WorldWideScience

Sample records for bundles fuel elements

  1. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  2. Study on Unigraphics Drawing Modeling Method for 37-Element and CANFLEX Fuel Bundle

    International Nuclear Information System (INIS)

    The CANFLEX bundle contains 43 elements of two different diameters. It has two rings of small diameter elements on the outside, and eight elements (with diameter slightly larger than those in the standard 37-Element bundle) in the center. This larger number of small diameter elements on the outside of the CANFLEX bundle enhances thermo-hydraulic capability, resulting in a higher power capability and an improvement in operating safety margins. As a Result of advanced fuel design for CANFLEX fuel bundles, components consisting of fuel bundles are more complicated. Hence, the detailed modeling of components is inevitable in order to analyze the fuel performance by computational fluid dynamics. In this report, the basic design of the advanced fuel for CANDU reactors was carried out and the methodology for the modeling of fuel bundle were described. Firstly, the components consisting of fuel bundles were separately modeled and saved with different file names. The final feature of fuel bundle was accomplished by an assembling process of components. Since this report developed the modeling methodology based on the Unigraphics program, the basic explanations for the software were given first, and the complete modeling of 37-elements and CANFLEX fuel bundles were provided. The components of CANFLEX fuel bundles were also compared with that of 37-elements fuel bundles. Although, in this report, the modeling methodology is applied only to 37-elements and CANFLEX fuel bundles, this methodology may be applicable to the newly designed fuel bundles which are to be developed in the future

  3. Study on Unigraphics Drawing Modeling Method for 37-Element and CANFLEX Fuel Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Park, Joo Hwan

    2010-03-15

    The CANFLEX bundle contains 43 elements of two different diameters. It has two rings of small diameter elements on the outside, and eight elements (with diameter slightly larger than those in the standard 37-Element bundle) in the center. This larger number of small diameter elements on the outside of the CANFLEX bundle enhances thermo-hydraulic capability, resulting in a higher power capability and an improvement in operating safety margins. As a Result of advanced fuel design for CANFLEX fuel bundles, components consisting of fuel bundles are more complicated. Hence, the detailed modeling of components is inevitable in order to analyze the fuel performance by computational fluid dynamics. In this report, the basic design of the advanced fuel for CANDU reactors was carried out and the methodology for the modeling of fuel bundle were described. Firstly, the components consisting of fuel bundles were separately modeled and saved with different file names. The final feature of fuel bundle was accomplished by an assembling process of components. Since this report developed the modeling methodology based on the Unigraphics program, the basic explanations for the software were given first, and the complete modeling of 37-elements and CANFLEX fuel bundles were provided. The components of CANFLEX fuel bundles were also compared with that of 37-elements fuel bundles. Although, in this report, the modeling methodology is applied only to 37-elements and CANFLEX fuel bundles, this methodology may be applicable to the newly designed fuel bundles which are to be developed in the future

  4. Improving the useful life of a 37-element fuel bundle

    International Nuclear Information System (INIS)

    Preliminary results indicate that CANDU burnup using 37-element fuel bundle with a slight enrichment can improve the useful life in the core. A slight enrichment in this study is increasing U-235 from 0.72 to 0.9 mass percent. A parametric study on criticality using Atomic Energy of Canada Limited’s WIMSAECL 3.1 and the Monte Carlo code, MCNP 5, developed by Los Alamos National Laboratory, is presented in this paper. (author)

  5. Fuel element bundle shears with dust extraction when cutting

    International Nuclear Information System (INIS)

    To prevent deposits of dust when cutting in this very inaccessible area of the fuel element bundle shears, a grating is fitted, which is connected via extraction devices (a collecting funnel and extraction duct) to the downward shaft carrying flushing air for the pipe pieces cut off. The measures taken make it possible to remove dust during cutting by the joint action of flushing air and gravity. (orig./HP)

  6. Subchannel analysis of CANDU 37-element fuel bundles

    International Nuclear Information System (INIS)

    The subchannel analysis codes COBRA-IV and ASSERT-4 have been used to predict the mass and enthalpy imbalance within a CANDU 37-element fuel channel under various system conditions. The objective of this study was to assess the various capabilities of the ASSERT code and highlight areas where further validation or development may be needed. The investigation indicated that the ASSERT code has all the basic models required to accurately predict the flow and enthalpy imbalance for complex rod bundles. The study also showed that the code modelling of void drift and diffusion requires refinement to some coefficients and that further validation is needed at high flow rate and high void fraction conditions, where ASSERT and COBRA are shown to predict significantly different trends. The results of a recent refinement of ASSERT modelling are also discussed

  7. Testing and implementation program for the modified Darlington 37-element fuel bundle

    International Nuclear Information System (INIS)

    To mitigate the effects of reactor ageing, a design modification to the 37-element fuel is proposed in which the diameter of the centre element will be reduced to 11.5 mm from 13.1 mm. The testing and implementation phase for the 37-element fuel bundle modification is discussed in this paper. The initial plan for testing is to perform a set of out-reactor tests to assess the endurance, acoustic response and cross-flow behaviour of the revised fuel bundle design. The initial schedule outlines activities that will enable OPG to implement full core fuelling of the modified bundle within the next three to four years. (author)

  8. candu fuel bundle fabrication

    International Nuclear Information System (INIS)

    This paper describes works on CANDU fuel bundle fabrication in the Fuel Fabrication Development and Testing Section (FFDT) of AECL's Chalk River Laboratories. This work does not cover fuel design, pellet manufacturing, Zircaloy material manufacturing, but cover the joining of appendages to sheath tube, endcap preparation and welding, UO2 loading, end plate preparation and welding, and all inspections required in these steps. Materials used in the fabrication of CANDU fuel bundle are: 1)Ceramic UO2 Pellet 2)Zircaloy -4. Fuel Bundle Structural Material 3) Others (Zinc stearate, Colloidal graphite, Beryllium and Heium). Th fabrication of fuel element consist of three process: 1)pellet loading into the sheats, 2) endcap welding, and 3) the element profiling. Endcap welds is tested by metallography and He leak test. The endcaps of the elements are welded to the end plates to form the 37- element bundle assembly

  9. Automation in inspection of PHWR fuel elements & bundles at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC), Hyderabad, a constituent of Department of Atomic Energy, India manufactures fuel for all Indian nuclear power reactors. Currently NFC manufactures both 19 element & 37 element bundles for catering to the requirement of 220 MWe & 540 MWe PHWRs. In order to meet the growing needs for the Nuclear Fuel, NFC engaged in expansion of the production facilities. This calls for enhanced throughput at various inspection stages keeping in tandem with the production & for achieving this objective, NFC has chosen automation. This paper deals with automation of the inspection line at NFC. (author)

  10. Fuel bundle

    International Nuclear Information System (INIS)

    This patent describes a method of forming a fuel bundle of a nuclear reactor. The method consists of positioning the fuel rods in the bottom plate, positioning the tie rod in the bottom plate with the key passed through the receptacle to the underside of the bottom plate and, after the tie rod is so positioned, turning the tie rod so that the key is in engagement with the underside of the bottom plate. Thereafter mounting the top plate is mounted in engagement with the fuel rods with the upper end of the tie rod extending through the opening in the top plate and extending above the top plate, and the tie rod is secured to the upper side of sid top plate thus simultaneously securing the key to the underside of the bottom plate

  11. Manufacturing of 37-element fuel bundles for PHWR 540 - new approach

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO2 pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)

  12. A finite element model for static strength analysis of CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Ionescu, D.V. [Institute for Nuclear Research, Pitesti (Romania)

    2006-08-15

    A static strength analysis finite-element model has been developed using the ANSYS computer code in order to simulate the axial compression in CANDU type fuel bundle subject to hydraulic drag loads, deflection of fuel elements and stresses and displacements in the end plates. The validation of the finite-element model has been done by comparison with the out-reactor strength test results. Comparison of model predictions with the experimental results showed very good agreement. The comparative assessment reveals that SEU43 and SEU43L fuel bundles are able to withstand high flow rate without showing a significant geometric instability. (orig.)

  13. Analysis of the operational reliability of VVER-1000 fuel elements and bundles in a three-year fuel cycle

    International Nuclear Information System (INIS)

    At the Novo-Voronezh Nuclear Power Plant, the fifth VVER-1000 unit, which was operated at nominal power from February 1980, completed nine fuel cycles in July 1990. The first unit of the Kalinin Nuclear Power Plant has operated from April 1984; in October 1990 the sixth fuel loading was completed. To data these power units are operating in steady-state in three-year fuel cycles (from June 1986 and from September 1989, respectively). By the end of 1988, operational experience had been accumulated on 1407 fuel element bundles on the third to the sixth fuel loading at Kalinin and the fifth to the ninth at Novo-Voronezh, which are in the transient and steady-state regimes of a three-year cycle. Of the 561 fuel element bundles monitored for gamma radiation, 14 were designated as leaking, which was 2.5% of the total bundles or 0.008% of the total number of fuel elements. Thus, a high degree of reliability was attained with enriched fuel elements. Here the authors analyze the reliability of fuel element bundles in taking the VVER-1000s to a three-year fuel cycle, and also generalize and systematize information on the fundamental characteristics of a group of fuel element bundles in going to to steady-state conditions of the three-year fuel cycle

  14. Parametric study of thermo-mechanical behaviour of 19-element PHWR fuel bundle having AHWR fuel material

    International Nuclear Information System (INIS)

    AHWR Th-LEU of 4.3 weight % 235U enrichment is a fuel design option for its trial irradiation in Indian PHWRs. The important component of this option is the large enhancement in the average discharge burn-up from the core. A parametric study of the 19-element fuel bundle, with natural uranium currently is being used in all operating 220 MWe PHWRs, has been carried out for AHWR Th-LEU fuel material by computer code FUDA MOD2. The important fuel parameters such as fuel temperature, fission gas release, fuel swelling and sheath strain have been analyzed for required fuel performance. With Th-LEU, average discharge burnups of about 25,000 MW-d/TeHE can be achieved. The FUDA code (Fuel Design Analysis code) MOD2 version has been used in the fuel element analysis. The code takes into account the inter-dependence of different parameters like fuel pellet temperatures, pellet expansions, fuel-sheath gap heat transfer, sheath strain and stresses, fission gas release and gas pressures, fuel densification etc. Thermo-mechanical analysis of fuel element having AHWR material is carried out for the bundle power histories reaching up to design burn-up 40000 MWd/TeHE. The resultant parameters such as fuel temperature, sheath plastic strain and fission gas pressure for AHWR fuel element were compared with respective thermo-mechanical parameters for similar fuel bundle element with natural uranium as fuel material. (author)

  15. Optimising welding and assembling processes for manufacturing PHWR fuel element and bundle

    International Nuclear Information System (INIS)

    In PHWR fuel fabrication, end-cap joint formed by Zircaloy fuel tube and cap is one of the most critical welds as it is expected to offer a hermetically sealed joint to contain the radioactive fission products. In view of their highly demanding function during reactor operation, these welds have to be produced to a high degree of reliability by careful selection of process and parameters. PHWR fuel bundle is manufactured by joining end plates to elements at both ends. Resistance projection welding technique is used to weld the element ends to end plates. This being the final operation in PHWR fuel fabrication route, it plays very important role with respect to bundle dimensions and integrity. Jigs and Fixtures are used to assemble fuel elements and end plates. The quality of these fixtures affect the bundle dimensions, inter element spacing and orientation of fuel elements/end-plates. While welding Zircaloy material, properties like coefficient of thermal expansion, thermal conductivity and thin oxide layers have to be considered. Generally high conductive material requires pre-heating before welding, while post-treatment of the weld is carried out if the metallurgical properties are changing in the Heat Affected Zone (HAZ). In resistance welding, selecting a suitable weld cycle pattern involves optimization of current, time, number of on/off cycles and current slope. Different current cycle patterns offer distinct advantages and certain disadvantages too with respect to weld bonding, sparking, HAZ etc. State-of-the-art technology is being used to have better control on weld parameters and monitor them as well for further analysis. The paper discusses the effect of welding parameters including different weld cycle patterns like on/off cycle, up-slope cycle and constant current cycle. Improvements carried out to ensure dimensional integrity of the bundle are also dealt with in the paper. (author)

  16. Advanced Fuel Bundles for PHWRS

    International Nuclear Information System (INIS)

    The fuel used by NPCIL presently is natural uranium dioxide in the form of 19- element fuel bundles for 220 MWe PHWRs and 37-element fuel bundles for the TAPP-3&4 540 MWe units. The new 700 MWe PHWRs also use 37-element fuel bundles. These bundles are of short 0.5 m length of circular geometry. The cladding is of collapsible type made of Zircaloy-4 material. PHWRs containing a string of short length fuel bundles and the on-power refueling permit flexibility in using different advanced fuel designs and in core fuel management schemes. Using this flexibility, alternative fuel concepts are tried in Indian PHWRs. The advances in PHWR fuel designs are governed by the desire to use resources other than uranium, improve fuel economics by increasing fuel burnup and reduce overall spent nuclear fuel waste and improve reactor safety. The rising uranium prices are leading to a relook into the Thorium based fuel designs and reprocessed Uranium based and Plutonium based MOX designs and are expected to play a major role in future. The requirement of synergism between different type of reactors also plays a role. Increase in fuel burnup beyond 15 000 MW∙d/TeU in PHWRs, using higher fissile content materials like slightly enriched uranium, Mixed Oxide and Thorium Oxide in place of natural uranium in fuel elements, was studied many PHWR operating countries. The work includes reactor physics studies and test irradiation in research reactors and power reactors. Due to higher fissile content these bundles will be capable of delivering higher burnup than the natural uranium bundles. In India the fuel cycle flexibility of PHWRs is demonstrated by converting this type of technical flexibility to the real economy by irradiating these different types of advanced fuel materials namely Thorium, MOX, SEU, etc. The paper gives a review of the different advanced fuel design concepts studied for Indian PHWRs. (author)

  17. Optimization of thorium-uranium content in a 54-element fuel bundle for use in a CANDU-SCWR

    International Nuclear Information System (INIS)

    A new 54-element fuel bundle design has been proposed for use in a pressure-tube supercritical water-cooled reactor, a pre-conceptual evolution of existing CANDU reactors. Pursuant to the goals of the Generation IV International Forum regarding advancement in nuclear fuel cycles, optimization of the thorium and uranium content in each ring of fuel elements has been studied with the objectives of maximizing the achievable fuel utilization (burnup) and total thorium content within the bundle, while simultaneously minimizing the linear element ratings and coolant void reactivity. The bundle was modeled within a reactor lattice cell using WIMS-AECL, and the uranium and thorium content in each ring of fuel elements was optimized using a weighted merit function of the aforementioned criteria and a metaheuristic search algorithm. (author)

  18. Spectral element code development for incompressible flow simulations In the subchannel of a fuel rod bundle

    International Nuclear Information System (INIS)

    Two decades ago spectral element methods were developed in order to unite the the geometrical flexibility of finite element methods and the spectral convergence property of spectral methods. A code based on spectral element methods is a promising candidate to simulate turbulent incompressible fluid flow in arbitrary geometry. The aim of this work is to develop an accurate Navier-Stokes solver which is capable of simulate turbulent incompressible fluid flow in an arbitrary complex geometry. We present the concept of the spectral element methods and the algorithm used to solve Navier-Stokes equations. The design and implementation issues of a parallel spectral element code able to simulate fluid flows in arbitrary geometry are also discussed. Some preliminary results of flow simulations of in a subchannel of fuel rod bundle are presented (Authors)

  19. SAGAPO. A computer code for the thermo-fluiddynamic analysis of gas cooled fuel element bundles

    International Nuclear Information System (INIS)

    This paper is a guide for the users of the Fortran computer code SAGAPO, which has been developed by the author for the thermo-fluiddynamic analysis of gas cooled fuel element bundles. The physical models and the mathematical procedures used in SAGAPO have been already described by the author of this work in a previous paper. Thus this work contains only a description of the structure of the code, together with the other informations necessary to the users. A listing of SAGAPO is included in the appendix, together with an example of input preparation and parts of printed results. (orig.)

  20. An experimental investigation of the temperature behavior of a CANDU 37-element spent fuel bundle with air backfill

    International Nuclear Information System (INIS)

    As part of the thermal analysis of a CANDU spent fuel dry storage system, a series of experiment has been conducted using a thermal mock-up of a simulated CANDU spent fuel bundle in a dry storage basket. The experimental system was designed to obtain the maximum fuel rod temperature along with the radial and axial temperature distributions within the fuel bundle. The main purpose of these experiments was to characterize the relevant heat transfer mechanisms in a dry, vertically oriented CANDU spent fuel bundle, and to verify the MAXROT code developed for the thermal analysis of a CANDU spent fuel bundle in a dry storage basket. A total of 48 runs were made with 8 different power inputs to the 37-element heater rod bundle ranging from 5 to 40 W, while using 6 different band heaters power inputs from 0 to 250 W to maintain the basket wall at a desired boundary condition temperature at the steady state. The temperature distribution in a heater rod bundle was measured and recorded at the saturated condition for each set of heater rod power and band heaters power. To characterize the heat transfer mechanism involved, the experimental data were corrected analytically for radiation heat transfer and presented as a Nusselt number correlation in terms of the Rayleigh number of the heater rod bundle. The results show that the Nusselt number remains nearly constant and all the experimental dada fall within a conduction regime. The experimental data were compared with the predictions of the MAXROT code to examine the code's accuracy and validity of assumptions used in the code. The MAXROT code explicitly models each representative fuel rod in a CANDU fuel bundle and couples the conductive and radiative heat transfer of the internal gas between rods. Comparisons between the measured and predicted maximum fuel rod temperatures of the simulated CANDU 37-element spent fuel bundle for all 48 tests show that the MAXROT code slightly over-predicts and the agreement is within 2

  1. Behavior of mixed-oxide fuel elements in a tight bundle under duty-cycle conditions

    International Nuclear Information System (INIS)

    The irradiation behavior of the TOB-10 fuel pins was comparable with that obtained in the single pin tests. There was no significant effect that could be directly attributed to tight bundle configuration. The postirradiation examination data provided information on the axial migration of cesium and its effect on cladding strain. Severe fuel/cladding chemical interaction (FCCI), which resulted in substantial cladding thinning and probably restricted venting of fission gas from the fuel column into the pin plena, apparently caused the earlier-than-expected cladding breaches in the D9-clad pins. No such severe FCCI was noted in the 316SS-clad pins. At the time of test termination, the overall cladding strain from creep and swelling was insufficient to cause bundle closure. Consequently, there would have been minimal pin bundle-duct interaction in the subassembly. Neither of the breaches appeared to be induced by pin bundle-duct interaction. (author)

  2. The fission gas release and gas pressure calculation for 19 element fuel bundle irradiated in KAPS-1 (Bundle no-56504)

    International Nuclear Information System (INIS)

    The thermo-mechanical analysis of fuel bundle is done using FUDA software program to calculate the fission gas release and pin pressure. The fission gas release analysis was done for the average fuel dimensions. In addition, a parametric study was also performed by varying the different parameters within their specified tolerances. The thermal conductivity calculation in the present analysis accounts for the density changes and temperature variation. The feed back of gap conductance change due to fission gas accumulation in pellet clad gap is considered in fuel temperature calculations. The present paper discusses the inputs to the FUDA, mathematical model used in calculation of fission gas release and results of gas release from the FUDA runs for the above discussed analysis. (author)

  3. Thermal-hydraulic design calculations for the annular fuel element with replaceable test bundles (TOAST) on the test zone position 205 of KNK II/3

    International Nuclear Information System (INIS)

    Annular fuel elements are foreseen in KNK II as carrier elements for irradiation inserts and test bundles. For the third core a reloadable annular element on position 205 is foreseen, in which replaceable 19-pin test bundles (TOAST) shall be irradiated. The present report deals with the thermal-hydraulic design of the annular carrier element and the test bundle, whereby the test bundle required additional optimization. The code CIA has been used for the calculations. Start of irradiation of the subassembly is planned at the beginning of the third core operation. After optimization of the pin-spacer geometry in the test bundle, design calculations for both bundles were performed, whereby thermal coupling between both was taken into account. The calculated mass-flows and temperature distributions are given for the nominal and the eccentric element configuration. The calculated bundle pressure losses have been corrected according to experimental results

  4. Investigation of coolant thermal mixing within 28-element CANDU fuel bundles using the ASSERT-PV thermal hydraulics code

    International Nuclear Information System (INIS)

    This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles under steady-state conditions. The study, which is based on simulations performed using the ASSERT-PV thermal hydraulic code, consists of two main parts. In the first part the various physical mechanisms that contribute to coolant mixing are identified and their impact is isolated via ASSERT-PV simulations. The second part is concerned with development of a preliminary model suitable for use in the fuel and fuel channel code FACTAR to predict the thermal mixing that occurs between flow annuli. (author)

  5. Fuel composition optimization in a 78-element fuel bundle for use in a pressure tube type supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO2 in ThO2) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO2 (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)

  6. Bringing the CANFLEX fuel bundle to market

    International Nuclear Information System (INIS)

    CANFLEX is a 43-element CANDU fuel bundle, under joint development by AECL and KAERI, to facilitate the use of various advanced fuel cycles in CANDU reactors through the provision of enhanced operating margins. The bundle uses two element diameters (13.5 and 11.5 mm ) to reduce element ratings by 20%, and includes the use of critical-heat-flux (CHF) enhancing appendages to increase the minimum CHF ratio or dryout margin of the bundle. Test programs are underway to demonstrate: the irradiation behaviour, hydraulic characteristics and reactor physics properties of the bundle, along with a test program to demonstrate the ability of the bundle to be handled by CANDU-6 fuelling machines. A fuel design manual and safety analysis reports have been drafted, and both analyses, plus discussions with utilities are underway for a demonstration irradiation in a CANDU-6 reactor. (author)

  7. Locking means for fuels bundles

    International Nuclear Information System (INIS)

    A nuclear power reactor fuel bundle is described which has a plurality of fuel rods disposed between two end plates positioned by tie rods extending therebetween. The assembled bundle is secured by one or more locking forks which pass through slots in the tie rod ends. Springs mounted on the fuel rods and tie rods are compressed by assembling the bundle and forcing one end plate against the locking fork to maintain the fuel rods and tie rods in position between the end plates. Downward pressure on the end plate permits removal of the locking fork so that the end plates may be removed, thus giving access to the fuel rods. This construction facilitates disassembly of an irradiated fuel bundle under water

  8. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package, and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power/Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved. In spite of several emergent problems which a task of this nature presents, this small, close knit utility/vendor team completed the work on schedule and within the exposure and cost budgets

  9. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power / Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved

  10. CANFLEX fuel bundle impact test

    International Nuclear Information System (INIS)

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs

  11. CANFLEX fuel bundle impact test

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs.

  12. Thermo- and fluiddynamic analysis of the gas cooled fuel element bundles taking into account thermal radiation and thermal conduction

    International Nuclear Information System (INIS)

    A mathematical model has been developed, which performs the analysis of the thermal radiation between the walls and of the thermal conduction within pins and liner of a gas-cooled fuel element bundle. By means of a particular procedure, the model has been coupled with a flow-model. In this manner all important heat transfer phenomena in the thermo-fluiddynamic analysis of the bundle can be considered. Furthermore it will be possible to analyse the influence of the wall temperature distribution on the flow distribution. With the developed model a number of experiments have been computed, which have been performed with various rodbundles, in a wide range of Reynolds numbers (from laminar to turbulent), at different conditions of heating and with various gases as coolants. The computed results have been compared with the measured temperature-and pressure distributions, in order to check the validity of the model and to estimate the relative importance of the different heat transfer modes. (orig.)

  13. CANFLEX - an advanced fuel bundle for CANDU

    International Nuclear Information System (INIS)

    The performance of CANDU pressurized heavy-water reactors, in terms of lifetime load factors, is excellent. More than 600 000 bundles containing natural-uranium fuel have been irradiated, with a low defect rate; reactor unavailability due to fuel incidents is typically zero. To maintain and improve CANDU's competitive position, Atomic Energy of Canada Limited (AECL) has an ongoing program comprising design, safety and availability improvements, advanced fuel concepts and schemes to reduce construction time. One key finding is that the introduction of slightly-enriched uranium (SEU, less than 1.5 wt% U-235 in U) offers immediate benefits for CANDU, in terms of fuelling and back-end disposal costs. The use of SEU places more demands on the fuel because of extended burnup, and an anticipated capability to load-follow also adds to the performance requirements. To ensure that the duty-cycle targets for SEU and load-following are achieved, AECL is developing a new fuel bundle, termed CANFLEX (CANdu FLEXible), where flexible refers to the versatility of the bundle with respect to operational and fuel-cycle options. Though the initial purpose of the new 43-element bundle is to introduce SEU into CANDU, CANFLEX is extremely versatile in its application, and is compatible with other fuel cycles of interest: natural uranium in existing CANDU reactors, recycled uranium and mixed-oxides from light-water reactors, and thoria-based fuels. Capability with a variety of fuel cycles is the key to future CANDU success in the international market. The improved performance of CANFLEX, particularly at high burnups, will ensure that the full economic benefits of advanced fuels cycles are achieved. A proof-tested CANFLEX bundle design will be available in 1993 for large-scale commercial-reactor demonstration

  14. NUCLEAR REACTOR FUEL ELEMENT

    Science.gov (United States)

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  15. Using Advanced Fuel Bundles in CANDU Reactors

    International Nuclear Information System (INIS)

    Improving the exit fuel burnup in CANDU reactors was a long-time challenge for both bundle designers and performance analysts. Therefore, the 43-element design together with several fuel compositions was studied, in the aim of assessing new reliable, economic and proliferation-resistant solutions. Recovered Uranium (RU) fuel is intended to be used in CANDU reactors, given the important amount of slightly enriched Uranium (~0.96% w/o U235) that might be provided by the spent LWR fuel recovery plants. Though this fuel has a far too small U235 enrichment to be used in LWR's, it can be still used to fuel CANDU reactors. Plutonium based mixtures are also considered, with both natural and depleted Uranium, either for peacefully using the military grade dispositioned Plutonium or for better using Plutonium from LWR reprocessing plants. The proposed Thorium-LEU mixtures are intended to reduce the Uranium consumption per produced MW. The positive void reactivity is a major concern of any CANDU safety assessment, therefore reducing it was also a task for the present analysis. Using the 43-element bundle with a certain amount of burnable poison (e.g. Dysprosium) dissolved in the 8 innermost elements may lead to significantly reducing the void reactivity. The expected outcomes of these design improvements are: higher exit burnup, smooth/uniform radial bundle power distribution and reduced void reactivity. Since the improved fuel bundles are intended to be loaded in existing CANDU reactors, we found interesting to estimate the local reactivity effects of a mechanical control absorber (MCA) on the surrounding fuel cells. Cell parameters and neutron flux distributions, as well as macroscopic cross-sections were estimated using the transport code DRAGON and a 172-group updated nuclear data library. (author)

  16. Assessing the impact of the 37M fuel bundle design on fuel safety parameters

    International Nuclear Information System (INIS)

    To improve the critical heat flux and margin to fuel dryout in aging CANDU nuclear generating stations, the 37-element bundle design '37R' fuel) has been modified by reducing the central fuel element diameter, producing the modified '37M' fuel bundle. The codes FACTARSS, ELESTRES, ELOCA-IST, and SOURCE have been used to compare fuel temperature, fission gas release, and element integrity in 37R and 37M fuel bundles for Bruce Power nuclear reactors. The assessment demonstrated that, relative to 37R fuel bundles, using 37M fuel bundles does not significantly impact the existing safety margins associated with fuel temperature, fission gas release, and element integrity during design basis accidents. (author)

  17. Static stress analysis of CANFLEX fuel bundles

    International Nuclear Information System (INIS)

    The static stress analysis of CANFLEX bundles is performed to evaluate the fuel structural integrity during the refuelling service. The structure analysis is carried out by predicting the drag force, stress and displacements of the fuel bundle. By the comparison of strength tests and analysis results, the displacement values are well agreed within 15%. The analysis shows that the CANFLEX fuel bundle keep its structural integrity. 24 figs., 6 tabs., 12 refs. (Author) .new

  18. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  19. Monitoring defective CANDU fuel bundles

    International Nuclear Information System (INIS)

    In 2005, it was proposed that a passive substance such as Nanocrystals could be used to monitor and locate defect fuel elements in-core. The experimental goal was to determine if Nanocrystals could be used for this application. Originally nanocrystals tagging was suggested for current operational CANDU-600 fuel. Other methods, including noble gas tagging, are also being investigated. Moreover, the scope of the project has been extended to include the identification of Dysprosium-doped fuel in the new ACR fuel design. The purpose of this paper is to discuss the experimental progress made at RMC on this project. (author)

  20. Post-irradiation examination of the 37M fuel bundle at Chalk River Laboratories (AECL)

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Daniels, T. [Ontario Power Generation, Pickering, Ontario (Canada); Montin, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-03-15

    The modified (-element (37M) fuel bundle was designed by Ontario Power Generation (OPG) to improve Critical Heat Flux (CHF) performance in ageing pressure tubes. A modification of the conventional 37-element fuel bundle design, the 37M fuel bundle allows more coolant flow through the interior sub-channels by way of a smaller central element. A demonstration irradiation (DI) of thirty-two fuel bundles was completed in 2011 at OPG's Darlington Nuclear Generating Station to confirm the suitability of the 37M fuel bundles for full core implementation. In support of the DI, fuel elements were examined in the Chalk River Laboratories Hot Cells. Inspection activities included: Bundle and element visual examination; Bundle and element dimensional measurements; Verification of bundle and element integrity; and Internal Gas Volume Measurements. The inspection results for 37M were comparable to that of conventional 37-element CANDU fuel. Fuel performance parameters of the 37M DI fuel bundle and fuel elements were within the range observed for similarly operated conventional 37-element CANDU fuel. Based on these Post Irradiation Examination (PIE) results, 37M fuel performed satisfactorily. (author)

  1. CANDU fuel bundle skin friction factor

    International Nuclear Information System (INIS)

    Single-phase, incompressible fluid flow skin friction factor correlations, primarily for CANDU 37-rod fuel bundles, were reviewed. The correlations originated from curve-fits to flow test data, mostly with new fuel bundles in new pressure tubes (flow tubes), without internal heating. Skin friction in tubes containing fuel bundles (noncircular flow geometry) was compared to that in equivalent diameter smooth circular tubes. At Reynolds numbers typical of normal flows in CANDU fuel channels, the skin friction in tubes containing bundles is 8 to 15% higher than in equivalent diameter smooth circular tubes. Since the correlations are based on scattered results from measurements, the skin friction with bundles may be even higher than indicated above. The information permits over- or under-prediction of the skin friction, or choosing an intermediate value of friction, with allowance for surface roughnesses, in thermal-hydraulic analyses of CANDU heat transport systems. (author) 9 refs., 2 figs

  2. Study Of The PWR Fuel Bundle Characteristic With Borated Water

    International Nuclear Information System (INIS)

    Study of the PWR fuel bundle characteristic with 2,4, 2,6, 2,8, 3,0, 3,2 and 3,4 enrichment also with borated water 150 and 200 ppm has been done. The fuel bundle contained 264 fuel elements and water (no fuel elements) are arranged as 17 x 17 matrix and 30,294 cm. The fuel bundle characteristic can be seen from their group constants and the infinite multiplication factor whether more or less than one. The fuel bundle parameters can be found from cell calculation with WIMS PC version program. From the cell calculation shown that the infinite multiplication factor of the fuel bundle with 2,4% enrichment and 200 ppm borated water is 1, 01672, its shown that infinite multiplication factor will less than one with increasing borated water more than 200 ppm. From these result if we would like to design the reactor core with 2,4% minimum enrichment then the maximum borated water is 200 ppm

  3. Analysis of CHF experiment data for finned fuel bundle

    International Nuclear Information System (INIS)

    The HANARO uses finned-element fuel bundles. For thermal-hydraulic safety analysis, used is the MATRA-h code which is a modified version of KAERI's MATRA-α. The subchannel analysis model was determined by using the in-core irradiation test results and hydraulic experiment results for fuel bundle. The validity of the analysis model was investigated by comparing the MATRA-h predictions with the experimental results from several bundle CHF tests. The comparison showed that the code predictions for the CHF power were very close to or less than the experimental results. Thus, it was confirmed that the subchannel analysis using MATRA-h is to be applicable to the prediction of CHF phenomenon in HANARO fuel bundle

  4. Nuclear fuel bundle disassembly and assembly tool

    International Nuclear Information System (INIS)

    A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)

  5. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  6. Canflex: A fuel bundle to facilitate the use of enrichment and fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    The neutron economy of the CANDU reactor results in it being an ideal host for a number of resource-conserving fuel cycles, as well as a number of potential ''symbiotic'' fuel cycles, in which fuel discharged from light-water cooled reactors is recycled to extract the maximum energy from the residual fissile material before it is sent for disposal. The resource conserving fuel cycles include the natural-uranium, slightly-enriched-uranium and thorium fuel cycles. The ''LWR-symbiotic'' cycles include recovered uranium and various options for the direct use of spent LWR fuel in CANDU reactors. However, to achieve the maximum economic potential of these fuel-cycle options requires irradiation to burnups higher than that possible with natural uranium. To provide a basis for the economic use of these fuel cycles, a program is underway to develop and demonstrate a CANDU fuel bundle capable of both higher burnups and greater operating margins. This new bundle design is being developed jointly by AECL and KAERI, and uses smaller-diameter fuel elements in the outer ring of a 43-element bundle to reduce the maximum element ratings in a CANDU fuel bundle by 20% compared to the 37-element bundle currently in use. This allows operation to burnups greater than 21 MWd/KgU. A combination of this lower peak-element rating, plus development work underway at AECL to enhance the thermalhydraulic characteristics of the bundle (including both critical heat flux and bundle pressure drop), provides a greater operating margin for the bundle. This new bundle design is called CANFLEX, and the program for its development in Canada and Korea is described in this paper. (author). 19 refs, 5 figs

  7. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    A description is given of a nuclear power reactor fuel bundle having tie rods fastened to a lower tie plate and passing through openings in the upper tie plate with the assembled bundle secured by rotatable locking sleeves which engage slots provided in the upper tie plate. Pressure exerted by helical springs mounted around each of the fuel rods urge the upper tie plate against the locking sleeves. The bundle may be disassembled after depressing the upper tie plate and rotating the locking sleeves to the unlocked position

  8. CANFLEX fuel bundle strength tests (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, C. H.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs.

  9. CANFLEX fuel bundle strength tests (test report)

    International Nuclear Information System (INIS)

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs

  10. In-pile test of Qinshan PWR fuel bundle

    International Nuclear Information System (INIS)

    In-pile test of Qinshan Nuclear Power Plant PWR fuel bundle has been conducted in HWRR HTHP Test loop at CIAE. The test fuel bundle was irradiated to an average burnup of 25000 Mwd/tU. The authors describe the structure of (3 x 3-2) test fuel bundle, structure of irradiation rig, fuel fabrication, irradiation conditions, power and fuel burnup. Some comments on the in-pile performance for fuel bundle, fuel rod and irradiation rig were made

  11. TRIGA spent fuel bundles safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Negut, G.; Covaci, St. [Institute for Nuclear Research, Research Reactor Dept., Pitesti (Romania); Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica, Power and Nuclear Engineering Dept., Bucharest (Romania)

    2007-07-01

    TRIGA-SSR is a steady state research and material test reactor that has been in operation since 1980. The original TRIGA fuel was HEU (highly enriched uranium) with a U{sup 235} enrichment of 93 per cent. Almost all TRIGA HEU fuel bundles are now burned-up. Part of the spent fuel was loaded and transferred to US, in a Romania - DOE arrangement. The rest of the TRIGA fuel bundles have to be temporarily stored in the TRIGA facility. As the storage conditions had to be established with caution, neutron and thermal hydraulic evaluations of the storage conditions were required. Some criticality evaluations were made based on the SAR (Safety Analysis Report) data. Fuel constant axial temperature approximation effect is usual for criticality computations. TRIGA-SSR fuel bundle geometry and materials model for SCALE5-CSAS module allows the introduction of a fuel temperature dependency for the entire fuel active height, using different materials for each fuel bundle region. Previous RELAP5 thermal hydraulic computations for an axial and radial power distribution in the TRIGA fuel pin were done. Fuel constant temperature approximation overestimates pin factors for every core operating at high temperatures. From the thermal hydraulic point of view the worst condition of the storage grid occurs when the transfer channel is accidentally emptied of water from the pool, or the bundle is handled accidentally to remain in air. All the residual heat from the bundles has to be removed without fuel overheating and clad failure. RELAP5 computer code for residual heat removal was used in the assessment of residual heat removal. We made a couple of evaluations of TRIGA bundle clad temperatures in air cooling conditions, with different residual heat levels. The criticality computations have shown that the spent TRIGA fuel bundles storage grid is strongly sub-critical with k(eff) = 0.5951. So, there is no danger for a criticality accident for this storage grid type. The assessment is done

  12. TRIGA spent fuel bundles safe storage

    International Nuclear Information System (INIS)

    TRIGA-SSR is a steady state research and material test reactor that has been in operation since 1980. The original TRIGA fuel was HEU (highly enriched uranium) with a U235 enrichment of 93 per cent. Almost all TRIGA HEU fuel bundles are now burned-up. Part of the spent fuel was loaded and transferred to US, in a Romania - DOE arrangement. The rest of the TRIGA fuel bundles have to be temporarily stored in the TRIGA facility. As the storage conditions had to be established with caution, neutron and thermal hydraulic evaluations of the storage conditions were required. Some criticality evaluations were made based on the SAR (Safety Analysis Report) data. Fuel constant axial temperature approximation effect is usual for criticality computations. TRIGA-SSR fuel bundle geometry and materials model for SCALE5-CSAS module allows the introduction of a fuel temperature dependency for the entire fuel active height, using different materials for each fuel bundle region. Previous RELAP5 thermal hydraulic computations for an axial and radial power distribution in the TRIGA fuel pin were done. Fuel constant temperature approximation overestimates pin factors for every core operating at high temperatures. From the thermal hydraulic point of view the worst condition of the storage grid occurs when the transfer channel is accidentally emptied of water from the pool, or the bundle is handled accidentally to remain in air. All the residual heat from the bundles has to be removed without fuel overheating and clad failure. RELAP5 computer code for residual heat removal was used in the assessment of residual heat removal. We made a couple of evaluations of TRIGA bundle clad temperatures in air cooling conditions, with different residual heat levels. The criticality computations have shown that the spent TRIGA fuel bundles storage grid is strongly sub-critical with k(eff) = 0.5951. So, there is no danger for a criticality accident for this storage grid type. The assessment is done for

  13. Numerical model for thermal and mechanical behaviour of a CANDU 37-element bundle

    International Nuclear Information System (INIS)

    Prediction of transient fuel bundle deformations is important for assessing the integrity of fuel and the surrounding structural components under different operating conditions including accidents. For numerical simulation of the interactions between fuel bundle and pressure tube, a reliable numerical bundle model is required to predict thermal and mechanical behaviour of the fuel bundle assembly under different thermal loading conditions. To ensure realistic representations of the bundle behaviour, this model must include all of the important thermal and mechanical features of the fuel bundle, such as temperature-dependent material properties, thermal viscoplastic deformation in sheath, fuel-to-sheath interactions, endplate constraints and contacts between fuel elements. In this paper, we present a finite element based numerical model for predicting macroscopic transient thermal-mechanical behaviour of a complete 37-element CANDU nuclear fuel bundle under accident conditions and demonstrate its potential for being used to investigate fuel bundle to pressure tube interaction in future nuclear safety analyses. This bundle model has been validated against available experimental and numerical solutions and applied to various simulations involving steady-state and transient loading conditions. (author)

  14. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    This invention relates to an assembly mechanism for nuclear power reactor fuel bundles using a novel, simple and inexpensive means. The mechanism is readily operable remotely, avoids separable parts and is applicable to fuel assemblies in which the upper tie plate is rigidly mounted on the tie rods which hold it in place. (UK)

  15. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  16. Investigations on flow induced vibration of simulated CANDU fuel bundles in a pipe

    International Nuclear Information System (INIS)

    In this paper, vibration of a two-bundle string consisting of simulated CANDU fuel bundles subjected to turbulent liquid flow is investigated through numerical simulations and experiments. Large eddy simulation is used to solve the three-dimensional turbulent flow surrounding the fuel bundles for determining fluid excitations. The CFD model includes pipe flow, flow through the inlet fuel bundle along with its two endplates, half of the second bundle and its upstream endplate. The fluid excitation obtained from the fluid model is subsequently fed into a fuel bundle vibration code written in FORTRAN. Fluid structure interaction terms for the fuel elements are approximated using the slender body theory. Simulation results are compared to measurements conducted on the simulated fuel bundles in a testing hydraulic loop. (author)

  17. SEU43 fuel bundle shielding analysis during spent fuel transport

    Energy Technology Data Exchange (ETDEWEB)

    Margeanu, C. A.; Ilie, P.; Olteanu, G. [Inst. for Nuclear Research Pitesti, No. 1 Campului Street, Mioveni 115400, Arges County (Romania)

    2006-07-01

    The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

  18. Telescope sipping - pinpointing leaking fuel bundles

    International Nuclear Information System (INIS)

    Given the top priority operators of nuclear power plants assign to safety, even the slightest sign of damage to the fuel assemblies has to be carefully monitored and analyzed. The detection of leaking fuel bundles also plays an important role in ensuring good availability and economy for the plants. ABB Atom has developed a new, highly accurate method, called 'telescope sipping', for identifying defective fuel assemblies. (orig.)

  19. Modelling of fuel bundle deformation at high temperatures: requirements, models and steps for consideration

    International Nuclear Information System (INIS)

    To model thermal mechanical bundle deformation behaviour under high temperature conditions, several factors need to be considered. These are the sources of loads, deformation mechanisms, interactions within bundle components, bundle and pressure tube (PT) interaction, and boundary constraints on the fuel bundles under in-reactor conditions. This paper describes the modelling of the following three processes: Bundle slumping due to high temperature creep-sag of individual elements and endplates; Differential element expansion and fuel element bowing; and, Bundle distortion under axial loads. To model these processes, a number of key mechanisms for bundle deformation must be considered, which include: 1) Interaction of fuel elements in a bundle with their neighbours, 2) Endplate deformation, 3) Fuel elements lateral deformation under various loads and mechanisms, 4) Interaction within a fuel element, 5) Material property change at high temperatures, 6) Transient response of a bundle, and 7) Bundle configuration change. This paper summarises the new models needed for the mechanistic modelling of the key mechanisms mentioned above and provides an example to show how an endplate plasticity model is developed with results. (author)

  20. CAT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction

  1. Application of Sipping and Visual Inspection Systems for the Evaluation of Spent Fuel Bundle Integrity

    International Nuclear Information System (INIS)

    When CANDU reactor has defective fuel bundle during its operation, then the defective fuel bundle should be discharged by 2(two) fuel bundles at a time from the corresponding fuel channel until the failed fuel bundle is found. Existing fuel failure detection system GFP(Gaseous Fission Product) & DN(Delayed Neutron) Monitoring System can’t exactly distinguish fuel elements failure from each fuel bundle. Because of fuelling machine mechanism and discharge procedure, always two fuel bundles at a time are being inspected. In case visual inspection is available for inspecting fuel elements and suppose that there are no defects and damaged marks on the surface of outer fuel elements, 2(two) defective fuel bundles should be canned and kept in the separate region of spent fuel storage pool. Therefore, the purpose of this study was to develop a system which is capable of inspecting whether each fuel bundle is failed or not. KNF (KEPCO Nuclear Fuel Co. Ltd) developed two evaluation systems to investigate the integrity of CANDU spent fuel bundle. The first one is a sipping system that detects fission gases leaked from fuel element. The second one is a visual inspection system with radiation resistant underwater camera and remotely controlled devices. The sipping technology enables to analyze the leakage of fission products not only in gaseous state but also liquid state. The performance of developed systems was successfully demonstrated at Wolsong power plant this year. This paper describes the results of the development of the failed fuel detection technology and its application. (author)

  2. Laser cutting for dismantling of PHWR fuel bundles

    International Nuclear Information System (INIS)

    Detailed investigation was carried out on laser cutting of zircaloy-2 PHWR fuel pin bundles. Initially, trials were done to standardize ten parameters for cutting of tie plates to which individual fuel pins are welded in a bundle. Using these parameters, the tie plates were cut into several pieces so that each fuel pin is individually separated out from the bundle. (author)

  3. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    In a nuclear power reactor fuel bundle having tie rods fastened to a lower tie plate and passing through openings in the upper tie plate, the assembled bundle is secured by locking lugs fixed to rotatable locking sleeves which engage the upper tie plate. Pressure exerted by helical springs mounted around each of the tie rods urge retaining lugs fixed to a retaining sleeve associated with respective tie rods into a position with respect to the locking sleeve to prevent accidental disengagement of the upper plate from the locking lugs. The bundle may be disassembled by depressing the retaining sleeves and rotating the locking lugs to the disengaged position, and then removing the upper tie plate

  4. The Conflux Fuel bundle: An Economic and Pragmatic Route to the use of Advanced Fuel Cycles in CANDU Reactors

    International Nuclear Information System (INIS)

    The CANFLEX1 bundle is being developed jointly by AECL and KAERI as a vehicle for introducing the use of enrichment and advanced fuel cycles in CANDU2 reactors. The bundle design uses smaller diameter fuel elements in the outer ring of a 43-element bundle to reduce the maximum element ratings in a CANDU fuel bundle by 20% compared to the 37-element bundle currently in use. This facilitates burnups of greater than 21,000 MW d/TAU to optimize the economic benefit available from the use of enrichment and advanced fuel cycles. A combination of this lower fuel rating, plus development work underway at Aecl to enhance the thermalhydraulic characteristics of the bundle (including both CHF3 and bundle. This provides extra flexibility in the fuel management procedures required for fuel bundles with higher fissile contents. The different bundle geometry requires flow tests to demonstrate acceptable vibration and fretting behavior of the Conflux bundle. A program to undertake the necessary range of flow tests has started at KAERI, involving the fabrication of the required bundles, and setting up for the actual tests. A program to study the fuel management requirements for slightly enriched (0.9 wt % 235 in total U) Conflux fuel has been undertaken by both Aecl and KAERI staff, and further work has started for higher enrichments. Irradiation testing of the Conflux bundle started in the NUR reactor in 1989, and a second irradiation test is due to start shortly. This paper describes the program, and reviews the status of key parts of the program

  5. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    The invention relates to a nuclear power reactor fuel bundle of the type wherein several rods are mounted in parallel array between two tie plates which secure the fuel rods in place and are maintained in assembled position by means of a number of tie rods secured to both of the end plates. Improved apparatus is provided for attaching the tie rods to the upper tie plate by the use of locking lugs fixed to rotatable sleeves which engage the upper tie plate. (auth)

  6. Effect of Candu Fuel Bundle Modeling on Sever Accident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dupleac, D.; Prisecaru, I. [Power Plant Engineering Faculty, Politehnica University, 313 Splaiul Independentei, 060042, sect. 6, Bucharest (Romania); Mladin, M. [Institute for Nuclear Research, Pitesti-Mioveni, 115400 (Romania)

    2009-06-15

    of the project is the assessment and adaptation of the SCDAP/RELAP5 code to Candu 6 severe accidents analysis. The SCDAP/RELAP5 code is a detailed mechanistic code, originated from the merging of the SCDAP and the RELAP5 code, each of them focussing on a specific part of severe accident phenomenology. The SCDAP code models the core behavior during a severe accident. Treatment of the core includes fuel rod heatup, ballooning and rupture, fission product release, rapid oxidation, zircaloy melting, UO{sub 2} dissolution, ZrO{sub 2} breach, flow and freezing of molten fuel and cladding, and debris formation and behavior. The code also models control rod and flow shroud behavior. The standard Candu fuel bundle consists of 37 identical base elements, arranged in circular rings, with 1, 6, 12 and 18 respectively associated rods. Fuel elements associated to different rings have different power peaking factors. Although no specific model for Candu fuel bundle is provided in SCDAP code, starting from fuel rod component Candu fuel bundle models of different complexity can be build. Three models were considered in this study. The first, the simplest one, consist in assuming that all fuel elements of a bundle behave in the same manner, having the same power. Thus, in this representation, the Candu fuel bundle is modeled by one SCDAP fuel rod component. The main advantage of this model is the increased speed of the simulation runs. The second model, consider four types of SCDAP fuel rod components to model the Candu fuel bundle. Thus, the fuel elements of different rings are modeled separately with their actual power peaking factors. However, in this model, the fuel channel is modeled as a single pipe component; consequently all the SCDAP fuel rod components have the same thermal hydraulic boundary conditions. The third approach, consider the same model for the Candu fuel bundle as in the second model but the fuel channel is modeled as four pipe components linked by cross

  7. Demonstrating the compatibility of Canflex fuel bundles with a CANDU 6 fuelling machine

    International Nuclear Information System (INIS)

    CANFLEX is a new 43-element fuel bundle, designed for high operating margins. It has many small-diameter elements in its two outer rings, and large-diameter elements in its centre rings. By this means, the linear heat ratings are lower than those of standard 37-element bundles for similar power outputs. A necessary part of the out-reactor qualification program for the CANFLEX fuel bundle design, is a demonstration of the bundle's compatibility with the mechanical components in a CANDU 6 Fuelling Machine (FM) under typical conditions of pressure, flow and temperature. The diameter of the CANFLEX bundle is the same as that of a 37-element bundle, but the smaller-diameter elements in the outer ring result in a slightly larger end-plate diameter. Therefore, to minimize any risk of unanticipated damage to the CANDU 6 FM sidestops, a series of measurements and static laboratory tests were undertaken prior to the fuelling machine tests. The tests and measurements showed that; a) the CANFLEX bundle end plate is compatible with the FM sidestops, b) all the dimensions of the CANFLEX fuel bundle are within the specified limits. (author). 3 tabs., 3 figs

  8. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  9. Effect of bundle size on BWR fuel bundle critical power performance

    International Nuclear Information System (INIS)

    Effect of the bundle size on the BWR fuel bundle critical power performance was studied. For this purpose, critical power tests were conducted with both 6 x 6 (36 heater rods) and 12 x 12 (144 heater rods) size bundles in the GE ATLAS heat transfer test facility located in San Jose, California. All the bundle geometries such as rod diameter, rod pitch and rod space design are the same except size of flow channel. Two types of critical power tests were performed. One is the critical power test with uniform local peaking pattern for direct comparison of the small and large bundle critical power. Other is the critical power test for lattice positions in the bundle. In this test, power of a group of four rods (2 x 2 array) in a lattice region was peaked higher to probe the critical power of that lattice position in the bundle. In addition, the test data were compared to the COBRAG calculations. COBRAG is a detailed subchannel analysis code for BWR fuel bundle developed by GE Nuclear Energy. Based on these comparisons the subchannel model was refined to accurately predict the data obtained in this test program, thus validating the code capability of handling the effects of bundle size on bundle critical power for use in the study of the thermal hydraulic performance of the future advance BWR fuel bundle design. The author describes the experimental portion of the study program

  10. Scratch preventing method of assembling nuclear fuel bundles, and the assembly

    International Nuclear Information System (INIS)

    This patent describes a method of assembling a bundle of nuclear fuel elements for service in a nuclear reactor. It comprises a group of fuel rod elements each arranged in a space apart, parallel array and thus secured by each element traversing through a series of spacing units positioned at intervals along the length of the grouped fuel rod elements and having openings for receiving the fuel rod elements traversing therethrough, consisting essentially of the steps of: providing a scratch resisting, temporary protective barrier consisting of a water soluble coating of sodium silicate covering the outer surface of the fuel rod elements, then assembling the fuel bundle by passing each of the fuel rod elements through the openings of a series of spacing units positioned at intervals to fit together an adjoined composite fuel bundle assembly of a spaced apart parallel array of the fuel rod elements secured with spacing units, and removing the scratch resisting, temporary protective barrier consisting of water soluble coating of sodium silicate from the assembled fuel bundle with hot water

  11. RU-43 a new uranium fuel bundle design for using in CANDU type reactors

    International Nuclear Information System (INIS)

    A unique feature of the CANDU reactor design is its ability to use alternative fuel cycles other than natural uranium (NU), without requiring major modifications to the basic reactor design. These alternative fuel cycles, which are known as advanced fuel cycles, utilize a variety of fissile materials, including Slightly Enriched Uranium (SEU) from enrichment facilities, and Recovered Uranium (RU) obtained from the reprocessing of the spent fuel of light-water reactors (LWR). A fissile content in the RU of 0.9 to 1.0 % makes it impossible for reuse in an LWR without re-enrichment, but CANDU reactors have a sufficient high neutron economy to use RU as fuel. RU from spent LWR fuel can be considered as a lower cost source of enrichment at the optimal enrichment level for CANDU fuel pellets. In Europe the feedstock of RU is approaching thousands tones and would provide sufficient fuel for hundreds CANDU-6 reactors years of operation. The use of RU fuel offers significant benefits to CANDU reactor operators. RU fuels improve fuel cycle economics by increasing the fuel burnup, which enables large cost reductions in fuel consumption and in spent fuel disposal. RU fuel offers enhanced operating margins that can be applied to increase reactor power. These benefits can be realized using existing fuel production technologies and practices, and with almost negligible changes to fuel receipt and handling procedures at the reactor. The application of RU fuel could be an important element in NPP Cernavoda from Romania. For this reason the Institute for Nuclear Research (INR), Pitesti has started a research programme aiming to develop a new fuel bundle RU-43 for extended burnup operation. The current version of the design is the result of a long process of analyses and improvements, in which successive preliminary design versions have been evaluated. The most relevant calculations performed on this fuel element design version are presented. Also, the stages of an experimental

  12. Development of Romanian SEU-43 fuel bundle for CANDU type reactors

    International Nuclear Information System (INIS)

    SEU-43 fuel bundle is a CANDU type fuel consisting of two element sizes, to reduce element ratings, while maintaining the same bundle power, and an uranium content very close to the uranium content of a standard 37-element bundle. In order to reduce the detrimental effects of the life limiting factors at extended burnup a set of solution have been adopted for fuel element design. As a part of the design verification program, experimental bundles have been fabricated and utilized in typical out of reactor tests conducted at the laboratories of INR, Pitesti. These tests simulated current CANDU-6 reactor normal operating conditions of flow, temperature and pressure. The results are in accordance with the specified acceptance criteria. (author)

  13. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    A method of securing a fuel bundle to permit easy remote disassembly is described. Fuel rods are held loosely between end plates, each end of the rods fitting into holes in the end plates. At the upper end of each fuel rod there is a spring pressing against the end plate. Tie rods are used to hold the end plates together securely. The lower end of each tie rod is screwed into the lower end plate; the upper end of each tie rod is attached to the upper end plate by means of a locking assembly described in the patent. In order to remove the upper tie plate during the disassembly process, it is necessary only to depress the tie plate against the pressure of the springs surrounding the fuel rods and then to rotate each locking sleeve on the tie rods from its locked to its unlocked position. It is then possible to remove the tie plate without disassembling the locking assembly. (LL)

  14. Design verification of the CANFLEX fuel bundle - quality assurance requirements for mechanical flow testing

    International Nuclear Information System (INIS)

    As part of the design verification program for the new fuel bundle, a series of out-reactor tests was conducted on the CANFLEX 43-element fuel bundle design. These tests simulated current CANDU 6 reactor normal operating conditions of flow, temperature and pressure. This paper describes the Quality Assurance (QA) Program implemented for the tests that were run at the testing laboratories of Atomic Energy of Canada Limited (AECL) and Korea Atomic energy Research Institute (KAERI). (author)

  15. Analysis of the Bundle Duct Interaction using the FBR fuel pin bundle deformation analysis code 'BAMBOO'

    International Nuclear Information System (INIS)

    PNC has been developing a computer code 'BAMBOO' to analyze the wire spaced FBR fuel pin bundle deformation under the BDI (Bundle Duct Interaction) condition by means of the three dimensional F.E.M. This code analyzes fuel pins' bowing and oval deformations which are dominant deformation behaviors of the fuel pin bundle under the BDI condition. In this study the 'BAMBOO' code is validated on the out-of-pile compression test of the FBR bundle (compression test) by comparing the results of the code analysis with the compression test results, and the highly irradiated (≥2.1x1027 n/m2, E > 0.1 MeV) bundle deformation behaviors are investigated from the viewpoint of the similarity to those in the compression test based on the analytical results of the code. (1) The calculated pin-to-duct minimum clearances as a function of the BDI levels in the compression test analysis agree with the experimental values evaluated from the CT image analysis of the bundle cross-section in the compression test within ±0.2 mm. And the calculated values of the fuel pins' oval deformations agree with the experimental values based on the pin diameter measurements done after the compression test within ±0.05 mm. (2) By comparing the irradiation induced bundle deformation with the bundle deformation in the compression test based on the code analysis, it is confirmed that the changes of the pin-to-duct minimum clearances with the BDI levels show equivalent trends between the both bundle deformations. And in this code analysis of the irradiation induced bundle deformation, contact loads between the fuel pins and the pacer wires are extremely small (below 10 kgf) even at about 3 dw of the BDI level compared to those in the compression test analysis. (J.P.N.)

  16. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  17. Study of the end flux peaking for the Candu fuel bundle types by transport methods

    International Nuclear Information System (INIS)

    The region separating the Candu fuel in two adjoining bundles in a channel is called the end region. The end of the last pellet in the fuel stack adjacent to the end region is called the fuel end. In the end region of the bundle the thermal neutron flux is higher than at the axial mid-point, because the end region of the bundle is made up of very low neutron absorption material: coolant and Zircaloy-4. For accurate evaluation of fuel performance, it is important to have capability to calculate the three dimensional spatial flux distributions in the fuel bundle, including the end region. The work reported here had two objectives. First, calculation of the flux distributions (axial and radial) and the end flux peaking factors for some Candu fuel bundles. Second objective is a comparative analysis of the obtained results. The Candu fuel bundles considered in this paper are NU37 (Natural Uranium, 37 elements) and SEU43 (Slightly Enriched Uranium, 43 elements, with 1.1wt% enrichment). For realization of the proposed objectives, a methodology based on WIMS, PIJXYZ and LEGENTR codes is used in this paper. WIMS is a standard lattice-cell code, based on transport theory and it is used for producing fuel cell multigroup macroscopic cross sections. For obtaining the flux distribution in Candu fuel bundles it is used PIJXYZ and LEGENTR respectively codes. These codes are consistent with WIMS lattice-cell calculations and allow a good geometrical representation of the Candu bundle in three dimensions. PIJXYZ is a 3D integral transport code using the first collision probability method and it has been developed for Candu cell geometry. LEGENTR is a 3D SN transport code based on projectors technique and can be used for 3D cell and 3D core calculations. (author)

  18. Spacer for supporting fuel element boxes

    International Nuclear Information System (INIS)

    A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials

  19. IFPE/AECL-BUNDLE, Fission Gas Release and Burnup Analysis, PHWR Fuel

    International Nuclear Information System (INIS)

    Description: Prototype Candu Fuel bundles for the CANDU6 (bundle NR) and Bruce (bundle JC) reactors were irradiated in the NRU experimental reactor at Chalk River Laboratories in experimental loop facilities under typical Candu reactor conditions, except that they were cooled using light water. NEA-1596/01 - Description: Bundle JC was a prototype 37-element fuel bundle for the Bruce-A Ontario Hydro reactors. This pressurized heavy water reactor (PHWR) design utilizes a heavy water moderator and pressurize heavy water coolant. For irradiation in the NRU reactor, the centre fuel element was removed and replaced by a central tie rod for irradiation purposes in the vertical test section. Coolant for the test was pressurized light water under typical PHWR conditions of 9 to 10.5 MPa and 300 deg. C. The fuel elements used 1.55 wt% U-235 in U uranium dioxide fuel and were clad with Zircaloy-4 material. The bundles' elements were coated with a graphite coating. The fuel is somewhat atypical of 37 element-type fuel since the length to diameter ratio (l/d) is large (1.73) due to the pellets being ground down from a OD of 14.3 mm to 12.12 mm. The outer element burnup averaged approximately 640 MWh/kgU on discharge. Outer element powers varied between 57 kW/m near the beginning of life and 23 kW/m at discharge. Due to the long irradiation, the bundle experienced 153 short shutdowns, and 129 longer duration shutdowns. No element instrumentation was used during the irradiation. However, the bundle was subjected to extensive post-irradiation examination (PIE) that included dimensional changes, fission gas release, fuel burnup analysis, and metallography that included grain size measurement. NEA-1596/02 - Description: Bundle NR was a prototype 37-element fuel bundle for the Candu 600 reactor. This pressurized heavy water reactor (PHWR) design utilizes a heavy water moderator and pressurized heavy water coolant. For irradiation in the NRU reactor, the centre fuel element was

  20. COBRA-IV PC: A personal computer version of COBRA-IV-I for thermal-hydraulic analysis of rod bundle nuclear fuel elements and cores

    International Nuclear Information System (INIS)

    COBRA-IV PC is a modified version of COBRA-IV-I, adapted for use with most IBM PC and PC-compatible desktop computers. Like COBRA-IV-I, COBRA-IV PC uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV PC as the implicit solution scheme option. An explicit solution scheme is also available, allowing the calculation of severe transients involving flow reversals, recirculations, expulsions, and reentry flows, with a pressure or flow boundary condition specified. In addition, several modifications have been incorporated into COBRA-IV PC to allow the code to run on the PC. These include a reduction in the array dimensions, the removal of the dump and restart options, and the inclusion of several code modifications by Oregon State University, most notably, a critical heat flux correlation for boiling water reactor fuel and a new solution scheme for cross-flow distribution calculations. 7 refs., 8 figs., 1 tab

  1. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  2. LVRF fuel bundle manufacture for Bruce - project update

    International Nuclear Information System (INIS)

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliverables are being met. Supporting presentations will highlight some of the issues in more detail. (author)

  3. Flow-induced vibration and acoustic behaviour of CANFLEX-LVRF bundles in a Bruce B NGS fuel channel

    International Nuclear Information System (INIS)

    Frequency/temperature sweep tests were performed in a high-temperature/high-pressure test channel to determine the acoustic and flow-induced vibration characteristics of the CANFLEX-LVRF bundle. The vibratory response of CANFLEX-LVRF bundles was compared with that of 37-element fuel bundles under Bruce B NGS fuel channel normal operating conditions. The tests were performed with a 12-bundle string of CANFLEX-LVRF bundles as well as a mixed string for the transition core. The tests showed that the LVRF bundles performed as required without failure or gross geometry changes. The mixed fuel strings behaved in a manner similar to that of a string of CANFLEX-LVRF bundles. (author)

  4. Post-irradiation examination of CANDU MOX fuel bundle containing weapons grade plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Dimayuga, F.C.; Karam, M.; Montin, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2008-07-01

    The Parallex Project is an experiment designed to demonstrate the feasibility of dispositioning US and Russian weapons grade plutonium (WPu) in CANDU reactors as a mixed-oxide (MOX) fuel. The Parallex Project involved the fabrication, irradiation testing, and post-irradiation examination (PIE) of three experimental CANDU MOX fuel bundles containing WPu fuel elements that were manufactured in the US and Russia. Some of the bundles contained MOX fuel fabricated at Chalk River Laboratories (CRL) from civilian plutonium (CivPu). This paper will describe the irradiation testing and post-irradiation examination of the second Parallex bundle. The second Parallex bundle is a 37-element bundle with its centre element removed to accommodate its irradiation in the National Research Universal (NRU) reactor. The bundle was assembled at CRL using intermediate and inner elements containing WPu MOX fuel pellets fabricated by the Bochvar Institute (Russia) and CivPu MOX pellets fabricated by AECL. The 18 outer elements were fuelled with natural uranium oxide fuel pellets containing dysprosia (to reduce the neutron flux that the Pu-bearing elements would be exposed to). Half of the intermediate and inner elements contained MOX fuel pellets fabricated with depleted uranium containing 4.6 wt% WPu. The other half of the intermediate and inner elements contained MOX fuel pellets fabricated with depleted uranium containing 5.3 wt% CivPu. The irradiation testing of the second bundle was completed in NRU. The intermediate MOX elements experienced linear powers up to 49 kW/m and achieved a burnup of 294 MWh/kgHE (12 MWd/kgHE). The inner MOX elements experienced linear powers up to 23 kW/m and achieved a burnup of 130 MWh/kgHE (5 Wd/kgHE). There was a significant difference between the performance of AECL-made MOX fuel containing CivPu and Russian MOX fuel containing WPu in terms of fission gas release (FGR). This is attributed to the different fabrication processes used to manufacture the

  5. Design and fabrication of a remote fuel bundle welding system

    International Nuclear Information System (INIS)

    A remote fuel bundle welding system in the hot-cell was designed and fabricated. To achieve this, a preliminary investigation of a hands-on fuel fabrication outside the hot-cell was conducted with a consideration of the constraints caused by welding in the hot-cell. Some basic experiments were also carried out to improve the end-plate welding process for fuel bundle manufacturing. The resistance welding system using the end-plate welding was also improved. It was found that resistance welding was more suitable for joining and end-plate to end caps in the hot-cell. The optimum conditions for end-plate welding for remote operation were also obtained. Preliminary performances to improve the resistance welding process were also examined, and the resistance welding process was determined to be the best in the hot-cell environment for fuel bundle manufacturing. The greatest advantage of fuel bundle welding system would be a qualified process for resistance welding in which there is extensive production experience. This paper presents an outline of the developed welding system for fuel bundle manufacturing and reviews the conceptual design of remote welding system using a master-slave manipulator. The design of a remote welding system using the 3-dimensional modeling method was also designed. Furthermore the mechanical considerations and the mock-up simulation test were described. Finally, its performance test results were presented for a mock-up of a remote fuel bundle welding system. (Author)

  6. Fuel rod bundles proposed for advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    The paper aims to be a general presentation for fuel bundles to be used in Advanced Pressure Tube Nuclear Reactors (APTNR). The characteristics of such a nuclear reactor resemble those of known advanced pressure tube nuclear reactors like: Advanced CANDU Reactor (ACRTM-1000, pertaining to AECL) and Indian Advanced Heavy Water Reactor (AHWR). We have also developed a fuel bundle proposal which will be referred as ASEU-43 (Advanced Slightly Enriched Uranium with 43 rods). The ASEU-43 main design along with a few neutronic and thermalhydraulic characteristics are presented in the paper versus similar ones from INR Pitesti SEU-43 and CANDU-37 standard fuel bundles. General remarks regarding the advantages of each fuel bundle and their suitability to be burned in an APTNR reactor are also revealed. (authors)

  7. Spring and stop assembly for nuclear fuel bundle

    International Nuclear Information System (INIS)

    A removable spring and stop assembly is described for use with a nuclear fuel bundle in a nuclear reactor core. The assembly includes a bolt threaded through a top section of a stop member by which the assembly (and a flow channel) is secured to the fuel bundle, the adjacent end threads of the bolt. The stop member is upset or deformed by which the bolt is captured in the assembly. (U.S.)

  8. Filler metals for containers holding irradiated fuel bundles

    International Nuclear Information System (INIS)

    One of the procedures being considered for the disposal of Canadian deuterium uranium (CANDU) irradiated fuel bundles is to place the bundles in containers, fill the containers with metal, and place them underground. This investigation deals with the selection of the filler metal with particular reference to the reaction rate with, and bonding of the filler metal to, the fuel sheathing (Zircaloy 4) and potential container materials. Lead, zinc, and aluminium alloys were examined as potential filler metals. (U.K.)

  9. Fuel element design handbook

    Energy Technology Data Exchange (ETDEWEB)

    Merckx, K.R.

    1958-09-01

    The economic development of nuclear reactors depends upon the integrated progress in the fields of reactor design, fuel element design, reactor operation, and fuel production and separation. Broad criteria, which restrict the fuel element design, are determined by the mutual consideration of the problems encountered in all the above fields. Hence, no stage of reactor design or operation is independent of the fuel element problem, nor can the fuel element designer disregard the interest of any one field. As an introduction to the fuel element design problem, this chapter describes how the general criteria for a fuel element are determined.

  10. Bundle duct interaction studies for fuel assemblies

    International Nuclear Information System (INIS)

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant

  11. Interactive hypermedia training manual for spent-fuel bundle counters

    International Nuclear Information System (INIS)

    Spent-fuel bundle counters, developed by the Canadian Safeguards Support Program for the International Atomic Energy Agency, provide a secure and independent means of counting the number of irradiated fuel bundles discharged into the fuel storage bays at CANDU nuclear power stations. Paper manuals have been traditionally used to familiarize IAEA inspectors with the operation, maintenance and extensive reporting capabilities of the bundle counters. To further assist inspectors, an interactive training manual has been developed on an Apple Macintosh computer using hypermedia software. The manual uses interactive animation and sound, in conjunction with the traditional text and graphics, to simulate the underlying operation and logic of the bundle counters. This paper presents the key features of the interactive manual and highlights the advantages of this new technology for training

  12. Metallographic examination of a CANDU fuel bundle heated under severe accident conditions

    International Nuclear Information System (INIS)

    Post-test metallographic examination of bundle cross sections of a 19-element modified CANDU fuel bundle was carried out. The bundle, HTBS-004, had been subjected to a severe temperature excursion to 1900 degrees Celsius in superheated steam. For this study, quantitative image analysis, Auger analysis and SEM-EDX techniques were applied. A significantly large quantity of molten (Zr, U, O) alloy was relocated in the bundle section 50 mm from the upstream end, whereas the 377-mm section showed little relocated material except at the inner element junctions. These variations in the molten material generation and relocation have been correlated with the corresponding axial and radial variations in the heatup rates

  13. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    An improved nuclear power reactor fuel element is described which consists of fuel rods, rod guide tubes and an end plate. The system allows direct access to an end of each fuel rod for inspection purposes. (U.K.)

  14. Vibrations of turbine blades bundles model with rubber damping elements

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2014-01-01

    Roč. 21, č. 1 (2014), s. 45-52. ISSN 1802-1484 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : mathematical model * bundle of five blades * rubber damping elements * eigenmodes Subject RIV: BI - Acoustics http://www.engineeringmechanics.cz/obsahy.html?R=21&C=1

  15. Fuel bundle geometry and composition influence on coolant void reactivity reduction in ACR and CANDU reactors

    International Nuclear Information System (INIS)

    It is very well known that the CANDU reactor has positive Coolant Void Reactivity (CVR), which is most important criticisms about CANDU. The most recent innovations based on using a thin absorbent Hafnium shell in the central bundle element were successfully been applied to the Advanced CANDU Reactor (ACR) project. The paper's objective is to analyze elementary lattice cell effects in applying such methods to reduce the CVR. Three basic fuel designs in their corresponding geometries were chosen to be compared: the ACR-1000TM, the RU-43 (developed in INR Pitesti) and the standard CANDU fuel. The bundle geometry influence on void effect was also evaluated. The WIMS calculations proved the Hafnium absorber suitability (in the latest 'shell design') to achieve the negative CVR target with great accuracy for the ACR-1000 fuel bundle design than for the other two projects. (authors)

  16. Status of the demonstration irradiation of the CANDU new fuel bundle CANFLEX-NU in Korea

    International Nuclear Information System (INIS)

    A demonstration irradiation (DI) of 24 KNFC made CANFLEX-NU fuel bundles in the Wolsong Power Generation Station-i has been conducted jointly by KEPRI/KHNP/KAERI since July 10, 2002. By selecting the Q07 (high power) and L21(low power) channels, the total 24 and 16 CANFLEX bundles were respectively loaded into and discharged from the reactor by 2003 August, and the final discharge of the other 8 CANFLEX bundles is expected on around February 2004. Tracking the reactor operation data, it is noted that the reactor has been stably operated during the DI. One CANFLEX bundle irradiated in the Q07 channel had a typical history of high power and high burnup, having the outer element power rating of ∼ 41 kW/m at the fuelling, ∼ 42 kW/m as a maximum power rating at the burnup of ∼ 50 MWh/kgU, and ∼ 35 kW/m at the discharge burnup of ∼ 210 MWh/kgU. While, another CANFLEX bundle also irradiated in the Q07 channel had a typical history of power ramping, having a outer element power rating of ∼ 7 kW/m from the fuelling to the burnup of ∼ 48 MWh/kgU at which the element powers were ramped to a ∼ 35 kW/m maximum element power rating, and ∼ 30 kW/m at the discharge burnup of 188 MWh/kgU. An unusual performance and integrity of the CANFLEX elements could not be found in the ELESTRES predictions. By looking at the discharged CANFLEX bundles in the bay, all the bundles were intact, free of defects and appeared to be in good condition. A detailed in-bay visual examinations and dimensional measurements of the discharged CANFLEX bundles will be made at the end of 2003. (author)

  17. COBRA-IV-I: an interim version of COBRA for thermal-hydraulic analysis of rod bundle nuclear fuel elements and cores

    International Nuclear Information System (INIS)

    The COBRA-IV-I computer code uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV-I as the implicit solution scheme option. In addition to these techniques, a new explicit solution scheme is now available which allows the calculation of severe transients involving flow reversals, recirculations, expulsion and reentry flows, with a pressure or flow boundary condition specified. Significant storage compaction and reduced running times have been achieved to allow the calculation of problems involving hundreds of subchannels

  18. Chop-leach fuel bundle residues densification by melting

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.G.; Griggs, B.

    1976-11-01

    Two melting processes were investigated for the densification of fuel bundle residues: Industoslag melting and graphite crucible melting. The Industoslag process, with prior decontamination and sorting, can produce ingots of Zircaloy, stainless steel and Inconel of a quality suitable for refabrication and reuse. The process can also melt oxidized mixtures of fuel bundle residues for direct storage. Eutectic mixtures of these materials can be melted in graphite at temperatures of 1300/sup 0/C. Hydrogen absorption experiments with the zirconium-rich alloys show the alloys to be potential tritium reservoirs. 13 figures.

  19. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  20. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    International Nuclear Information System (INIS)

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results

  1. Coupling Systems of Five CARA Fuel Bundles for Atucha I

    International Nuclear Information System (INIS)

    This paper describe the mechanical design of two options for the coupling systems of five CARA fuel bundles, to be used in the Atucha I nuclear power plant. These systems will be hydraulic tested in a low pressure loop to know their hydraulic loss of pressure

  2. Nuclear fuel element

    International Nuclear Information System (INIS)

    Purpose: To reduce the probability of stress corrosion cracks in a zirconium alloy fuel can even when tensile stresses are resulted to the fuel can. Constitution: Sintered nuclear fuel pellets composed of uranium dioxide or a solid solution of gadolinium as a burnable poison in uranium dioxide are charged in a tightly sealed zirconium alloy fuel can. The nuclear fuel pellets for the nuclear fuel element are heat-treated in a gas mixture of carbon dioxide and carbon monoxide. Further, a charging gas containing a mixture of carbon dioxide and carbon monoxide is charged within a zirconium alloy fuel can packed with the nuclear fuel pellets and tightly sealed. (Aizawa, K.)

  3. Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2

    International Nuclear Information System (INIS)

    AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt. % Th and 1.53 wt. % Pu in (Th, Pu)O2. The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O2 fuel performance characteristics were superior to UO2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)

  4. Posttest examination of the VVER-1000 fuel rod bundle CORA-W2

    International Nuclear Information System (INIS)

    The bundle meltdown experiment CORA-W2, representing the behavior of a Russian type VVER-1000 fuel element, with one B4C/stainless steel absorber rod was selected by the OECD/CSNI as International Standard Problem (ISP-36). The experimental results of CORA-W2 serve as data base for comparison with analytical predictions of the high-temperature material behavior by various code systems. The first part of the experimental results is described in KfK 5363 (1994), the second part is documented in this report which contains the destructive post-test examination results. The metallographical and analytical (SEM/EDX) post-test examinations were performed in Germany and Russia and are summarized in five individual contributions. The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B4C absorber rod and the stainless steel grid spacers on the ''low-temperature'' bundle damage initiation and progression. The B4C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occurred. (orig.)

  5. Fuel bundle loss of cooling inside the fuelling machine at CANDU6 PHWR

    International Nuclear Information System (INIS)

    This article describes the that loss of forced circulation cooling flow of induce spent fuel bundle loss of cooling and fission product releasing, analyzes the effect of reactor building and environment due to the fuel bundle rupturing, discusses the countermeasure to deal with the event of loss of cooling of spent fuel bundle. (authors)

  6. Uranium's transformation from mineral to fuel bundles

    International Nuclear Information System (INIS)

    Uranium undergoes chemical transformation phases before it can be used in the nuclear power plant. In first phase uranium is transformed from mineral to yellow cake, in which uranium is in the form of U3O8. After that comes conversion (U3O8-UF6) and enrichment (0.7%-3% U-235). Finally, uranium is converted in fuel fabrication to uranium dioxide, UO2, and fuel pellets are made

  7. The demonstration irradiation of the CANFLEX-NU fuel bundle in Wolsong NGS 1

    International Nuclear Information System (INIS)

    A demonstration irradiation (DI) of 24 CANFLEX-NU fuel bundles in the high power Q07 channel and low power L21 channel of Wolsong Power Generation Station-1 had been successfully conducted jointly by KEPRI/KHNP/KAERI in the period of 2002 July to 2004 January. The tracking of the reactor operation data showed that the reactor has been stably operated during the DI. One CANFLEX bundle irradiated in the Q07 channel had a typical history of high power and high burnup, where the maximum element linear power rating was ∼ 42 kW/m at the burnup of ∼ 50 MWh/kgU and ∼ 35 kW/m at the discharge element burnup of ∼ 210 MWh/kgU. While, another CANFLEX bundles also irradiated in the Q07 channel had a typical history of power ramping, where the maximum element power ramping-up or -down rate was 28 kW/m. The unusual performance and integrity of the CANFLEX elements could not be found in the ELESTRES predictions and also the in-bay visual examinations showed that all the bundles were intact, free of defects and appeared to be in good condition as expected. Therefore, it is concluded that the demonstration irradiation shows the validation of the CANFLEX bundle performance with direct conditions of relevance under the Korean licensing requirements and the KNFC fuel fabrication capability, and provides the rationale for the decision to perform the full-conversion of CANFLEX fuel in WPGS-1. (author)

  8. A study of coolant thermal mixing within CANDU fuel bundles using ASSERT-PV

    International Nuclear Information System (INIS)

    This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles. The approach taken in the present work is to identify the physical mechanisms contributing to coolant mixing, and to systematically assess the importance of each mechanism. Coupled effects were also considered by flow simulation with mixing mechanisms modelled simultaneously. For the limited range of operating conditions considered and when all mixing mechanisms were modelled simultaneously, the flow was found to be very close to fully mixed. A preliminary model of coolant mixing, suitable for use in the fuel and fuel channel code FACTAR, is also presented. (author)

  9. CANDU-6 fuel bundle fabrication and advanced fuels development in China

    International Nuclear Information System (INIS)

    In recent years, China North Nuclear Fuel Corporation (CNNFC) has introduced several modifications to the manufacturing processes and the production line equipment. This has been beneficial in achieving a very high level of quality in the production of fuel bundles. Since 2008 CNNFC has participated in a multi party project with the goal of developing advanced fuels for use in CANDU reactors. Other project team members include the Nuclear Power Institute of China (NPIC), Third Qinshan Nuclear Power Company (TQNPC) and Atomic Energy of Canada Ltd (AECL). This paper will present the improvements developed during the manufacture of natural fuel bundles and advanced fuels. (author)

  10. Hydraulic reinforcement of channel at lower tie-plate in BWR fuel bundle

    International Nuclear Information System (INIS)

    This patent describes an apparatus in a fuel bundle for confining fuel rods for the generation of steam in a steam water mixture passing interior of the fuel bundle. The fuel bundle includes: a lower tie-plate for supporting the fuel rods and permitting flow from the lower exterior portion of the fuel bundle into the interior portion of the fuel bundle; a plurality of fuel rods. The fuel rods supported on the lower tie-plate extending upwardly to and towards the upper portion of the fuel bundle for the generation of steam in a passing steam and water mixture interior of the fuel bundle; an upper tie-plate for maintaining the fuel rods in side-by-side relation and permitting a threaded connection between a plurality of the fuel rods with the threaded connection being at the upper and lower tie-plate. The upper tie-plate permitting escape of a steam water mixture from the top of the fuel bundle; a fuel bundle channel; and a labyrinth seal configured in the lower tie-plate

  11. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    The fuel element for a BWR known from the patent application DE 2824265 is developed so that the screw only breaks on the expansion shank with reduced diameter if the expansion forces are too great. (HP)

  12. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  13. HLM fuel pin bundle experiments in the CIRCE pool facility

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)

    2015-10-15

    Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and

  14. Heat transfer in a vertical 7-element bundle cooled with supercritical Freon-12

    International Nuclear Information System (INIS)

    Currently, SuperCritical Water-cooled nuclear Reactor (SCWR) concepts are being developed worldwide with an objective to increase thermal efficiencies of future Nuclear Power Plants (NPPs) on 10 -15% compared to those of current water-cooled NPPs. With such an increase in the thermal efficiencies, SCW NPPs will be at the current level of the most advanced thermal power plants: coal-fired SCW NPPs and combined-cycle gas-fired NPPs. However, to be able to develop SCWRs at least several key technical problems should be resolved. One of these problems is limited amount of experimental data on heat transfer in fuel bundles and based on that SCW heat-transfer correlations. Experiments in SCW are very complicated and expensive due to high critical parameters of water (pressure 22.064 MPa and temperature 374.95°C). Moreover, there are only few SCW test rigs, which capable to perform experiments in full-scale bundles. As a preliminary approach supercritical-pressure heat-transfer experiments in bundles can be performed in modeling fluids such as Freons or carbon dioxide. Therefore, a set of experimental data was obtained in Freon-12-cooled bundle simulator at the Institute of Physics and Power Engineering (IPPE, Obninsk, Russia). A vertical 7-element bundle was installed in a hexagonal flow channel. The test section consisted of elements that were 9.5 mm in diameter with the total heated length of 1 m. Bulk-fluid and wall temperature profiles were recorded using thermocouples. Several heat-transfer regimes were tested. Also, this paper references thermophysical properties of supercritical Freon-12 at the critical pressure (4.1361 MPa) and test pressure of 4.65 MPa. (author)

  15. Selection of instruments used for vibration measurement of fuel bundles in a pressure tube under CANDU reactor operating conditions

    International Nuclear Information System (INIS)

    Vibration characteristics of CANDU fuel bundle and fuel elements is a key parameter considered in the design of a fuel bundle. Out-reactor frequency and temperature sweep tests, under reactor operating conditions, are performed to verify vibration characteristics of CANDU fuel bundles. Several options have been considered in the selection of vibration instrumentation to perform out-reactor frequency and temperature sweep tests. This paper compares the benefits and disadvantages of various vibration instruments and summarizes the rationale behind the selection of instruments used for vibration measurements over a range of temperature and pressure pulsation frequencies. The conclusions are presented from the bench tests performed, which confirm the use of the selected instruments. (author)

  16. Numerical simulation of fluid flow and heat transfer of supercritical fluids in fuel bundles

    International Nuclear Information System (INIS)

    A supercritical water-cooled reactor (SCWR) was proposed as a kind of generation IV reactor in order to improve the efficiency of nuclear reactors. Although investigations on the thermal-hydraulic behavior in SCWR have attracted much attention, there is still a lack of CFD study on the heat transfer of supercritical water in fuel channels. In order to understand the thermal-hydraulic behavior of supercritical fluids in nuclear reactors, the local fluid flow and heat transfer of supercritical water in a 37-element fuel bundle has been studied numerically in this work. Results show that secondary flow appears and the cladding surface temperature (CST) is very nonuniform in the fuel bundle. The maximum cladding surface temperature (MaxCST), which is an important design parameter for SCWR, can be predicted and analyzed using the CFD method. Due to a very large circumferential temperature gradient in cladding surfaces of the fuel bundle, the precise cladding temperature distributions using the CFD method is highly recommended. (author)

  17. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  18. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  19. Advanced CFD simulations of turbulent flows around appendages in CANDU fuel bundles

    International Nuclear Information System (INIS)

    Computational Fluid Dynamics (CFD) was used to simulate the coolant flow in a modified 37-element CANDU fuel bundle, in order to investigate the effects of the appendages on the flow field. First, a subchannel model was created to qualitatively analyze the capabilities of different turbulence models such as k.ε, Reynolds Normalization Group (RNG), Shear Stress Transport (SST) and Large Eddy Simulation (LES). Then, the turbulence model with the acceptable quality was used to investigate the effects of positioning appendages, normally used in CANDU 37-element Critical Heat Flux (CHF) experiments, on the flow field. It was concluded that the RNG and SST models both show improvements over the k.ε method by predicting cross flow rates closer to those predicted by the LES model. Also the turbulence effects in the k.ε model dissipate quickly downstream of the appendages, while in the RNG and SST models appear at longer distances similar to the LES model. The RNG method simulation time was relatively feasible and as a result was chosen for the bundle model simulations. In the bundle model simulations it was shown that the tunnel spacers and leaf springs, used to position the bundles inside the pressure tubes in the experiments, have no measureable dominant effects on the flow field. The flow disturbances are localized and disappear at relatively short streamwise distances. (author)

  20. An assessment of thermal behavior of the DUPIC fuel bundle by subchannel analysis

    International Nuclear Information System (INIS)

    Thermal behavior of the standard DUPIC fuel has been assessed. The DUPIC fuel bundle has been modeled for a subchannel analysis using the ASSERT-IV code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions of the DUPIC fuel bundle, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. Based upon the subchannel modeling used in this study, the location of minimum CHFR in the DUPIC fuel bundle has been found to be very similar to that of the standard fuel. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction was found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. Since the transverse interchange model between subchannels is important for the behavior of these variables, it is needed to put more effort in validating the transverse interchange model. For the purpose of investigating influence of thermal-hydraulic parameter variations of the DUPIC fuel bundle, four different values of the channel flow rates were used in the subchannel analysis. The effect of the channel flow reduction on thermal-hydraulic parameters have been presented. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundles in CANDU reactors. (author). 12 refs., 3 tabs., 17 figs

  1. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    The grid-shaped spacer for PWR fuel elements consists of flat, upright metal bars at right angles to the fuel rods. In one corner of a grid mesh it has a spring with two end parts for the fuel rod. The cut-outs for the end parts start from an end edge of the metal bar parallel to the fuel rods. The transverse metal bar is one of four outer metal bars. Both end parts of the spring have an extension parallel to this outer metal arm, which grips a grid mesh adjacent to this grid mesh at the side in one corner of the spacer and forms an end part of a spring for the fuel rod there on the inside of the outer metal bar. (HP)

  2. Status of the demonstration irradiation program of the new fuel bundle CANFLEX-NU in Korea

    International Nuclear Information System (INIS)

    In the late part of 1999, the Korea Electric Power Corporation has initiated a program CANFLEX-NU (Natural Uranium) fuel in the Wolsong Generating Station (WGS) - no.1 which has been operating since 1983, because the CANFLEX could be used to recover some of a CANDU heat transport system operation margins that had decreased due to The Korea Ministry of Science and Technology (MOST) has recognized the successful demonstration irradiation of 24 CANFLEX bundles at the Pt. Lepreau Generating Station in Canada, as final verification of the CANFLEX design in preparation for full core conversion. Therefore, MOST has pushed and gave a financial support to a KEPRI/KAERI Joint Industrialization Program of CANFLEX-NU Fuel, which will be for 3 years from 2000 November, to validate CANFLEX-NU fuel bundle performance in direct conditions of relevance under the Korean licensing requirements as well as to evaluate the fuel fabrication capability, and to produce a safety analysis report for the full-core implementation. The economic benefits of CANFLEX-NU fuel are directly dependent on the thermalhydraulic performance. Switching from the existing 37-element fuel to the CANFLEX fuel will be largely driven by the economic benefits to be realized. Showing a positive result in the economic evaluation as well as successfully demonstrating the CANFLEX fuel irradiation in WGS-no. 1, the full-core implementation of the fuel at the WGS-no.1 in Korea will proceed by starting the licensing process at around 2003 April because the safety report for the full-core conversion will be ready by 2003 March. This paper describes the status of CANFLEX-NU fuel industrialization program in Korea, as well as the fuel design features. It summarizes the plan of CANFLEX-NU fuel demonstration irradiation at the WGS-no. 1 in Korea and the status of documentation for the demonstration irradiation as well as for the CANFLEX-NU full-core implementation. (author)

  3. Spent fuel bundle counter sequence error manual - DARLINGTON NGS

    International Nuclear Information System (INIS)

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  4. A model for fuel rod and tie rod elongations in boiling water reactor fuel bundles

    International Nuclear Information System (INIS)

    A structural model is developed to determine the relative axial displacements of the spring held fuel rods to the tie rods in Boiling Water Reactor fuel bundles. An irradiation dependent relaxation model, which considers a two stage relaxation process dependent upon the fast fluence is used for the compression springs. The changes in spring compression resulting from the change in the length of the zircaloy fuel cladding due to irradiation enhanced anisotropic creep and growth is also considered in determining the time dependent variation of the spring forces. The time dependence of the average linear heat generation rates and their axial distributions is taken into account in determining the fuel cladding temperatures and fast fluxes for the various fuel rod locations within each of the BWR fuel bundles whose relative displacements were measured and used in this verification study. (orig.)

  5. Studies of a larger fuel bundle for the ABWR improved evolutionary reactor

    International Nuclear Information System (INIS)

    Studies for an Improved Evolutionary Reactor (IER) based on the Advanced Boiling Water Reactor (ABWR) were initiated in 1990. The author summarizes the current status of the core and fuel design. A core and fuel design based on a BWR K-lattice fuel bundle with a pitch larger than the conventional BWR fuel bundle pitch is under investigation. The core and fuel design has potential for improved core design flexibility and improved reactor transient response. Furthermore, the large fuel bundle, coupled with a functional control rod layout, can achieve improvement of operation and maintenance, as well as improvement of overall plant economy

  6. Fuel Element Designs for Achieving High Burnups in 220 MW(e) Indian PHWRs

    International Nuclear Information System (INIS)

    Presently 19-element natural uranium fuel bundles are used in 220 MW(e) Indian PHWRs. The core average design discharge burnup for these bundles is 7000 MW·d/Te U and maximum burnup for assembly goes upto of 15 000 MWD/Te U. Use of fuel materials like MOX, Thorium, slightly enriched uranium etc in place of natural uranium in 19-element fuel bundles, in 220 MW(e) PHWRs is being investigated to achieve higher burnups. The maximum burnup investigated with these bundles is 30 000 MW·d/Te U. In PHWR fuel elements no plenum space is available and the cladding is of collapsible type. Studies have been carried out for different fuel element target burnups with different alternative concepts. Modification in pellet shape and pellet parameters are considered. These studies for the PHWR fuel elements/assemblies have been elaborated in this paper. (author)

  7. Nuclear fuel element cladding

    International Nuclear Information System (INIS)

    Composite cladding for a nuclear fuel element containing fuel pellets is formed with a zirconium metal barrier layer bonded to the inside surface of a zirconium alloy tube. The composite tube is sized by a cold working tube reduction process and is heat treated after final reduction to provide complete recrystallization of the zirconium metal barrier layer and a fine-grained microstructure. The zirconium alloy tube is stress-relieved but is not fully recrystallized. The crystallographic structure of the zirconium metal barrier layer may be improved by compressive deformation such as shot-peening. (author)

  8. Optimized critical power in a fuel bundle with part length rods

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.B.; Matzner, B.; Dix, G.E.; Wolters, R.A. Jr.; Reese, A.P.

    1993-07-20

    In a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies wherein the fuel bundle includes: a plurality of fuel rods for placement within said channel, each fuel rod containing fissile material for producing nuclear reaction; a lower tie plate for supporting the bundle of fuel rods within said channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water coolant in the channel between the fuel rods for generation of steam; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein an annular flow regime of the water and steam in the bundle is defined during nuclear steam generating reaction; an upper tie plate for supporting the upper end of the bundle of fuel rods, the upper tie plate joining the top of the channel, the upper tie plate providing apertures for the outflow of water and generated steam in the channel; spacers intermediate the upper and lower tie plates at preselected elevations along the fuel rods for maintaining the fuel rods in spaced apart location along the length of the fuel assembly including a first group of spacers in thelower region of the fuel bundle and a second group of spacers in the upper annular flow regime of the fuel bundle; a plurality of the fuel rods being part length extending from thelower tie plate towards the upper tie plate, the partial length fuel rods terminating at ends within the upper region of the fuel bundle before reaching the upper tie plate and causing deceased pressure drop in said annular flow regime of said fuel bundle during said nuclear steam generating reaction; the improvement to said bundle comprising: means in the annular flow regime of the fuel bundle for restoring at least some of the decreased pressure drop.

  9. Optimized critical power in a fuel bundle with part length rods

    International Nuclear Information System (INIS)

    In a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies wherein the fuel bundle includes: a plurality of fuel rods for placement within said channel, each fuel rod containing fissile material for producing nuclear reaction; a lower tie plate for supporting the bundle of fuel rods within said channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water coolant in the channel between the fuel rods for generation of steam; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein an annular flow regime of the water and steam in the bundle is defined during nuclear steam generating reaction; an upper tie plate for supporting the upper end of the bundle of fuel rods, the upper tie plate joining the top of the channel, the upper tie plate providing apertures for the outflow of water and generated steam in the channel; spacers intermediate the upper and lower tie plates at preselected elevations along the fuel rods for maintaining the fuel rods in spaced apart location along the length of the fuel assembly including a first group of spacers in thelower region of the fuel bundle and a second group of spacers in the upper annular flow regime of the fuel bundle; a plurality of the fuel rods being part length extending from thelower tie plate towards the upper tie plate, the partial length fuel rods terminating at ends within the upper region of the fuel bundle before reaching the upper tie plate and causing deceased pressure drop in said annular flow regime of said fuel bundle during said nuclear steam generating reaction; the improvement to said bundle comprising: means in the annular flow regime of the fuel bundle for restoring at least some of the decreased pressure drop

  10. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  11. Fuel bundle examination techniques for the Phebus fission product test

    International Nuclear Information System (INIS)

    The paper develops the non-destructive examinations, with a special emphasis on transmission tomography, performed in the Phebus facility, using a linear accelerator associated with a line scan camera based on PCD components. This particular technique enabled the high level of penetration to be obtained, necessary for this high density application. Spatial resolution is not far from the theoretical limit and the density resolution is often adequate. This technique permitted: 1) to define beforehand the cuts on a precise basis, avoiding a long step-by-step choice as in previous in-pile tests; 2) to determine, at an early stage, mass balance, material relocations (in association with axial gamma spectrometry), and FP distribution, as an input into re-calculations of the bundle events. However, classical cuttings, periscopic visual examinations, macrographies, micrographies and EPMA analyses remain essential to give oxidation levels (in the less degraded zones), phase aspect and composition, to distinguish between materials of identical density, and, if possible, to estimate temperatures. Oxidation resistance of sensors (thermocouples or ultrasonic thermometers) is also traced. The EPMA gives access to the molten material chemical analyses, especially in the molten fuel blockage area. The first results show that an important part of the fuel bundle melted (which was one of the objectives of this test) and that the degradation level is close to TIMI-2 with a molten plug under a cavity surrounded by an uranium-rich crust. In lower and upper areas fuel rods are less damaged. Complementaries between these examination techniques and between international teams involved will be major advantages in the Phebus FPT0 test comprehension. 3 refs, 9 figs

  12. CFD and DNS methodologies development for fuel bundle simulations

    International Nuclear Information System (INIS)

    Development and application of Computational Fluid Dynamics (CFD) and Direct Numerical Simulation (DNS) approaches to the simulation of coolant flow inside nuclear fuel bundles are presented, focusing on the advantages and limitations of the different methodologies and on their synergetic potential. High Reynolds number flow cases are analyzed with the adoption of an improved anisotropic turbulence modeling, which adopts a non-linear stress strain correlation and an improved near wall treatment. The capability of the model of predicting the coolant flow distribution inside the bundles is shown and discussed on the base of comparison with experimental data for a variety of geometrical and Reynolds number conditions. In particular wall shear stresses, velocity, and secondary flow distributions comparisons are shown. Moreover, DNS computations are performed adopting an algorithm based on the finite difference method, extended to boundary fitted coordinate systems in order to efficiently concentrate grids near the distorted wall boundaries. The validity and significance of the results is discussed underlying the importance of the insights into the turbulence structure. The calculations are further extended to higher Reynolds numbers, which cannot in general be treated with DNS approach, renouncing to the estimation of the higher-order moments, but limited to the evaluation of the averaged velocity profiles, turbulence intensities and Reynolds stresses. (authors)

  13. Laser dismantling of PHWR spent fuel bundles and decladding of fuel pins in the highly radioactive hot cells

    International Nuclear Information System (INIS)

    Full text: For reprocessing of PHWR fuel, fuel bundles are at present chopped mechanically into small pieces of pins using high tonnage mechanical press before dissolution. The existing method of bundle dismantling is purely mechanical using very high force for chopping. A laser based automated bundle dismantling system is developed. In the system, end-plates of bundle, which holds the fuel pins together, are cut using Nd-YAG laser to separate the bundles into pins. In addition to pin separation, the pins are to be chopped into small pieces using a small mechanical chopper. Since the spent fuel is highly radioactive, all these operations are performed remotely in hot cells. Post irradiation examination also requires dismantling of bundles into pins so that they can select the pins for the further examinations. In both these applications laser dismantling remains the most. important step and this system has been developed and tested. This paper describes the experience gained during the development efforts

  14. Cap assembly for a bundled tube fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-04-26

    A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.

  15. MENT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Since the advent of computer-assisted-tomography (CAT), the CAT techniques have been rapidly expanded to the nuclear industry. A number of investigators have applied these techniques to reconstruct the fuel bundle configuration inside a subassembly with various degrees of resolution; however, there has been little data available on the accuracy of these reconstructions, and no comparisons have been made with the internal structure of actual irradiated subassemblies. Some efforts have utilized pretest mock-ups to calibrate the CAT algorithms, but the resulting mock-up configurations do not necessarily represent an actual subassembly, so an exact comparison has been lacking. The purpose of this paper is to present the results of a comparison between a CAT reconstruction of an irradiated subassembly and the destructive examination of the same subassembly

  16. Fuel-element inspection stand in the cooling pond of an atomic power plant

    International Nuclear Information System (INIS)

    A fuel-element inspection stand has been built in the cooling pool of the second power unit at the Ignalina Atomic Power Plant for the purpose of monitoring fuel elements unloaded from the reactor and for performing research involving the acquisition and analysis of statistically significant information concerning the reliability and efficiency of fuel elements and fuel bundles. The uses and specifications of the fuel-element inspection stand are given in this paper. 1 ref., 4 figs

  17. Development of the cooling technology on TRU fuel pin bundle during fuel fabrication process (4). Steady state cooling test of full mock up fuel pin bundle

    International Nuclear Information System (INIS)

    The development of the fast reactor cycle is being preceded in Japan to utilize plutonium and trans-uranium materials which come from the simplified PUREX reprocessing. But the TRU fuel bundle generates heat due to fission of TRU during the fabrication process of the wire wrapped Fast Breeder Reactor (FBR) fuel pin bundle. Then it is a big issue to develop an efficient cooling system for the horizontally laid bundle and to clarify its thermal behavior. Then in this paper the steady state full mock up test results are described. Inlet air velocity and heat generation rate were varied in the tests as the parameter. Then it is ascertained that the fuel can be cooled under the 473 K which is the criterion for the steady state cooling of this study to keep cladding soundness. The temperature and velocity fields of the bundle upper side were also measured by moving thermocouples to vertical and horizontal directions, by the infrared thermometer and by PIV (Particle Image Velocimetry). Then the temperature and velocity fields at outlet region are clarified. (author)

  18. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    The fuel element box for a BWR is situated with a corner bolt on the inside in one corner of its top on the top side of the top plate. This corner bolt is screwed down with a bolt with a corner part which is provided with leaf springs outside on two sides, where the bolt has a smaller diameter and an expansion shank. The bolt is held captive to the bolt head on the top and the holder on the bottom of the corner part. The holder is a locknut. If the expansion forces are too great, the bolt can only break at the expansion shank. (HP)

  19. Nanocrystal and noble gas tagging for monitoring defective CANDU fuel bundles

    International Nuclear Information System (INIS)

    The purpose of this paper is to discuss two possible defective fuel bundle tagging techniques that have been suggested for CANDU-6 nuclear reactors. The general design of a CANDU-6 reactor and fuel bundle is reviewed. Nanocrystal tagging is introduced. A current production method for CdTe nanocrystals and future experimental goals are outlined and noble gas tagging is reviewed. Considerations for the future implementation of these tagging methods for fuel in a CANDU-6 reactor is also discussed. (author)

  20. Upon local blockage formations in LMFBR fuel rod bundles with wire-wrapped spacers

    International Nuclear Information System (INIS)

    A theoretical and experimental study, to improve understanding of local particle depositions in a wire-wrapped LMFBR fuel bundle, has been performed. Theoretical considerations show, that a preferentially axial process of particle depositions occurs. The experiments confirm this and clarify that the blockages arise near the particle source and settle at the spatially arranged minimum gaps in the bundle. The results suggest that, considering flow reduction, cooling and DND-detection, such fuel particle blockages are less dangerous. With reference to these safety-relevant factors, wire-wrapped LMFBR fuel bundles seem to gain advantages compared to the grid design. (orig.)

  1. Experimental study of water flow in nuclear fuel elements

    International Nuclear Information System (INIS)

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured

  2. Full-Scale Irradiation Test of Hanaro U3Si Fuel Using Lead Bundle

    International Nuclear Information System (INIS)

    To verify the irradiation performances of HANARO fuel at a nominal power of 30 MW, a lead bundle was first loaded into the HANARO core after increasing the reactor power to the full power. The lead bundle is an actual fuel assembly with 18 fuel rods that was fabricated using an atomized manufacturing procedure. The lead bundle was irradiated during 188 operation days at full power in the HANARO core, and discharged after about 60 at% average and 75 at% peak burn-ups. The maximum linear power of the lead bundle was 98kW/m. Detailed non-destructive and destructive post-irradiation tests were performed. The measured results were analyzed and compared with the existing experimental data and the design criteria for the HANARO fuel. It was confirmed that the HANARO fuel has maintained proper in-pile performances and integrity during the nominal power operation and satisfies all the design requirements related to the irradiation performances. (author)

  3. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  4. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  5. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  6. Spacer for a fuel element

    International Nuclear Information System (INIS)

    Spacers for fuel pins arranged to form congish fuel elements can be shaped as plates with openings in accordance with the fuel pin grid. Such a plate that covers the cross section of a fuel element consists according to the invention of at least two parts that are offset in the fuel element's longitudinal direction and joint hinge-like in at least one grid position. Thus, one has smaller parts that are easier to work on with due accuracy. The invention is designed in particular for breeder reactors and high-conversion reactors. (orig.)

  7. The behaviour of Phenix fuel pin bundle under irradiation

    International Nuclear Information System (INIS)

    An entire Phenix sub-assembly has been mounted and sectioned after irradiation. The examination of cross-sections revealed the effects of mechanical interaction in the bundle (ovalisations and contacts between clads). According to analysis of the sodium channels, cooling of the pin bundle remained uniform. (author)

  8. CANFLEX fuel bundle strength tests during normal and abnormal refuelling procedure

    International Nuclear Information System (INIS)

    As one of verifications of the CANFLEX fuel bundle, the strength tests were performed by the double side-stop test for the simulation of normal fuel loading and the single side-stop test for the simulation of abnormal fuel loading. In both tests the load was applied by controlling the flow to obtain a desired pressure drop across the whole fuel string resulting in a specified hydraulic drag force on the test bundle. The test rig conditions for each test were 120 .deg. C and 11.2 MPa for 15 minutes. The test bundles against the side-stop simulators were measured and inspected carefully after the tests according to the measurement procedures. The inspection results showed the test bundles were intact and met the acceptance criteria

  9. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  10. The effects of bearing-pad height on the critical heat flux of CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    In CANDU-6 fuel channel, the geometrical eccentricity exists between fuel bundle and horizontal pressure tube. Based on the water CHF(critical heat flux) tests of the full-scale CANFLEX(CANDU Flexible) bundle string with the current bearing-pads of 1.4mm height, it was found that the increase of bypassing flow decreased significantly the CHF of fuel bundle with increasing the creep rate of pressure tube. So, the additional improvement of heat transfer performance is anticipated by increasing the hight of bearing-pads(about 0.3 mm) and reducing the eccentricity of fuel bundle. This paper presented the effects of bearing-pad height on the CHF by examining the water CHF test data of CANFLEX fuel strings equipped with 1.7 mm and 1.8 mm high bearing-pads. It also showed the data trends of the boiling-length-averaged CHF with respect to the test system flow parameters and local flow conditions. The high bearing-pad bundle is increased in dryout power by 7 to 10%, compared to the current CANFLEX fuel bundle

  11. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  12. Fuel element for nuclear reactor

    International Nuclear Information System (INIS)

    In order to avoid a can box or an adjacent fuel element sitting on the spacer of a fuel element in the corner during assembly, the top and bottom edges of the outer bars of the spacers are provided with deflector bars, which have projections projecting beyond the outside of the outer bars. (orig.)

  13. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.)

  14. Analysis of fuel handling system for fuel bundle safety during station blackout in 500 MWe PHWR unit of India

    International Nuclear Information System (INIS)

    Situations of Station Blackout (SBO) i.e. postulated concurrent unavailability of Class Ill and Class IV power, could arise for a long period, while on-power refuelling or other fuel handling operations are in progress with the hot irradiated fuel bundles being anywhere in the system from the Reactor Building to the Spent Fuel Storage Bay. The cooling provisions for these fuel bundles are diverse and specific to the various stages of fuel handling operations and are either on Class Ill or on Class II power with particular requirements of instrument air. Therefore, during SBO, due to the limited availability of Class II power and instrument air, it becomes difficult to maintain cooling to these fuel bundles. However, some minimal cooling is essential, to ensure the safety of the bundles. As discussed in the paper, safety of these fuel bundles in the system and/or for those lying in the liner tube region of the reactor end fitting is ensured, during SBO, by resorting to passive means like 'stay-put', 'gravity- fill', 'D20- steaming' etc. for cooling the bundles. The paper also describes various consequences emanating from these cooling schemes. (author). 6 refs., 2 tabs., 8 figs

  15. CANDU fuel performance

    International Nuclear Information System (INIS)

    The paper presents a review of CANDU fuel performance including a 28-element bundle for Pickering reactors, a 37-element bundle for the Bruce and Darlington reactors, and a 37-element bundle for the CANDU-6 reactors. Special emphasis is given to the analysis of fuel defect formation and propagation and definition of fuel element operating thresholds for normal operation and accident conditions. (author)

  16. Overview of methods to increase dryout power in CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, D.C., E-mail: degroeneveld@gmail.com [Chalk River Laboratories, AECL, Chalk River (Canada); University of Ottawa, Department of Mechanical Engineering, Ottawa (Canada); Leung, L.K.H. [Chalk River Laboratories, AECL, Chalk River (Canada); Park, J.H. [Korean Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-06-15

    Highlights: • Small changes in bundle geometry can have noticeable effects on the bundle CHF. • Rod spacing devices can results in increases of over 200% in CHF. • CHF enhancement decays exponentially downstream from spacers. • CHF-enhancing bundle appendages also increase the post-CHF heat transfer. - Abstract: In CANDU reactors some degradation in the CCP (critical channel power, or power corresponding to the first occurrence of CHF in any fuel channel) will occur with time because of ageing effects such as pressure-tube diametral creep, increase in reactor inlet-header temperature, increased hydraulic resistance of feeders. To compensate for the ageing effects, various options for recovering the loss in CCP are described in this paper. They include: (i) increasing the bundle heated perimeter, (ii) optimizing the bundle configuration, (iii) optimizing core flow and flux distribution, (iv) reducing the bundle hydraulic resistance, (v) use of CHF-enhancing bundle appendages, (vi) more precise experimentation, and (vii) redefining CHF. The increase in CHF power has been quantified based on experiments on full-scale bundles and subchannel code predictions. The application of several of these CHF enhancement principles has been used in the development of the 43-rod CANFLEX bundle.

  17. Averaging methods of the gap heat transfer coefficients and the loss form coefficients of nuclear reactor cores loaded with different fuel bundles

    International Nuclear Information System (INIS)

    When performing transient analysis in heterogeneous nuclear reactors loaded with different types of fuel bundles is necessary to model the reactor core by a few representative fuel elements with average properties of a region containing a large number of fuel elements. The properties of these representative fuel bundles are obtained by averaging the thermal-hydraulic properties of the fuel elements contained in each region. In this paper we study the different ways to perform the averaging of the thermal-hydraulic properties that can have an influence on the transient results for licence purposes. Also we study the influence of the different averaging methods on the peak clad temperature (PCT) evolution for a LOCA, and on the critical power ratio (CPR) in the hot channels for a turbine trip transient without bypass credit.

  18. System for supporting a bundled tube fuel injector within a combustor

    Energy Technology Data Exchange (ETDEWEB)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-06-21

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.

  19. CFD study on coolant mixing in VVER-440 fuel rod bundles and fuel assembly heads

    International Nuclear Information System (INIS)

    A CFD model of VVER-440 fuel assembly heads was developed based on the technical documentation of a full-scale test facility built in the Kurchatov Institute, Russia. Steady-state and transient calculations were performed to validate the model with a measurement set. Effects of the spatial resolution, turbulence models, difference schemes and different inlet boundary conditions were investigated. Inlet boundary conditions were determined with both the COBRA subchannel code and a fuel rod bundle CFD model that was built for this special purpose. The results were compared against experimental data. The sensitivity studies showed that a grid of about 8 million cells, high resolution scheme and BSL Reynolds stress model are suitable sets to provide accurate prediction for the signal of the in-core thermocouple. The best prediction was achieved with transient calculation using inlet boundary conditions generated with the CFD fuel rod bundle model. The results indicated that the coolant mixing is intensive but not perfect in the assembly head. Besides, the significant role of the outflow from the central tube was also proven. The transient runs revealed relatively large temperature fluctuations near the in-core thermocouple housing.

  20. Research reactor fuel bundle design review by means of hydrodynamic testing

    International Nuclear Information System (INIS)

    During the design steps of a fuel bundle for a nuclear reactor, some vibration tests are usually necessary to verify the prototype dynamical response characteristics and the structural integrity. To perform these tests, the known hydrodynamic loop facilities are used to evaluate the vibrational response of the bundle under the different flow conditions that may appear in the reactor. This paper describes the tests performed on a 19 plate fuel bundle prototype designed for a low power research reactor. The tests were done in order to know the dynamical characteristics of the plates and also of the whole bundle under different flow rate conditions. The paper includes a description of the test facilities and the results obtained during the dynamical characterization tests and some preliminary comments about the tests under flowing water are also presented. (author)

  1. Post-test examination of the VVER-1000 fuel rod bundle CORA-W2

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.; Schanz, G.; Hagen, S.; Sepold, L.

    1995-08-01

    The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B{sub 4}C absorber rod and the stainless steel grid spacers on the `low-temperature` bundle damage initiation and progression. The B{sub 4}C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occured. (orig./HP)

  2. Fuel element development

    International Nuclear Information System (INIS)

    In capsule irradiation tests the influence was studied which is exerted by high power densities on thin oxide fuel rods. Cladding expansions have been observed which are not attributable to creep but to plastic strains. Power jumps during load cycling resulted in stress to the cladding through fuel pressure due to thermal differential strain. - Changes in geometry of oxide fuel pellets during cycling were investigated theoretically using models. The test group 5b was also studied with a view to plutonium redistribution. A very high plutonium enrichment was found at the central channel, and outer zones nearly free from plutonium soon after the beginning of irradiation, which might be due to the high specific power and central temperature and the high PuO2-content (35%) of the fuel. Two contributions include as subjects the porosity of fuel in the context of structural analyses and creep caused by irradiation. The plutonium content itself does not seem to increase substantially the creep rate. Further results of post-examinations are available from the oxide irradiation tests Mol-7B and DFR-435. The zone of maximum damage of the Mol-7B-rods occurs at the upper end of the fuel column; even here the structure of the rod has essentially remained unchanged. The amount of fuel escaping is not as great as at the damaged points of DFR-435. (orig.)

  3. Total evaluation of in bundle void fraction measurement test of PWR fuel assembly

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation is performing the various proof or verification tests on safety and reliability of nuclear power plants under the sponsorship of the Ministry of International Trade and Industry. As one program of these Japanese national projects, an in bundle void fraction measurement test of a pressurized water reactor (PWR) fuel assembly was started in 1987 and finished at the end of 1994. The experiments were performed using the 5 x 5 square array rod bundle test sections. The rod bundle test section simulates the partial section and full length of a 17 x 17 type Japanese PWR fuel assembly. A distribution of subchannel averaged void fraction in a rod bundle test section was measured by the gamma-ray attenuation method using the stationary multi beam systems. The additional single channel test was performed to obtain the required information for the calibration of the rod bundle test data and the assessment of the void prediction method. Three test rod bundles were prepared to analyze an axial power distribution effect, an unheated rod effect, and a grid spacer effect. And, the obtained data were used for the assessment of the void prediction method relevant to the subchannel averaged void fraction of PWR fuel assemblies. This paper describes the outline of the experiments, the evaluation of the experimental data and the assessment of void prediction method

  4. Validation study of thermal-hydraulic analysis program spiral for fuel pin bundle of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Full text of publication follows: Japan Nuclear Cycle Development Institute (JNC) has been developing a numerical simulation system in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel subassemblies of sodium-cooled fast reactors under various operating conditions such as normal operation, transient condition or deformed geometry condition from the viewpoint of the assessment of fuel pin structure integrity. This paper describes the validation study of SPIRAL that is one component code of the numerical simulation system and contributes to detailed simulations of local flow and temperature fields in a wire-wrapped fuel pin bundle. SPIRAL is a multi-dimensional finite element method code that can treat complicated geometries like a fuel pin bundle. For numerical stabilization, one can choose Streamline Upwind Petrov Galerkin method and Balancing Tensor Diffusivity method. Semi-implicit solution scheme (fractional step method) developed by Ramaswamy is used for time integration. As the pressure equation matrix solver, ICCG or Gaussian elimination is applied. Energy conservation equations of coolant and structure are also solved and therefore temperature distributions of both coolant and fuel pins can be calculated. Several turbulence models, high/low Reynolds number isotropic/anisotropic models, were incorporated to the code. The code was parallelized using MPI for enhancing simulation efficiency. Pre-processor is also available for numerical grid generation for wire-wrapped fuel pin bundles by curvilinear coordinate system. Fundamental validity related to solving mass, momentum and energy conservation equations and applicability of turbulence models were confirmed by simulating several basic problems. As typical examples, two kinds of simulations using high Re number models, backward facing step flow and 4- fuel-pin bundle in rectangular duct, are introduced in this paper. The simulation results indicate that RNG k-ε model shows relatively

  5. Advances in the manufacture of clad tubes and components for PHWR fuel bundle

    International Nuclear Information System (INIS)

    Fuel bundles for Pressurized Heavy Water Reactors (PHWRs) consists of Uranium di-oxide pellets encapsulated into thin wall Zircaloy clad tubes. Other components such as end caps, bearing pads and spacer pads are the integral elements of the fuel bundle. As the fuel assembly is subjected to severe operating conditions of high temperature and pressure in addition to continual irradiation exposure, all the components are manufactured conforming to stringent specifications with respect to chemical composition, mechanical & metallurgical properties and dimensional tolerances. The integrity of each component is ensured by NDE at different stages of manufacture. The manufacturing route for fuel tubes and components comprise of a combination of thermomechanical processing and each process step has marked effect on the final properties. The fuel tubes are manufactured by processing the extruded blanks in four stage cold pilgering with intermediate annealing and final stress relieving operation. The bar material is produced by hot extrusion followed by multi-pass swaging and intermediate annealing. Spacer pads and bearing pads are manufactured by blanking and coining of Zircaloy sheet which is made by a combination of hot and cold rolling operations. Due to the small size and stringent dimensional requirements of these appendages, selection of production route and optimization of process parameters are important. This paper discusses about various measures taken for improving the recoveries and mechanical and corrosion properties of the tube, sheet and bar materials being manufactured at Nuclear Fuel Complex, Hyderabad For the production of clad tubes, modifications at extrusion stage to reduce the wall thickness variation, introduction of ultrasonic testing of extruded blanks, optimization of cold working and heat treatment parameters at various stages of production etc. were done. The finished bar material is subjected to 100% Ultrasonic and eddy current testing to ensure

  6. An analytical assessment of the longitudinal ridging of CANDU type fuel element

    International Nuclear Information System (INIS)

    There are 380 fuel channels in a CANDU-6 reactor, and twelve fuel bundles are loaded into each fuel channel. High-pressure, heavy water coolant passes through the fuel bundle string to remove heat generated from the fuel. Fuel sheath collapses down around the uranium dioxide pellet due to the coolant pressure when the fuel is loaded into the reactor. Longitudinal ridges may form in CANDU fuel element sheaths as a result of sheath collapse onto the pellets. A static analysis, finite-element (FE) model was developed to simulate the longitudinal ridging of the fuel element with use of the structural analysis computer code ABAQUS. Collapse pressures were calculated for the fifty-one cases for which test results of WCL in 1973 and 1975 are available. Calculation results under-predicted the critical collapse pressure but it showed significant relationship against test results

  7. Temperature Distributions in LMR Fuel Pin Bundles as Modeled by COBRA-IV-I

    Science.gov (United States)

    Wright, Steven A.; Stout, Sherry

    2005-02-01

    Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 μm) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly.

  8. Posttest examination of the VVER-1000 fuel rod bundle CORA-W2

    Energy Technology Data Exchange (ETDEWEB)

    Sepold, L. [ed.

    1995-06-01

    The bundle meltdown experiment CORA-W2, representing the behavior of a Russian type VVER-1000 fuel element, with one B{sub 4}C/stainless steel absorber rod was selected by the OECD/CSNI as International Standard Problem (ISP-36). The experimental results of CORA-W2 serve as data base for comparison with analytical predictions of the high-temperature material behavior by various code systems. The first part of the experimental results is described in KfK 5363 (1994), the second part is documented in this report which contains the destructive post-test examination results. The metallographical and analytical (SEM/EDX) post-test examinations were performed in Germany and Russia and are summarized in five individual contributions. The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B{sub 4}C absorber rod and the stainless steel grid spacers on the ``low-temperature`` bundle damage initiation and progression. The B{sub 4}C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occurred. (orig.) [Deutsch] Das Buendel-Abschmelz-Experiment CORA-W2, das ein russisches Brennelement vom Typ WWER-1000 repraesentiert und somit auch mit einem Absorberstab aus Borkarbid/rostfreier Stahl versehen war, wurde als sog. Internationales Standardproblem (ISP-36) der OECD/CSNI ausgewaehlt. Die Versuchsergebnisse des Buendels CORA-W2 dienen als Datenbasis fuer den Vergleich mit Rechnungen mittels verschiedener Rechenprogramme im Hinblick auf das Materialverhalten bei hoher Temperatur. Der erste Teil der experimentellen Ergebnisse liegt als KfK-Bericht 5363 (1994) vor. Den zweiten Teil stellt dieser Bericht dar

  9. Measurement and CFD calculation of spacer loss coefficient for a tight-lattice fuel bundle

    International Nuclear Information System (INIS)

    Highlights: • Experiment and CFD analysis evaluated the pressure drop in a spacer grid. • The measurement and CFD errors for the spacer loss coefficient were estimated. • The spacer loss coefficient for the dual-cooled annular fuel bundle was determined. • The CFD prediction agrees with the measured spacer loss coefficient within 8%. - Abstract: An experiment and computational fluid dynamics (CFD) analysis were performed to evaluate the pressure drop in a spacer grid for a dual-cooled annular fuel (DCAF) bundle. The DCAF bundle for the Korean optimum power reactor (OPR1000) is a 12 × 12 tight-lattice rod array with a pitch-to-diameter ratio of 1.08 owing to a larger outer diameter of the annular fuel rod. An experiment was conducted to measure the pressure drop in spacer grid for the DCAF bundle. The test bundle is a full-size 12 × 12 rod bundle with 11 spacer grid. The test condition covers a Reynolds number range of 2 × 104–2 × 105 by changing the temperature and flow rate of water. A CFD analysis was also performed to predict the pressure drop through a spacer grid using the full-size and partial bundle models. The pressure drop and loss coefficient of a spacer grid were predicted and compared with the experimental results. The CFD predictions of spacer pressure drop and loss coefficient agree with the measured values within 8%. The spacer loss coefficient for the DCAF bundle is estimated to be approximately 1.50 at a nominal operating condition of OPR1000, i.e., Re = 4 × 105

  10. Visual observations of a degraded bundle of irradiated fuel: the Phebus FPT1 test

    International Nuclear Information System (INIS)

    The international Phebus-FP (Fission Product) project is managed by the Institut de Protection et Surete Nucleaire in collaboration with Electricite de France (EDF), the European Commission (EC), the USNRC (USA), COG (Canada), NUPEC and JAERI (Japan), KAERI (South Korea), PSI and HSK (Switzerland). It is designed to measure the source-term and to study the degradation of irradiated UO2 fuel in conditions typical of a severe loss of coolant accident in a pressurised water reactor (PWR). In the first test (FPT0), performed in December '93, a bundle of 20 fresh fuel rods and a central Ag-In-Cd control rod underwent a short 15-day irradiation to generate fission products before testing in the Phebus reactor in Cadarache. The second test (FPT1) was performed in July '96, in the same conditions and geometry, but using irradiated fuel (-23 GWd/tU). In the FPT1 test, the bundle was heated to an estimated 3000 K over a period of 30 minutes in order to induce a substantial liquefaction of the bundle. After the test, the bundle was embedded in epoxy and cut at different levels to investigate the mechanisms of the core degradation. This paper reports the visual observations of the degraded FPT1 bundle, very preliminary interpretations about the scenario of degradation and a comparison between the behaviour of the fuel in the FPT0 and FPT1 tests. (author)

  11. Coupling analysis of deformation and thermal-hydraulics in a FBR fuel pin bundle using BAMBOO and ASFRE-IV Codes

    International Nuclear Information System (INIS)

    The bundle-duct interaction may occur in sodium cooled wire-wrapped FBR fuel subassemblies in high burn-up conditions. JNC has been developing a bundle deformation analysis code BAMBOO (Behavior Analysis code for Mechanical interaction of fuel Bundle under On-power Operation), a thermal hydraulics analysis code ASFRE-IV (Analysis of Sodium Flow in Reactor Elements - ver. IV) and their coupling method as a simulation system for the evaluation on the integrity of deformed FBR fuel pin bundles. In this study, the simulation system was applied to a coupling analysis of deformation and thermal-hydraulics in the fuel pin-bundle under a steady-state condition just after startup for the purpose of the verification of the simulation system. The iterative calculations of deformation and thermal-hydraulics employed in the coupling analysis provided numerically unstable solutions. From the result, it was found that improvement of the coupling algorithm of BAMBOO and ASFRE-IV is necessary to reduce numerical fluctuations and to obtain better convergence by introducing such computational technique as the optimized under-relaxation method. (author)

  12. Apparatus for locating defective nuclear fuel elements

    International Nuclear Information System (INIS)

    An ultrasonic search unit for locating defective fuel elements within a fuel assembly used in a water cooled nuclear reactor is presented. The unit is capable of freely traversing the restricted spaces between the fuel elements

  13. FEED 1.6: modelling of hydrogen diffusion and precipitation in fuel bundle zircaloy components

    International Nuclear Information System (INIS)

    An as-fabricated Zircaloy component in a CANDU® fuel bundle has certain amount of hydrogen. In addition, the Zircaloy component pickups hydrogen during operation, where sheath oxidation occurs on the water side. Hydrogen content in the Zircaloy component will change due to the diffusion under gradients of concentration and temperature. A hydrostatic stress gradient may also have some effect on hydrogen diffusion. When the local concentration of hydrogen exceeds the terminal solid solubility (TSS), hydrides will start to form (i.e., hydride precipitation). Because hydrides have a negative effect on material properties (e.g., lower ductility), the hydrogen content in Zircaloy sheath needs to be limited to ensure that the sheath strength is not affected. The FEED (Finite Element Estimate for Diffusion) code was developed to predict the local hydrogen concentration and formation of hydride. The FEED 1.6 code has the following capabilities: Model transient Hydrogen/Deuterium (H/D) diffusion in Zircaloy components (e.g., fuel sheath, endcap and endcap weld); Model H/D pickup in Zircaloy sheath; Account for the effect of gradients of concentration, temperature and stress; and, Model transient hydride precipitation and re-dissolutions. This paper describes the FEED 1.6 code, including theory, models, and some validation examples. (author)

  14. Thermophysical characteristics of a VVER-1000 fuel element in the fifth power unit of the NOVO Noronezh nuclear power plant

    International Nuclear Information System (INIS)

    The fuel element bundle was operated successfully in the fifth to the seventh fuel loadings (from June 25, 1984 to June 25, 1987) at a thermal reactor power of 3000-3090 MW. During the radiation there were eight emergency shutdowns and roughly 40 power reductions of 50% or more. The operating conditions of specific fuel element bundles, including the linear power distribution over the fuel elements and the energy production over the height of the bundle, were determined from neutron-physics calculations. For the thermophysical calculation, a fuel element was chosen which reached the highest burnout of 49.4 MW · day/kg (the burnout was 45.4-47.8 MW · day/kg in the other fuel elements subjected to post-irradiation inspection)

  15. Compact Fuel Element Environment Test

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  16. Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle

    International Nuclear Information System (INIS)

    International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement

  17. Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Firnhaber, M. [Gesellschaft fuer Anlagen-und Reaktorsicherheit, Koeln (Germany); Yegorova, L. [Nuclear Safety Institute of Russian Research Center, Moscow (Russian Federation); Brockmeier, U. [Ruhr-Univ. of Bochum (Germany)] [and others

    1995-09-01

    International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement.

  18. CARA, new concept of advanced fuel element for HWR

    International Nuclear Information System (INIS)

    All Argentinean NPPs (2 in operation, 1 under construction), use heavy water as coolant and moderator. With very different reactor concepts (pressure Vessel and CANDU type designs), the fuel elements are completely different in its concepts too. Argentina produces both types of fuel elements at a manufacturing fuel element company, called CONUAR. The very different fuel element's designs produce a very complex economical behavior in this company, due to the low production scale. The competitiveness of the Argentinean electric system (Argentina has a market driven electric system) put another push towards to increase the economical competitiveness of the nuclear fuel cycle. At present, Argentina has a very active Slightly Enriched Uranium (SEU) Program for the pressure vessel HWR type, but without strong changes in the fuel concept itself. Then, the Atomic Energy Commission in Argentina (CNEA) has developed a new concept of fuel element, named CARA, trying to achieve very ambitious goals, and substantially improved the competitiveness of the nuclear option. The ambitious targets for CARA fuel element are compatibility (a single fuel element for all Argentinean's HWR) using a single diameter fuel rod, improve the security margins, increase the burnup and do not exceed the CANDU fabrication costs. In this paper, the CARA concept will be presented, in order to explained how to achieve all together these goals. The design attracted the interest of the nuclear power operator utility (NASA), and the fuel manufacturing company (CONUAR). Then a new Project is right now under planning with the cooperation of three parts (CNEA - NASA - CONUAR) in order to complete the whole development program in the shortest time, finishing in the commercial production of CARA fuel bundle. At the end of the this paper, future CARA development program will be described. (author)

  19. Consideration of subchannel area of a 37-element fuel to enhance CHF

    International Nuclear Information System (INIS)

    CANDU-6 reactor has 380 fuel channels of a pressure tube type, which provides an independent flow passage, and each pressure tube contains 12 fuel bundles horizontally. The CHF of a CANDU fuel bundle in a horizontal fuel channel is one of the important parameters determining the thermalhydraulic safety margin as well as the trip set point of the Regional Overpower Protection (ROP) system. Hence, the CHF enhancement of a CANDU fuel bundle has been an issue for a long time and can be affected by the geometric configuration of the fuel elements as well as several appendages such as the end-plates, bearing pads, and spacers attached to the fuel elements. This paper considers the modification of the inner ring radius of a standard 37-element fuel bundle to enhance the CHF, since the CHFs of a standard 37-element fuel bundle preferably occur at the peripheral subchannels of the center rod, owing to the relative small flow area or high flow resistance under high flow conditions or the normal operating conditions of a CANDU reactor. Subchannel analysis techniques using the ASSERT-PV code were applied to investigate the local CHF characteristics according to the inner ring radius variation for the original diameter of the pressure tube. It was found that the modification of the inner ring radius is very effective in enhancing the dryout power of the fuel bundle under the reactor operating conditions through an enthalpy re-distribution of the subchannels and change in the local locations of the first CHF occurrences. (author)

  20. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  1. Prediction of temperature distribution in a fast reactor spent fuel bundle

    International Nuclear Information System (INIS)

    A simple mathematical model is described for predicting temperature distribution in a spent fuel bundle. The model takes into account γ-ray leakage, radiant and conductive heat transports between the various fuel pins arranged in a triangular array and enclosed in a hexagonal shaped tube containing gaseous medium. With the geometry of the fuel bundle the configuration factors between various fuel pins can be calculated. The configuration factors along with the heat generation rates, net γ-ray leakage, surface emissivity, conductivity of the enclosed medium and the temperature of the hexagonal tube can be used to estimate the temperature distribution with the help of the computer code TICOFUSA developed on the basis of this model. (author)

  2. An analytical method for predicting the temperature distribution in an irradiated fuel pin bundle

    International Nuclear Information System (INIS)

    A simple analytical model is described for predicting the temperature distribution in a spent fuel bundle. The model takes into account gamma-ray transport, radiant and conductive heat transports between the various fuel pins arranged in a triangular array and enclosed in a hexagonal shaped tubes containing gaseous medium. With the geometry of the fuel bundle the configuration factors between various fuel pins can be calculated from the relations presented in this report. The configuration factors along with the heat generation rates, net gamma ray leakage, surface emissivity, conductivity of the enclosed medium and the temperature of the hexagonal tube can be used to estimate the temperature distribution with the help of the computer code developed on the basis of this model. (orig.)

  3. Fluid-to-fluid modelling of critical heat flux in 37-element bundles

    International Nuclear Information System (INIS)

    The applicability of fluid-to-fluid modelling for critical heat flux (CHF) in 37-element bundles has been examined. CHF data obtained with 37-element bundle simulators from various Freon test programs at Chalk River Laboratories (CRL) were compared against those obtained from the water-test programs. The comparison was based on a transformation of the Freon parameters (i.e., pressure, mass flux and CHF) into water-equivalent values (no transformation is needed for dryout quality, which represents the non-dimensional value of enthalpy). In addition, this study examined the impact of axial heat-flux distribution and channel orientation on fluid-to-fluid modelling. At high-pressure and high-flow conditions of interest, the water-equivalent values of the Freon-test data closely represent the water-test data of uniformly and non-uniformly heated bundle strings for vertical and horizontal flows. The effects of axial heat-flux distribution and channel orientation on bundle CHF have also been closely simulated with Freon at conditions of interest. (author)

  4. Fuel element database: developer handbook

    International Nuclear Information System (INIS)

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  5. Calculation of power coefficient in CANFLEX-NU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    Changes in power level affect reactivity due to its dependence on fuel and coolant temperatures. The power coefficient of reactivity is related to the fuel temperature coefficient through the change in fuel temperature per percent change in power. In addition, power level changes are followed by changes in coolant temperature and density which contribute to the reactivity effect. In this report, the power coefficient of CANFLEX-NU was calculated and the result would be compared with that of CANDU-6 reactor which is operating. 8 refs., 43 figs., 2 tabs. (Author)

  6. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    International Nuclear Information System (INIS)

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles

  7. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  8. Study on the effect of the CANFLEX-NU fuel element bowing on the critical heat flux

    International Nuclear Information System (INIS)

    The effect of the CANFLEX-NU fuel element bowing on the critical heat flux is reviewed and analyzed, which is requested by KINS as the Government design licensing condition for the use of the fuel bundles in CANDU power reactors. The effect of the gap between two adjacent fuel elements on the critical heat flux and onset-of-dryout power is studied. The reduction of the width of a single inter-rod gap from its nominal size to the minimum manufacture allowance of 1 mm has a negligible effects on the thermal-hydraulic performance of the bundle for the given set of boundary conditions applied to the CANFLEX-43 element bundle in an uncrept channel. As expected, the in-reactor irradiation test results show that there are no evidence of the element bow problems on the bundle performance

  9. Study on the effect of the CANFLEX-NU fuel element bowing on the critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Ho Chun; Cho, Moon Sung; Jeon, Ji Su

    2001-01-01

    The effect of the CANFLEX-NU fuel element bowing on the critical heat flux is reviewed and analyzed, which is requested by KINS as the Government design licensing condition for the use of the fuel bundles in CANDU power reactors. The effect of the gap between two adjacent fuel elements on the critical heat flux and onset-of-dryout power is studied. The reduction of the width of a single inter-rod gap from its nominal size to the minimum manufacture allowance of 1 mm has a negligible effects on the thermal-hydraulic performance of the bundle for the given set of boundary conditions applied to the CANFLEX-43 element bundle in an uncrept channel. As expected, the in-reactor irradiation test results show that there are no evidence of the element bow problems on the bundle performance.

  10. The effect of an outer-element bow on dryout power and post-dryout heat transfer of a 37-element bundle string

    International Nuclear Information System (INIS)

    Dryout and post-dryout tests were performed with a modified 37-element simulated CANDU fuel string, with one outer element of the last bundle gradually bowed toward the flow tube wall. The element had 8% higher heat flux than the remaining outer ring elements and had the narrowest gap between it and the flow-tube wall. The initial dryout occurred on the bowed element for all element-to-wall gap sizes. The dryout power decreased moderately (4% average) as the gap size was reduced to 13.5% of the nominal (unbowed) gap. For smaller than 13.5% gaps, however, the dryout power increased slightly (1.2%) at the low (10.5 kg/s) flow rate and decreased by 5% at the high (16.0 kg/s) flow rate, compared to the nominal gap dryout power. Surface temperatures of the bowed element were recorded for different gap sizes and up to 20% overpower (maximum). The temperature increased by 26% at the maximum overpower as the element was moved from nominal to zero gap position. (author)

  11. Exceptional crud build-up in Loviisa-2 fuel bundles

    International Nuclear Information System (INIS)

    Anomalous primary coolant outlet temperatures at Loviisa 2 unit were first discovered in October, 1994, one month after the start of the 15. cycle. The reason for increased outlet temperatures was soon found out to be decreased coolant flow through part of the fuel assemblies. This phenomenon was most pronounced in six first cycle fuel assemblies with spacer grids made of Zr1%Nb (ZR assemblies). Due to continuously increasing outlet temperature the reactor was shut down at the end of January, 1995. The six ZR assemblies were discharged from the reactor. Towards the end of cycle no. 15 the rate of outlet temperature increase slowed down and essentially stopped in the remaining assemblies, which had spacer grids made of stainless steel (SS assemblies). One of the ZR assemblies was visually inspected using the pool-side inspection equipment at Loviisa 2 unit. This inspection showed that the reason for the decreased coolant flow was deposition of crud in the spacer grids, especially in the lower parts of the assembly. Based on data of coolant outlet temperatures, flow resistance measurements were carried out for eighty SS assemblies during the refuelling outage between cycles no. 15 and no. 16. As a result thirty assemblies, which had the most clogged spacer grids, were discharged from the reactor before their planned end of life. The cycle no. 16 started with an indication of a small leakage in September, 1995. Primary coolant activity kept increasing steadily, indicating more fuel failures, up to values never reached before at Loviisa NPP. The estimated number of leaking rods varied from approximately 10 rods up to ca. 70 rods. Finally, Loviisa 2 unit was decided to be shut down in late October, 1995. Sipping of the core indicated that there were seven leaking fuel assemblies in the reactor. All leaking assemblies had earlier been identified as being slightly clogged due to the deposition of crud in the spacer grids. Altogether thirty-two slightly clogged assemblies

  12. Air-water two-phase flow pressure drop across various components of AHWR fuel bundle

    International Nuclear Information System (INIS)

    Single-phase (water) and two-phase (air-water) experiments were carried out for the measurement of pressure drops across various components of a prototype full scale 54-rod fuel bundle of proposed AHWR (Advanced Heavy Water Reactor). From the measured values of pressure drops, the friction factor for fuel bundle and the loss coefficients for the tie plates and spacers were estimated. The single-phase experimental data were compared with different existing correlations. Correlations have been proposed based on the data generated with the air-water mixture which can be used for prediction of pressure drop across fuel channel (with 54 rod fuel bundle) of AHWR under normal operating conditions with appropriate correction factor for steam-water flow. Also a heuristic approach to predict the Lockhart-Martinelli parameter has been presented. Further, a new correlation for two-phase friction multiplier applicable to 54-rod cluster geometry has been developed based on two-phase experimental pressure drop data. The effect of mixture mass flux on the two-phase friction multiplier has been probed and the assessment of existing friction multiplier correlations has also been carried out with the test data. (author)

  13. Development and performance of fuel elements for sodium-cooled breeder reactors in Germany

    International Nuclear Information System (INIS)

    The first sodium-cooled reactor commissioned in Germany, KNK, serves now as test facility for plutonium bearing oxide fuel elements. The target is to provide reliable fuel for the SNR-300 project (Kalkar Nuclear Power Plant). The long-range target is fuel for burnups above 100,000 MW d/t, which moreover can easily be fabricated and reprocessed. As in the U.K., the line of grid-spaced bundles is favorised, being promising as regards the possibility of replacement of a defected pin and reinsertion of the bundle. (orig.)

  14. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  15. Application of the finite element method in the modelling of coil bundles

    International Nuclear Information System (INIS)

    Three different FEM approaches are presented and evaluated as viable interpretations of an actual coil, each limited for use within specified parameter ranges. One is based on solid elements with correctly defined properties permitting the accurate representation of the global behavior of a coil bundle. The other two are more complex and are based on the combination of various elements each accounting for a different aspect of coil behavior which are best resolved via multi-level substructuring. The choice of the best model for the job rests with the analyst who must first resolve what the goals of the analysis are and given the parameters of the problem, which models can be used. The basic idea behind these models is the application of a systematic modelling technique requiring a close correspondence between the capability of the FE themselves and the true mechanical behavior of that portion of the coil being simulated. In order to have analytical solutions for confirming the bending and torsional capabilities of these coil bundle FEM, their behavior is studied via several basic examples. Laminated beam behavior which categorizes the structural nature of many conventional coil bundles is also examined in some depth. Also discussed is a generalized computer program that was developed to accept the description of any conventional coil section and determine an effective stiffness for it to be used in FEM. The various methodologies described in this paper should be applicable to any bundled coil design. Although only conventional coils are discussed, with the proper modifications the concepts and techniques presented can be applied to other configurations as well, such as superconductors. (orig./HP)

  16. Analytical and CFD investigation of ex-core cooling of the nuclear fuel rod bundle in a water pool

    International Nuclear Information System (INIS)

    The efficiency of ex-core cooling of nuclear fuel assemblies under decay heat generation is influenced by many conditions, among them being coolant flow rate, position of fuel assemblies in a water pool, and position of coolant inlets and outlets. A combination of unacceptable thermal-hydraulic conditions occurred at the Nuclear Power Plant PAKS in Hungary in April 2003, during the process of nuclear fuel assembly chemical cleaning in a specially designed tank. The cooling of the nuclear fuel rod bundles in the tank was not efficient under low coolant flow rates through the cleaning tank, and after several hours the boiling of cooling water occurred with subsequent dry-out of nuclear fuel rod bundles. The thermal-hydraulic conditions in the cleaning tank that led to the unexpected event are analysed both analytically and with a CFD approach for idealized conditions of one nuclear fuel rod bundle with the bottom by-pass opening. The analytical analysis is based on a pressure balance of low Reynolds number upward water coolant flow through the bundle, downward water flow in the pool around the bundle, flow across the by-pass opening and outlet flow from the cleaning vessel. The transient CFD simulations are performed in order to demonstrate multidimensional effects of the event. The water density dependence on the temperature is taken into account in both analytical and CFD investigation, as the dominant effect that influences the buoyancy forces between the water flow streams inside and outside the vertically positioned bundle in the water pool. The influence of the bundle bottom by-pass area on the water pool thermal-hydraulic conditions and on the efficiency of the nuclear fuel rods cooling is analysed. Both analytical and CFD results show that the continuous cooling of the fuel rods can not be achieved for higher values of the bundle bottom by-pass areas. The averaged coolant temperature in the water pool outside the bundle becomes higher than the average

  17. Fuel elements of thermionic converters

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.L. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Environmental Systems Assessment Dept.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N. [RI SIA Lutch, Podolsk (Russian Federation)

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  18. Thermal-hydraulic stability tests for newly designed BWR rod bundle (step-III fuel type B)

    International Nuclear Information System (INIS)

    The Step-III Fuel Type B is a new fuel design for high burn-up operation in BWRs in Japan. The fuel design uses a 9x9 - 9 rod bundle to accommodate the high fuel duty of high burn-up operation and a square water-channel to provide enhanced neutron moderation. The objective of this study is to confirm the thermal-hydraulic stability performance of the new fuel design by tests which simulate the parallel channel configuration of the BWR core. The stability testing was performed at the NFI test loop. The test bundle geometry used for the stability test is a 3x3 heater rod bundle which has about 1/8 of the cross section area of the full size 9x9 - 9 rod bundle. Full size heater rods were used to simulate the fuel rods. For parallel channel simulation, a bypass channel with a 6x6 - 8 heater rod bundle was connected in parallel with the 3x3 rod bundle test channel. The stability test results showed typical flow oscillation features which have been described as density wave oscillations. The stationary limit cycle oscillation extended flow amplitudes to several tens of a percent of the nominal value, during which periodic dry-out and re-wetting were observed. The test results were used for verification of a stability analysis code, which demonstrated that the stability performance of the new fuel design has been conservatively predicted. (author)

  19. Computer code TOBUNRAD for PWR fuel bundle heat-up calculations

    International Nuclear Information System (INIS)

    The computer code TOBUNRAD developed is for analysis of ''fuel-bundle'' heat-up phenomena in a loss-of-coolant accident of PWR. The fuel bundle consists of fuel pins in square lattice; its behavior is different from that of individual pins during heat-up. The code is based on the existing TOODEE2 code which analyzes heat-up phenomena of single fuel pins, so that the basic models of heat conduction and transfer and coolant flow are the same as the TOODEE2's. In addition to the TOODEE2 features, unheated rods are modeled and radiation heat loss is considered between fuel pins, a fuel pin and other heat sinks. The TOBUNRAD code is developed by a new FORTRAN technique which makes it possible to interrupt a flow of program controls wherever desired, thereby attaching several subprograms to the main code. Users' manual for TOBUNRAD is presented: The basic program-structure by interruption method, physical and computational model in each sub-code, usage of the code and sample problems. (author)

  20. Utilization of fluorescent uranium x-rays as verification tool for irradiated CANDU fuel bundles

    International Nuclear Information System (INIS)

    The use of fluorescent uranium x-rays for in-situ safeguards verification of irradiated CANDU fuel bundles is described. Room temperature CdZnTe (supergrade) semiconductor detector of low sensitivity coupled to charge sensitive pre-amplifier is used. This detector is characterized by moderate resolving power in the low energy region around 100 keV. It as such allows the separation of uranium x-rays in the close proximity of tungsten x-rays emanating from the shielding/collimator assembly. On account of strong attenuation, the detection of low energy x-rays requires the shielding to be of an optimized thickness. Further, in view of high intensity of this radiation the use of small volume detector is warranted. In dealing with the subject, this paper therefore presents an assessment, not only of the detector but also the shield-collimator assembly for the required verification of short cooling time fuel bundles. Results of the associated optimization measurements with respect to collimator aperture and detector sensitivity are consequently included. The future course of work from the viewpoint of development of a suitable x-ray spectrometer specifically for the purpose of verifying extremely short (< 1 month old) cooling time fuel bundles is moreover identified. (author)

  1. Resistance factors, two phase multipliers and void fractions for best estimate flow calculations in Dodewaard fuel bundles

    International Nuclear Information System (INIS)

    Values are given for resistance factors, two phase multipliers and core and chimney void fractions in the fuel and chimney to be used in best estimate calculations of the flow in Dodewaard fuel bundles. The resistance factors are based on single phase experimental data for a mockup of the Dodewaard fuel bundle. The two phase multipliers are determined from two phase measurements of mockups of other fuel bundles for nuclear reactors. This is also true for the in bundle void fractions. The void fractions in the chimney have been validated by measured void fractions in large diameter pipes. The recommended changes to the existing input for calculations are somewhat larger than the uncertainties in the measurements. (author). 37 refs.; 48 figs.; 4 tabs

  2. Nuclear fuel element and container

    International Nuclear Information System (INIS)

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  3. Severe fuel damage experiments performed in the QUENCH facility with 21-rod bundles of LWR-type

    International Nuclear Information System (INIS)

    The objective of the QUENCH experimental program at the Karlsruhe Research Center is to investigate core degradation and the hydrogen source term that results from quenching/flooding an uncovered core, to examine the physical/chemical behavior of overheated fuel elements under different flooding conditions, and to create a data base for model development and improvement of severe fuel damage (SFD) code systems. The large-scale 21-rod bundle experiments conducted in the QUENCH out-of-pile facility are supported by an extensive separate-effects test program, by modeling activities as well as application and improvement of SFD code systems. International cooperations exist with institutions mainly within the European Union but e.g. also with the Russian Academy of Science (IBRAE, Moscow) and the CSARP program of the USNRC. So far, eleven experiments have been performed, two of them with B4C absorber material. Experimental parameters were: the temperature at initiation of reflood, the degree of peroxidation, the quench medium, i.e. water or steam, and its injection rate, the influence of a B4C absorber rod, the effect of steam-starved conditions before quench, the influence of air oxidation before quench, and boil-off behavior of a water-filled bundle with subsequent quenching. The paper gives an overview of the QUENCH program with its organizational structure, describes the test facility and the test matrix with selected experimental results. (author)

  4. Use of radiography to monitor structural movement in GCFR-CFTL fuel rod bundles

    International Nuclear Information System (INIS)

    The Core Flow Test Loop (CFTL) is designed to simulate accident conditions of the Gas-Cooled Fast Reactor (GCFR). The reactor fuel rods are simulated by electric heater rods. An important consideration in data acquisition for loss of coolant studies is structural movement in the test bundle, that is, axial expansion and laterial movement (bowing) of fuel rod simulators and ducts. Radiography is superior to proximity sensors and extensometers for monitoring structural movement because radiography is external to the CFTL vessel and nonintrusive. Both fluoroscopy and film radiography were investigated. Both techniques were determined feasible, and both are recommended for GCFR-CFTL applications

  5. BN-600 fuel elements and fuel assemblies operating experience

    International Nuclear Information System (INIS)

    Consideration is given to the data on fuel burnup of standard fuel assemblies of the BN-600 reactor first core charge and that for modified core; data on operation ability of fuel assemblies of the first charge type are given. Data on main results of primary post-irradiation examination of fuel assemblies and fuel elements and maximal values of fuel burnup, achieved in particular fuel assemblies of BN-600 reactor are presented. 4 figs.; 1 tab

  6. Out-of-pile bundle experiments on severe fuel damage (CORA-program): Objectives, test matrix and facility description

    International Nuclear Information System (INIS)

    As part of the Severe Fuel Damage Program by the German Nuclear Safety Project, out-of-pile experiments are being conducted at the Kernforschungszentrum Karlsruhe to investigate the damage behaviour of PWR fuel rod bundles under Severe Fuel Damage conditions (CORA-Program). This report describes the objectives, the test matrix and the CORA-facility. (orig.)

  7. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    International Nuclear Information System (INIS)

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project The Nuclear Fuel Material Development of Research Reactor. And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,

  8. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project ''The Nuclear Fuel Material Development of Research Reactor''. And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,.

  9. Development of TIG welding technique for endcap welding of PHWR MOX fuel elements

    International Nuclear Information System (INIS)

    Full text: Fabrication of PHWR fuel elements involves manufacture of fuel pellets, loading them in the zircaloy-4 clad tube and endcap welding of filled zircaloy-4 clad tube by resistance welding technique. This welding technique gives higher production rate but the welds are not amenable to non destructive techniques like radiography. The quality of the weld is assured by the destructive metallographic technique which is statistical in nature. DAE has recently decided to go ahead with plutonium recycling in PHWR in order to increase the burnup to around 10,000 MWD/Te to reduce the fuel cycle cost and reduce the requirement of uranium. The bundle design remains the same as it is being used in 235 MWe PHWR's in India. In the proposed nineteen element, fuel bundle the internal seven elements will contain MOX fuel pellets and external twelve elements will contain standard natural uranium dioxide pellets. MOX fuel elements will be fabricated at Advanced Fuel Fabrication Facility, BARC, Tarapur. It is proposed to make the fuel element by TIG welding technique which has the advantage of using radiography for the evaluation of the end plug weld. Further there will be no machining required over the weld bead which is a must for a resistance weld. However, the use of TIG technique requires change in endcap design and use of these endcaps leads to marginal (<1 %) decrease in stack length to maintain the same fuel element length as used in natural uranium dioxide PHWR, fuel bundle. This paper describes the development work carried out at AFFF on TIG welding of endplugs for PHWR fuel elements with the new plug design, optimisation of welding parameters and the results of the welding trials

  10. Study of thermal hydraulic behavior of supercritical water flowing through fuel rod bundles

    International Nuclear Information System (INIS)

    Investigations on thermal-hydraulic behavior in Supercritical Water Reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community because of its potential to obtain high thermal efficiency and compact design. Present work deals with CFD analysis to study the flow and heat transfer behavior of supercritical water in 4 metre long 7-pin fuel bundle using commercial CFD package ANSYS CFX for single phase steady state conditions. Considering the symmetric conditions, 1/12th part of the fuel rod bundle is taken as a domain of analysis. RNG K-epsilon model with scalable wall functions is used for modeling the turbulence behavior. Constant heat flux boundary condition is applied at the fuel rod surface. IAPWS equations of state are used to compute thermo-physical properties of supercritical water. Sharp variations in its thermo-physical properties (specific heat, density) are observed near the pseudo-critical temperature causing sharp change in heat transfer coefficient. The pseudo-critical point initially appears in the gaps among heated fuel rods, and then spreads radially outward reaching the adiabatic wall as the flow goes downstream. The enthalpy gain in the centre of the channel is much higher than that in the wall region. Non-uniformity in the circumferential distribution of surface temperature and heat transfer coefficient is observed which is in agreement with published literature. Heat transfer coefficient is high on the rod surface near the tight region and decreases as the distance between rod surfaces increases. (author)

  11. The effect of radial power profile of DUPIC bundle on CHF

    International Nuclear Information System (INIS)

    The axial and ring power profiles of DUPIC bundle are much different from those of reference 37-element fuel bundle since a DUPIC fuel bundle is re-fabricated using spent PWR fuel and 2-bundle shift refuelling scheme is proposed to CANDU-6 reactor. In case that the ring power profile of a fuel bundle is altered, the flow and enthalpy distribution of subchannels and the radial position of CHF occurrence will be changed. Similarly, the axial power profile of a fuel channel affects CHF and axial position of CHF occurrence as well as axial enthalpy, quality and pressure distribution. The ring power profile of the DUPIC bundle as increasing burnup is altered and flattened compared to 37-element bundle and each fuel bundle in a fuel channel has a different ring power profile from the other bundles at different axial position in the same fuel channel. Therefore, how to consider the burnup or ring power effect on CHF is very important to DUPIC thermalhydraulic analysis. At present study, thermalhydraulic analysis of the DUPIC bundle was performed in consideration of ring power profile effect on CHF. The subchannel enthalpy, mass flux and CHF distribution for 0 burnup to discharged burnup (18,000 MWD/THM) of DUPIC bundle were evaluated using ASSERT subchannel code. The results were compared to those of 37-element bundle and the compatability of DUPIC bundle with an existing CANDU-6 was presented in a CHF point of view

  12. Fuel elements of thermionic converters

    International Nuclear Information System (INIS)

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element's cladding is also the thermionic convertor's emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years

  13. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  14. Thermal-hydraulic stability tests for newly designed BWR rod bundle (step-III fuel type A)

    International Nuclear Information System (INIS)

    Thermal-hydraulic stability tests have been performed on electrically heated bundles to simulate the newly designed Boiling Water Reactor (BWR) fuels in a parallel channel test loop. The objective of the current experimental program is to investigate how the newly designed bundle could improve the thermal-hydraulic stability. Measurements of the thermal-hydraulic instability thresholds in two vertical rod bundles have been conducted in steam-water two-phase flow conditions at the TOSHIBA test loop. Fluid conditions were BWR operating conditions of 7 MPa system pressure, 1.0-2.0x106 kg/m2/h inlet mass flux and 28-108 kJ/kg inlet subcooling. The parallel channel test loop consists of a main bundle of 3x3 indirectly heated rods of 1/9 symmetry of 9x9 full lattice and a bypass bundle of 8x8. These are both simulated BWR rod bundles in respect of rod diameter, heated length, rod configuration, fuel rod spacer, core inlet hydraulic resistance and upper tie plate. There are three types of the 3x3 test bundles with different configurations of a part length rod of two-thirds the length of the other rods and an axial power shape. The design innovation of the part length rod for a 9x9 lattice development, though addition of more fuel rods increases bundle pressure drop, reduces pressure drop in the two-phase portion of the bundle, and enhances the thermal hydraulic stability. Through the experiments, the parameter dependency on the channel stability threshold is obtained for inlet subcooling, inlet mass flux, inlet flow resistance, axial power shape and part length rod. The main conclusion is that the stability threshold is about 10% greater with the part length rod than without the part length rod. The new BWR bundle consisting of the part length rod has been verified in respect of thermal hydraulic stability performance. (author)

  15. Conceptual design of experimental LFR fuel element for testing in TRIGA reactor, ACPR zone

    International Nuclear Information System (INIS)

    In the pulsed area of the TRIGA reactor (ACPR zone), the irradiation tests called ''rapid insertions of reactivity on different types of nuclear fuel elements'' are usually realized. During these tests, in the fuel element high powers for a relatively short period of time (about few milliseconds) are generated. The generated heat in fuel pellets raise their central temperature to values over 100 deg C. The conceptual design of an experimental fuel element proposed to be developed and presented in this paper must fulfill a couple of requirements, as follows: to ensure full compatibility with irradiation device sample holder (compatibility is achieved through reduced length of the fuel stack pellets - this way assures a flow flattening on the entire length of the fuel element); to be compatible with the project of irradiated fuel bundle in Lead cooled Fast Reactors (LFR). (authors)

  16. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  17. Micro fuel elements and fuel elements studies with the use of pre-irradiation

    International Nuclear Information System (INIS)

    The ampoule and loop canal designs for irradiation of HTGR fuel elements and methods of investigation of their radiation stability are described. The results are presented on the measurement of fission product yield from fuel elements during irradiation. Irradiation main parameters are in agreement with HTGR operating conditions. The results of metallographic investigations of the micro fuel elements irradiated are given. The processes taking place in fuel elements and microfuel elements during irradiation are discussed

  18. Gamma spectrometry of TRIGA fuel elements

    International Nuclear Information System (INIS)

    The burnupt of 19 TRIGA fuel elements was determined by gamma spectrometry using a special fuel element holder developed and constructed at the Atom Institute, Vienna. The investigated fuel element is kept in a horizontal position about 4 m below the reactor pool water surface. A collimator tube extends to the reactor platform where an intrinsic Ge-detector is located. With this system each fuel element was investigated at eight equidistant points along its active zone and the Cs 137 activity was evaluated. (orig.)

  19. Description and validation of ANTEO, an optimised PC code the thermalhydraulic analysis of fuel bundles

    International Nuclear Information System (INIS)

    The paper deals with the description of a Personal Computer oriented subchannel code, devoted to the steady state thermal hydraulic analysis of nuclear reactor fuel bundles. The development of such a code was made possible by two facts: firstly, the increase, in the computing power of the desk machines; secondly, the fact that several years of experience into operate subchannels codes have shown how to simplify many of the physical models without a sensible loss of accuracy. For sake of validation, the developed code was compared with a traditional subchannel code, the COBRA one. The results of the comparison show a very good agreement between the two codes. (author)

  20. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang-Kee; Hwang, Dae-Hyun [Korea Atomic Energy Research Institute (KAERI), 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Jeong, Jae Jun, E-mail: jjjeong@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-05-15

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment.

  1. Handling and inspection of nuclear fuel elements

    International Nuclear Information System (INIS)

    The invention provides improvements in the handling and inspection of nuclear fuel elements. A mobile bridge is mounted astraddle over a water tank, and from said bridge is suspended and immersed insulating plate capable of vertically receiving a fuel element and of taking a horizontal position for inspecting the latter. This can be applied to nuclear power stations

  2. Nuclear reactor fuel elements charging tool

    International Nuclear Information System (INIS)

    To assist the loading of nuclear reactor fuel elements in a reactor core, positioning blocks with a pyramidal upper face charged to guide the fuel element leg are placed on the lower core plate. A carrier equipped with means of controlled displacement permits movement of the blocks over the lower core plate

  3. Fuel development program of the nuclear fuel element centre

    International Nuclear Information System (INIS)

    Fuel technology development program pf the nuclear fuel element centre is still devised into two main pillars, namely the research reactors fuel technology and the power reactor fuel technology taking into account the strategic influencing environment such as better access to global market of fuel cycle services, the state of the art and the general trend of the fuel technology in the world. Embarking on the twenty first century the fuel development program has to be directed toward strengthening measure to acquire and self-reliance in the field of fuel technology in support to the national energy program as well as to the utilisation of research reactor. A more strengthened acquisition of fuel cycle technology, in general, and particularly of fuel technology would improve the bargaining power when negotiation the commercial fuel technology transfer in the future

  4. Assessment of RELAP/MOD3 Against CCFL tests with full-scale fuel bundle structures

    International Nuclear Information System (INIS)

    The purpose of this work is to investigate with the RELAP5/MOD3 (v5m5) code the influence of the structure of the core upper tie plate in a pressurized water reactor on penetration of emergency core cooling system water downwards into the core in the event of a hypothetical loss-of-coolant accident. Stationary air/water countercurrent flow experiments at atmospheric pressure for fuel bundle top area structures of the pressurized water reactors VVER-1000 and VVER-440 were simulated with the RELAP5/MOD3 (v5m5) code both without and with a countercurrent flow limitation (CCFL) correlation. The effects of flow channel size and presence of the unheated fuel rod bundle on countercurrent flow behaviour were observed. Applying the CCFL model has a minor effect on the CCFL curve in the case of our stationary calculations. A comparison with the countercurrent flow limitation in a free-flow channel is also made. The calculational results for the flow channel of a small cross-sectional area show a good agreement with the experimental results. The form of the CCFL correlation has a minor effect on the CCFL curve. (orig.) (3 refs., 47 figs., 14 tabs.)

  5. An assessment of entrainment correlations for the dryout prediction in BWR fuel bundles

    International Nuclear Information System (INIS)

    Thermal-hydraulic analysis in BWR fuel bundles usually includes calculations of detailed annular flow characteristics up to the point of dryout. State-of-the-art methods numerically resolve the governing balance equations for the relevant fields (i.e. droplet, liquid film and steam) for the system and geometry of interest (e.g. a BWR fuel bundle). However, constitutive relations are needed to close the system of equations and are fundamental to an accurate solution. One of the most important constitutive relations to consider is the droplet entrainment rate from the annular liquid film, which has an integrated effect upon the film flowrate axial distribution from the onset of annular flow (thick film) up to the dryout location (very thin film). However, currently available entrainment correlations are often developed for a relatively limit range of experimental conditions, which may not fully cover the range of applications. In this paper, we present a collection of publicly available droplet entrainment rate measurements (more than 1000 points) that have been stored into an electronic format and is used to assess the performance of several published entrainment correlations. Even though large scatter was observed for all 6 tested correlations, the model developed by Okawa et al. was shown to yield the best overall performance. (author)

  6. Spent fuel bundle counter sequence error manual - KANUPP (125 MW) NGS

    International Nuclear Information System (INIS)

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message may contain adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  7. Spent fuel bundle counter sequence error manual - RAPPS (200 MW) NGS

    International Nuclear Information System (INIS)

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  8. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP)

  9. Thermo- and fluid-dynamic studies on fuel rod and absorber bundles

    International Nuclear Information System (INIS)

    The operating safety of a nuclear reactor requires a more reliable strength analysis of the core elements subject to high stresses (fuel, breeding and absorber elements). This is among other things in a decisive way dependent on: - the maximum operating temperatures of the core element components, - the temperature gradients, - the rate of temperature variations. The calculation of these quantities as good as possible is the subject of the thermodynamic and fluid dynamic design of core elements and core. (orig.)

  10. Combustor having mixing tube bundle with baffle arrangement for directing fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John; McConnaughhay, Johnie Franklin

    2016-08-23

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.

  11. In-pile post-DNB behavior of a nine-rod PWR-type fuel bundle

    International Nuclear Information System (INIS)

    The results of an in-pile power-cooling-mismatch (PCM) test designed to investigate the behavior of a nine-rod, PWR-type fuel bundle under intermittent and sustained periods of high temperature film boiling operation are presented. Primary emphasis is placed on the DNB and post-DNB events including rod-to-rod interactions, return to nucleate boiling (RNB), and fuel rod failure. A comparison of the DNB behavior of the individual bundle rods with single-rod data obtained from previous PCM tests is also made

  12. Soreq Nuclear Reactor Fuel Element Flow Distribution

    International Nuclear Information System (INIS)

    Flow of cold water through the Soreq Nuclear Reactor fuel element was simulated numerically. The main objective of the present study was to obtain the flow distribution among the rectangular channels of the element. The results of the simulations were compared to the overall pressure drop on the element measured in Soreq Nuclear Reactor. The numerical model chosen has succeeded in predicting the pressure drop on the fuel element of up to 5% from the measured values. Flow through the IPEN IEA-R1 MTR fuel element was also simulated as a part of a model validation procedure. The numerical results were compared to the measurements available in the literature [1]. It was found that the water pool above the fuel element has a significant influence on the flow distribution among the channels of the element. The flow distribution reported in [1] was closely predicted numerically when the water pool was included into the simulated geometry. It can be concluded that flow distribution in the Soreq Nuclear Reactor fuel element is flatter than that in the IPEN IEA-R1 MTR fuel element

  13. Nondestructive examination of TRIGA reactor fuel elements

    International Nuclear Information System (INIS)

    Neutron radiography has proved to be a very useful method for nondestructive examination of used and nonused reactor elements. The method can be used for determination of homogenity and burn-up of fuel and burnable poisons, for detection of fuel and full clad damage and taking into account the capability to perform accurate geometrical measurements it is also possible to assess mechanical deformations of fuel elements. Active fuel elements of TRIGA reactor have been examined for deformations and fuel clad damage. In the course of these investigations the following methods were tested and compared: - transfer neutronradiographic techniques using In and Dy converter screens, - direct neutrongraphic method using solid state track detectors, - X-ray radiography employing lead shielding masks and highly selective photographic material. Considerable information on the burn-up of reactor fuel elements can be obtained from measuring the distribution of radioactive isotopes in the fuel element by gamma ray spectroscopy. For a used TRIGA fuel element the axial distribution of the isotope Cs-137 has been measured and the burn-up determined. We compare the experimental results with a crude estimate of burn-up

  14. Modelling the oxidation of defected fuel elements

    International Nuclear Information System (INIS)

    Interim dry storage of used fuel is an economical alternative to storage in water pools. The fuel must remain intact during the dry-storage period, otherwise future handling of the fuel will be expensive. Oxidation of defected fuel elements can lead to fuel disintegration. Thus it is important to be able to predict the extent of oxidation of defected fuel elements in a dry-storage facility. In this report, a model is developed for predicting the extent or rate of oxidation of defected fuel elements stored at temperatures up to 170 C. The model employs equivalent porous medium representation of the fuel and described the oxygen concentration in the fuel element using a reaction-diffusion equation. The one- and two-dimensional reaction-diffusion equations are solved on the assumption that the oxygen-fuel reaction is either zeroth or first order in the oxygen concentration. Dimensional analysis of the model equations shows that the solution depends explicitly on a single parameter p. The value of p can be calculated using data from the literature, or it can be estimated from the results of the CEX-1 experiments being carried out at Whiteshell Laboratories. The value of p, estimated from the CEX-1 results, is more than two orders of magnitude larger than the value of p calculated from literature data. Although some reasons for this large difference are suggested, further work is needed to resolve this discrepancy. (author). 16 refs., 2 tabs., 11 figs

  15. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  16. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  17. Technology Development of Integrity Evaluation of Fuel Bundles and Fuel Channel in a Two-phase Flow CANDU-6 Fuel Channel

    International Nuclear Information System (INIS)

    Two phase flow induces dynamic fluid force that causes structural vibration. Enormous vibration may result in failures of components due to the fretting wear and the fatigue, which increases the maintenance cost of the plant. From this consideration, KINS required that fuel bundles and fuel channels be evaluated to assure their integrities in high flow of more than 24 kg/s and two phase condition. Because out-reactor test loop for the simulation of two phase high flow is not available, the Wolsong CANDU-6 reactor which is in operation was utilized for the test. In-bay inspection system for the under water inspection and measurement of irradiated fuel was developed. 36 fresh fuels were measured prior to the irradiation and loaded in the fuel channel. Besides, improved method for early detection and evaluation of defect fuel was suggested

  18. MRT fuel element inspection at Dounreay

    International Nuclear Information System (INIS)

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd's Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay

  19. MRT fuel element inspection at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  20. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  1. The clearance potential index and hazard factors of CANDU fuel bundle and a comparison of experimental-calculated inventories

    International Nuclear Information System (INIS)

    In the field of radioactive waste management, the radiotoxicity can be characterized by two different approaches: 1) IAEA, 2004 RS-G-1.7 clearance concept and 2) US, 10CFR20 radioactivity concentration guides in terms of ingestion / inhalation hazard expressed in m3 of water/air. A comparison between the two existing safety concepts was made in the paper. The modeled case was a CANDU natural uranium, 37 elements fuel bundle with a reference burnup of 685 GJ/kgU (7928.24 MWd/tU). The radiotoxicity of the light nuclide inventories, actinide, and fission-products was calculated in the paper. The calculation was made using the ORIGEN-S from ORIGEN4.4a in conjunction with the activation-burnup library and an updated decay data library with clearance levels data in ORIGEN format produced by WIMS-AECL/SCALENEA-1 code system. Both the radioactivity concentration expressed in Curie and Becquerel, and the clearance index and ingestion / inhalation hazard were calculated for the radionuclides contained in 1 kg of irradiated fuel element at shutdown and for 1, 50, 1500 years cooling time. This study required a complex activity that consisted of various phases such us: the acquisition, setting up, validation and application of procedures, codes and libraries. For the validation phase of the study, the objective was to compare the measured inventories of selected actinide and fission products radionuclides in an element from a Pickering CANDU reactor with inventories predicted using a recent version of the ORIGEN-ARP from SCALE 5 coupled with the time dependent cross sections library, CANDU 28.lib, produced by the sequence SAS2H of SCALE 4.4a. In this way, the procedures, codes and libraries for the characterization of radioactive material in terms of radioactive inventories, clearance, and biological hazard factors are being qualified and validated, in support for the safety management of the radioactive wastes

  2. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  3. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  4. Fundamental aspects of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO2, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO2, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies

  5. Numerical visualization of boiling two-phase flow behavior in fuel bundles at simulated earthquake condition

    International Nuclear Information System (INIS)

    In order to evaluate an influence of earthquake acceleration to the boiling two-phase flow behavior in nuclear reactors, numerical simulations were performed under the simulated earthquake condition. The two-phase flow analysis code, ACE-3D, was modified as the influence of the earth quake acceleration can calculate. To check out if the modification is adequate, a series of calculations were carried out and the following summaries were derived; 1) the void fraction in the fuel bundle receives the influence of the earthquake, 2) the liquid-phase in the two-phase flow moves in the same direction as the direction of oscillation due to the inputted earthquake acceleration, and 3) due to the density difference in comparison with the liquid phase, the gas phase of that moves in the direction opposite to the oscillating direction. This study enabled visualized evaluation of the boiling two-phase flow behavior in the nuclear reactors at the earthquake condition. (author)

  6. Work on the development of the structure of fuel elements

    International Nuclear Information System (INIS)

    This paper is meant to give a roundup of development work concerning fuel element structure as support and cladding of fuel rods. The fuel element structure is a link between reactor vessel and the power-producing fuel rods, i.e. both the reactor arrangement and fuel rods influence the design of the fuel element structure, whereas the fuel element structure also determine marginal conditions for plant and fuel rods. (orig./RW)

  7. Methodology of study of the boiling crisis in a nuclear fuel rod bundle

    International Nuclear Information System (INIS)

    The boiling crisis is one of the phenomena limiting the available power from a nuclear power plant. It has been widely studied for decades, and numerous data, models, correlations or tables are now available in the literature. If we now try to obtain a general view of previous work in this field, we may note that there are several ways of tackling the subject. The mechanistic models try to modelize the two-phase flow topology and the interaction between different sublayers, and must be validated by comparison with basic experiments, such as DEBORA, where we try to get some detailed informations on the two-phase flow pattern in a pure and simple geometry. This allows us to obtain a better knowledge of the so-called 'intrinsic effect'. Up to now, these models are not yet acceptable for a nuclear use. As the geometry of the rod bundles and grids has a tremendous importance for the actual Critical Heat Flux (CHF), it is compulsory to have more precise results for a given fuel rod bundle in a restricted range of parameter: this leads to the empirical approach, using empirical CHF predictors (tables, correlations, splines, ...). One of the key points of such a method is the obtention of the local thermohydraulic values, that is to say the evaluation of the so-called 'mixing effect'. This is done by a subchannel analysis code or equivalent, which can be qualified on two kinds of experiments: overall flow measurements in a subchannel, such as HYDROMEL in single-phase flow or GRAZIELLA in two-phase flow, or detailed measurements inside a subchannel, such as AGATE. Nevertheless, the final qualification of a specific nuclear fuel, i.e. the synthesis of these mechanistic and empirical approaches, intrinsic and mixing effects, ..., must be achieved on a global test such as OMEGA. This is the strategy used in France by CEA and his partners FRAMATOME and EdF. (author)

  8. Apparatus and method for assembling fuel elements

    International Nuclear Information System (INIS)

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  9. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 20C/s at 11000C increased to approximately 60C/s. The maximum temperature reached was 22500C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.)

  10. Fuel cladding tubes and fuel elements

    International Nuclear Information System (INIS)

    Purpose: To enable non-destructive measurement for the thickness of zirconium barriers. Constitution: Regions capable of non-destructive inspection are provided at the boundary between a fuel cladding tube made of zirconium alloy and the zirconium barrier lined to the inner circumference surface of the tube. As the regions being capable of distinguishing by ultrasonic wave reflection, solid materials, for example, non-metal materials different from that for the tube and the barrier are placed or gaps are provided at the boundary between the zirconium alloy cladding tube and the zirconium barrier. Since ultrasonic waves are reflected at each of the boundaries by the presence of these regions, thickness of the zirconium barrier can be measured in a non-destructive manner from either the inner or the outer surface of the tube. (Yoshino, Y.)

  11. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  12. Benchmark Specification for HTGR Fuel Element Depletion

    International Nuclear Information System (INIS)

    There are currently several ongoing high-temperature gas-cooled reactor (HTGR) development projects underway throughout the world with the US DOE Next Generation Nuclear Plant (NGNP) representing a significant and growing activity in the United States. HTGR designs utilise graphite-moderated fuel forms and helium gas as a coolant. There are two main forms of HTGR fuels: pebbles are used in the pebble-bed reactor (PBR), while cylindrical rods (or compacts) are used in the modular high temperature gas-cooled reactor (MHTGR). In PBRs, fuel elements are ∼6-cm-diameter spheres; in MHTGRs, the fuel elements are graphite rods that are inserted into graphite hexagonal blocks. In both systems, fuel elements (spheres and rods) are comprised of tri-structural-isotropic (TRISO) fuel particles. The TRISO particles are either dispersed in with the matrix of a graphite pebble for the pebble bed design or molded into compacts/rods that are then inserted into the hexagonal graphite blocks. In general, fuel grains have a density of a few hundred grains per cm3. The HTGR concept is a significant departure from LWR designs. As such, existing reactor analysis methods and data will be confronted by significant changes in the physics of neutron slowing down, absorption and scattering. Furthermore, the use of localised fuel grains within a larger fuel element result in two levels of heterogeneity that will challenge many existing lattice physics methods. Hence, there is a need for advanced methods for treatment of both levels of heterogeneity effects. In doubly-heterogeneous (DH) systems, heterogeneous fuel particles in a moderator matrix form the fuel region of the fuel element (pebble or rod) and thus constitute the first level of heterogeneity. Fuel elements themselves are also heterogeneous with fuel and moderator or reflector regions, forming the second level of heterogeneity. The fuel elements may also form regular or irregular lattices. Continuous energy (CE) methods are able to

  13. Spring packed particle bed fuel element

    International Nuclear Information System (INIS)

    This patent describes a gas cooled particle bed nuclear fuel element. It comprises: a porous inner frit; a porous outer frit attached to the inner frit by an end cap t a first end and radially guided by a shoulder at a second end, forming an annulus between the frits; a fuel particle bed in the annulus; a first compressive device at each end of the annulus; and a second compressive device positioned in the annulus within the fuel particle bed

  14. HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    Reprocessing of high-temperature gas-cooled reactor fuel requires development of a fuel element size reduction system. This report describes pilot plant testing of crushing equipment designed for this purpose. The test program, the test results, the compatibility of the components, and the requirements for hot reprocessing are discussed

  15. Safety assessment for Dragon fuel element production

    International Nuclear Information System (INIS)

    This report shall be the Safety Assessment covering the manufacture of the First Charge of Fuel and Fuel Elements for the Dragon Reactor Experiment. It is issued in two parts, of which Part I is descriptive and Part II gives the Hazards Analysis, the Operating Limitations, the Standing Orders and the Emergency Drill. (author)

  16. HTGR fuel element size reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.B.; Cramer, G.T.

    1978-06-01

    Reprocessing of high-temperature gas-cooled reactor fuel requires development of a fuel element size reduction system. This report describes pilot plant testing of crushing equipment designed for this purpose. The test program, the test results, the compatibility of the components, and the requirements for hot reprocessing are discussed.

  17. Radical power profile effect of DUPIC bundle on critical heat flux

    International Nuclear Information System (INIS)

    The axial and ring power profiles of DUPIC bundle are much different from those of reference 37-element fuel bundle since a DUPIC fuel bundle is -re-fabricated under proliferation resistance using spent PWR fuel and 2-bundle shift refuelling scheme of DUPIC bundle is proposed to CANDU-6 reactor. In case that the ring power porfile of a fuel bundle is altered, the flow and enthalpy distribution of subchannels and the radial position of CHF occurrence will be changed. Similarly, the axial power profile of a fuel channel affects CHF, axial position of CHF occurrence, axial enthalpy, quality and pressure distribution. The ring power profile of the DUPIC bundle as increasing burnup is much altered and flattened at high burnup, compared to 37-element bundle. It caused that one fuel bundle has a different ring power profile from the other fuel bundles at the different axial positions even in the same fuel channel. Therefore, how to consider burnup or ring power effect on CHF is very important to DUPIC thermalhydraulic analysis. At present study, thermalhydraulic analysis of a DUPIC bundles was performed in order to evaluate the ring power profile effect on CHF. The subchannel enthalpy, mass flux and CHF distribution from 0 burnup to discharged burnup (18,000 MWd/tHM) of DUPIC bundle were evaluated using ASSERT-PV subchannel code. The results of DUPIC bundles were compared to those of 37-elemental bundle and the comparability of DUPIC bundle with an existing CANDU-6 was presented in a CHF point of view

  18. Grids for nuclear fuel elements

    International Nuclear Information System (INIS)

    This invention relates to grids for nuclear fuel assemblies with the object of providing an improved grid, tending to have greater strength and tending to offer better location of the fuel pins. It comprises sets of generally parallel strips arranged to intersect to define a structure of cellular form, at least some of the intersections including a strip which is keyed to another strip at more than one point. One type of strip may be dimpled along its length and another type of strip may have slots for keying with the dimples. (Auth.)

  19. Neutronic calculations regarding the new LEU 6 x 6 fuel bundle for 14 MW TRIGA - SSR, in order to increase the reactor power up to 21 MW

    Energy Technology Data Exchange (ETDEWEB)

    Iorgulis, C.; Ciocanescu, M.; Preda, M.; Mladin, M. [Institute of Nuclear Research, Pitesti (Romania)

    1998-07-01

    In order to meet the increasing demands of terminal flux for the experimental devices which will be loaded with CANDU natural uranium pins (or clusters), is necessary to rise the reactor power up to 21 MW. In this respect we consider in our evaluations a new 6x6 TRIGA fuel bundle geometry (the actual fuel bundle contains 5x5 pins). This paper will contain a comparative analysis regarding: flux and power distribution across the 29 fuel bundles standard core, and managements patters, in order to maximize the discharge fuel burnup and core lifetime. (author)

  20. Hydraulic modelling of the CARA Fuel element

    International Nuclear Information System (INIS)

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x104 and 1,5x105) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author)

  1. Process and device for testing vertical fuel rods of water-cooled nuclear reactors, which are collected into a fuel rod bundle

    International Nuclear Information System (INIS)

    To avoid high point loads on the frame and storage pond, a holding device for the fuel element is fitted in two unoccupied frame positions of a frame. A third frame position for accommodating a fuel element to be tested is kept free between the two unoccupied frame positions. After interlocking the fuel element magnetically with the holding device, the fuel element is lifted through the latter in the vertical direction, so that a sensor can drive between the fuel ords. The individual frame position is therefore subjected to a smaller load, as the whole device and the fuel element have a lower weight than two fuel elements. (orig./HP)

  2. Critical power analysis with mechanistic models for nuclear fuel bundles, (1). Models and verifications for boiling water reactor application

    International Nuclear Information System (INIS)

    The critical power analysis code for BWR fuel bundles, 'CAPE-BWR', was developed. The objective of the development is to predict dryout phenomena of liquid film on fuel rod surfaces without tuning any parameters even for fuel bundle design improvements. The major features of the code are modular structure with mechanistic models and parallel computation. The calculation methods were divided into three steps: subchannel, liquid film flow and spacer effect analyses. The code was validated by the rod bundle test analyses. The overall comparison of calculated critical power with 166 measured data points showed-0.3% average difference with the standard deviation of 6.3%. The spatial domain decomposition method was applied for parallel computation of the spacer effect analysis. The parallelization efficiency was about 80%. The calculated dryout location agreed well with the measured one at the full-scale 8 x 8 bundle test. The code could trace the tendencies of the critical power depending on power distribution, spacer geometry and fluid conditions within a practical range of difference. From the calculation, difference of the critical power due to the spacer geometry was clarified to be caused by the difference of droplet deposition characteristics onto the liquid film. (author)

  3. TRIGA - LEU cluster with 36 fuel elements

    International Nuclear Information System (INIS)

    Designing the TRIGA - LEU fuel cluster is part of the mechanical design of TRIGA reactor core. The latter is supported by a square frame (11 x 12 132 meshes) accommodating the 35 fuel clusters. The TRIGA fuel cluster is designed to incorporate 36 fuel elements with 3/8 inch diameter allowing the pins to be arranged into a 6 x 6 matrix. The final mechanical design of reactor zone resulted into a cluster of squared cross section with 87.5 mm side and 88.9 mm separation between the centers of the clusters. This cluster was designed by preserving the dimensions and configuration of fuel clusters with 25 elements. By the positioning of the pins inside the cluster one obtains: - a fuel element protection by reducing the failure risks; - delimitation of fixed channel of the cooling flow for each cluster; - a convenient means of manipulation; - a correct water flow for cooling the pins in a fixed channel by preserving the surface of cooling channels from the 25 fuel element cluster. The cluster has the following principal components: - casing; - bottom plug or adapter; - upper plug for maneuvering; - spacer for fuel elements. The cluster casing is made of aluminium with square cross section of 87.5 mm side and is provided at the lower part with an aluminium adapter allowing its insertion in the reactor core frame. This piece is designed to support the ends of the 36 fuel elements in a blocked position. The fuel elements are subject to asymmetric temperature distribution flux conditions, hence an asymmetric temperature distribution results concomitantly with a symmetrical (about 0.8 mm) swelling of the Incoloy 800 can. Also bending of the fuel element occurs which will be limited by the intermediate spacer. At the casing upper part an aluminium upper plug or handle is mounted allowing cluster maneuvering by means of a special tool. The cluster is provided with lateral holes in its upper part ensuring the necessary cooling water flow in case the upper part of the cluster

  4. Spacer for fuel rods in nuclear fuel elements

    International Nuclear Information System (INIS)

    Spacers for fuel rods in nuclear reactor fuel elements are described, especially for use aboard ships. Spacers are used in a grid formed by web plates orthogonally intersecting and assembled together in a tooth-comb fashion forming a plurality of channels. The web plates are joined together and each of the web plates includes apertures through which resilient and separator members are joined. The resilient and separator members are joined. The resilient and separator members are in adjacent channels and with other similar members in the same channel, contact a fuel rod in the channel. The contact pressure between the members and fuel rod is radially directed

  5. An analysis of the fuel temperature history and microstructure of an irradiated PHWR fuel element by computer modelling and post-irradiation examination

    International Nuclear Information System (INIS)

    Post-irradiation metallography and beta-gamma autoradiography performed on the outer fuel element of a PHWR fuel bundle irradiated to a burnup of 3698 MWD/MTU at linear heat ratings ranging from 204 W/cm to 418 W/cm revealed no detectable grain growth or fission product redistribution in the fuel. Detailed analysis using a computer model PROFESS predicted that the maximum fuel centre temperature was 1508 K assuming 96.5 dense fuel, and that the equiaxial grain growth which had occurred was not discernible from the range of variation in the initial grain size. 5 refs., 7 figs., 2 tabs

  6. Experimental study of water flow in nuclear fuel elements; Estudo experimental do escoamento de agua em elementos combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Lorena Escriche, E-mail: ler@cdtn.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos, E-mail: hcr@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: jabf@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured.

  7. Thermal analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    Full text: This work deals with the effect of non-uniform heat generation, non-uniform heat transfer conditions and variable thermophysical properties on the temperature and heat flux distribution in a rod type nuclear fuel element. The behaviour of maximum temperature in the fuel element under these conditions would be examined. Depending on complexity of different special cases, closed form analytical, approximate analytical (such as Poisson's integral, Fourier series and ∫kdT methods) and numerical methods have been employed. It is found that uniform heat generation only within the fuel pellet with constant thermophysical properties yields conservative estimation of fuel center-line temperature. But the temperature distribution predicted under other (more realistic) condition are duly useful for different thermodynamic and structural analyses

  8. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  9. Improved fuel element for fast breeder reactor

    International Nuclear Information System (INIS)

    The invention, in which the United States Department of Energy has participated as co-inventor, relates to breeder reactor fuel elements, and specifically to such elements incorporating 'getters', hereafter designated as fission product traps. The main object of the invention is the construction of a fast breeder reactor fuel pin, free from local stresses induced in the cladding by reactions with cesium. According to the invention, the fast breeder fuel element includes a cladding tube, sealed at both ends by a plug, and containing a fissile stack and a fertile stack, characterized by the interposition of a cesium trap between the fissile and fertile stacks. The trap is effective at reactor operating temperatures in retaining and separating the cesium generated in the fissile material and preventing cesium reaction with the fertile stack. Depending on the construction method adopted, the trap may consists of a low density titanium oxide or niobium oxide pellet

  10. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  11. Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data

    Directory of Open Access Journals (Sweden)

    Paola Costamagna

    2015-11-01

    Full Text Available This work focuses on a steady-state model developed for an integrated planar solid oxide fuel cell (IP-SOFC bundle. In this geometry, several single IP-SOFCs are deposited on a tube and electrically connected in series through interconnections. Then, several tubes are coupled to one another to form a full-sized bundle. A previously-developed and validated electrochemical model is the basis for the development of the tube model, taking into account in detail the presence of active cells, interconnections and dead areas. Mass and energy balance equations are written for the IP-SOFC tube, in the classical form adopted for chemical reactors. Based on the single tube model, a bundle model is developed. Model validation is presented based on single tube current-voltage (I-V experimental data obtained in a wide range of experimental conditions, i.e., at different temperatures and for different H2/CO/CO2/CH4/H2O/N2 mixtures as the fuel feedstock. The error of the simulation results versus I-V experimental data is less than 1% in most cases, and it grows to a value of 8% only in one case, which is discussed in detail. Finally, we report model predictions of the current density distribution and temperature distribution in a bundle, the latter being a key aspect in view of the mechanical integrity of the IP-SOFC structure.

  12. Thermal-hydraulic analysis of flow blockage in a supercritical water-cooled fuel bundle with sub-channel code

    International Nuclear Information System (INIS)

    Highlights: • COBTA-SC code shows good suitability for the blockage analysis of SCWR fuel bundle. • Several thermal-hydraulic models are incorporated and evaluated for the flow blockage of SCWR-FQT bundle. • The axial/circumferential heat conduction of fuel and heat transfer correlation are identified as the important models. • The peak cladding temperature can be reduced effectively by the safety measures of SCWR-FQT. - Abstract: Sub-channel code is nowadays the most applied method for safety analysis and thermal-hydraulic simulation of fuel assembly. It plays an indispensable role to predict the detail thermal-hydraulic behavior of the supercritical water-cooled reactor (SCWR) fuel assembly because of the strong non-uniformity within the fuel bundle. Since the coolant shows a strong variation of physical thermal property near the pseudo critical line, the local blockage in an assembly of a SCWR is of importance to safety analysis. Due to the low specific heat of supercritical water with high temperature, the blockage and the subsequent flow reduction at the downstream of the blockage will yield particular high cladding temperature. To analyze the local thermal-hydraulic parameters in the supercritical water reactor-fuel qualification test (SCWR-FQT) fuel bundle with a flow blockage caused by detachment of the wire wrap, the sub-channel code COBRA-SC is unitized. The code is validated by some blockage experiments, and it reveals a good feasibility and accuracy for the SCWR and blockage flow analysis. Some new models, e.g. the axial and circumferential heat conduction model, turbulent mixing models, pressure friction models and heat transfer correlations, are incorporated in COBRA-SC code. And their influence on the cladding temperature and mass flow distribution are evaluated and discussed. Based on the results, the appropriate models for description of the flow blockage phenomenon in SCWR assembly is identified and recommended. A transient analysis of the

  13. Upgraded HFIR Fuel Element Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Sease, John D [ORNL

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  14. Fuel elements and safety engineering goals

    International Nuclear Information System (INIS)

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO2 emissions. (orig./DG)

  15. Fuel element handling equipment for nuclear reactor

    International Nuclear Information System (INIS)

    The present device allows the handling of the fuel elements of a PWR type reactor when they are put in the cooling pool and when they are placed in the lead casks. The handling device includes a vertical arm, which comprises a telescopic assembly. The lower part of the telescopic assembly can slide axially, along the upper part between a retired position and a deployment position, in which the grab is at the level of the head of a fuel element in the pool or in the transport casks respectively. The grab can only be opened when it is at one of the extreme positions of the telescopic

  16. Nuclear fuel element with a bond coating

    International Nuclear Information System (INIS)

    The possibility of undesired interactions between the pellets (of UO2 or a mixture of UO2 + PuO2) and the cladding which can cause stress crack corrosion, are to be excluded in particular in the proposed fuel element. The container enclosing the fuel consists according to the invention of a zirconium alloy having a zirconium oxide diffusion barrier on the side facing the fuel and a metal coating on top of this. Cu is best suited, but Ni, Fe or their alloys are named. The treatment of the surfaces to simplify the coating of the individual layers is described. (UWI) 891 HP/UWI 892 CKA

  17. Spherical coated particle fuel for fuel elements of HTGR

    International Nuclear Information System (INIS)

    The main results of the investigations on the development of spherical particles fuel for fuel elements of HTGR are described. Typical characteristics of UO2 spherical particles (size, shape, density, microstructure etc.) and PyC and SiC protective layers (thickness, density, fission product release etc.) are presented. Sol-gel technique and slip casting are used for spheroidization; deposition of protective layers is carried out in the fluidized bed apparatus

  18. Thermal hydraulic test apparatus to develop advanced BWR fuel bundles with spectral shift rods (SSR)

    International Nuclear Information System (INIS)

    An advanced water rod (WR) called the spectral shift rod (SSR), which replaces a conventional WR in a BWR fuel bundle, enhances the BWR's merit of uranium saving through the spectral shift operation. The SSR consists of an inlet hole, a wide ascending path, a narrow descending path and an outlet hole. The inlet hole locates below a lower tie plate (LTP) and the outlet hole is set above it. In the SSR, water boils by neutron and gamma-ray heating and water level is formed in the ascending path. This SSR water level can be controlled by core flow rate, which amplifies core void fraction change, resulting in the amplified spectral shift effect. Steady state and transient tests were conducted to evaluate SSR thermal-hydraulic characteristics under BWR operation condition. The several types of SSR configuration were tested, which covers SSR design in both next generation and conventional BWRs. In this paper, the test apparatus overview and measurement systems especially two phase water level measures in the SSR are presented. (author)

  19. Improvement of the computing speed of the FBR fuel pin bundle deformation analysis code 'BAMBOO'

    International Nuclear Information System (INIS)

    JNC has developed a coupled analysis system of a fuel pin bundle deformation analysis code 'BAMBOO' and a thermal hydraulics analysis code ASFRE-IV' for the purpose of evaluating the integrity of a subassembly under the BDI condition. This coupled analysis took much computation time because it needs convergent calculations to obtain numerically stationary solutions for thermal and mechanical behaviors. We improved the computation time of the BAMBOO code analysis to make the coupled analysis practicable. 'BAMBOO' is a FEM code and as such its matrix calculations consume large memory area to temporarily stores intermediate results in the solution of simultaneous linear equations. The code used the Hard Disk Drive (HDD) for the virtual memory area to save Random Access Memory (RAM) of the computer. However, the use of the HDD increased the computation time because Input/Output (I/O) processing with the HDD took much time in data accesses. We improved the code in order that it could conduct I/O processing only with the RAM in matrix calculations and run with in high-performance computers. This improvement considerably increased the CPU occupation rate during the simulation and reduced the total simulation time of the BAMBOO code to about one-seventh of that before the improvement. (author)

  20. Development of a FBR fuel bundle-duct interaction analysis code-BAMBOO. Analysis model and verification by Phenix high burn-up fuel subassemblies

    International Nuclear Information System (INIS)

    The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)

  1. Ultrasonic systems for high-accuracy thickness measurement of fuel bundle bearing pads and shield plug crimps

    International Nuclear Information System (INIS)

    The performance of two ultrasonic systems, remotely operated in high radiation environment, are presented. The first system is used to measure the bearing pad height of radioactive fuel bundles located in the irradiated fuel bays, at Darlington NGS. The system was designed and commissioned to achieve an accuracy of ± 20 μm. The repeatability of results is within ± 10 μm uniformity band. The measurements are independent of testing speed, water temperature, bundle temperature, pencil geometry. Possibilities and limitations of the UT system are also presented and some improved alternatives are proposed. The second system was developed for measuring the crimp height of shield plugs (special iron casting) at Bruce B - Mark Ill development. The accuracy of measurements is ± 50 μm, with a repeatability of ± 25 μm. The results are independent of shield plug thickness variation and ovality, crimp off-set and heavy-water temperature. (author)

  2. Testing of fuel elements and fuel element management at Kahl experimental nuclear power plant (VAK)

    International Nuclear Information System (INIS)

    The report is a survey of the different combustion elements used in the nuclear test reactor VAK; it pays special attention to their constructional characteristics and irradiation behaviour. For the first time, the feedback of plutonium as far as a one-hundred-percent MOX reactor core was demonstrated, while gadolinium was tested as a combustible neutron absorber in fuel. Components for advanced reactors, the superheated steam reactor and the project for steam cooled fast breeders were successfully tested in a special experimental loop. Moreover, the in-core fuel management with the various strategies for improving fuel utilization is described and the disposal of the burned fuel elements examined, fuel elements for which a closed fuel cycle corresponding to one for recycling uranium and plutonium was available as early as the end of the sixties. (orig./HP)

  3. Fuel elements for pulsed TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA fuel was developed around the concept of inherent safety. A core composition was sought that had a large prompt negative temperature coefficient of reactivity such that if all the available excess reactivity were suddenly inserted into the core, the resulting fuel temperature would automatically cause the power excursion to terminate before any core damage resulted. Experiments have demonstrated that zirconium hydride possesses a basic neutron-spectrum-hardening mechanism to produce the desired characteristic. Additional advantages include the facts that ZrH has a good heat capacity, that it results in relatively small core sizes and high flux values due to the high hydrogen content, that it has excellent fission-product retentivity and high chemical inertness in water at temperatures up to 1000C, and that it can be used effectively in a rugged fuel element size. Tens of thousands of routine pulses to the range of 500 to 8000C peak fuel temperatures have been performed with TRIGA fuel, and a core was pulse-heated to peak fuel temperatures in excess of 11000C for hundreds of pulses before a few elements exceeded the conservative tolerances on dimensional change

  4. Advanced sipping facilities for fuel elements

    International Nuclear Information System (INIS)

    The sipping facilities for BWR type plants and PWR type plants of the Russian type WWER-440 are equipped with a bell instead of caps, which is used above the opened reactor, moved by the fuel handling machine, and covers up to eight fuel elements in the core during inspection. In all sipping facilities, the complete inspection sequence is controlled by a desk switchboard near the fuel element storage pool or the reactor well. Siemens' sipping facilities are used in all Siemens-built nuclear power plants and in many others by different manufacturers. Part of them has been in operation already for more than 20 years with a high degree of reliability. Inspection safety is more than 99.5%. (orig./DG)

  5. The 24 CANFLEX-NU bundle demonstration irradiation at Wolsong-1 generating station-bundle manufacture and QA, fuel handling aspects, flasking and shipping and pie for the irradiated fuel, and follow-up documentation

    International Nuclear Information System (INIS)

    Korea Ministry of Science and Technology(MOST) has pushed and given a financial support to a KEPRI/KAERI Joint Industrialization Program of CANFLEX-NU Fuel as one of Korea's National Nuclear Mid- and Long Term R and D Program. The Industrialization Program will be conducted for 3 years from 2000 November to efficiently utilize the CANFLEX fuel technology developed by KAERI and AECL jointly, where the KAERI's works have been conducted under the Korea's national program of the mid- and long-term nuclear R and D programs since 1992. This document is a report to guideline the following activities on the safety assessment for the 24 CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel bundle demonstration irradiation at Wolsong-1 Generating Station: 'bundle manufacture and QA', 'Fuel handling aspects such as loading fuel, de-fuelling and segregation, and visual in-bay examinations', 'Flasking and shipping', 'Post-irradiation examination', and 'Follow-up documentation to be produced'

  6. Catalogue of fuel elements - 1. addendum October 1958

    International Nuclear Information System (INIS)

    This document contains sheets presenting various characteristics of nuclear fuel elements which are distinguished with respect to their shape: cylinder bar, plate, tube. Each sheet comprises an indication of the atomic pile in which the fuel element is used, dimensions, cartridge data, data related to cooling, to combustion rate, and to fuel handling. A drawing of the fuel element is also given

  7. Research and Test Reactor Fuel Elements (RTRFE)

    International Nuclear Information System (INIS)

    BWX Technologies Inc. (BWXT) has experienced several production improvements over the past year. The homogeneity yields in 4.8 gU/cc U3Si2 plates have increased over last year's already high yields. Through teamwork and innovative manufacturing techniques, maintaining high quality surface finishes on plates and elements is becoming easier and less expensive. Currently, BWXT is designing a fabrication development plan to reach a fuel loading of 9 gU/cc within 2 - 4 years. This development will involve a step approach requested by ANL to produce plates using U-8Mo at a loading of 6 gU/cc first and qualify the fuel at those levels. In achieving the goal of a very high-density fuel loading of 9 gU/cc, BWXT is considering employing several new, state of the art, ultrasonic testing techniques for fuel core evaluation. (author)

  8. Experimental investigations for determination of heat-transfer coefficients and temperature fields in simulated fuel assemblies of BREST reactor with fuel elements spaced by transverse grids

    International Nuclear Information System (INIS)

    The consideration is given to heat transfer and temperature fields in fuel pin bundles with transverse spacer grids (s/d =1.33) equally spaced along energy deposition length. Experimental data are obtained on two simulated 37-rod core assemblies: one assembly is with uniform geometry along the cross-section and in the other there is nonheated rod simulating supporting pipe in fuel assembly of reactor with heavy coolant. Eutectic Na-K alloy is used as coolant. Nusselt numbers and temperature nonuniformity along the perimeter of measurement fuel element simulator obtained in these assemblies are compared as well as available data for finned (wire to wire) fuel rods

  9. OECD/NRC PSBT Benchmark: Investigating the CATHARE2 Capability to Predict Void Fraction in PWR Fuel Bundle

    Directory of Open Access Journals (Sweden)

    A. Del Nevo

    2012-01-01

    Full Text Available Accurate prediction of steam volume fraction and of the boiling crisis (either DNB or dryout occurrence is a key safety-relevant issue. Decades of experience have been built up both in experimental investigation and code development and qualification; however, there is still a large margin to improve and refine the modelling approaches. The qualification of the traditional methods (system codes can be further enhanced by validation against high-quality experimental data (e.g., including measurement of local parameters. One of these databases, related to the void fraction measurements, is the pressurized water reactor subchannel and bundle tests (PSBT conducted by the Nuclear Power Engineering Corporation (NUPEC in Japan. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The activity presented in the paper is connected with the improvement of current approaches by comparing system code predictions with measured data on void production in PWR-type fuel bundles. It is aimed at contributing to the validation of the numerical models of CATHARE 2 code, particularly for the prediction of void fraction distribution both at subchannel and bundle scale, for different test bundle configurations and thermal-hydraulic conditions, both in steady-state and transient conditions.

  10. Development of computational technology on heat transfer and fluid flow in a nuclear fuel bundle of advanced reactor

    International Nuclear Information System (INIS)

    The assessment of the RANS(Reynolds-Averaged Navier-Stokes) based turbulence model was conducted to establish the optimal CFD system for turbulent flow and heat transfer in reactor during the first year of the project. The RANS models used in this project are the two-equation models based on the eddy viscosity assumption and the Second-Moment Closure(SMC) models. Since the nuclear fuel assembly loaded in the nuclear reactor is a rod bundle which is square or triangular array, the predictions using the various turbulence models were compared for turbulent flow in bare square and/or triangular rod bundle and the rod bundle with the flow mixing vane. The study for the second year of the project examined the CFD model and the applicability of the CFD code for the turbulent two-phase flow. The numerical predictions of lateral distributions of void fraction, phasic velocities and turbulent kinetic energy were compared against the experimental results for upward and downward bubbly flow in a vertical tube. The boiling flows in vertical tube and rod bundle were also simulated to verify the CFD results

  11. IVO/AIR-WATER-CCFL, Air/water countercurrent flow limitation experiments with full-scale fuel bundle structures

    International Nuclear Information System (INIS)

    1 - Description of test facility: The test facility consists of a vertical flow channel with different internals. The test section was principally made of transparent acrylic material to allow visual observations. One fuel bundle top area structure of the Soviet-type pressurized water reactors VVER-1000 and VVER-440 in full scale was the principal test section. In order to get experimental data on the effects of different parameters on the CCFL behaviour, various configurations of the principal test sections were studied. Plate 1 corresponds to the perforated upper tie plate in full scale of the reactor VVER-1000 and plate 12 to the upper tie plate in full scale of the reactor VVER-440. 2 - Description of test: The procedure of the model tests consisted of establishing the air inlet flow rate and then increasing the water flow rate so that the given liquid head above the perforated plate, or above the fuel rod bundle when the flow channel provided only with the bundle was reached. After the stationary conditions maintained for a prolonged period, the injected water and air flows, and the average height of the mixture level above the perforated plate were registered. All reported air and water flow rates are average values at each test point. The distance of the water inlet from the perforated plate was 2000 mm, and the water level in the water collection chamber was kept constant. Small-size plates were tested. Also the effect of the unheated fuel rod bundle and the size of the free flow channel on the CCFL behaviour were studied

  12. Laser assisted decontamination of nuclear fuel elements

    International Nuclear Information System (INIS)

    Laser assisted removal of loosely bound fuel particulates from the clad surface following the process of pellet loading has decided advantages over conventional methods. It is a dry and noncontact process that generates very little secondary waste and can occur inside a glove box without any manual interference minimizing the possibility of exposure to personnel. The rapid rise of the substrate/ particulate temperature owing to the absorption of energy from the incident laser pulse results in a variety of processes that may lead to the expulsion of the particulates. As a precursor to the cleaning of the fuel elements, initial experiments were carried out on contamination simulated on commonly used clad surfaces to gain a first hand experience on the various laser parameters for which as efficient cleaning can be obtained without altering the properties of the clad surface. The cleaning of a dummy fuel element was subsequently achieved in the laboratory by integrating the laser with a work station that imparted simultaneous rotational and linear motion to the fuel element. (author)

  13. Automatic inspection for remotely manufactured fuel elements

    International Nuclear Information System (INIS)

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results

  14. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  15. Information on the evolution of severe LWR fuel element damage obtained in the CORA program

    International Nuclear Information System (INIS)

    In the CORA program a series of out-of-pile experiments on LWR severe accidental situations is being performed, in which test bundles of LWR typical components and arrangements (PWR, BWR) are exposed to temperature transients up to about 2400deg C under flowing steam. The individual features of the facility, the test conduct, and the evaluation will be presented. In the frame of the international cooperation in severe fuel damage (SFD) programs the CORA tests are contributing confirmatory and complementary informations to the results from the limited number of in-pile tests. The identification of basic phenomena of the fuel element destruction, observed as a function of temperature, is supported by separate-effects test results. Most important mechanisms are the steam oxidation of the Zircaloy cladding, which determines the temperature escalation, the chemical interaction between UO2 fuel and cladding, which dominates fuel liquefaction, relocation and resulting blockage formation, as well as chemical interactions with Inconel spacer grids and absorber units ((Ag, In, Cd) alloy or B4C), which are leading to extensive low-temperature melt formation around 1200deg C. Interrelations between those basic phenomena, resulting for example in cladding deformation ('flowering') and the dramatic hydrogen formation in response to the fast cooling of a hot bundle by cold water ('quenching') are determining the evolution paths of fuel element destruction, which are to be identified. (orig.)

  16. Two-phase flow regime observations in a vertical hexagonal flow channel with and without a finned fuel bundle

    International Nuclear Information System (INIS)

    Previous flow regime studies have been for horizontal, vertical, and inclined pipe flow. As such, only a few studies have been performed on bundle geometries. The present paper examines the flow regimes for a vertical hexagonal flow channel with and without a finned fuel bundle. This type of a 36 finned rod hexagonal fuel bundle in parallel hexagonal flow channels is used in a MAPLE (Multi- purpose Applied Physics Lattice Experimental) type nuclear reactor. An experiment apparatus was designed consisting of the flow channel, inlet plenum and an air-water separator. The inlet plenum is used to provide a uniform mixture of air and water before entering the hexagonal flow channel. A turbine flow meter is used to determine the water flow rate. The turbine flow meter is calibrated for a low flow range and limits the measurable flow to 50 l/min. Flow pattern observation is determined by a SONY video camera, Real-Time Neutron Radiography, pressure transducer and capacitance transducer. The Sony video camera provides visual observation through a Lucite flow channel. The Real-Time Neutron Radiography system allows for flow visualization through an Aluminum flow channel. The pressure drop is correlated by the Validyne pressure transducer and the capacitance transducer provides the void fraction relationship

  17. Stuck fuel element experience at the Oregon State TRIGA reactor

    International Nuclear Information System (INIS)

    A stuck fuel element was found in June 1975 during the annual fuel element measuring assignment. When an attempt was made to remove the fuel element from position D-6, it was found the element would start to bind after being withdrawn about 10'', and it would not pass through the upper grid plate. A plan was devised to extract the stuck fuel element without having to remove the upper grid plate. An inhouse inquiry is in process to determine the reasons for the fuel element deformation. When the element cools sufficiently, we plan to obtain neutron radiographs that may help determine the answer. (author)

  18. Nuclear criticality assessment of LEU and HEU fuel element storage

    International Nuclear Information System (INIS)

    Criticality aspects of storing LEU (20%) and HEU (93%) fuel elements have been evaluated as a function of 235U loading, element geometry, and fuel type. Silicide, oxide, and aluminide fuel types have been evaluated ranging in 235U loading from 180 to 620 g per element and from 16 to 23 plates per element. Storage geometry considerations have been evaluated for fuel element separations ranging from closely packed formations to spacings of several centimeters between elements. Data are presented in a form in which interpolations may be made to estimate the eigenvalue of any fuel element storage configuration that is within the range of the data. (author)

  19. Out-of-pile experiments on severe fuel damage behaviour of LWR fuel elements (CORA programme)

    International Nuclear Information System (INIS)

    The out-of-pile experiments of the CORA programme performed within the Project Group LWR Safety at the Kernforschungszentrum Karlsruhe are intended to provide information on the damage mechanisms of LWR fuel elements under severe fuel damage conditions, i.e. in the temperature region from 1200 deg. C to above 2000 deg. C. In these experiments the decay heat is simulated by electrical heating of a central tungsten rod within annular pellets, which are placed inside the Zircaloy cladding. The test bundle in the CORA facility is arranged from 16 heated (1000 mm length) and 9 unheated rods (solid pellets) surrounded by a Zircaloy shroud. The shroud itself is insulated by ZrO2 fibre insulation to obtain a uniform radial temperature distribution. In the test programme, 15 experiments are planned, 4 experiments have been performed. In the paper, the results of tests with A12O3 pellets and UO2 pellets with Inconel spacer only (no absorber material) are reported. In the tests with A12O3 pellets, simulating burnable poison rods, early melt formation at about 1350 deg C was observed. The liquefaction increases distinctly at 1500 deg. C. In the refrozen melt two metallic types - α-Zr(O) and (Zr,A1) alloy - and one porous ceramic (ZrO2, A12O3) eutectic can be distinguished. Large blockages form at the lower end of the bundle. In the tests with UO2 pellets, the melting starts at the elevation of the Inconel spacer. By eutectic melt formation in contact with the Zircaloy the liquefaction begins below the melting point of the Inconel. Further interaction of this melt with the UO2 results in partial dissolution of the pellets. Refreezing of the melt led to blockage formation at the lower end of the bundle, but at higher elevations compared to the tests with alumina pellets. At some locations fragmentation of fuel pellets to fine powder took place during cooldown. (author). 9 refs, 6 figs

  20. Investigations of flow and temperature field development in bare and wire-wrapped reactor fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Highlights: ► We study sodium flow and temperature development in fuel pin bundles. ► Pin diameter, number of pins, wire wrap and ligament gap are varied as parameters. ► Flow development is achieved within ∼30–40 hydraulic diameters. ► Thermal development is attained only for small pin diameter and less number of pins. ► Wire wrap and ligament gap strongly influence Nusselt number. - Abstract: Simultaneous development of liquid sodium flow and temperature fields in the heat generating pin bundles of reactor has been investigated. Development characteristics are seen to be strongly influenced by pin diameter, number of pins, helical wire-wrap, ligament gap between the last row of pins and hexcan wall and Reynolds number. Flow development is achieved within an axial length of ∼125 hydraulic diameters, for all the pin bundle configurations considered. But temperature development is attained only if the pin diameter is small or the number of pins is less. In the case of large pin diameter with more pins, temperature development could not be achieved even after a length of ∼1000 hydraulic diameters. The reason for this behavior is traced to be the weak communication among sub-channels in tightly packed bundles. It is seen that the pin Nusselt number decreases from center to periphery in a bundle. Also, if the ligament gap is narrow, the Nusselt number is large and more uniform. Flow development length is short if the Reynolds number is large and the converse is true for thermal development length. Helical wire-wrap shortens the thermal entry length and significantly enhances the global Nusselt number. But, its influence on hydrodynamic entry length is not significant

  1. Heat transfer profiles of a vertical, bare, 7-element bundle cooled with supercritical Freon-12

    International Nuclear Information System (INIS)

    Experimental data on SuperCritical-Water (SCW) cooled bundles are very limited. However, SuperCritical Water-cooled nuclear Reactor (SCWRs) designs cannot be optimized without such data. A set of experimental data obtained in Freon-12 (modeling fluid) cooled vertical bare bundle at the Institute of Physics and Power Engineering (IPPE, Obninsk, Russia) was analyzed. The existence of three distinct regimes for forced convention with supercritical fluids was experienced. (1) Normal heat transfer; (2) Deteriorated heat transfer, characterized by higher than expected temperatures; and (3) Enhanced heat transfer, characterized by lower than expected temperatures. This work compares the heat transfer coefficient of the experiments to predictions based upon current correlations for heat transfer in super critical fluids where the 1-D correlations are based upon tube data under supercritical water conditions. (author)

  2. Feasibility evaluation of x-ray imaging for measurement of fuel rod bowing in CFTL test bundles

    International Nuclear Information System (INIS)

    The Core Flow Test Loop (CFTL) is a high temperature, high pressure, out-of-reactor helium-circulating system. It is designed for detailed study of the thermomechanical performance, at prototypic steady-state and transient operating conditions, of electrically heated rods that simulate segments of core assemblies in the Gas-Cooled Fast Breeder reactor demonstration plant. Results are presented of a feasibility evaluation of x-ray imaging for making measurements of the displacement (bowing) of fuel rods in CFTL test bundles containing electrically heated rods. A mock-up of a representative CFTL test section consisting of a test bundle and associated piping was fabricated to assist in this evaluation

  3. Nuclear fuel element having oxidation resistant cladding

    International Nuclear Information System (INIS)

    This patent describes an improved nuclear fuel element of the type including a zirconium alloy tube, a zirconium barrier layer metallurgically bonded to the inside surface of the alloy tube, and a central core of nuclear fuel material partially filling the inside of the tube so as to leave a gap between the sponge zirconium barrier and the nuclear fuel material. The improvement comprising an alloy layer formed on the inside surface of the zirconium barrier layer. The alloy layer being composed of one or more impurities present in a thin layer region of the zirconium barrier in amounts less than 1% by weight but sufficient to inhibit the oxidation of the inside surface of the zirconium barrier layer without substantially affecting the plastic properties of the barrier layer, wherein the impurities are selected from the group consisting of iron, chromium, copper, nitrogen, and niobium

  4. SEU blending project, concept to commercial operation, Part 3: production of powder for demonstration irradiation fuel bundles

    International Nuclear Information System (INIS)

    The processes for production of Slightly Enriched Uranium (SEU) dioxide powder and Blended Dysprosium and Uranium (BDU) oxide powder that were developed at laboratory scale at Cameco Technology Development (CTD), were implemented and further optimized to supply to Zircatec Precision Industries (ZPI) the quantities required for manufacturing twenty six Low Void Reactivity (LVRF) CANFLEX fuel bundles. The production of this new fuel was a challenge for CTD and involved significant amount of work to prepare and review documentation, develop and approve new analytical procedures, and go through numerous internal reviews and audits by Bruce Power, CNSC and third parties independent consultants that verified the process and product quality. The audits were conducted by Quality Assurance specialists as well as by Human Factor Engineering experts with the objective to systematically address the role of human errors in the manufacturing of New Fuel and confirm whether or not a credible basis had been established for preventing human errors. The project team successfully passed through these audits. The project management structure that was established during the SEU and BDU blending process development, which included a cross-functional project team from several departments within Cameco, maintained its functionality when Cameco Technology Development was producing the powder for manufacturing Demonstration Irradiation fuel bundles. Special emphasis was placed on the consistency of operating steps and product quality certification, independent quality surveillance, materials segregation protocol, enhanced safety requirements, and accurate uranium accountability. (author)

  5. Packaging of spent fuel elements into special containers

    International Nuclear Information System (INIS)

    This report contains detailed description of the procedure for packaging the spent fuel elements from the fuel channels into the special steel containers. The previously cooled fuel elements are packaged into containers by the existing crane and transported later into the spen fuel storage. Instructions for crane operation are included

  6. Fuel element situation and performance data TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Electronic data acquisition of the position and movement of Triga fuel elements (FE) in the TRIGA II Vienna reactor was the objective of this project. Using one month power data and the Fuel element position in core it is possible to calculate their burnup. Fuel element performance data during 1962 to 2003 are provided. (nevyjel)

  7. Methodology and results of operational calculations of fuel temperature in fuel elements of the BN-600 reactor fuel assemblies

    International Nuclear Information System (INIS)

    The article presents methodology of peak fuel temperature determination and computational investigations of fuel temperature condition in fuel elements of fuel assemblies of various types during the BN-600 reactor operation. The effect of sodium uranate in the gap between fuel and cladding of the fuel element on the heat transfer processes is considered

  8. Hydraulic and hydrodynamic tests for design evaluation of research reactors fuel elements

    International Nuclear Information System (INIS)

    During the design steps of research reactors fuel elements some tests are usually necessary to verify its design, i.e.: its hydraulic characteristics, dynamical response and structural integrity. The hydraulic tests are developed in order to know the pressure drops characteristics of different parts or elements of the prototype and of the whole fuel element. Also, some tests are carried out to obtain the velocity distribution of the coolant water across different prototype's sections. The hydrodynamic tests scopes are the assessment of the dynamical characteristics of the fuel elements and their components and its dynamical response considering the forces generated by the coolant flowing water at different flow rate conditions. Endurance tests are also necessary to qualify the structural design of the FE prototypes and their corresponding clamp tools, verifying the whole system structural integrity and wear processes influences. To carry out these tests a special test facility is needed to obtain a proper representation of the hydraulic and geometric boundary conditions of the fuel element. In some cases changes on the fuel element prototype or dummy are necessary to assure that the data results are representative of the case under study. Different kind of sensors are mounted on the test section and also on the fuel element itself when necessary. Some examples of the instrumentation used are strain gauges, displacement transducers, absolute and differential pressure transducers, pitot tubes, etc. The obtained data are, for example, plates' vibration amplitudes and frequencies, whole bundle displacement characterization, pressure drops and flow velocity measurements. The Experimental Low Pressure Loop is a hydraulic loop located at CNEA's Constituyentes Atomic Center and is the test facility where different kind of tests are performed in order to support and evaluate the design of research reactor fuel elements. A brief description of the facility, and examples of

  9. Searching for a possible fuel element leak

    International Nuclear Information System (INIS)

    A gamma spectrum analysis of a filter paper from an Oregon State University TRIGA Reactor (OSTR) continuous air monitor (CAM) which routinely monitors the air directly over the reactor tank revealed just-detectable levels of several short-lived particulate fission products typically associated with a fuel cladding failure. This prompted an intensive.search to determine the origin of these radionuclides. A number of methods were used, including a fuel element rotation program designed to ultimately remove all of the fuel elements from the core in groups of three, and a scheme to selectively sample bubbles from different parts of the core during operation. Determination of the source was made very difficult by the fact that its presence was erratic in nature and because radioactivity levels found on filter papers were on the border of detectability even when the reactor was operated at the maximum allowable power level of 1MW. The origin and source of the fission product activity was not found, no other abnormality was identified and the reactor was therefore returned to normal operation. In addition to continuing the routine operation of the reactor-top CAM, further surveillance designed to detect a positive reappearance of the source was also implemented and currently involves a complete gamma spectrum analysis of a CAM filter paper each week after a standard (controlled) 3 hour reactor run at 1 MW. (author)

  10. Some aspects on security and safety in a potential transport of a CANDU spent nuclear fuel bundle, in Romania

    International Nuclear Information System (INIS)

    Each Member States (MS) is responsible for the security and safety of radioactive material during transport, since radioactive material is most vulnerable during transport. The paper presents some aspects on security and safety related to the potential transport of a CANDU Spent Nuclear Fuel (SNF) bundle from NPP CANDU Cernavoda to INR Pitesti. The possible environmental impact and radiological consequences following a potential event during transportation is analyzed, since the protection of the people and the environment is the essential goal to be achieved. Some testing for the package to be used for transportation will be also given. (author)

  11. Some aspects on security and safety in a potential transport of a CANDU spent nuclear fuel bundle, in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Vieru, G., E-mail: gheorghe.vieru@nuclear.ro [Inst. for Nuclear Research, Pitesti (Romania)

    2010-07-01

    Each Member States (MS) is responsible for the security and safety of radioactive material during transport, since radioactive material is most vulnerable during transport. The paper presents some aspects on security and safety related to the potential transport of a CANDU Spent Nuclear Fuel (SNF) bundle from NPP CANDU Cernavoda to INR Pitesti. The possible environmental impact and radiological consequences following a potential event during transportation is analyzed, since the protection of the people and the environment is the essential goal to be achieved. Some testing for the package to be used for transportation will be also given. (author)

  12. Nuclear reactor and associated fuel element

    International Nuclear Information System (INIS)

    Nuclear reactor with a high instantaneous negative reactivity temperature coefficient, comprising a vessel containing a certain quantity of water serving as coolant and moderator, a reactor core immersed in this water and comprising a series of fuel assemblies. Each fuel element contains a solid homogeneous mixture of zirconium hydride, uranium and erbium, in which the uranium constitutes 20 to 50% of the mixture by weight, the zirconium hydride 70 to 50% by weight and the erbium 0.5 to 1.5% by weight, the uranium present in the mixture being not more than 20% of U-235, the remainder being mostly U-238. The ratio of hydrogen/zirconium atom numbers is between 1.5/1 and 1.7/1 and the erbium is evenly distributed in the entire uranium-zirconium hydride mixture

  13. Impact tests with fuel element cans

    International Nuclear Information System (INIS)

    Impact tests with storage tanks for irradiated HTR-fuel balls have been carried out. The determination of the damages of the storage tanks falling from a heigth of 7 m and the graphite balls, which have been used in place of the fuel elements, has been the aim of these tests. The main results are: 1. The leakage of the three impact tested tanks (2 of type ASSE, 1 of type AVR-TL) has not increased due to the impact. 2. The deformation of the tanks caused by the impact exceed the tank specification for dimensions and shape. 3. The graphit ball damages depend on the type of tank and on the angle of impact. The damages of graphit balls in the tank of type AVR-TL have been neglectable small. (orig.)

  14. Neutron induced activity in fuel element components

    International Nuclear Information System (INIS)

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  15. Thermionic fuel element Verification Program - Overview

    Science.gov (United States)

    Bohl, Richard J.; Dahlberg, Richard C.; Dutt, Dale S.; Wood, John T.

    The TFE Verification Program is in the sixth year of a program to demonstrate the performance and lifetime of thermionic fuel elements for high power space applications. Data from accelerated tests in FETF and EBR-II show component lifetimes longer than 7 yr. Alumina insulators have shown good performance at high fast fluence. Graphite-cesium reservoirs based on isotropic graphite also meet requirements. Three TFEs are currently operating in the TRIGA reactor, the oldest having accumulated 15,000 hr of irradiation as of 1 October 1990.

  16. Fuel element storage pond for nuclear installations

    International Nuclear Information System (INIS)

    In a fuel element storage pond for nuclear installations, with different water levels, radioactive particles are deposited at the points of contact of the water surface with the pond wall. So that this deposition will not occur, a metal apron is provided in the area of the points of contact of the water surface with the bond wall. The metal apron consists of individual sheets of metal which are suspended by claws in wall hooks. To clean the sheets, these are moved to a position below the water level. The sheets are suspended from the wall hooks during this process. (orig.)

  17. Thermionic fuel element verification program—overview

    Science.gov (United States)

    Bohl, Richard J.; Dutt, Dale S.; Dahlberg, Richard C.; Wood, John T.

    1991-01-01

    TFE Verification Program is in the sixth year of a program to demonstrate the performance and lifetime of thermionic fuel elements for high power space applications. It is jointly funded by SIDO and DOE. Data from accelerated tests in FFTF and EBR-II show component lifetimes longer than 7 years. Alumina insulators have shown good performance at high fast fluence. Graphite-cesium reservoirs based on isotropic graphite also meet requirements. Three TFEs are current operating in the TRIGA reactor, the oldest having accumulated 15,000 hours of irradiation as of 1 October 1990.

  18. Storage rack for long fuel elements

    International Nuclear Information System (INIS)

    The storage rack for PWR's usually has a lower grid plate, which has holes at the positions intended for fuel elements and stiffeners in the form of straight fins on the underside, which run flush in the direction of the midpoint of the holes. According to the invention, there are pieces of pipe on the underside of the plate concentric to all holes, which are connected by straight bars. This produces a stiffening just at the critical places. The invention can best be implemented in the form of a casting. (orig./HP)

  19. A prediction method of the effect of radial heat flux distribution on critical heat flux in CANDU fuel bundles

    International Nuclear Information System (INIS)

    Fuel irradiation experiments to study fuel behaviors have been performed in the experimental loops of the National Research Universal (NRU) Reactor at Atomic Energy of Canada Limited (AECL) Chalk River Laboratories (CRL) in support of the development of new fuel technologies. Before initiating a fuel irradiation experiment, the experimental proposal must be approved to ensure that the test fuel strings put into the NRU loops meet safety margin requirements in critical heat flux (CHF). The fuel strings in irradiation experiments can have varying degrees of fuel enrichment and burnup, resulting in large variations in radial heat flux distribution (RFD). CHF experiments performed in Freon flow at CRL for full-scale bundle strings with a number of RFDs showed a strong effect of RFD on CHF. A prediction method was derived based on experimental CHF data to account for the RFD effect on CHF. It provides good CHF predictions for various RFDs as compared to the data. However, the range of the tested RFDs in the CHF experiments is not as wide as that required in the fuel irradiation experiments. The applicability of the prediction method needs to be examined for the RFDs beyond the range tested by the CHF experiments. The Canadian subchannel code ASSERT-PV was employed to simulate the CHF behavior for RFDs that would be encountered in fuel irradiation experiments. The CHF predictions using the derived method were compared with the ASSERT simulations. It was observed that the CHF predictions agree well with the ASSERT simulations in terms of CHF, confirming the applicability of the prediction method in fuel irradiation experiments. (author)

  20. Bundled procurement

    OpenAIRE

    Chen, Yongmin; Li, Jianpei

    2015-01-01

    When procuring multiple products from competing firms, a buyer may choose separate purchase, pure bundling, or mixed bundling. We show that pure bundling will generate higher buyer surplus than both separate purchase and mixed bundling, provided that trade for each good is likely to be efficient. Pure bundling is superior because it intensifies the competition between firms by reducing their cost asymmetry. Mixed bundling is inferior because it allows firms to coordinate to ...

  1. Theoretical and experimental studies of non-linear structural dynamics of fast breeder reactor fuel elements

    International Nuclear Information System (INIS)

    Descriptions are presented of theoretical and experimental studies of the deformation behaviour of fast-breeder fuel elements as a consequence of extreme impulsive stresses produced by an incident. The starting point for the studies is the assumption that local disturbances in a fuel element have resulted in a thermal interaction between fuel and sodium and in a corresponding increase in pressure. On the basis of the current state of knowledge, the possibility cannot be ruled out that this pressure build-up may lead to the bursting of the fuel-element wrapper, to the propagation of pressure in the core, and to coherent structural movements and deformations. A physical model is established for the calculation of the dynamic response of elastic-plastic beam systems, and the differential equations of p motion for the discrete equivalent system are derived with the aid of D'Alembert's principle. On this basis and with the aid of a semi-empirical pin-bundle model, an appropriate computer program allows a static and dynamic analysis to be obtained for a complete fuel element. In the experimental part of the study, a description is given of static and impulsive loading tests on 1:1 SNR-like fuel-element models. Making use of measured impact forces and of known material characteristics, it was possible to a large extent for the experiments to be reproduced by calculations. In agreement with existing experience from explosion experiments on 1:1 core models, the results (of relevance for fast-breeder safety and in particular the SNR-300) show that only local limited deformations occur and that the compact fuel-element and core structure constitutes an effective inherent barrier in the presence of extreme incident stresses. (author)

  2. Modelling of transient dynamic bundle deformation using time integration scheme

    International Nuclear Information System (INIS)

    The BOW code has been examined whether its modeling capability can be extended to the simulation of interactions (i.e., fretting) between neighbouring fuel elements in a fuel bundle and between the fuel bundle and the pressure tube in a fuel channel. The current BOW code is specialized in simulating the static problems, such as the deflection of each element and interactions between neighbouring elements in a fuel bundle, and interactions between neighbouring bundles and between a bundle and the pressure tube in a fuel channel. The Wilson θ time integration scheme has been implemented in the BOW code, for the extension of its capability to modelling dynamic contact problems. As part of verification to ensure that the modification in the code functions exactly as designed, the dynamic-modelling capability of the BOW code has been applied to simple support beam cases subjected to a uniform step load at the middle of the beam. The calculation results confirmed that the modified BOW code, where the contact algorithm is implemented in the step-by-step integration manner using the Wilson θ time integration scheme, can solve the dynamic problem with unconditional convergence. This paper describes the theory and models for the new capabilities of the BOW code. (author)

  3. Pressure drop redistribution experimental analysis in axial flow along the bundles

    International Nuclear Information System (INIS)

    Fuel elements of PWR type nuclear reactors are composed of rod bundles, arranged in square arrays, held by grid type spacers. The coolant flows axially along the bundle. Although such elements are laterally open, pressure drop experiments are performed in closed type test sections, originating the appearance of subchannels of different geometries. Utilizing a test section of two bundles of 4 x 4 pins and performing experiments with and without separation between the bundles, the flow redistribution factors, the friction, and the grid drag coefficients were determined for the interior subchannels. 03 refs, 06 figs, 02 tabs. (B.C.A.)

  4. UNIFRAME interim design report. [Fuel element size reduction plant

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.B.; Baer, J.W.; Cook, E.J.

    1977-12-01

    A fuel element size reduction system has been designed for the ''cold'' pilot-scale plant for an HTGR Fuel Reference Recycle Facility. This report describes in detail the present design.

  5. UK development of stage-2 CAGR fuel elements

    International Nuclear Information System (INIS)

    Britain has developed Stage-2 Commercial AGR fuel elements suitable for all AGR stations employing 71/2-inch bore fuel, and large-scale use will start in the initial charges of Heysham-II and Torness reactors

  6. Testing device for fuel element samples

    International Nuclear Information System (INIS)

    The device described is for testing samples for behavior at high temperature in heavy gamma radiation. The whole device is designed to be maintained in the high neutron flux of a nuclear reactor channel. It comprises two co-axial envelopes with cylindrical side walls and with convex truncated bottom and head walls, these truncated walls being maintained in pairs at a small distance and as constant as possible owing to the inner envelope being designed to accept the fuel element or other sample for testing and to be connected to an intake pipe and a return pipe for a sample environmental gas. The truncated head wall of the outer envelope is joined by a sealed thermal expansion bellows to the cylindrical wall of this same envelope. The restricted annular space between the inner envelope and the outer envelope with its bellows is designed to be coupled to an intake pipe and a return pipe for a variable thermal conductivity gas

  7. Numerical analysis on thermal-hydraulics of supercritical water flowing in a tight-lattice fuel bundle

    International Nuclear Information System (INIS)

    To evaluate thermal hydraulic characteristics of a tight-lattice fuel bundle of supercritical water reactor (Super Fast Reactor), a simplified 19-rod fuel assembly was analyzed with a three-dimensional two-fluid model analysis code ACE-3D which has been enhanced by Japan Atomic Energy Agency. In the ACE-3D, a two-phase flow turbulent model based on the k-ε model was adopted. In this calculation, a one-twelfth model is adopted as the computational domain taking advantage of symmetry. As the boundary conditions, mass velocity, inlet enthalpy and power per rod are to be the same as the steady state condition of the Super Fast Reactor. Cross-sectional local power distribution in the fuel assembly is set to be flat. Effect of grid spacers is taken into account in the analysis. Calculated rod surface temperatures take values near the top of the rods. Maximum clad surface temperature (MCST) is observed at the position facing to the narrowest gap on the center rod near the outlet and the value is 901K (628degC) that is almost the same as results without grid spacers. It was confirm that the predicted MCST satisfies a thermal design criteria to ensure fuel and cladding integrity: the MCST should be less than 650degC. (author)

  8. Container for the storage of new fuel elements

    International Nuclear Information System (INIS)

    The fuel elements are placed vertically at defined positions of a store by a fixed support before introduction into the reactor. Each fuel element is surrounded for at least the length of its can by a box made of absorber material. This box is surrounded by a sleeve, which is fixed to the support so that it is easy to undo. The new store is particularly intended for highly enriched fuel elements. (orig./HP)

  9. Development and operating experience with new LWR fuel elements

    International Nuclear Information System (INIS)

    The Advanced Nuclear Fuels Corporation (ANF) supplies fuel elements and services for pressurized and boiling water reactors in Europe, the USA and the Far East. During the 19 years of its existence the ANF produced more than 16.300 fuel elements in the two manufacturing plants of Richland, USA and Lingen, FRG for 43 pressurized and boiling water reactors. In this context a series of innovations as regards the design of fuel cans, Zircaloy for spacers and Gd absorber in the fuel rod for the improvement of the operating behaviour of the elements was realized. (orig./DG)

  10. Stress analysis of coated particle fuel using finite element method

    International Nuclear Information System (INIS)

    The fuel element of high temperature gas-cooled reactor is composed of coated particle fuel which is dispersed in graphite matrix. In normal operation, the stress due to irradiation and a variety of complex physical and chemical reactions will cause failure of the coated particle fuel. Therefore, the stress analysis of coated particle fuel is important for the safety of fuel element and reactor. The stress was analyzed by the finite element method based on the inner pressure failure mechanism considering asphericity of the particles. (authors)

  11. Studies of direct final disposal of fuel elements

    International Nuclear Information System (INIS)

    The research and development programme for 'Direct Final Disposal' comprises works compiled for direct disposal of high-temperature fuel elements which, as regards the direct disposal of IWR fuel elements, are either carried out independently by the DWK (conditioning and development of tanks), or coordinated by the project group for Other Waste Disposal Techniques (PAE) of the KfK on behalf of the Federal Ministry of Research and Technology (repository). Part A of the research and development programme includes work on the direct disposal of high-temperature fuel elements. Part B comprises work on the direct disposal of LWR fuel elements. (orig./DG)

  12. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10-5

  13. Double-D water rod for 9 by 9 fuel bundle

    International Nuclear Information System (INIS)

    This patent describes an improved fuel assembly including a lower tie-plate, an upper tie-plate, a square sectioned channel connecting the lower and upper tie-plate in fluid tight relation whereby fluid entering the lower tie-plate is discharged out the upper tie-plate, fuel rods each containing fissionable material therewithin. The fuel rods being held at the upper and lower tie-plates in a 9 by 9 array of rows and columns with all fuel rods having the same diameter; a plurality of spacers placed between the fuel rods for maintaining the fuel rods in spaced apart relation between the upper and lower tie-plates. The fuel rods in the 9 by 9 array having three the fuel rods removed from the middle row and two the fuel rods removed from each row on either side of the middle row to create a vacated interstitial volume defined by the absence of the removed fuel rods. The removal of the fuel rods at each row on either side displaced towards adjacent corners of the 9 by 9 array

  14. Nuclear fuel element and method of manufacturing it

    International Nuclear Information System (INIS)

    Nuclear fuel pellets incorporating fission products capturing carbonaceous materials are disposed at upper and lower ends of a nuclear fuel element. Further, nuclear fuel pellets incorporating fission product capturing Zr-Cu series materials are disposed at the intermediate portion of the nuclear fuel element respectively. With such a constitution, fission products formed during burning of the nuclear fuel pellets are absorbed and kept by the fission product capturing materials incorporated in the nuclear fuel pellets, thereby enabling to reduce the amount of the fission products released. In addition, stress corrosion cracks caused by pellet/cladding tube interactions and dynamic interactions can be prevented. (T.M.)

  15. Simultaneous development of flow and temperature fields in wire-wrapped fuel pin bundles of sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Simultaneous development of flow and temperature fields in the entrance region of fast breeder reactor (FBR) fuel pin bundles with helical spacer wires has been investigated by three-dimensional computational simulations. The Reynolds number, pitch of helical spacer wire and number of pins in the bundle are systematically varied. It is found that the magnitude of mean cross-stream velocity in the fully developed region is inversely proportional to the helical pitch length and it is nearly independent of the number of pins. But, there is a strong correlation between the locations of spacer wire and the peak cross-stream velocity. Flow attains full development at an axial length of 70 times hydraulic diameter in all the cases and this length is found to be unaffected by the helical pitch length. Friction factor is seen to fluctuate periodically over a mean value and the fluctuation over each helical pitch corresponds to a specific position of helical wire. The mean value of the friction factor in the entrance region reduces below the mean value in the fully developed region contrary to that seen in ducted flows. The mean fully developed friction factor is inversely proportional to the helical pitch. But, it is independent of the number of pins in the bundle. The Nusselt number passes through multiple minima before attaining fully developed periodic fluctuations and its development is slower than that of friction factor. For larger number of pins thermal development length is larger. Traditionally, the correlations reported for fully developed flow are considered for core design. But, the present study indicates that this approach is not conservative. Further, the entrance region effects and the oscillations in the fully developed region have to be properly accounted in the core design. Nusselt number exhibits a strong dependence on helical pitch similar to that of friction factor. A correlation for Nusselt number is proposed as a function of helical pitch and other

  16. Subchannel Analysis for enhancing the fuel performance in CANDU reactor

    International Nuclear Information System (INIS)

    The effect of the fuel rod geometry in a fuel bundle using the subchannel code ASSERT has been evaluated to design the fuel bundle having the advanced fuel performance. Based on the configuration of standard 37-element fuel bundle, the element diameter of fuel rods in each ring has been changed while that of fuel rods in other rings is kept as the original size. The dryout power of each element in a fuel bundle has been obtained for the modified fuel bundle and compared with that of a standard fuel bundle. From the calculated mixture enthalpy and void fraction of each subchannel, it was found that the modification of element diameter largely affects to the thermal characteristics of the subchannel on the upper region of a modified element by the buoyancy drift effect. The optimized geometry in a fuel bundle has been suggested from the consideration of the change of void reactivity as well as the dryout power of a bundle. The dependency of the transverse interchange model on the present results has been checked by examining the dryout power of a bundle for the different mixing coefficient and buoyancy drift model

  17. Fuel Element Transfer Cask Modelling Using MCNP Technique

    Science.gov (United States)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  18. Reproduction of the RA reactor fuel element fabrication

    International Nuclear Information System (INIS)

    This document includes the following nine reports: Final report on task 08/12 - testing the Ra reactor fuel element; design concept for fabrication of RA reactor fuel element; investigation of the microstructure of the Ra reactor fuel element; Final report on task 08/13 producing binary alloys with Al, Mo, Zr, Nb and B additions; fabrication of U-Al alloy; final report on tasks 08/14 and 08/16; final report on task 08/32 diffusion bond between the fuel and the cladding of the Ra reactor fuel element; Final report on task 08/33, fabrication of the RA reactor fuel element cladding; and final report on task 08/36, diffusion of solid state metals

  19. Coherence of reactor design and fuel element design

    International Nuclear Information System (INIS)

    Its background of more than 25 years of experience makes Framatome the world's leading company in the design and sales of fuel elements for pressurized water reactors (PWR). In 1994, the fuel fabrication units were incorporated as subsidiaries, which further strengthens the company's position. The activities in the fuel sector comprise fuel element design, selection and sourcing of materials, fuel element fabrication, and the services associated with nuclear fuel. Design responsibility lies with the Design and sales Management, which closely cooperates with the engineers of the reactor plant for which the fuel elements are being designed, for fuel elements are inseparable parts of the respective reactors. The Design and Sales Management also has developed a complete line of services associated with fuel element inspection and repair. As far as fuel element sales are concerned, Framatome delivers the first core in order to be able to assume full responsibility vis-a-vis the customer for the performance of the nuclear steam supply system. Reloads are sold through the Fragema Association established by Framatome and Cogema. (orig.)

  20. Fabrication of Confinement Facility of Failed Fuel Elements

    International Nuclear Information System (INIS)

    The confinement facility of failed fuel elements is provide for isolating the elements so that their fission product could not contaminate reactor pool. Since RSG-GAS does not have such facility yet, the fabrication of the confinement is compulsory needed. The fabrication of confinement was initialized by providing technical drawing, materials procurement, fabricating and testing, each confinement capacity is 2 elements. The test result showed that the facility can be used to store the two failed fuel elements safely. (author)

  1. Hollow fuel tablets for improvement of characteristics of rod fuel elements

    International Nuclear Information System (INIS)

    It is suggested to substitute compact fuel tablets for hollow ones. At that fuel temperature can be significantly reduced for equal thermal loadings. A lower fuel temperature when changing capacity results in decreasing thermal fuel expansion (reduction of mechanical stresses) as well as in decreasing the fission product release. Therefore, there is a possibility to improve the rod fuel element behaviour when changing linear power. Considerable reduction of fuel temperature in the hollow tablets with respect to the compact ones and a lesser energy content of a fuel element caused by its result in an additional advantage with respect to fuel behaviour during emergency leakage of coolant

  2. ACR fuel storage analysis: finite element heat transfer analysis of dry storage

    International Nuclear Information System (INIS)

    Over the past decade Atomic Energy of Canada Limited (AECL) has designed and licensed air-cooled concrete structures used as above ground dry storage containers (MACSTOR) to store irradiated nuclear fuel from CANDU plants. A typical MACSTOR 200 module is designed to store 12,000 bundles in 20 storage cylinders. MACSTOR 200 modules are in operation at Gentilly-2 in Canada and at Cernavoda in Romania. The MACSTOR module is cooled passively by natural convection and by conduction through the concrete walls and roof. Currently AECL is designing the Advanced Candu Reactor (ACR) with CANFLEX slightly enriched uranium fuel to be used. AECL has initiated a study to explore the possibility of storing the irradiated nuclear fuel from ACR in MACSTOR modules. This included work to consider ways of minimizing footprint both in the spent fuel storage bay and in the dry storage area. The commercial finite element code ANSYS has been used in this study. The FE model is used to complete simulations with the higher heat source using the same concrete structural dimensions to assess the feasibility of using the MACSTOR design for storing the ACR irradiated fuel. This paper presents the results of the analysis. The results are used to confirm the possibility of using, with minimal changes to the design of the storage baskets and the structure, the proven design of the MACSTOR 200 containment to store the ACR fuel bundles with higher enrichment and burnup. This has thus allowed us to confirm conceptual feasibility and move on to investigation of optimization. (author)

  3. Nuclear reactor with a reactor core composed of fuel elements

    International Nuclear Information System (INIS)

    A tube surrounding a fuel element projects above the liquid level. The tube is situated in a pot, whose upper edge lies between the top of the reactor core and the liquid level. A greater pressure is therefore produced, which ensures a reduction of the steam bubble proportion in the cooling liquid at the other fuel elements. (orig./HP)

  4. Legal questions concerning the termination of spent fuel element reprocessing

    International Nuclear Information System (INIS)

    The thesis on legal aspects of the terminated spent fuel reprocessing in Germany is based on the legislation, jurisdiction and literature until January 2004. The five chapters cover the following topics: description of the problem; reprocessing of spent fuel elements in foreign countries - practical and legal aspects; operators' responsibilities according to the atomic law with respect to the reprocessing of Geman spent fuel elements in foreign countries; compatibility of the prohibition of Geman spent fuel element reprocessing in foreign countries with international law, European law and German constitutional law; results of the evaluation

  5. Simulation of hemp fibre bundle and cores using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Amin Sadek, M.; Chen, Y. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering; Lague, C. [Ottawa Univ., Ottawa, ON (Canada). Faculty of Engineering; Landry, H. [Prairie Agricultural Machinery Inst., Humboldt, SK (Canada); Peng, Q. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Mechanical and Manufacturing Engineering; Zhong, W. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Textile Sciences

    2010-07-01

    The mechanical behaviour of hemp fibre and core must be well understood in order to obtain high-grade hemp fibre that is currently in high demand for various industrial applications. Modelling by discrete element method can simulate the mechanical behaviour of such materials. A commercial discrete element software called Particle Flow Code was used in this study. In particular, the 3-dimension (PFC3D) was used to simulate hemp fibre and core. Since the basic PFC3D particles are spherical, the individual virtual hemp fibres were defined as strings of balls held together by PFC3D parallel bonds. The study showed that the virtual fibre is flexible and can bend and break by forces. This reflects the characteristics of hemp fibre. Using the clump logic of PFC3D, the virtual hemp core was defined as a rigid and unbreakable body, which reflect the characteristics of the core. The virtual fibre and core were defined with several microproperties, some of which were previously calibrated. The PFC3D bond properties were calibrated in this study. They included normal and shear stiffness; pb{sub k}n and pb{sub k}s; normal and shear strength; and bond disk radius, R of the virtual fibre. The calibration started with developing a PFC3D model to simulate fibre tensile test. The microproperties of virtual fibre and core were calibrated by running the PFC3D model. Literature data from fibre tensile tests was compared with simulation results.

  6. Attempt to produce silicide fuel elements in Indonesia

    International Nuclear Information System (INIS)

    After the successful experiment to produce U3Si2 powder and U3Si2-Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using x-Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U3Si2-Al fuel elements, having similar specifications to the ones of U3O8-Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal (∝50%) and above normal burn-up. (orig.)

  7. CFD activities in support of thermal-hydraulic modeling of SFR fuel bundles

    International Nuclear Information System (INIS)

    Extensive testing and validation work is being performed to assess and validate Computational Fluid Dynamics (CFD) applicability to the simulation of SFR fuel assemblies. The demonstrated robustness of the method allows extending the CFD analysis to distorted fuel configurations, which will inevitably occur during extended fuel operation. The subchannel code COBRA-IV-I-MIT is adopted to evaluate the range of applicability of lumped parameter methods. Comparisons of mixing simulations show some intrinsic limitation in the subchannel methods, but allow confirming its overall applicability to nominal and mildly deformed assembly configurations. For significantly deformed geometries CFD is the recommend approach and is applied in this work. Deformed geometries considered include duct swelling, rod swelling, rod bowing, rod twisting, and various combinations of the simple deformations. While not derived from the realistic analysis of the in-core fuel behavior, the distorted geometries have been designed to embrace all conceptual worst case scenarios. The work focuses on the evaluation of the influence of the deformation on the fuel behavior, rather than on the actual fuel performance. Such approach is driven by the objective of deriving general understanding, and evaluating the applicability of subchannel analysis codes to long life fuel design, possibly in combination with distorted-channel factors derived from the CFD analyses. (author)

  8. LOAD-CHECK. Disposal planning for LWR fuel elements

    International Nuclear Information System (INIS)

    With the changes of the German atomic law from November 8, 2011 the operation licensing of LWR plants expire latest 2022, for eight NPPs the operation licenses are already expired. In order to optimize the fuel element management in the still operated but also in the decommissioned nuclear power plants the computer code module LOAD-CHECK was developed. LOAD-CHECK allows the foresight container planning for an optimized schedule and the container amount for loading campaigns esp. in case of the disposal of special fuel elements (MOX fuel elements or high-burnup fuel elements). The program can also be used a s tool for development of transport licensing and storage licensing according of CASTOR registered V casks. In the contribution the LOAD-CHECK program for the PWR and BWR fuel element disposal management in CASTOR registered B casks is presented.

  9. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW)

  10. Development of neural network for predicting local power distributions in BWR fuel bundles considering burnable neutron absorber

    International Nuclear Information System (INIS)

    A neural network model is under development to predict the local power distribution in a BWR fuel bundle as a high speed simulator of precise nuclear physical analysis model. The relation between 235U enrichment of fuel rods and local peaking factor (LPF) has been learned using a two-layered neural network model ENET. The training signals used were 33 patterns having considered a line symmetry of a 8x8 assembly lattice including 4 water rods. The ENET model is used in the first stage and a new model GNET which learns the change of LPFs caused by burnable neutron absorber Gadolinia, is added to the ENET in the second stage. Using this two-staged model EGNET, total number of training signals can be decreased to 99. These training signals are for zero-burnup cases. The effect of Gadolinia on LPF has a large nonlinearity and the GNET should have three layers. This combined model of EGNET can predict the training signals within 0.02 of LPF error, and the LPF of a high power rod is predictable within 0.03 error for Gadolinia rod distributions different from the training signals when the number of Gadolinia rods is less than 10. The computing speed of EGNET is more than 100 times faster than that of a precise nuclear analysis model, and EGNET is suitable for scoping survey analysis. (author)

  11. Large-scale simulations on thermal-hydraulics in fuel bundles of advanced nuclear reactors (Annual Report of the Earth Simulator Center, Dec 2008, 2007 issue)

    International Nuclear Information System (INIS)

    In order to predict the water-vapor two-phase flow dynamics in a fuel bundle of an advanced light-water reactor, large-scale numerical simulations were performed using a highly parallel-vector supercomputer, the earth simulator. Although conventional analysis methods such as subchannel codes and system analysis codes need composition equations based on the experimental data, it is difficult to obtain high prediction accuracy when experimental data to obtain the composition equations. Then, the present large-scale direct simulation method of water-vapor two-phase flow was proposed. The void fraction distribution in a fuel bundle under boiling heat transfer condition was analyzed and the bubble dynamics around the fuel rod surface were predicted quantitatively. (author)

  12. The button effect of CANFLEX bundle on the critical heat flux and critical channel power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Jisu; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E.; Inch, W. [Atomic Energy of Canada Limited, Ontario (Canada)

    1997-12-31

    A CANFLEX (CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5 mm) to reduce maximum element power rating and buttons to enhance the critical heat flux (CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant R-134a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power (CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF`s for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only for high pressure conditions. It indicates that the button is a useful design for CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions. 5 refs., 11 figs. (Author)

  13. Fuel element container for transporting and/or storing nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    The container consists of cast iron with spheroidal graphite for transporting and/or storing irradiated fuel elements. The front opening is closed so as to be gastight by a lid. In order to be able to weld the container after the lid is fitted, without any subsequent heat treatment being necessary, a ring made of material which can be cold welded is melted on the end of the container forming the opening when casting it via a connecting section. After loading it, the ring can be cold welded to a lid with a similar structure. (orig.)

  14. Transient non-boiling heat transfer in a fuel rod bundle during accidental power excursions

    International Nuclear Information System (INIS)

    The physical problem studied is the transient non-boiling heat transfer of a cylindrical fuel rod consisting of fuel, gap, and cladding to a steady, fully developed turbulent flow. The fuel pin is assumed to be located in the interior region of a subassembly with regular triangular or square arrangements. The turbulent velocity field as well as turbulent transport properties are specified as functions of the coordinates normal to the axial flow direction. The heat generation within the fuel may be specified as an arbitrary function of the three spatial coordinates and time. A digital computer program has been developed. On the basis of finite-difference techniques, to solve the governing partial differential equations with their associated subsidiary conditions. Results have been obtained for a series of exponential power transients of interest to safety of liquid-metal and water cooled nuclear reactors. The general physical features of transient convective heat transfer as explored by previous investigators have qualitatively been substantiated by the present analysis. Emphasis has been devoted to investigate the differences of heat-transfer (coefficient) results from multi-region analysis including a realistic fuel rod model and single-region analysis for the coolant region only. A comparison with the engineering relationships for turbulent liquid-metal cooling by Stein, which are an extension of the heat transfer coefficient concept to account for transient heat fluxes, clearly demonstrates that, at the parameters studied, Stein's approach tends to largely overestimate the convective heat transfer at early times

  15. Electrochemical method to disintegrate spherical fuel elements of HTGR

    International Nuclear Information System (INIS)

    Spherical fuel elements of high temperature gas-cooled reactor are employed to demonstrate electrochemical method with NaNO3 as electrolyte after an overall study of simulative fuel elements. The X-ray diffraction and the total carbon content of graphite fragments were determined, and the results were in agreements with graphite fragments from simulative elements. The characterization and leaching experiments of coated fuel particles and the determination uranium of the recovery solutions were detected, the results of which demonstrated the integrity of coated fuel particles and no contamination to the graphite fragments. The present work indicates that the improved electrochemical method is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end process of reprocessing. (author)

  16. Nonlinear transient deformation of LMFBR fuel elements under impulsive loading

    International Nuclear Information System (INIS)

    Hypothetical reactor accidents are characterized by a sudden release of substantial thermal energy in one fuel element. Presently it cannot be excluded that for instance pressure pulses due to a fuel coolant interaction may have such time scales and impulses as to deform neighboring subassemblies permanently. Additionally coherent fuel element motion may limit control rod scram action and possibly cause untolerable reactivity increases. Therefore LMFBR safety requires to analyse the complex mechanical response of the core structure under typical loading conditions. An important contribution to this problem is to examine the nonlinear structural dynamics of an individual fuel element under prescribed loading and boundary conditions. The subject of this paper is the elastoplastic transient behaviour of one subassembly under given space-and-time dependent pressure loading. The interaction of several colliding fuel elements including coolant dynamics is briefly discussed. (Auth.)

  17. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behavior and physical requirements of operating cycle sequences and fueling strategies having practical use in the management of nuclear fuel. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and maneuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy, and which govern fueling decisions normally made by the fuel manager. It is also demonstrated in this application that the simple batch size effect is not valid for non-integer fueling strategies, even in the simplest sequence configurations, and that it systematically underestimates the fueling requirements of degenerate sequences in general

  18. Operational requirements of spherical HTR fuel elements and their performance

    International Nuclear Information System (INIS)

    The German development of spherical fuel elements with coated fuel particles led to a product design which fulfils the operational requirements for all HTR applications with mean gas exit temperatures from 700 deg C (electricity and steam generation) up to 950 deg C (supply of nuclear process heat). In spite of this relatively wide span for a parameter with strong impact on fuel element behaviour, almost identical fuel specifications can be used for the different reactor purposes. For pebble bed reactors with relatively low gas exit temperatures of 700 deg C, the ample design margins of the fuel elements offer the possibility to enlarge the scope of their in-service duties and, simultaneously, to improve fuel cycle economics. This is demonstrated for the HTR-500, an electricity and steam generating 500 MWeleq plant presently proposed as follow-up project to the THTR-300. Due to the low operating temperatures of the HTR-500 core, the fuel can be concentrated in about 70% of the pebbles of the core thus saving fuel cycle costs. Under all design accident conditions fuel temperatures are maintained below 1250 deg C. This allows a significant reduction in the engineered activity barriers outside the primary circuit, in particular for the loss of coolant accident. Furthermore, access to major primary circuit components and the reuse of the fuel elements after any design accident are possible. (author)

  19. Experience with TRIGA aluminum-clad fuel elements

    International Nuclear Information System (INIS)

    During 8 years of operation the cumulative heat energy produced in the steady-state TRIGA Mark II 250 kW reactor at Ljubljana reached 4683 MWh. The initial core had Al-clad fuel elements only. The reactivity loss due to the burnup has been compensated by fresh fuel elements with SS-cladding and, lately, by FLIP fuel elements, moving the most irradiated Al-clad fuel elements from B and C rings to the F ring and, lately, to the storage rack. The inspection of the fuel elements during the summer of 1973 revealed excessive elongations of some Al-clad fuel elements, up to 36.8 mm. By the neutronography, performed by indirect methods (In, Dy), and also by direct methods (track detector CA 80-15 B) and by special radiographic procedures on the element, the activity of which decayed sufficiently, it has been demonstrated that the growth is due to the elongation of aluminum cladding only. No growth and/or swelling of the ZrH--U fuel or the graphite plugs has been observed within the accuracy of detection. (U.S.)

  20. The International Marketing Target of Fuel Element for Research Rectors

    International Nuclear Information System (INIS)

    The International marketing efforts of PT BATAN Teknologi's fuel element for research reactors are out line. These efforts intensively started in third year marketing time since it is commenced on 24 May 1996. The market segmentation told that there are 269 research reactors in the world, I.e. 65 in USA, 27 in Russia, 18 in Japan, and the remaining are in many Countries. Many of those are 78 swimming fool type reactors, and 17 of them, I.e. 4 in Japan, 4 in USA, and each Austria, Germany, Argentina, Iran, Pakistan, Peru, Brazil, Algeria and Indonesia have the similar fuel element specifications with are close related with PT BATAN Teknologi's. It can be predicated that around 38 fuel elements and 84 fuel control can be marketed. The first feasibility study told that for countries such as Peru, Pakistan, Iran, Algeria, became the potential marketing target of the BATAN Teknologi's fuel element, because for those countries the competitors in producing such fuel elements could be minimal. The fuel elements and fuel control which could be presumably marketed in those countries are 83 and 19 respectively. The problem will be facing in near future such as packaging design and nuclear fuel transportation have to be firstly solved by collaborating with foreign companies abroad. Non technical problems including political situation have to be completely studied in order the uranium, transfer to many countries for exporting purpose could easily take place in the future. The government of the Republic of Indonesia (in this case BATAN) and the International Atomic Energy Agency (IAEA) could assist to solve the non technical problems which might be appear in the future as the chance of the exporting the fuel elements and the fuel controls come true. (author)

  1. Structural dynamics studies for single and clustered SNR-300 fuel elements: a comparison of analytical and experimental results

    International Nuclear Information System (INIS)

    Structural damage may occur in liquid metal cooled fast breeder reactors (LMFBR) when local failures escalate to a fast release of excessive thermal energy within one fuel element. Time scales (5 to 50. msec) and peaks of associated pressure pulses (50. to 500. bar) may exceed the burst pressure of the hexagonal wrapper containing the pin-bundle. Though after fuel rupture the pressure level in the vicinity is markedly reduced, still a significant pressure field is propagating through the core. Therefore surrounding subassemblies or control rods are exposed to impulsive differential pressures causing duct flexure as well as local cross section deformation. A theoretical and experimental research program at GfK Karlsruhe investigates the mechanical effects of conservative pressure transients on LMFBR fuel elements. As part of the program this paper describes two computer codes (BEDYN-2, CORE-1) for non-linear structural dynamics of single as well as clustered subassemblies. (Auth.)

  2. RITM device for fuel element testing under power ramping

    International Nuclear Information System (INIS)

    The RITM device for studying different aspects of nuclear fuel behavior under power ramping while testing fuel elements in the SM-2 reactor is designed and tested. An irradiation rig of the device permits to conduct simultaneous irradiation of three fuel element located in individual cooling channels. Thermal neutron flux density in the rig cells varies within 0.25-1.00 of the maximum value. The rate of fuel power increase in the 0.25-1.00 and 0.5-1.0 ranges equals 3-5 and 4-12% min

  3. Hermetic seal process for nuclear fuel element

    International Nuclear Information System (INIS)

    The welding of the end plug onto the sheath of the fuel rod is made inside an enclosure filled with inert gas under the same pressure at that needed inside the fuel rod. The welding can be a tungsten arc welding, a laser welding or a micro plasma welding

  4. Management of Rossendorf research reactor spent fuel elements

    International Nuclear Information System (INIS)

    At the Rossendorf site, spent fuel elements have been in storage since 1957, at latest a total no. of 951. Transfer of spent fuel elements into CASTOR MTR 2 casks is the first major step of decommissioning of RFR. This paper will shortly describe the reactor, the fuel elements, their present storage, the loading procedure into CASTOR MTR 2 casks and a short-time storage at the Rossendorf site. At the beginning of this year the loading of the casks begun. The final aim is to transfer the loaded CASTOR MTR 2 casks to the Ahaus interim storage facility. (author)

  5. Licensing procedure for the Hanau fuel element fabrication plant

    International Nuclear Information System (INIS)

    Licensing procedure for the Hanau fuel element fabrication plant. The fuel element plant at Hanau fabricates at present fuel elements on the basis of licences according to para. 9 Atomic Energy Law. In 1975, however, it was decided to carry out a subsequent licensing procedure according to para. 7 Atomic Energy Law. This led to protracted proceedings before the Administrative Court and, in addition, to criminal proceedings against the managing director and officials. Most of the proceedings were settled in favor of the operator. The present state of partial licenses is described. (DG)

  6. CFD analysis of the 37-element fuel channel for CANDU6 reactor

    International Nuclear Information System (INIS)

    We analyzed the thermal-hydraulic behavior of coolant flow along fuel bundles with appendages of end support plate, spacer pad, and bearing pad, which are the CANDU6 characteristic design. The computer code used is a commercial CFD code, CFX-12. The present CFD analysis model calculates the conjugate heat transfer between the fuel and coolant. Using the same volumetric heat source as the O6 channel, the CFD predictions of the axial temperature distributions of the fuel element are compared with those by the CATHENA (one-dimensional safety analysis code for CANDU6 reactor). It is shown that CFX-12 predictions are in good agreement with those by the CATHENA code for the single liquid convection region (especially before the axial position of the first half of the channel length). However, the CFD analysis at the second half of the fuel channel, where the two-phase flow is expected to occur, over-predicts the fuel temperature, since the wall boiling model is not considered in the present CFD model. (author)

  7. Development of elements simulating the fuel elements of RBMK reactors and nuclear district heating stations

    International Nuclear Information System (INIS)

    The development of elements simulating fuel elements with indirect electric heating has been going on for 20 years but work on improvements and new designs continues and is important even at the present time. Research on the thermohydraulic processes in nuclear reactor accidents is the most important application of these simulating elements. When an element simulating a fuel element is constructed, three problems are to be solved simultaneously. The design must provide the required operational parameters, it must be reliable, and it must satisfy the criteria of the necessary modelling. Simulating elements designated for research on the processes which occur in the late stages of an accident involving loss of coolant work under heat flow conditions resembling the residual energy liberation of reactors and at a high shell temperature (up to 1473 K). The number of heating cycles should amount to several tens or hundreds of cycles. When elements simulating fuel elements are developed for these processes, it is most important in regard to the modelling that the volume heat capacities of the simulating element and the fuel element coincide. The technical parameters of elements simulating the fuel elements of RBMK reactors and nuclear district heating stations were determined on samples in water and in air. A sample with an active length of 2500 mm was tested in boiling water inside a large tank under a pressure of 0.1 MPa. A heat flow q = 620 kW/m2 was obtained at a voltage U = 113 V and a current I = 560 A; this heat flow is about equal to the medium heat flow for an RBMK-1000 fuel element and the maximum for the fuel elements of nuclear district heating stations. Tests on a sample having a 1000 mm long active part and three internal thermocouples were made in air. They confirmed that these simulating elements remain functional in multiple heating cycles of up to 800-1000 degrees C and in return to load zero

  8. Repurposing an irradiated instrumented TRIGA fuel element for regular use

    International Nuclear Information System (INIS)

    TRIGA IPR-R1 is a research reactor also used for training and radioisotope production, located at the Centro de Desenvolvimento da Tecnologia Nuclear da Comissao Nacional de Energia Nuclear (Nuclear Technology Development Centre, Brazilian National Nuclear Energy Commission - CDTN/CNEN). Its first criticality occurred in November 1960. All original fuel elements were aluminum-clad. In 1971 nine new fuel elements, stainless steel-clad were acquired. One of them was an instrumented fuel element (IFE), equipped with 3 thermocouples. The IFE was introduced into the core only on August 2004, and remained there until July 2007. It was removed from the core after the severing of contacts between the thermocouples and their extension cables. After an unsuccessful attempt to recover electrical access to the thermocouples the IFE was transferred from the reactor pool to an auxiliary spent fuel storage well, with water, in the reactor room. In December 2011 the IFE was transferred to an identical well, dry, where it remains so far. This work is a proposal for recovery of this instrumented fuel element, by removing the cable guide rod and adaptation of a superior terminal plug similar to conventional fuel elements. This will enable its handling through the same tool used for regular fuel elements and its return to the reactor core. This is a delicate intervention in terms of radiological protection, and will require special care to minimize the exposure of operators. (author)

  9. Repurposing an irradiated instrumented TRIGA fuel element for regular use

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paulo F.; Souza, Luiz C.A., E-mail: pfo@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    TRIGA IPR-R1 is a research reactor also used for training and radioisotope production, located at the Centro de Desenvolvimento da Tecnologia Nuclear da Comissao Nacional de Energia Nuclear (Nuclear Technology Development Centre, Brazilian National Nuclear Energy Commission - CDTN/CNEN). Its first criticality occurred in November 1960. All original fuel elements were aluminum-clad. In 1971 nine new fuel elements, stainless steel-clad were acquired. One of them was an instrumented fuel element (IFE), equipped with 3 thermocouples. The IFE was introduced into the core only on August 2004, and remained there until July 2007. It was removed from the core after the severing of contacts between the thermocouples and their extension cables. After an unsuccessful attempt to recover electrical access to the thermocouples the IFE was transferred from the reactor pool to an auxiliary spent fuel storage well, with water, in the reactor room. In December 2011 the IFE was transferred to an identical well, dry, where it remains so far. This work is a proposal for recovery of this instrumented fuel element, by removing the cable guide rod and adaptation of a superior terminal plug similar to conventional fuel elements. This will enable its handling through the same tool used for regular fuel elements and its return to the reactor core. This is a delicate intervention in terms of radiological protection, and will require special care to minimize the exposure of operators. (author)

  10. Critical heat flux and post-critical heat flux performance of a 6-m, 37-element fully segmented bundle cooled by Freon-12

    International Nuclear Information System (INIS)

    A 6-m, 37-element, electrically heated bundle with full end plate simulation, cooled by Freon-12, has been tested for CHF (critical heat flux) and post-CHF conditions in the MR-3 Freon loop. The bundle was tested in a horizontal attitude and had a uniform axial heat flux distribution and radial heat flux depression. A total of 110 CHF points have been collected over the following range of water equivalent conditions: exit pressure 8.27 - 11.03 MPa, mass flux 1.38 - 8.14 Mg.m-2.s-1, inlet subcooling 0 - 500 kJ.kg-1, outlet quality 10% - 37%. The data have been correlated on both a systems and local conditions basis over a limited mass flux range to within 2.8% rms. Significant CHF increases over smooth bundle results have been observed along with significant CHF improvement over a two end plate bundle simulation in the lower mass flux ranges. A satisfactory axial drypatch spreading correlation has been determined and extensive drypatch wall superheat mapping has been performed

  11. Measurement of fission gas release from irradiated nuclear fuel elements

    International Nuclear Information System (INIS)

    A fission gas measurement system for the analysis of released gases from MOX and PHWR fuels has been designed, fabricated and commissioned in the hot cells of Post Irradiation Examination Division of Bhabha Atomic Research Centre, Mumbai. The system was used for the measurement of fission gases released from natural UO2 fuels and ThO2 fuels from PHWRs. The burnups of these fuels ranged from 2 GWD/TeU to 15 GWD/TeU. Some of the results from PHWR fuel elements from Kakrapar Atomic Power Station are presented in the paper, to highlight the utility of the system. (author)

  12. Mechanical design and operating behaviour of advanced LWR fuel elements

    International Nuclear Information System (INIS)

    The development of fuel elements for pressurized and and boiling water reactors during the last years was marked by a reduction of the fuel cycle costs with security and reliability in operation remaining constant. The heightening of fuel discharge burnup and the improvement of neutron economy contributed essentially to that. The latter had been achieved by a reduction of the parasitic absorption within the fuel element and the leakage of neutrons of the reactor cores. These improvements could be obtained under complete observance of the safety-relevant requirements. Due to the change to fuel elements with a higher number of rods and correspondingly lower rod power it was even possible to raise the security margins partly. A survey of the state of experiences of Siemens/KWU is given. (orig./DG)

  13. CANDU fuel elements behaviour in the load following tests

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore [Instiute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.; Palleck, Steve [Sheridan Park Research-AECL, Mississauga, ON (Canada). Fuel Deisgn Branch

    2011-08-15

    Two load following (LF) tests on CANDU type fuel elements were performed in TRIGA Research Reactor of INR Pitesti. In the first LF test the 78R fuel element has successfully experienced 367 power cycles, mostly between 23 and 56 kW/m average linear power. In the second LF test, the fuel element withstood 200 power cycles from 27 to 54 kW/m average linear power as well as additional ramps due to reactor trips and restarts during test period. New LF tests are planed to be performed in order to establish the limits and capabilities for CANDU fuel in LF conditions. This paper presents the results of the LF tests performed in TRIGA Research Reactor and their relation to CANDU fuel performance in LF conditions. (orig.)

  14. PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor

    International Nuclear Information System (INIS)

    As part of the collaboration under the Romania - Canada Memorandum for co-operation in research and development of nuclear energy and technology, a load following test has been devised to demonstrate the load following capability of CANDU-6 fuel within the established design envelope for operating powers. A 37-element CANDU-6 fuel bundle element fabricated by AECL was irradiated in the TRIGA 14 MW(th) material testing reactor at the Institute for Nuclear Research (INR) in Pitesti, Romania. The load following cycle consisted of 200 daily cycles from 100% power to 50% power within the reference overpower envelope for fuel in a CANDU-6 reactor. Full power operation was 57 kW/m Element Linear Power. The paper provides the results obtained by post-irradiation examination of the fuel element in the INR hot cells. The following techniques were used: - Visual inspection and photography by periscope; - Profilometry; - Axial gamma scanning; - Fuel element puncturing and fission gas analysis; - Metallographic and ceramographic examinations by optical microscopy; - Burn-up measurement by mass spectrometry using the 235U depletion method. (authors)

  15. Container for transport of radioactive fuel elements

    International Nuclear Information System (INIS)

    Five or six fuel assemblies may directly be inserted into the bearing cage placed in the storage pool. Later, after decay, it will be possible to put the bearing cage containing the fuel assemblies into the shipping cask for the reprocessing plant. The shipping cask has got a cover filled up for the transport with a sealing compound consisting of salt, a mixture of salt, or bitumen. The wall of the shipping cask has got a sandwich structure. (DG)

  16. Thermomechanical analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  17. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  18. Spectroscopic verification of fuel bundles at Embalse using CdZnTe

    International Nuclear Information System (INIS)

    The Central Nuclear Embalse is a Candu-6 nuclear power station in Argentina. In support of the International Atomic Energy Agency plan to implement remote monitoring at this site, we have developed and tested a prototype underwater spent-fuel verification system based on coplanar-grid cadmium-zinc-telluride (CdZnTe) technology. The system uses the 137 Cs gamma ray signature, and is designed for minimal interference to the operator and eventual unattended operation: Test results suggest that the method is very likely to succeed. (author)

  19. Dynamic characterization of the CAREM fuel element prototype

    International Nuclear Information System (INIS)

    As a previous step to make a complete test plan to evaluate the hydrodynamic behavior of the present configuration of the CAREM type fuel element, a dynamic characterization analysis is required, without the dynamic response induced by the flowing fluid. This paper presents the tests made, the methods and instrumentation used, and the results obtained in order to obtain a complete dynamic characterization of the CAREM type fuel element. (author)

  20. Manufacture of nuclear fuel elements for commercial PWR in China

    International Nuclear Information System (INIS)

    Yibin Nuclear Fuel Element Plant (YFP) under the leadership of China National Nuclear Corporation is sole manufacturer in China to specialize in the production of fuel assemblies and associated core components for commercial PWR nuclear power plant. At the early of 1980's, it began to manufacture fuel assemblies and associated core components for the first core of QINSHAN 300 MW nuclear power plant designed and built by China itself. With the development of nuclear power industry in China and the demand for localization of nuclear fuel elements in the early 1990's, YFP cooperated with FRAMATOME France in technology transfer for design and manufacturing of AFA 2G fuel assembly and successfully supplied the qualified fuel assemblies for the reloads of two units of GUANGDONG Da Ya Bay 900 MW nuclear power plant (Da Ya Bay NPP), and has achieved the localization of fuel assemblies and nuclear power plants. Meanwhile, it supplied fuel assemblies and associated core components for the first core and further reloads of Pakistan CHASHMA 300 MW nuclear power plant which was designed and built by China, and now it is manufacturing AFA 2G fuel assemblies and associated core components for the first core of two units of NPQJVC 600 MW nuclear power plant. From 2001 on, YFP will be able to supply Da Ya Bay NPP with the third generation of fuel assembly-AFA 3G which is to realize a strategy to develop the fuel assembly being of long cycle reload and high burn-up

  1. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    International Nuclear Information System (INIS)

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  2. Irradiation tasks within development of fuel elements in Sweden

    International Nuclear Information System (INIS)

    This report contains description of the hot laboratory RMA for irradiation in the R-2 reactor in Studsvik. Activities of the AB Atomenegiyu concerning irradiation and testing of fuel rods and fuel elements are described, as well as methods for testing of irradiated samples in hot cells. Concerning the importance of the problem, determination of burnup level and neutron flux were examined particularly

  3. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)

    2002-04-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  4. Large Eddy Simulation of turbulent flow in wire wrapped fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    The objective of the study is to understand the thermal hydraulics in a core sub-assembly with liquid sodium as coolant by performing detailed numerical simulations. The passage for the coolant flow between the fuel rods is maintained by thin wires wrapped around the rods. The contact point between the fuel pin and the spacer wire is the region of creation of hot spots and a cyclic variation of temperature in hot spots can adversely affect the mechanical properties of the clad due to the phenomena like thermal stripping. The current status quo provides two different models to perform the numerical simulations, namely Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The two models differ in the extent of modelling used to close the Navier-Stokes equations. LES is a filtered approach where the large scale of motions are explicitly resolved while the small scale motions are modelled whereas RANS is a time averaging approach where all scale of motions are modelled. Thus LES involves less modelling as compared to RANS and so the results are comparatively more accurate. An attempt has been made to use the LES model. The simulations have been performed using the code Trio-U (developed by CEA). The turbulent statistics of the flow and thermal quantities are calculated. Finally the goal is to obtain the frequency of temperature oscillations at the region of hot spots near the spacer wire. (authors)

  5. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behaviour and physical requirements of operating cycle sequences and fueling strategies having practical use in fuel management. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and manoeuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy. Numerical evaluations of degenerate equilibrium cycle sequences are then performed for a typical PWR core, and accompanying fuel cycle costs are calculated. The impact of design and operational limits as constraints on the performance mappings for this reactor are also studied with respect to achieving improved cost performance from the once-through fuel cycle. The dynamics of transition cycle sequences are then examined using the generalized theory. Proof of the existence of non-degenerate equilibrium cycle sequences is presented when the mechanics of the fixed reload batch size strategy are developed analytically for transition sequences. Finally, an analysis of the fixed reload enrichment strategy demonstrates the potential for convergence of the transition sequence to a fully degenerate equilibrium sequence. (author)

  6. Research on Measuring Technology for In-pile Fuel Element Testing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The tested fuel assembly for In-pile test for PWR fuel element with instrumentation consisted of 4instrumented fuel elements and total 12 sets of transducers. Double claddings are adopted to raise fueltemperature. Two fuel elements each have 2 thermocouples for measuring separately the fuel centerlinetemperature and the cladding surface temperature. The other two elements have membrane type oressure

  7. Behavior analysis of U3Si-Al fuel in MP type fuel elements under irradiation

    International Nuclear Information System (INIS)

    Uranium silicide U3Si is considered as perspective nuclear fuel for Russian research reactors. In order to resolve the problem of enrichment reduction this nuclear fuel is the most real alternative for the Uranium dioxide which is currently used for these purposes. Within RERTR program two MP type fuel element models with the core consisting of U3Si nuclear fuel dispersed in an aluminium matrix were tested in MP reactor. The tests confirmed that the use of U3Si + Al fuel composition is a perspective solution to reduce fuel element enrichment in research reactors. This report represents analysis of post-irradiation tests of the fuel element models. The goal of the analysis being to establish the value and the appropriateness of swelling for the Uranium silicide. The fuel element represents a cylinder tube with four ribs on the outer surface. The claddings are produced of CAB-6 alloy. The contents of nuclear fuel in the core constitute 34% by volume, technological pores constitute 4.5% and the rest is aluminium matrix. The nuclear fuel was produced in ARSRIIM, the fuel elements was produced by ARSRIIM specialists with equipment of NZKH. (author)

  8. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF6, 19.75% U235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  9. Numerical prediction of critical heat flux in nuclear fuel rod bundles with advanced three-fluid multidimensional porous media based model

    International Nuclear Information System (INIS)

    Full text of publication follows: The modern design of nuclear fuel rod bundles for Boiling Water Reactors (BWRs) is characterised with increased number of rods in the bundle, introduced part-length fuel rods and a water channel positioned along the bundle asymmetrically in regard to the centre of the bundle cross section. Such design causes significant spatial differences of volumetric heat flux, steam void fraction distribution, mass flux rate and other thermal-hydraulic parameters important for efficient cooling of nuclear fuel rods during normal steady-state and transient conditions. The prediction of the Critical Heat Flux (CHF) under these complex thermal-hydraulic conditions is of the prime importance for the safe and economic BWR operation. An efficient numerical method for the CHF prediction is developed based on the porous medium concept and multi-fluid two-phase flow models. Fuel rod bundle is observed as a porous medium with a two-phase flow through it. Coolant flow from the bundle entrance to the exit is characterised with the subsequent change of one-phase and several two-phase flow patterns. One fluid (one-phase) model is used for the prediction of liquid heating up in the bundle entrance region. Two-fluid modelling approach is applied to the bubbly and churn-turbulent vapour and liquid flows. Three-fluid modelling approach is applied to the annular flow pattern: liquid film on the rods wall, steam flow and droplets entrained in the steam stream. Every fluid stream in applied multi-fluid models is described with the mass, momentum and energy balance equations. Closure laws for the prediction of interfacial transfer processes are stated with the special emphasis on the prediction of the steam-water interface drag force, through the interface drag coefficient, and droplets entrainment and deposition rates for three-fluid annular flow model. The model implies non-equilibrium thermal and flow conditions. A new mechanistic approach for the CHF prediction

  10. Sipping test on a failed MTR fuel element

    International Nuclear Information System (INIS)

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes 131 I and 133 I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U3 O8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs. (author)

  11. Sipping tests on a failed irradiated MTR fuel element

    International Nuclear Information System (INIS)

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes 131I and 133I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for 137Cs. The nuclear fuels U3O8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137Cs. (authors)

  12. Failed MTR Fuel Element Detect in a Sipping Tests

    International Nuclear Information System (INIS)

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes 131I and 133I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for 137Cs. The nuclear fuels U3O8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137Cs

  13. Spent HIFAR fuel elements behaviour under extended dry storage

    International Nuclear Information System (INIS)

    Previously unpublished observations of the behaviour of HIFAR spent fuel under extended dry storage conditions are reported. The two fuel elements EC802 (Mark III type) were irradiated in 1966, first examined in hot cells in 1967 and again examined in hot cells in 1983 following 16 years of stage, 11 years of which were in the ANSTO engineered dry storage facility. The elements showed negligible deterioration over this extended dry storage period, lending considerable confidence to the viability of dry storage technologies for the long term storage of spent aluminium clad research reactor fuels. 1 tab., 1 fig., 17 ills

  14. Process for assembling a nuclear fuel element

    International Nuclear Information System (INIS)

    Before insertion into the spacers, the fuel rocks are coated with a self-hardening layer of water-soluble polyvinyl and/or polyether polymer to prevent scratches on the cladding tubes. After insertion, the protective conting is removed by means of water. (orig.)

  15. Handling system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    A system for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor is described. The canning mechanism operates in a sealed gaseous environment and visual and mechanical inspection of the elements is possible by an operator from a remote shielded area. (UK)

  16. Transuranium element recovering method for spent nuclear fuel

    International Nuclear Information System (INIS)

    Spent fuels are dissolved in nitric acid, the obtained dissolution liquid is oxidized by electrolysis, and nitric acid of transuranium elements are precipitated together with nitric acid of uranium elements from the dissolution solution and recovered. Namely, the transuranium elements are oxidized to an atomic value level at which nitric acid can be precipitated by an oxidizing catalyst, and cooled to precipitate nitric acid of transuranium elements together with nitric acid of transuranium elements, accordingly, it is not necessary to use a solvent which has been used so far upon recovering transuranium elements. Since no solvent waste is generated, a recovery method taking the circumstance into consideration can be provided. Further, nitric acid of uranium elements and nitric acid of transuranium elements precipitated and recovered together are dissolved in nitric acid again, cooled and only uranium elements are precipitated selectively, and recovered by filtration. The amount of wastes can be reduced to thereby enabling to mitigate control for processing. (N.H.)

  17. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  18. Quality control in the fuel elements production process

    International Nuclear Information System (INIS)

    Recently great attention has been paid at the international level to the analysis of production processes and quality control of fuel and fuel elements with the aim to speed up activity of proposing and accepting standards and measurement methods. IAEA also devoted great interest to these problems appealing to more active participation of all users and producers fuel elements in a general effort to secure successful work of nuclear plants. For adequate and timely participation in future in the establishment and analysis of general requirements and documentation for the control of purchased or self produced fuel elements in out country it is necessary to be well informed and to follow this activity at the international level. (author)

  19. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U3O8] fuel elements and type P-06 [from U3Si2] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  20. In-pile steam oxidation of model HTGR fuel elements

    International Nuclear Information System (INIS)

    Model HTGR fuel elements were exposed to various concentrations of steam while being irradiated under several sets of temperature conditions in the Oak Ridge Research Reactor. In one test, catalysis by iron impurities in the graphite casing of the fuel element caused a highly localized attack on the graphite by the steam; this resulted in the formation of deep pits in the casing. Furthermore, the iron impurities were sufficiently mobile to cause pitting attack on the pyrolytic carbon coatings of the fuel particles as well. The presence of steam induced a rapid increase in the release of gaseous fission products. However, the cessation of steam ingress in the primary system resulted in a pronounced, but correspondingly smaller, reduction in the level of gaseous release. The incidence of fuel failure was greater than anticipated; however, even though the coatings of greater than 30% of the fuel had failed, the release of fission products beyond the fuel element itself was largely confined to iodine and the noble gases. A novel mode of fuel failure was observed under the rather severe conditions of the tests; this involved the attack of the pyrolytic carbon coatings on intact particles by uncoated fragments of uranium fuel kernel material from failed particles

  1. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  2. Temperature distribution calculations in TRIGA fuel element after the pulse

    International Nuclear Information System (INIS)

    The computer program TEMPUL for calculating radial temperature distribution in a fuel element after the pulse operation is shortly described. It is based on one-dimensional diffusion equation for heat transfer in cylindrical geometry and implicit boundary condition at the element-coolant interface, defined by empirical boiling curve, which relates the heat flux from the rod and the difference between the fuel element surface temperature and water boiling point. As an example the results of such analysis of maximal allowed pulse at TRIGA Mark II reactor in Ljubljana are presented. (author)

  3. Experimental results of the CORA test program on the LWR fuel element behavior in severe reactor accidents

    International Nuclear Information System (INIS)

    In the framework of the CORA program the chemical interactions among fuel element (core) materials that may occur with increasing temperature up to complete melting have been examined. The high-temperature material behavior of PWR, BWR, and VVER-1000 fuel rod bundles has been studied in large-scale integral experiments and extensive separate-effects tests. In many cases, the reaction products are liquid at temperatures above 1200 C or have lower eutectic melting points than their original components. This results in a relocation of liquefied components, often far below their original melting points. Control rod materials can separate from fuel materials by a non-coherent stage-by-stage relocation process; this may cause recriticality problems during flooding of a partially degraded core with unborated water. Similarly, molten unoxidized Zircaloy cladding can relocate away from the decladded UO2 fuel rods. Significant relocation of UO2 dissolved in molten unoxidized Zircaloy can begin at the Zircaloy melting temperature (1760 C), about 1000 K below the melting point of UO2. Quenching (flooding) of the degraded bundles results in locally enhanced Zircaloy/steam reactions causing a renewed temperature rise, a meltdown of materials, and an additional strong H2 generation. The experimental results have contributed substantially to the understanding of the high-temperature core material behavior in severe reactor accidents, and provided a unique data base for the development, improvement, and validation of material-behavior models and severe accident system codes. (orig.)

  4. Overview of CEA's R&D on GFR fuel element design: from challenges to solutions

    International Nuclear Information System (INIS)

    Over the period 2002-2012, CEA conducted some extensive R&D on the design of GFR fuel elements (together with related material and core/system studies). This paper reviews the challenges raised by this programme, the solutions proposed to address them, and the remaining issues. Studies were performed on the assembly duct, the pin bundle and the fuel pin. The main issues were related to the challenge of using silicon carbide composites (SiC/SiC) for the pin cladding and the assembly duct, as well as mixed uranium-plutonium carbide (UPuC) for the nuclear fuel. Emphasizing the pin design, key achievements are reviewed in this paper regarding such topics as fission product confinement and high burnup performance, for the sake of which original design options were recently patented. (author)

  5. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  6. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    International Nuclear Information System (INIS)

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code

  7. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Science.gov (United States)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  8. Algorithm and computer code for calculating the swelling of the fuel elements with a ceramic fuel

    International Nuclear Information System (INIS)

    Algorithm and the OVERAT program intended for calculating the strain deformed state of a cylindrical axially symmetric fuel element with ceramic fuel and thin-walled shell are described. Calculations are performed with account for creep deformation, fuel swelling, coolant and gas pressures in the axial cavity. At each moment of time deformations and strains in the shell as well as the spatial (by rod radius) dependence of fuel swelling are calculated. Fuel swelling is determined on the basis of a theoretical model, in which gas swelling is related to formation and development only of intergrain porosity. The reactor operation at a constant power at invariable in time temperature and energy release distributions in the fuel element core rod are considered. For description of the processes taking place in a fuel element a hard system of usual differential first order equations which is solved by the Gear method has been used. The OVERAT program is written in FORTRAN and at BESM-6 computer debuged. The results of test calculations of strain-deformed state and fuel element swelling with an UO2 hollow rod in a molybdenum shell are presented. It is pointed out that the described program in a complex with other programs can be used for investigating serviceability of various type reactors fuel elements

  9. Finite element simulation of thermal, elastic and plastic phenomena in fuel elements

    International Nuclear Information System (INIS)

    Taking as starting point an irradiation experiment of the first Argentine MOX fuel prototype, performed at the HFR reactor of Petten, Holland, the deformation suffered by the fuel element materials during burning has been numerically studied. Analysis of the pellet-cladding interaction is made by the finite element method. The code determines the temperature distribution and analyzes elastic and creep deformations, taking into account the dependency of the physical parameters of the problem on temperature. (author)

  10. Commercial Aspect of Research Reactor Fuel Element Production

    International Nuclear Information System (INIS)

    Several aspects affecting the commercialization of the Research Reactor Fuel Element Production Installation (RR FEPI) under a BUMN (state-owned company)have been studied. The break event point (BEP) value based on total production cost used is greatly depending upon the unit selling price of the fuel element. At a selling price of USD 43,500/fuel element, the results of analysis shows that the BEP will be reached at 51% of minimum available capacity. At a selling price of US$ 43.500/fuel element the total income (after tax) for 7 years ahead is US $ 4.620.191,- The net present value in this study has a positive value is equal to US $ 2.827.527,- the internal rate of return will be 18% which is higher than normal the bank interest rare (in US dollar) at this time. It is concluded therefore that the nuclear research reactor fuel element produced by state-owned company BUMN has a good prospect to be sold commercially

  11. Fire and blast safety manual for fuel element manufacture

    International Nuclear Information System (INIS)

    The manual aims to enable people involved in the planning, operation, supervision, licensing or appraisal of fuel element factories to make a quick and accurate assessment of blast safety. In Part A, technical plant principles are shown, and a summary lists the flammable materials and ignition sources to be found in fuel element factories, together with theoretical details of what happens during a fire or a blast. Part B comprises a list of possible fires and explosions in fuel element factories and ways of preventing them. Typical fire and explosion scenarios are analysed more closely on the basis of experiments. Part B also contains a list and an assessment of actual fires and explosions which have occurred in fuel element factories. Part C contains safety measures to protect against fire and explosion, in-built fire safety, fire safety in plant design, explosion protection and measures to protect people from radiation and other hazards when fighting fires. A distinction is drawn between UO2, MOX and HTR fuel elements. (orig./DG)

  12. Structural dynamics studies for single and clustered SNR-300 fuel elements: a comparison of analytical and experimental results

    International Nuclear Information System (INIS)

    Structural damage may occur in liquid metal cooled fast breeder reactors (LMFBR) when local failures escalate to a fast release of excessive thermal energy within one fuel element. Time scales (5. to 50. msec) and peaks of associated pressure pulses (50. to 500. bar) may exceed the burst pressure of the hexagonal wrapper containing the pin-bundle. Though after fuel element rupture the pressure level in the vicinity is markedly reduced, still a significant pressure field is propagating through the core. Therefore surrounding subassemblies or control rods are exposed to impulsive differential pressures causing duct flexure as well as local cross section deformation. A theoretical and experimental research program at GfK Karlsruhe investigates the mechanical effects of conservative pressure transients on LMFBR fuel elements. As part of the program this paper describes two computer codes (BEDYN-2, CORE-1) for non-linear structural dynamics of single as well as clustered subassemblies. Important features and idealizations of mechanical models are discussed before the codes are applied to several loading cases. Then two types of subassembly deformation experiments are outlined, and original records of the pressure pulses are used as input for BEDYN-2 to predict and compare deformation histories with experimental findings: (1) Quasistatic plane strain flat-to-flat loading of the hexagonal wrapper with and without the stiffening pin-bundle. (2) Transverse impulsive loading of a complete 1:1 SNR-300 type fuel element model on roller supports. In addition, pressure records from underwater explosion tests on SNR code models are taken as input for the multirow dynamics code CORE-1 and fairly good correlations were found between measured and predicted permanent deformations

  13. Development and testing of the EDF-2 reactor fuel element

    International Nuclear Information System (INIS)

    This technical report reviews the work which has been necessary for defining the EDF-2 fuel element. After giving briefly the EDF-2 reactor characteristics and the preliminary choice of parameters which made it possible to draw up a draft plan for the fuel element, the authors consider the research proper: - Uranium studies: tests on the passage into the β phase of an internal crown of a tube, bending of the tube under the effect of a localized force, welding of the end-pellets and testing for leaks. The resistance of the tube to crushing and of the pellets to yielding under the external pressure have been studied in detail in another CEA report. - Can studies: conditions of production and leak proof testing of the can, resistance of the fins to creep due to the effect of the gas flow. - Studies of the extremities of the element: creep under compression and welding of the plugs to the can. - Cartridge studies: determination of the characteristics of the can fuel fixing grooves and of the canning conditions, verification of the resistance of the fuel element to thermal cycling, determination of the temperature drop at the can-fuel interface dealt with in more detail in another CEA report. - Studies of the whole assembly: this work which concerns the graphite jacket, the support and the cartridge vibrations has been carried out by the Mechanical and Thermal Study Service (Mechanics Section). In this field the Fuel Element Study Section has investigated the behaviour of the centering devices in a gas current. The outcome of this research is the defining of the plan of the element the production process and the production specifications. The validity of ail these out-of-pile tests will be confirmed by the in-pile tests already under way and by irradiation of the elements in the EDF-2 reactor itself. In conclusion the programme is given for improving the fuel element and for defining the fuel element for the second charge. (authors)

  14. Performance and management of IPR-R1 fuel elements

    International Nuclear Information System (INIS)

    The performance of fuel elements during the 23 years of the reactor operation, is presented aiming to introduce improvements in the fuel load distribution and consequent increase of the reactivity. A computer code CORE was developed aiming to calculate the individual burnup of the fuel elements and the value of the reactivity for several core configurations, establishing a routine to control the nuclear material in the IPR-R1. The values calculated were compared with the experimental results. Some alternatives to augment the reactivity of the present core are presented foreseeing the fuel load availability for operation with 100Km and, for angmenting the power reaction in a next stage. (E.G.)

  15. Detection of fuel element vibration at KNK II

    International Nuclear Information System (INIS)

    The reactivity signal of the KNK-II-plant shows almost harmonic oscillations of δrho <= 0.5 c. Very sensitive correlation measurements, made during the regular plant operation with the normal plant instrumentation, revealed, that these oscillations are associated with individual fuel elements. Auxiliary measurements under various operational conditions and theoretical considerations show, that this phenomenon is probably caused by flow-induced mechanical vibration. Similar characteristics with respect to the frequencies have obviously not yet been observed for fuel element vibration during tests in out-of-core loops and in other reactors. Therefore efforts have been made in order to classify the flow-induced vibration and to identify the particular excitation mechanism. Most likely seems a flow-induced vibration of whole fuel elements by vortex shedding or jet switching. This model can explain all observations without exception. (orig.)

  16. Shock absorber for a fuel element storage rack

    International Nuclear Information System (INIS)

    The invention describes a shock absorber device for a nuclear fuel element deposited in a sheath provided with a bottom portion comprising centrally a hole of a diameter slightly larger than that of the lower portion of the fuel element, within a fuel storage rack, characterised in that it comprises a non-deformable annulus connected to a collar bearing on a transverse member of the storage rack, by means of a plurality of elastically and/or plastically deformable elements, and in that the non-deformable annulus, coaxial with the sheath, is provided with a central aperture having a diameter substantially equal to that of the hole in the bottom portion of the sheath and serves as a support for the bottom portion of the sheath

  17. The AVR as a test bed for fuel elements

    International Nuclear Information System (INIS)

    One of the important tasks of the AVR experimental power-station was the testing of the spherical fuel elements, which had been newly developed and were used for the first time here. This testing in the AVR differs from the previous irradiation tests in material testing reactors by the fact that fuel elements from mass production were used here in large numbers. It took place in the genuine operating conditions of a nuclear powerstation. This included particularly the mechanical stesses due to fuelling equipment, the chemical interactions with the impurities of the cooling gas, accelerated by the catalytic effect of fission products. This also included the charge of temperature and power due to load changes of the powerstation and due to the fuel elements passing through the reactor several times. (orig.)

  18. Analysis of the ATR fuel element swaging process

    International Nuclear Information System (INIS)

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B ampersand W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF

  19. The manufacture of LEU fuel elements at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  20. CONDOR: neutronic code for fuel elements calculation with rods

    International Nuclear Information System (INIS)

    CONDOR neutronic code is used for the calculation of fuel elements formed by fuel rods. The method employed to obtain the neutronic flux is that of collision probabilities in a multigroup scheme on two-dimensional geometry. This code utilizes new calculation algorithms and normalization of such collision probabilities. Burn-up calculations can be made before the alternative of applying variational methods for response flux calculations or those corresponding to collision normalization. (Author)

  1. Irradiation of Fuel Elements in the Belgian BR3 Reactor

    International Nuclear Information System (INIS)

    Under a contract concluded by EURATOM and CEN-BelgoNucléaire, fuel rods containing plutonium-enriched uranium were irradiated in the Belgian BR3 reactor with the object of evaluating the behaviour of plutonium fuel elements in power reactors. The first experiment consisted in introducing 12 fuel elements fabricated by vibration and compacting followed by swaging into a core assembly of the BR3 pressurized-water power reactor. Irradiation was carried out for a period corresponding to 4820 h at full power. Subsequent examination of the fuel rods showed that they had been unaffected by irradiation. A second series of experiments is being carried out in collaboration with the United Kingdom Atomic Energy Authority. These experiments involve irradiating an assembly of 37 plutonium-enriched fuel elements, some compacted and others of the pellet type, in the BR3/VN power reactor. The fabrication of the vibrocompacted elements and the thermal studies relating to the assembly are briefly described. (author)

  2. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  3. Properties of U3Si2-Al dispersion fuel element and its application

    International Nuclear Information System (INIS)

    The properties of U3Si2 fuel and U3Si2-Al dispersion fuel element are introduced, which include U-loading; the banding quality, U-homogeneity and 'dog-bone' phenomenon, the minimum thickness of cladding and the corrosion performances. The fabrication technique of fuel elements, NDT for fuel plates, assemble technique of fuel elements and the application of U3Si2-Al dispersion fuel elements in the world are introduced

  4. Reactor fuel element heat conduction via numerical Laplace transform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu

    2001-07-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  5. Postirradiation examination of Peach Bottom fuel test element FTE-4

    International Nuclear Information System (INIS)

    The report presents the irradiation results and their evaluation for Peach Bottom fuel test element FTE-4. It describes in detail the efforts by General Atomic Company over the last two years to establish a system for extracting meaningful performance information from a fuel test element. This has been done with the goal of making direct comparisons between as-measured data and core design code predictions. Special emphasis has been placed on determining the 95% confidence limits on most of the preirradiation and postirradiation measurements in order to allow a better comparison with GAUGE, FEVER, and TREVER code calculations which are used in HTGR core thermal and mechanical design

  6. Effects of pin bowing in the CAGR fuel element

    International Nuclear Information System (INIS)

    A theoretical and experimental investigation of the effects of bowing on pin temperatures in CAGR fuel elements is described. A subchannel code, SCANDAL, has been developed to calculate the effects of bow in arbitrary rod clusters with single phase coolant. The fundamental assumptions of the code and the extra components needed to handle pin bowing are presented. In order to validate SCANDAL a heat transfer experiment has been performed, in which selected pins in a 36 pin CAGR fuel element have been mechanically bowed and detailed temperature effects measured. Results from this experiment are presented and compared with SCANDAL predictions. (author)

  7. Testing the surface contamination resuspension of a fuel element

    International Nuclear Information System (INIS)

    The aim of the tests is to verify if radioactive aerosols can be resuspended in the atmosphere after surface contamination of a fuel plate. These tests are part of a program for dry storage of fuel plates without container. Tests are realized in a hot cell of OSIRIS reactor in a special device. The tested element is placed in a container and compressed air sweep the surface at a speed of about 5 m/s. Sampling on a filter placed at the outlet is used for analysis of air flowing between fuel plates. Nature and activity of products are determined by gamma spectrometry and found negligible

  8. Three-dimensional porous media based numerical investigation of spatial power distribution effect on advanced nuclear fuel rod bundles critical power

    International Nuclear Information System (INIS)

    The influence of spatial power generation shape on thermal-hydraulics behaviour of the fuel rod bundle has been investigated. Particularly, the occurrence of the local Boiling Transition has been analysed, indicating that conditions for the Critical Heat Flux (CHF) are reached somewhere within the boiling water channels in the assembly. The two-phase coolant flow within the bundle is represented with the two-fluid model in 3D space. The porous medium concept is applied in the simulation of the two-phase flow through the rod bundle implying nonequilibrium thermal and flow conditions. The governing equations in three-dimensions are discretized with the control volume method. The 3D numerical simulation and analyses of thermal-hydraulics in a complex geometry of an advanced nuclear fuel assembly are performed for conditions of a partial and/or complete rods uncovering indicating occurrence of high quality CHF - Dryout. The obtained results from numerical simulations are compared with experimental Critical Power data obtained from full scale tests. Employed is an electrically heated test rod bundle with real 1:1 geometry. Different radial and axial power distributions are used with wide range of inlet mass flow rates (2 - 19 kg/s) and coolant inlet subcooling (25 - 185 kJ/kg). The coolant pressure, equal to 6.9 MPa, is typical for BWRs conditions. Comparison of the predicted Critical Power values with measured data shows encouraging agreements for all analysed power distributions and the results completely reflect measured two-phase mixture cross flows, steam void distribution and spatial positions of Dryout onsets. Based on performed numerical investigation, an improvement of Dryout criteria is proposed. Dynamic effects of power shape change on spatial thermal hydraulics and hence on CHF occurrence as well as the influence of transfer function on thermal hydraulics under cyclic power and/or flow rate changes are also being analysed. Experiments for such verifications

  9. Three-dimensional porous media based numerical investigation of spatial power distribution effect on advanced nuclear fuel rod bundles critical power

    Energy Technology Data Exchange (ETDEWEB)

    Stosic, Zoran V. [Framatome ANP GmbH . NBTT, Erlangen (Germany)], e-mail: Zoran.Stosic@Framatome-ANP.de; Stevanovic, Vladimir D. [Framatome ANP GmbH, Erlangen (Germany); Iguchi, Tadashi [Japan Atomic Energy Research Institute (JAERI), Ibaraki (Japan)

    2001-07-01

    The influence of spatial power generation shape on thermal-hydraulics behaviour of the fuel rod bundle has been investigated. Particularly, the occurrence of the local Boiling Transition has been analysed, indicating that conditions for the Critical Heat Flux (CHF) are reached somewhere within the boiling water channels in the assembly. The two-phase coolant flow within the bundle is represented with the two-fluid model in 3D space. The porous medium concept is applied in the simulation of the two-phase flow through the rod bundle implying nonequilibrium thermal and flow conditions. The governing equations in three-dimensions are discretized with the control volume method. The 3D numerical simulation and analyses of thermal-hydraulics in a complex geometry of an advanced nuclear fuel assembly are performed for conditions of a partial and/or complete rods uncovering indicating occurrence of high quality CHF - Dryout. The obtained results from numerical simulations are compared with experimental Critical Power data obtained from full scale tests. Employed is an electrically heated test rod bundle with real 1:1 geometry. Different radial and axial power distributions are used with wide range of inlet mass flow rates (2 - 19 kg/s) and coolant inlet subcooling (25 - 185 kJ/kg). The coolant pressure, equal to 6.9 MPa, is typical for BWRs conditions. Comparison of the predicted Critical Power values with measured data shows encouraging agreements for all analysed power distributions and the results completely reflect measured two-phase mixture cross flows, steam void distribution and spatial positions of Dryout onsets. Based on performed numerical investigation, an improvement of Dryout criteria is proposed. Dynamic effects of power shape change on spatial thermal hydraulics and hence on CHF occurrence as well as the influence of transfer function on thermal hydraulics under cyclic power and/or flow rate changes are also being analysed. Experiments for such verifications

  10. CFD analysis of flow and heat transfer in Canadian supercritical water reactor bundle

    International Nuclear Information System (INIS)

    Highlights: • Flow and heat transfer in SCWR fuel bundle design by AECL is studied using CFD. • Bare-rod bundle geometry is tested at 23.5, 25 and 28 MPa using STAR-CCM+ code. • SST k–ω low-Re model was used to study occurrence of heat transfer deterioration. - Abstract: Within the Gen-IV International Forum, AECL is leading the effort in developing a conceptual design for the Canadian SCWR. AECL proposed a new fuel bundle design with two rings of fuel elements placed between central flow tube and the pressure tube. In line with the scope of the conceptual design, the objective of the present CFD work is to aid in developing a bundle heat transfer correlation for the Canadian SCWR fuel bundle design. This paper presents results from an ongoing effort in determining the conditions favorable for occurrence of HTD in the supercritical bundle flows. In the current investigation, bare-rod bundle geometry was tested for the proposed fuel bundle design at 23.5, 25 and 28 MPa using STAR-CCM+ CFD code. Taking advantage of the design symmetry of the fuel bundle, only 1/32 of the computational domain was simulated. The low-Reynolds number modification of SST k–ω turbulence model along with y+ < 1 was used in the simulations. For lower mass flow simulations, the increase of inlet temperature and operational pressure was found effective in reducing the occurrence of HTD. For higher mass flow simulations, normal heat transfer behaviour was observed except for the lower pressure range (23.5 MPa)

  11. Dart model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U3SiAl-Al and U3Si2-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U3SiAl-Al in plate, tube, and rod configurations as a function of fission density. Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 μm). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U3SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs

  12. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    International Nuclear Information System (INIS)

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits

  13. Fuel element reshuffling and fuel follower control rods (FFCR) replacement for PUSPATI TRIGA reactor

    International Nuclear Information System (INIS)

    The PUSPATI TRIGA Reactor has been utilized for more than 25 years using the same fuel elements and control rods. Generally, there are four control rods being used to control the neutron production inside the reactor core. A maintenance program has been developed to ensure its integrity, capability and safety of the reactor and it has been maintained twice a year since the first operation in 1982. The activities involve during the maintenance period including fuel elements and control rods inspections, electronics and mechanical systems, and others related works. During the maintenance in August 2008, there are some irregularities found on the fuel follower control rods and needed to be replaced. Even though the irregularities was not contributed into any unwanted incident, it were decided to replace with new control rods to avoid any potential hazards and unsafe condition occurred during operation later. Replacing any of the control rods would involved in imbalance of neutron flux and power distribution inside the core. Therefore, a number of fuel elements need to be reshuffled in order to compensate the neutron flux and power distribution as well as to balance the fuel elements burn-up in the core. This paper will described the fuel elements reshuffling and fuel follower control rods (FFCR) replacement for PUSPATI TRIGA Reactor. (Author)

  14. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  15. Review of fuel element development for nuclear rocket engines

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program involving uranium-loaded graphite fuels, hydrogen propellant, and a target exhaust temperature of approximately 25000C. A very extensive uranium-loaded graphite fuel element technology evolved from the program. Selection and composition of raw materials for the extrusion mix had to be coupled with heat treatment studies to give optimum element properties. The highly enriched uranium in the element was incorporated as UO2, pyrocarbon-coated UC2, or solid solution UC . ZrC particles. An extensive development program resulted in successful NbC or ZrC coatings on elements to withstand hydrogen corrosion at elevated temperatures. Hot gas, thermal shock, thermal stress, and NDT evaluation procedures were developed to monitor progress in preparation of elements with optimum properties. Final evaluation was made in reactor tests at NRDS. Aerojet-General, Westinghouse Astronuclear Laboratory, and the Oak Ridge Y-12 Plant of Union Carbide Nuclear Company entered the program in the early 1960's, and their activities paralleled those of LASL in fuel element development. (U.S.)

  16. Fission product release from defected nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    The release of gaseous (krypton and xenon) and iodine radioactive fission products from defective fuel elements is described with a semi-empirical model. The model assumes precursor-corrected 'Booth diffusional release' in the UO2 and subsequent holdup in the fuel-to-sheath gap. Transport in the gap is separately modelled with a phenomenological rate constant (assuming release from the gap is a first order rate process), and a diffusivity constant (assuming transport in the gap is dominated by a diffusional process). Measured release data from possessing various states of defection are use in this analysis. One element (irradiated in an earlier experiment by MacDonald) was defected with a small drilled hole. A second element was machined with 23 slits while a third element (fabricated with a porous end plug) displayed through-wall sheath hydriding. Comparison of measured release data with calculated values from the model yields estimates of empirical diffusion coefficients for the radioactive species in the UO2 (1.56 x 10-10 to 7.30 x 10-9 s-1), as well as escape rate constants (7.85 x 10-7 to 3.44 x 10-5 s-1) and diffusion coefficients (3.39 x 10-5 to 4.88 x 10-2 cm2/s) for these in the fuel-to-sheath gap. Analyses also enable identification of the various rate-controlling processes operative in each element. For the noble gas and iodine species, the rate-determining process in the multi-slit element is 'Booth diffusion'; however, for the hydrided element an additional delay results from diffusional transport in the fuel-to-heath gap. Furthermore, the iodine species exhibit an additional holdup in the drilled element because of significant trapping on the fuel and/or sheath surfaces. Using experimental release data and applying the theoretical results of this work, a systematic procedure is proposed to characterize fuel failures in commercial power reactors (i.e., the number of fuel failures and average leak size)

  17. Preliminary assessment of noble gas bundle tagging using a partial krypton backfill

    International Nuclear Information System (INIS)

    Current limitations of CANDU reactors to reliably locate defective fuel bundles have sparked interest into new identification techniques. Noble gas tagging, which would involve the addition of specific combinations of Kr and Xe isotopes to the fuel-to-sheath gap during manufacturing, has the potential to offer a means of locating failed-fuel bundles. The released tag with a given isotopic signature could be measured in the primary heat transport system by mass spectrometry. This technique would allow on-power failure location. Moreover, the technique could be of particular interest for demonstration irradiations with new fuel bundle designs. This report outlines preliminary considerations towards a suitable tag isotope choice and discusses the impact on the thermal performance of a fuel element. The detection limit of two mass spectrometer systems was determined through measurements of prepared krypton samples with aqueous concentrations in the range of 10-12 to 10-9 [molKr/molH2O]. (author)

  18. Influence of fuel bundle loading errors on the subcriticality during refueling campaigns for the present BWR cores of KRB-II

    International Nuclear Information System (INIS)

    On the basis of real fuel assembly inventories as they are presently available in KRB-II, the influence of fuel bundle loading errors on the subcriticality during refueling campaigns was investigated with the calculational methods of the incore fuel management. To this, control rod cells which show the least shut-down reactivity were considered and less reactive fuel assemblies were successively exchanged with fuel assemblies of highest possible reactivity from distant core regions. The results show that the total shut-down reactivity is only reduced by a comparatively small amount. The stuck rod shut-down reactivity, on the other hand, is strongly diminished with increasing number of locally concentrated mislocated fuel assemblies of highest possible reactivity. Thus, unintentional criticality cannot be reached during refueling campaigns with all control rods inserted. In conjunction with the deliberate withdrawal of one control rod, two or three mislocated fuel assemblies can cause criticality, depending on the absolute value of the realized stuck rod shut-down reactivity. (orig.)

  19. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW)

  20. Design evaluation of the HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    A fuel element size reduction system for the ''cold'' pilot plant of the General Atomic HTGR Reference Recycle Facility has been designed and tested. This report is both an evaluation of the design based on results of initial tests and a description of those designs which require completion or modification for hot cell use. 11 figures

  1. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    Science.gov (United States)

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  2. Fuel element transport container with a removable cover

    International Nuclear Information System (INIS)

    The cover of the fuel element transport container is removably fixed with screws on a flange as mechanical loads have to be expected during the transfer to the disposal plant. A ring-shaped or star-shaped clamping device grips over the cover. It has a clamp claw to lock the cover and permits unscrewing without unlocking the cover. (DG)

  3. Design evaluation of the HTGR fuel element size reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.B.

    1978-06-01

    A fuel element size reduction system for the ''cold'' pilot plant of the General Atomic HTGR Reference Recycle Facility has been designed and tested. This report is both an evaluation of the design based on results of initial tests and a description of those designs which require completion or modification for hot cell use. 11 figures.

  4. Experimental analysis of heat flow in simulated fuel elements

    International Nuclear Information System (INIS)

    Since the experimental point of view it has been developed so much thermic simulations of nuclear reactors fuel elements in the laboratory. It is treating to isolate the problem of heat transfer of the complexity of the radioactive materials handling. The simulations starting of electric warming of similar geometric bodies to the real fuel elements. In the Thermo fluids Laboratory of National Institute of Nuclear Research it has been carried out heat transfer experiments in simulated fuel elements using in a first step concentric cylinders, for later to pass to posterior step of direct warming. The purpose of this work is to determine the convective parameters in the refrigerating under the typical prevailing conditions in the experimental reactors. It has been planned to work with isolated bars and groups of bars in convection with water. These works will allow to stablish the infrastructure of laboratory where it can be simulated thermically fuel elements of diverse types of experimental reactors. And specially to observe the solid-fluid effects in vertical surfaces subjected to intense heat fluxes. (Author)

  5. CFD simulating the transient thermal–hydraulic characteristics in a 17 × 17 bundle for a spent fuel pool under the loss of external cooling system accident

    International Nuclear Information System (INIS)

    Highlights: • A 3-D CFD is adopted to simulate transient behaviors in an SFP under the accident. • This model realistically simulates a 17 × 17 bundle, rid of porous media approach. • The loss of external cooling system accident for an SFP is assumed in this paper. • Thermal–hydraulic characteristics in a bundle are strongly influenced by grids. • The results confirm temperature rising rate used in Maanshan NPP is conservative. - Abstract: This paper develops a three-dimensional (3-D) transient computational fluid dynamics (CFD) model to simulate the thermal–hydraulic characteristics in a fuel bundle located in a spent fuel pool (SFP) under the loss of external cooling system accident. The SFP located in the Maanshan nuclear power plant (NPP) is selected herein. Without adopting the porous media approach usually used in the previous CFD works, this model uses a real-geometry simulation of a 17 × 17 fuel bundle, which can obtain the localized distributions of the flow and heat transfer during the accident. These distribution characteristics include several peaks in the axial distributions of flow, pressure, temperature, and Nusselt number (Nu) near the support grids, the non-uniform distribution of secondary flow, and the non-uniform temperature distribution due to flow mixing between rods, etc. According to the conditions adopted in the Procedure 597.1 (MNPP Plant Procedure 597.1, 2010) for the management of the loss-of-cooling event of the spent fuel pool in the Maanshan NPP, the temperature rising rate predicted by the present model can be equivalent to 1.26 K/h, which is the same order as that of 3.5 K/h in the this procedure. This result also confirms that the temperature rising rate used in the Procedure 597.1 for the Maanshan NPP is conservative. In addition, after the loss of external cooling system, there are about 44 h for the operator to repair the malfunctioning system or provide the alternative water source for the pool inventory to

  6. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Science.gov (United States)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  7. Poolside inspection, repair and reconstitution of LWR fuel elements

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review the state of the art in the area of poolside inspection, repair and reconstitution of light water fuel elements. In the present publication it appears that techniques of inspection, repair and reconstitution of fuel elements have been developed by fuel suppliers and are now routinely and successfully applied in many countries. For the first time, the subject of control rod poolside examination was dealt with, poolside inspection and repair of a MOX assembly were reported and the inspection and repair of WWER assemblies were examined. Compared to the results of the previous meeting, present developments in the area aim now at reaching better economics, better reliability, reduction of personal doses and waste volume. Thirty-six participants representing twelve countries attended the meeting. Fifteen papers were presented in two sessions. An abstract was prepared for each of these papers. Refs, figs, tabs, diagrams, pictures and photos

  8. The technical concept of a temporary store for fuel elements

    International Nuclear Information System (INIS)

    In the German federal government's opinion, interim storage on the sites of nuclear power plants of spent fuel elements is to minimize the number of transports within Germany. As a span of approximately five years must be bridged until the interim stores now planned and filed for will be commissioned and, at the same time, transport activities are to be reduced, a kind of anticipated interim storage, or temporary storage, on power plant sites is unavoidable. The concept for the temporary storage of spent fuel elements is described in the article. On the basis of this concept, the Neckar Joint Nuclear Power Station recently was awarded a storage permit for nuclear fuels under Sec. 6 of the German Atomic Energy Act. Temporary stores following the same concept have been filed for, and are now in the licensing procedure, for another four sites (Philippsburg, Biblis, Kruemmel, Brunsbuettel). (orig.)

  9. Marangoni convection in fuel elements with liquid metal sublayer

    International Nuclear Information System (INIS)

    Analysis of heat- and mass-transfer in liquid metal sublayer of fuel element in the presence of gas bubbles is conducted. Analysis of the effects related with developing Marangoni convection is done. Assessed values are present for liquid metal flow velocities, temperature nonuniformity on inner side of fuel element cladding and in fuel pellets depending on gap size, physical properties of liquid metal in the gap, on heat generation rate and on average temperature in liquid-metal sublayer. It is shown that Marangoni convection can lead to fast corrosion on inner surface of the cladding. It is pointed out that at high values of convection rate the mechanism of material erosion also can be initiated

  10. Extraction process of fission products from spent nuclear fuel elements

    International Nuclear Information System (INIS)

    Process for extracting fission products contained in irradiated nuclear fuel elements consisting in bringing these elements into contact with water after having treated them mechanically to remove their cladding and/or cut them up, then separate these treated elements from the aqueous solution and recuperating at least one of the fission products concerned from this by concentrating it by distillation so as to obtain a concentrate containing these fission products and then processing this concentrate in order to ensure a long term storage of these fission products

  11. Irradiation behaviour of solid and hollow U3Si fuel elements: results to 15,000 MWd/tonne U

    International Nuclear Information System (INIS)

    U3Si fuel elements clad in zirconium alloy sheaths have been irradiated to burnups close to 15,000 MWd/tonne U in pressurized water at 220oC, 98 bars. The results show that the external swelling can be controlled by incorporating free volume in the element. The dimensional stability of such elements is adequate to permit their use in power reactor fuel bundles. A diameter increase of 1.2% had occurred in an element initially containing 12.8% total free volume, after a burnup of 14,700 MWd/tonne U. There was no change in diameter between burnups of 5200 and 14,700 MWd/tonne U. Elements containing 3% total free volume had increased in diameter about 2.5% at 2000 MWd/tonne U compared to 0.2% at 9500 MWd/tonne U for elements containing 22% total free volume. The observed swelling in the U3Si is discussed in terms of possible mechanisms. (author)

  12. Some parametric flow analyses of a particle bed fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  13. Gamma scanning of full scale HTR fuel elements

    International Nuclear Information System (INIS)

    Gamma scanning for the determination of burn-up and fission product inventory has been developed at the Dragon Project, suitable for measurements on fuel elements and segments from full-sized integral block elements. This involved the design and construction of a new lead flask with sophisticated collimator design. State-of-the art gamma spectrometric equipment was set up to cope with strong variations of count-rate and high data throughput. Software efforts concentrated on the calculation of the self absorption and absorption corrections in the complicated geometry of multi-hole graphite block segments with a corrugated circumference. The techniques described here are applicable to the non-destructive examination of a wide range of fuel element designs. (author)

  14. Interactions in Zircaloy/UO2 fuel rod bundles with Inconel spacers at temperatures above 1200deg C (posttest results of severe fuel damage experiments CORA-2 and CORA-3)

    International Nuclear Information System (INIS)

    In the CORA experiments test bundles of usually 16 electrically heated fuel rod simulators and nine unheated rods are subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence is simulated, which may develop from a small-break loss-of-coolant accident of an LWR. An aim of CORA-2, as a first test of its kind, was also to gain experience in the test conduct and posttest handling of UO2 specimens. CORA-3 was performed as a high-temperature test. The transient phases of CORA-2 and CORA-3 were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy(Zry)-steam reaction started at about 1000deg C, leading the bundles to maximum temperatures of 2000deg C and 2400deg C for tests CORA-2 and CORA-3, respectively. The test bundles resulted in severe oxidation and partial melting of the cladding, fuel dissolution by Zry/UO2 interaction, complete Inconel spacer destruction, and relocation of melts and fragments to lower elevations in the bundle, where extended blockages have formed. In both tests the fuel rod destruction set in together with the formation of initial melts from the Inconel/Zry interaction. The lower Zry spacer acted as a catcher for relocated material. In test CORA-2 the UO2 pellets partially disintegrated into fine particles. This powdering occurred during cooldown. There was no physical disintegration of fuel in test CORA-3. (orig./MM)

  15. Experimental analysis of redistribution of the transversal crossflow in rod bundles

    International Nuclear Information System (INIS)

    Fuel elements for PWR type nuclear reactors consist of rod bundles, in a square array and are held by grids. The coolant flows, mainly, axially along the rods. The inlet flow bad distribution can yield a strong crossflow. The present work consists in the experimental analysis of the transversal crossflow between 2 bundles with 4x4 rods each, with and without the presence of spacer-type grids, for several inlet flow conditions. It was observed that the crossflow is strongly dependent of the static pressure difference between the bundles and that the presence of grids induces a rapid homogenization of the flow. (C.M.)

  16. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)

    1998-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm3 for U3Si2-Al dispersion-based and 2.3 gU/cm3 for U3O8-Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm3 in U3Si2-Al dispersion and 3.2 gU/cm3 U3O8-Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U3Si2-Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U3O8-Al dispersion fuel plates with 3.2 gU/cm3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U3Si2 production at 4.8 gU/cm3, with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  18. Leaching of actinide elements from simulated fuel debris into seawater

    International Nuclear Information System (INIS)

    For the prediction of the leaching behavior of actinide elements contained in the fuel debris that has arisen from the severe accident in Fukushima Daiichi Nuclear Power Station (NPS), a simulated fuel debris consisting of UO2 - ZrO2 solid solution doped with 137Cs, 237Np, 236Pu and 241Am tracers was synthesized, and agitated leaching tests were conducted for the simulated fuel debris in seawater. The synthesized simulated fuel debris was immersed and shaken in natural seawater collected at a coast 11 km away from Fukushima Daiichi NPS. The brief leaching test conditions were T = 25°C and solid-liquid ratio = 4 g/l, and the test duration was up to 31 days. The ratio of tracers leached into seawater from the simulated fuel debris by the agitated leaching test for 4 days was evaluated to be 0.09% for U, 0.01% for Np, 0.01% for Pu, 0.01% for Am and 35.39% for Cs by the α or γ spectrometry of the soluble fraction. The leaching of actinides from the real fuel debris in reactor units 1 - 3 in Fukushima Daiichi NPS is expected to be suppressed in comparison with that from normal light water reactor spent fuel. (author)

  19. HTGR spent fuel element decay heat and source term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sund, R.E.; Strong, D.E.; Engholm, B.A.

    1977-02-01

    Decay heat, gamma dose rates, and neutron source strengths were determined for spent fuel elements from a High-Temperature Gas-Cooled Reactor (HTGR). The calculations were based on curie values reported in General Atomic Report GA-A13886 for the earlier commercial version of a 3000-MW(t) HTGR utilizing the thorium-uranium four-year fuel cycle. The reactor core was designed for an average thermal power density of 8.5 watts per cm/sup 3/ and a carbon-to-thorium atom ratio which varies between 210:1 and 240:1. Calculations of decay heat, gamma dose rates, and neutron source strengths were made for spent fuel elements from the initial core and from representative nonrecycle and recycle reloads. The study was performed for decay times from 180 days to 10 years. Tables of the isotopic results are given for both the fertile and fissile particles in the fuel elements. In addition, ordered tables of the important isotopic contributors are presented. Graphical presentations of the results are shown and discussed; in addition, comparisons are made with previous determinations.

  20. MAW and HTR fuel element test disposal in boreholes

    International Nuclear Information System (INIS)

    The Kernforschungsanlage Juelich, KFA, (Nuclear Research Center Juelich) has been handling a project since 1983 on 'Further Development of the Borehole Technology for the Disposal of Radioactive Wastes in Salt, with the Examples of Dissolver Sludge, Fuel Element Claddings, Fuel Hardware und HTR Fuel Elements'. The project is sponsored by the Bundesminister fuer Forschung und Technologie, BMFT, (Federal Ministry of Research and Technology) under the identification number KWA 5302 3 and bears the short title 'MAW and HTR Fuel Element Test Disposal in Boreholes'. The major objective of the project is to develop a technique for the disposal of the above mentioned wastes in unlined boreholes in salt and to test this technique in the Asse salt mine. The Institut fuer Chemische Technologie der Nuklearen Entsorgung, ICT (Institute of Chemical Technology) at the KFA is responsible for the scientific and organizational management of the project. The Institut fuer Tieflagerung, IfT, (Institute for Underground Disposal) of the Gesellschaft fuer Strahlen- und Umweltforschung mbH, GSF, (Society for Radiological and Environmental Research) is responsible for the geomechanical and mining activities in the project. It supervises the in-situ experiments, and as the owner of the Asse salt mine, it submits applications for the experiments to the licensing authorities. Geomechanical calculations are being carried out by the Bundesanstalt fuer Geowissenschaften und Rohstoffe, BGR, (Federal Institute for Geological Sciences and Natural Resources). (orig./RB)

  1. Fuel Element Mechanical Design for CAREM-25 Reactor

    International Nuclear Information System (INIS)

    The Fuel Element mechanical design and spider-control reactivity and security rods assembly for the CAREM-25 reactor is introduced. The CAREM-25 Fuel Element has a hexagonal cross section with 127 positions, in a triangular arrangement.There are 108 positions for the fuel rods while the guide tubes and instrumentation tube occupy the 19 remaining positions.From the structural point of view, the fuel element is being composed by a framework formed by the guides and instrumentation tubes, 4 spacer grids and the upper and lower coupling pieces.The spider is a plane piece, with a central body and six radial branches in T form, which has holes where the absorber rods are fitted.The central body ends in a joint in the upper side, which allows connect the assembly whit the reactor control mechanisms.The absorber rods are made of a neutron absorber material (Ag-In-Cd) hermetically closed in a stainless steel cladding. In this work are determined, in addition to the basic design, the operational conditions, the functional requirements to be satisfied and in agreement with those, the adopted criteria and limits to avoid systematics failure during normal operation conditions. The proposed program for the verification and evaluation of design is detailed.To consolidate the design, a prototype was manufactures, based on drawings and specifications needed for its construction

  2. HTGR spent fuel element decay heat and source term analysis

    International Nuclear Information System (INIS)

    Decay heat, gamma dose rates, and neutron source strengths were determined for spent fuel elements from a High-Temperature Gas-Cooled Reactor (HTGR). The calculations were based on curie values reported in General Atomic Report GA-A13886 for the earlier commercial version of a 3000-MW(t) HTGR utilizing the thorium-uranium four-year fuel cycle. The reactor core was designed for an average thermal power density of 8.5 watts per cm3 and a carbon-to-thorium atom ratio which varies between 210:1 and 240:1. Calculations of decay heat, gamma dose rates, and neutron source strengths were made for spent fuel elements from the initial core and from representative nonrecycle and recycle reloads. The study was performed for decay times from 180 days to 10 years. Tables of the isotopic results are given for both the fertile and fissile particles in the fuel elements. In addition, ordered tables of the important isotopic contributors are presented. Graphical presentations of the results are shown and discussed; in addition, comparisons are made with previous determinations

  3. The behaviour of spherical HTR fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Hypothetical accidents may lead to significantly higher temperatures in HTR fuel than during normal operation. In order to obtain meaningful statements on fission product behaviour and release, irradiated spherical fuel elements containing a large number of coated particles (20,000-40,000) with burnups between 6 and 16% FIMA were heated at temperatures between 1400 and 2500 deg. C. HTI-pyrocarbon coating retains the gaseous fission products (e.g. Kr) very well up to about 2400 deg. C if the burnup does not exceed the specified value for THTR (11.5%). Cs diffuses through the pyrocarbon significantly faster than Kr and the diffusion is enhanced at higher fuel burnups because of irradiation induced kernel microstructure changes. Below about 1800 deg. C the Cs release rate is controlled by diffusion in the fuel kernel; above this temperature the diffusion in the pyrocarbon coating is the controlling parameter. An additional SiC coating interlayer (TRISO) ensures Cs retention up to 1600 deg. C. However, the release obtained in the examined fuel elements was only by a factor of three lower than through the HTI pyrocarbon. Solid fission products added to UO2-TRISO particles to simulate high burnup behave in various ways and migrate to attack the SiC coating. Pd migrates fastest and changes the SiC microstructure making it permeable

  4. Radial heat conduction in a power reactor fuel element

    International Nuclear Information System (INIS)

    Two radial conduction models, one for steady state and another for unsteady state, in a nuclear power reactor fuel element are developed. The objective is to obtain the temperatures in the fuel pellet and the cladding. The lumped-parameter hypothesis are adopted to represent the system. Both models are verified and their results are compared with similar ones. A method to calculate the conductance in the gap between the UO2 pellet and the clad and its associated uncertainty is included in the steady state model. (author)

  5. Compaction of spent fuel elements from light water reactors

    International Nuclear Information System (INIS)

    To reduce the expenditures required for shipping and interim storage of spent fuel elements, a compaction technique has been designed which can be applied to pressurized water and boiling water reactor fuels. The highly mechanized and automated procedure achieves high throughputs while requiring little manpower. For the waste management pathway with reprocessing this means considerable savings in the costs for shipping and interim storage over the life of a plant. There are other cost advantages, which are not the subject of this article. (orig.)

  6. Fine lattice stochastic modeling of particle fuels in HTGR fuel elements

    International Nuclear Information System (INIS)

    There is growing interest worldwide in high temperature gas-cooled reactors (HTGRs) as candidates for next generation reactor systems. Either in a pebble type or in a prismatic type HTGR, coated particle fuel (TRISO fuel) appears to be the most promising fuel candidate to be used. For design and analysis of such a reactor, transport models, in particular, stochastic models that permit the simulation of neutron transport through the stochastic mixture of fuel and moderator materials, are becoming essential and gaining importance. Naturally, the Monte Carlo methods have been used for this situation. However, the methods reported in the literature all have their own deficiencies. In this thesis, we propose a new Monte Carlo method named fine lattice stochastic (FLS) modeling that is distinct from others. This method is based on fine lattice system in which a lattice circumscribes a fuel particle. Once the problem is given, an interface Fortran code gives out the TRISO particle fuel configurations (a set of lattice center points only) for MCNP input. The number of available lattice center points is far larger than the number of fuel particles according to packing fraction of the fuel element. We apply discrete random sampling here to choose a certain number of lattices to fill with fuel particles. In this aspect, FLS modeling allows more realistic fuel particle distributions. In this thesis, only simple cube (SC) structure is used in cubic lattice. However, FLS model can be easily extended to BCC, FCC structures or hexagonal prism type lattice. The criticality calculations for our FLS modeling were first tested on a small cube problem and compared with other models. The results indicate that the new stochastic model is an accurate and efficient approach to analyze TRISO particle fuel configurations. Then the FLS modeling was performed to analyze HTGR fuel elements for both pebble type and prismatic type and the results were also good as expected

  7. Installation of an irradiated fuel bundle discharge counter at Bruce NGS-B 3 000 MW(e) CANDU power station

    International Nuclear Information System (INIS)

    Design, manufacture and installation of an irradiated fuel bundle discharge counter for the multi-unit CANDU Bruce NGS-B Generating Station involved contributions from the International Atomic Energy Agency (Agency), designers (AECL), contractors, manufacturers, utility and the regulatory agency. The installation at Bruce NGS-B was the first made by the Agency as a retrofit to a multi-unit CANDU reactor approaching its fist critical operation, where the whole project was the responsibility of the Agency and where the original design of the reactor had not had provision for the Agency equipment. The scheduling and integration of the installation into the normal activities involved in starting up a 3 000 MW(e) multi-unit generating station were successfully achieved. The Agency has demonstrated the capability and performance of the fuel discharge counter

  8. Application of Be-free Zr-based amorphous sputter coatings as a brazing filler metal in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Amorphous sputter coatings of Be-free multi-component Zr-based alloys were applied as a novel brazing filler metal for Zircaloy-4 brazing. By applying the homogeneous and amorphous-structured layers coated by sputtering the crystalline targets, the highly reliable joints were obtained with the formation of predominantly grown α-Zr grains owing to a complete isothermal solidification, exhibiting high tensile and fatigue strengths as well as excellent corrosion resistance, which were comparable to those of Zircaloy-4 base metal. The present investigation showed that Be-free and Zr-based multi-component amorphous sputter coatings can offer great potential for brazing Zr alloys and manufacturing fuel rods in CANDU fuel bundle system. (author)

  9. Three Dimensional Finite Element Modelling of a CANDU Fuel Pin Using the ANSYS Finite Element Package

    International Nuclear Information System (INIS)

    The ANSYS finite element modelling package has been used to construct a three-dimensional, thermomechanical model of a CANDU fuel pin. The model includes individual UO2 pellets with end dishes and chamfers, and a Zircaloy-4 fuel cladding with end caps. Twenty node brick elements are used with both mechanical and thermal degrees of freedom, allowing for a full coupling between the thermal and mechanical solutions under both steady state and transient conditions. Each fuel pellet is modelled as a separate entity that interacts both thermally and mechanically with the cladding and other pellets via contact elements. The heat transfer between the pellets and cladding is dependent on both the interface pressure and temperature, and all material properties of both the pellets and the sheath are temperature dependant. Spatially and temporally varying boundary conditions for heat generation and convective cooling can be readily applied to the model. The model naturally exhibits phenomena such as pellet hour glassing and ridging of the cladding at the Pellet to pellet interfaces, allowing for the prediction of localized sheath stresses. The model also allows for the prediction of fuel pin bowing due to asymmetric thermal loads and fuel pin sagging due to overheating of the cladding, which may occur under accident conditions. (author)

  10. The advanced carrier bundle - comprehensive irradiation of materials in CANDU power reactors

    International Nuclear Information System (INIS)

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  11. Block fuel element for gas-cooled high temperature reactors

    International Nuclear Information System (INIS)

    The invention concerns a block fuel element consisting of only one carbon matrix which is almost isotropic of high crystallinity into which the coated particles are incorporated by a pressing process. This block element is produced under isostatic pressure from graphite matrix powder and coated particles in a rubber die and is subsequently subjected to heat treatment. The main component of the graphite matrix powder consists of natural graphite powder to which artificial graphite powder and a small amount of a phenol resin binding agent are added

  12. Burn up Analysis for Fuel Assembly Unit i n a Pressurized Heavy Water CANDU Reactor

    International Nuclear Information System (INIS)

    MCNPX code has been used for modeling a nd simulation of an assembly of CANDU Fuel bundle . The assembly is composed of a heterogeneous lattice of 37-element natural Uranium fuel, heavy water moderator and coolant. The fuel bundle is burnt in normal operation conditions of CANDU reactors. The effective multiplication factor (Keff ) of the bundle is calculated as a function of fuel burnup. The flux and power distribution are determined. Comparing t he concentrations of both Uranium and Plutonium isotopes are analyzed in the bundle. The results of the present model with the results of a benchmark problem, a good agreement was found PWR

  13. Burnup determination of power reactor fuel elements by gamma spectrometry

    International Nuclear Information System (INIS)

    This report describes a method for determining by γ spectrometry the burn up and the specific power of fuel elements irradiated in power reactors. The energy spectrum of γ rays emitted by fission products is measured by means of a simple equipment using a sodium iodide detector and a multichannel analyzer. In order to extract from the spectrum a quantity proportional to the burn up, it is necessary to: - isolate an activity specific of one emitter,- give the same importance to fissions in uranium and plutonium - take into account the radioactive decay during and after irradiation. One hundred fuel elements were studied and burn up values obtained by γ spectrometry are compared to results given by chemical analyses. Preliminary measurements show that the accuracy of the results is greatly increased by the use of a germanium detector, due to its good resolution. (authors)

  14. Decommissioning of the HOBEG fuel element fabrication plant in Hanau

    International Nuclear Information System (INIS)

    The HOBEG fuel element fabrication plant was operated to manufacture graphite fuel elements for the thorium/high-temperature reactor in Hamm/Westf., Germany. The site comprises a 6000-m2 fenced area, an office/laboratory unit, and the production unit. In 1989, Nukem applied for a license to shut down the HOBEG fabrication plant in compliance with German atomic law (ATG article 7.3) and the radiation protection code with the goal of using the site and buildings for any other nonradioactive purpose. Approval for decommissioning was received in April 1995. Meanwhile, the existing equipment is being dismantled on the basis of single planning permissions and release for further use, for remelting, or for intermediate storage

  15. Advanced nuclear fuel cycle. Optimization by recycling instructive elements

    International Nuclear Information System (INIS)

    Rare-metals and rare-earths produced by fission reaction of uranium 235 in nuclear reactors and consequently contained in spent fuels are considered as potential resources for strategic material in many fields of recent industry. The report consists of several contributed papers concerning with possible utility of such fission products as ruthenium, rhodium, palladium, technetium, and neodymium, and with their recovery and separation from spent fuels as well as possible utilization of actinides and long-lived radioactive elements as radiation sources. To conclude, the present report proposes a new national strategy study to reorient the present scheme of reprocessing of spent fuels and radioactive waste disposal from a new perspective. (S. Ohno)

  16. Recent operating experience with 28 element fuel at Pickering NGS

    International Nuclear Information System (INIS)

    A review of 28-element fuel operating experience at Pickering NGS is presented. The following topics are discussed: 1. Recent experience with in-core defects and 131I releases; 2. Operating strategies to minimize defect potential or to mitigate 131I releases to the primary heat transport system; 3. Impact of reduced regulatory limits as well as higher corporate expectations on operating strategies. 3 refs., 3 figs., 2 tabs

  17. Electoral structure of building foundations in nuclear fuel element plant

    International Nuclear Information System (INIS)

    Plant structures of nuclear fuel elements have a substantial burden. This requires analysis of the selection of the proper foundation for building support for a variety of different soil conditions found in two locations, first at a location near the nuclear power plant in Jepara and the second location BATAN Serpong area. Expected to know the location of soil conditions, we can determined the type of foundation that will be used based on the criteria requirements of the building. (author)

  18. Hydraulic Design Criteria for Spacer Grids of Nuclear Fuel Element

    International Nuclear Information System (INIS)

    In this paper a hydraulic model for calculating the pressure drop on the CARA spacer grids is extended.This model is validated and feedback from experimental hydraulic test performed in a low pressure loop.The importance of the spacer grid geometric parameter (that is, its thickness and length, the number and kind of their fix spacer), developing hydraulic design criteria for spacer grid on fuel element

  19. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    Science.gov (United States)

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  20. Dry storage of spent fuel elements: interim facility

    International Nuclear Information System (INIS)

    Apart from the existing facilities to storage nuclear fuel elements at Argentina's nuclear power stations, a new interim storage facility has been planned and projected by the Argentinean Atomic Energy Commission (CNEA) that will be constructed by private group. This article presents the developments and describes the activities undertaken until the national policy approach to the final decision for the most suitable alternative to be adopted. (B.C.A.). 09 refs, 01 fig, 09 tabs

  1. Design verification testing for fuel element type CAREM

    International Nuclear Information System (INIS)

    The hydraulic and hydrodynamic characterization tests are part of the design verification process of a nuclear fuel element prototype and its components. These tests are performed in a low pressure and temperature facility. The tests requires the definition of the simulation parameters for setting the test conditions, the results evaluation to feedback mathematical models, extrapolated the results to reactor conditions and finally to decide the acceptability of the tested prototype. (author)

  2. Dry store for spent fuel elements from nuclear reactors

    International Nuclear Information System (INIS)

    In the dry store for spent fuel elements from nuclear reactors which are enclosed in storage tubes and cooled with air, the storage tubes being arranged in shafts of a storage building, a loading device is provided underneath the shafts and in a cooling air shaft designed for transporting. The loading device therefore requires only a small lifting height and the chances of storage tubes falling from great heights are excluded. This invention is applicable in particular for intermediate stores. (orig./RW)

  3. CARA CVN: inherently safe fuel element for PHWR power plants

    International Nuclear Information System (INIS)

    This paper presents design alternatives of the CARA fuel element with negative void reactivity coefficient (CVN) enhancing the PHWR safety for L-LOCA sequences. This design enhances the safety and the operation performance in Atucha and Embalse without changes in the operation conditions. This new design balances wide performance margins of CARA SEU 0.9% previous design, with new intrinsic safety requirements without economic penalties. (author)

  4. Transport wagon for a fuel element transport container

    International Nuclear Information System (INIS)

    The transport containers are moved in the disposal plant with transport wagons on rails. The wagon consists of shielding walls, that surround the container for spent fuel elements of LWR at certain distances. The side walls can be moved as sliding doors. One of the end walls in connected with the driver cabine that contains the control equipment for the wagon. Through lead windows the inside space of the wagon can be observed from the cabine. (DG)

  5. Fiber bundle phase conjugate mirror

    Science.gov (United States)

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  6. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  7. Selection of Isotopes and Elements for Fuel Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet

    2009-04-01

    Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

  8. On-site interim stores for spent fuel elements

    International Nuclear Information System (INIS)

    Since June 14 this year, the subject of a nuclear power consensus has been mentioned in the headlines less frequently than in past years. On that day, the government and operators of power plants agreed in Berlin on residual amounts of electricity to be produced and on management of the spent fuel elements of the nineteen German nuclear power plants. One sub-item under the heading of waste management, which continues to arouse debates not only at nuclear power plant sites despite the consensus reached, and which may become vitally important to the operation of plants, will be covered in more detail below: the construction of so-called decentralized interim stores. When present contracts with French and British firms on nuclear fuel reprocessing have been fulfilled and reprocessing has been phased out, these interim stores are to minimize the number of transports within Germany, a notorious source of general unrest, and are supposed to accommodate the spent fuel elements until a suitable repository will have been built where they can then be stored permanently. The whole development of a management concept for spent nuclear fuel in the Federal Republic of Germany, and the requirements to be met by decentralized interim stores, are explained in the article. The resultant standardized concept of dry interim cask storage is outlined in the light of its legal and technical criteria. Finally, the site-dependent variants of this concept are presented, and the status and the special features of the ongoing licensing procedures are explained. (orig.)

  9. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  10. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U3O8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  11. The future of spent TRIGA fuel elements from European TRIGA reactor stations

    International Nuclear Information System (INIS)

    The paper gives a summary of the information collected and presented to the General Atomics about TRIGA fuel elements available at European TRIGA stations under the initiative to solve the problem of the future of spent TRIGA fuel elements

  12. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  13. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    The situation of the nucleoelectrical generation in Mexico by 1976 is described: two nuclear reactors under construction but no defined program on the type and start-up dates for the next power plants. However the existence of a general plan on nuclear power plants is mentioned, which, according to the last estimates reaches to 10,000 MW installed by 1990. The national intension, definitely expressed in the Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reload for the two BWR's at the first national station in Laguna Verde, which will be required at the end of 1981 and of 1982, respectively. Before such circumstances and the relatively short amounts of fuel elements that should be produced for those two unique reactors, Mexico already has to adopt a strategy to follow in respect to fuel elements fabrication. The two main options are analyzed: 1. To delay the local fabrication until a National Nuclear Program may be defined, meanwhile purchasing abroad the necessary reloads and initial cores; and 2. To start as soon as possible the local fuel elements fabrication in order to supply fuel for the first reload of the first unit of Laguna Verde, confronting the economical risks of such posture with the advantages of an immediate action. Both options are analyzed in detail comparing them specially under the economic point of view, standing out immediately the big effect of some factors which are economically imponderable, as experience and independance that would be gained with the second option. Emphasis is made on the advantages and risks of any case. According to the first option and once a National Program is defined, the work would be heavy but of simple strategy. On the contrary, the second option requires the adoption of a more complicated strategy, as either the project of the factory as its initial operation should be made under transient conditions, in view of the expected future expansion still

  14. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S; Lee, D.S. [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C.Y [Seoul National University, Seoul (Korea, Republic of)] [and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  15. Fabrication of spherical fuel element for 10 MW high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Cold quasi-isostatic molding with a silicon rubber die was used for manufacturing the spherical fuel elements of 10 MW high temperature gas-cooled reactor. 44 batches of fuel elements, about 20540 of the fuel elements, were produced. The cold properties of the graphite matrix materials satisfies the design specifications. The mean free uranium fraction in spherical fuel element from 44 batches is 4.57 x 10-5, certified products is 99%

  16. Bundling biodiversity

    OpenAIRE

    Heal, Geoffrey

    2002-01-01

    Biodiversity provides essential services to human societies. Many of these services are provided as public goods, so that they will typically be underprovided both by market mechanisms (because of the impossibility of excluding non-payers from using the services) and by government-run systems (because of the free rider problem). I suggest here that in some cases the public goods provided by biodiversity conservation can be bundled with private goods and their value to consumers captured in th...

  17. Improvements in the fabrication of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Braehler, Georg, E-mail: georg.braehler@nukemtechnologies.de [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Hartung, Markus [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Fachinger, Johannes; Grosse, Karl-Heinz [FNAG Furnaces Nuclear Applications Grenoble S.A.S., Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany)

    2012-10-15

    The application of High Temperature Reactor (HTR) Technology in the course of the continuously increasing world wide demand on energy is taken more and more under serious consideration in the power supply strategy of various countries. Especially for the emerging nations the HTR Technology has become of special interest because of its inherent safety feature and due to the alternative possibilities of applications, e.g. in the production of liquid hydrocarbons or the alternative application in H{sub 2} generation. The HTR fuel in its various forms (spheres or prismatic fuel blocks) is based on small fuel kernels of about 500 {mu}m in diameter. Each of these uranium oxide or carbide kernels are coated with several layers of pyrocarbon (PyC) as well as an additional silicon carbide (SiC) layer. While the inner pyrocarbon layer is porous and capable to absorb gaseous fission products, the dense outer PyC layer forms the barrier against fission product release. The SiC layer improves the mechanical strengths of this barrier and considerably increases the retention capacity for solid fission products that tent to diffuse at these temperatures. Especially the high quality German LEU TRISO spherical fuel based on the NUKEM design, has demonstrated the best fission product release rate, particular at high temperatures. The {approx}10% enriched uranium triple-coated particles are embedded in a moulded graphite sphere. A fuel sphere consists of approximately 9 g of uranium (some 15,000 particles) and has a diameter of 60 mm. As the unique safety features, especially the inherent safety of the HTR is based on the fuel design, this paper shall reflect the complexity but also developments and economical aspects of the fabrication processes for HTR fuel elements.

  18. Development of multi-dimensional thermal hydraulic modeling using mixing factors for wire wrapped fuel pin bundles with inter-subassembly heat transfer in fast reactors

    International Nuclear Information System (INIS)

    Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the sub-assembly is, therefore one of the important issues for the reactor safety assessment. To treat the complex phenomena in the core, a multi-dimensional thermal hydraulic analysis is the most promising method. From the studies on the multi-dimensional thermal hydraulic modeling for the fuel sub-assemblies, the modeling have been recommended through the analysis of sodium experiments using driver subassembly test rig PLANDTL-DHX and blanket subassembly test rig CCTL-CFR. Computations of steady states experiments in the test rigs using the above modeling showed quite good agreement to the experimental data. In the present study, the use of this modeling was extended to transient analyses, and its applicability was examined. Firstly, non-dimensional parameters used to determine the mixing factors were modified from the ones based on bundle-averaged values to the ones by local values. Secondly, a new threshold function was derived and introduced to cut off the mixing factor of thermal plumes under inertia force dominant conditions. In the results of this validation, the accuracy was comparable between the modeling and the experimental instrumentation. Thus the present modeling is capable of predicting the thermal hydraulic fields of the wire wrapped fuel pin bundles with inter-subassembly heat transfer under the conditions from rated steady operations to transitions toward natural circulation decay heat removal modes. (J.P.N.)

  19. Testing experimental fuel elements of the BN-600 fuel element type up to various depth of burn up in the BOR-60 reactor

    International Nuclear Information System (INIS)

    Results of the investigation of experimental fuel elements are presented. The authors discuss fuel element construction, basic testing parameters, results of measuring gas release from fuel, deformation of cladding and swelling of steel, and also data on material investigations of macro- an micro-structures of fuel and cladding with an analysis of the degree and character of their physico-chemical interaction with fission fragments

  20. Fuel management simulations for 0.9% SEU in CANDU 6 reactors

    International Nuclear Information System (INIS)

    Slightly Enriched Uranium (SEU) of 0.9 weight % 235U enrichment is a promising fuel cycle option for CANDU reactors. An important component of the investigation of this option is the demonstration of the feasibility of on-line refuelling with this fuel type in reactor physics fuel-management simulations. Two fuel-management schemes have been investigated in detail during 500-day core-follow simulations, these were a 2-bundle-shift and a 4-bundle-shift axial refuelling scheme. The 43-element CANFLEX fuel design has been used in these studies because of its improved fuel performance characteristics in this application. The results of the studies are discussed in detail in this paper. The most significant conclusion of this study was that both 2- and 4-bundle-shift refuelling schemes with CANFLEX fuel result in bundle power and bundle power boost envelopes that meet current fuel-performance requirements. (author)