflies (Lutzomyia sp.) collected in Central and South America. Aguacate virus appears to be a natural reassortant and serves as one more example of the high frequency of reassortment in this genus. PMID:21325481

  18. Emergence of a new lineage of Cache Valley virus (Bunyaviridae: Orthobunyavirus) in the Northeastern United States.

    Science.gov (United States)

    Armstrong, Philip M; Andreadis, Theodore G; Anderson, John F

    2015-07-01

    Cache Valley virus (CVV; Family Bunyavidae, Genus Orthobunyavirus) is a mosquito-borne zoonosis that frequently infects humans and livestock in North and Central America. In the northeastern United States, CVV transmission is unpredictable from year-to-year and may derive from the periodic extinction and reintroduction of new virus strains into this region. To evaluate this possibility, we sequenced and analyzed numerous CVV isolates sampled in Connecticut during an 18-year period to determine how the virus population may change over time. Phylogenetic analyses showed the establishment of a new viral lineage during 2010 that became dominant by 2014 and appears to have originated from southern Mexico. CVV strains from Connecticut also grouped into numerous sub-clades within each lineage that included viruses from other U.S. states and Canada. We did not observe the development and stable persistence of local viral clades in Connecticut, which may reflect the episodic pattern of CVV transmission. Together, our data support the emergence of a new lineage of CVV in the northeastern United States and suggest extensive dispersal of viral strains in North America. PMID:25962774

  19. Evaluation of the eastern cottontail Sylvilagus floridanus as an amplifying vertebrate host for Cache Valley virus (Bunyaviridae) in Indiana.

    Science.gov (United States)

    Blackmore, Carina G M; Grimstad, Paul R

    2008-01-01

    To evaluate the importance of eastern cottontails (Sylvilagus floridanus) as amplifying hosts for Cache Valley virus (CVV), we tested hunter-provided blood samples from northern Indiana for specific neutralizing (N) antibodies against this mosquito-borne bunya-virus. Samples were collected during the winter of 1994-95. Two seronegative eastern cottontails, captured in July 1995, were also infected with CVV by subcutaneous inoculation, and two others were infected by allowing CVV-infected mosquitoes to feed on them. The results indicate that eastern cottontails probably are not important amplifying hosts for CVV. The prevalence of N antibodies against CVV was low (6.0%, n=82) among the hunter-killed animals. Low viremia (<1.8 log10 plaque-forming units/ml) of short duration (1-3 days) were seen in three of four experimentally infected eastern cottontails. The viremias were insufficient for infecting Coquillettidia perturbans, a mosquito species commonly found naturally infected with CVV. PMID:18263839

  20. Nucleotide variability of Ťahyňa virus (Bunyaviridae, Orthobunyavirus) small (S) and medium (M) genomic segments in field strains differing in biological properties

    Czech Academy of Sciences Publication Activity Database

    Kilian, P.; Růžek, Daniel; Danielová, V.; Hypša, Václav; Grubhoffer, Libor

    2010-01-01

    Roč. 149, č. 1 (2010), s. 119-123. ISSN 0168-1702 R&D Projects: GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : Tahyna virus * Bunyavirus * california group * genetic variability * virulence Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.905, year: 2010

  1. Evidencia serológica de infección por hantavirus (Bunyaviridae: Hantavirus) en roedores del Departamento de Sucre, Colombia

    OpenAIRE

    Pedro Blanco; Arroyo Stiven; Homer Corrales; Julia Pérez; Lercy Álvarez; Anaís Castellar

    2012-01-01

    Objetivo Determinar la frecuencia de anticuerpos específicos a hantavirus en roedores del municipio de San Marcos, departamento de Sucre. Métodos Se capturaron 144 roedores con trampas Sherman® en áreas urbanas y rurales del municipio de San Marcos, desde diciembre de 2007 hasta julio de 2009. Los anticuerpos Ig G específicos contra el Virus Sin Nombre (VSN) fueron detectados en muestras de plasma mediante ELISA indirecto. Resultados La seroprevalencia de anticuerpos contra hantavirus fue de...

  2. [Taxonomy of previously unclassified Tamdy virus (TAMV) (Bunyaviridae, Nairovirus) isolated from the Hyalomma asiaticum asiaticum Schülce et Schlottke, 1929 (Ixodidae, Hyalomminae) in the Middle East and transcaucasia].

    Science.gov (United States)

    L'vov, D K; Al'khovskiĭ, S V; Shchelkanov, M Iu; Shchetinin, A M; Aristova, V A; Gitel'man, A K; Deriabin, P G; Botikov, A G

    2014-01-01

    Complete genome sequencing of three Tamdy (TAMV) virus strains was carried out. The prototype strain TAMV/LEIV-1308Uz was isolated for the very first time from the Hyalomma asiaticum asiaticum Schülce et Schlottke, 1929 (Ixodidae, Hyalomminae) collected in the August 1971 from sheep in the arid area near Namdybulak town (41 degrees 36' N, 64 degrees 39' E) in the Tamdinsky district of the Bukhara region (Uzbekistan). TAMV was revealed to be a prototype member of the new phylogenetic group within the limits of the Nairovirus. The TAMV homology for RdRp (L-segment) amino acid sequence is not less than 40% with Crimea-Congo hemorrhagic fever virus (CCHFV), Hazara virus (HAZV), and Dugbe virus (DUGV), which are also linked with Ixodidae ticks. The TAMV homologies with the Issyk-Kul virus (ISKV) and Caspiy virus (CASV) for RdRp are 37.6% and 37.7%, respectively. These data conformed to the low values of GnGc (M-segment) and nucleocapsid protein N (S-segment) homology. The TAMV homologies with the nairoviruses for GnGc is in average 25%; with the nairoviruses linked with Ixodidae ticks (CCHFV, DUGV, HAZV) - 33%; with Argasidae ticks (ISKV, CASV) - 28%. The TAMV/LEIV-1308Uz, LEIV-6158Ar, and LEIV-10226Az have high level of identity. The TAMV/LEIV-10226Az from Azerbaijan has 99% homology for both nucleotide and amino acid sequences of the prototype TAMV/LEIV-1308Uz RdRp. The TAMV/LEIV-6158Ar from Armenia is more divergent and has 94.2% and 96.3% homologies with the TAMV/LEIV-1308Uz, respectively. The homology between the TAMV/LEIV-1308Uz and TAMV/LEIV-10226Az for GnGc is 93%. The TAMV/LEIV-6158Ar has 90% homology for this protein with the TAMV/LEIV-1308Uz and 93% with the TAMV/LEIV-10226Az, respectively. Differences in nucleocapsid protein between three TAMV strains are 5-7%. PMID:25069280

  3. CLONING AND EXPRESSION OF THE CRIMEAN-CONGO HEMORRHAGIC FEVERVIRUS GLYCOPROTEINS

    OpenAIRE

    Sliwa, Mariam

    2009-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a worldwide tick-borne disease that originally belongs to the Bunyaviridae family, the genus Nairovirus. In addition to infection from ticks, humans become infected if any contact with infected blood or tissue material occurs. To study the disease, several methods such as real-time Polymerase Chain Reaction, enzyme-linked immunosorbent assay and Immunofluorescence assay are used for detection of the virus. All viruses in Bunyaviridae consists of three...

  4. Early Bunyavirus-Host Cell Interactions

    Directory of Open Access Journals (Sweden)

    Amelina Albornoz

    2016-05-01

    Full Text Available The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.

  5. Early Bunyavirus-Host Cell Interactions.

    Science.gov (United States)

    Albornoz, Amelina; Hoffmann, Anja B; Lozach, Pierre-Yves; Tischler, Nicole D

    2016-01-01

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion. PMID:27213430

  6. The Andes Hantavirus NSs Protein Is Expressed from the Viral Small mRNA by a Leaky Scanning Mechanism

    OpenAIRE

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P.; Pino, Karla; Tischler, Nicole D.; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-01-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypa...

  7. Molecular evolution of Puumala hantavirus in Fennoscandia: phylogenetic analysis of strains from two recolonization routes

    DEFF Research Database (Denmark)

    Asikainen, Kari; Hänninen, Tarja; Henttonen, Heikki; Niemimaa, Jukka; Laakkonen, Juha; Andersen, Hans Kerzel; Bille, Nils; Leirs, Herwig; Vaheri, Antti; Plyusnin, Alexander

    2000-01-01

    Like other members of the genus Hantavirus in the family Bunyaviridae, Puumala virus (PUUV) is thought to be co-evolving with its natural host, the bank vole Clethrionomys glareolus. To gain insight into the evolutionary history of PUUV in northern Europe during the last post-glacial period, we...

  8. Evidence for Culicoides obsoletus group as vector for Schmallenberg virus in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Kristensen, Birgit; Kirkeby, Carsten;

    Bunyaviridae family and is closely related to Shamonda and Akabane viruses. These viruses are transmitted by insect vectors (including biting midges (Culicoides sp.) and mosquitoes). To determine whether these insects may act as vectors for SBV, biting midges (Culicoides spp.) caught in October 2011, in the...

  9. Geographical distribution and surveillance of Crimean-Congo hemorrhagic fever in Iran

    DEFF Research Database (Denmark)

    Chinikar, Sadegh; Ghiasi, Seyed Mojtaba; Moradi, Maryam;

    2010-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is viral hemorrhagic fever caused by CCHF virus, which belongs to the family Bunyaviridae and the genus Nairovirus. The virus is transmitted to humans via contact with blood and tissue from infected livestock, a tick bite, or contact with an infected person...

  10. Severe Crimean-Congo haemorrhagic fever presented with massive retroperitoneal haemorrhage that recovered without antiviral treatment

    DEFF Research Database (Denmark)

    Gharabaghi, Mehrnaz Asadi; Chinikar, Sadegh; Ghiasi, Seyyed Mojtaba;

    2011-01-01

    Crimean-Congo haemorrhagic fever (CCHF) is a tickborne viral zoonosis with up to 50% mortality in humans caused by CCHF virus belonging to the genus Nairovirus, family Bunyaviridae. The geographical distribution of CCHF cases corresponds closely with the distribution of principle tick vectors that...

  11. Evidence for widespread infection of African bats with Crimean-Congo hemorrhagic fever-like viruses

    Czech Academy of Sciences Publication Activity Database

    Müller, M. A.; Devignot, S.; Lattwein, E.; Corman, V. M.; Maganga, G. D.; Gloza-Rausch, F.; Binger, T.; Vallo, Peter; Emmerich, P.; Cottontail, V. M.; Tschapka, M.; Oppong, S.; Drexler, J. F.; Weber, F.; Leroy, E. M.; Drosten, C.

    2016-01-01

    Roč. 6, č. 26637 (2016), s. 26637. ISSN 2045-2322 Institutional support: RVO:68081766 Keywords : sheep disease virus * family Bunyaviridae * serological relationships * antibody-response * migratory birds * rapid detection * viral load * ticks * nairovirus * genus Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 5.578, year: 2014

  12. Brus Laguna virus, a Gamboa bunyavirus from Aedeomyia squamipennis collected in Honduras.

    Science.gov (United States)

    Calisher, C H; Lazuick, J S; Sudia, W D

    1988-10-01

    A virus isolate from Aedeomyia squamipennis collected in Honduras in 1967 was identified as a member of the Gamboa serogroup (family Bunyaviridae, genus Bunyavirus). This is the ninth Gamboa serogroup virus and the eighth shown to be a distinct serotype. PMID:2903690

  13. Occurrence of Tomato spotted wilt virus in Stevia rebaudiana and Solanum tuberosum in Northern Greece

    NARCIS (Netherlands)

    Chatzivassiliou, E.K.; Peters, D.; Lolas, P.

    2007-01-01

    Tomato spotted wilt virus (TSWV) (genus Tospovirus, family Bunyaviridae) was first reported in Greece during 1972 (3) and currently is widespread in the central and northern part of the country infecting several cultivated and wild plant species (1,2). In June 2006, virus-like symptoms similar to th

  14. Dynamics of genetic diversity of Tomato spotted wilt virus in the United States

    Science.gov (United States)

    Among known tospoviruses, Tomato spotted wilt virus (TSWV; genus Tospovirus, family Bunyaviridae) continues to be the major viral disease affecting a wide range of agricultural and horticultural crops worldwide. Like many other RNA viruses, TSWV is known to maintain heterogeneous and divergent popul...

  15. Towards understanding TSWW particle assembly: analysis of the intracellular behavior of the viral structural proteins

    NARCIS (Netherlands)

    Ribeiro, D.M.O.G.

    2007-01-01

    At the onset of the studies presented in this thesis, it was already known that the assembly of the enveloped particle of Tomato spotted wilt virus (TSWV; family Bunyaviridae) in the infected plant cell was featured by a number of interesting phenomena. This process involves enwrapment of the viral

  16. Genetic Diversity of Crimean Congo Hemorrhagic Fever Virus Strains from Iran

    OpenAIRE

    Sadegh Chinikar; Saeid Bouzari; Mohammad Ali Shokrgozar; Ehsan Mostafavi; Tahmineh Jalali; Sahar Khakifirouz; Norbert Nowotny; Fooks, Anthony R.; Nariman Shah-Hosseini

    2016-01-01

    Background: Crimean Congo hemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family and Nairovirus genus. It has a negative-sense, single stranded RNA genome approximately 19.2 kb, containing the Small, Medium, and Large segments. CCHFVs are relatively divergent in their genome sequence and grouped in seven distinct clades based on S-segment sequence analysis and six clades based on M-segment sequences. Our aim was to obtain new insights into the molecular epidemiology of CCHFV i...

  17. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran

    OpenAIRE

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; MOSTAFAVI, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias

    2016-01-01

    Background: Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Methods: Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phyloge­netic and bootscan methods. Results: Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome ...

  18. First International External Quality Assessment of Molecular Detection of Crimean-Congo Hemorrhagic Fever Virus

    OpenAIRE

    Escadafal, Camille; Ölschläger, Stephan; Avšič-Županc, Tatjana; Papa, Anna; Vanhomwegen, Jessica; Wölfel, Roman; Mirazimi, Ali; Teichmann, Anette; Donoso Mantke, Oliver; Niedrig, Matthias

    2012-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonosis caused by a Nairovirus of the family Bunyaviridae. Infection is transmitted to humans mostly by Hyalomma ticks and also by direct contact with the blood or tissues of infected humans or viremic livestock. Clinical features usually include a rapid progression characterized by hemorrhage, myalgia and fever, with a lethality rate up to 30%. CCHF is one of the most widely distributed viral hemorrhagic fevers and has been reported in Africa, the...

  19. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family

    OpenAIRE

    Marklewitz, Marco; Zirkel, Florian; Kurth, Andreas; Drosten, Christian; Junglen, Sandra

    2015-01-01

    Knowledge of the origin and evolution of viruses provides important insight into virus emergence involving the acquisition of genes necessary for the infection of new host species or the development of pathogenicity. The family Bunyaviridae contains important arthropod-borne pathogens of humans, animals, and plants. In this study, we provide a comprehensive characterization of two novel lineages of insect-specific bunyaviruses that are in basal phylogenetic relationship to the rodent-borne ha...

  20. CRIMEAN CONGO HEMORRHAGIC FEVER - AN ARTICLE REVIEW

    OpenAIRE

    Khan Najam Ali; Jaiswal Anushree; Choudhray Reenu; Abid Mohammad; Kishore Kamal

    2011-01-01

    Crimean–Congo hemorrhagic fever (CCHF) caused by negative-sense, single-stranded RNA virus in the genus Nairovirus, family Bunyaviridae. (CCHF) is a tick-borne infectious disease characterized by fever, malaise, headache, nausea, vomiting, diarrhoea, sore throat, muscle aches, hemorrhage and thrombocytopenia. CCHF has the most extensive geographic range of the medically significant tick-borne viruses occurring in Africa, Europe and Asia & found recently in India (Ahmadabad) in 2011,become a s...

  1. Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses

    OpenAIRE

    Witkowski, P. T.; Drexler, J. F.; Kallies, R.; Lickova, M; Bokorova, S.; Mananga, G. D.; Szemes, T.; Leroy, Eric; Kruger, D H; Drosten, C.; Klempa, B.

    2016-01-01

    Until recently, hantaviruses (family Bunyaviridae) were believed to originate from rodent reservoirs. However, genetically distinct hantaviruses were lately found in shrews and moles, as well as in bats from Africa and Asia. Bats (order Chiroptera) are considered important reservoir hosts for emerging human pathogens. Here, we report on the identification of a novel hantavirus, provisionally named Makokou virus (MAKV), in Noack's Roundleaf Bat (Hipposideros ruber) in Gabon, Central Africa. Ph...

  2. Hantaviruses: Rediscovery and New Beginnings

    OpenAIRE

    Yanagihara, Richard; Gu, Se Hun; Arai, Satoru; Kang, Hae Ji; Song, Jin-Won

    2014-01-01

    Virus and host gene phylogenies, indicating that antigenically distinct hantaviruses (family Bunyaviridae, genus Hantavirus) segregate into clades, which parallel the molecular evolution of rodents belonging to the Murinae, Arvicolinae, Neotominae and Sigmodontinae subfamilies, suggested co-divergence of hantaviruses and their rodent reservoirs. Lately, this concept has been vigorously contested in favor of preferential host switching and local host-specific adaptation. To gain insights into ...

  3. Gene S characterization of Hantavirus species Seoul virus isolated from Rattus norvegicuson an Indonesian island

    OpenAIRE

    Dian Perwitasari; Ima Nurisa Ibrahim; Andi Yasmon

    2014-01-01

    AbstrakLatar belakang: Hantavirus hidup dan berkembang biak di tubuh hewan pengerat, salah satunya Rattus norvegicus yang banyak ditemukan di daerah kepulauan di Indonesia. Hantavirus spesies Seoul virus (SEOV) adalah virus RNA negatif rantai tunggal yang termasuk dalam keluarga Bunyaviridae, mempunyai beberapa gen spesifik terutama gen S yang dapat dikembangkan untuk uji diagnostik. Tujuan penelitian ini ialah untuk mengetahui karakter dari gen S dari Hantavirus spesies Seoulvirus.Metode:Pad...

  4. The fundamental role of endothelial cells in hantavirus pathogenesis

    OpenAIRE

    Hepojoki, Jussi; Vaheri, Antti; Strandin, Tomas

    2014-01-01

    Hantavirus, a genus of rodent- and insectivore-borne viruses in the family Bunyaviridae, is a group of emerging zoonotic pathogens. Hantaviruses cause hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome in man, often with severe consequences. Vascular leakage is evident in severe hantavirus infections, and increased permeability contributes to the pathogenesis. This review summarizes the current knowledge on hantavirus interactions with hematopoietic and endothelial ...

  5. Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses▿

    OpenAIRE

    Huiskonen, Juha T.; Hepojoki, Jussi; Laurinmäki, Pasi; Vaheri, Antti; Lankinen, Hilkka; Butcher, Sarah J.; Grünewald, Kay

    2010-01-01

    Hantaviruses (family Bunyaviridae) are rodent-borne emerging viruses that cause a serious, worldwide threat to human health. Hantavirus diseases include hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. Virions are enveloped and contain a tripartite single-stranded negative-sense RNA genome. Two types of glycoproteins, GN and GC, are embedded in the viral membrane and form protrusions, or “spikes.” The membrane encloses a ribonucleoprotein core, which consists of ...

  6. Serological evidence of hantavirus infection in rural and urban regions in the state of Amazonas, Brazil

    OpenAIRE

    João Bosco Lima Gimaque; Michele de Souza Bastos; Wornei Silva Miranda Braga; Cintia Mara Costa de Oliveira; Márcia da Costa Castilho; Regina Maria Pinto de Figueiredo; Elizabeth dos Santos Galusso; Evaulino Ferreira Itapirema; Luiz Tadeu Moraes Figueiredo; Maria Paula Gomes Mourão

    2012-01-01

    Hantavirus disease is caused by the hantavirus, which is an RNA virus belonging to the family Bunyaviridae. Hantavirus disease is an anthropozoonotic infection transmitted through the inhalation of aerosols from the excreta of hantavirus-infected rodents. In the county of Itacoatiara in the state of Amazonas (AM), Brazil, the first human cases of hantavirus pulmonary and cardiovascular syndrome were described in July 2004. These first cases were followed by two fatal cases, one in the municip...

  7. Antibody levels to hantavirus in inhabitants of western Santa Catarina State, Brazil

    OpenAIRE

    William Marciel de Souza; Alex Martins Machado; Geonildo Rodrigo Disner; Everton Boff; Aline Rafaela da Silva Rodrigues Machado; Michelly de Padua; Luiz Tadeu Moraes Figueiredo; Gustavo Borba de Miranda

    2012-01-01

    Hantavirus cardiopulmonary syndrome (HCPS) is an infectious disease caused by hantaviruses of the family Bunyaviridae, and is transmitted by aerosols of excreta of infected rodents. The aim of the present study was to determine antibody levels to hantavirus in the population that lives at frontier of Brazil and Argentina. Participated of the study 405 individuals living in the municipalities of Bandeirante, Santa Helena, Princesa and Tunapolis, state of Santa Catarina, Brazil. IgG antibodies ...

  8. Cytokine expression during early and late phase of acute Puumala hantavirus infection

    OpenAIRE

    Sadeghi Mahmoud; Eckerle Isabella; Daniel Volker; Burkhardt Ulrich; Opelz Gerhard; Schnitzler Paul

    2011-01-01

    Abstract Background Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. Results We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus i...

  9. Hantaviral Proteins: Structure, Functions, and Role in Hantavirus Infection

    OpenAIRE

    Muyangwa, Musalwa; Martynova, Ekaterina V.; Khaiboullina, Svetlana F.; Morzunov, Sergey P.; Rizvanov, Albert A.

    2015-01-01

    Hantaviruses are the members of the family Bunyaviridae that are naturally maintained in the populations of small mammals, mostly rodents. Most of these viruses can easily infect humans through contact with aerosols or dust generated by contaminated animal waste products. Depending on the particular Hantavirus involved, human infection could result in either hemorrhagic fever with renal syndrome or in Hantavirus cardiopulmonary syndrome. In the past few years, clinical cases of the Hantavirus...

  10. Hantavirus N Protein Exhibits Genus-Specific Recognition of the Viral RNA Panhandle▿

    OpenAIRE

    Mir, M A; Brown, B.; Hjelle, B; Duran, W. A.; Panganiban, A T

    2006-01-01

    A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into “panhandle” hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhand...

  11. Quantitative Real-Time PCR Detection of Rift Valley Fever Virus and Its Application to Evaluation of Antiviral Compounds

    OpenAIRE

    Garcia, Stephan; Crance, Jean Marc; Billecocq, Agnes; Peinnequin, Andre; Jouan, Alain; Bouloy, Michele; Garin, Daniel

    2001-01-01

    The Rift Valley fever virus (RVFV), a member of the genus Phlebovirus (family Bunyaviridae) is an enveloped negative-strand RNA virus with a tripartite genome. Until 2000, RVFV circulation was limited to the African continent, but the recent deadly outbreak in the Arabian Peninsula dramatically illustrated the need for rapid diagnostic methods, effective treatments, and prophylaxis. A method for quantifying the small RNA segment by a real-time detection reverse transcription (RT)-PCR using Ta...

  12. Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus

    OpenAIRE

    Överby, A. K.; Pettersson, R F; Grünewald, K; Huiskonen, J.T.

    2008-01-01

    Bunyaviridae is a large family of viruses that have gained attention as “emerging viruses” because many members cause serious disease in humans, with an increasing number of outbreaks. These negative-strand RNA viruses possess a membrane envelope covered by glycoproteins. The virions are pleiomorphic and thus have not been amenable to structural characterization using common techniques that involve averaging of electron microscopic images. Here, we determined the three-dimensional structure o...

  13. Rift Valley Fever Virus Incorporates the 78 kDa Glycoprotein into Virions Matured in Mosquito C6/36 Cells

    OpenAIRE

    Weingartl, Hana M.; Zhang, Shunzhen; Marszal, Peter; McGreevy, Alan; Burton, Lynn; Wilson, William C.

    2014-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp) of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibod...

  14. Serological Screening Suggests Presence of Schmallenberg Virus in Cattle, Sheep and Goat in the Zambezia Province, Mozambique

    OpenAIRE

    Blomström, A-L; Stenberg, H; Scharin, I; Figueiredo, J; Nhambirre, O; Abilio, A P; Fafetine, J; Berg, M.

    2014-01-01

    Schmallenberg virus (SBV) is a novel Orthobunyavirus within the family Bunyaviridae belonging to the Simbu serogroup. Schmallenberg virus infects ruminants and has since its discovery in the autumn 2011 been detected/spread to large parts of Europe. Most bunyaviruses are arboviruses, and SBV has been detected in biting midges in different European countries, suggesting that they may play a role in the transmission of the virus. It is not known how SBV was introduced to Europe and if SBV is pr...

  15. Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment

    International Nuclear Information System (INIS)

    Crimean-Congo hemorrhagic fever (CCHF) virus is highly pathogenic for humans and remains the only Category A virus for which full sequence information is currently unavailable. In this study we completed CCHF genome characterization by determining the L segment sequence using Dugbe and CCHF virus-specific oligonucleotides. Sequence alignments revealed the presence of four previously described conserved regions in all Bunyaviridae polymerases. Interestingly, additional regions containing putative Ovarian Tumor (OTU)-like cysteine protease and helicase domains were identified in the L segments of CCHF and Dugbe viruses, suggesting an autoproteolytic cleavage process for nairovirus L proteins

  16. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran

    OpenAIRE

    Sadegh Chinikar; Nariman Shah-Hosseini; Saeid Bouzari; MohammadAli Shokrgozar; Ehsan Mostafavi; Tahmineh Jalali; Sahar Khakifirouz; Groschup, Martin H; Matthias Niedrig

    2015-01-01

     Background: Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran.Methods: Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phyloge­netic and bootscan methods.Results: Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHF...

  17. Radiological Findings and their Clinical Correlations in Nephropathia Epidemica

    Energy Technology Data Exchange (ETDEWEB)

    Paakkala, A.; Mustonen, J. [Medical School, Univ. of Tampere, and Dept. of Radiology and Internal Medicine, Tampere Univ. Hospital, Tampere (Finland)

    2007-04-15

    Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome (HFRS). Its course varies from asymptomatic to fatal. The etiologic agent, Puumala virus, belongs to the Hantavirus genus of the Bunyaviridae family. Respiratory symptoms, from common cold to respiratory distress, occur in NE. Acute renal failure (ARF) is evident in over 90% of hospital-treated NE patients. In this review article, special attention is paid to radiological lung and renal involvement to investigate the occurrence and type of manifestations during the acute phase of infection and recovery.

  18. La Crosse virus infectivity, pathogenesis, and immunogenicity in mice and monkeys

    OpenAIRE

    Murphy Brian R; Firestone Cai-Yen; Ward Jerrold M; Cress Christina M; Bennett Richard S; Whitehead Stephen S

    2008-01-01

    Abstract Background La Crosse virus (LACV), family Bunyaviridae, was first identified as a human pathogen in 1960 after its isolation from a 4 year-old girl with fatal encephalitis in La Crosse, Wisconsin. LACV is a major cause of pediatric encephalitis in North America and infects up to 300,000 persons each year of which 70–130 result in severe disease of the central nervous system (CNS). As an initial step in the establishment of useful animal models to support vaccine development, we exami...

  19. The role of platelets in the pathogenesis of viral hemorrhagic fevers.

    Directory of Open Access Journals (Sweden)

    Juan C Zapata

    2014-06-01

    Full Text Available Viral hemorrhagic fevers (VHF are acute zoonotic diseases that, early on, seem to cause platelet destruction or dysfunction. Here we present the four major ways viruses affect platelet development and function and new evidence of molecular factors that are preferentially induced by the more pathogenic members of the families Flaviviridae, Bunyaviridae, Arenaviridae, and Filoviridae. A systematic search was performed through the main medical electronic databases using as parameters all current findings concerning platelets in VHF. Additionally, the review contains information from conference proceedings.

  20. Diagnóstico virológico y molecular de virus transmitidos por roedores. Hantavirus y arenavirus

    OpenAIRE

    Silvana Levis

    2010-01-01

    Los hantavirus (familia Bunyaviridae) y arenavirus (familia Arenaviridae) son virus de roedores; cada uno de ellos parece estar estrictamente asociado con una especie de roedor en la que causa una infección persistente y asintomática. En las Américas tienen como reservorios primarios a roedores de la sub-familia Sigmodontinae, y son causantes de síndrome pulmonar por Hantavirus (SPH) y fiebres hemorrágicas, respectivamente (1,2). El número de estos virus identificados en los últimos años ha a...

  1. Radiological Findings and their Clinical Correlations in Nephropathia Epidemica

    International Nuclear Information System (INIS)

    Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome (HFRS). Its course varies from asymptomatic to fatal. The etiologic agent, Puumala virus, belongs to the Hantavirus genus of the Bunyaviridae family. Respiratory symptoms, from common cold to respiratory distress, occur in NE. Acute renal failure (ARF) is evident in over 90% of hospital-treated NE patients. In this review article, special attention is paid to radiological lung and renal involvement to investigate the occurrence and type of manifestations during the acute phase of infection and recovery

  2. The 3′ Untranslated Region of the Andes Hantavirus Small mRNA Functionally Replaces the Poly(A) Tail and Stimulates Cap-Dependent Translation Initiation from the Viral mRNA ▿

    OpenAIRE

    Vera-Otarola, Jorge; Soto-Rifo, Ricardo; Ricci, Emiliano P.; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2010-01-01

    In the process of translation of eukaryotic mRNAs, the 5′ cap and the 3′ poly(A) tail interact synergistically to stimulate protein synthesis. Unlike its cellular counterparts, the small mRNA (SmRNA) of Andes hantavirus (ANDV), a member of the Bunyaviridae, lacks a 3′ poly(A) tail. Here we report that the 3′ untranslated region (3′UTR) of the ANDV SmRNA functionally replaces a poly(A) tail and synergistically stimulates cap-dependent translation initiation from the viral mRNA. Stimulation of ...

  3. Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection

    OpenAIRE

    Ahsan, Noor A.; Sampey, Gavin C.; Lepene, Ben; Akpamagbo, Yao; Barclay, Robert A.; Iordanskiy, Sergey; Hakami, Ramin M.; KASHANCHI, FATAH

    2016-01-01

    Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and...

  4. Inhibition of sandfly fever Sicilian virus (Phlebovirus) replication in vitro by antiviral compounds.

    Science.gov (United States)

    Crance, J M; Gratier, D; Guimet, J; Jouan, A

    1997-01-01

    Sandfly fever Sicilian virus (SFSV) was used in our laboratory to screen antiviral substances active toward viruses of the Bunyaviridae family. Antiviral activity was estimated by the reduction of the cytopathic effect of SFSV on infected Vero cells. Cytotoxicity was evaluated by determining the inhibition of Trypan blue exclusion. The specificity of action of each tested compound was estimated by the selectivity index (CD50/ED50). Selectivity indices of human recombinant interferon-alpha (IFN alpha) (Roferon and Introna), iota-, kappa- and lambda- carrageenans, fucoidan and 6-azauridine were much higher than that of ribavirin, the only antiviral substance which has been previously investigated for its inhibitory effects on Phlebovirus infections. Other compounds showed significant antiviral activity: glycyrrhizin, suramin sodium, dextran sulphate and pentosan polysulphate. All these compounds caused a concentration-dependent reduction in the virus yield. Ribavirin, 6-azauridine and IFN alpha have been shown to inhibit a late step of the virus replicative cycle, whereas glycyrrhizin and suramin sodium were active at an early step and the sulphated polysaccharides inhibited adsorption of SFSV on the cells. The antiviral compounds selected in this study as specific inhibitors of in vitro replication of SFSV are promising candidates for the chemotherapy of haemorrhagic fevers caused by viruses of the Bunyaviridae family. The combination of IFN alpha and ribavirin, which showed a synergistic antiviral effect, should be evaluated for the treatment of these infections. PMID:9403935

  5. RNA Encapsidation and Packaging in the Phleboviruses.

    Science.gov (United States)

    Hornak, Katherine E; Lanchy, Jean-Marc; Lodmell, J Stephen

    2016-01-01

    The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV), severe fever with thrombocytopenia syndrome virus (SFTSV), Uukuniemi virus (UUKV), and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5-7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA) are synthesized. The interaction between the vRNA and the viral nucleocapsid (N) protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP) architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses. PMID:27428993

  6. Ecological studies of enzootic Venezuelan equine encephalitis in north-central Venezuela, 1997-1998.

    Science.gov (United States)

    Salas, R A; Garcia, C Z; Liria, J; Barrera, R; Navarro, J C; Medina, G; Vasquez, C; Fernandez, Z; Weaver, S C

    2001-01-01

    From 1997-1998, we investigated the possible continuous circulation of epizootic Venezuelan equine encephalitis (VEE) virus suggested by a 1983 subtype IC interepizootic mosquito isolate made in Panaquire, Miranda State, Venezuela. The study area was originally covered by lowland tropical rainforest but has been converted into cacao plantations. Sentinel hamsters, small mammal trapping, mosquito collections, and human serosurveys were used to detect active or recent virus circulation. Six strains of subtype ID VEE virus were isolated from hamsters that displayed no apparent disease. Four other arboviruses belonging to group A (Togaviridae: Alphavirus), two Bunyamwera group (Bunyaviridae), and three Gamboa group (Bunyaviridae) arboviruses were also isolated from hamsters, as well as 8 unidentified viruses. Venezuelan equine encephalitis-specific antibodies were detected in 5 small mammal species: Proechimys guairae, Marmosa spp., and Didelphis marsupialis. Mosquito collections comprised of 38 different species, including 8 members of the subgenus Culex (Melanoconion), did not yield any virus isolates. Sera from 195 humans, either workers in the cacao plantation or nearby residents, were all negative for VEE virus antibodies. Sequences of 1,677 nucleotides from the P62 gene of 2 virus isolates indicated that they represent a subtype ID lineage that is distinct from all others characterized previously, and are unrelated to epizootic VEE emergence. PMID:11425168

  7. Purification, crystallization and preliminary X-ray crystallographic analysis of the nucleocapsid protein of Bunyamwera virus

    International Nuclear Information System (INIS)

    The nucleocapsid protein of Bunyamwera virus, the prototypic member of the Bunyaviridae family of segmented negative-sense RNA viruses, has been expressed and crystallized. Complete X-ray diffraction data sets have been collected. Bunyamwera virus (BUNV) is the prototypic member of the Bunyaviridae family of segmented negative-sense RNA viruses. The BUNV nucleocapsid protein has been cloned and expressed in Escherichia coli. The purified protein has been crystallized and a complete data set has been collected to 3.3 Å resolution at a synchrotron source. Crystals of the nucleocapsid protein belong to space group C2, with unit-cell parameters a = 384.7, b = 89.8, c = 89.2 Å, β = 94.4°. Self-rotation function analysis of the X-ray diffraction data has provided insight into the oligomeric state of the protein as well as the orientation of the oligomers in the asymmetric unit. The structure determination of the protein is ongoing

  8. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2004-11-01

    Full Text Available Abstract The Bunyaviridae family of enveloped RNA viruses includes five genuses, orthobunyaviruses, hantaviruses, phleboviruses, nairoviruses and tospoviruses. It has not been determined which Bunyavirus protein mediates virion:cell membrane fusion. Class II viral fusion proteins (beta-penetrenes, encoded by members of the Alphaviridae and Flaviviridae, are comprised of three antiparallel beta sheet domains with an internal fusion peptide located at the end of domain II. Proteomics computational analyses indicate that the carboxyl terminal glycoprotein (Gc encoded by Sandfly fever virus (SAN, a phlebovirus, has a significant amino acid sequence similarity with envelope protein 1 (E1, the class II fusion protein of Sindbis virus (SIN, an Alphavirus. Similar sequences and common structural/functional motifs, including domains with a high propensity to interface with bilayer membranes, are located collinearly in SAN Gc and SIN E1. Gc encoded by members of each Bunyavirus genus share several sequence and structural motifs. These results suggest that Gc of Bunyaviridae, and similar proteins of Tenuiviruses and a group of Caenorhabditis elegans retroviruses, are class II viral fusion proteins. Comparisons of divergent viral fusion proteins can reveal features essential for virion:cell fusion, and suggest drug and vaccine strategies.

  9. Expression, purification and crystallization of the Crimean–Congo haemorrhagic fever virus nucleocapsid protein

    International Nuclear Information System (INIS)

    The Crimean–Congo haemorrhagic fever virus nucleocapsid protein was expressed in E. coli, purified and crystallized. X-ray diffraction data were collected to 2.1 Å resolution. Crimean–Congo haemorrhagic fever virus (CCHFV) is a member of the Nairovirus genus within the Bunyaviridae family of segmented negative-sense RNA viruses. This paper describes the expression, purification and crystallization of full-length CCHFV nucleocapsid (N) protein and the collection of a 2.1 Å resolution X-ray diffraction data set using synchrotron radiation. Crystals of the CCHFV N protein belonged to space group C2, with unit-cell parameters a = 150.38, b = 72.06, c = 101.23 Å, β = 110.70° and two molecules in the asymmetric unit. Circular-dichroism analysis provided insight into the secondary structure, whilst gel-filtration analysis revealed possible oligomeric states of the N protein. Structural determination is ongoing

  10. Thrips transmission of tospoviruses.

    Science.gov (United States)

    Rotenberg, Dorith; Jacobson, Alana L; Schneweis, Derek J; Whitfield, Anna E

    2015-12-01

    One hundred years ago, the disease tomato spotted wilt was first described in Australia. Since that time, knowledge of this disease caused by Tomato spotted wilt virus (TSWV) and transmitted by thrips (insects in the order Thysanoptera) has revealed a complex relationship between the virus, vector, plant host, and environment. Numerous tospoviruses and thrips vectors have been described, revealing diversity in plant host range and geographical distributions. Advances in characterization of the tripartite interaction between the virus, vector, and plant host have provided insight into molecular and ecological relationships. Comparison to animal-infecting viruses in the family Bunyaviridae has enabled the identification of commonalities between tospoviruses and other bunyaviruses in transmission by arthropod vectors and molecular interactions with hosts. This review provides a special emphasis on TSWV and Frankliniella occidentalis, the model tospovirus-thrips pathosystem. However, other virus-vector combinations are also of importance and where possible, comparisons are made between different viruses and thrips vectors. PMID:26340723

  11. Production of CCHF Virus-Like Particle by a Baculovirus-Insect Cell Expression System

    Institute of Scientific and Technical Information of China (English)

    Zhao-rui Zhou; Man-li Wang; Fei Deng; Tian-xian Li; Zhi-hong Hu; Hua-fin Wang

    2011-01-01

    Crimean-Congo Haemorrhagic Fever Virus(CCHFV)is a tick-born virus of the Nairovirus genus within the Bunyaviridae family,which is widespread and causes,high fatality. The nucleocapsid of CCHFV is comprised of N proteins that are encoded by the S segment. In this research,the N protein of CCHFV was expressed in insect cells using a recombinant baculovirus. Under an electron microscope,Virus-Like Particles (VLPs)with various size and morphology were observed in cytoplasmic vesicles in the infected cells.Sucrose-gradient purification of the cell lysate indicated that the VLPs were mainly located in the upper fraction after ultracentrifugation,which was confirmed by Western blot analysis and immuno-electron microscopy(IEM).

  12. Possible involvement of eEF1A in Tomato spotted wilt virus RNA synthesis.

    Science.gov (United States)

    Komoda, Keisuke; Ishibashi, Kazuhiro; Kawamura-Nagaya, Kazue; Ishikawa, Masayuki

    2014-11-01

    Tomato spotted wilt virus (TSWV) is a negative-strand RNA virus in the family Bunyaviridae and propagates in both insects and plants. Although TSWV can infect a wide range of plant species, host factors involved in viral RNA synthesis of TSWV in plants have not been characterized. In this report, we demonstrate that the cell-free extract derived from one of the host plants can activate mRNA transcriptional activity of TSWV. Based on activity-guided fractionation of the cell-free extract, we identified eukaryotic elongation factor (eEF) 1A as a possible host factor facilitating TSWV transcription and replication. The RNA synthesis-supporting activity decreased in the presence of an eEF1A inhibitor, suggesting that eEF1A plays an important role in RNA synthesis of TSWV. PMID:25151062

  13. Complete Genome Sequencing of Four Geographically Diverse Strains of Batai Virus

    Science.gov (United States)

    Groseth, Allison; Matsuno, Keita; Dahlstrom, Eric; Anzick, Sarah L.; Porcella, Stephen F.

    2012-01-01

    Batai virus (BATV) is a widely distributed but poorly studied member of the Orthobunyavirus genus in the family Bunyaviridae and is of particular interest as a known participant in natural reassortment events. Both research and surveillance efforts on this and other related viruses have been hampered by the lack of available full-length sequence data covering all three genomic segments. Here, we report the complete genome sequence of four BATV strains (MM2222, Chittoor/IG-20217, UgMP-6830, and MS50) isolated from various geographical locations. Based on these data, we have determined that strain MS50 is in fact unrelated to BATV and likely represents as a novel genotype in the genus Orthobunyavirus. PMID:23166251

  14. Geographic distribution of Bhanja virus.

    Science.gov (United States)

    Hubálek, Z

    1987-01-01

    A review on the geographic distribution, vectors and hosts of Bhanja virus (Bunyaviridae) is based on reports about: isolations of the virus; antibody surveys. Bhanja virus has been isolated in 15 countries of Asia, Africa and Europe, and antibodies against it have been detected in 15 additional countries. Vector range includes ticks of the family Ixodidae (subfam. Amblyomminae; not subfam. Ixodinae): 13 species of 6 genera (Haemaphysalis, Dermacentor, Hyalomma, Amblyomma, Rhipicephalus and Boophilus) yielded the virus. Bhanja virus has only rarely been isolated from vertebrates (Atelerix, Xerus, Ovis, Bos; possibly bats), though antibodies have been detected frequently in a wide range of mammals (Ruminantia being the major hosts), in several species of birds (Passeriformes, Galliformes) and even reptiles (Ophisaurus apodus). Natural foci of the Bhanja virus infections are of the boskematic type (sensu Rosický), associated closely with pastures of domestic ruminants infested by ticks in the regions of tropical, subtropical and partly temperate climatic zones. PMID:3108117

  15. Crimean-Congo Hemorrhagic Fever.

    Science.gov (United States)

    Shayan, Sara; Bokaean, Mohammad; Shahrivar, Mona Ranjvar; Chinikar, Sadegh

    2015-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family and Nairovirus genus. The viral genome consists of 3 RNA segments of 12 kb (L), 6.8 kb (M), and 3 kb (S). Crimean-Congo hemorrhagic fever (CCHF) is the most widespread tickborne viral infection worldwide: it has been reported in many regions of Africa, the Middle East, and Asia. The geographical distribution of CCHFV corresponds most closely with the distribution of members of the tick genera, and Hyalomma ticks are the principal source of human infection. In contrast to human infection, CCHFV infection is asymptomatic in all species. Treatment options for CCHF are limited; immunotherapy and ribavirin are effective in the treatment of CCHF; the efficacy of ribavirin in the treatment of CCHF has not yet been proven. This article reviews the history, epidemiology, clinical symptoms, pathogenesis, diagnosis, and treatment of CCHFV, as well as the development of a vaccine against it. PMID:26199256

  16. Crimean-Congo hemorrhagic fever virus nucleoprotein suppresses IFN-beta-promoter-mediated gene expression.

    Science.gov (United States)

    Fajs, Luka; Resman, Katarina; Avšič-Županc, Tatjana

    2014-02-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the family Bunyaviridae and is a causative agent of severe hemorrhagic disease. Knowledge regarding the pathogenesis of CCHFV is limited due to the requirement for high-containment laboratories and the lack of an immunocompetent animal host. Previous studies have shown that CCHFV delays the activation of the human innate immune response, specifically, the type I interferon response. Our study results show that antagonism of the interferon-beta promoter is mediated by the nucleoprotein of CCHFV strain Hoti, while strains IbAr10200 and AP92 do not suppress the activity of the IFN-beta promoter. Our results also suggest that several viral factors may provide antagonistic action against the type I interferon response. PMID:23990053

  17. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran

    Directory of Open Access Journals (Sweden)

    Sadegh Chinikar

    2015-10-01

    Full Text Available  Background: Crimean-Congo Hemorrhagic Fever Virus (CCHFV belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran.Methods: Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phyloge­netic and bootscan methods.Results: Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multi­ple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software.Conclusion: Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemi­ological investigations and vaccine design. 

  18. Single-particle cryo-electron microscopy of Rift Valley fever virus

    International Nuclear Information System (INIS)

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T = 12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  19. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses.

    Science.gov (United States)

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. PMID:26673077

  20. Molecular epidemiology of Crimean- Congo hemorrhagic fever virus genome isolated from ticks of Hamadan province of Iran

    DEFF Research Database (Denmark)

    Tahmasebi, F; Ghiasi, Seyed Mojtaba; Mostafavi, E;

    2010-01-01

    BACKGROUND & OBJECTIVES: Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. CCHFV has been isolated from at least 31 different tick species. The virus is transmitted through the bite of an infected tick, or by direct contact with CCHFV......-infected patients or the products of infected livestock. This study was undertaken to study the genetic relationship and distribution of CCHFV in the tick population of Hamadan province of Iran. METHOD: In this study, RT-PCR has been used for detection of the CCHFV genome. RESULTS: This genome was detected in 19.......2% of the ticks collected from livestock of different regions of the Hamadan province in western Iran. The infected species belonged to Hyalomma detritum, H. anatolicum, Rhipicephalus sanguineus and Argas reflexus. With one exception, genetic analysis of the virus genome isolates showed high sequence...

  1. An update on crimean congo hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Suma B Appannanavar

    2011-01-01

    Full Text Available Crimean Congo hemorrhagic fever (CCHF is one of the deadly hemorrhagic fevers that are endemic in Africa, Asia, Eastern Europe, and the Middle East. It is a tick-borne zoonotic viral disease caused by CCHF virus of genus Nairovirus (family Bunyaviridae. CCHF not only forms an important public health threat but has a significant effect on the healthcare personnel, especially in resource-poor countries. India was always a potentially endemic area until an outbreak hit parts of Gujarat, taking four lives including the treating medical team. The current review is an attempt to summarize the updated knowledge on the disease particularly in modern era, with special emphasis on nosocomial infections. The knowledge about the disease may help answer certain questions regarding entry of virus in India and future threat to community.

  2. Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians

    Directory of Open Access Journals (Sweden)

    Claine F

    2015-06-01

    Full Text Available François Claine, Damien Coupeau, Laetitia Wiggers, Benoît Muylkens, Nathalie Kirschvink Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS, University of Namur (UNamur, Namur, Belgium Abstract: In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus was first discovered in the same region where bluetongue virus serotype 8 (BTV-8 emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp. and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants. Keywords: Schmallenberg virus, Europe, ruminants, review

  3. Hantaviral Proteins: Structure, Functions, and Role in Hantavirus Infection

    Science.gov (United States)

    Muyangwa, Musalwa; Martynova, Ekaterina V.; Khaiboullina, Svetlana F.; Morzunov, Sergey P.; Rizvanov, Albert A.

    2015-01-01

    Hantaviruses are the members of the family Bunyaviridae that are naturally maintained in the populations of small mammals, mostly rodents. Most of these viruses can easily infect humans through contact with aerosols or dust generated by contaminated animal waste products. Depending on the particular Hantavirus involved, human infection could result in either hemorrhagic fever with renal syndrome or in Hantavirus cardiopulmonary syndrome. In the past few years, clinical cases of the Hantavirus caused diseases have been on the rise. Understanding structure of the Hantavirus genome and the functions of the key viral proteins are critical for the therapeutic agents’ research. This paper gives a brief overview of the current knowledge on the structure and properties of the Hantavirus nucleoprotein and the glycoproteins. PMID:26640463

  4. Antibody levels to hantavirus in inhabitants of western Santa Catarina State, Brazil

    Directory of Open Access Journals (Sweden)

    William Marciel de Souza

    2012-08-01

    Full Text Available Hantavirus cardiopulmonary syndrome (HCPS is an infectious disease caused by hantaviruses of the family Bunyaviridae, and is transmitted by aerosols of excreta of infected rodents. The aim of the present study was to determine antibody levels to hantavirus in the population that lives at frontier of Brazil and Argentina. Participated of the study 405 individuals living in the municipalities of Bandeirante, Santa Helena, Princesa and Tunapolis, state of Santa Catarina, Brazil. IgG antibodies to hantavirus were analyzed in sera by an ELISA that uses a recombinant N protein of Araraquara hantavirus as antigen. The results were also confirmed by immunofluorescent test. Eight individuals showed antibodies to hantavirus (1.97% positivity, with serum titers ranging from 100 to 800. Six seropositives were males, older than 30 years and farmers. Our results reinforce previous data on hantavirus circulation and human infections in the southern border of Brazil with Argentina.

  5. Detection of Hantaan virus RNA from anti-Hantaan virus IgG seronegative rodents in an area of high endemicity in Republic of Korea.

    Science.gov (United States)

    No, Jin Sun; Kim, Won-Keun; Kim, Jeong-Ah; Lee, Seung-Ho; Lee, Sook-Young; Kim, Ji Hye; Kho, Jeong Hoon; Lee, Daesang; Song, Dong Hyun; Gu, Se Hun; Jeong, Seong Tae; Kim, Heung-Chul; Klein, Terry A; Song, Jin-Won

    2016-04-01

    Hantaan virus (HTNV), of the family Bunyaviridae, causes hemorrhagic fever with renal syndrome (HFRS) in humans. Although the majority of epidemiologic studies have found that rodents are seropositive for hantavirus-specific immunoglobulin, the discovery of hantavirus RNA in seronegative hosts has led to an investigation of the presence of HTNV RNA in rodents captured in HFRS endemic areas. HTNV RNA was detected in seven (3.8%) of 186 anti-HTNV IgG seronegative rodents in Republic of Korea (ROK) during 2013-2014. RT-qPCR for HTNV RNA revealed dynamic virus-host interactions of HTNV in areas of high endemicity, providing important insights into the epidemiology of hantaviruses. PMID:26917012

  6. Comparative phylogenetic analysis of Dobrava-Belgrade virus L and S genetic segments isolated from an animal reservoir in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Valentina

    2014-01-01

    Full Text Available The Dobrava-Belgrade virus (DOBV is a member of the Bunyaviridae family, genus Hantavirus, possessing a single-stranded RNA genome consisting of three segments, designated L (large, M (medium and S (small. In this study, we present phylogenetic analysis of a newly detected DOBV strain isolated from Apodemus agrarius. Analysis was based on partial L and S segment sequences, in comparison to previously published DOBV sequences from Serbia and elsewhere. A phylogenetic tree based on partial S segment revealed local geographical clustering of DOBV sequences from Serbia, unrelated to host (rodent or human. The topology of the phylogenetic tree was confirmed with a high percent of completely or partially resolved quartets in likelihood-mapping analysis, whereas no evidence of possible recombination in the examined S segment data set was found.

  7. Hantaviruses as emergent zoonoses

    Directory of Open Access Journals (Sweden)

    LS Ullmann

    2008-01-01

    Full Text Available Hantaviruses belong to the Bunyaviridae family, which consists of vector-borne viruses. These viruses can provoke two infection types: hemorrhagic fever with renal syndrome (HFRS - which occurs in the Old World - and hantavirus cardiopulmonary syndrome (HCPS - an emergent zoonosis that can be found in many countries of the western hemisphere. Rodents are hantavirus reservoirs and each species seems to host a different virus type. Humans acquire the infection by inhaling contaminated aerosol particles eliminated by infected animals. The factors involved in the emergence of hantavirus infections in the human population include ecological modifications and changes in human activities. The most important risk factor is contact between man and rodents, as a result of agricultural, forestry or military activities. Rodent control remains the primary strategy for preventing hantavirus diseases, including via health education and hygienic habits.

  8. Perspectives of antiviral RNA interference (RNAi pathway of insects with special reference to mosquito in the context of dengue infection: a review

    Directory of Open Access Journals (Sweden)

    Probal Basu

    2014-09-01

    Full Text Available RNA interference is a post-transcriptional sequence selective gene control mechanism. Antiviral RNA interference (RNAi pathway is one of the most momentous constituents of the insect innate immune system that can stymie versatile range of RNA virus like flavivirus. It has been demonstrated that RNA production by alphavirus replication is higher in proportion compared to flavivirus replication in mosquito cells. Studies demonstrated that infection by virus from Togaviridae and Bunyaviridae family of arbovirus to mosquito cells causes defect in RNAi response in-vitro but interestingly, it has also been stated that Dengue virus (DENV could be actively inhibited by RNA interference (RNAi. This article is an endeavor to review the perspectives of the functional significance of antiviral RNA interference as a potent agent of controlling dengue infection in the vector.

  9. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  10. Jatobal virus antigenic characterization by ELISA and neutralization test using EIA as indicator, on tissue culture

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu M. Figueiredo

    1988-06-01

    Full Text Available A virus antigenic characterization methodology using an indirect method of antibody detection ELISA with virus-infected cultured cells as antigen and a micro virus neutralisation test using EIA (NT-EIA as an aid to reading were used for antigenic characterization of Jatobal (BeAn 423380. Jatobal virus was characterized as a Bunyaviridae, Bunyavirus genus, Simbu serogroup virus. ELISA using infected cultured cells as antigen is a sensitive and reliable method for identification of viruses and has many advantages over conventional antibody capture ELISA's and other tests: it eliminates solid phase coating with virus and laborious antigen preparation; it permits screening of large numbers of virus antisera faster and more easily than by CF, HAI, or plaque reduction NT. ELISA and NT using EIA as an aid to reading can be applicable to viruses which do not produce cytopathogenic effect. Both techniques are applicable to identification of viruses which grow in mosquito cells.A caracterização antigênica do vírus Jatobal (BeAn 423380 foi efetuada utilizando uma técnica de ELISA para deteccão de anticorpos que utiliza culturas celulares infectadas como antígeno e um micro teste de neutralização para vírus que utiliza o método imunoenzimático como auxiliar para a leitura dos resultados (NT-EIA. O vírus Jatobal foi caracterizado como um Bunyaviridae, gênero Bunyavirus, pertencente ao sorogrupo Simbu. A técnica de ELISA, utilizando culturas celulares infectadas como antígeno, trata-se de método sensível e confiável na identificação de agentes virais, possuindo muitas vantagens sobre ELISA convencionais e outros testes: elimina a preparação laboriosa de antígenos para o revestimento em fase sólida; permite que se teste de forma mais rápida e fácil que por CF, HAI e neutralização por redução de plaques um grande número de antisoros de vírus. ELISA e NT-EIA podem ser utilizados para a classificação de vírus que não produzem

  11. Small RNA profiles of wild-type and silencing suppressor-deficient tomato spotted wilt virus infected Nicotiana benthamiana.

    Science.gov (United States)

    Margaria, Paolo; Miozzi, Laura; Rosa, Cristina; Axtell, Michael J; Pappu, Hanu R; Turina, Massimo

    2015-10-01

    Tospoviruses are plant-infecting viruses belonging to the family Bunyaviridae. We used a collection of wild-type, phylogenetically distinct tomato spotted wilt virus isolates and related silencing-suppressor defective mutants to study the effects on the small RNA (sRNA) accumulation during infection of Nicotiana benthamiana. Our data showed that absence of a functional silencing suppressor determined a marked increase of the total amount of viral sRNAs (vsRNAs), and specifically of the 21 nt class. We observed a common under-representation of vsRNAs mapping to the intergenic region of S and M genomic segments, and preferential mapping of the reads against the viral sense open reading frames, with the exception of the NSs gene. The NSs-mutant strains showed enrichment of NSm-derived vsRNA compared to the expected amount based on gene size. Analysis of 5' terminal nucleotide preference evidenced a significant enrichment in U for the 21 nt- and in A for 24 nt-long endogenous sRNAs in all the samples. Hotspot analysis revealed a common abundant accumulation of reads at the 5' end of the L segment, mostly in the antiviral sense, for the NSs-defective isolates, suggesting that absence of the silencing suppressor can influence preferential targeting of the viral genome. PMID:26047586

  12. [Serological monitoring of arbovirus infections in the estuary of the Kuban River (the 2006-2007 data)].

    Science.gov (United States)

    L'vov, D K; Shchelkanov, M Iu; Kolobukhina, L V; L'vov, D N; Galkina, I V; Aristova, V A; Morozova, T N; Proshina, E S; Kulikov, A G; Kogdenko, N V; Andronova, O V; Pronin, N I; Shevkoplias, V N; Fontanetskiĭ, A S; Vlasov, N A; Nepoklonov, E A

    2008-01-01

    Solid-phase enzyme immunoassay, neutralization test, and the hemagglutination-inhibition test were used to study the sera from human beings (152 samples), agricultural animals (n = 77), hares (n = 3), and wild birds (n = 69), collected in 2006-2007 in the Kuban River estuary (Temryuk District, Krasnodar Territory). There were specific antibodies against viruses of West Nile (WH), tick-borne encephalitis (TBE) (Flaviviridae, Flavivirus), Sindbis (Togaviridae, Alphavirus), the antigenic complex of California, Batai (Bunyaviridae, Orthobunyavirus), Dhori (Orthomyxoviridae, Thogotovirus). The findings suggest the presence of arboviruses from 6 transmitting mosquitoes and ticks in the study area and human infection by the viruses of the antigenic complex of California (20-47%), Batai (3-15%), West Nile (3-12%), Dhori (2%). The index agricultural animals (horses, cattle) were observed to have specific antibodies to the viruses of WN (8-15%), TBE (0-2%), Sindbis (2-9%), the antigenic complex of California (27-54%). Out of the representatives of the wild fauna, virus-neutralizing antibodies to Sindbis virus were found in European hares (Lepus europaeus), California complex virus in gulls (Larus argentatus) and terns (Sterna hirundo), WN and Sindbis viruses in herons (Ardea purpurea), and WN and California complex viruses in bald-coots (Fulica atra). PMID:18756814

  13. Phylogeographic analysis of hemorrhagic fever with renal syndrome patients using multiplex PCR-based next generation sequencing

    Science.gov (United States)

    Kim, Won-Keun; Kim, Jeong-Ah; Song, Dong Hyun; Lee, Daesang; Kim, Yong Chul; Lee, Sook-Young; Lee, Seung-Ho; No, Jin Sun; Kim, Ji Hye; Kho, Jeong Hoon; Gu, Se Hun; Jeong, Seong Tae; Wiley, Michael; Kim, Heung-Chul; Klein, Terry A.; Palacios, Gustavo; Song, Jin-Won

    2016-01-01

    Emerging and re-emerging infectious diseases caused by RNA viruses pose a critical public health threat. Next generation sequencing (NGS) is a powerful technology to define genomic sequences of the viruses. Of particular interest is the use of whole genome sequencing (WGS) to perform phylogeographic analysis, that allows the detection and tracking of the emergence of viral infections. Hantaviruses, Bunyaviridae, cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in humans. We propose to use WGS for the phylogeographic analysis of human hantavirus infections. A novel multiplex PCR-based NGS was developed to gather whole genome sequences of Hantaan virus (HTNV) from HFRS patients and rodent hosts in endemic areas. The obtained genomes were described for the spatial and temporal links between cases and their sources. Phylogenetic analyses demonstrated geographic clustering of HTNV strains from clinical specimens with the HTNV strains circulating in rodents, suggesting the most likely site and time of infection. Recombination analysis demonstrated a genome organization compatible with recombination of the HTNV S segment. The multiplex PCR-based NGS is useful and robust to acquire viral genomic sequences and may provide important ways to define the phylogeographical association and molecular evolution of hantaviruses. PMID:27221218

  14. Risk assessment of human infection with a novel bunyavirus in China

    Directory of Open Access Journals (Sweden)

    Tamano Matsui

    2012-11-01

    Full Text Available Objective: To assess the public health risk of human infection from a novel bunyavirus – severe fever with thrombocytopenia syndrome virus (SFTSV – in China.Methods: The likelihood of disease spread and the magnitude of public health impact were assessed to clarify overall risk. Literature about hazard, exposure and contextual factors associated with SFTSV infection was collected and reviewed. Information on SFTSV cases and the population in six provinces under surveillance was compared.Results: SFTSV is a member of the Phlebovirus genus of the Bunyaviridae family. A widely distributed tick species, Haemaphysalis longicornis, can act as the vector; thus the disease is likely to spread in China. Symptoms of SFTSV infection are nonspecific, but have led to multiorgan dysfunction in severe cases. High-risk populations include farmers and older females. Evidence of human-to-human transmission within family and hospital has been reported. The capacity for treatment and diagnosis of SFTSV are adequate in rural communities in China, and community awareness of the disease should be high. Discussion: There is a low to moderate public health risk related to SFTSV human infection in China. There is potential for an increase in the number of cases reported as awareness increases and when surveillance is expanded.

  15. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts

    International Nuclear Information System (INIS)

    The genus Nairovirus (family Bunyaviridae) contains seven serogroups consisting of 34 predominantly tick-borne viruses, including several associated with severe human and livestock diseases [e.g., Crimean Congo hemorrhagic fever (CCHF) and Nairobi sheep disease (NSD), respectively]. Before this report, no comparative genetic studies or molecular detection assays had been developed for this virus genus. To characterize at least one representative from each of the seven serogroups, reverse transcriptase-polymerase chain reaction (RT-PCR) primers targeting the L polymerase-encoding region of the RNA genome of these viruses were successfully designed based on conserved amino acid motifs present in the predicted catalytic core region. Sequence analysis showed the nairoviruses to be a highly diverse group, exhibiting up to 39.4% and 46.0% nucleotide and amino acid identity differences, respectively. Virus genetic relationships correlated well with serologic groupings and with tick host associations. Hosts of these viruses include both the hard (family Ixodidae) and soft (family Argasidae) ticks. Virus phylogenetic analysis reveals two major monophyletic groups: hard tick and soft tick-vectored viruses. In addition, viruses vectored by Ornithodoros, Carios, and Argas genera ticks also form three separate monophyletic lineages. The striking similarities between tick and nairovirus phylogenies are consistent with possible coevolution of the viruses and their tick hosts. Fossil and phylogenetic data placing the hard tick-soft tick divergence between 120 and 92 million years ago suggest an ancient origin for viruses of the genus Nairovirus

  16. Rift Valley fever in Central Africa: Serological evidence and virus antigen detection in cattle in the Democratic Republic of Congo

    International Nuclear Information System (INIS)

    In order to assess the disease status within the cattle population in the Democratic Republic of Congo, a survey was carried out using two investigation strategies, i.e. 1) anti - RVF virus (RVFV) Ig G antibodies (Abs) detection, and 2) virus detection. Five provinces were selected due to their high bovine exploitation activity. 962 sera samples randomly collected in 26 locations from the 5 mentioned provinces were tested exploiting the recombinant N protein indirect ELISA (I - ELISA) for antibodies detection and prevalence estimate and for virus detection, two diagnostic methods were exploited: a) - virus antigen (Ag) detection in tissues using the immunoperoxidase (IMP) staining with Avidin Biotin Complex (ABC) technique and, b) -virus cDNA detection using RT- PCR. Only some tissues from syndromically suspected cases from one location with the highest prevalence (20%) were analysed for virus detection. The structural, nucleo . capsid (N) protein that the small segment (S) of the RVFV genome encodes with forms the key antigen targeted in all the 3 diagnostic methods. As a matter of fact, N protein is the most immunocompetent and most expressed protein of RVFV; it is also the highest conserved protein amongst members of the Bunyaviridae family

  17. Analysis of N-linked glycosylation of hantaan virus glycoproteins and the role of oligosaccharide side chains in protein folding and intracellular trafficking.

    Science.gov (United States)

    Shi, Xiaohong; Elliott, Richard M

    2004-05-01

    The membrane glycoproteins Gn and Gc of Hantaan virus (HTNV) (family Bunyaviridae) are modified by N-linked glycosylation. The glycoproteins contain six potential sites for the attachment of N-linked oligosaccharides, five sites on Gn and one on Gc. The properties of the N-linked oligosaccharide chains were analyzed by treatment with endoglycosidase H, peptide:N-glycosidase F, tunicamycin, and deoxynojirimycin and were confirmed to be completely of the high-mannose type. Ten glycoprotein gene mutants were constructed by site-directed mutagenesis, including six single N glycosylation site mutants and four double-site mutants. We determined that four sites (N134, -235, -347, and -399) on Gn and the only site (N928) on Gc in their ectodomains are utilized, whereas the fifth site on Gn (N609), which faces the cytoplasm, is not glycosylated. The importance of individual N-oligosaccharide chains varied with respect to folding and intracellular transport. The oligosaccharide chain on residue N134 was found to be crucial for protein folding, whereas single mutations at the other glycosylation sites were better tolerated. Mutation at glycosylation sites N235 and N399 together resulted in Gn misfolding. The endoplasmic reticulum chaperones calnexin and calreticulin were found to be involved in HTNV glycoprotein folding. Our data demonstrate that N-linked glycosylation of HTNV glycoproteins plays important and differential roles in protein folding and intracellular trafficking. PMID:15113920

  18. What Do We Know about How Hantaviruses Interact with Their Different Hosts?

    Science.gov (United States)

    Ermonval, Myriam; Baychelier, Florence; Tordo, Noël

    2016-01-01

    Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes. PMID:27529272

  19. Increased Mean Platelet Volume in Patients with Crimean Congo Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Ayse Ižnci

    2014-03-01

    Full Text Available Aim: The Crimean%u2013Congo hemorrhagic fever virus( CCHFV is classified within the Nairovirus genus in the Bunyaviridae family. Mean platelet volume (MPV is a biomarker of platelet function and activity. Platelet activity and aggregation capacity can be determined by measuring mean platelet volume (MPV. MPV is a parameter that has been associated with the diseases in many publications. The aim of this study is to investigate the change in the MPV values in patients with CCHF. Material and Method: The study was designed in the Artvin State Hospital. We recruited 74 patients with CCHF Thirty healthy individuals were included as a control group whom were age and gender matched with CCHF patients. We compared the levels of MPV, platelet counts, age, gender, hemoglobin, white blood cell between CCHF patients with (and healthy individuals. Data were analyzed using the Statistical Package for the Social Sciences (SPSS Inc., Chicago, IL, USA version 15. The t-test or Mann-Whitney U test was used. Level of statistical significance was considered p < 0.05 and the results were presented as mean ± standard deviation. Results: There was no significant difference between the patients and controls in terms of age and gender. The mean platelet volume was 8.98±1.13 in CCHF group and 8.15±0.53 in the control group. There was a statiscically significant difference between the groups(p

  20. Mapping of the interaction domains of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein.

    Science.gov (United States)

    Levingston Macleod, Jesica M; Marmor, Hannah; García-Sastre, Adolfo; Frias-Staheli, Natalia

    2015-03-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the genus Nairovirus of the family Bunyaviridae, that can cause severe haemorrhagic fever in humans, with mortality rates above 30  %. CCHFV is the most widespread of the tick-borne human viruses and it is endemic in areas of central Asia, the Middle East, Africa and southern Europe. Its viral genome consists of three negative-sense RNA segments. The large segment (L) encodes a viral RNA-dependent RNA polymerase (L protein), the small segment (S) encodes the nucleocapsid protein (N protein) and the medium segment (M) encodes the envelope proteins. The N protein of bunyaviruses binds genomic RNA, forming the viral ribonucleoprotein (RNP) complex. The L protein interacts with these RNP structures, allowing the initiation of viral replication. The N protein also interacts with actin, although the regions and specific residues involved in these interactions have not yet been described. Here, by means of immunoprecipitation and immunofluorescence assays, we identified the regions within the CCHFV N protein implicated in homo-oligomerization and actin binding. We describe the interaction of the N protein with the CCHFV L protein, and identify the N- and C-terminal regions within the L protein that might be necessary for the formation of these N-L protein complexes. These results may guide the development of potent inhibitors of these complexes that could potentially block CCHFV replication. PMID:25389186

  1. Mapping of the interaction domains of the Crimean–Congo hemorrhagic fever virus nucleocapsid protein

    Science.gov (United States)

    Macleod, Jesica M. Levingston; Marmor, Hannah; Frias-Staheli, Natalia

    2015-01-01

    Crimean–Congo hemorrhagic fever virus (CCHFV) is a member of the genus Nairovirus of the family Bunyaviridae, that can cause severe haemorrhagic fever in humans, with mortality rates above 30 %. CCHFV is the most widespread of the tick-borne human viruses and it is endemic in areas of central Asia, the Middle East, Africa and southern Europe. Its viral genome consists of three negative-sense RNA segments. The large segment (L) encodes a viral RNA-dependent RNA polymerase (L protein), the small segment (S) encodes the nucleocapsid protein (N protein) and the medium segment (M) encodes the envelope proteins. The N protein of bunyaviruses binds genomic RNA, forming the viral ribonucleoprotein (RNP) complex. The L protein interacts with these RNP structures, allowing the initiation of viral replication. The N protein also interacts with actin, although the regions and specific residues involved in these interactions have not yet been described. Here, by means of immunoprecipitation and immunofluorescence assays, we identified the regions within the CCHFV N protein implicated in homo-oligomerization and actin binding. We describe the interaction of the N protein with the CCHFV L protein, and identify the N- and C-terminal regions within the L protein that might be necessary for the formation of these N–L protein complexes. These results may guide the development of potent inhibitors of these complexes that could potentially block CCHFV replication. PMID:25389186

  2. Intracellular localization of Crimean-Congo Hemorrhagic Fever (CCHF virus glycoproteins

    Directory of Open Access Journals (Sweden)

    Fernando Lisa

    2005-04-01

    Full Text Available Abstract Background Crimean-Congo Hemorrhagic Fever virus (CCHFV, a member of the genus Nairovirus, family Bunyaviridae, is a tick-borne pathogen causing severe disease in humans. To better understand the CCHFV life cycle and explore potential intervention strategies, we studied the biosynthesis and intracellular targeting of the glycoproteins, which are encoded by the M genome segment. Results Following determination of the complete genome sequence of the CCHFV reference strain IbAr10200, we generated expression plasmids for the individual expression of the glycoproteins GN and GC, using CMV- and chicken β-actin-driven promoters. The cellular localization of recombinantly expressed CCHFV glycoproteins was compared to authentic glycoproteins expressed during virus infection using indirect immunofluorescence assays, subcellular fractionation/western blot assays and confocal microscopy. To further elucidate potential intracellular targeting/retention signals of the two glycoproteins, GFP-fusion proteins containing different parts of the CCHFV glycoprotein were analyzed for their intracellular targeting. The N-terminal glycoprotein GN localized to the Golgi complex, a process mediated by retention/targeting signal(s in the cytoplasmic domain and ectodomain of this protein. In contrast, the C-terminal glycoprotein GC remained in the endoplasmic reticulum but could be rescued into the Golgi complex by co-expression of GN. Conclusion The data are consistent with the intracellular targeting of most bunyavirus glycoproteins and support the general model for assembly and budding of bunyavirus particles in the Golgi compartment.

  3. Quantitative analysis of particles, genomes and infectious particles in supernatants of haemorrhagic fever virus cell cultures

    Directory of Open Access Journals (Sweden)

    Hedlund Kjell-Olof

    2011-02-01

    Full Text Available Abstract Information on the replication of viral haemorrhagic fever viruses is not readily available and has never been analysed in a comparative approach. Here, we compared the cell culture growth characteristics of haemorrhagic fever viruses (HFV, of the Arenaviridae, Filoviridae, Bunyaviridae, and Flavivridae virus families by performing quantitative analysis of cell culture supernatants by (i electron microscopy for the quantification of virus particles, (ii quantitative real time PCR for the quantification of genomes, and (iii determination of focus forming units by coating fluorescent antibodies to infected cell monolayers for the quantification of virus infectivity. The comparative analysis revealed that filovirus and RVFV replication results in a surplus of genomes but varying degrees of packaging efficiency and infectious particles. More efficient replication and packaging was observed for Lassa virus, and Dengue virus resulting in a better yield of infectious particles while, YFV turned out to be most efficient with only 4 particles inducing one FFU. For Crimean-Congo haemorrhagic fever virus (CCHFV a surplus of empty shells was observed with only one in 24 particles equipped with a genome. The complete particles turned out to be extraordinarily infectious.

  4. Assessment of Inhibitors of Pathogenic Crimean-Congo Hemorrhagic Fever Virus Strains Using Virus-Like Particles.

    Science.gov (United States)

    Zivcec, Marko; Metcalfe, Maureen G; Albariño, César G; Guerrero, Lisa W; Pegan, Scott D; Spiropoulou, Christina F; Bergeron, Éric

    2015-12-01

    Crimean-Congo hemorrhagic fever (CCHF) is an often lethal, acute inflammatory illness that affects a large geographic area. The disease is caused by infection with CCHF virus (CCHFV), a nairovirus from the Bunyaviridae family. Basic research on CCHFV has been severely hampered by biosafety requirements and lack of available strains and molecular tools. We report the development of a CCHF transcription- and entry-competent virus-like particle (tecVLP) system that can be used to study cell entry and viral transcription/replication over a broad dynamic range (~4 orders of magnitude). The tecVLPs are morphologically similar to authentic CCHFV. Incubation of immortalized and primary human cells with tecVLPs results in a strong reporter signal that is sensitive to treatment with neutralizing monoclonal antibodies and by small molecule inhibitors of CCHFV. We used glycoproteins and minigenomes from divergent CCHFV strains to generate tecVLPs, and in doing so, we identified a monoclonal antibody that can prevent cell entry of tecVLPs containing glycoproteins from 3 pathogenic CCHFV strains. In addition, our data suggest that different glycoprotein moieties confer different cellular entry efficiencies, and that glycoproteins from the commonly used strain IbAr10200 have up to 100-fold lower ability to enter primary human cells compared to glycoproteins from pathogenic CCHFV strains. PMID:26625182

  5. An overview of Crimean- Congo Hemorrhagic Fever in Iran

    Directory of Open Access Journals (Sweden)

    Sadegh Chinikar

    2009-01-01

    Full Text Available Crimean- Congo Hemorrhagic Fever (CCHF is a viral zoonotic tick-born disease with a mortality rate of up to 50% in humans. After a short incubation period, the disease is characterized by sudden fever, chills, severe headache, dizziness, back, and abdominal pain. Additional symptoms can include nausea, vomiting, diarrhea, neuropsychiatric, and cardiovascular changes. In severe cases, hemorrhagic manifestations, ranging from petechiae to large areas of ecchymosis develop. The CCHF Virus (CCHFV is from the genus Nairovirus and family Bunyaviridae. CCHFV is transmitted to humans by the bite of infected tick and by direct contact with blood or tissue from infected humans and livestock. In addition to zoonotic transmission, CCHFV can be spread from person to person and is one of the rare hemorrhagic fever viruses able to cause nosocomial outbreaks in hospitals. CCHF is a public health problem in many regions of the world e.g Eastern Europe, Asia, Middle East, and Africa. The history of CCHF in Iran shows that the disease has been detected in Iran since 1970. From 1970 to 1978 some scientists worked on serology and epidemiology of this disease in humans and livestock in Iran. Since 1999 , establishment of a surveillance and laboratory detection system on viral hemorrhagic fevers particularly on CCHF has had benefits. One of which is the fact that a mortality rate approaching 20% in the year 2000 remarkably dropped to 6% in the year 2007.

  6. Development and evaluation of a real-time RT-qPCR for detection of Crimean-Congo hemorrhagic fever virus representing different genotypes.

    Science.gov (United States)

    Jääskeläinen, Anne J; Kallio-Kokko, Hannimari; Ozkul, Aykut; Bodur, Hurrem; Korukruoglu, Gulay; Mousavi, Mehrdad; Pranav, Patel; Vaheri, Antti; Mirazimi, Ali; Vapalahti, Olli

    2014-12-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease caused by a nairovirus belonging to family Bunyaviridae. The CCHF virus (CCHFV) can be transmitted to humans by Hyalomma ticks as well as by direct contact with infected body fluids or tissues from viremic livestock or humans. Our aim was to set up a fast RT-qPCR for detection of the different CCHFV genotypes in clinical samples, including an inactivation step to make the sample handling possible in lower biosafety levels (BSL) than BSL-4. This method was evaluated against commercial reference assays and international External Quality Assessment (EQA) samples. The analytical limit of detection for the developed CCHFV-S RT-qPCR was 11 CCHFV genomes per reaction. After exclusion of four dubious samples, we studied 38 CCHFV-positive samples (using reference tests) of which 38 were found positive by CCHFV-S RT-qPCR, suggesting a sensitivity of 100%. CCHFV-S RT q-PCR detected all eight different CCHFV strains representing five different CCHFV genotypes. In conclusion, the CCHFV-S RT-qPCR described in this study was evaluated using various sources of CCHFV samples and shown to be an accurate tool to detect human CCHFV infection caused by different genotypes of the virus. PMID:25514124

  7. A nosocomial transmission of crimean-congo hemorrhagic fever to an attending physician in north kordufan, Sudan

    Directory of Open Access Journals (Sweden)

    Elbashir Mustafa I

    2011-06-01

    Full Text Available Abstract Background Crimean-Congo hemorrhagic fever (CCHF, a tick-borne disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV, is a member of the genus Nairovirus in the family Bunyaviridae. Recently, CCHFV has been reported as an important emerging infectious viral pathogen in Sudan. Sporadic cases and multiple CCHF outbreaks, associated with nosocomial chain of transmission, have been reported in the Kordufan region of Sudan. Aims To confirm CCHF in an index patient and attending physician in North Kordufan region, Sudan, and to provide some information on virus genetic lineages. Methods Antibody captured ELISA, reverse transcription PCR, partial S segment sequences of the virus and subsequent phylogenetic analysis were used to confirm the CCHFV infection and to determine the virus genetic lineages. Results CCHF was confirmed by monitoring specific IgM antibody and by detection of the viral genome using RT-PCR. Treatment with oral ribavirin, replacement with fluid therapy, blood transfusion and administration of platelets concentrate resulted in rapid improvement of the health condition of the female physician. Phylogenetic analysis of the partial S segment sequences of the 2 CCHFV indicates that both strains are identical and belong to Group III virus lineage, which includes viruses from Africa including, Sudan, Mauritania, South Africa and Nigeria. Conclusion Further epidemiologic studies including, CCHFV complete genome analysis and implementation of improved surveillance are urgently needed to better predict and respond to CCHF outbreaks in the Kordufan region, Sudan.

  8. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus genome isolated from ticks of Hamadan province of Iran

    Directory of Open Access Journals (Sweden)

    F. Tahmasebi , S.M. Ghiasi , E. Mostafavi , M. Moradi , N. Piazak , A. Mozafari , A. Haeri , A.R. Fooks , S. Chinikar

    2010-12-01

    Full Text Available Background & objectives: Crimean-Congo hemorrhagic fever (CCHF virus is a tick-borne memberof the genus Nairovirus, family Bunyaviridae. CCHFV has been isolated from at least 31 differenttick species. The virus is transmitted through the bite of an infected tick, or by direct contact withCCHFV-infected patients or the products of infected livestock. This study was undertaken to studythe genetic relationship and distribution of CCHFV in the tick population of Hamadan province ofIran.Method: In this study, RT-PCR has been used for detection of the CCHFV genome.Results: This genome was detected in 19.2% of the ticks collected from livestock of differentregions of the Hamadan province in western Iran. The infected species belonged to Hyalommadetritum, H. anatolicum, Rhipicephalus sanguineus and Argas reflexus. With one exception, geneticanalysis of the virus genome isolates showed high sequence identity to each other. Even thoughthey clustered in the same group with the strain circulating in Iran, they had a closer relationshipto the Matin strain.Interpretation & conclusion: Vector control programs should be applied for reducing populationdensity of potential tick vectors in this province. Further surveys are indicated in this region toprovide a better view of the distribution and epidemiology of the virus.

  9. The full genome sequence of three strains of Jamestown Canyon virus and their pathogenesis in mice or monkeys

    Directory of Open Access Journals (Sweden)

    Murphy Brian R

    2011-03-01

    Full Text Available Abstract Background Jamestown Canyon virus (JCV, family Bunyaviridae, is a mosquito-borne pathogen endemic in the United States and Canada that can cause encephalitis in humans and is considered an emerging threat to public health. The virus is genetically similar to Inkoo virus circulating in Europe, suggesting that much of the northern hemisphere contains JCV or similar variants. Results We have completed the sequence of three isolates of JCV collected in geographically diverse locations over a 57 year time span. The nucleotide identity for the three strains is 90, 83, and 85% for the S, M, and L segments respectively whereas the percent identify for the predicted amino acid sequences of the N, NSS, M poly, GN, NSM, GC, and L proteins was 97, 91, 94, 98, 91, 94, and 97%, respectively. In Swiss Webster mice, each JCV isolate exhibits low neuroinvasiveness but high infectivity. Two of the three JCV isolates were highly neurovirulent after IC inoculation whereas one isolate, JCV/03/CT, exhibited low neurovirulence. In rhesus monkeys, JCV infection is accompanied by a low-titered viremia, lack of clinical disease, but a robust neutralizing antibody response. Conclusions The first complete sequence of JCV is reported for three separate isolates, and a relatively high level of amino acid sequence conservation was observed even for viruses isolated 57 years apart indicating that the virus is in relative evolutionary stasis. JCV is highly infectious for mice and monkeys, and these animals, especially mice, represent useful experimental hosts for further study.

  10. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.

    Directory of Open Access Journals (Sweden)

    Laurent Dacheux

    Full Text Available The prediction of viral zoonosis epidemics has become a major public health issue. A profound understanding of the viral population in key animal species acting as reservoirs represents an important step towards this goal. Bats harbor diverse viruses, some of which are of particular interest because they cause severe human diseases. However, little is known about the diversity of the global population of viruses found in bats (virome. We determined the viral diversity of five different French insectivorous bat species (nine specimens in total in close contact with humans. Sequence-independent amplification, high-throughput sequencing with Illumina technology and a dedicated bioinformatics analysis pipeline were used on pooled tissues (brain, liver and lungs. Comparisons of the sequences of contigs and unassembled reads provided a global taxonomic distribution of virus-related sequences for each sample, highlighting differences both within and between bat species. Many viral families were present in these viromes, including viruses known to infect bacteria, plants/fungi, insects or vertebrates, the most relevant being those infecting mammals (Retroviridae, Herpesviridae, Bunyaviridae, Poxviridae, Flaviviridae, Reoviridae, Bornaviridae, Picobirnaviridae. In particular, we detected several new mammalian viruses, including rotaviruses, gammaretroviruses, bornaviruses and bunyaviruses with the identification of the first bat nairovirus. These observations demonstrate that bats naturally harbor viruses from many different families, most of which infect mammals. They may therefore constitute a major reservoir of viral diversity that should be analyzed carefully, to determine the role played by bats in the spread of zoonotic viral infections.

  11. Complete Genome Characterization of the Arumowot Virus (Unclassified Phlebovirus) Isolated from Turdus libonyanus Birds in the Central African Republic.

    Science.gov (United States)

    Berthet, Nicolas; Nakouné, Emmanuel; Gessain, Antoine; Manuguerra, Jean-Claude; Kazanji, Mirdad

    2016-02-01

    The Bunyaviridae family is currently composed of five genera, including Phlebovirus, in which several phleboviruses are associated with human diseases. Using high-throughput sequencing, we obtained and characterized one complete genome of the Arumowot virus (AMTV) isolated in 1978 from Turdus libonyanus, the Kurrichane Thrush, in the Central African Republic (CAR). The genomic segment of the new strain of AMTV isolated in the CAR had 75.4-83.5% sequence similarity and 82-98.4% amino acid similarity to the prototype sequence of AMTV. The different conserved proteins of the small (S) and large (L) segments (Nc, NSP, and RNA polymerase) showed close similarity at the amino acid level, whereas the polyprotein of the medium (M) segment was highly divergent, with 18% and 37.7%, respectively, for the prototype sequence of AMTV and the Odrenisrou virus (ODRV) isolated from Culex (Cx.) albiventris mosquitoes in the Tai forest, Ivory Coast. Phylogenetic analysis confirmed the sequence homology analysis and indicated that AMTV-CAR clustered into the Salehabad virus antigenic complex. The two closest viruses were the prototype sequences of AMTV originally isolated from Cx. antennatus mosquitoes and ODRV. These molecular data suggest the need for a deep genetic characterization of the diversity of this viral species to enhance its detection in the Central African region and to understand better its behavior and life cycle so that its potential spread to the human population can be prevented. PMID:26807610

  12. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    Science.gov (United States)

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  13. Virus like particle-based vaccines against emerging infectious disease viruses.

    Science.gov (United States)

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families. PMID:27405928

  14. Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses.

    Science.gov (United States)

    Witkowski, Peter T; Drexler, Jan F; Kallies, René; Ličková, Martina; Bokorová, Silvia; Mananga, Gael D; Szemes, Tomáš; Leroy, Eric M; Krüger, Detlev H; Drosten, Christian; Klempa, Boris

    2016-07-01

    Until recently, hantaviruses (family Bunyaviridae) were believed to originate from rodent reservoirs. However, genetically distinct hantaviruses were lately found in shrews and moles, as well as in bats from Africa and Asia. Bats (order Chiroptera) are considered important reservoir hosts for emerging human pathogens. Here, we report on the identification of a novel hantavirus, provisionally named Makokou virus (MAKV), in Noack's Roundleaf Bat (Hipposideros ruber) in Gabon, Central Africa. Phylogenetic analysis of the genomic l-segment showed that MAKV was the most closely related to other bat-borne hantaviruses and shared a most recent common ancestor with the Asian hantaviruses Xuan Son and Laibin. Breakdown of the virus load in a bat animal showed that MAKV resembles rodent-borne hantaviruses in its organ distribution in that it predominantly occurred in the spleen and kidney; this provides a first insight into the infection pattern of bat-borne hantaviruses. Ancestral state reconstruction based on a tree of l gene sequences of all relevant hantavirus lineages was combined with phylogenetic fossil host hypothesis testing, leading to a statistically significant rejection of the mammalian superorder Euarchontoglires (including rodents) but not the superorder Laurasiatheria (including shrews, moles, and bats) as potential hosts of ancestral hantaviruses at most basal tree nodes. Our data supports the emerging concept of bats as previously overlooked hantavirus reservoir hosts. PMID:27051047

  15. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release.

    Science.gov (United States)

    Spiegel, Martin; Plegge, Teresa; Pöhlmann, Stefan

    2016-01-01

    Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV) and severe fever with thrombocytopenia syndrome virus (SFTSV) as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV). Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle. PMID:27455305

  16. Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis.

    Science.gov (United States)

    Léger, Psylvia; Tetard, Marilou; Youness, Berthe; Cordes, Nicole; Rouxel, Ronan N; Flamand, Marie; Lozach, Pierre-Yves

    2016-06-01

    Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment. PMID:26990254

  17. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release

    Directory of Open Access Journals (Sweden)

    Martin Spiegel

    2016-07-01

    Full Text Available Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV and severe fever with thrombocytopenia syndrome virus (SFTSV as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV. Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle.

  18. Enveloped virus-like particles as vaccines against pathogenic arboviruses.

    Science.gov (United States)

    Pijlman, Gorben P

    2015-05-01

    Arthropod-borne arboviruses form a continuous threat to human and animal health, but few arboviral vaccines are currently available. Advances in expression technology for complex, enveloped virus-like particles (eVLPs) create new opportunities to develop potent vaccines against pathogenic arboviruses. In this short review, I highlight the successes and challenges in eVLP production for members of the three major arbovirus families: Flaviviridae (e.g., dengue, West Nile, Japanese encephalitis); Bunyaviridae (e.g., Rift Valley fever); and Togaviridae (e.g., chikungunya). The results from pre-clinical testing will be discussed as well as specific constraints to the large-scale manufacture and purification of eVLPs, which are complex assemblies of membranes and viral glycoproteins. Insect cells emerge as ideal substrates for correct arboviral glycoprotein folding and posttranslational modification to yield high quality eVLPs. Furthermore, baculovirus expression in insect cell culture is scalable and has a proven safety record in industrial human and veterinary vaccine manufacturing. In conclusion, eVLPs produced in insect cells using modern biotechnology have a realistic potential to be used in novel vaccines against arboviral diseases. PMID:25692281

  19. Thottapalayam virus is genetically distant to the rodent-borne hantaviruses, consistent with its isolation from the Asian house shrew (Suncus murinus

    Directory of Open Access Journals (Sweden)

    Vincent Martin J

    2007-08-01

    Full Text Available Abstract Thottapalayam (TPM virus belongs to the genus Hantavirus, family Bunyaviridae. The genomes of hantaviruses consist of three negative-stranded RNA segments (S, M and L encoding the virus nucleocapsid (N, glycoprotein (Gn, Gc, and polymerase (L proteins, respectively. The genus Hantavirus contains predominantly rodent-borne viruses, with the prominent exception of TPM virus which was isolated in India in 1964 from an insectivore, Suncus murinus, commonly referred to as the Asian house shrew or brown musk shrew. Analysis of the available TPM virus S (1530 nt RNA genome segment sequence and the newly derived M (3621 nt and L (6581 nt segment sequences demonstrate that the entire TPM virus genome is very unique. Remarkably high sequence differences are seen at the nucleotide (up to S – 47%, M – 49%, L – 38% and protein (up to N – 54%, Gn/Gc – 57% and L – 39% levels relative to the rodent-borne hantaviruses, consistent with TPM virus having a unique host association.

  20. Molecular Assay on Crimean Congo Hemorrhagic Fever Virus in Ticks (Ixodidae Collected from Kermanshah Province, Western Iran

    Directory of Open Access Journals (Sweden)

    Maria Mohammadian

    2016-01-01

    Full Text Available Background: Crimean-Congo Hemorrhagic Fever (CCHF is a feverous and hemorrhagic disease endemic in some parts of Iran and caused by an arbovirus related to Bunyaviridae family and Nairovirusgenus. The main virus reser­voir in the nature is ticks, however small vertebrates and a wide range of domestic and wild animals are regarded as reservoir hosts. This study was conducted to determine the infection rate of CCHF virus in hard ticks of Sarpole-Zahab County, Kermanshah province, west of Iran.Methods: From total number of 851 collected ticks from 8 villages, 131 ticks were selected randomlyand investi­gated for detection of CCHF virus using RT-PCR.Results: The virus was found in 3.8% of the tested ticks. Hyalommaanatolicum, H.asiaticum and Rhipicephalus sanguineus species were found to have viral infection, with the highest infection rate (11.11% in Rh. sanguineus.Conclusion: These findings provide epidemiological evidence for planning control strategies of the disease in the study area.

  1. Conserved Endonuclease Function of Hantavirus L Polymerase

    Directory of Open Access Journals (Sweden)

    Sylvia Rothenberger

    2016-05-01

    Full Text Available Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp also known as L protein of hantaviruses lacks an intrinsic “capping activity”. Hantaviruses therefore employ a “cap snatching” strategy acquiring short 5′ RNA sequences bearing 5′cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure–function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses.

  2. Serological evidence of hantavirus infection in rural and urban regions in the state of Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    João Bosco Lima Gimaque

    2012-02-01

    Full Text Available Hantavirus disease is caused by the hantavirus, which is an RNA virus belonging to the family Bunyaviridae. Hantavirus disease is an anthropozoonotic infection transmitted through the inhalation of aerosols from the excreta of hantavirus-infected rodents. In the county of Itacoatiara in the state of Amazonas (AM, Brazil, the first human cases of hantavirus pulmonary and cardiovascular syndrome were described in July 2004. These first cases were followed by two fatal cases, one in the municipality of Maués in 2005 and another in Itacoatiara in 2007. In this study, we investigated the antibody levels to hantavirus in a population of 1,731 individuals from four different counties of AM. Sera were tested by IgG/IgM- enzyme-linked immune-sorbent assay using a recombinant nucleocapsid protein of the Araraquara hantavirus as an antigen. Ten sera were IgG positive to hantavirus (0.6%. Among the positive sera, 0.8% (1/122, 0.4% (1/256, 0.2% (1/556 and 0.9% (7/797 were from Atalaia do Norte, Careiro Castanho, Itacoatiara and Lábrea, respectively. None of the sera in this survey were IgM-positive. Because these counties are distributed in different areas of AM, we can assume that infected individuals are found throughout the entire state, which suggests that hantavirus disease could be a local emerging health problem.

  3. Elevated Cytokines, Thrombin and PAI-1 in Severe HCPS Patients Due to Sin Nombre Virus

    Directory of Open Access Journals (Sweden)

    Virginie Bondu

    2015-02-01

    Full Text Available Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute ≥30 to >100 fold increases in active plasminogen activator inhibitor (PAI-1 which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.

  4. Phylogeographic analysis of hemorrhagic fever with renal syndrome patients using multiplex PCR-based next generation sequencing.

    Science.gov (United States)

    Kim, Won-Keun; Kim, Jeong-Ah; Song, Dong Hyun; Lee, Daesang; Kim, Yong Chul; Lee, Sook-Young; Lee, Seung-Ho; No, Jin Sun; Kim, Ji Hye; Kho, Jeong Hoon; Gu, Se Hun; Jeong, Seong Tae; Wiley, Michael; Kim, Heung-Chul; Klein, Terry A; Palacios, Gustavo; Song, Jin-Won

    2016-01-01

    Emerging and re-emerging infectious diseases caused by RNA viruses pose a critical public health threat. Next generation sequencing (NGS) is a powerful technology to define genomic sequences of the viruses. Of particular interest is the use of whole genome sequencing (WGS) to perform phylogeographic analysis, that allows the detection and tracking of the emergence of viral infections. Hantaviruses, Bunyaviridae, cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in humans. We propose to use WGS for the phylogeographic analysis of human hantavirus infections. A novel multiplex PCR-based NGS was developed to gather whole genome sequences of Hantaan virus (HTNV) from HFRS patients and rodent hosts in endemic areas. The obtained genomes were described for the spatial and temporal links between cases and their sources. Phylogenetic analyses demonstrated geographic clustering of HTNV strains from clinical specimens with the HTNV strains circulating in rodents, suggesting the most likely site and time of infection. Recombination analysis demonstrated a genome organization compatible with recombination of the HTNV S segment. The multiplex PCR-based NGS is useful and robust to acquire viral genomic sequences and may provide important ways to define the phylogeographical association and molecular evolution of hantaviruses. PMID:27221218

  5. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  6. Conserved Endonuclease Function of Hantavirus L Polymerase.

    Science.gov (United States)

    Rothenberger, Sylvia; Torriani, Giulia; Johansson, Maria U; Kunz, Stefan; Engler, Olivier

    2016-01-01

    Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic "capping activity". Hantaviruses therefore employ a "cap snatching" strategy acquiring short 5' RNA sequences bearing 5'cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure-function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses. PMID:27144576

  7. Directory of Open Access Journals (Sweden)

    Ioni Oliveira Santos

    2013-01-01

    Full Text Available INTRODUCTION: Hantavirus is a genus of ribonucleic acid (RNA viruses included in the family Bunyaviridae. Hantaviruses are rodent-borne zoonoses that, in the last 18 years, became an emergent public health problem in the Americas, causing a severe cardiopulmonary syndrome. This disease has no specific treatment and has a high case fatality. The transmission of hantavirus to man occurs by inhaling aerosols of rodent excreta. The aim of this study was to determine the prevalence of antibodies to hantavirus in the population of the rural settlement of Tupã in the county of Marcelândia, state of Mato Grosso, Brazil. METHODS: The participants of the serologic survey were visited at their homes and selected randomly among the settlement population. Blood samples of the participants were collected by venopuncture. The serum samples were tested by an IgG-ELISA using an N recombinant protein of Araraquara hantavirus as antigen, using the protocol previously established by Figueiredo et al. RESULTS: IgG antibodies to hantavirus were detected in 7 (13% of the 54 participants. The positivity was higher among men. It was observed that there was an association of seropositivity to hantavirus within the participants born in the south of Brazil. CONCLUSIONS: The results suggest that, in this rural area, everyone is exposed to the same risk of becoming infected with hantavirus, and, therefore, there is a need to intensify surveillance activities and education of the local people to prevent this viral infection.

  8. Ultrastructural, Antigenic and Physicochemical Characterization of the Mojuí dos Campos (Bunyavirus Isolated from Bat in the Brazilian Amazon Region

    Directory of Open Access Journals (Sweden)

    Wanzeller Ana LM

    2002-01-01

    Full Text Available The Mojuí dos Campos virus (MDCV was isolated from the blood of an unidentified bat (Chiroptera captured in Mojuí dos Campos, Santarém, State of Pará, Brazil, in 1975 and considerated to be antigenically different from other 102 arboviruses belonging to several antigenic groups isolated in the Amazon region or another region by complement fixation tests. The objective of this work was to develop a morphologic, an antigenic and physicochemical characterization of this virus. MDCV produces cytopathic effect in Vero cells, 24 h post-infection (p.i, and the degree of cellular destruction increases after a few hours. Negative staining electron microscopy of the supernatant of Vero cell cultures showed the presence of coated viral particles with a diameter of around 98 nm. Ultrathin sections of Vero cells, and brain and liver of newborn mice infected with MDCV showed an assembly of the viral particles into the Golgi vesicles. The synthesis kinetics of the proteins for MDCV were similar to that observed for other bunyaviruses, and viral proteins could be detected as early as 6 h p.i. Our results reinforce the original studies which had classified MDCV in the family Bunyaviridae, genus Bunyavirus as an ungrouped virus, and it may represent the prototype of a new serogroup.

  9. Diagnóstico virológico y molecular de virus transmitidos por roedores. Hantavirus y arenavirus

    Directory of Open Access Journals (Sweden)

    Silvana Levis

    2010-04-01

    Full Text Available Los hantavirus (familia Bunyaviridae y arenavirus (familia Arenaviridae son virus de roedores; cada uno de ellos parece estar estrictamente asociado con una especie de roedor en la que causa una infección persistente y asintomática. En las Américas tienen como reservorios primarios a roedores de la sub-familia Sigmodontinae, y son causantes de síndrome pulmonar por Hantavirus (SPH y fiebres hemorrágicas, respectivamente (1,2. El número de estos virus identificados en los últimos años ha aumentado significativamente; actualmente, el género Hantavirus está compuesto por más de 28 tipos diferentes, mientras que al menos 23 arenavirus conforman el género Arenavirus. Entre los hantavirus asociados con SPH se destacan el virus Sin Nombre en Norteamérica, y los virus Andes, Laguna Negra, Caño Delgadito, Araraquara y Juquitiba, en el cono sur de América, entre otros (2. Los arenavirus asociados a fiebres hemorrágicas reconocidos en Sud América al presente son: Junín (Argentina, Guanarito (Venezuela, Sabiá (Brasil, y Machupo y Chapare (Bolivia (3.

  10. Enzootic Arbovirus Surveillance in Forest Habitat and Phylogenetic Characterization of Novel Isolates of Gamboa Virus in Panama.

    Science.gov (United States)

    Eastwood, Gillian; Loaiza, Jose R; Pongsiri, Montira J; Sanjur, Oris I; Pecor, James E; Auguste, Albert J; Kramer, Laura D

    2016-04-01

    Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family:Bunyaviridae; genus:Orthobunyavirus) from pools ofAedeomyia squamipenniscaptured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa includedA. squamipennis,Coquillettidia nigricans, andMansonia titillans. PMID:26834200

  11. Genetic and Phylogenetic Characterization of Tataguine and Witwatersrand Viruses and Other Orthobunyaviruses of the Anopheles A, Capim, Guamá, Koongol, Mapputta, Tete, and Turlock Serogroups.

    Science.gov (United States)

    Shchetinin, Alexey M; Lvov, Dmitry K; Deriabin, Petr G; Botikov, Andrey G; Gitelman, Asya K; Kuhn, Jens H; Alkhovsky, Sergey V

    2015-11-01

    The family Bunyaviridae has more than 530 members that are distributed among five genera or remain to be classified. The genus Orthobunyavirus is the most diverse bunyaviral genus with more than 220 viruses that have been assigned to more than 18 serogroups based on serological cross-reactions and limited molecular-biological characterization. Sequence information for all three orthobunyaviral genome segments is only available for viruses belonging to the Bunyamwera, Bwamba/Pongola, California encephalitis, Gamboa, Group C, Mapputta, Nyando, and Simbu serogroups. Here we present coding-complete sequences for all three genome segments of 15 orthobunyaviruses belonging to the Anopheles A, Capim, Guamá, Kongool, Tete, and Turlock serogroups, and of two unclassified bunyaviruses previously not known to be orthobunyaviruses (Tataguine and Witwatersrand viruses). Using those sequence data, we established the most comprehensive phylogeny of the Orthobunyavirus genus to date, now covering 15 serogroups. Our results emphasize the high genetic diversity of orthobunyaviruses and reveal that the presence of the small nonstructural protein (NSs)-encoding open reading frame is not as common in orthobunyavirus genomes as previously thought. PMID:26610546

  12. Simultaneous Detection of Three Arboviruses Using a Triplex RT-PCR Enzyme Hybridization Assay

    Institute of Scientific and Technical Information of China (English)

    Dan Dong; Shi-hong Fu; Li-hua Wang; Zhi Lv; Tai-yuan Li; Guo-dong Liang

    2012-01-01

    Arboviruses represent a serious problem to public health and agriculture worldwide.Fast,accurate identification of the viral agents of arbovirus-associated disease is essential for epidemiological surveillance and laboratory investigation.We developed a cost-effective,rapid,and highly sensitive one-step "triplex RT-PCR enzyme hybridization"assay for simultaneous detections of Japanese Encephallitis virus (JEV,Flaviviridae)Getah virus (GETV,Togaviridae),and Tahyna virus (TAHV,Bunyaviridae) using three pairs of primers to amplify three target sequences in one RT-PCR reaction.The analytical sensitivity of this assay was 1 PFU/mL for JEV,10PFU/mL for GETV,and 10 PFU/mL for TAHV.This assay is significantly more rapid and less expensive than the traditional serological detection and single RT-PCR reaction methods.When “triplex RT-PCR enzyme hybridization” was applied to 29 cerebrospinal fluid(CSF)samples that were JEV-positive by normal RT-PCR assay,all samples were strongly positive for JEV,but negative for GETV and TAHV,demonstrating a good sensitivity,specificity,and performance at CSF specimen detection.

  13. Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.

    Science.gov (United States)

    Weingartl, Hana M; Zhang, Shunzhen; Marszal, Peter; McGreevy, Alan; Burton, Lynn; Wilson, William C

    2014-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp) of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells. PMID:24489907

  14. Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.

    Directory of Open Access Journals (Sweden)

    Hana M Weingartl

    Full Text Available Rift Valley fever virus (RVFV, genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells.

  15. Anticuerpos frente a virus West nile y otros virus transmitidos por artropodos en la poblacion del Delta del Ebro

    Directory of Open Access Journals (Sweden)

    Lozano Alvaro

    1998-01-01

    Full Text Available FUNDAMENTOS: El virus West Nile (VWN es un Flavivirus que se transmite al hombre a través de distintas especies de mosquitos y produce brotes y casos esporádicos de enfermedad en distintas regiones del Viejo Mundo, incluída la Cuenca Mediterránea. Las zonas húmedas europeas que acogen aves migratorias procedentes de África constituyen áreas de alto riesgo para esta infección, así como para otras infecciones víricas transmitidas por artrópodos. MÉTODOS: Con objeto de investigar la prevalencia de la infección por el VWN y otros virus de transmisión similar en la población humana del Delta del Ebro, se estudiaron 1037 muestras de suero, obtenidas en 10 localidades de la zona, para presencia de anticuerpos frente a VWN y otros 12 virus transmitidos por artrópodos (3 Alfavirus, 8 Flaviviridae y 1 Bunyaviridae mediante titulación por inhibición de la hemaglutinación (IHA. En algunos casos se estudió la presencia de IgM específica por IHA tras fraccionar el suero por centrifugación en gradientes de sacarosa. RESULTADOS: En total, se encontró reactividad significativa frente a alguno de los virus probados en 130 casos (12.5%; 4.1% frente a Alfavirus, 8.0% frente a Flaviviridae y 0.4% frente a Bunyaviridae. El análisis de los títulos de anticuerpos reveló porcentajes significativos de muestras con títulos elevados frente a antígenos de VWN y otros. La distribución de la seroprevalencia fue muy desigual, concentrándose fundamentalmente en 3 localidades del interior del Delta (Ampolla, San Jaime y Montells, donde la prevalencia de anticuerpos frente a Flaviviridae llegó a alcanzar el 30% y se observaron niveles residuales de IgM frente a VWN en algunos sueros. CONCLUSIONES: Estos resultados y los obtenidos previamente en otras regiones de la Península Ibérica sugieren que el VWN circula en la población humana de las zonas de riesgo y produce brotes epidémicos periódicos. Habida cuenta del alto porcentaje de

  16. Gene S characterization of Hantavirus species Seoul virus isolated from Rattus norvegicuson an Indonesian island

    Directory of Open Access Journals (Sweden)

    Dian Perwitasari

    2014-08-01

    Full Text Available AbstrakLatar belakang: Hantavirus hidup dan berkembang biak di tubuh hewan pengerat, salah satunya Rattus norvegicus yang banyak ditemukan di daerah kepulauan di Indonesia. Hantavirus spesies Seoul virus (SEOV adalah virus RNA negatif rantai tunggal yang termasuk dalam keluarga Bunyaviridae, mempunyai beberapa gen spesifik terutama gen S yang dapat dikembangkan untuk uji diagnostik. Tujuan penelitian ini ialah untuk mengetahui karakter dari gen S dari Hantavirus spesies Seoulvirus.Metode:Pada penelitian ini dilakukan sekuensing gen S yang berasal dari jaringan paru-paru rodensia.  Fragmen DNA yang disekuensing menggunakan primer DNA SEOS-28F danSEOS -360R,VNS-1501F dan VNS-CSR. Hasil sekuensing dianalisis menggunakan program seqscapedan dianalisis menggunakan program Bioedit dan Mega5. Analisis filogenetik untuk homologi nukleotida dan asam amino dari ketiga strain Kepulauan Seribu tersebut dibandingkan dengan spesies hantavirus lainnya yang diambil dari genebank. Hasil:Analisis Homologi nukleotida dan asam amino antara strain Kepulauan Seribu dengan SEOV menunjukkan homologi nukleotida tertinggi pada strain KS74 (88,4% dan terendah pada KS90 (87,2%, sedangkan homologi asam amino tertinggi adalah strain KS74 (91.3% dan terendah pada strain KS90 (89,5%. Kesimpulan:Karakter gen S virus yang ditemukan di Kepulauan Seribu sebanding dengan virus SEOV yang ditemukan di Singapura dan Korea.  (Health Science Indones 2014;1:1-6Kata kunci:Seoul virus, gen S, Kepulauan Seribu, IndonesiaAbstractBackground: Hantavirus lives and reproduces in the body of rodents. Rattus norvegicuswas one found in the Kepulauan Seribu islands of Indonesia. Hantavirus species Seoul virus (SEOV is a negative single chain RNA viruses included in the family Bunyaviridae. It has a few specific genes, especially genes S that can be developed for a diagnostic test. The aim of this study was to ascertain the character of gene S of hantavirus species Seoul virus. Methods: Gene

  17. Epidemia de febre do Oropouche em Serra Pelada, município de Curionópolis, Pará, 1994

    Directory of Open Access Journals (Sweden)

    Amélia P.A.T. Rosa

    1996-12-01

    Full Text Available No final de novembro de 1994, o Instituto Evandro Chagas (IEC, Belém, Pará, foi notificado de um surto de doença febril na população do garimpo de Serra Pelada, município de Curionôpolis (5°35'S; 49°30'W, no Estado do Pará. Vinte amostras de soro de pessoas, com hemoscopia negativa para tnalária, foram recebidas para esclarecimento diagnóstico. Estudos laboratoriais comprovaram que os casos eram devido ao vírus Oropouche (grupo Simbu. gênero Bunyavirus, família Bunyaviridae. Esses achados, induziram d ida de um grupo de técnicos para realização de investigações ecoepidemíológicas entre 8 e 22 de dezembro. Foram coletadas 296 amostras de sangue, de 73 grupos familiares, sendo 54 para pequisa de vírus (casos febris e 242para sorologia, bem como, procedeu-se a coleta de artrópodes hematófagos. As amostras para pesquisa de vírus foram inoculadas em camundongos recém-nascidos e os soros testados por inibição da hemaglutinação (1H e MAC ELISA. Foram isoladas dez amostras do vírus Oropouche e obtidas seis soroconversões. Ademais, 245 (82,8% amostras foram positivas por sorologia e 71 (97,3% grupos familiares apresentaram pelo menos um membro positivo. Considerando a elevada positividade de anticoipos IH e IgM específica para Oropouche na população de Serra Pelada, concluímos que a epidemia foi extensa e apresentou taxa de ataque em torno de 83%, que correspondeu a infecção de cerca de 5.000 pessoas.In the final of November 1994, an outbreak of a febrile disease was observed in the Serra Pelada gold mine (5°35'S; 49°30'W in the Southeast region of Parã State. Twenty samples were collected and sent to the laboratory of Arbovirus of Instituto Evandro Chagas. The tests showed that the disease was caused by Oropouche virus (Bunyaviridae, Bunyavirus, Simbu serological group. Between 8-22 December 296 serum samples mere taken (54 from febrile patients, 16 paired samples and 242 from contacts and convalescent patients

  18. Temporal and geographic evidence for evolution of Sin Nombre virus using molecular analyses of viral RNA from Colorado, New Mexico and Montana

    Directory of Open Access Journals (Sweden)

    Calisher Charles H

    2009-07-01

    Full Text Available Abstract Background All viruses in the family Bunyaviridae possess a tripartite genome, consisting of a small, a medium, and a large RNA segment. Bunyaviruses therefore possess considerable evolutionary potential, attributable to both intramolecular changes and to genome segment reassortment. Hantaviruses (family Bunyaviridae, genus Hantavirus are known to cause human hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome. The primary reservoir host of Sin Nombre virus is the deer mouse (Peromyscus maniculatus, which is widely distributed in North America. We investigated the prevalence of intramolecular changes and of genomic reassortment among Sin Nombre viruses detected in deer mice in three western states. Methods Portions of the Sin Nombre virus small (S and medium (M RNA segments were amplified by RT-PCR from kidney, lung, liver and spleen of seropositive peromyscine rodents, principally deer mice, collected in Colorado, New Mexico and Montana from 1995 to 2007. Both a 142 nucleotide (nt amplicon of the M segment, encoding a portion of the G2 transmembrane glycoprotein, and a 751 nt amplicon of the S segment, encoding part of the nucleocapsid protein, were cloned and sequenced from 19 deer mice and from one brush mouse (P. boylii, S RNA but not M RNA from one deer mouse, and M RNA but not S RNA from another deer mouse. Results Two of 20 viruses were found to be reassortants. Within virus sequences from different rodents, the average rate of synonymous substitutions among all pair-wise comparisons (πs was 0.378 in the M segment and 0.312 in the S segment sequences. The replacement substitution rate (πa was 7.0 × 10-4 in the M segment and 17.3 × 10-4 in the S segment sequences. The low πa relative to πs suggests strong purifying selection and this was confirmed by a Fu and Li analysis. The absolute rate of molecular evolution of the M segment was 6.76 × 10-3 substitutions/site/year. The absolute age of the M segment

  19. Serologic survey of hantavirus in a rural population from the northern State of Mato Grosso, Brazil Pesquisa sorológica para hantavírus em uma população rural do norte do Estado do Mato Grosso, Brasil

    Directory of Open Access Journals (Sweden)

    Ioni Oliveira Santos

    2012-01-01

    Full Text Available INTRODUCTION: Hantavirus is a genus of ribonucleic acid (RNA viruses included in the family Bunyaviridae. Hantaviruses are rodent-borne zoonoses that, in the last 18 years, became an emergent public health problem in the Americas, causing a severe cardiopulmonary syndrome. This disease has no specific treatment and has a high case fatality. The transmission of hantavirus to man occurs by inhaling aerosols of rodent excreta. The aim of this study was to determine the prevalence of antibodies to hantavirus in the population of the rural settlement of Tupã in the county of Marcelândia, State of Mato Grosso, Brazil. METHODS: The participants of the serologic survey were visited at their homes and selected randomly among the settlement population. Blood samples of the participants were collected by venopuncture. The serum samples were tested by an IgG-ELISA using an N recombinant protein of Araraquara hantavirus as antigen, using the protocol previously established by Figueiredo et al. RESULTS: IgG antibodies to hantavirus were detected in 7 (13% of the 54 participants. The positivity was higher among men. It was observed that there was an association of seropositivity to hantavirus within the participants born in the south of Brazil. CONCLUSIONS: The results suggest that, in this rural area, everyone is exposed to the same risk of becoming infected with hantavirus, and, therefore, there is a need to intensify surveillance activities and education of the local people to prevent this viral infection.INTRODUÇÃO: Hantavirus é um gênero de vírus RNA incluído na família Bunyaviridae. Hantaviroses são zoonoses transmitidas por roedores que nos últimos 18 anos tornou-se um problema emergente da saúde pública nas Américas causando uma síndrome cardiopulmonar. Esta doença não tem nenhum tratamento específico e apresenta alta letalidade. A transmissão do hantavirus ao homem ocorre pela inalação de aerossóis dos excrementos de roedores. O

  20. Genetic Diversity of Crimean Congo Hemorrhagic Fever Virus Strains from Iran

    Directory of Open Access Journals (Sweden)

    Sadegh Chinikar

    2016-01-01

    Full Text Available Background: Crimean Congo hemorrhagic fever virus (CCHFV is a member of the Bunyaviridae family and Nairovirus genus. It has a negative-sense, single stranded RNA genome approximately 19.2 kb, containing the Small, Medium, and Large segments. CCHFVs are relatively divergent in their genome sequence and grouped in seven distinct clades based on S-segment sequence analysis and six clades based on M-segment sequences. Our aim was to obtain new insights into the molecular epidemiology of CCHFV in Iran.Methods: We analyzed partial and complete nucleotide sequences of the S and M segments derived from 50 Iranian patients. The extracted RNA was amplified using one-step RT-PCR and then sequenced. The sequences were ana­lyzed using Mega5 software.Results: Phylogenetic analysis of partial S segment sequences demonstrated that clade IV-(Asia 1, clade IV-(Asia 2 and clade V-(Europe accounted for 80 %, 4 % and 14 % of the circulating genomic variants of CCHFV in Iran respectively. However, one of the Iranian strains (Iran-Kerman/22 was associated with none of other sequences and formed a new clade (VII. The phylogenetic analysis of complete S-segment nucleotide sequences from selected Ira­nian CCHFV strains complemented with representative strains from GenBank revealed similar topology as partial sequences with eight major clusters. A partial M segment phylogeny positioned the Iranian strains in either associa­tion with clade III (Asia-Africa or clade V (Europe.Conclusion: The phylogenetic analysis revealed subtle links between distant geographic locations, which we pro­pose might originate either from international livestock trade or from long-distance carriage of CCHFV by infected ticks via bird migration.

  1. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications.

    Directory of Open Access Journals (Sweden)

    Rodrigo Jácome

    Full Text Available The crystal structures of monomeric RNA-dependent RNA polymerases and reverse transcriptases of more than 20 different viruses are available in the Protein Data Bank. They all share the characteristic right-hand shape of DNA- and RNA polymerases formed by the fingers, palm and thumb subdomains, and, in many cases, "fingertips" that extend from the fingers towards the thumb subdomain, giving the viral enzyme a closed right-hand appearance. Six conserved structural motifs that contain key residues for the proper functioning of the enzyme have been identified in all these RNA-dependent polymerases. These enzymes share a two divalent metal-ion mechanism of polymerization in which two conserved aspartate residues coordinate the interactions with the metal ions to catalyze the nucleotidyl transfer reaction. The recent availability of crystal structures of polymerases of the Orthomyxoviridae and Bunyaviridae families allowed us to make pairwise comparisons of the tertiary structures of polymerases belonging to the four main RNA viral groups, which has led to a phylogenetic tree in which single-stranded negative RNA viral polymerases have been included for the first time. This has also allowed us to use a homology-based structural prediction approach to develop a general three-dimensional model of the Ebola virus RNA-dependent RNA polymerase. Our model includes several of the conserved structural motifs and residues described in other viral RNA-dependent RNA polymerases that define the catalytic and highly conserved palm subdomain, as well as portions of the fingers and thumb subdomains. The results presented here help to understand the current use and apparent success of antivirals, i.e. Brincidofovir, Lamivudine and Favipiravir, originally aimed at other types of polymerases, to counteract the Ebola virus infection.

  2. Serologic evidence of Jamestown Canyon and Keystone virus infection in vertebrates of the DelMarVa Peninsula.

    Science.gov (United States)

    Watts, D M; LeDuc, J W; Bailey, C L; Dalrymple, J M; Gargan, T P

    1982-11-01

    Serological data accumulated during the past decade indicated that a variety of feral and domestic animals of the Delaware-Maryland-Virginia (DelMarVa) Peninsula were infected with Jamestown Canyon (JC) and/or Keystone (KEY) viruses (Bunyaviridae, California serogroup). Neutralizing (N) antibody to JC virus was most prevalent in white-tailed deer, sika deer, cottontail rabbits and horses. KEY virus N antibody was detected most frequently in gray squirrels and domestic goats. N antibody indicative of past infection by one or both viruses also was found in raccoons, horses and humans. JC and/or KEY virus N antibodies were not demonstrable in sera of several other species of small mammals and reptiles. Investigations were extended to evaluate the role of domestic goats as an amplifying host of JC and KEY viruses and to assess their potential as sentinels of virus transmission. Goats maintained in the Pocomoke Cypress Swamp during the summer season of 1978, acquired N antibodies to JC and KEY viruses. Following experimental inoculation with either JC or KEY virus, all goats developed N antibody despite the absence of a demonstrable viremia in most animals. Goats proved to be effective as sentinels for monitoring the transmission of JC and KEY viruses; however, the exceptionally low titers or absence of viremia following inoculation with these viruses would seem to preclude a potential virus-amplifying role for this species. Although findings implicated primarily gray squirrels and white-tailed deer as possible amplifying hosts of KEY and JC virus, respectively, further investigations will be required to clarify their role, particularly since both viruses may be maintained entirely by transovarial transmission. PMID:7149110

  3. Novel Camelid Antibody Fragments Targeting Recombinant Nucleoprotein of Araucaria hantavirus: A Prototype for an Early Diagnosis of Hantavirus Pulmonary Syndrome

    Science.gov (United States)

    Pereira, Soraya S.; Moreira-Dill, Leandro S.; Morais, Michelle S. S.; Prado, Nidiane D. R.; Barros, Marcos L.; Koishi, Andrea C.; Mazarrotto, Giovanny A. C. A.; Gonçalves, Giselle M.; Zuliani, Juliana P.; Calderon, Leonardo A.; Soares, Andreimar M.; Pereira da Silva, Luiz H.; Duarte dos Santos, Claudia N.; Fernandes, Carla F. C.; Stabeli, Rodrigo G.

    2014-01-01

    In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections. PMID

  4. Bovine epizootic encephalomyelitis caused by Akabane virus in southern Japan

    Directory of Open Access Journals (Sweden)

    Tanaka Shogo

    2008-06-01

    Full Text Available Abstract Background Akabane virus is a member of the genus Orthobunyavirus in the family Bunyaviridae. It is transmitted by hematophagous arthropod vectors such as Culicoides biting midges and is widely distributed in temperate to tropical regions of the world. The virus is well known as a teratogenic pathogen which causes abortions, stillbirths, premature births and congenital abnormalities with arthrogryposis-hydranencephaly syndrome in cattle, sheep and goats. On the other hand, it is reported that the virus rarely induces encephalomyelitis in cattle by postnatal infection. A first large-scale epidemic of Akabane viral encephalomyelitis in cattle occurred in the southern part of Japan from summer to autumn in 2006. The aim of this study is to define the epidemiological, pathological and virological properties of the disease. Results Nonsuppurative encephalomyelitis was observed in cattle that showed neurological symptoms such as astasia, ataxia, opisthotonus and hypersensitivity in beef and dairy farms by histopathological analysis. Akabane viral antigen and genome were consistently detected from the central nervous system of these animals, and the virus was isolated not only from them but also from the blood samples of clinically healthy calves in the epidemic area. The isolates were classified into genogroup I a containing the Iriki strain, which caused encephalitis of calves almost twenty years ago in Japan. Most of the affected cattle possessed the neutralizing antibody against Akabane virus. Seroconversion of the cohabitated and sentinel cattle in the epidemic area was also confirmed during an outbreak of the disease. Conclusion The ecological and epidemiological data we have obtained so far demonstrated that the Akabane virus is not endemic in Japan. No evidence of Akabane virus circulation was observed in 2005 through nation-wide serological surveillance, suggesting that a new strain belonging to genogroup I a invaded southern Japan

  5. Epidemiologic relationship between Toscana virus infection and Leishmania infantum due to common exposure to Phlebotomus perniciosus sandfly vector.

    Directory of Open Access Journals (Sweden)

    Laurence Bichaud

    2011-09-01

    Full Text Available Sand flies are recognised vectors of parasites in the genus Leishmania and a number of arthropod-borne viruses, in particular viruses within the genus Phlebovirus, family Bunyaviridae. In southern France, Toscana phlebovirus (TOSV is recognized as a prominent cause of summer meningitis. Since Leishmania and TOSV have a common vector (Phlebotomus perniciosus, an epidemiologic link has been assumed for a long time. However, there is no scientific evidence of such a link between human leishmaniosis and phleboviral infections. To identify a possible link, we investigated the presence and distribution of antibodies against these two microorganisms (i in individuals and (ii at a spatial level in the city of Marseille (south-eastern France. Five hundred sera were selected randomly in the biobank of the Department of Parasitology of the Public Hospitals of Marseille. All sera were previously tested for IgG against Leishmania by Western Blotting, and TOSV IgG were detected by indirect immunofluorescence. The seropositivity rates were 21.4% for TOSV and 28% for Leishmania. Statistical analysis demonstrated that seropositivity for one pathogen was significantly associated with seropositivity to the other pathogen. This result provided the first robust evidence for the existence of an epidemiological relationship between Leishmania infantum and TOSV. Addresses of tested patients were geolocalized and integrated into Geographical Information System software, in order to test spatial relationship between the two pathogens. Spatial analysis did not allow to identify (i specific patterns for the spatial distribution of positive serological results for TOSV or Leishmania, and (ii a spatial relationship between Leishmania and TOSV positive serological results. This may reflect the fact that the sample studied was not powerful enough to demonstrate either a spatial clustering or co-location, i.e. that the actual risk exposure area is smaller than the mean of

  6. Inhibition of Hazara nairovirus replication by small interfering RNAs and their combination with ribavirin

    Directory of Open Access Journals (Sweden)

    Crance Jean-Marc

    2011-05-01

    Full Text Available Abstract Background The genus Nairovirus in the family Bunyaviridae contains 34 tick-borne viruses classified into seven serogroups. Hazara virus (HAZV belongs to the Crimean-Congo hemorrhagic fever (CCHF serogroup that also includes CCHF virus (CCHFV a major pathogen for humans. HAZV is an interesting model to study CCHFV due to a close serological and phylogenetical relationship and a classification which allows handling in a BSL2 laboratory. Nairoviruses are characterized by a tripartite negative-sense single stranded RNA genome (named L, M and S segments that encode the RNA polymerase, the Gn-Gc glycoproteins and the nucleoprotein (NP, respectively. Currently, there are neither vaccines nor effective therapies for the treatment of any bunyavirus infection in humans. In this study we report, for the first time, the use of RNA interference (RNAi as an approach to inhibit nairovirus replication. Results Chemically synthesized siRNAs were designed to target the mRNA produced by the three genomic segments. We first demonstrated that the siRNAs targeting the NP mRNA displayed a stronger antiviral effect than those complementary to the L and M transcripts in A549 cells. We further characterized the two most efficient siRNAs showing, that the induced inhibition is specific and associated with a decrease in NP synthesis during HAZV infection. Furthermore, both siRNAs depicted an antiviral activity when used before and after HAZV infection. We next showed that HAZV was sensitive to ribavirin which is also known to inhibit CCHFV. Finally, we demonstrated the additive or synergistic antiviral effect of siRNAs used in combination with ribavirin. Conclusions Our study highlights the interest of using RNAi (alone or in combination with ribavirin to treat nairovirus infection. This approach has to be considered for the development of future antiviral compounds targeting CCHFV, the most pathogenic nairovirus.

  7. Comparative analysis of the L, M, and S RNA segments of Crimean-Congo haemorrhagic fever virus isolates from southern Africa.

    Science.gov (United States)

    Goedhals, Dominique; Bester, Phillip A; Paweska, Janusz T; Swanepoel, Robert; Burt, Felicity J

    2015-05-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family with a tripartite, negative sense RNA genome. This study used predictive software to analyse the L (large), M (medium), and S (small) segments of 14 southern African CCHFV isolates. The OTU-like cysteine protease domain and the RdRp domain of the L segment are highly conserved among southern African CCHFV isolates. The M segment encodes the structural glycoproteins, GN and GC, and the non-structural glycoproteins which are post-translationally cleaved at highly conserved furin and subtilase SKI-1 cleavage sites. All of the sites previously identified were shown to be conserved among southern African CCHFV isolates. The heavily O-glycosylated N-terminal variable mucin-like domain of the M segment shows the highest sequence variability of the CCHFV proteins. Five transmembrane domains are predicted in the M segment polyprotein resulting in three regions internal to and three regions external to the membrane across the G(N), NS(M) and G(C) glycoproteins. The corroboration of conserved genome domains and sequence identity among geographically diverse isolates may assist in the identification of protein function and pathogenic mechanisms, as well as the identification of potential targets for antiviral therapy and vaccine design. As detailed functional studies are lacking for many of the CCHFV proteins, identification of functional domains by prediction of protein structure, and identification of amino acid level similarity to functionally characterised proteins of related viruses or viruses with similar pathogenic mechanisms are a necessary step for selection of areas for further study. PMID:25693737

  8. A Seroepidemiological Survey of Crimean Congo Hemorrhagic Fever among Goats and Sheep in Lezhe Torovica Province, Albania

    Directory of Open Access Journals (Sweden)

    ARTA LUGAJ

    2014-09-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is a zoonotic vector-born viral disease with a case fatality rate of 2-50% in human. CCHFV is classified within the Nairovirus genus in the Bunyaviridae family. The virus is endemic in over 30 countries, including Albanian. Animals can infect by virus without clinical symptoms.. The virus can be transmitted mainly through direct contact with blood or tissues from infected livestock or through bites of Hyalomma ticks. The aim of this study was to examine the distribution of CCHFV among sheep and goats in Lezha-Torovica region of Albania. This survey was carried out in 2013. In all, 50 blood samples were taken from the jugular veins of the sheep, and 50 blood samples were taken from the jugular veins of the goats. The samples were immediately taken to the laboratory and their serum extracted, separated by a centrifuge with 3500 rpm in 10 minutes. They were kept in the Faculty of Veterinary Medicine, Agricultural University of Tirana, at a temperature below 20°C until analysis and tested with immunological methods using indirect ELISA assay in Friedrich-Loeffler Institute (FLI, Greifswald Germany. Through this technique it was possible to identified IgG antibodies in infected serum samples. The prevalence of this infection in animals is obviously different, in goats is higher than in sheep, respectively 90% and 24%. It is recommended that further studies be carried out on additional livestock, high-risk groups of humans, and ticks, to determine the CCHF disease status in Lezha-Torovica.

  9. Mini-genome rescue of Crimean-Congo hemorrhagic fever virus and research into the evolutionary patterns of its untranslated regions.

    Science.gov (United States)

    Zhao, Jiuru; Xia, Han; Zhang, Yujiang; Yin, Shiyu; Zhang, Zhong; Tang, Shuang; Kou, Zheng; Yu, Jingfeng; Fan, Zhaojun; Li, Tianxian

    2013-10-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of genus Nairovirus, family Bunyaviridae, which are distributed widely in Africa, Europe and Asia with several genotypes. As a BSL-4 level pathogen, the requirement of high-level biosafety facilities severely constrains researches on live virus manipulation. In this study, we developed a helper-virus-independent mini-genome rescue system for the Chinese YL04057 strain. Based on the enhanced green fluorescent protein (EGFP)-derived mini-genome plasmids, this polymerase I driven system permits easy observation and quantification. Unlike previous report, gradually reduced levels of activity of the CCHFV L, M and S untranslated regions (UTRs) were observed in our system. We also demonstrated that the UTRs at both ends were indispensable for mini-genome background expression. In addition, we phylogentically analyzed all six UTRs of CCHFV and showed that L-UTRs were clustered together approximately corresponding to their original geographical continents. The UTRs of M segment showed a similar branch structure to its open reading frames (ORFs), and nearly an identical tree was generated with 5' UTRs of S segment compared with its ORFs. However, the 3' UTRs of S segment formed new divergent groups. Compatibility tests of YL04057 strain nucleocapsid protein and L protein expression plasmids with Nigerian strain IbAr10200 mini-genomes revealed lower compatibility of L-UTRs without an obvious effect on M-UTRs. Moreover, we demonstrated that the L-UTRs could tolerate certain nucleotide mutations. This system may provide a foundation for future studies of the viral replication cycle, pathogenic mechanisms and evolutionary patterns of CCHFV. PMID:23891575

  10. Epidemiological survey of Crimean Congo hemorrhagic fever virus in cattle in East Darfur State, Sudan.

    Science.gov (United States)

    Ibrahim, Alaa M; Adam, Ibrahim A; Osman, Badreldin T; Aradaib, Imadeldin E

    2015-06-01

    Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease caused by CCHF virus (CCHFV) of the genus Nairovirus in the family Bunyaviridae. CCHFV causes subclinical infection in domestic livestock and an often fatal hemorrhagic illness in humans, with approximately 30% mortality rates. In the present study, a cross-sectional serosurvey was conducted in a total of 282 randomly selected cattle from five localities in East Darfur State, Sudan. The exposure status to CCHF was determined using enzyme-linked immunosorbent assay (ELISA) for detection of CCHFV-specific IgG antibodies in cattle serum samples. The CCHFV-specific IgG antibodies were detected in 54 out of 282 animals, accounting for a 19.14% prevalence rate. Older cattle (>2 years of age) were approximately five times more likely to be infected with the virus (OR=4.90, CI=1.28-18.98, p-value=0.02). Heavily tick-infested cattle (ticks all over the body) were at 11 times higher at risk compared to tick-free animals (OR=11.11, CI=2.86-43.25, p-value=0.01). Grazing system is another factor affecting CCHF, where cattle grazing on open system were 27 times more at risk compared to other grazing systems (OR=27.22, CI=7.46-99.24, p-value=0.001). There was an association between localities and CCHF cattle (OR=0.24, CI=0.07-0.83, p-value=0.02). This study confirms the exposure of cattle to CCHF in East Darfur and identifies potential risk factors associated with the disease. Further epidemiological studies and improved surveillance are urgently needed to prevent a possible outbreak of CCHF among humans in the Darfur region of Sudan. PMID:25898993

  11. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin.

    Science.gov (United States)

    Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K; Nichol, Stuart T; Albariño, César G; Spiropoulou, Christina F

    2015-05-01

    Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV's high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor's maturation to GP38, and Gn precursor's maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public

  12. Molecular epidemiology of Rift Valley fever virus based on genetic analysis of the virus isolates recovered in 1944-2008 from distinct geographic regions

    International Nuclear Information System (INIS)

    Full text: Rift Valley fever (RVF) is an emerging mosquito-borne viral zoonosis caused by a RNA virus named Rift Valley fever virus (RVFV), a Phlebovirus member of the Bunyaviridae family. Historically the disease was present in Africa and Madagascar where outbreaks occur at irregular intervals when heavy rains facilitate the breeding of vector competent mosquito vectors. The occurrence of the first confirmed outbreaks of RVF in 2000-2001 among humans and livestock outside Africa, in the Arabian Peninsula, carries the implication of further spread of infection into non-endemic areas since the virus is capable of utilizing a wide range of mosquito vectors. This work undertook investigation of the molecular epidemiology of the disease (1944-2008) with special reference to South Africa where the first documented outbreak of RVF occurred in 1951 and the most recent in 2008. A total of 149 isolates of RVF recovered over a period of 65 years from various hosts and during endemic and epidemic periods of disease in 15 African countries, Madagascar and Saudi Arabia were characterised by partial genomic sequencing of a 535-nucleotide segment of the G2 glycoprotein coding region of the M segment and the genetic relatedness determined using MEGA software. Pair-wise comparison of RVF isolates revealed divergences ranging from 0-5.6% at the nucleotide level, corresponding to 0-2.8% at the amino acid level. Most isolates are compartmentalized geographically and belong to one of 16 genotypes within three main lineages. Isolates from South Africa collected over 57 years belong to one of 4 genotypes. The 2008 South African isolates were closely related to isolates from the recent east African outbreak in 2006 and a 2003 Mauritanian isolate. Phylogenetic analysis indicates that circulation of RVFV is highly compartmentalized but with favourable climatic conditions a single genotype can rapidly spread from endemic areas over vast distances to cause outbreaks in susceptible human and

  13. La Crosse virus infectivity, pathogenesis, and immunogenicity in mice and monkeys

    Directory of Open Access Journals (Sweden)

    Murphy Brian R

    2008-02-01

    Full Text Available Abstract Background La Crosse virus (LACV, family Bunyaviridae, was first identified as a human pathogen in 1960 after its isolation from a 4 year-old girl with fatal encephalitis in La Crosse, Wisconsin. LACV is a major cause of pediatric encephalitis in North America and infects up to 300,000 persons each year of which 70–130 result in severe disease of the central nervous system (CNS. As an initial step in the establishment of useful animal models to support vaccine development, we examined LACV infectivity, pathogenesis, and immunogenicity in both weanling mice and rhesus monkeys. Results Following intraperitoneal inoculation of mice, LACV replicated in various organs before reaching the CNS where it replicates to high titer causing death from neurological disease. The peripheral site where LACV replicates to highest titer is the nasal turbinates, and, presumably, LACV can enter the CNS via the olfactory neurons from nasal olfactory epithelium. The mouse infectious dose50 and lethal dose50 was similar for LACV administered either intranasally or intraperitoneally. LACV was highly infectious for rhesus monkeys and infected 100% of the animals at 10 PFU. However, the infection was asymptomatic, and the monkeys developed a strong neutralizing antibody response. Conclusion In mice, LACV likely gains access to the CNS via the blood stream or via olfactory neurons. The ability to efficiently infect mice intranasally raises the possibility that LACV might use this route to infect its natural hosts. Rhesus monkeys are susceptible to LACV infection and develop strong neutralizing antibody responses after inoculation with as little as 10 PFU. Mice and rhesus monkeys are useful animal models for LACV vaccine immunologic testing although the rhesus monkey model is not optimal.

  14. The consequences of reconfiguring the ambisense S genome segment of Rift Valley fever virus on viral replication in mammalian and mosquito cells and for genome packaging.

    Directory of Open Access Journals (Sweden)

    Benjamin Brennan

    2014-02-01

    Full Text Available Rift Valley fever virus (RVFV, family Bunyaviridae is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments and one ambisense (S segment RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N protein in the negative-sense and a nonstructural (NSs protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome.

  15. Serological survey of Crimean-Congo hemorrhagic fever virus in cattle in Berat and Kolonje, Albania

    Directory of Open Access Journals (Sweden)

    ARTA LUGAJ

    2014-06-01

    Full Text Available Crimean–Congo hemorrhagic fever (CCHF is a tick-borne disease caused by the arbovirus Crimean–Congo hemorrhagic fever virus(CCHFV, which is a member of the Nairovirusgenus (family Bunyaviridae. The disease now occurs sporadically throughout much of Africa, Asia, andEurope and results in an approximately 30% fatality rate. Numerous genera of ixodid ticks serve both as vector and reservoir for CCHFV; however, ticks in the genus Hyalommaare particularlyimportant to the ecology of this virus.The aim of this study was to examine the distribution of CCHFV among the cattle in Berat and Kolonje regions in Albania. The data taken in this study indicates for the presence of CCHFV Crimean-Congo hemorrhagic fever virus in these countries. The serum samples were conserved in -20°C and tested with immunological methods using indirect ELISA assay in Friedrich-Loeffler Institute (FLI, Greifswald Germany. Through this technique it was possible to identified IgG antibodies in infected serum samples. From these results in Berat-Terpanwe had an indication about the presence of IgG antibodies in 2 blood samples. 3 serum samples were equivocal and 45 serum samples were negative from the total of 50 serum samples in cattle. While in Kolonje-Erseke the results show the presence of IgG antibodies in 4 blood samples from 54 seum samples in cattle. Respectively the prevalence in these 2 countries in Albania is 4.4% and 8%. These results can clearly proved the presence of CCHFV in livestock in Albania.

  16. Life-long shedding of Puumala hantavirus in wild bank voles (Myodes glareolus).

    Science.gov (United States)

    Voutilainen, Liina; Sironen, Tarja; Tonteri, Elina; Bäck, Anne Tuiskunen; Razzauti, Maria; Karlsson, Malin; Wahlström, Maria; Niemimaa, Jukka; Henttonen, Heikki; Lundkvist, Åke

    2015-06-01

    The knowledge of viral shedding patterns and viraemia in the reservoir host species is a key factor in assessing the human risk of zoonotic viruses. The shedding of hantaviruses (family Bunyaviridae) by their host rodents has widely been studied experimentally, but rarely in natural settings. Here we present the dynamics of Puumala hantavirus (PUUV) shedding and viraemia in naturally infected wild bank voles (Myodes glareolus). In a monthly capture-mark-recapture study, we analysed 18 bank voles for the presence and relative quantity of PUUV RNA in the excreta and blood from 2 months before up to 8 months after seroconversion. The proportion of animals shedding PUUV RNA in saliva, urine and faeces peaked during the first month after seroconversion, but continued throughout the study period with only a slight decline. The quantity of shed PUUV in reverse transcription quantitative PCR (RT-qPCR) positive excreta was constant over time. In blood, PUUV RNA was present for up to 7 months but both the probability of viraemia and the virus load declined with time. Our findings contradict the current view of a decline in virus shedding after the acute phase and a short viraemic period in hantavirus infection - an assumption widely adopted in current epidemiological models. We suggest the life-long shedding as a means of hantaviruses to survive over host population bottlenecks, and to disperse in fragmented habitats where local host and/or virus populations face temporary extinctions. Our results indicate that the kinetics of pathogens in wild hosts may differ considerably from those observed in laboratory settings. PMID:25701819

  17. Planning for Rift Valley fever virus: use of geographical information systems to estimate the human health threat of white-tailed deer (Odocoileus virginianus-related transmission

    Directory of Open Access Journals (Sweden)

    Sravan Kakani

    2010-11-01

    Full Text Available Rift Valley fever (RVF virus is a mosquito-borne phlebovirus of the Bunyaviridae family that causes frequent outbreaks of severe animal and human disease in sub-Saharan Africa, Egypt and the Arabian Peninsula. Based on its many known competent vectors, its potential for transmission via aerosolization, and its progressive spread from East Africa to neighbouring regions, RVF is considered a high-priority, emerging health threat for humans, livestock and wildlife in all parts of the world. Introduction of West Nile virus to North America has shown the potential for “exotic” viral pathogens to become embedded in local ecological systems. While RVF is known to infect and amplify within domestic livestock, such as taurine cattle, sheep and goats, if RVF virus is accidentally or intentionally introduced into North America, an important unknown factor will be the role of local wildlife in the maintenance or propagation of virus transmission. We examined the potential impact of RVF transmission via white-tailed deer (Odocoileus virginianus in a typical north-eastern United States urban-suburban landscape, where livestock are rare but where these potentially susceptible, ungulate wildlife are highly abundant. Model results, based on overlap of mosquito, human and projected deer densities, indicate that a significant proportion (497/1186 km2, i.e. 42% of the urban and peri-urban landscape could be affected by RVF transmission during the late summer months. Deer population losses, either by intervention for herd reduction or by RVF-related mortality, would substantially reduce these likely transmission zones to 53.1 km2, i.e. by 89%.

  18. An unexpected recurrent transmission of Rift Valley fever virus in cattle in a temperate and mountainous area of Madagascar.

    Directory of Open Access Journals (Sweden)

    Veronique Chevalier

    2011-12-01

    Full Text Available Rift Valley fever is an acute, zoonotic viral disease of domestic ruminants, caused by a phlebovirus (Bunyaviridae family. A large outbreak occurred in Madagascar in 2008-2009. The goal of the present study was to evaluate the point prevalence of antibodies against Rift Valley Fever Virus (RVFV in cattle in the Anjozorobe district, located in the wet and temperate highland region of Madagascar and yet heavily affected by the disease, and analyse environmental and trade factors potentially linked to RVFV transmission. A serological study was performed in 2009 in 894 bovines. For each bovine, the following variables were recorded: age, location of the night pen, minimum distance from the pen to the nearest water point and the forest, nearest water point type, and herd replacement practices. The serological data were analyzed using a generalized linear mixed model. The overall anti-RVFV IgG seroprevalence rate was 28% [CI95% 25-31]. Age was statistically linked to prevalence (p = 10(-4, being consistent with a recurrent RVFV circulation. Distance from the night pen to the nearest water point was a protective factor (p = 5.10(-3, which would be compatible with a substantial part of the virus transmission being carried out by nocturnal mosquito vectors. However, water point type did not influence the risk of infection: several mosquito species are probably involved. Cattle belonging to owners who purchase animals to renew the herd were significantly more likely to have seroconverted than others (p = 0.04: cattle trade may contribute to the introduction of the virus in this area. The minimum distance of the night pen to the forest was not linked to the prevalence. This is the first evidence of a recurrent transmission of RVFV in such an ecosystem that associates a wet, temperate climate, high altitude, paddy fields, and vicinity to a dense rain forest. Persistence mechanisms need to be further investigated.

  19. The genome sequence of Lone Star virus, a highly divergent bunyavirus found in the Amblyomma americanum tick.

    Science.gov (United States)

    Swei, Andrea; Russell, Brandy J; Naccache, Samia N; Kabre, Beniwende; Veeraraghavan, Narayanan; Pilgard, Mark A; Johnson, Barbara J B; Chiu, Charles Y

    2013-01-01

    Viruses in the family Bunyaviridae infect a wide range of plant, insect, and animal hosts. Tick-borne bunyaviruses in the Phlebovirus genus, including Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) in China, Heartland virus (HRTV) in the United States, and Bhanja virus in Eurasia and Africa have been associated with acute febrile illness in humans. Here we sought to characterize the growth characteristics and genome of Lone Star virus (LSV), an unclassified bunyavirus originally isolated from the lone star tick Amblyomma americanum. LSV was able to infect both human (HeLa) and monkey (Vero) cells. Cytopathic effects were seen within 72 h in both cell lines; vacuolization was observed in infected Vero, but not HeLa, cells. Viral culture supernatants were examined by unbiased deep sequencing and analysis using an in-house developed rapid computational pipeline for viral discovery, which definitively identified LSV as a phlebovirus. De novo assembly of the full genome revealed that LSV is highly divergent, sharing identity with any other bunyavirus. Despite this sequence diversity, LSV was found by phylogenetic analysis to be part of a well-supported clade that includes members of the Bhanja group viruses, which are most closely related to SFSTV/HRTV. The genome sequencing of LSV is a critical first step in developing diagnostic tools to determine the risk of arbovirus transmission by A. americanum, a tick of growing importance given its expanding geographic range and competence as a disease vector. This study also underscores the power of deep sequencing analysis in rapidly identifying and sequencing the genomes of viruses of potential clinical and public health significance. PMID:23637969

  20. Crimean-Congo haemorrhagic fever: an overview

    Directory of Open Access Journals (Sweden)

    Virat J. Agravat

    2014-04-01

    Full Text Available Crimean-Congo Hemorrhagic Fever (CCHF is an acute, highly-contagious and life-threatening vector borne disease. The CCHF virus causes severe viral hemorrhagic fever outbreaks, with a case fatality rate of 10-40%. CCHF virus isolation and/or disease has been reported from more than 30 countries in Africa, Asia, South eastern Europe and Middle east. Jan 2011 marks first ever reports of outbreak of CCHF in India, total 5 cases were detected of CCHF from Gujarat. CCHF has recently in news again, 6 human cases and 32 animal samples test positive for CCHF from Kariyana village of Amreli district (Gujarat state July 2013. Crimean-Congo hemorrhagic fever virus (CCHFV, member of genus Nairovirus in the family Bunyaviridae. Numerous genera of ixodid ticks serve both as vector and reservoir for CCHFV. Human infections occurred through tick bites, direct contact with blood or tissue of infected livestock, or nosocomial infections. Human infections begin with nonspecific febrile symptoms, but progress to a serious hemorrhagic syndrome with a high case fatality ratio. The most definitive way of diagnosis is the demonstration of virus or viral genome in sera samples. Hospitalization in special care unit with constant effort to prevent haemorrhagic complication along with laboratory monitoring is cornerstone for treatment of CCHF. Till date there is no FDA approved drug or definitive treatment for CCHF, ribavirin is tried by many physician need to be evaluated further. Current article is an effort to update existing knowledge about CCHF by due focus on various aspects especially prevention of this zoonotic disease. Much of the real life queries about this disease are elaborated after extensive literature research. [Int J Res Med Sci 2014; 2(2.000: 392-397

  1. Bovine aortic endothelial cells are susceptible to hantavirus infection; a new aspect in hantavirus ecology

    International Nuclear Information System (INIS)

    Hantaviruses are enveloped RNA viruses that belong to the family Bunyaviridae. They are the causative agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Hantaviruses show a worldwide distribution with specific rodent species as natural hosts. It is known that rodents can transmit the virus via feces, urine, saliva, or bites to humans. Additionally, antibodies against different hantaviruses were also found in domestic animals, For example, Danes et al. documented hantavirus-specific IgG titers in 2% of examined cattle [Ceskoslov. Epidemiol. Mikrobiol. Imunol. 41 (1992) 15]. In order to clarify the possibility of a nonrodent and nonhuman hantavirus infection, the susceptibility of bovine aortic endothelial cells (BAEC) to Hantavirus serotype Puumala infection was investigated. The hantaviral nucleocapsid protein was detected in 95% of infected BAEC at the fourth cell culture passage 12 weeks after initial infection by immunofluorescence assay (IFA). The presence of Puumala virus (PUU) nucleocapsid protein and the viral glycoproteins G1 and G2 in infected cells were additionally confirmed by Western blot analysis. The viral RNA genome was identified in infected BAEC cultures and in cell-free culture medium at the fourth passage by reverse transcription polymerase chain reaction (RT-PCR), verified by cDNA nucleotide sequence analysis, showing a 98-100% homology to the input virus. The infected BAEC cultures were shown to express αVβ3-integrin surface receptors that are known to mediate virus entry in human cells and revealed no major cytopathic effects (CPEs) as assayed by immunofluorescence staining of the cytoskeletal components actin and microtubules. In the present study, we documented for the first time that a nonrodent and nonhuman aortic endothelial cell culture of bovine origin (BAEC) can be efficiently infected with a hantavirus. This finding is of particular importance because it adds new aspects to questions

  2. Polar release of pathogenic Old World hantaviruses from renal tubular epithelial cells

    Directory of Open Access Journals (Sweden)

    Krautkrämer Ellen

    2012-11-01

    Full Text Available Abstract Background Epithelio- and endotheliotropic viruses often exert polarized entry and release that may be responsible for viral spread and dissemination. Hantaviruses, mostly rodent-borne members of the Bunyaviridae family infect epithelial and endothelial cells of different organs leading to organ dysfunction or even failure. Endothelial and renal epithelial cells belong to the target cells of Old World hantavirus. Therefore, we examined the release of hantaviruses in several renal epithelial cell culture models. We used Vero cells that are commonly used in hantavirus studies and primary human renal epithelial cells (HREpC. In addition, we analyzed MDCKII cells, an epithelial cell line of a dog kidney, which represents a widely accepted in vitro model of polarized monolayers for their permissiveness for hantavirus infection. Results Vero C1008 and primary HREpCs were grown on porous-support filter inserts for polarization. Monolayers were infected with hantavirus Hantaan (HTNV and Puumala (PUUV virus. Supernatants from the apical and basolateral chamber of infected cells were analyzed for the presence of infectious particles by re-infection of Vero cells. Viral antigen and infectious particles of HTNV and PUUV were exclusively detected in supernatants collected from the apical chamber of infected Vero C1008 cells and HREpCs. MDCKII cells were permissive for hantavirus infection and polarized MDCKII cells released infectious hantaviral particles from the apical surface corresponding to the results of Vero and primary human epithelial cells. Conclusions Pathogenic Old World hantaviruses are released from the apical surface of different polarized renal epithelial cells. We characterized MDCKII cells as a suitable polarized cell culture model for hantavirus infection studies.

  3. Cytokine expression during early and late phase of acute Puumala hantavirus infection

    Directory of Open Access Journals (Sweden)

    Sadeghi Mahmoud

    2011-11-01

    Full Text Available Abstract Background Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS in the Old World and hantavirus pulmonary syndrome (HPS in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. Results We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus infection in 2010 during a hantavirus epidemic in Germany. Hantavirus infection was confirmed by positive anti-hantavirus IgG/IgM. Cytokine expression of IL-2, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and TGF-β1 was analysed by ELISA during the early and late phase of acute hantavirus infection (average 6 and 12 days after onset of symptoms, respectively. A detailed description of the demographic and clinical presentation of severe hantavirus infection requiring hospitalization during the 2010 hantavirus epidemic in Germany is given. Acute hantavirus infection was characterized by significantly elevated levels of IL-2, IL-6, IL-8, TGF-β1 and TNF-α in both early and late phase compared to healthy controls. From early to late phase of disease, IL-6, IL-10 and TNF-α significantly decreased whereas TGF-β1 levels increased. Disease severity characterized by elevated creatinine and low platelet counts was correlated with high pro-inflammatory IL-6 and TNF-α but low immunosuppressive TGF-β1 levels and vice versa . Conclusion High expression of cytokines activating T-lymphocytes, monocytes and macrophages in the early phase of disease supports the hypothesis of an immune-mediated pathogenesis. In the late phase of disease, immunosuppressive TGF-β1 level increase significantly. We suggest that delayed induction of a protective immune mechanism to downregulate a massive early pro-inflammatory immune response might contribute to the pathologies characteristic of

  4. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Donald D.; Piper, Mary E.; Gerrard, Sonja R.; Smith, Janet L. (Michigan)

    2010-07-13

    Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-{angstrom} crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA species of {approx}100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous {approx}100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.

  5. Epidemiological study of Rift Valley fever virus in Kigoma, Tanzania

    Directory of Open Access Journals (Sweden)

    Emmanuel G. Kifaro

    2014-04-01

    Full Text Available Rift Valley fever virus (RVFV is an acute, zoonotic viral disease caused by a  Phlebovirus, which belongs to the Bunyaviridae family. Among livestock, outbreaks of the disease are economically devastating. They are often characterised by large, sweeping abortion storms and have significant mortality in adult livestock. The aim of the current study was to investigate RVFV infection in the Kigoma region, which is nestled under the hills of the western arm of the Great Rift Valley on the edge of Lake Tanganyika, Tanzania. A region-wide serosurvey was conducted on non-vaccinated small ruminants (sheep and goats, n = 411. Sera samples were tested for the presence of anti-RVFV antibodies and viral antigen, using commercial enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction, respectively. The overall past infections were detected in 22 of the 411 animals, 5.4% (Confidence Interval (CI 95% = 3.5% – 8.1%. The Kigoma rural area recorded the higher seroprevalence of 12.0% (CI 95% = 7.3% – 18.3%; p < 0.0001, followed by Kibondo at 2.3% (CI 95% = 0.5% – 6.5%; p > 0.05 and the Kasulu district at 0.8% (CI 95% = 0.0% – 4.2%; p > 0.05. The prevalence was 12.5% and 4.7% for sheep and goats, respectively. Reverse transcriptase polymerase chain reaction results indicated that only eight samples were found to be positive (n = 63. This study has confirmed, for the first time, the presence of the RVFV in the Kigoma region four years after the 2007 epizootic in Tanzania. The study further suggests that the virus activity exists during the inter-epizootic period, even in regions with no history of RVFV.

  6. Donkey orchid symptomless virus: a viral 'platypus' from Australian terrestrial orchids.

    Directory of Open Access Journals (Sweden)

    Stephen J Wylie

    Full Text Available Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1 that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae. A 157-kDa replicase (ORF2 and 22-kDa coat protein (ORF4 shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3 shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5 shared no identity with described proteins. A 14-kDa protein (ORF6 shared limited sequence identity (26% over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae. The putative 25-kDa movement protein (MP (ORF7 shared limited (27% identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with 'potexvirus-like' replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae. The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative

  7. Donkey orchid symptomless virus: a viral 'platypus' from Australian terrestrial orchids.

    Science.gov (United States)

    Wylie, Stephen J; Li, Hua; Jones, Michael G K

    2013-01-01

    Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with 'potexvirus-like' replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative

  8. Tahyna virus genetics, infectivity, and immunogenicity in mice and monkeys

    Directory of Open Access Journals (Sweden)

    Whitehead Stephen S

    2011-03-01

    Full Text Available Abstract Background Tahyna virus (TAHV is a human pathogen of the California encephalitis virus (CEV serogroup (Bunyaviridae endemic to Europe, Asia, and Africa. TAHV maintains an enzootic life cycle with several species of mosquito vectors and hares, rabbits, hedgehogs, and rodents serving as small mammal amplifying hosts. Human TAHV infection occurs in summer and early fall with symptoms of fever, headache, malaise, conjunctivitis, pharyngitis, and nausea. TAHV disease can progress to CNS involvement, although unlike related La Crosse virus (LACV, fatalities have not been reported. Human infections are frequent with neutralizing antibodies present in 60-80% of the elderly population in endemic areas. Results In order to determine the genomic sequence of wild-type TAHV, we chose three TAHV isolates collected over a 26-year period from mosquitoes. Here we present the first complete sequence of the TAHV S, M, and L segments. The three TAHV isolates maintained a highly conserved genome with both nucleotide and amino acid sequence identity greater than 99%. In order to determine the extent of genetic relatedness to other members of the CEV serogroup, we compared protein sequences of TAHV with LACV, Snowshoe Hare virus (SSHV, Jamestown Canyon virus (JCV, and Inkoo virus (INKV. By amino acid comparison, TAHV was most similar to SSHV followed by LACV, JCV, and INKV. The sequence of the GN protein is most conserved followed by L, N, GC, NSS, and NSM. In a weanling Swiss Webster mouse model, all three TAHV isolates were uniformly neurovirulent, but only one virus was neuroinvasive. In rhesus monkeys, the virus was highly immunogenic even in the absence of viremia. Cross neutralization studies utilizing monkey immune serum demonstrated that TAHV is antigenically distinct from North American viruses LACV and JCV. Conclusions Here we report the first complete sequence of TAHV and present genetic analysis of new-world viruses, LACV, SSHV, and JCV with old

  9. Pseudo-plaque reduction neutralization test (PPRNT for the measurement of neutralizing antibodies to Crimean-Congo hemorrhagic fever virus

    Directory of Open Access Journals (Sweden)

    Canakoglu Nurettin

    2013-01-01

    Full Text Available Abstract Background Crimean-Congo hemorrhagic fever virus (CCHFV is a tick-borne virus of the genus Nairovirus family Bunyaviridae, which are enveloped viruses containing tripartite, negative polarity, single-stranded RNA. CCHF is characterized by high case mortality, occurring in Asia, Africa, the Middle East and Europe. Currently, there are no specific treatments or licensed vaccines available for CCHFV. Recently, two research groups have found adult mice with defective interferon responses allowed to lethal CCHFV infection. These mouse models could provide invaluable information for further studies. Efforts to develop a vaccine against CCHFV are being made. To determine the efficacy of vaccine candidates it is important to conduct serological studies that can accurately measure levels of protective antibodies. In the present study, a pseudo-plaque reduction neutralization test (PPRNT based on enzyme-catalyzed color development of infected cells probed with anti-CCHFV antibodies was used to measure neutralization antibody of CCHFV. Methods Sixty-nine human serum samples (20 acute and 49 convalescent were tested. The presence of CCHFV antibodies was determined and confirmed by a commercial ELISA kit. CCHFV RNA was determined by RT-PCR. All the samples were analyzed by PPRNT and fluorescent focus reduction neutralization test (FFRNT to measure of CCHFV-neutralizing antibodies. Results Pseudo-plaque reduction neutralization test showed a high sensitivity (98%, specificity (100% and agreement (96,6% in qualitative comparison with those of the FFRNT. There was a high correlation between the titers obtained in PPRNT and FFRNT (R2 = 0.92. The inter- and intra-assay variation of PPRNT revealed good reproducibility and positive cut-off of PPRNT was defined as 1:4 by the geometric mean titers for the individual samples distributed. Conclusion The pseudo-plaque reduction neutralization test described in this study is a fast, reproducible and sensitive

  10. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation.

    Directory of Open Access Journals (Sweden)

    Jennifer A Head

    Full Text Available Rift Valley fever virus (RVFV, belongs to genus Phlebovirus of the family Bunyaviridae, causes high rates of abortion and fetal malformation in infected ruminants as well as causing neurological disorders, blindness, or lethal hemorrhagic fever in humans. RVFV is classified as a category A priority pathogen and a select agent in the U.S., and currently there are no therapeutics available for RVF patients. NSs protein, a major virulence factor of RVFV, inhibits host transcription including interferon (IFN-β mRNA synthesis and promotes degradation of dsRNA-dependent protein kinase (PKR. NSs self-associates at the C-terminus 17 aa., while NSs at aa.210-230 binds to Sin3A-associated protein (SAP30 to inhibit the activation of IFN-β promoter. Thus, we hypothesize that NSs function(s can be abolished by truncation of specific domains, and co-expression of nonfunctional NSs with intact NSs will result in the attenuation of NSs function by dominant-negative effect. Unexpectedly, we found that RVFV NSs truncated at aa. 6-30, 31-55, 56-80, 81-105, 106-130, 131-155, 156-180, 181-205, 206-230, 231-248 or 249-265 lack functions of IFN-β mRNA synthesis inhibition and degradation of PKR. Truncated NSs were less stable in infected cells, while nuclear localization was inhibited in NSs lacking either of aa.81-105, 106-130, 131-155, 156-180, 181-205, 206-230 or 231-248. Furthermore, none of truncated NSs had exhibited significant dominant-negative functions for NSs-mediated IFN-β suppression or PKR degradation upon co-expression in cells infected with RVFV. We also found that any of truncated NSs except for intact NSs does not interact with RVFV NSs even in the presence of intact C-terminus self-association domain. Our results suggest that conformational integrity of NSs is important for the stability, cellular localization and biological functions of RVFV NSs, and the co-expression of truncated NSs does not exhibit dominant-negative phenotype.

  11. Emerging and Reemeriging Human Bunyavirus Infections and Climate Change

    Science.gov (United States)

    Sutherland, Laura J.; Anyamba, Assaf; LaBeaud, A. Desiree

    2013-01-01

    The Bunyaviridae family includes a growing number of viruses that have contributed to the burden of emerging and reemerging infectious diseases around the globe. Many of these viruses cause severe clinical outcomes in human and animal populations, the results of which can be detrimental to public health and the economies of affected communities. The threat to endemic and non-native regions is particularly high, and national and international public health agencies are often on alert. Many of the bunyaviruses cause severe clinical disease including hemorrhage, organ failure, and death leading to their high-risk classification. Hantaviruses and Rift Valley fever virus (RVFV) (genus Phlebovirus) are National Institute of Allergy and Infectious Diseases Category A priority pathogens in the United States. Viral hemorrhagic fevers, a classification that includes many bunyaviruses, are immediately notifiable in the European Union. The emergence of new and reemerging bunyaviruses has resulted in numerous human and animal fatalities. Outbreaks of Rift Valley fever (RVF) in East Africa (1997/1998, 2006/2007), Sudan (2007), Southern Africa (2008-2010), Kenya (1997/1998, 2006/2007) (Anyamba et al., 2009, 2010; Breiman et al., 2010; Grobbelaar et al., 2011; Woods et al., 2002) and Saudi Arabia & Yemen (2000, 2010) (Food and Agriculture Organization, 2000; Hjelle and Glass, 2000; Madani et al., 2003) and the emergence of Sin Nombre virus (1993) (Hjelle and Glass, 2000) and most recently Schmallenberg virus (2011) (DEFRA, 2012) are prime examples of the devastating and worldwide toll bunyaviruses have on health and economies. Climate variability (precipitation and temperature in particular) greatly influence the ecological conditions that drive arboviral disease outbreaks across the globe. Several human and animal disease outbreaks have been influenced by changes in climate associated with the El Niño Southern Oscillation (ENSO) phenomenon including the bunyaviruses RVFV and Sin

  12. [Hantavirus infection: two case reports from a province in the Eastern Black Sea Region, Turkey].

    Science.gov (United States)

    Kaya, Selçuk; Yılmaz, Gürdal; Erensoy, Sükrü; Yağçı Çağlayık, Dilek; Uyar, Yavuz; Köksal, Iftihar

    2010-07-01

    Hantaviruses which are the members of Bunyaviridae, differ from other members of this family since they are transmitted to humans by rodents. More than 200.000 cases of hantavirus infections are reported annually worldwide. Hantaviruses can lead to two different types of infection in humans, namely, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). HFRS is the most common type of hantavirus infection in Europe and Asia and the most common virus types are Dobrava, Puumala, Hantaan and Seoul. A total of 25 hantavirus suspected cases have been reported from the Western Black Sea region of Turkey and 12 of these were confirmed serologically as "Puumala" subtype. Serological tests such as indirect immunofluorescence assay (IFA), are used for diagnosis and typing of the hantaviruses, however, since cross-reactions are common between the subtypes, the results of these tests should be confirmed by other methods. In this report two cases with hantavirus infection defined serologically were presented. Two male patients, 55 and 50 years old, respectively, living in Giresun province of Eastern Black Sea region, Turkey, were admitted to the State Hospital with the complaints of fever, sweating and diarrhoea without blood or mucus. Since thrombocytopenia and renal failure were detected in these two cases, they were transferred to the University Hospital. Presence of fever, thrombocytopenia and renal failure, with no laboratory findings of a bacterial infection and no growth of microoorganisms in the clinical specimens, admittance of the patients during summer and history of being present in the fields, necessitated to rule out leptospirosis, Crimean Kongo hemorrhagic fever and hantavirus infection which were all endemic in our area. Further investigation of the serum samples at the National Reference Virology Laboratory by IFA (Hantavirus Mosaic-1, Euroimmun, Germany) revealed hantavirus IgM and IgG antibodies ≥ 1:100 titer and the results

  13. [Prognostic factors in hantavirus infections].

    Science.gov (United States)

    Kaya, Selçuk

    2014-01-01

    The hantaviruses classified in Hantavirus genus of Bunyaviridae family, may cause two different types of clinical conditions, namely hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Mortality may reach up to 40% in these infections. Hantavirus subtypes (Sin Nombre, Hantaan, Seoul, Puumala, Dobrava, etc) with different virulences represent one of the most significant factors affecting the mortality. Additionally, many other factors including age, gender, humoral immune response, genetic factors, patient's clinical and laboratory findings, transfusion, mechanical ventilation requirement, antiviral treatment and immunotherapy administered to the patient are prognostically important. Increasing age had an unfavorable effect on mortality. While the disease is commonly observed in the male gender, mortality rate is higher in the female gender. The higher the emergent neutralizing antibody response, the virus spread, the number of the infected cells and the cytotoxic T lymphocyte-mediated injury will be lower. The requirement for dialysis is reported to be higher with a poorer prognosis in individuals with HLA-B8, -DR3, -DQ2 alleles, and those with HLA-B27 allele usually experience a milder clinical course. Clinically, the risk of mortality increases in patients with multiple, central nervous system hemorrhage, sepsis, disseminated intravascular coagulation (DIC) and secondary infection. The presence of adult respiratory distress syndrome (ARDS), the requirement for mechanical ventilation, the presence of dyspnea and hemoconcentration in HPS are reported to be the most important prognostic factors associated with death. The correlation of severity and the transfusion requirement with mortality was demonstrated. High serum levels of white blood cells, blood urea nitrogen (BUN), creatinine phophokinase (CPK), C-reactive protein (CRP), prothrombin time (PT), activated partial thromboplastin time (aPTT), D-dimer and INR (International

  14. The two envelope membrane glycoproteins of Tomato spotted wilt virus show differences in lectin-binding properties and sensitivities to glycosidases

    International Nuclear Information System (INIS)

    Tomato spotted wilt virus (TSWV, Genus: Tospovirus, Family: Bunyaviridae) is a major constraint to the production of several different crops of agronomic and horticultural importance worldwide. The amino acid sequence of the two envelope membrane glycoproteins, designated as GN (N-terminal) and GC (C-terminal), of TSWV contain several tripeptide sequences, Asn-Xaa-Ser/Thr, suggesting that the proteins are N-glycosylated. In this study, the lectin-binding properties of the viral glycoproteins and their sensitivities to glycosidases were examined to obtain information on the nature of potential oligosaccharide moieties present on GN and GC. The viral proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and probed by affinoblotting using a battery of biotinylated lectins with specificity to different oligosaccharide structures. GC showed strong binding with five mannose-binding lectins, four N-acetyllactosamine-binding lectins and one fucose-binding lectin. GN was resolved into two molecular masses and only the slow migrating form showed binding, albeit to a lesser extent than GC, with three of the five mannose-binding lectins. The N-acetyllactosamine- and fucose-specific lectins did not bind to either molecular mass form of GN. None of the galactose-, N-acetylgalactosamine-, or sialic acid-binding lectins tested showed binding specificity to GC or GN. Treatment of the denatured virions with endoglycosidase H and peptide:N-glycosidase F (PNGase F) resulted in a significant decrease in the binding of GC to high mannose- and N-acetyllactosamine-specific lectins. However, no such differences in lectin binding were apparent with GN. These results indicate the presence of N-linked oligosaccharides of high mannose- and complex-type on GC and possibly high mannose-type on GN. Differences in the extent of binding of the two envelope glycoproteins to different lectins suggest that GC is likely to be more heavily N-glycosylated than

  15. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants.

    Directory of Open Access Journals (Sweden)

    Neena Mitter

    Full Text Available BACKGROUND: Viral small RNAs (vsiRNAs in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV, a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS: Tomato spotted wilt virus (TSWV-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1 higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE: Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsi

  16. MP-12 virus containing the Clone 13 deletion in the NSs gene prevents lethal disease when administered after Rift Valley fever virus infection in hamsters

    Directory of Open Access Journals (Sweden)

    Brian B Gowen

    2015-06-01

    Full Text Available Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 minutes of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12 and 24 h post-RVFV exposure, we observed 80, 70 and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.

  17. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007

    Directory of Open Access Journals (Sweden)

    Galal Fatma H

    2010-03-01

    Full Text Available Abstract Background Rift Valley fever (RVF is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. RVF virus (RVFV is transmitted between animals and human by mosquitoes, particularly those belonging to the Culex, Anopheles and Aedes genera. Methods Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from Culex, Anopheles and Aedes species using RT-PCR. In addition, data were collected about human cases up to November 24th, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species. Results A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. Anopheles gambiae arabiensis was the most frequent species (80.7% in White Nile state. Meanwhile, Cx. pipiens complex was the most abundant species (91.2% in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of Culex and Anopheles species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between

  18. Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection.

    Science.gov (United States)

    Ahsan, Noor A; Sampey, Gavin C; Lepene, Ben; Akpamagbo, Yao; Barclay, Robert A; Iordanskiy, Sergey; Hakami, Ramin M; Kashanchi, Fatah

    2016-01-01

    Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent human immunodeficiency virus-1 (HIV-1) and human T-cell lymphotropic virus-1 (HTLV-1) infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-κB pathway, leading to cell proliferation, and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV). These clones contained normal markers (i.e., CD63) for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome). The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of

  19. New ecological aspects of hantavirus infection: a change of a paradigm and a challenge of prevention--a review.

    Science.gov (United States)

    Zeier, Martin; Handermann, Michaela; Bahr, Udo; Rensch, Baldur; Müller, Sandra; Kehm, Roland; Muranyi, Walter; Darai, Gholamreza

    2005-03-01

    In the last decades a significant number of so far unknown or underestimated pathogens have emerged as fundamental health hazards of the human population despite intensive research and exceptional efforts of modern medicine to embank and eradicate infectious diseases. Almost all incidents caused by such emerging pathogens could be ascribed to agents that are zoonotic or expanded their host range and crossed species barriers. Many different factors influence the status of a pathogen to remain unnoticed or evolves into a worldwide threat. The ability of an infectious agent to adapt to changing environmental conditions and variations in human behavior, population development, nutrition, education, social, and health status are relevant factors affecting the correlation between pathogen and host. Hantaviruses belong to the emerging pathogens having gained more and more attention in the last decades. These viruses are members of the family Bunyaviridae and are grouped into a separate genus known as Hantavirus. The serotypes Hantaan (HTN), Seoul (SEO), Puumala (PUU), and Dobrava (DOB) virus predominantly cause hemorrhagic fever with renal syndrome (HFRS), a disease characterized by renal failure, hemorrhages, and shock. In the recent past, many hantavirus isolates have been identified and classified in hitherto unaffected geographic regions in the New World (North, Middle, and South America) with characteristic features affecting the lungs of infected individuals and causing an acute pulmonary syndrome. Hantavirus outbreaks in the United States of America at the beginning of the 10th decade of the last century fundamentally changed our knowledge about the appearance of the hantavirus specific clinical picture, mortality, origin, and transmission route in human beings. The hantavirus pulmonary syndrome (HPS) was first recognized in 1993 in the Four Corners Region of the United States and had a lethality of more than 50%. Although the causative virus was first termed in

  20. Epidemiology of Rift Valley fever and risks for its introduction into Europe

    International Nuclear Information System (INIS)

    Full text: Rift Valley fever virus (RVFV), a member of the Phlebovirus genus of the Bunyaviridae family, is a causative agent of Rift Valley fever (RVF), a mosquito-borne viral zoonotic disease that poses a significant health threat to domestic ruminants and humans in Africa. Infection with RVFV in livestock is characterized by an acute hepatitis, abortion and high mortality rates in new borne animals. Humans infected with RVFV typically develop a mild self-limited febrile illness, but retinal degeneration, severe encephalitis, fatal hepatitis and hemorrhagic manifestations occur in small proportion of patients. Since original isolation of the virus in 1930 following an outbreak of 'enzootic hepatitis' on a sheep farm near Naivasha in the Rift Valley region of Kenya, for the next four decades, epizootics were recorded only in eastern and southern Africa. However, in 1977 RVF spread to northern Africa, in 1987 to West Africa, and in 2000 to the Arabian Peninsula. The latter spread represents the first outbreaks of RVF in livestock and humans recognised outside Africa. The fate of the virus during inter epizootic periods has long constituted a central enigma in the epidemiology of the disease. Cryptic maintenance and transmission cycles have been hypothesized but the exact mechanisms are not well understood. The current prevailing hypothesis is that at least in eastern and southern Africa, RVFV is maintained in the eggs of floodwater breeding aedine mosquitoes, which breed in isolated grassland depressions called dambos. The aedine mosquitoes overwinter as eggs, which can survive for long periods in dried mud. Flooding of the dambos during heavy and prolong rainfalls results in hatching of transovarially infected aedine mosquitoes followed by virus transmission to livestock. Infected livestock serve as a source of infection for culicines and anopheline mosquitoes, which act as epizootic vectors. Biting flies such as stomoxids, phlebotomids, midges, and simulids might