Energy Technology Data Exchange (ETDEWEB)
Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-09
This document summarizes the Bumpy Torus Experiment as a viable fusion reactor concept. Conclusions reached include the following: In 30 years, order-of-magnitude technological advances have occurred in multiple areas of plasma heating and confinement. The ORNL bumpy torus of the 1970s was technology limited. Now that ITER is technology limited, an alternate concept is needed. A device built on such a concept should be current free, CW, modular, have a gentle shutdown, and demonstrable stability. The bumpy torus meets or has the potential to meet all of these criteria. Earlier, stability was not possible due to power limits; it has not been fully tested. It is time to revisit the bumpy-torus concept with a modest new machine.
Reactor assessments of advanced bumpy torus configurations
Energy Technology Data Exchange (ETDEWEB)
Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.
1983-01-01
Recently, several configurational approaches and concept improvement schemes were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These configurations include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator-snakey torus). Preliminary evaluations of reactor implications of each of these configurations have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties. Results indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.
Reactor assessments of advanced bumpy torus configurations
Energy Technology Data Exchange (ETDEWEB)
Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.
1984-02-01
Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.
Resistive Drift Waves in a Bumpy Torus
Energy Technology Data Exchange (ETDEWEB)
J.L.V. Lewandowski
2004-01-12
A computational study of resistive drift waves in the edge plasma of a bumpy torus is presented. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.
Electrostatic confinement in a bumpy torus
Energy Technology Data Exchange (ETDEWEB)
El Nadi, A.M.
1984-11-01
In a closed-field-line device such as a bumpy torus, the combined E x B and del B drifts lead to charge separation that is balanced by the ion polarization drift. In this work, we determine self-consistent potential and density profiles and the condition for electric island formation.
Influence of globalmagnetic perturbations on plasma behavior in Elmo Bumpy Torus
Energy Technology Data Exchange (ETDEWEB)
Quon, B.H.; Dandl, R.A.; Colestock, P.L.; :Bieniosek, F.M.; Ikegami, H.
1979-02-01
The sensitivity of plasma confinement to magnetic field error effects has been tested experimentally using externally introduced global field errors on the ELMO Bumpy Torus (EBT). Below a critical error field (deltaB/sub r//B)/sub cr/ of approx. = to 0.6-1 x 10/sup -3/ the plasma was observed to be essentially free from convective cells, toroidal currents, and instabilities. This observed critical value is comparable to a neoclassical critical field error (deltaB/sub r//B)/sub cr/ approx. = rho/R, the ratio of the ion Larmor radius to the major radius of the torus.
Roth, J. R.; Gerdin, G. A.
1976-01-01
The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes.
Energy Technology Data Exchange (ETDEWEB)
Dory, R.A.; Uckan, N.A.; Ard, W.B.; Batchelor, D.B.; Berry, L.A.; Bryan, W.E.; Dandl, R.A.; Guest, G.E.; Haste, G.R.; Hastings, D.E.
1986-10-01
The ELMO Bumpy Square (EBS) concept consists of four straight magnetic mirror arrays linked by four high-field corner coils. Extensive calculations show that this configuration offers major improvements over the ELMO Bumpy Torus (EBT) in particle confinement, heating, transport, ring production, and stability. The components of the EBT device at Oak Ridge National Laboratory can be reconfigured into a square arrangement having straight sides composed of EBT coils, with new microwave cavities and high-field corners designed and built for this application. The elimination of neoclassical convection, identified as the dominant mechanism for the limited confinement in EBT, will give the EBS device substantially improved confinement and the flexibility to explore the concepts that produce this improvement. The primary goals of the EBS program are twofold: first, to improve the physics of confinement in toroidal systems by developing the concepts of plasma stabilization using the effects of energetic electrons and confinement optimization using magnetic field shaping and electrostatic potential control to limit particle drift, and second, to develop bumpy toroid devices as attractive candidates for fusion reactors. This report presents a brief review of the physics analyses that support the EBS concept, discussions of the design and expected performance of the EBS device, a description of the EBS experimental program, and a review of the reactor potential of bumpy toroid configurations. Detailed information is presented in the appendices.
Roth, J. R.
1976-01-01
Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.
Energy Technology Data Exchange (ETDEWEB)
Ackerman, S.
1982-02-26
During Title I, General Dynamics' principal role as a subcontractor to the McDonnell Douglas Astronautics Company (MDAC) is to assist in the further development of a low-cost superconducting magnet mirror coil system for the EBT-P program consistent with long life and dependable operation. The activity can best be defined as an extension of ORNL's previous development program with further joint ORNL/MDAC/GDC refining of the mirror coil components. MDAC/GDC participation for the entire program can be subdivided into four distinct elements as follows: (1) design, development, and fabrication of two dewar subassemblies to enclose the ORNL developed and fabricated cold mass assemblies; (2) design, development, and fabrication of a production prototype magnet system including conductor (procurement), cold mass components, dewar and x-ray shield. This prototype would form the basis for the production of 36 magnets for the torus and three spares. (3) design, development, and fabrication of an electrical/electronic system including quench protection, instrumentation and control, and power supply to power and protect the mirror coil system during its operation in the torus; (4) fabrication of the 39 production magnets.
An improved description method of the bumpy texture
Institute of Scientific and Technical Information of China (English)
GAO RongHua; KONG DeHui; YIN BaoCai
2009-01-01
Bump mapping is a texture-based rendering approach for simulating surface details to make its illumination results have three-dimensional effects.The bumpy properties of an object are determined by height maps.But in the process of generating height maps,a problem arises,i.e.to get a correct value of the pixel height,empirical data should he calculated repeatedly,which proves very complicated,and meanwhile the realistic rendering effect is reduced,because the bumpy property is exaggerated in the height map.Therefore,in this paper,we present a method for describing the details of the bumpy texture,where a new concept "bumpy map" is Introduced to replace the height map.Experimental results demonstrate that the bumpy details produced by the "bumpy map" are more consistent with the original bumpy texture than by the method of height map.
Multipole moments of bumpy black holes
Vigeland, Sarah J
2010-01-01
General relativity predicts the existence of black holes, compact objects whose spacetimes depend on only their mass and spin (the famous "no hair" theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of "bumpy black hole" spacetimes to be used for making these measurements. These spacetimes are black holes with the "wrong" multipoles, where the deviation from general relativity depends on the spacetime's "bumpiness." In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose {\\it current} mome...
Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.
1999-01-01
A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.
Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.
1998-01-01
A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.
Jensen, T. H.; Chu, M. S.
1981-06-01
The 'bumpy Z-pinch' is a magnetic configuration with potential usefulness for fusion reactors. A conceptually simple version of the configuration is axisymmetric. It contains regions of closed and open field lines. In the region of closed field lines, the field line topology is much like that of a tokamak; these regions link the region of open field lines around the axis of symmetry. Assuming that the plasma spontaneously maintains an equilibrium as described by Taylor (1974), it is possible to maintain indefinitely the regions of closed field lines by driving an axial current through the plasma in the region of open field lines. The ratio between the total axial driven current and the total poloidal current in each of the tokamak-like regions can, in principle, be made arbitrarily small, which means that the load impedance can be arbitrarily large. In addition, the configuration has the inherent virtue similar to that of the spheromak that the tokamak-like part of the plasma does not link any material coils.
Nolte, A; Schirren, C G
1997-06-01
Solitary or bilateral, symptomless exostoses on the lingual surface of the mandibule are called mandibular torus. It is mainly seen in young males and has a benign clinical course. The etiopathology is not known. Both genetic and environmental factors such as the anatomy of the lower jaw are considered. Syndromes associated with facial exostoses such as Proteus syndrome or Gardner's syndrome should be clinically excluded. A 40-year-old man with exostoses of the jaw is reported. With this case report we would like to draw attention to a disease which has rarely been described in the German dermatological literature.
Discrete Element study of granular material - Bumpy wall interface behavior
El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika
2016-09-01
This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.
Compact magnetic confinement fusion: Spherical torus and compact torus
Directory of Open Access Journals (Sweden)
Zhe Gao
2016-05-01
Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.
Vo, Theodore
2017-10-01
Torus canards are special solutions of fast/slow systems that alternate between attracting and repelling manifolds of limit cycles of the fast subsystem. A relatively new dynamic phenomenon, torus canards have been found in neural applications to mediate the transition from tonic spiking to bursting via amplitude-modulated spiking. In R3, torus canards are degenerate: they require one-parameter families of 2-fast/1-slow systems in order to be observed and even then, they only occur on exponentially thin parameter intervals. The addition of a second slow variable unfolds the torus canard phenomenon, making it generic and robust. That is, torus canards in fast/slow systems with (at least) two slow variables occur on open parameter sets. So far, generic torus canards have only been studied numerically, and their behaviour has been inferred based on averaging and canard theory. This approach, however, has not been rigorously justified since the averaging method breaks down near a fold of periodics, which is exactly where torus canards originate. In this work, we combine techniques from Floquet theory, averaging theory, and geometric singular perturbation theory to show that the average of a torus canard is a folded singularity canard. In so doing, we devise an analytic scheme for the identification and topological classification of torus canards in fast/slow systems with two fast variables and k slow variables, for any positive integer k. We demonstrate the predictive power of our results in a model for intracellular calcium dynamics, where we explain the mechanisms underlying a novel class of elliptic bursting rhythms, called amplitude-modulated bursting, by constructing the torus canard analogues of mixed-mode oscillations. We also make explicit the connection between our results here with prior studies of torus canards and torus canard explosion in R3, and discuss how our methods can be extended to fast/slow systems of arbitrary (finite) dimension.
Principal noncommutative torus bundles
DEFF Research Database (Denmark)
Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve
2008-01-01
In this paper we study continuous bundles of C*-algebras which are non-commutative analogues of principal torus bundles. We show that all such bundles, although in general being very far away from being locally trivial bundles, are at least locally trivial with respect to a suitable bundle version...... of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...... action) and give necessary and sufficient conditions for any non-commutative principal torus bundle being RKK-equivalent to a commutative one. As an application of our methods we shall also give a K-theoretic characterization of those principal torus-bundles with H-flux, as studied by Mathai...
Torus palatino, torus mandibular y exostosis maxilares
Directory of Open Access Journals (Sweden)
Ivan Alberto Manotas Arevalo
2013-12-01
Full Text Available Los huesos maxilares son parte de la estructura esquelética corporal por lo cual no son ajenos a las patologías que se presentan en ella. Algunas guardan semejanza entre sí, otras son muy singulares por sus características patognomónicas, por ejemplo, los torus palatinos, los torus mandibulares y las exostosis de los maxilares. Sin embargo, existen ideas especulativas acerca de su etiopatogenía, de los factores asociados, de su incidencia y prevalencia, de su necesidad de tratamiento, entre otras. El propósito de esta revisión es presentar la información existente sobre estas patologías en textos usados para la formación de profesionales de salud en nuestro medio y en el ámbito universal, y en otras publicaciones que hayan servido de soporte a las ideas concebidas acerca de los torus y las exostosis, haciendo énfasis en los aspectos diagnósticos. Se pretende que esta información sirva de orientación para investigaciones futuras.
Nonlinear Dynamic Analysis of the Whole Vehicle on Bumpy Road
Institute of Scientific and Technical Information of China (English)
王威; 李瑰贤; 宋玉玲
2010-01-01
Through the research into the characteristics of 7-DoF high dimensional nonlinear dynamics of a vehicle on bumpy road, the periodic movement and chaotic behavior of the vehicle were found.The methods of nonlinear frequency response analysis, global bifurcation, frequency chart and Poincaré maps were used simultaneously to derive strange super chaotic attractor.According to Lyapunov exponents calculated by Gram-Schmidt method, the unstable region was compartmentalized and the super chaotic characteristic of ...
An Asymmetric Noncommutative Torus
Dąbrowski, Ludwik; Sitarz, Andrzej
2015-09-01
We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
The bumpy road from renewable to sustainable
Energy Technology Data Exchange (ETDEWEB)
Sinke, W.C. [ECN Solar Energy, Petten (Netherlands)
2011-08-15
Solar energy is inherently renewable, but not automatically (fully) sustainable. Few people will disagree with this general statement, but that is about where consensus ends. Photovoltaic solar energy (PV) has rapidly left behind the megawatt-era and entered the gigawatt-era a few years ago. The PV sector is currently preparing for the 'real thing', i.e. the terawattscale manufacturing and installation that is needed for substantial impact on a global level. For that reason sustainability is now high on the list of development priorities, next to cost reduction and performance enhancement. Clearly terawatt-scale use is impossible, or at least undesirable, if certain sustainability criteria are not met. It would also severely affect the credibility of PV as a solution for sustainability related problems of society. The challenge is to translate this general concept into concrete actions that are useful for research, manufacturing, installation and other parts of the PV value chain. An important and famous definition of the concept of 'sustainability', or rather of 'sustainable development' has been given in the Brundtland Report: development that meets the needs of the present without compromising the ability of future generations to meet their own needs. Although this definition catches an essential aspect of 'sustainability', it does not give concrete leads for the difficult choices that have to be made in everyday life in general, and in solar energy technology development and deployment in particular. Many other, more specific definitions and descriptions have also been developed, especially related to the narrower term 'environmental sustainability'. Unfortunately, but not unexpectedly, these do not give final answers to the questions either. This leads to strong and sometimes emotional debates, but also to confusion and misunderstanding among specialists as well as non-specialists. Dealing with (or managing
Renormalization on noncommutative torus
D'Ascanio, D; Vassilevich, D V
2016-01-01
We study a self-interacting scalar $\\varphi^4$ theory on the $d$-dimensional noncommutative torus. We determine, for the particular cases $d=2$ and $d=4$, the nonlocal counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points towards the absence of any problems related to the UV/IR mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix $\\theta$.
Torus Bifurcation Under Discretization
Institute of Scientific and Technical Information of China (English)
邹永魁; 黄明游
2002-01-01
Parameterized dynamical systems with a simple zero eigenvalue and a couple of purely imaginary eigenvalues are considered. It is proved that this type of eigen-structure leads to torns bifurcation under certain nondegenerate conditions. We show that the discrete systems, obtained by discretizing the ODEs using symmetric, eigen-structure preserving schemes, inherit the similar torus bifurcation properties. Fredholm theory in Banach spaces is applied to obtain the global torns bifurcation. Our results complement those on the study of discretization effects of global bifurcation.
Renormalization on noncommutative torus
Energy Technology Data Exchange (ETDEWEB)
D' Ascanio, D.; Pisani, P. [Universidad Nacional de La Plata, Instituto de Fisica La Plata-CONICET, La Plata (Argentina); Vassilevich, D.V. [Universidade Federal do ABC, CMCC, Santo Andre, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation)
2016-04-15
We study a self-interacting scalar φ{sup 4} theory on the d-dimensional noncommutative torus. We determine, for the particular cases d = 2 and d = 4, the counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points toward the absence of any problems related to the ultraviolet/infrared mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix θ. (orig.)
Renormalization on noncommutative torus
D'Ascanio, D.; Pisani, P.; Vassilevich, D. V.
2016-04-01
We study a self-interacting scalar \\varphi ^4 theory on the d-dimensional noncommutative torus. We determine, for the particular cases d=2 and d=4, the counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points toward the absence of any problems related to the ultraviolet/infrared mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix θ.
Schmieding, Lasse C.; Lauga, Eric; Montenegro-Johnson, Thomas D.
2017-03-01
Phoretic swimmers provide new avenues to study nonequilibrium statistical physics and are also hailed as a promising technology for bioengineering at the cellular scale. Exact solutions for the locomotion of such swimmers have been restricted so far to spheroidal shapes. In this paper we solve for the flow induced by the canonical nonsimply connected shape, namely an axisymmetric phoretic torus. The analytical solution takes the form of an infinite series solution, which we validate against boundary element computations. For a torus of uniform chemical activity, confinement effects in the hole allow the torus to act as a pump, which we optimize subject to fixed particle surface area. Under the same constraint, we next characterize the fastest swimming Janus torus for a variety of assumptions on the surface chemistry. Perhaps surprisingly, none of the optimal tori occur in the limit where the central hole vanishes.
Gallagher, S C; Everett, J E; Keating, S; Deo, R P
2013-01-01
Mass ejection in the form of winds or jets appears to be as fundamental to quasar activity as accretion, and can be directly observed in many objects with broadened and blue-shifted UV absorption features. A convincing argument for radiation pressure driving this ionized outflow can be made within the dust sublimation radius. Beyond, radiation pressure is even more important, as high energy photons from the central engine can now push on dust grains. This physics underlies the dusty-wind model for the putative obscuring torus. Specifically, the dusty wind in our model is first launched from the outer accretion disk as a magneto-centrifugal wind and then accelerated and shaped by radiation pressure from the central continuum. Such a wind can plausibly account for both the necessary obscuring medium to explain the ratio of broad-to-narrow-line objects and the mid-infrared emission commonly seen in quasar spectral energy distributions. A convincing demonstration that large-scale, organized magnetic fields are pr...
Roth, J. R.
1977-01-01
The degree of toroidal symmetry of the plasma, the number of midplane electrode rings, the configuration of electrode rings, and the location of the diagnostic instruments with respect to the electrode rings used to generate the plasma are discussed. Impurities were deliberately introduced into the plasma, and the effects of the impurity fraction on ion kinetic temperature and electron number density were observed. It is concluded that, if necessary precautions are taken, the plasma communicates extremely well along the magnetic field lines and displays a high degree of symmetry from sector to sector for a wide range of electrode ring configurations and operating conditions. Finally, some characteristic data taken under nonoptimized conditions are presented, which include the highest electron number density and the longest particle containment time (1.9 msec) observed. Also, evidence from a paired comparison test is presented which shows that the electric field acting along the minor radius of the toroidal plasma improves the plasma density and the calculated containment time more than an order of magnitude if the electric field points inward, relative to the values observed when it points (and pushes ions) radially outward.
Modeling the Europa plasma torus
Schreier, Ron; Eviatar, Aharon; Vasyliunas, Vytenis M.; Richardson, John D.
1993-12-01
The existence of a torus of plasma generated by sputtering from Jupiter's satellite Europa has long been suspected but never yet convincingly demonstrated. Temperature profiles from Voyager plasma observations indicate the presence of hot, possibly freshly picked-up ions in the general vicinity of the orbit of Europa, which may be interpreted as evidence for a local plasma torus. Studies of ion partitioning in the outer regions of the Io torus reveal that the oxygen to sulfur mixing ratio varies with radial distance; this may indicates that oxygen-rich matter is injected from a non-Io source, most probably Europa. We have constructed a quantitative model of a plasma torus near the orbit of Europa which takes into account plasma input from the Io torus, sputtering from the surface of Europa, a great number of ionization and charge exchange processes, and plasma loss by diffusive transport. When the transport time is chosen so that the model's total number density in consistent with the observed total plasma density, the contribution from Europa is found to be significant although not dominant. The model predicts in detail the ion composition, charge states, and the relative fractions of hot Europa-generated and (presumed) cold Io-generated ions. The results are generally consistent with observations from Voyager and can in principle (subject to limitations of data coverage) be confirmed in more detail by Ulysses.
Constraining the Europa Neutral Torus
Smith, Howard T.; Mitchell, Donald; mauk, Barry; Johnson, Robert E.; clark, george
2016-10-01
"Neutral tori" consist of neutral particles that usually co-orbit along with their source forming a toroidal (or partial toroidal) feature around the planet. The distribution and composition of these features can often provide important, if not unique, insight into magnetospheric particles sources, mechanisms and dynamics. However, these features can often be difficult to directly detect. One innovative method for detecting neutral tori is by observing Energetic Neutral Atoms (ENAs) that are generally considered produced as a result of charge exchange interactions between charged and neutral particles.Mauk et al. (2003) reported the detection of a Europa neutral particle torus using ENA observations. The presence of a Europa torus has extremely large implications for upcoming missions to Jupiter as well as understanding possible activity at this moon and providing critical insight into what lies beneath the surface of this icy ocean world. However, ENAs can also be produced as a result of charge exchange interactions between two ionized particles and in that case cannot be used to infer the presence of neutral particle population. Thus, a detailed examination of all possible source interactions must be considered before one can confirm that likely original source population of these ENA images is actually a Europa neutral particle torus. For this talk, we examine the viability that the Mauk et al. (2003) observations were actually generated from a neutral torus emanating from Europa as opposed to charge particle interactions with plasma originating from Io. These results help constrain such a torus as well as Europa source processes.
EBT: an alternate concept to tokamaks and mirrors
Energy Technology Data Exchange (ETDEWEB)
Glowienka, J.C.
1980-01-01
The ELMO Bumpy Torus (EBT) is a hybrid magnetic trap formed by a series of toroidally connected simple mirrors. It differs from a tokamak, the present main-line approach, in that plasma stability and heating are obtained in a current-free geometry by the application of steady-state, high power, electron cyclotron resonance heating (ECH) producing a steady-state plasma. The primary motivation for EBT confinement research is the potential for a steady-state, highly accessible reactor with high ..beta... In the present EBT-I/S device, electron confinement has been observed to agree with the predictions of theory. The major emphasis of the experimental program is on the further scaling of plasma parameters in the EBT-I/S machine with ECH frequency (10.6, 18, and 28 GHz), resonant magnetic field (0.3, 0.6, and 1 T), and heating power (30, 60, and 200 kW). In addition, substantial efforts are under way or planned in the areas of ion cyclotron heating, neutral beam heating, plasma-wall interactions, impurity control, synchrotron radiation, and divertors. Recently, EBT has been selected as the first alternative concept to be advanced to the proof-of-principle stage; this entails a major device scale-up to allow a reasonable extrapolation to a DT-burning facility. The status and future plans of the EBT program, in particular the proof-of-principle experiment (EBT-P), are discussed.
Ho, Choon-Lin; Hosotani, Yutaka
Starting from the quantum field theory of nonrelativistic matter on a torus interacting with Chern-Simons gauge fields, we derive the Schrödinger equation for an anyon system. The nonintegrable phases of the Wilson line integrals on a torus play an essential role. In addition to generating degenerate vacua, they enter in the definition of a many-body Schrödinger wave function in quantum mechanics, which can be defined as a regular function of the coordinates of anyons. It obeys a non-Abelian representation of the braid group algebra, being related to Einarsson’s wave function by a singular gauge transformation.
Rigidity theorems of Clifford Torus
Directory of Open Access Journals (Sweden)
SOUSA JR. LUIZ A. M.
2001-01-01
Full Text Available Let M be an n-dimensional closed minimally immersed hypersurface in the unit sphere Sn + 1. Assume in addition that M has constant scalar curvature or constant Gauss-Kronecker curvature. In this note we announce that if M has (n - 1 principal curvatures with the same sign everywhere, then M is isometric to a Clifford Torus .
Torus palatinus. Report of two cases
Directory of Open Access Journals (Sweden)
María Lorena Re Domínguez
2016-04-01
Full Text Available The torus is a non-neoplastic slow growing bone protuberance, which is usually manifested before the age of 30; Set in the hard palate is called “Torus Palatinus”, and located in the lower jaw – “Torus mandibularis”. In most cases, the diagnosis is usually incidental, during clinical examination, due to other reasons. The reason is that they are usually asymptomatic and patients are not aware of carrying a torus; hence the conservation treatment, unless it poses problems for the patient. We report two cases of incidental detected palatal torus in women.
Initial Diagnostics for the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
A.L. Roquemore; B. McCormack; D. Johnson; H. Kugel; R. Kaita; and the NSTX Team
1999-06-01
The spherical torus (ST) approach to magnetic confinement has many attractive features as both a fusion reactor concept and a volume neutron source. The National Spherical Torus Experiment (NSTX) is under construction at the Princeton Plasma Physics Laboratory (PPPL), and it is designed to achieve plasma parameters needed for a proof-of-principle test of the ST concept. Discharges with magnetic fields of 2.3 kG on axis and plasma currents of 1 MA will be heated with 6 MW of radio frequency (RF) power and 5 MW of neutral beams, and pulse lengths up to 5 seconds are planned. Central electron temperatures of about 4 keV are expected with RF heating, and theoretical studies show that high values of b and b{sub n} can be achieved.
Rigid body dynamics on the Poisson torus
Richter, Peter H.
2008-11-01
The theory of rigid body motion with emphasis on the modifications introduced by a Cardan suspension is outlined. The configuration space is no longer SO(3) but a 3-torus; the equivalent of the Poisson sphere, after separation of an angular variable, is a Poisson torus. Iso-energy surfaces and their bifurcations are discussed. A universal Poincaré section method is proposed.
Bifurcation structure of successive torus doubling
Energy Technology Data Exchange (ETDEWEB)
Sekikawa, Munehisa [Department of Information Science, Faculty of Engineering, Utsunomiya University (Japan)]. E-mail: muse@aihara.jst.go.jp; Inaba, Naohiko [Department of Information Science, Faculty of Engineering, Utsunomiya University (Japan)]. E-mail: inaba@is.utsunomiya-u.ac.jp; Yoshinaga, Tetsuya [Department of Radiologic Science and Engineering, School of Health Sciences, The University of Tokushima (Japan)]. E-mail: yosinaga@medsci.tokushima-u.ac.jp; Tsubouchi, Takashi [Institute of Engineering Mechanics and Systems, University of Tsukuba (Japan)]. E-mail: tsubo@esys.tsukuba.ac.jp
2006-01-02
The authors discuss the 'embryology' of successive torus doubling via the bifurcation theory, and assert that the coupled map of a logistic map and a circle map has a structure capable of generating infinite number of torus doublings.
Studies of accelerated compact toruses
Energy Technology Data Exchange (ETDEWEB)
Hartman, C.W.; Eddleman, J.; Hammer, J.H.
1983-01-04
In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.
Loop Quantum Cosmology on a Torus
Lamon, Raphael
2009-01-01
In this paper we study the effect of a torus topology on Loop Quantum Cosmology. We first derive the Teichmueller space parametrizing all possible tori using Thurston's theorem and construct a Hamiltonian describing the dynamics of these torus universes. We then compute the Ashtekar variables for a slightly simplified torus such that the Gauss constraint can be solved easily. We perform a canonical transformation so that the holomies along the edges of the torus reduce to a product between almost and strictly periodic functions of the new variables. The drawback of this transformation is that the components of the densitized triad become complicated functions of these variables. Nevertheless we find two ways of quantizing these components, which in both cases leads surprisingly to a continuous spectrum.
Acoustic propagation in a rigid torus
El-Raheb, M.; Wagner, P.
1982-01-01
The acoustic propagation in a rigid torus is analyzed using a Green's function method. Three types of surface elements are developed; a flat quadrilateral element used in modeling polygonal cavities, a curved conical element appropriate for surfaces with one curvature, and a toroidal element developed for such doubly curved surfaces as the torus. Curved elements are necessary since the acoustic pressure is sensitive to slope discontinuities between consecutive surface elements especially near cavity resonances. The acoustic characteristics of the torus are compared to those of a bend of square cross section for a frequency range that includes the transverse acoustic resonance. Two equivalences between the different sections are tested; the first conserves curvature and cross-sectional dimension while the second matches transverse resonance and duct volume. The second equivalence accurately matches the acoustic characteristics of the torus up to the cutoff frequency corresponding to a mode with two circumferential waves.
Torus bifurcations in multilevel converter systems
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Yanochkina, Olga O.
2011-01-01
embedded one into the other and with their basins of attraction delineated by intervening repelling tori. The paper illustrates the coexistence of three stable tori with different resonance behaviors and shows how reconstruction of these tori takes place across the borders of different dynamical regimes....... The paper also demonstrates how pairs of attracting and repelling tori emerge through border-collision torus-birth and border-collision torus-fold bifurcations. © 2011 World Scientific Publishing Company....
Final report on the LLNL compact torus acceleration project
Energy Technology Data Exchange (ETDEWEB)
Eddleman, J.; Hammer, J.; Hartman, C.; McLean, H.; Molvik, A.
1995-03-19
In this report, we summarize recent work at LLNL on the compact torus (CT) acceleration project. The CT accelerator is a novel technique for projecting plasmas to high velocities and reaching high energy density states. The accelerator exploits magnetic confinement in the CT to stably transport plasma over large distances and to directed kinetic energies large in comparison with the CT internal and magnetic energy. Applications range from heating and fueling magnetic fusion devices, generation of intense pulses of x-rays or neutrons for weapons effects and high energy-density fusion concepts.
Cheng, Qiang; Wang, Jian; Zhang, Shaoan
2013-01-01
Guided by cultural border crossing and teacher identity development theories, this case study explores the bumpy process of a junior Chinese faculty member's border crossing into the U.S. teaching culture and analyzes the challenges, coping strategies, and consequences of his border crossing on teaching and teacher identity development. The…
Directory of Open Access Journals (Sweden)
Masahiro Nakamura
2012-01-01
Full Text Available In this paper, we consider the following sliding puzzle called torus puzzle. In an m by n board, there are mn pieces numbered from 1 to mn. Initially, the pieces are placed in ascending order. Then they are scrambled by rotating the rows and columns without the player’s knowledge. The objective of the torus puzzle is to rearrange the pieces in ascending order by rotating the rows and columns. We provide a solution to this puzzle. In addition, we provide lower and upper bounds on the number of steps for solving the puzzle. Moreover, we consider a variant of the torus puzzle in which each piece is colored either black or white, and we present a hardness result for solving it.
Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas
Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.
2015-12-01
We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.
Diffusion on the torus for Hamiltonian maps
Energy Technology Data Exchange (ETDEWEB)
Siboni, S. (Istituto di Fisica dell' Universita Bologna (Italy) Centre de Physique Theorique, Marseille (France)); Turchetti, G. (Istituto di Fisica dell' Universita Bologna (Italy)); Vaienti, S. (Centre de Physique Theorique, Marseille (France) Universite de Toulon et du Var (France))
1994-04-01
For a mapping of the torus T[sup 2] the authors propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T[sup 2]. The definition of D, based on the limit of moments of the invariant measure, depends on the set [Omega] where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets [Omega] in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons [Omega] and for arbitrary moments. 13 refs., 3 figs.
Linear Parabolic Maps on the Torus
Zyczkowski, K; Zyczkowski, Karol; Nishikawa, Takashi
1999-01-01
We investigate linear parabolic maps on the torus. In a generic case these maps are non-invertible and discontinuous. Although the metric entropy of these systems is equal to zero, their dynamics is non-trivial due to folding of the image of the unit square into the torus. We study the structure of the maximal invariant set, and in a generic case we prove the sensitive dependence on the initial conditions. We study the decay of correlations and the diffusion in the corresponding system on the plane. We also demonstrate how the rationality of the real numbers defining the map influences the dynamical properties of the system.
Equilibrium-torus bifurcation in nonsmooth systems
DEFF Research Database (Denmark)
Zhusubahyev, Z.T.; Mosekilde, Erik
2008-01-01
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... linear approximation to our system in the neighbourhood of the border. We determine the functional relationships between the parameters of the normal form map and the actual system and illustrate how the normal form theory can predict the bifurcation behaviour along the border-collision equilibrium......-torus bifurcation curve....
On Chebyshev polynomials and torus knots
Gavrilik, A. M.; Pavlyuk, A. M.
2009-01-01
In this work we demonstrate that the q-numbers and their two-parameter generalization, the q,p-numbers, can be used to obtain some polynomial invariants for torus knots and links. First, we show that the q-numbers, which are closely connected with the Chebyshev polynomials, can also be related with the Alexander polynomials for the class T(s,2) of torus knots, s being an odd integer, and used for finding the corresponding skein relation. Then, we develop this procedure in order to obtain, wit...
Directory of Open Access Journals (Sweden)
Manuel Ramon Osorio Castillo
2014-06-01
Full Text Available ResumenLos huesos maxilares no son ajenos a las patologías que se pueden presentar en el sistema esquelético. Algunas de esas condiciones y patologías son singulares por sus características clínicas, su distribución y prevalencia. Los torus palatinos, los torus mandibulares (TM y las exostosis de los maxilares son un claro ejemplo de ellos. Hasta la presente existen ideas especulativas acerca de su etiopatogenia, de los factores asociados, de su incidencia y prevalencia, de su necesidad de tratamiento, lo que puede crear confusión entre los clínicos tanto en diagnóstico como en el manejo.El torus como tumor óseo benigno puede localizarse en el maxilar a nivel del paladar, o en la mandíbula a nivel de las tablas internas; o puede aparecer en cualquier parte del esqueleto. El TM es una exostosis o crecimiento óseo en la superficie lingual de la mandíbula. Este crecimiento ocurre generalmente cerca de la línea milohioidea, opuesto a los premolares, pero se puede extender del canino al primer molar. La mucosa que los recubre tiende a ser fina y no tolera por lo general las fuerzas de las prótesis que se colocan encima de ellos. La incidencia del torus de la mandíbula es baja en el 6% a 12.5% entre caucásicos y en los habitantes de la llanura africana. De manera contraria, algunos autores reportan una prevalencia mucho más elevada en la Costa Atlántica Colombiana.Se presenta el caso de un paciente con torus mandibulares bilaterales, con muchos años de crecimiento, hasta que por situaciones tanto fonéticas como de ulceraciones repetitivas decidió someterse al acto quirúrgico de forma bilateral. Se presentan algunas consideraciones para el manejo de esta. (Duazary 2008; 111-114AbstractThe jawbone is not a strange to the pathologies that can occur in the skeletal system. Some of these terms and conditions are unique for their clinical features, distribution and prevalence. The torus palate, jawbone torus (TM in spanish and
Surgical management of palatine Torus - case series
Directory of Open Access Journals (Sweden)
Thaís Sumie Nozu Imada
Full Text Available INTRODUCTION: Torus palatinus is a specific name to identify exostoses developed in the hard palate along the median palatine suture. Despite of not being a pathological condition, its presence requires attention and knowledge regarding its management. Surgical removal of exostoses is indicated when the patient frequently traumatizes the area of palatine torus during mastication and speech or when it is necessary for the rehabilitation of the upper arcade with complete dentures. OBJECTIVE: The aim of this article is to present three cases of Torus palatinus and to discuss the management of them. CASE REPORT: In the first case, a 57-year-old Caucasian man sought oral rehabilitation of his edentulous maxilla but presented a hard nodules in the hard palate; in the second case, a 40-year-old Caucasian woman was referred for frequent trauma of palatal mucosa during mastication, aesthetic complaint, and discomfort caused by the trauma of her tongue in this area; and in the third case, a 45-year-old Caucasian woman presented with a lesion on the palate that caused difficulty swallowing. When the Torus palatinus was impairing the basic physiological functions of the patients, all cases were surgically treated, improving the patients' quality of life. FINAL CONSIDERATION: The dentist should be properly prepared to choose the best from among the existing surgical approaches for each individual lesion in order to improve the results and avoid possible complications.
Refined large N duality for torus knots
DEFF Research Database (Denmark)
Nawata, Satoshi; Kameyama, Masaya
We formulate large N duality of U(N) refined Chern-Simons theory with a torus knot/link in S³. By studying refined BPS states in M-theory, we provide the explicit form of low-energy effective actions of Type IIA string theory with D4-branes on the Ω-background. This form enables us to relate...
Large N reduction on a twisted torus
González-Arroyo, A; Neuberger, H
2005-01-01
We consider SU(N) lattice gauge theory at infinite N defined on a torus with a CP invariant twist. Massless fermions are incorporated in an elegant way, while keeping them quenched. We present some numerical results which suggest that twisting can make numerical simulations of planar QCD more efficient.
Magnetostatics of the uniformly polarized torus
DEFF Research Database (Denmark)
Beleggia, Marco; De Graef, Marc; Millev, Yonko
2009-01-01
We provide an exhaustive description of the magnetostatics of the uniformly polarized torus and its derivative self-intersecting (spindle) shapes. In the process, two complementary approaches have been implemented, position-space analysis of the Laplace equation with inhomogeneous boundary...
Induction effects of torus knots and unknots
Oberti, Chiara; Ricca, Renzo L.
2017-09-01
Geometric and topological aspects associated with induction effects of field lines in the shape of torus knots/unknots are examined and discussed in detail. Knots are assumed to lie on a mathematical torus of circular cross-section and are parametrized by standard equations. The induced field is computed by direct integration of the Biot-Savart law. Field line patterns of the induced field are obtained and several properties are examined for a large family of knots/unknots up to 51 crossings. The intensity of the induced field at the origin of the reference system (center of the torus) is found to depend linearly on the number of toroidal coils and reaches maximum values near the boundary of the mathematical torus. New analytical estimates and bounds on energy and helicity are established in terms of winding number and minimum crossing number. These results find useful applications in several contexts when the source field is either vorticity, electric current or magnetic field, from vortex dynamics to astrophysics and plasma physics, where highly braided magnetic fields and currents are present.
Institute of Scientific and Technical Information of China (English)
Chong Qing CHENG
2011-01-01
Given an integrable Hamiltonian ho with n-degrees of freedom and a Diophantine frequency w, then, arbitrarily close to ho in the Cr topology with r ＜ 2n, there exists an analytical Hamiltonian h∈ with no KAM torus of rotation vector w. In contrast with it, KAM tori exist if perturbations are small in Cr topology with r ＞ 2n.
Vertex Algebra Sheaf Structure on Torus
Institute of Scientific and Technical Information of China (English)
SUN Yuan-yuan
2016-01-01
In this paper, we first give a 1-1 corresponds between torus C/Λand cubic curve C in P2C. As complex manifold, they are isomorphic, therefore we can treat C/Λas a variety and construction a vertex algebra sheaf on it.
Refined large N duality for torus knots
DEFF Research Database (Denmark)
Nawata, Satoshi; Kameyama, Masaya
We formulate large N duality of U(N) refined Chern-Simons theory with a torus knot/link in S³. By studying refined BPS states in M-theory, we provide the explicit form of low-energy effective actions of Type IIA string theory with D4-branes on the Ω-background. This form enables us to relate...
Energy Technology Data Exchange (ETDEWEB)
Carpenter, K.H.; Steimle, R.F.
1984-10-01
Theoretical and experimental studies relating to the diamagnetism of the EBT electron rings have contributed to a better understanding of ring energy and geometry. The primary experimental effort during the past year was the taking of data using the UMR Hall Effect Diamagnetic Diagnostic instrument with the probes mounted along the horizontal midplane at the large major radius position of an EBT cavity. Analysis of this data has confirmed earlier indications of an electron ring component being present near the cavity wall.
Quantum entanglement in topological phases on a torus
Luo, Zhu-Xi; Hu, Yu-Ting; Wu, Yong-Shi
2016-08-01
In this paper, we study the effect of nontrivial spatial topology on quantum entanglement by examining the degenerate ground states of a topologically ordered system on a torus. Using the string-net (fixed-point) wave function, we propose a general formula of the reduced density matrix when the system is partitioned into two cylinders. The cylindrical topology of the subsystems makes a significant difference in regard to entanglement: a global quantum number for the many-body states comes into play, together with a decomposition matrix M which describes how topological charges of the ground states decompose into boundary degrees of freedom. We obtain a general formula for entanglement entropy and generalize the concept of minimally entangled states to minimally entangled sectors. Concrete examples are demonstrated with data from both finite groups and modular tensor categories (i.e., Fibonacci, Ising, etc.), supported by numerical verification.
On Chebyshev polynomials and torus knots
Gavrilik, A M
2009-01-01
In this work we demonstrate that the q-numbers and their two-parameter generalization, the q,p-numbers, can be used to obtain some polynomial invariants for torus knots and links. First, we show that the q-numbers, which are closely connected with the Chebyshev polynomials, can also be related with the Alexander polynomials for the class T(s,2) of torus knots, s being an odd integer, and used for finding the corresponding skein relation. Then, we develop this procedure in order to obtain, with the help of q,p-numbers, the generalized two-variable Alexander polynomials, and prove their direct connection with the HOMFLY polynomials and the skein relation of the latter.
Exploring Torus Universes in Causal Dynamical Triangulations
Budd, T G
2013-01-01
Motivated by the search for new observables in nonperturbative quantum gravity, we consider Causal Dynamical Triangulations (CDT) in 2+1 dimensions with the spatial topology of a torus. This system is of particular interest, because one can study not only the global scale factor, but also global shape variables in the presence of arbitrary quantum fluctuations of the geometry. Our initial investigation focusses on the dynamics of the scale factor and uncovers a qualitatively new behaviour, which leads us to investigate a novel type of boundary conditions for the path integral. Comparing large-scale features of the emergent quantum geometry in numerical simulations with a classical minisuperspace formulation, we find partial agreement. By measuring the correlation matrix of volume fluctuations we succeed in reconstructing the effective action for the scale factor directly from the simulation data. Apart from setting the stage for the analysis of shape dynamics on the torus, the new set-up highlights the role o...
Phases of planar QCD on the torus
Narayanan, R; Narayanan, Rajamani; Neuberger, Herbert
2005-01-01
At infinite N, continuum Euclidean SU(N) gauge theory defined on a symmetrical four torus has a rich phase structure with phases where the finite volume system behaves as if it had infinite extent in some or all of the directions. In addition, fermions are automatically quenched, so planar QCD should be cheaper to solve numerically that full QCD. Large N is a relatively unexplored and worthwhile direction of research in lattice field theory.
Energy cascades for NLS on the torus
Carles, Remi
2010-01-01
We consider the nonlinear Schrodinger equation with cubic (focusing or defocusing) nonlinearity on the multidimensional torus. For special small initial data containing only five modes, we exhibit a countable set of time layers in which arbitrarily large modes are created. The proof relies on a reduction to multiphase weakly nonlinear geometric optics, and on the study of a particular two-dimensional discrete dynamical system.
Torus Knots and the Topological Vertex
Jockers, Hans; Soroush, Masoud
2012-01-01
We propose a class of toric Lagrangian A-branes on the resolved conifold that is suitable to describe torus knots on S^3. The key role is played by the SL(2,Z) transformation, which generates a general torus knot from the unknot. Applying the topological vertex to the proposed A-branes, we rederive the colored HOMFLY polynomials for torus knots, in agreement with the Rosso and Jones formula. We show that our A-model construction is mirror symmetric to the B-model analysis of Brini, Eynard and Marino. Comparing to the recent proposal by Aganagic and Vafa for knots on S^3, we demonstrate that the disk amplitude of the A-brane associated to any knot is sufficient to reconstruct the entire B-model spectral curve. Finally, the construction of toric Lagrangian A-branes is generalized to other local toric Calabi-Yau geometries, which paves the road to study knots in other three-manifolds such as lens spaces.
A new equilibrium torus solution and GRMHD initial conditions
Penna, Robert F; Narayan, Ramesh
2013-01-01
General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum di...
Studying uniform thickness II: Transversely nonsimple iterated torus knots
DEFF Research Database (Denmark)
LaFountain, Douglas
2011-01-01
We prove that an iterated torus knot type in the standard contact 3-sphere fails the uniform thickness property (UTP) if and only if it is formed from repeated positive cablings, which is precisely when an iterated torus knot supports the standard contact structure. This is the first complete UTP...... classification for a large class of knots. We also show that all iterated torus knots that fail the UTP support cabling knot types that are transversely non-simple....
Circuit-Switched Gossiping in the 3-Dimensional Torus Networks
Delmas, Olivier; Pérennes, Stéphane
1996-01-01
In this paper we describe, in the case of short messages, an efficient gossiping algorithm for 3-dimensional torus networks (wrap-around or toroidal meshes) that uses synchronous circuit-switched routing. The algorithm is based on a recursive decomposition of a torus. The algorithm requires an optimal number of rounds and a quasi-optimal number of intermediate switch settings to gossip in an $7^i \\times 7^i \\times 7^i$ torus.
Dispersionless and multicomponent BKP hierarchies with quantum torus symmetries
Li, Chuanzhong
2017-09-01
In this article, we will construct the additional perturbative quantum torus symmetry of the dispersionless BKP hierarchy based on the W∞ infinite dimensional Lie symmetry. These results show that the complete quantum torus symmetry is broken from the BKP hierarchy to its dispersionless hierarchies. Further a series of additional flows of the multicomponent BKP hierarchy will be defined and these flows constitute an N-folds direct product of the positive half of the quantum torus symmetries.
Er:YAG Laser: A New Technical Approach to Remove Torus Palatinus and Torus Mandibularis
Directory of Open Access Journals (Sweden)
J. P. Rocca
2012-01-01
Full Text Available Objective. The aim of this study was to assess the ability of Er:YAG laser to remove by excision torus mandibularis and to smooth torus palatinus exostosis. Materials and Methods. Torus mandibularis (TM and torus palatinus (TP were surgically eliminated via the Er:YAG laser using the following parameters: TM: output power ranging from 500 to 1000 mJ, frequency from 20 to 30 Hz, sapphire tips (diameter 0.8 mm, air-water spray (ratio 5/5, pulse duration 150 μsec, fluence ranging from 99592 J/cm2 to 199044,586 J/cm2. TP: a peeling technique was used to eliminate TP, as excision by slicing being impossible here. Results. TM: excision was obtained after 12730 pulses. TP: smoothing technique took more time compared with excision. Once peeling was considered to be accomplished, the use of a surgical rasp was necessary to eliminate bone spicules that could delay the wound to heal in good conditions. Conclusion. Er:YAG excision (TM or Er:YAG peeling (TP are safe clinical techniques easy to practice even if the time required for excision or surface smoothing is more than the time required with bony burs and high speed instruments.
Er:YAG Laser: A New Technical Approach to Remove Torus Palatinus and Torus Mandibularis
Rocca, J. P.; Raybaud, H.; Merigo, E.; Vescovi, P.; Fornaini, C.
2012-01-01
Objective. The aim of this study was to assess the ability of Er:YAG laser to remove by excision torus mandibularis and to smooth torus palatinus exostosis. Materials and Methods. Torus mandibularis (TM) and torus palatinus (TP) were surgically eliminated via the Er:YAG laser using the following parameters: TM: output power ranging from 500 to 1000 mJ, frequency from 20 to 30 Hz, sapphire tips (diameter 0.8 mm), air-water spray (ratio 5/5), pulse duration 150 μsec, fluence ranging from 99592 J/cm2 to 199044,586 J/cm2. TP: a peeling technique was used to eliminate TP, as excision by slicing being impossible here. Results. TM: excision was obtained after 12730 pulses. TP: smoothing technique took more time compared with excision. Once peeling was considered to be accomplished, the use of a surgical rasp was necessary to eliminate bone spicules that could delay the wound to heal in good conditions. Conclusion. Er:YAG excision (TM) or Er:YAG peeling (TP) are safe clinical techniques easy to practice even if the time required for excision or surface smoothing is more than the time required with bony burs and high speed instruments. PMID:22792500
A principle for ideal torus knots
DEFF Research Database (Denmark)
Olsen, Kasper Wibeck; Bohr, Jakob
2013-01-01
Using bent-helix embeddings, we investigate simple and knotted torus windings that are made of tubes of finite thickness. Knots which have the shortest rope length are often denoted as ideal structures. Conventionally, the ideal structures are found by rope shortening routines. It is shown...... that alternatively they can be directly determined as maximally twisted structures. In many cases these structures are also structures with zero strain-twist coupling, i.e. structures that neither rotate one or the other way under strain. We use this principle to implement rapid numerical calculations of the ideal...
Torus knots and the rational DAHA
Gorsky, Eugene; Rasmussen, Jacob; Shende, Vivek
2012-01-01
We conjecturally extract the triply graded Khovanov-Rozansky homology of the (m, n) torus knot from the unique finite dimensional simple representation of the rational DAHA of type A, rank n - 1, and central character m/n. The conjectural differentials of Gukov, Dunfield and the third author receive an explicit algebraic expression in this picture, yielding a prescription for the doubly graded Khovanov-Rozansky homologies. We match our conjecture to previous conjectures of the first author relating knot homology to q, t-Catalan numbers, and of the last three authors relating knot homology to Hilbert schemes on singular curves.
Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations
Energy Technology Data Exchange (ETDEWEB)
Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.
1986-06-01
Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.
A METHOD FOR STIFFNESS MATRIX OF TRIANGULAR TORUS ELEMENT
Directory of Open Access Journals (Sweden)
Durmuş GÜNAY
1996-01-01
Full Text Available The matrices of constants for the stiffness matrices of triangular torus elements family are generated on computer by using the expression given in literature. After the matrices are generated once, it is easy to obtain the stiffness matrices for all member of family of triangular torus elements without need for numerical integration.
Studying uniform thickness II: Transversely nonsimple iterated torus knots
DEFF Research Database (Denmark)
LaFountain, Douglas
2011-01-01
We prove that an iterated torus knot type in the standard contact 3-sphere fails the uniform thickness property (UTP) if and only if it is formed from repeated positive cablings, which is precisely when an iterated torus knot supports the standard contact structure. This is the first complete UTP...
Direct detection of the Enceladus water torus with Herschel
Hartogh, P.; Lellouch, E.; Moreno, R.; Bockelee-Morvan, D.; Biver, N.; Cassidy, T.; Rengel, M.; Jarchow, C.; Cavalie, T.; Crovisier, J.; Helmich, F. P.; Kidger, M.
Cryovolcanic activity near the south pole of Saturn's moon Enceladus produces plumes of H2O-dominated gases and ice particles, which escape and populate a torus-shaped cloud. Using submillimeter spectroscopy with Herschel, we report the direct detection of the Enceladus water vapor torus in four
Direct detection of the Enceladus water torus with Herschel
Hartogh, P.; Lellouch, E.; Moreno, R.; Bockelee-Morvan, D.; Biver, N.; Cassidy, T.; Rengel, M.; Jarchow, C.; Cavalie, T.; Crovisier, J.; Helmich, F. P.; Kidger, M.
2011-01-01
Cryovolcanic activity near the south pole of Saturn's moon Enceladus produces plumes of H2O-dominated gases and ice particles, which escape and populate a torus-shaped cloud. Using submillimeter spectroscopy with Herschel, we report the direct detection of the Enceladus water vapor torus in four rot
On some Closed Magnetic Curves on a 3-torus
Energy Technology Data Exchange (ETDEWEB)
Munteanu, Marian Ioan, E-mail: marian.ioan.munteanu@gmail.com [Alexandru Ioan Cuza University of Iaşi, Faculty of Mathematics (Romania); Nistor, Ana Irina, E-mail: ana.irina.nistor@gmail.com [Gh. Asachi Technical University of Iaşi, Department of Mathematics and Informatics (Romania)
2017-06-15
We consider two magnetic fields on the 3-torus obtained from two different contact forms on the Euclidean 3-space and we study when their corresponding normal magnetic curves are closed. We obtain periodicity conditions analogues to those for the closed geodesics on the torus.
Recent Progress on Spherical Torus Research
Energy Technology Data Exchange (ETDEWEB)
Ono, Masayuki [PPPL; Kaita, Robert [PPPL
2014-01-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.
Torus hyperplasia of the pyloric antrum.
Kim, Chi-Hun; Han, Hye Seung; Lee, Sun-Young; Kim, Byung Kook; Sung, In-Kyung; Seong, Moo Kyung; Lee, Kyung Yung
2010-01-01
Primary or idiopathic hypertrophy of the pyloric muscle in adult, so called torus hyperplasia, is an infrequent but an established entity. It is caused by a circular muscle hypertrophy affecting the lesser curvature near the pylorus. Since most of the lesions are difficult to differentiate from tumor, distal gastrectomy is usually preformed to rule out most causes of pyloric lesions including neoplastic ones through a pathological study. A 56-yr-old man with a family history of gastric cancer presented with abdominal discomfort of 1 month duration. Upper gastrointestinal endoscopy showed a 1.0 cm sized irregular submucosal lesion proximal to the pylorus to the distal antrum on the lesser curvature. On colonoscopy examination, a 1.5 cm sized protruding mass was noticed on the appendiceal orifice. Gastrectomy and cecectomy were done, and histological section revealed marked hypertrophy of the distal circular pyloric musculature and an appendiceal mucocele. To the best of our knowledge, this is the first case of torus hyperplasia with appendiceal mucocele which is found incidentally.
Arithmetic functions in torus and tree networks
Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.
2007-12-25
Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.
Holographic torus entanglement and its RG flow
Bueno, Pablo
2016-01-01
We study the universal contributions to the entanglement entropy (EE) of 2+1d and 3+1d holographic conformal field theories (CFTs) on topologically non-trivial manifolds, focusing on tori. The holographic bulk corresponds to AdS-soliton geometries. We characterize the properties of these regulator-independent EE terms as a function of both the size of the cylindrical entangling region, and the shape of the torus. In 2+1d, in the simple limit where the torus becomes a thin 1d ring, the EE reduces to a shape-independent constant $2\\gamma$. This is twice the EE obtained by bipartitioning an infinite cylinder into equal halves. We study the RG flow of $\\gamma$ by defining a renormalized EE that 1) is applicable to general QFTs, 2) resolves the failure of the area law subtraction, and 3) is inspired by the F-theorem. We find that the renormalized $\\gamma$ decreases monotonically when the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also discuss the question of non-uniqu...
Saturn in hot water: viscous evolution of the Enceladus torus
Farmer, Alison J
2008-01-01
The detection of outgassing water vapor from Enceladus is one of the great breakthroughs of the Cassini mission. The fate of this water once ionized has been widely studied; here we investigate the effects of purely neutral-neutral interactions within the Enceladus torus. We find that, thanks in part to the polar nature of the water molecule, a cold (~180 K) neutral torus would undergo rapid viscous heating and spread to the extent of the observed hydroxyl cloud, before plasma effects become important. We investigate the physics behind the spreading of the torus, paying particular attention to the competition between heating and rotational line cooling. A steady-state torus model is constructed, and it is demonstrated that the torus will be observable in the millimeter band with the upcoming Herschel satellite. The relative strength of rotational lines could be used to distinguish between physical models for the neutral cloud.
Complex Dynamics Caused by Torus Bifurcation in Power Systems
Institute of Scientific and Technical Information of China (English)
YU Xiaodan; JIA Hongjie; DONG Cun
2006-01-01
Torus bifurcation is a relatively complicated bifurcation caused by a pair of complex conjuployed to reveal the relationship between torus bifurcation and some complex dynamics.Based on theoretical analysis and simulation studies, it is found that torus bifurcation is a typical route to chaos in power system.Some complex dynamics usually occur after a torus bifurcation, such as self-organization, deep bifurcations, exquisite structure, coexistence of chaos and divergence.It is also found that chaos has close relationship with various instability scenarios of power systems.Studies of this paper are helpful to understand the mechanism of torus bifurcation in power system and relationship of chaos and power system instabilities.
Scalar Curvature for the Noncommutative Two Torus
Fathizadeh, Farzad
2011-01-01
We give a local expression for the {\\it scalar curvature} of the noncommutative two torus $ A_{\\theta} = C(\\mathbb{T}_{\\theta}^2)$ equipped with an arbitrary translation invariant complex structure and Weyl factor. This is achieved by evaluating the value of the (analytic continuation of the) {\\it spectral zeta functional} $\\zeta_a(s): = \\text{Trace}(a \\triangle^{-s})$ at $s=0$ as a linear functional in $a \\in C^{\\infty}(\\mathbb{T}_{\\theta}^2)$. A new, purely noncommutative, feature here is the appearance of the {\\it modular automorphism group} from the theory of type III factors and quantum statistical mechanics in the final formula for the curvature. This formula coincides with the formula that was recently obtained independently by Connes and Moscovici in their recent paper.
Torus CLAS12-Superconducting Magnet Quench Analysis
Energy Technology Data Exchange (ETDEWEB)
Kashikhin, V S; Elouadhiri, L; Ghoshal, P K; Kashy, D; Makarov, A; Pastor, O; Quettier, L; Velev, G; Wiseman, M
2014-06-01
The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.
An FPGA-based Torus Communication Network
Pivanti, Marcello; Simma, Hubert
2010-01-01
We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results.
An FPGA-based torus communication network
Energy Technology Data Exchange (ETDEWEB)
Pivanti, Marcello; Schifano, Sebastiano Fabio [INFN, Ferrara (Italy); Ferrara Univ. (Italy); Simma, Hubert [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC
2011-02-15
We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)
On the Torus Cobordant Cohomology Spheres
Indian Academy of Sciences (India)
Ali Özkurt; Doğan Dönmez
2009-02-01
Let be a compact Lie group. In 1960, P A Smith asked the following question: ``Is it true that for any smooth action of on a homotopy sphere with exactly two fixed points, the tangent -modules at these two points are isomorphic?" A result due to Atiyah and Bott proves that the answer is `yes’ for $\\mathbb{Z}_p$ and it is also known to be the same for connected Lie groups. In this work, we prove that two linear torus actions on $S^n$ which are -cobordant (cobordism in which inclusion of each boundary component induces isomorphisms in $\\mathbb{Z}$-cohomology) must be linearly equivalent. As a corollary, for connected case, we prove a variant of Smith’s question.
Exploring Torus Universes in Causal Dynamical Triangulations
DEFF Research Database (Denmark)
Budd, Timothy George; Loll, R.
2013-01-01
Motivated by the search for new observables in nonperturbative quantum gravity, we consider Causal Dynamical Triangulations (CDT) in 2+1 dimensions with the spatial topology of a torus. This system is of particular interest, because one can study not only the global scale factor, but also global...... shape variables in the presence of arbitrary quantum fluctuations of the geometry. Our initial investigation focusses on the dynamics of the scale factor and uncovers a qualitatively new behaviour, which leads us to investigate a novel type of boundary conditions for the path integral. Comparing large......-scale features of the emergent quantum geometry in numerical simulations with a classical minisuperspace formulation, we find partial agreement. By measuring the correlation matrix of volume fluctuations we succeed in reconstructing the effective action for the scale factor directly from the simulation data...
Acetylation of pea isolate in a torus microreactor.
Legrand, J; Guéguen, J; Berot, S; Popineau, Y; Nouri, L
1997-02-20
Acetylation, which acts on the amino groups of proteins, allows to increase the solubility and the emulsifying properties of pea isolate. Acetylation by acetic anhydride was carried out in a torus microreactor in semibatch and continuous conditions. The mixing characteristics, obtained by a residence time distribution (RTD) method, are the same in batch and continuous processes. The maximum acetylation degree reached by the torus reactor is higher than with the stirred reactor. Torus reactors are more efficient than stirred ones as shown by a conversion efficiency, defined by the quantity of modified lysine groups by consumed acetic anhydride. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 409-414, 1997.
A geometric approach to noncommutative principal torus bundles
DEFF Research Database (Denmark)
Wagner, Stefan
2013-01-01
for noncommutative algebras and say that a dynamical system (A, 핋n,α) is called a noncommutative principal 핋n-bundle, if localization leads to a trivial noncommutative principal 핋n-bundle. We prove that this approach extends the classical theory of principal torus bundles and present a bunch of (nontrivial......A (smooth) dynamical system with transformation group 핋n is a triple (A, 핋n,α), consisting of a unital locally convex algebra A, the n-torus 핋n and a group homomorphism α:핋n→Aut(A), which induces a (smooth) continuous action of 핋n on A. In this paper, we present a new, geometrically oriented...... approach to the noncommutative geometry of principal torus bundles based on such dynamical systems. Our approach is inspired by the classical setting: In fact, after recalling the definition of a trivial noncommutative principal torus bundle, we introduce a convenient (smooth) localization method...
Chern-Simons Invariants of Torus Knots and Links
Stevan, Sébastien
2010-01-01
We compute the vacuum expectation values of torus knot operators in Chern-Simons theory, and we obtain explicit formulae for all classical gauge groups and for arbitrary representations. We reproduce a known formula for the HOMFLY invariants of torus links and we obtain an analogous formula for Kauffman invariants. We also derive a formula for cable knots. We use our results to test a recently proposed conjecture that relates HOMFLY and Kauffman invariants.
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
Energy Technology Data Exchange (ETDEWEB)
Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)
2016-08-15
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
Theoretical analysis of a parabolic torus reflector antenna with multibeam
Institute of Scientific and Technical Information of China (English)
杜彪; 杨可忠; 钟顺时
1995-01-01
The parametric equations and the formulas of unit normal vector and surface element for aparabolic torus reflector antenna are derived and the mechanism of producing multibeam is proposed, Based on physical optics, the radiation pattern formulas for the antenna are given, with which the effects of geometric parameters on the antenna are studied. The good agreement between the calculated patterns and the measured ones shows that the theory is helpful for designing parabolic torus antennas.
A torus patch approximation approach for point projection on surfaces
Liu, Xiao-ming; Yang, Lei; Yong, Jun-Hai; Gu, He-Jin; Sun, Jia-Guang
2009-01-01
International audience; This paper proposes a second order geometric iteration algorithm for point projection and inversion on parametric surfaces. The iteration starts from an initial projection estimation. In each iteration, we construct a second order osculating torus patch to the parametric surface at the previous projection. Then we project the test point onto the torus patch to compute the next projection and its parameter. This iterative process is terminated when the parameter satisfi...
Directory of Open Access Journals (Sweden)
Swapna S Khatu
2011-01-01
Full Text Available Four types of elastosis perforans serpiginosa (EPS have been described in literature: 1 idiopathic EPS, 2 reactive perforating elastosis associated with connective tissue disorders, 3 in some instances of pseudoxanthoma elasticum (PXE, disease-specific calcified elastic tissue is extruded, producing a clinical picture indistinguishable from other types, may also be seen in patients undergoing hemodialysis and 4 EPS induced by long-term treatment with D-penicillamine is observed in patients suffering from Wilson′s disease. Long term D-penicillamine therapy causes an alteration in the dermal elastic tissue. D-penicillamine induced EPS has a distinctive histopathologic feature - serrated appearance of elastic fibers due to perpendicular budding from their surface giving a "lumpy-bumpy" look. D-penicillamine induced elastic fiber alteration may not always manifest clinically as EPS. We report a case of D-penicillamine induced widespread alteration in skin elastic tissue with distinct histopathologic features.
Khatu, Swapna S; Dhurat, Rachita S; Nayak, Chitra S; Pereira, Rickson R; Kagne, Rucha B
2011-01-01
Four types of elastosis perforans serpiginosa (EPS) have been described in literature: 1) idiopathic EPS, 2) reactive perforating elastosis associated with connective tissue disorders, 3) in some instances of pseudoxanthoma elasticum (PXE), disease-specific calcified elastic tissue is extruded, producing a clinical picture indistinguishable from other types, may also be seen in patients undergoing hemodialysis and 4) EPS induced by long-term treatment with D-penicillamine is observed in patients suffering from Wilson's disease. Long term D-penicillamine therapy causes an alteration in the dermal elastic tissue. D-penicillamine induced EPS has a distinctive histopathologic feature - serrated appearance of elastic fibers due to perpendicular budding from their surface giving a "lumpy-bumpy" look. D-penicillamine induced elastic fiber alteration may not always manifest clinically as EPS. We report a case of D-penicillamine induced widespread alteration in skin elastic tissue with distinct histopathologic features.
Development of a repetitive compact torus injector
Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki
2013-10-01
A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.
Gauge Theory On The Fuzzy Torus
Bigatti, D
2001-01-01
In this paper a formulation of U(1) gauge theory on a fuzzy torus is discussed. The theory is regulated in both the infrared and ultraviolet. It can be thought of as a non-commutative version of lattice gauge theory on a periodic lattice. The construction of Wilson loops is particularly transparent in this formulation. Following Ishibashi, Iso, Kawai and Kitazawa, we show that certain Fourier modes of open Wilson lines are gauge invariant. We also introduce charged matter fields which can be thought of as fundamentals of the gauge group. These particles behave like charges in a strong magnetic field and are frozen into the lowest Landau levels. The resulting system is a simple matrix quantum mechanics which should reflect much of the physics of charged particles in strong magnetic fields. The present results were first presented as a talk at the Institute for Mathematical Science, Chennai, India; the author wishes to thank Prof. T. R. Govindarajan and the IMS for hospitality and financial support, and the aud...
Steady-State Plasmas in KT5D Magnetized Torus
Institute of Scientific and Technical Information of China (English)
ZHU Zhenhua; LIU Wandong; WAN Baonian; ZHAO Yanping; LI Jiangang; YAN Longwen; YANG Qingwei; DING Xuantong; XU Min; YU Yi; WANG Zhijiang; LU Ronghua; WEN Yizhi; YU Changxuan; MA Jinxiu; WAN Shude
2007-01-01
Steady-state plasma generated by electron cyclotron resonance (ECR) wave in the KT5D magnetized torus was studied using a fast high-resolution camera and Langmuir probes. It was found that both the discharge patterns taken by the camera and the plasma parameters measured by the probes were very sensitive to the working gas pressure and the magnetic configuration of the torus both without and with vertical fields. There existed fast vertical motion of the plasma. Tentative discussion is presented about the observed phenomena such as the bright resonance layer at a high gas pressure and the wave absorption mechanism at a low pressure. Further explanations should be found.
An approach to renormalization on the n-torus.
Rockmore, Daniel; Siegel, Ralph; Tongring, Nils; Tresser, Charles
1991-07-01
The coding theory of rotations (by inspecting closely their relation to flows) and the continued fractions algorithm (by considering even two-coloring of the integers with a given proportion of, say, blue and red) are revisited. Then, even n-coloring of the integers is defined. This allows one to code rotations on the (n-1)-torus by considering linear flows on the n-torus and yields a simple geometric approach to renormalization on tori by first return maps on the coding regions.
The CLAS12 Torus Detector Magnet at Jefferson Laboratory
Energy Technology Data Exchange (ETDEWEB)
Luongo, Cesar [Jefferson Lab; Ballard, Joshua [Jefferson Lab; Biallas, George [Jefferson Lab; Elouadrhiri, Latifa [Jefferson Lab; Fair, Ruben [Jefferson Lab; Ghoshal, Probir [Jefferson Lab; Kashy, Dave [Jefferson Lab; Legg, Robert [Jefferson Lab; Pastor, Orlando [Jefferson Lab; Rajput-Ghoshal, Renuka [Jefferson Lab; Rode, Claus [Jefferson Lab; Wiseman, Mark [Jefferson Lab; Young, Glenn [Jefferson Lab; Elementi, Luciano [Fermilab; Krave, Steven [Fermilab; Makarov, Alexander [Fermilab; Nobrega, Fred [Fermilab; Velev, George [Fermilab
2015-12-17
The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.
Comments on a full quantization of the torus
Velhinho, J M
1998-01-01
Gotay showed that a representation of the whole Poisson algebra of the torus given by geometric quantization is irreducible with respect to the most natural overcomplete set of observables. We study this representation and argue that it cannot be considered as physically acceptable, since classically bounded observables are quantized by operators with unbounded spectrum. This in turn can be traced back to the non implementation of functional relations among observables. Effectively, the latter amounts to lifting the constraints that compactify both directions in the torus.
Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion
Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.
2005-01-01
A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.
Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai; Soukhoterin, Evgeniy; Mosekilde, Erik
2007-01-01
This paper discusses the mechanisms of torus formation and torus destruction in a dc/dc converter with relay control and hysteresis. We establish a chart of the dynamical modes in the input voltage versus load resistance parameter plane. This chart displays several different torus bifurcations...
Pro-Torus Actions on Poincaré Duality Spaces
Indian Academy of Sciences (India)
Ali Özkurt; Doğan Dönmez
2006-08-01
In this paper, it is shown that some of the results of torus actions on Poincaré duality spaces, Borel’s dimension formula and topological splitting principle to local weights, hold if `torus’ is replaced by `pro-torus’.
Recursive representation of the torus 1-point conformal block
Hadasz, Leszek; Suchanek, Paulina
2009-01-01
The recursive relation for the 1-point conformal block on a torus is derived and used to prove the identities between conformal blocks recently conjectured by R. Poghossian. As an illustration of the efficiency of the recurrence method the modular invariance of the 1-point Liouville correlation function is numerically analyzed.
Photodisintegration of a Bound State on the Torus
Meyer, Harvey B
2012-01-01
In this article the cross-section for the photodisintegration of a bound state is expressed, order by order in the multipole expansion, in terms of matrix elements between states living on the three-dimensional torus. The motivation is to make the process amenable to Monte-Carlo simulations. The case of the deuteron is discussed.
On projections in the noncommutative 2-torus algebra
Eckstein, Michał
2011-01-01
We investigate a set of functional equations defining an arbitrary projection in the noncommutative 2-torus algebra A_{\\theta}. The exact solutions of those provide various generalisations of the Power-Rieffel projection. By identifying the corresponding K_0 classes we get an insight into the general structure of projections in A_{\\theta}.
On Projections in the Noncommutative 2-Torus Algebra
Eckstein, Michał
2014-03-01
We investigate a set of functional equations defining a projection in the noncommutative 2-torus algebra A_{θ}. The exact solutions of these provide various generalisations of the Powers-Rieffel projection. By identifying the corresponding K_0(A_{θ}) classes we get an insight into the structure of projections in A_{θ}.
Complete spectral data for analytic Anosov maps of the torus
Slipantschuk, J.; Bandtlow, O. F.; Just, W.
2017-07-01
Using analytic properties of Blaschke factors we construct a family of analytic hyperbolic diffeomorphisms of the torus for which the spectra of the associated transfer operator acting on a suitable Hilbert space can be computed explicitly. As a result, we obtain expressions for the decay of correlations of analytic observables without resorting to any kind of perturbation argument.
Atomic force microscopy of torus-bearing pit membranes
Roland R. Dute; Thomas Elder
2011-01-01
Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...
Io Plasma Torus Ion Composition: Voyager, Galileo, Cassini
Bagenal, Fran; Nerney, Edward; Steffl, Andrew Joseph
2016-10-01
With JAXA's Hisaki spacecraft in orbit around Earth gathering information on the Io plasma torus and NASA's Juno mission measuring plasma conditions in the jovian magnetosphere, the time is ripe for a re-evaluation of earlier observations of the plasma torus to assess evidence for temporal variations. In particular, we are interested in exploring the ion composition of the torus and whether there is evidence of the ultimate source – the volcanic gases from Io – have deviated from SO2. We use the latest CHIANTI 8.0 atomic database to analyze UV spectra of the torus from Voyager, Galileo and Cassini as well as with the physical chemistry model of Delamere, Steffl and Bagenal (2005). We find that contrary to earlier analyses of Voyager data (e.g. Shemansky 1987; 1988) that produced a composition requiring a neutral source of O/S~4, we find an ion composition that is consistent with the Cassini UVIS data (Steffl et al. 2004) and a neutral O/S~2, consistent with SO2.
Progress towards Steady State at Low Aspect Ratio on the National Spherical Torus Experiment (NSTX)
Energy Technology Data Exchange (ETDEWEB)
D.A. Gates, J. Menard, R. Maingi, S. Kaye, S.A. Sabbagh, S. Diem, J.R.Wilson, M.G. Bell, R.E. Bell, J. Ferron, E.D. Fredrickson, C.E. Kessel, B.P. LeBlanc, F. Levinton, J. Manickam, D. Mueller, R. Raman, T. Stevenson, D. Stutman, G. Taylor, K. Tritz, H. Yu, and the NSTX Research Team
2007-11-08
Modifications to the plasma control capabilities and poloidal field coils of the National Spherical Torus Experiment (NSTX) have enabled a significant enhancement in shaping capability which has led to the transient achievement of a record shape factor (S ≡ q95 (Iρ/αΒτ)) of ~41 (MA m-1 Τ-1) simultaneous with a record plasma elongation of κ ≡ β /α ~ 3. This result was obtained using isoflux control and real-time equilibrium reconstruction. Achieving high shape factor together with tolerable divertor loading is an important result for future ST burning plasma experiments as exemplified by studies for future ST reactor concepts, as well as neutron producing devices, which rely on achieving high shape factors in order to achieve steady state operation while maintaining MHD stability. Statistical evidence is presented which demonstrates the expected correlation between increased shaping and improved plasma performance.
Particle Distribution Of A Moon-Fed Dust Torus
Jamrath, E.; Makuch, M.; Spahn, F.
2008-09-01
Enceladus' south-polar gey- sers support a huge gas-dust plume towering the south pole of the moon. It is considered to be the main source Saturns E-ring, the largest dust complex of the solar system. Contrary to the spherically sym- metric impactor ejecta dust cre- ation, the dust plume provides a directed particle outflow from the moon. Using a simple probabilistic model, we study the effects of this asymmetric dust ejection on Enceladus' dust torus. Dust con- figurations are described by par- ticle distribution functions and the dynamical properties of the system are adressed through a set of transformations. The re- sulting distribution function of orbital elements describes the unperturbed dust torus. We showcase the differences in the resulting particle distributions between impactor ejecta pro- cesses and dust production by Enceladus plume, modeled by a directed point-sized source. The obtained orbital element distri- bution is compared to the results of numerical simulations of the problem.
The Gauss-Bonnet Theorem for the noncommutative two torus
Connes, Alain
2009-01-01
In this paper we show that the value at zero of the zeta function of the Laplacian on the non-commutative two torus, endowed with its canonical conformal structure, is independent of the choice of the volume element (Weyl factor) given by a (non-unimodular) state. We had obtained, in the late eighties, in an unpublished computation, a general formula for this value at zero involving modified logarithms of the modular operator of the state. We give here the detailed computation and prove that the result is independent of the Weyl factor as in the classical case, thus proving the analogue of the Gauss-Bonnet theorem for the noncommutative two torus.
Fukaya categories of the torus and Dehn surgery.
Lekili, Yanki; Perutz, Timothy
2011-05-17
This paper is a companion to the authors' forthcoming work extending Heegaard Floer theory from closed 3-manifolds to compact 3-manifolds with two boundary components via quilted Floer cohomology. We describe the first interesting case of this theory: the invariants of 3-manifolds bounding S(2) [symbol: see text] T(2), regarded as modules over the Fukaya category of the punctured 2-torus. We extract a short proof of exactness of the Dehn surgery triangle in Heegaard Floer homology. We show that A(∞)-structures on the graded algebra A formed by the cohomology of two basic objects in the Fukaya category of the punctured 2-torus are governed by just two parameters (m(6), m(8)), extracted from the Hochschild cohomology of A. For the Fukaya category itself, m(6) ≠ 0.
Combinatorial realizations of crystals via torus actions on quiver varieties
Sam, Steven V
2012-01-01
Consider Kashiwara's crystal associated to a highest weight representation of a symmetric Kac--Moody algebra. There is a geometric realization of this object using Nakajima's quiver varieties. In many particular cases it can also be realized by elementary combinatorial methods. Here we propose a framework for extracting combinatorial realizations from the geometric picture: we construct certain torus actions on the quiver varieties and use Morse theory to index the irreducible components by connected components of the subvariety of torus fixed points. We then discuss the case of affine sl(n). There the fixed point components are just points, and are naturally indexed by multi-partitions. There is some choice in our construction, leading to a family of combinatorial realizations for each highest weight crystal. In the case of the crystal of the fundamental representation we recover a family of realizations which was recently constructed by Fayers. This gives a more conceptual proof of Fayers' result as well as...
Short interval expansion of R\\'enyi entropy on torus
Chen, Bin; Zhang, Jia-ju
2016-01-01
We investigate the short interval expansion of the R\\'enyi entropy for two-dimensional conformal field theory (CFT) on a torus. We require the length of the interval $\\ell$ to be small with respect to the spatial and temporal sizes of the torus. The operator product expansion of the twist operators allows us to compute the short interval expansion of the R\\'enyi entropy at any temperature. In particular, we pay special attention to the large $c$ CFTs dual to the AdS$_3$ gravity and its cousins. At both low and high temperature limits, we read the R\\'enyi entropies to order $\\ell^6$, and find good agreements with holographic results. Moreover, the expansion allows us to read $1/c$ contribution, which is hard to get by expanding the thermal density matrix. We generalize the study to the case with the chemical potential as well.
A Riemann-Roch theorem for the noncommutative two torus
Khalkhali, Masoud; Moatadelro, Ali
2014-12-01
We prove the analogue of the Riemann-Roch formula for the noncommutative two torus Aθ = C(Tθ2)equipped with an arbitrary translation invariant complex structure and a Weyl factor represented by a positive element k ∈C∞(Tθ2). We consider a topologically trivial line bundle equipped with a general holomorphic structure and the corresponding twisted Dolbeault Laplacians. We define a spectral triple (Aθ , H , D) that encodes the twisted Dolbeault complex of Aθ and whose index gives the left hand side of the Riemann-Roch formula. Using Connes' pseudodifferential calculus and heat equation techniques, we explicitly compute the b2 terms of the asymptotic expansion of Tr(e-tD2) . We find that the curvature term on the right hand side of the Riemann-Roch formula coincides with the scalar curvature of the noncommutative torus recently defined and computed in Connes and Moscovici (2014) and independently computed in Fathizadeh and Khalkhali (2014).
Fuzzy Torus and q-Deformed Lie Algebra
Nakayama, R
2006-01-01
It will be shown that the defining relations for fuzzy torus and deformed (squashed) sphere proposed by J. Arnlind, et al (hep-th/0602290) can be rewriten as a new algebra which contains q-deformed commutators. The quantum parameter q (|q|=1) is a function of \\hbar. It is shown that the q --> 1 limit of the algebra with the parameter \\mu <0 describes fuzzy S^2 and that the squashed S^2 with q \
Exact solution of an su(n) spin torus
Hao, Kun; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-01-01
The trigonometric su(n) spin chain with anti-periodic boundary condition (su(n) spin torus) is demonstrated to be Yang-Baxter integrable. Based on some intrinsic properties of the R-matrix, certain operator product identities of the transfer matrix are derived. These identities and the asymptotic behavior of the transfer matrix together allow us to obtain the exact eigenvalues in terms of an inhomogeneous T-Q relation via the off-diagonal Bethe Ansatz.
Exact solution of an su(n) spin torus
Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-07-01
The trigonometric su(n) spin chain with anti-periodic boundary condition (su(n) spin torus) is demonstrated to be Yang-Baxter integrable. Based on some intrinsic properties of the R-matrix, certain operator product identities of the transfer matrix are derived. These identities and the asymptotic behavior of the transfer matrix together allow us to obtain the exact eigenvalues in terms of an inhomogeneous T - Q relation via the off-diagonal Bethe Ansatz.
Gastric pseudo-ulcers: membrana angularis and pyloric torus defects.
Peavy, P W; Clements, J L; Weens, H S
1975-03-01
The membrana angularis and pyloric torus defects are two physiologic bulges which can simulate ulcerations along the lesser curvature of the stomach. The muscular anatomy of the stomach and the mechanism which produces these pseudo-ulcers are discussed. Both pseudoniches can be seen transiently in normal individuals but occasionally are such prominence as to become diagnostic pitfalls. The features and significance of each pseudo-ulcer are reviewed in an attempt to facilitate recognition on the upper gastrointestinal barium examination.
Gauge Fields on Torus and Partition Function of Strings
Nakamula, Atsushi
2014-01-01
In this paper we consider the interrelation between compactified string theories on torus and gauge fields on it. We start from open string theories with background gauge fields and derive partition functions by path integral. Since the effects of background fields and compactification correlate only through string zero modes, we investigate these zero modes. From this point of view, we discuss the Wilson loop mechanism at finite temperature. For the closed string, only a few comments are mentioned.
Rotation Sets of Billiards with N Obstacles on a Torus
Alsheekhhussain, Zainab
2016-01-01
For billiards with $N$ obstacles on a torus, we study the behavior of specific kind of its trajectories, \\emph{the so called admissible trajectories}. Using the methods developed in \\cite{1}, we prove that the \\emph{admissible rotation set} is convex, and the periodic trajectories of admissible type are dense in the admissible rotation set. In addition, we show that the admissible rotation set is a proper subset of the general rotation set.
Torsion Points on an Algebraic Subset of an Affine Torus
Hironaka, E
1996-01-01
Work of Laurent and Sarnak, following a conjecture of Lang, shows that the number of torsion points of order n on an algebraic subset of an affine complex torus is polynomial periodic. In this paper, we find bounds on the degree and period of this number as a function of n. Some examples, including the number of n torsion points on Fermat curves, are computed to illustrate the methods.
Recent results in the Los Alamos compact torus program
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Armstrong, W.T.; Barnes, C.W.
1983-01-01
A Compact Toroid is a toroidal magnetic-plasma-containment geometry in which no conductors or vacuum-chamber walls pass through the hole in the torus. Two types of compact toroids are studied experimentally and theoretically at Los Alamos: spheromaks that are oblate in shape and contain both toroidal and poloidal magnetic fields, and field-reversed configurations (FRC) that are very prolate and contain poloidal field only.
The torus and the Klein Bottle amplitude of permutation orbifolds
Kadar, Z
2000-01-01
The torus and the Klein bottle amplitude coefficients are computed in permutation orbifolds of RCFT-s in terms of the same quantities in the original theory and the twist group. An explicit expression is presented for the number of self conjugate primaries in the orbifold as a polynomial of the total number of primaries and the number of self conjugate ones in the parent theory. The formulae in the $Z_2$ orbifold illustrate the general results.
Io plasma torus ion composition: Voyager, Galileo, and Cassini
Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.
2017-01-01
The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.
Gauge Theory of the Generalized Symmetry on the Torus Membrane
Institute of Scientific and Technical Information of China (English)
ZHAO WeiZhong; WANG Hong; ZHANG Jun
2001-01-01
The SDIFF(T2)local-generalized Kac-Moody G(T2) symmetry is an infinite-dimensional group on the torus membrane, whose Lie algebra is the semi-direct sum of the SDIFF(T2)local algebra and the generalized KacMoody algebra g(T2). In this paper, we construct the linearly realized gauge theory of the SDIFF(T2)loc1al-generalized Kac-Moody G(T2) symmetry.``
Energy Technology Data Exchange (ETDEWEB)
Casini, G.
1988-05-01
A review of the breeding blankets under study in Europe for testing in the Next European Torus is presented. In many concepts, the breeder modules are enclosed in boxes whose side walls in front of the plasma act as the first wall of the machine. Various types of breeder modules are investigated, involving both liquid and solid breeders, namely: - Pb-17Li liquid breeder concepts, the coolant being either water or Pb-17Li itself; - solid (ceramic) breeder concepts, the coolant being in all cases helium. The various ceramic concepts differ in the breeder/coolant arrangement (breeder-out-of-tube and breeder-in-tube), the orientation of the coolant tubes (poloidal or toroidal) and the breeder geometry (rods, plates or pebble bed). For each of these concepts the main design features are shown and the thermomechanical problems are discussed. The problems related to a coolant tube rupture are in many cases the most severe from the structural design point of view. The first wall box enclosing the breeder modules appears to be a weak secondary containment barrier. The liquid breeder-water cooled concept looks manageable from the thermal and structural design of point view. In the case of the self-cooled liquid breeder concept, the main problems are related to the magnetohydrodynamic effects. Solutions are envisaged to overcome these difficulties. In the case of ceramic breeders, the use of plates implies small dimensions in order to limit the thermal stresses and a poor exploitation of the permitted temperature operation window. Solutions involving rods associated with a multipass cooling scheme or pebble bed enable achievement of better thermomechanical conditions and, therefore, are preferred in the current investigations. However, they lead to design complications and require experimental verification which is in progress at the European laboratories.
Configuration spaces of an embedding torus and cubical spaces
Jourdan, Jean-Philippe
2006-01-01
For a smooth manifold M obtained as an embedding torus, A U Cx[-1,1], we consider the ordered configuration space F_k(M) of k distinct points in M. We show that there is a homotopical cubical resolution of F_k(M) defined from the configuration spaces of A and C. From it, we deduce a universal method for the computation of the pure braid groups of a manifold. We illustrate the method in the case of the Mobius band.
Free compact boson on branched covering of the torus
Directory of Open Access Journals (Sweden)
Feihu Liu
2017-08-01
Full Text Available We have studied the partition function of a free compact boson on a n-sheeted covering of torus gluing along m branch cuts. It is interesting because when the branched cuts are chosen to be real, the partition function is related to the n-th Rényi entanglement entropy of m disjoint intervals in a finite system at finite temperature. After proposing a canonical homology basis and its dual basis of the covering surface, we find that the partition function can be written in terms of theta functions.
Punctured torus groups and 2-bridge knot groups
Akiyoshi, Hirotaka; Wada, Masaaki; Yamashita, Yasushi
2007-01-01
This monograph is Part 1 of a book project intended to give a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization, with application to knot theory. Although Jorgensen's original work was not published in complete form, it has been a source of inspiration. In particular, it has motivated and guided Thurston's revolutionary study of low-dimensional geometric topology. In this monograph, we give an elementary and self-contained description of Jorgensen's theory with a complete proof. Through various informative illustrations, readers are naturally led to an intuitive, synthetic grasp of the theory, which clarifies how a very simple fuchsian group evolves into complicated Kleinian groups.
Multiple Chern-Simons fields on a torus
Wesolowski, D J; Ho, C L
1994-01-01
Intertwined multiple Chern-Simons gauge fields induce matrix statistics among particles. We analyse this theory on a torus, focusing on the vacuum structure and the Hilbert space. The theory can be mimicked, although not completely, by an effective theory with one Chern-Simons gauge field. The correspondence between the Wilson line integrals, vacuum degeneracy and wave functions for these two theories are discussed. Further, it is obtained in both of these cases that the two total momenta and Hamiltonian commute only in the physical Hilbert space.
General Equilibrium Property of Spherical Torus Configurations with Large Triangularity
Institute of Scientific and Technical Information of China (English)
SHIBingren
2003-01-01
In magnetic fusion research, two sorts of axi-symmetric toroidal equilibrium configuration are mostly interested. One is the conventional tokamak that has an aspect ratio 2. 8torus (the ST configuration) with A≤1.4.For tokamaks, it is generally observed that equilibrium configurations with large triangular deformation usually has the merit of stabilizing higher beta plasma and better confinement scaling so that higher βN/li value can be attained. This was also verified theoretically in the ballooning mode analysis.
The torus parametrization of quasiperiodic LI-classes
Baake, M; Pleasants, P A B
2002-01-01
The torus parametrization of quasiperiodic local isomorphism classes is introduced and used to determine the number of elements in such a class with special symmetries or inflation properties. The method is explained in an illustrative fashion for some widely used tiling classes with golden mean rescaling, namely for the Fibonacci chain (1D), the triangle and Penrose patterns (2D) and for Kramer's and Danzer's icosahedral tilings (3D). We obtain a rather complete picture of the orbit structure within these classes, but discuss also various general results.
Legendrian and transverse cables of positive torus knots
DEFF Research Database (Denmark)
Etnyre, John; LaFountain, Douglas; Tosun, Bülent
2012-01-01
In this paper we classify Legendrian and transverse knots in the knot types obtained from positive torus knots by cabling. This classification allows us to demonstrate several new phenomena. Specifically, we show there are knot types that have non-destabilizable Legendrian representatives whose...... Thurston-Bennequin invariant is arbitrarily far from maximal. We also exhibit Legendrian knots requiring arbitrarily many stabilizations before they become Legendrian isotopic. Similar new phenomena are observed for transverse knots. To achieve these results we define and study "partially thickenable" tori...
Invariant sets for discontinuous parabolic area-preserving torus maps
Ashwin, P; Nishikawa, T; Zyczkowski, K; Ashwin, Peter; Fu, Xin-Chu; Nishikawa, Takashi; Zyczkowski, Karol
1999-01-01
We analyze a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in both components. We show that within this two parameter family of maps, the set of noninvertible maps is open and dense. For certain cases (where the entries in the matrix are rational) we show that the maximal invariant set has positive Lebesgue measure and give bounds on the measure. For certain examples we find expressions for the measure of the invariant set.
p-adic string compactified on a torus
Energy Technology Data Exchange (ETDEWEB)
Chekhov, L.; Zinoviev, Yu. (Steklov (V.A.) Inst. of Mathematics, Moscow (USSR))
1990-10-01
The open p-adic string world sheet is a coset space F = T/{Gamma}, where T is the Bruhat-Tits tree for the p-adic linear group GL(2,Q{sub p}) and c PGL(2,Q{sub p})is some Schottky group. The string dynamics is governed by the local action on F, with the fields taking values in a compact groupg G. We find the correlation functions and partition functions for the p-adic string surfaces of arbitrary genus and G = U(1){sup xD} (D-dimensional torus). (orig.).
Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera
Jansen, S.; Choat, B.; Vinckier, S.; Lens, F.; Schols, P.; Smets, E.
2004-01-01
• The distribution of intervascular pit membranes with a torus was investigated in juvenile wood samples of 19 species of Ulmus and seven related genera. • A staining solution of safranin and alcian blue (35 : 65) was recommended to distinguish torus-bearing pit membranes using light microscopy. • I
Modeling physical chemistry of the Io plasma torus in two dimensions
Copper, M.; Delamere, P. A.; Overcast-Howe, K.
2016-07-01
Periodicities in the Io plasma illustrate the rich complexity of magnetosphere-ionosphere coupling in space plasmas. The confounding System IV period (slower than the rotation of Jupiter's magnetic field ≡ System III) remains a mystery of the torus. Common to both System III and IV are modulations of the superthermal electron population. The small fraction (<1%) of hot electrons plays a vital role in torus physical and chemical properties, modulating the abundance and temperature of ion species. Building on previous models of torus physical chemistry, we have developed a two-dimensional model that includes azimuthal and radial transport (diffusion equation) while averaging chemical processes in latitude. This paper presents initial results of the model, demonstrating the role of hot electrons in forming a single-peaked torus structure. The effect of azimuthal shear is investigated as plasma is transported radially outward, showing how the torus properties evolve during transport from a chemically dominated regime (inner torus) to a transport dominated regime (outer torus). Surprisingly, we find that hot electron populations influence torus properties at all radial distances. While many of our results are preliminary, suggestions for future modeling experiments are suggested to provide additional insight into the origin of the ubiquitous superthermal electrons.
Fabricating of full denture acrylic protheses with palatine torus
Directory of Open Access Journals (Sweden)
Ima Hariyati
2016-06-01
Full Text Available Full denture acrylic protheses can substitute all maxillary or mandibulary teeth naturally. The objective of fabricating full denture protheses is to substitute the tissue lost that was occupied by teeth or connective tissue before ward. This is a case of a 43 year old female with lost of all her upper and lower teeth. At the maxilla there is a palatine torus spreading along the midline with 25 mm length, 10 mm width and 6mm height. She has never worn prothese before. The process of full denture protheses fabrication were carried out in several steps, starting from making anatomical impression to get study model, making of individual stock tray, making functional impression to get working model, choosing the design, making of midline, making of bite rim, inserting the model on articulator, preparing artificial teeth arrangement, fitting the wax, countoring wax, flasking, boiling out, packing, curing, deflasking, finishing, polishing and inserting the protheses. The process of this full denture protheses fabrication used tin foil as reducer to prevent overpressure of the tissue around the thin torus area so the prothesis will be more comfortable for the patient. The result was the protheses can be used by the patient, nicely and comfortably.
Divertor Heat Flux Mitigation in the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D
2008-08-04
Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.
Variation of Inner Radius of Dust Torus in NGC4151
Koshida, Shintaro; Kobayashi, Yukiyasu; Minezaki, Takeo; Sakata, Yu; Sugawara, Shota; Enya, Keigo; Suganuma, Masahiro; Tomita, Hiroyuki; Aoki, Tsutomu; Peterson, Bruce A
2009-01-01
The long-term optical and near infrared monitoring observations for a type 1 act ive galactic nucleus NGC 4151 were carried out for six years from 2001 to 2006 b y using the MAGNUM telescope, and delayed response of flux variations in the $K(2.2\\mu m)$ band to those in the $V(0.55\\mu m)$ band was clearly detected. Based on cross correlation analysis, we precisely measured a lag time $\\Delta t$ for eight separate periods, and we found that $\\Delta t$ is not constant changing be tween 30 and 70 days during the monitoring period. Since $\\Delta t$ is the ligh t travel time from the central energy source out to the surrounding dust torus, this is the first convincing evidence that the inner radius of dust torus did ch ange in an individual AGN. In order to relate such a change of $\\Delta t$ with a change of AGN luminosity $L$, we presented a method of taking an average of th e observed $V$-band fluxes that corresponds to the measured value of $\\Delta t$, and we found that the time-changing track of NGC 4151 in the...
Solitons on Noncommutative Torus as Elliptic Algebras and Elliptic Models
Hou, B Y; Shi, K J; Yue, R H; Hou, Bo-Yu; Peng, Dan-tao; Shi, Kang-Jie; Yue, Rui-Hong
2001-01-01
For the noncommutative torus ${\\cal T}$, in case of the N.C. parameter $\\theta = \\frac{Z}{n}$ and the area of ${\\cal T}$ is an integer, we construct the basis of Hilbert space ${\\cal H}_n$ in terms of $\\theta$ functions of the positions of $n$ solitons. The Wilson loop wrapping the solitons around the torus generates the algebra ${\\cal A}_n$. We find that ${\\cal A}_n$ is isomorphic to the $Z_n \\times Z_n$ Heisenberg group on $\\theta$ functions. We find the explicit form for the solitons local translation operators, show that it is the generators $g$ of an elliptic $su(n)$, which transform covariantly by the global gauge transformation of the Wilson loop in ${\\cal A}_n$. Then by acting on ${\\cal H}_n$ we establish the isomorphism of ${\\cal A}_n$ and $g$. Then it is easy to give the projection operators corresponding to the solitons and the ABS construction for generating solitons. We embed this $g$ into elliptic Gaudin and C.M. models to give the dynamics. For $\\theta$ generic case, we introduce the crossing p...
Engineering design of the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
C. Neumeyer; P. Heitzenroeder; J. Spitzer, J. Chrzanowski; et al
2000-05-11
NSTX is a proof-of-principle experiment aimed at exploring the physics of the ``spherical torus'' (ST) configuration, which is predicted to exhibit more efficient magnetic confinement than conventional large aspect ratio tokamaks, amongst other advantages. The low aspect ratio (R/a, typically 1.2--2 in ST designs compared to 4--5 in conventional tokamaks) decreases the available cross sectional area through the center of the torus for toroidal and poloidal field coil conductors, vacuum vessel wall, plasma facing components, etc., thus increasing the need to deploy all components within the so-called ``center stack'' in the most efficient manner possible. Several unique design features have been developed for the NSTX center stack, and careful engineering of this region of the machine, utilizing materials up to their engineering allowables, has been key to meeting the desired objectives. The design and construction of the machine has been accomplished in a rapid and cost effective manner thanks to the availability of extensive facilities, a strong experience base from the TFTR era, and good cooperation between institutions.
Holographic torus entanglement and its renormalization group flow
Bueno, Pablo; Witczak-Krempa, William
2017-03-01
We study the universal contributions to the entanglement entropy (EE) of 2 +1 -dimensional and 3 +1 -dimensional holographic conformal field theories (CFTs) on topologically nontrivial manifolds, focusing on tori. The holographic bulk corresponds to anti-de Sitter-soliton geometries. We characterize the properties of these regulator-independent EE terms as a function of both the size of the cylindrical entangling region, and the shape of the torus. In 2 +1 dimensions, in the simple limit where the torus becomes a thin one-dimensional ring, the EE reduces to a shape-independent constant 2 γ . This is twice the EE obtained by bipartitioning an infinite cylinder into equal halves. We study the renormalization group flow of γ by defining a renormalized EE that (1) is applicable to general QFTs, (2) resolves the failure of the area law subtraction, and (3) is inspired by the F-theorem. We find that the renormalized γ decreases monotonically at small coupling when the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also discuss the question of nonuniqueness of such renormalized EEs both in 2 +1 dimensions and 3 +1 dimensions.
Superconformal index and 3d-3d correspondence for mapping cylinder/torus
Energy Technology Data Exchange (ETDEWEB)
Gang, Dongmin; Koh, Eunkyung [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Sangmin [Center for Theoretical Physics, Seoul National University,1 Gwanak-ro, Seoul 151-747 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University,1 Gwanak-ro, Seoul 151-747 (Korea, Republic of); College of Liberal Studies, Seoul National University,1 Gwanak-ro, Seoul 151-742 (Korea, Republic of); Park, Jaemo [Department of Physics, POSTECH,77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Postech Center for Theoretical Physics (PCTP), Postech,77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of)
2014-01-15
We probe the 3d-3d correspondence for mapping cylinder/torus using the superconformal index. We focus on the case when the fiber is a once-punctured torus (Σ{sub 1,1}). The corresponding 3d field theories can be realized using duality domain wall theories in 4d N=2{sup ∗} theory. We show that the superconformal indices of the 3d theories are the SL(2,ℂ) Chern-Simons partition function on the mapping cylinder/torus. For the mapping torus, we also consider another realization of the corresponding 3d theory associated with ideal triangulation. The equality between the indices from the two descriptions for the mapping torus theory is reduced to a simple basis change of the Hilbert space for the SL(2,ℂ) Chern-Simons theory on ℝ×Σ{sub 1,1}.
Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji
2016-04-01
Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.
Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji
2016-01-01
Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H2O2. PMID:27043575
Cassini-plasma interactions in the Enceladus torus
Yaroshenko, V. V.; Miloch, W. J.; Morfill, G. E.
2012-04-01
This study reports the results of the first simulations of spacecraft-plasma interactions within the proposed Enceladus torus, a radially narrow toroidal region surrounding Saturn that contains a high density of water-group neutrals. Charge exchange collisions scatter these neutrals and replace a fraction of the co-rotating ions with a new and slower-moving ion population. The newly-created ions are moving near the local Keplerian speed, slower than the co-rotation speed, and are ''picked-up'' by Saturn's magnetic field. These water-group ions are detected throughout the Enceladus torus including regions far from Enceladus [1,2]. Three-dimensional particle-in-cell self-consistent code is applied to find the potential and plasma distributions around the spherical model of Cassini in a complicated plasma environment of the Enceladus torus. The modeling includes two types of water group ions (co-rotating, and non-thermalized pick-up ions), plasma flows, photoemission due to solar UV radiation, and flyby geometry. As input data the parameters derived from the Cassini plasma spectrometer measurements obtained in 2005 on Oct. 11, and 29, Nov. 27, and Dec. 24 [1] are employed. The numerical simulations show that the pick-up ions significantly modify the spatial structure of the plasma perturbations, arising in the vicinity of the orbiter in comparison to that obtained for only co-rotating ions [3]. The plasma species produce a specific strongly inhomogeneous configuration with a self-consistent charge separation between the different plasma components in the electric field of the orbiter. The highly energetic co-rotating water group ions are mainly responsible for the configuration of the plasma wake. The region extending up to a few electron Debye lengths downstream of the spacecraft reveals negative potentials that are a significant fraction of the thermal electron energy. Arising wake electric fields capture the cold, pick-up ions and lead to a strong enhancement of
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The world economy crawls ahead amid risk and uncertainty The world economic situation has been extremely complicated in 2010. This year saw fluctuating market confidence,changing commodity prices, imbalanced economic recovery, diverse economic policies, lingering trade protectionism, and fierce currency battles.
Institute of Scientific and Technical Information of China (English)
CHEN FENGYING
2010-01-01
@@ The world economic situation has been extremely complicated in 2010. This year saw fluctuating market confidence,changing commodity prices, imbalanced economic recovery, diverse economic policies, lingering trade protectionism, and fierce currency battles.
Cassini UVIS observations of the Io plasma torus. II. Radial variations
Steffl, Andrew J; Stewart, A Ian F; 10.1016/j.icarus.2004.04.016
2013-01-01
On January 14, 2001, shortly after the Cassini spacecraft's closest approach to Jupiter, the Ultraviolet Imaging Spectrometer (UVIS) made a radial scan through the midnight sector of Io plasma torus. The Io torus has not been previously observed at this local time. The UVIS data consist of 2-D spectrally dispersed images of the Io plasma torus in the wavelength range of 561{\\AA}-1912{\\AA}. We developed a spectral emissions model that incorporates the latest atomic physics data contained in the CHIANTI database in order to derive the composition of the torus plasma as a function of radial distance. Electron temperatures derived from the UVIS torus spectra are generally less than those observed during the Voyager era. We find the torus ion composition derived from the UVIS spectra to be significantly different from the composition during the Voyager era. Notably, the torus contains substantially less oxygen, with a total oxygen-to-sulfur ion ratio of 0.9. The average ion charge state has increased to 1.7. We de...
Vector-valued Jack polynomials and wavefunctions on the torus
Dunkl, Charles F.
2017-06-01
The Hamiltonian of the quantum Calogero-Sutherland model of N identical particles on the circle with 1/r 2 interactions has eigenfunctions consisting of Jack polynomials times the base state. By use of the generalized Jack polynomials taking values in modules of the symmetric group and the matrix solution of a system of linear differential equations one constructs novel eigenfunctions of the Hamiltonian. Like the usual wavefunctions each eigenfunction determines a symmetric probability density on the N-torus. The construction applies to any irreducible representation of the symmetric group. The methods depend on the theory of generalized Jack polynomials due to Griffeth, and the Yang-Baxter graph approach of Luque and the author.
High-velocity Bipolar Molecular Emission from an AGN Torus
Gallimore, Jack F.; Elitzur, Moshe; Maiolino, Roberto; Marconi, Alessandro; O'Dea, Christopher P.; Lutz, Dieter; Baum, Stefi A.; Nikutta, Robert; Impellizzeri, C. M. V.; Davies, Richard; Kimball, Amy E.; Sani, Eleonora
2016-09-01
We have detected in ALMA observations CO J=6\\to 5 emission from the nucleus of the Seyfert galaxy NGC 1068. The low-velocity (up to ±70 km s-1 relative to systemic) CO emission resolves into a 12 × 7 pc structure, roughly aligned with the nuclear radio source. Higher-velocity emission (up to ±400 km s-1) is consistent with a bipolar outflow in a direction nearly perpendicular (≃80°) to the nuclear disk. The position-velocity diagram shows that in addition to the outflow, the velocity field may also contain rotation about the disk axis. These observations provide compelling evidence in support of the disk-wind scenario for the active galactic nucleus obscuring torus.
Cornering Gapless Quantum States via Their Torus Entanglement
Witczak-Krempa, William; Hayward Sierens, Lauren E.; Melko, Roger G.
2017-02-01
The entanglement entropy (EE) has emerged as an important window into the structure of complex quantum states of matter. We analyze the universal part of the EE for gapless systems on tori in 2D and 3D, denoted by χ . Focusing on scale-invariant systems, we derive general nonperturbative properties for the shape dependence of χ and reveal surprising relations to the EE associated with corners in the entangling surface. We obtain closed-form expressions for χ in 2D and 3D within a model that arises in the study of conformal field theories (CFTs), and we use them to obtain Ansätze without fitting parameters for the 2D and 3D free boson CFTs. Our numerical lattice calculations show that the Ansätze are highly accurate. Finally, we discuss how the torus EE can act as a fingerprint of exotic states such as gapless quantum spin liquids, e.g., Kitaev's honeycomb model.
The Picard Group of a Noncommutative Algebraic Torus
Berest, Yuri; Tang, Xiang
2010-01-01
We compute the Picard group $ Pic(A_q) $ of the noncommutative algebraic 2-torus $A_q$, describe its action on the space $ R(A_q) $ of isomorphism classes of rk 1 projective modules and classify the algebras Morita equivalent to $ A_q $. Our computations are based on a quantum version of the Calogero-Moser correspondence relating projective $A_q$-modules to irreducible representations of the double affine Hecke algebras (DAHA) $ H_{t, q^{-1/2}}(S_n) $ at $ t = 1 $. We show that, under this correspondence, the action of $ Pic(A_q) $ on $ R(A_q) $ agrees with the action of $ SL_2(Z) $ on $ H_{t, q^{-1/2}}(S_n) $ constructed by I.Cherednik. We compare our results with smooth and analytic cases. In particular, when $ |q| \
High-Velocity Bipolar Molecular Emission from an AGN Torus
Gallimore, Jack F; Maiolino, Roberto; Marconi, Alessandro; O'Dea, Christopher P; Lutz, Dieter; Baum, Stefi A; Nikutta, Robert; Impellizzeri, C M V; Davies, Richard; Kimball, Amy E; Sani, Eleonora
2016-01-01
We have detected in ALMA observations CO J = 6 - 5 emission from the nucleus of the Seyfert galaxy NGC 1068. The low-velocity (up to +/- 70 km/s relative to systemic) CO emission resolves into a 12x7 pc structure, roughly aligned with the nuclear radio source. Higher-velocity emission (up to +/- 400 km/s) is consistent with a bipolar outflow in a direction nearly perpendicular (roughly 80 degrees) to the nuclear disk. The position-velocity diagram shows that in addition to the outflow, the velocity field may also contain rotation about the disk axis. These observations provide compelling evidence in support of the disk-wind scenario for the AGN obscuring torus.
I/O routing in a multidimensional torus network
Energy Technology Data Exchange (ETDEWEB)
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
2017-02-07
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.
A negative mass theorem for the 2-Torus
Okikiolu, Kate
2007-01-01
For a closed surface M with metric g, the Robin mass m(p) at the point p is the value of the Green function G(p,q) at p=q after the logarithmic singularity has been removed. The Laplacian mass is the average value of the Robin mass, minus the value of the Robin mass for the round sphere of the same area. The Laplacian mass is a spectral invariant which is a natural analog of the ADM mass for asymptotically flat manifolds. We show that if M is a torus, then the minimum value of the Laplacian mass on the conformal class of g is negative. It is attained by a (smooth) metric for which one gets a sharp logarithmic Hardy-Littlewood-Sobolev inequality and Onofri-type inequality.
Measurement of Poloidal Velocity on the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Ronald E. Bell and Russell Feder
2010-06-04
A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.
Physics Basis for a Spherical Torus Power Plant
Energy Technology Data Exchange (ETDEWEB)
C.E. Kessel; J. Menard; S.C. Jardin; T.K. Mau; et al
1999-11-01
The spherical torus, or low-aspect-ratio tokamak, is considered as the basis for a fusion power plant. A special class of wall-stabilized high-beta high-bootstrap fraction low-aspect-ratio tokamak equilibrium are analyzed with respect to MHD stability, bootstrap current and external current drive, poloidal field system requirements, power and particle exhaust and plasma operating regime. Overall systems optimization leads to a choice of aspect ratio A = 1:6, plasma elongation kappa = 3:4, and triangularity delta = 0:64. The design value for the plasma toroidal beta is 50%, corresponding to beta N = 7:4, which is 10% below the ideal stability limit. The bootstrap fraction of 99% greatly alleviates the current drive requirements, which are met by tangential neutral beam injection. The design is such that 45% of the thermal power is radiated in the plasma by Bremsstrahlung and trace Krypton, with Neon in the scrapeoff layer radiating the remainder.
ALMA Resolves the Torus of NGC 1068: Continuum and Molecular Line Emission
García-Burillo, S.; Combes, F.; Ramos Almeida, C.; Usero, A.; Krips, M.; Alonso-Herrero, A.; Aalto, S.; Casasola, V.; Hunt, L. K.; Martín, S.; Viti, S.; Colina, L.; Costagliola, F.; Eckart, A.; Fuente, A.; Henkel, C.; Márquez, I.; Neri, R.; Schinnerer, E.; Tacconi, L. J.; van der Werf, P. P.
2016-05-01
We used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 μm continuum emission from the 300 pc sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ˜4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7-10 pc diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near- and mid-infrared (NIR/MIR) data with CLUMPY torus models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: {M}{{gas}}{{torus}}=(1+/- 0.3)× {10}5 {M}⊙ and R torus = 3.5 ± 0.5 pc. The dynamics of the molecular gas in the torus show strong non-circular motions and enhanced turbulence superposed on a surprisingly slow rotation pattern of the disk. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we found evidence suggesting that the molecular torus is less inclined (i = 34°-66°) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou-Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei tori.
Tuan, P H; Yu, Y T; Chiang, P Y; Liang, H C; Huang, K F; Chen, Y F
2012-02-01
We thoroughly analyze the level statistics and eigenfunctions in concentric as well as nonconcentric square torus billiards. We confirm the characteristics of quantum and classical correspondence and the existence of scarred and superscarred modes in concentric square torus billiards. Furthermore, we not only verify that the transition from regular to chaotic behaviors can be manifested in nonconcentric square torus billiards, but also develop an analytical distribution to excellently fit the numerical level statistics. Finally, we intriguingly observe that numerous eigenstates commonly exhibit the wave patterns to be an ensemble of classical diamond trajectories, as the effective wavelengths are considerably shorter than the size of internal hole.
Status and Plans for the National Spherical Torus Experimental Research Facility
Energy Technology Data Exchange (ETDEWEB)
M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors
2005-07-27
An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.
Progress of the Keda Torus eXperiment Project in China: design and mission
Liu, Wandong; Mao, Wenzhe; Li, Hong; Xie, Jinlin; Lan, Tao; Liu, Ahdi; Wan, Shude; Wang, Hai; Zheng, Jian; Wen, Xiaohui; Zhou, Haiyang; You, Wei; Li, Chenguang; Bai, Wei; Tu, Cui; Tan, Mingsheng; Luo, Bing; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Luo, Zhengping; Shen, Biao; Fu, Peng; Yang, Lei; Song, Yuntao; Yang, Qingxi; Zheng, Jinxing; Xu, Hao; Zhang, Ping; Xiao, Chijin; Ding, Weixing
2014-09-01
The Keda Torus eXperiment (KTX) is a medium-sized reversed field pinch (RFP) device under construction at the University of Science and Technology of China. The KTX has a major radius of 1.4 m and a minor radius of 0.4 m with an Ohmic discharge current up to 1 MA. The expected electron density and temperature are, respectively, 2 × 1019 m-3 and 800 eV. A combination of a stainless steel vacuum chamber and a thin copper shell (with a penetration time of 20 ms) surrounding the plasma provides an opportunity for studying resistive wall mode instabilities. The unique double-C design of the KTX vacuum vessel allows access to the interior of the KTX for easy first-wall modifications and investigations of power and particle handling, a largely unexplored territory in RFP research leading to demonstration of the fusion potential of the RFP concept. An active feedback mode control system is designed and will be implemented in the second phase of the KTX program. The recent progress of this program will be presented, including the design of the vacuum vessel, magnet systems and power supplies.
Status and Plans for the National Spherical Torus Experimental Research Facility
Energy Technology Data Exchange (ETDEWEB)
M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors
2005-07-27
An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.
Progress towards high performance plasmas in the National Spherical Torus Experiment (NSTX)
Energy Technology Data Exchange (ETDEWEB)
Kaye, S. M.; Bell, M. G.; Bell, R. E.; Bernabei, S; Bialek, J.; Biewer, T.; Blanchard, W.; Boedo, J.; Bush, C.; Carter, M. D.; Choe, W.; Crocker, N.; Darrow, D. S.; Davis, W.; Delgado-Aparicio, L.; Diem, S.; Ferron, J.; Field, A.; Foley, J.; Fredrickson, E. D.; Gates, D. A.; Gibney, T.; Harvey, R.; Hatcher, R. E.; Heidbrink, W.; Hill, K.; Hosea, J. C.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kessel, C.; Kubota, S.; Kugel, H. W.; Lawson, J.; LeBlanc, B. P.; Lee, K. C.; Levinton, F.; Maingi, R.; Manickam, J.; Maqueda, R.; Marsala, R.; Mastrovito, D.; Mau, T. K.; Medley, S. S.; Menard, J.; Meyer, H.; Mikkelsen, D. R.; Mueller, D.; Munsat, T.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S.; Peebles, T.; Peng, M.; Phillips, C.; Pigarov, A.; Pinsker, R.; Ram, A.; Ramakrishnan, S.; Raman, R.; Rasmussen, D.; Redi, M.; Rensink, M.; Rewoldt, G; Robinson, J.; Roney, P.; Roquemore, A. L.; Ruskov, E; Ryan, P.; Sabbagh, S. A.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B.; Stutman, D.; Swain, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Halle, A. von; Wade, M.; White, R.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Betti, R.; Bigelow, T.; Bitter, M.; Bonoli, P.; Bourdelle, C.; Chang, C. S.; Chrzanowski, J.; Domier, C.; Dudek, L.; Efthimion, P. C.; Finkenthal, M.; Fredd, E.; Fu, G. Y.; Glasser, A.; Goldston, R. J.; Greenough, N. L.; Grisham, L. R.; Gorelenkov, N.; Guazzotto, L.; Hawryluk, R. J.; Hogan, J.; Houlberg, W.; Humphreys, D.; Jaeger, F.; Kalish, M.; Krasheninnikov, S.; Lao, L. L.; Lawrence, J.; Leuer, J.; Liu, D.; Luhmann, N. C.; Mazzucato, E.; Oliaro, G.; Pacella, D.; Parsells, R.; Schaffer, M.; Semenov, I.; Shaing, K. C.; Shapiro, M. A.; Shinohara, K.; Sichta, P.; Tang, X.; Vero, R.; Walker, D.; Wampler, W.
2005-10-01
The major objective of the National Spherical Torus Experiment (NSTX) is to understand basic toroidal confinement physics at low aspect ratio and high β_{T} in order to advance the spherical torus (ST) concept. In order to do this, NSTX utilizes up to 7.5 MW of neutral beam injection, up to 6 MW of high harmonic fast waves (HHFWs), and it operates with plasma currents up to 1.5 MA and elongations of up to 2.6 at a toroidal field up to 0.45 T. New facility, and diagnostic and modeling capabilities developed over the past two years have enabled the NSTX research team to make significant progress towards establishing this physics basis for future ST devices. Improvements in plasma control have led to more routine operation at high elongation and high β_{T} (up to ~40%) lasting for many energy confinement times. β_{T} can be limited by either internal or external modes. The installation of an active error field (EF) correction coil pair has expanded the operating regime at low density and has allowed for initial resonant EF amplification experiments. The determination of the confinement and transport properties of NSTX plasmas has benefited greatly from the implementation of higher spatial resolution kinetic diagnostics. The parametric variation of confinement is similar to that at conventional aspect ratio but with values enhanced relative to those determined from conventional aspect ratio scalings and with a β_{T} dependence. The transport is highly dependent on details of both the flow and magnetic shear. Core turbulence was measured for the first time in an ST through correlation reflectometry. Non-inductive start-up has been explored using PF-only and transient co-axial helicity injection techniques, resulting in up to 140 kA of toroidal current generated by the latter technique. Calculated bootstrap and beam-driven currents have sustained up to 60% of the flat-top plasma current in NBI discharges. Studies of HHFW absorption
Influence of self-gravity on the runaway instability of black-hole-torus systems.
Montero, Pedro J; Font, José A; Shibata, Masaru
2010-05-14
Results from the first fully general relativistic numerical simulations in axisymmetry of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to assess the influence of the torus self-gravity on the onset of the runaway instability. We consider several models with varying torus-to-black-hole mass ratio and angular momentum distribution orbiting in equilibrium around a nonrotating black hole. The tori are perturbed to induce the mass transfer towards the black hole. Our numerical simulations show that all models exhibit a persistent phase of axisymmetric oscillations around their equilibria for several dynamical time scales without the appearance of the runaway instability, indicating that the self-gravity of the torus does not play a critical role favoring the onset of the instability, at least during the first few dynamical time scales.
Cassini UVIS Observations of the Io Plasma Torus. IV. Modeling Temporal and Azimuthal Variability
Steffl, A J; Bagenal, F
2007-01-01
In this fourth paper in a series, we present the results of our efforts to model the remarkable temporal and azimuthal variability of the Io plasma torus during the Cassini encounter with Jupiter. The long-term (months) temporal variation in the average torus composition observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) can be modeled by supposing a factor of ~4 increase in the amount of material supplied to the extended neutral clouds that are the source of torus plasma, followed by a gradual decay to more "typical" values. On shorter timescales, the observed 10.07-hour torus periodicity and azimuthal variation in plasma composition, including its surprising modulation with System III longitude, is reproduced by our model using the superposition of two azimuthal variations of suprathermal electrons: a primary hot electron variation that slips 12.5 degrees/day relative to the Jovian magnetic field and a secondary variation that remains fixed in System III longitude.
Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves
Goodearl, K R; Lenagan, T H
2009-01-01
The algebra of quantum matrices of a given size supports a rational torus action by automorphisms. It follows from work of Letzter and the first named author that to understand the prime and primitive spectra of this algebra, the first step is to understand the prime ideals that are invariant under the torus action. In this paper, we prove that a family of quantum minors is the set of all quantum minors that belong to a given torus-invariant prime ideal of a quantum matrix algebra if and only if the corresponding family of minors defines a non-empty totally nonnegative cell in the space of totally nonnegative real matrices of the appropriate size. As a corollary, we obtain explicit generating sets of quantum minors for the torus-invariant prime ideals of quantum matrices in the case where the quantisation parameter $q$ is transcendental over $\\mathbb{Q}$.
The vertical thickness of Jupiter's Europa gas torus from charged particle measurements
Kollmann, P.; Paranicas, C.; Clark, G.; Roussos, E.; Lagg, A.; Krupp, N.
2016-09-01
Measurements and modeling suggest the presence of a neutral gas torus collocated with the orbit of Jupiter's moon Europa. Here we use data from the CMS instrument that is part of the Energetic Particles Detector (EPD) on board the Galileo spacecraft to characterize the distribution of 130 keV protons. Near the orbit of Europa this distribution has a minimum around 70° in equatorial pitch angle. We reproduce this with a model assuming that the protons are lost via charge exchange with a gas torus. Since the pitch angle characterizes whether the protons remain mostly in the dense center of the torus or continuously bounce through it, we can determine the latitudinal extent of the torus. We find that the full thickness where its density falls to 1/e of its maximum has to be ≲2RJ and is closer to ≈1RJ.
Real Baum-Connes assembly and T-duality for torus orientifolds
Rosenberg, Jonathan
2015-03-01
We show that the real Baum-Connes conjecture for abelian groups, possibly twisted by a cocycle, explains the isomorphisms of (twisted) KR-groups that underlie all T-dualities of torus orientifold string theories.
10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles
Energy Technology Data Exchange (ETDEWEB)
Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica
2016-04-15
We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Probing the active galactic nucleus unified model torus properties in Seyfert galaxies
Audibert, Anelise; Riffel, Rogério; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel
2017-01-01
We studied the physical parameters of a sample comprising of all Spitzer/Infrared Spectrograph public spectra of Seyfert galaxies in the mid-infrared (5.2-38 μm range) under the active galactic nucleus (AGN) unified model. We compare the observed spectra with ˜106 CLUMPY model spectral energy distributions, which consider a torus composed of dusty clouds. We find a slight difference in the distribution of line-of-sight inclination angle, i, requiring larger angles for Seyfert 2 (Sy 2) and a broader distribution for Seyfert 1 (Sy 1). We found small differences in the torus angular width, σ, indicating that Sy 1 may host a slightly narrower torus than Sy 2. The torus thickness, together with the bolometric luminosities derived, suggests a very compact torus up to ˜6 pc from the central AGN. The number of clouds along the equatorial plane, N, as well the index of the radial profile, q, is nearly the same for both types. These results imply that the torus cloud distribution is nearly the same for type 1 and type 2 objects. The torus mass is almost the same for both types of activity, with values in the range of Mtor ˜ 104-107 M⊙. The main difference appears to be related to the clouds' intrinsic properties: type 2 sources present higher optical depths τV. The results presented here reinforce the suggestion that the classification of a galaxy may also depend on the intrinsic properties of the torus clouds rather than simply on their inclination. This is in contradiction with the simple geometric idea of the unification model.
SDN Data Center Performance Evaluation of Torus and Hypercube Interconnecting Schemes
DEFF Research Database (Denmark)
Andrus, Bogdan-Mihai; Vegas Olmos, Juan José; Mehmeri, Victor;
2015-01-01
— By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures......— By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures...
Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field
Das, Praloy; Pramanik, Souvik; Ghosh, Subir
2016-11-01
Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.
Probing the Active Galactic Nuclei Unified Model Torus Properties in Seyfert Galaxies
Audibert, Anelise; Sales, Dinalva A; Pastoriza, Miriani G; Ruschel-Dutra, Daniel
2016-01-01
We studied the physical parameters of a sample comprising of all Spitzer/IRS public spectra of Seyfert galaxies in the mid-infrared (5.2-38$\\mu$m range) under the active galactic nuclei (AGN) unified model. We compare the observed spectra with $\\sim10^6$ CLUMPY model spectral energy distributions, which consider a torus composed of dusty clouds. We find a slight difference in the distribution of line-of-sight inclination angle, $i$, requiring larger angles for Seyfert 2 (Sy2) and a broader distribution for Seyfert 1 (Sy1). We found small differences in the torus angular width, $\\sigma$, indicating that Sy1 may host a slightly narrower torus than Sy2. The torus thickness, together with the bolometric luminosities derived, suggest a very compact torus up to $\\sim$6 pc from the central AGN. The number of clouds along the equatorial plane, $N$, as well the index of the radial profile, $q$, are nearly the same for both types. These results imply that the torus cloud distribution is nearly the same for type 1 and t...
The massive expanding molecular torus in the planetary nebula NGC 6302
Peretto, N; Zijlstra, A A; Patel, N A
2007-01-01
We measure the mass and kinematics of the massive molecular torus in the planetary nebula NGC 6302. The nebula is the proto-typical butterfly nebula. The origin of the wing-like morphology is disputed: determining the mass-loss history of the confining torus is an important step in understanding the formation of this structure. We performed submillimeter observations with JCMT and the SMA interferometer. The continuum emission as well as the J=2-1 and 3-2 transitions of 12CO and 13CO are analysed at arcsecond resolution. The CO emission indicates a mass of the torus of ~ 2Msun +/- 1Msun. The 12CO and 13CO emission matches the dark lane seen in absorption in the Halpha image of the object. The CO torus is expanding with a velocity of ~ 8 km/s, centred at Vlsr=-31.5 km/s. The size and expansion velocity of the torus indicates that the torus was ejected from ~ 7500 yr to 2900 yr ago, with a mass-loss rate of 5x10^{-4}Msun/yr. We also see a ballistic component in the CO images with a velocity gradient of 140 km/s...
ALMA resolves the torus of NGC 1068: continuum and molecular line emission
Garcia-Burillo, S; Almeida, C Ramos; Usero, A; Krips, M; Alonso-Herrero, A; Aalto, S; Casasola, V; Hunt, L K; Martin, S; Viti, S; Colina, L; Costagliola, F; Eckart, A; Fuente, A; Henkel, C; Marquez, I; Neri, R; Schinnerer, E; Tacconi, L J; van der Werf, P P
2016-01-01
We have used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 {\\mu}m continuum emission from the 300 pc-sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ~4 pc. These observations spatially resolve the CND and image, for the first time, the dust emission and the molecular gas distribution and kinematics from a 7-10 pc-diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near and mid-infrared (NIR/MIR) data with CLUMPY models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: Mgas_torus=(1+-0.3)x10^5 Msun and Rtorus=3.5+-0.5 pc. The dynamics of the molecular gas in the torus show non-circular motions and enhanced turbulence superposed on the rotating pattern of the disk. The kinematic major axis of the CO torus...
DEFF Research Database (Denmark)
Thorsteinsson, Uffe
1999-01-01
Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown......Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown...
Design of the new magnetic sensors for Joint European Torus
Coccorese, V.; Albanese, R.; Altmann, H.; Cramp, S.; Edlington, T.; Fullard, K.; Gerasimov, S.; Huntley, S.; Lam, N.; Loving, A.; Riccardo, V.; Sartori, F.; Marren, C.; McCarron, E.; Sowden, C.; Tidmarsh, J.; Basso, F.; Cenedese, A.; Chitarin, G.; DegliAgostini, F.; Grando, L.; Marcuzzi, D.; Peruzzo, S.; Pomaro, N.; Solano, E. R.
2004-10-01
A new magnetic diagnostics system has been designed for the 2005 Joint European Torus (JET) experimental campaigns onward. The new system, which adds to the existing sensors, aims to improve the JET safety, reliability, and performance, with respect to: (i) equilibrium reconstruction; (ii) plasma shape control; (iii) coil failures; (iv) VDEs; (v) iron modeling; and (vi) magnetohydrodynamics poloidal mode analysis. The system consists of in-vessel and ex-vessel sensors. The former are a set of 38 coil pairs (normal and tangential), located as near as possible to the plasma. Coils are generally grouped in rails, in order to ease remote handling in-vessel installation. The system includes: (i) two outer poloidal limiter arrays (2×7 coil pairs); (ii) two divertor region arrays (2×7 coil pairs); and (iii) two top coil arrays (2×5 coil pairs). Ex-vessel sensors, including discrete coils, Hall probes, and flux loops (26 in total) will be installed on the iron limbs, in order to provide experimental data for the treatment of iron in equilibrium codes. The design is accompanied by a software analysis, aiming to predict the expected improvement.
Ideal magnetohydrodynamic equilibrium in a non-symmetric topological torus
Energy Technology Data Exchange (ETDEWEB)
Weitzner, Harold [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-02-15
An alternative representation of an ideal magnetohydrodynamic equilibrium is developed. The representation is a variation of one given by A. Salat, Phys. Plasmas 2, 1652 (1995). The system of equations is used to study the possibility of non-symmetric equilibria in a topological torus, here an approximate rectangular parallelopiped, with periodicity in two of the three rectangular coordinates. An expansion is carried out in the deviation of pressure surfaces from planes. Resonances are manifest in the process. Nonetheless, provided the magnetic shear is small, it is shown that it is possible to select the magnetic fields and flux surfaces in such a manner that no singularities appear on resonant surfaces. One boundary surface of the parallelopiped is not arbitrary but is dependent on the equilibrium in question. A comparison of the solution sets of axisymmetric and non-axisymmetric equilibria suggests that the latter have a wider class of possible boundary shapes but more restrictive rotational transform profiles. No proof of convergence of the series is given.
On the dynamics of tilted black hole-torus systems
Mewes, Vassilios; Font, José A; Montero, Pedro J; Stergioulas, Nikolaos
2016-01-01
We present results from three-dimensional, numerical relativity simulations of a tilted black hole-thick accretion disc system. The simulations are analysed using tracer particles in the disc which are advected with the flow. Such tracers, which we employ in these new simulations for the first time, provide a powerful means to analyse in detail the complex dynamics of tilted black hole-torus systems. We show how its use helps to gain insight in the overall dynamics of the system, discussing the origin of the observed black hole precession and the development of a global non-axisymmetric $m=1$ mode in the disc. Our three-dimensional simulations show the presence of quasi-periodic oscillations (QPOs) in the instantaneous accretion rate, with frequencies in a range compatible with those observed in low mass X-ray binaries with either a black hole or a neutron star component. The frequency ratio of the dominant low frequency peak and the first overtone is $o_1/f \\sim 1.9$, a frequency ratio not attainable when mo...
Strike Point Control for the National Spherical Torus Experiment (NSTX)
Energy Technology Data Exchange (ETDEWEB)
Kolemen, E.; Gates, D. A.; Rowley, C. W.; Kasdin, N. J.; Kallman, J.; Gerhardt, S.; Soukhanovskii, V.; Mueller, D.
2010-07-09
This paper presents the first control algorithm for the inner and outer strike point position for a Spherical Torus (ST) fusion experiment and the performance analysis of the controller. A liquid lithium divertor (LLD) will be installed on NSTX which is believed to provide better pumping than lithium coatings on carbon PFCs. The shape of the plasma dictates the pumping rate of the lithium by channeling the plasma to LLD, where strike point location is the most important shape parameter. Simulations show that the density reduction depends on the proximity of strike point to LLD. Experiments were performed to study the dynamics of the strike point, design a new controller to change the location of the strike point to desired location and stabilize it. The most effective PF coils in changing inner and outer strike points were identified using equilibrium code. The PF coil inputs were changed in a step fashion between various set points and the step response of the strike point position was obtained. From the analysis of the step responses, PID controllers for the strike points were obtained and the controller was tuned experimentally for better performance. The strike controller was extended to include the outer-strike point on the inner plate to accommodate the desired low outer-strike points for the experiment with the aim of achieving "snowflake" divertor configuration in NSTX.
Current drive experiments in the Helicity Injected Torus - II
Hamp, W. T.; Redd, A. J.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Sieck, P. E.; Smith, R. J.; Mueller, D.
2006-10-01
The HIT-II spherical torus (ST) device has demonstrated four toroidal plasma current drive configurations to form and sustain a tokamak: 1) inductive (ohmic) current drive, 2) coaxial helicity injection (CHI) current drive, 3) CHI initiated plasmas with ohmic sustainment (CHI+OH), and 4) ohmically initiated plasmas with CHI edge current drive (OH+ECD). CHI discharges with a sufficiently high ratio of injector current to toroidal field current form a closed flux core, and amplify the injector poloidal flux through magnetic reconnection. CHI+OH plasmas are more robust than unassisted ohmic discharges, with a wider operating space and more efficient use of the transformer Volt-seconds. Finally, edge CHI can enhance the plasma current of an ohmic discharge without significantly degrading the quality of the discharge. Results will be presented for each HIT-II operating regime, including empirical performance scalings, applicable parametric operating spaces, and requirements to produce these discharges. Thomson scattering measurements and EFIT simulations are used to evaluate confinement in several representative plasmas. Finally, we outline extensions to the HIT-II CHI studies that could be performed with NSTX, SUNIST, or other ST devices.
Fully Adaptive Routing in Torus Networks Based on Center Distance%Torus 网络中基于中心距离的完全自适应路由算法
Institute of Scientific and Technical Information of China (English)
虞志刚; 向东; 王新玉
2013-01-01
Torus networks win lots of industrial and academic attention by virtue of the superior architecture proprieties .The design of efficient deadlock-free routing algorithms is an important aspect of interconnection networks research .Against the problem that torus networks need numbers of virtual channels to support adaptive routing ,we propose an adaptive routing algorithm :Gear , which needs only 2 virtual channels to support deadlock-free adaptive routing in Virtual Cut-Through switched Torus .Gear imple-ments fully adaptive routing by constraining the use of some special virtual channels on the concept of Center Distance .We verify the efficiency of the algorithm with simulation .The results show that ,in the same circumstances ,the advantage of proposed Gear over classic Dimension-Order Routing and Duato′s Protocol is very apparent .%Torus网络凭借其优越的结构特性，引起了工业界和学术界的广泛关注。高效、无死锁的路由算法设计是互连网络研究的一个重要方面。针对Torus网络实现自适应路由所需虚通道数目多的缺点，提出了自适应路由算法Gear ，该算法基于中心距离的方法来限制虚通道的使用，在虚切通交换下仅需两条虚通道即可为Torus网络提供无死锁自适应路由。通过仿真对所提算法的有效性进行了验证，结果表明，在同等情况下算法Gear的性能较经典的维序路由和Duato协议具有非常明显的优势。
Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.
2015-12-01
Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.
Thermoluminescence measurements of neutron streaming through JET Torus Hall ducts
Energy Technology Data Exchange (ETDEWEB)
Obryk, Barbara, E-mail: barbara.obryk@ifj.edu.pl [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Batistoni, Paola [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); EURATOM–CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Conroy, Sean [EURATOM-VR Association, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden); EURATOM–CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Syme, Brian D.; Popovichev, Sergey [EURATOM–CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Stamatelatos, Ion E.; Vasilopoulou, Theodora [Institute of Nuclear and Radiological Sciences, Energy, Technology and Safety, NCSR “Demokritos”, Athens (Greece); Bilski, Paweł [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland)
2014-10-15
Highlights: •Thermoluminescence detectors (TLDs) were used for dose measurements at JET. •Pairs of {sup 6}LiF/{sup 7}LiF TLDs allow to measure thermal neutron component of a radiation field. •For detection of neutrons of higher energy, polyethylene (PE-300) moderators were used. •TLDs were installed at eleven positions in the JET hall and the hall labyrinth. •The experimental results are compared with calculations using the MCNP code. -- Abstract: Thermoluminescence detectors (TLD) were used for dose measurements at JET. Several hundreds of LiF detectors of various types, standard LiF:Mg,Ti and highly sensitive LiF:Mg,Cu,P were produced. LiF detectors consisting of natural lithium are sensitive to slow neutrons, their response to neutrons being enhanced by {sup 6}Li-enriched lithium or suppressed by using lithium consisting entirely of {sup 7}Li. Pairs of {sup 6}LiF/{sup 7}LiF detectors allow distinguishing between neutron/non-neutron components of a radiation field. For detection of neutrons of higher energy, polyethylene (PE-300) moderators were used. TLDs, located in the centre of cylindrical moderators, were installed at eleven positions in the JET hall and the hall labyrinth in July 2012, and exposure took place during the last two weeks of the experimental campaign. Measurements of the gamma dose were obtained for all positions over a range of about five orders of magnitude variation. As the TLDs were also calibrated in a thermal neutron field, the neutron fluence at the experimental position could be derived. The experimental results are compared with calculations using the MCNP code. The results confirm that the TLD technology can be usefully applied to measurements of neutron streaming through JET Torus Hall ducts.
Cassini capturing of freshly-produced water-group ions in the Enceladus torus
Yaroshenko, V. V.; Miloch, W. J.; Thomas, H. M.; Morfill, G. E.
2012-09-01
The water vapor plume on the geological-active south-polar region of the moon Enceladus is recognized as the main source of Saturn's neutral torus centered on the Enceladus orbit. The composition of the torus is dominated by water group species. Recent in situ Cassini plasma spectrometer measurements indicate the existence of freshly produced, slow and non-thermalized water group ions throughout the Enceladus torus including regions far from the moon. We report the results of modeling spacecraft-plasma interactions in the environment relevant for the Enceladus torus to show that new-born non-thermalized ions will inevitably be captured by the electric fields arising around the charged spacecraft. The associated plasma configuration can directly impact the plasma measurements and thus is important for reliable interpretation of data obtained by Cassini instruments in the Enceladus torus. The simulation results appear to be partially supported by Cassini observations and can provide new insights into intricate process of Enceladus-plasma interactions.
On the nature of S II emission from Jupiter's hot plasma torus
Brown, R. A.; Shemansky, D. E.
1982-01-01
An effective electron temperature T(e) of 80,000 K is indicated by the Voyager 1 encounter Jupiter hot torus emission rates in the 6731, 1256, 911 and reclassified 765 A transitions of S II. A set of 53 measurements of the S II red line doublet obtained at 5.9 Jupiter radii shows strong, irregular fluctuations in intensity, but no variation in the line ratio. At this distance from Jupiter, the torus is found to be longitudinally uniform in density; this is consonant with Voyager UVS findings, but contrary to magnetic anomaly model predictions. It is suggested that presently unidentified ion-ion and/or iron-atom reactions are responsible for the S II component irregular variations, in view of the fact that electron properties are regular and variable only over a small range in the hot torus at 5.9 Jupiter radii.
Piatek, Marcin
2014-01-01
In this work the correspondence between the semiclassical limit of the DOZZ quantum Liouville theory on the torus and the Nekrasov-Shatashvili limit of the N=2* (Omega-deformed) U(2) super-Yang-Mills theory is exploited to propose new formulae for the accessory parameter of the Lame equation. It has been found that the Lame accessory parameter is determined by the classical Liouville action on the one-punctured torus or more concretely by the torus classical block evaluated on the saddle point intermediate classical weight. Moreover, as an implication of the aforementioned correspondence it has been obtained that the accessory parameter is related to the sum of all rescaled column lengths of the so-called "critical" Young diagrams extremizing the instanton "free energy". Finally, it has been pointed out that the sum over the "critical" column lengths can be rewritten in terms of a contour integral in which the integrand is built out of certain special functions.
Stability of small-amplitude torus knot solutions of the localized induction approximation
Energy Technology Data Exchange (ETDEWEB)
Calini, Annalisa; Ivey, Thomas, E-mail: calinia@cofc.edu [Department of Mathematics, College of Charleston, Charleston, SC 29424 (United States)
2011-08-19
We study the linear stability of small-amplitude torus knot solutions of the localized induction approximation equation for the motion of a thin vortex filament in an ideal fluid. Such solutions can be constructed analytically through the connection with the focusing nonlinear Schroedinger equation using the method of isoperiodic deformations. We show that these (p, q) torus knots are generically linearly unstable for p < q, while we provide examples of neutrally stable (p, q) torus knots with p > q, in contrast with an earlier linear stability study by Ricca (1993 Chaos 3 83-95; 1995 Chaos 5 346; 1995 Small-scale Structures in Three-dimensional Hydro and Magneto-dynamics Turbulence (Lecture Notes in Physics vol 462) (Berlin: Springer)). We also provide an interpretation of the original perturbative calculation in Ricca (1995), and an explanation of the numerical experiments performed by Ricca et al (1999 J. Fluid Mech. 391 29-44), in light of our results.
Effect of enclosed fluid on the dynamic response of inflated torus
Srivastava, Ashish; Mishra, B. K.; Jain, S. C.
2008-01-01
Large inflatable structures have been the subject of renewed interest for scientists/engineers in recent years due to their potential space applications such as communication antennas, solar thermal propulsion and space solar power. The major advantages of using inflatable structures in space are their extremely low-weight, on-orbit deployability and inherent low launch volume. An inflated torus is a key component of many inflated space structures such as a thin membrane reflector. In view of their importance, structural static and dynamic behavior of inflated torus need to be investigated. In order to develop a more realistic model, dynamic interaction between the enclosed fluid and the torus has been included in the present work. An appreciable decrease in the modal frequencies is observed when fluid-structure interaction is taken into account. Some additional modes are also obtained. It is concluded that fluid-structure interaction significantly affects the dynamic behavior of inflatable space structures.
Embedding global and collective in a torus network with message class map based tree path selection
Chen, Dong; Coteus, Paul W.; Eisley, Noel A.; Gara, Alan; Heidelberger, Philip; Senger, Robert M; Salapura, Valentina; Steinmacher-Burow, Burkhard; Sugawara, Yutaka; Takken, Todd E.
2016-06-21
Embodiments of the invention provide a method, system and computer program product for embedding a global barrier and global interrupt network in a parallel computer system organized as a torus network. The computer system includes a multitude of nodes. In one embodiment, the method comprises taking inputs from a set of receivers of the nodes, dividing the inputs from the receivers into a plurality of classes, combining the inputs of each of the classes to obtain a result, and sending said result to a set of senders of the nodes. Embodiments of the invention provide a method, system and computer program product for embedding a collective network in a parallel computer system organized as a torus network. In one embodiment, the method comprises adding to a torus network a central collective logic to route messages among at least a group of nodes in a tree structure.
Universal Behaviour on the Break-up of the Spiral Mean Torus
Institute of Scientific and Technical Information of China (English)
周济林; 胡斑比; 孙义燧
2001-01-01
We study numerically the critical behaviour during the break-up of the spiral mean torus in a four-dimensional symplectic map. At each point of the parameter space, the stability indices of a serial of periodic orbits are calculated with their winding numbers approaching the spiral mean torus. The critical values of the parameters when the torus breaks are determined by the criterion that the variance of the distribution on the indices reaches a minimum. Some evidence is revealed about the possible existence of a universal distribution on the stability indices of the periodic orbits at the critical This confirms the picture given by the approximate renormalization theory of the Hamiltonian systems with three degrees of freedom.
Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy; Nikutta, Robert
2017-07-01
The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μm that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.
Energy Technology Data Exchange (ETDEWEB)
Ichikawa, Kohei; Ueda, Yoshihiro [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Packham, Christopher; Lopez-Rodriguez, Enrique; Alsip, Crystal D. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Almeida, Cristina Ramos; Ramos, Andrés Asensio; González-Martín, Omaira [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Díaz-Santos, Tanio [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Elitzur, Moshe [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Levenson, Nancy A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Mason, Rachel E. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Perlman, Eric S., E-mail: ichikawa@kusastro.kyoto-u.ac.jp [Department of Physics and Space Sciences, 150 W. University Blvd., Florida Institute of Technology, Melbourne, FL 32901 (United States)
2015-04-20
We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.
Holzenspies, P.K.F.; Schepers, Erik; Bach, Wouter; Jonker, Mischa; Sikkes, Bart; Smit, Gerardus Johannes Maria; Havinga, Paul J.M.
2003-01-01
Routing on a two-dimensional torus architecture by means of the wormhole routing algorithm is introduced and extended to an n-dimensional torus model. To prevent blocking deadlocks caused by this algorithm, a multiple virtual channel solution is introduced. An implementation of virtual channels is
Overview of Results from the National Spherical Torus Experiment (NSTX)
Energy Technology Data Exchange (ETDEWEB)
Gates, D; Ahn, J; Allain, J; Andre, R; Bastasz, R; Bell, M; Bell, R; Belova, E; Berkery, J; Betti, R; Bialek, J; Biewer, T; Bigelow, T; Bitter, M; Boedo, J; Bonoli, P; Bozzer, A; Brennan, D; Breslau, J; Brower, D; Bush, C; Canik, J; Caravelli, G; Carter, M; Caughman, J; Chang, C; Choe, W; Crocker, N; Darrow, D; Delgado-Aparicio, L; Diem, S; D' Ippolito, D; Domier, C; Dorland, W; Efthimion, P; Ejiri, A; Ershov, N; Evans, T; Feibush, E; Fenstermacher, M; Ferron, J; Finkenthal, M; Foley, J; Frazin, R; Fredrickson, E; Fu, G; Funaba, H; Gerhardt, S; Glasser, A; Gorelenkov, N; Grisham, L; Hahm, T; Harvey, R; Hassanein, A; Heidbrink, W; Hill, K; Hillesheim, J; Hillis, D; Hirooka, Y; Hosea, J; Hu, B; Humphreys, D; Idehara, T; Indireshkumar, K; Ishida, A; Jaeger, F; Jarboe, T; Jardin, S; Jaworski, M; Ji, H; Jung, H; Kaita, R; Kallman, J; Katsuro-Hopkins, O; Kawahata, K; Kawamori, E; Kaye, S; Kessel, C; Kim, J; Kimura, H; Kolemen, E; Krasheninnikov, S; Krstic, P; Ku, S; Kubota, S; Kugel, H; La Haye, R; Lao, L; LeBlanc, B; Lee, W; Lee, K; Leuer, J; Levinton, F; Liang, Y; Liu, D; Luhmann, N; Maingi, R; Majeski, R; Manickam, J; Mansfield, D; Maqueda, R; Mazzucato, E; McCune, D; McGeehan, B; McKee, G; Medley, S; Menard, J; Menon, M; Meyer, H; Mikkelsen, D; Miloshevsky, G; Mitarai, O; Mueller, D; Mueller, S; Munsat, T; Myra, J; Nagayama, Y; Nelson, B; Nguyen, X; Nishino, N; Nishiura, M; Nygren, R; Ono, M; Osborne, T; Pacella, D; Park, H; Park, J; Paul, S; Peebles, W; Penaflor, B; Peng, M; Phillips, C; Pigarov, A; Podesta, M; Preinhaelter, J; Ram, A; Raman, R; Rasmussen, D; Redd, A; Reimerdes, H; Rewoldt, G; Ross, P; Rowley, C; Ruskov, E; Russell, D; Ruzic, D; Ryan, P; Sabbagh, S; Schaffer, M; Schuster, E; Scott, S; Shaing, K; Sharpe, P; Shevchenko, V; Shinohara, K; Sizyuk, V; Skinner, C; Smirnov, A; Smith, D; Smith, S; Snyder, P; Soloman, W; Sontag, A; Soukhanovskii, V; Stoltzfus-Dueck, T; Stotler, D; Strait, T; Stratton, B; Stutman, D; Takahashi, R; Takase, Y; Tamura, N; Tang, X; Taylor, G; Taylor, C; Ticos, C; Tritz, K; Tsarouhas, D; Turrnbull, A; Tynan, G; Ulrickson, M; Umansky, M; Urban, J; Utergberg, E; Walker, M; Wampler, W; Wang, J; Wang, W; Weland, A
2009-01-05
The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high {beta} operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies confirm the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l{sub i} {approx} 0.4 with strong shaping ({kappa} {approx} 2.7, {delta} {approx} 0.8) with {beta}{sub N} approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f{sub NI} {approx} 71%. Instabilities driven by super-Alfvenic ions are an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. RWM/RFA feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with {beta} above the no-wall limit. The impact of n > 1 error fields on stability is a important result for ITER. Other highlights are
Overview of Results from the National Spherical Torus Experiment (NSTX)
Energy Technology Data Exchange (ETDEWEB)
Gates, D. A.; Ahn, J.; Allain, J.; Andre, R.; Bastasz, R.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Biewer, T.; Bigelow, T.; Bitter, M.; Choe, W.; Crocker, N.; Darrow, D.; Delgado-Aparicio, L.; Diem, S.; D’Ippolito, D.; Domier, C.; Dorland, W.; Efthimion, P.; Ejiri, A.; Ershov, N.; Evans, T.; Feibush, E.; Fenstermacher, M.; Ferron, J.; Finkenthal, M.; Foley, J.; Frazin, R.; Fredrickson, E.; Fu, G.; Funaba, H.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Grisham, L.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hillesheim, J.; Hillis, D.; Hirooka, Y.; Hu, B.; Humphreys, D.; Idehara, T.; Indireshkumar, K.; Ishida, A.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Ji, H.; Jung, H.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kawahata, K.; Kawamori, E.; Kaye, S.; Kessel, C.; Kim, J.; Kimura, H.; Kolemen, E.; Krasheninnikov, S.; Krstic, P.; Ku, S.; Kubota, S.; Kugel, H.; La Haye, R.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Luhmann, Jr., N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mitarai, O.; Mueller, D.; Mueller, S.; Munsat, T.; Myra, J.; Nagayama, Y.; Nelson, B.; Nguyen, X.; Nishino, N.; Nishiura, M.; Nygren, R.; Ono, M.; Osborne, T.; Pacella, D.; Park, H.; Park, J.; Paul, S.; Peebles, W.; Penaflor, B.; Peng, M.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Ram, A.; Raman, R.; Rasmussen, D.; Redd, A.; Reimerdes, H.; Rewo, G.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S.; Schaffer, M.; Schuster, E.; Scott, S.; Shaing, K.; Sharpe, P.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.; Smirnov, A.; Smith, D.; Smith, S.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Strait, T.; Stratton, B.; Stutman, D.; Takahashi, R.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Ticos, C.; Tritz, K.; Tsarouhas, D.; Turrnbull, A.; Tynan, G.; Ulrickson, M.; Umansky, M.; Urban, J.; Utergberg, E.; Walker, M.; Wampler, W.; Wang, J.; Wang, W.; Welander, A.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.; Wright, J.; Xia, Z.; Xu, X.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zweben, S.
2009-03-24
The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l_{i} ~0.4 with strong shaping (κ ~ 2.7, δ ~ 0.8) with β_{N} approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f_{NI} ~71%. Instabilities driven by super-Alfv´enic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfv´enic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. The impact of n > 1 error fields on stability is a important result for ITER. RWM/RFA feedback combined with n=3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are: results
Zeros of the Jones Polynomial for Torus Knots and 2-bridge Knots
Institute of Scientific and Technical Information of China (English)
HAN You-fa; ZHANG Rong-wei; WANG Lin-lin; MA Xiao-sha
2014-01-01
We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2 and e(2m+1)πi/4(m is a positive integer) can not be the zeros of Jones polynomial for torus knots Tp,q by the knowledge of the trigonometric function. We elicit the normal form of Jones polynomials of the 2-bridge knot C (−2, 2, · · · , (−1)r 2) by the recursive form and discuss the distribution of their zeros.
From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation
DEFF Research Database (Denmark)
Burke, John; Desroches, Mathieu; Granados, Albert;
2016-01-01
to the intermediate- and high-frequency forcing regimes and show that the forced van der Pol possesses torus canards instead. These torus canards consist of long segments near families of attracting and repelling limit cycles of the fast system, in alternation. We also derive explicit formulas for the parameter......-frequency periodically driven slow/fast systems with two fast variables and one slow variable which possess a non-degenerate fold of limit cycles. The analytic techniques used herein rely on geometric desingularisation, invariant manifold theory, Melnikov theory, and normal form methods. The numerical methods used...
Indian Academy of Sciences (India)
S S Kannan; S K Pattanayak
2009-09-01
In this paper, for any simple, simply connected algebraic group of type , or and for any maximal parabolic subgroup of , we describe all minimal dimensional Schubert varieties in $G/P$ admitting semistable points for the action of a maximal torus with respect to an ample line bundle on $G/P$. We also describe, for any semi-simple simply connected algebraic group and for any Borel subgroup of , all Coxeter elements for which the Schubert variety () admits a semistable point for the action of the torus with respect to a non-trivial line bundle on / .
The Coulomb gas representation of critical RSOS models on the sphere and the torus
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica); Nienhuis, B. (Rijksuniversiteit Leiden (Netherlands). Inst. Lorentz voor Theoretische Natuurkunde)
1989-10-02
We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.).
The bounded isometry conjecture for the Kodaira-Thurston manifold and 4-Torus
Han, Zhigang
2007-01-01
The purpose of this note is to study the bounded isometry conjecture proposed by Lalonde and Polterovich. In particular, we show that the conjecture holds for the Kodaira-Thurston manifold with the standard symplectic form and for the 4-torus with all linear symplectic forms.
Phases of three dimensional large N QCD on a continuum torus
Narayanan, R; Reynoso, F
2007-01-01
It is established by numerical means that continuum large N QCD defined on a three dimensional torus can exist in four different phases. They are (i) confined phase; (ii) deconfined phase; (iii) small box at zero temperature and (iv) small box at high temperatures.
THE FUNDAMENTAL GROUP OF THE AUTOMORPHISM GROUP OF A NONCOMMUTATIVE TORUS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Assume that each completely irrational noncommutative torus is realized as an inductive limit of circle algebras, and that for a completely irrational noncommutative torus Aω of rank m there are a completely irrational noncommutative torus Aρ of rank m and a positive integer d such that tr(Aω) = 1/d. tr(Aρ). It is proved that the set of all C*-algebras of sections of locally trivial C*-algebra bundles over S2 with fibres Aω has a group structure, denoted by πs1(Aut(Aω)), which is isomorphic to Z. if d > 1 and {0} if d > 1. Let Bcd be a cd-homogeneous C*-algebra over S2 × T2 of which no non-trivial matrix algebra can be factored out. The spherical noncommutative torus Scdρ is defined by twisting C*(T2 × Zm-2) in Bcd C*(Zm-2) by a totally skew multiplier ρ on T2 × Zm-2. It is shown that Scdρ Mp∞ is isomorphic to C(S2) C*(T2 × Zm-2,ρ) Mcd(C) Mp∞ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.
Design and simulation of a Torus topology for network on chip
Institute of Scientific and Technical Information of China (English)
Wu Chang; Li Yubai; Chai Song
2008-01-01
Aiming at the applications of NOC(network on chip)technology in rising scale and complexity on chip systems,a Torus structure and corresponding route algorithm for NOC is proposed.This Torus structure improves traditional Torus topology and redefines the denotations of the routers.Through redefining the router denotations and changing the origihal router locations,the Torns structure for NOC application is reconstructed.On the basis of this structure.a dead-lock and live-lock free route algorithm is designed according to dimension increase.System C is used to implement this structure and the route algorithm is simulated.In the four different traffic patterns.average,hotspot 13%,hotspot 67% and transpose,the average delay and normalization throughput of this Torus structure are evaluated.Then,the performance of delay and throughput between this Torns and Mesh structure is compared.The results indicate that this Torns structure is more suitable for NOC applications.
Condensates and instanton - torus knot duality. Hidden Physics at UV scale
Gorsky, A
2014-01-01
We establish the duality between the torus knot superpolynomials or the Poincare polynomials of the Khovanov homology and particular condensates in Omega-deformed 5D supersymmetric QED compactified on a circle with 5d Chern-Simons(CS) term. This is the generalization of the Witten's recipe of the evaluation of the knot polynomials via Wilson loops in 3d CS theory for case of the torus knots. It is explicitly shown that $n$-instanton contribution to the condensate of the massless flavor in the background of four-observable, which can be associated with some composite defect, exactly coincides with the superpolynomial of the T(n,nk+1) torus knot where k - is the level of CS term. In contrast to the previously known results, the particular torus knot corresponds not to the partition function of the gauge theory but to the particular instanton contribution and summation over the knots has to be performed in order to obtain the complete answer. The instantons are sitting almost at the top of each other and the phy...
Effect of plasma torus density variations on the morphology and brightness of the Io footprint
Payan, A. P.; Rajendar, A.; Paty, C. S.; Crary, F.
2014-05-01
We develop a 2-D-layered model of the Io plasma torus to study the apparent "shutoff" of the Io footprint in 2007, when it disappeared beneath a region of diffuse emissions, roughly coincident with a massive eruption of Tvashtar Paterae. First, we investigate the effects of Io's location in the plasma torus and validate our model results against Hubble UV observations of the Io footprint. We are able to qualitatively reproduce variations in the morphology of the footprint due to Io's changing latitudinal location with respect to the center of the plasma torus, capturing the bright leading spot and the dimmer tail. Then, we consider the effects of an increase in the local plasma density on the brightness and morphology of the Io footprint. Our results show a correlation between a local density increase in the plasma torus and the dimming of the Io footprint as observed in 2007. In particular, we find that a local density enhancement at Io of fivefold compared to the nominal value is sufficient to produce the observed shutoff of the footprint.
On the hyperbolic automorphisms of the 2-torus and their Markov partitions
Anosov, Dmitry V.; Alexey V. Klimenko; Kolutsky, Grisha
2008-01-01
In the paper we give an introduction to Anosov diffeomorphisms, ways to represent their chaotic properties and some historical remarks on this subject. A complete classification of hyperbolic linear automorphisms of 2-torus is presented. We introduce a notion of pre-Markov partition for such automorphisms and give their classification and an algorithm for their construction.
Reverberation Response Models of the Infrared Dust Emission from a Clumpy Torus
Almeyda, Triana
2016-08-01
The obscuring circum-nuclear dusty torus is a major component of AGN and yet, thus far, its shape, composition, and structure have not been well constrained by observations. However, using indirect methods such as reverberation mapping, the size and structure of the torus can be estimated through the time variability of the dusty torus emission in response to changes in the AGN luminosity. I will discuss the computer simulation that I have developed in order to extract structural information from the infrared light curves of 12 Type 1 AGN, obtained during a 2.5 year monitoring campaign using the Spitzer Space Telescope and several ground-based optical telescopes. Given an input optical light curve, the code computes the temporal response of the infrared emission spectrum of a 3D ensemble of dust clouds as a function of time. I will present simulations exploring the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field on the dusty torus response at selected infrared wavelengths. I will also compare model infrared light curves to those observed for the recently discovered changing-look AGN, NGC 6418.
On the existence of star products on quotient spaces of linear Hamiltonian torus actions
DEFF Research Database (Denmark)
Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.
2009-01-01
We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443–461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Kos...
Computation-free presentation of the fundamental group of generic $(p,q)$-torus curves
Bartolo, Enrique Artal; Ortigas-Galindo, Jorge
2012-01-01
In this note, we present a new method for computing fundamental groups of curve complements using a variation of the Zariski-Van Kampen method on general ruled surfaces. As an application we give an alternative (computation-free) proof for the fundamental group of generic $(p,q)$-torus curves.
Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry
Fuller, Lindsay; Packham, Chris; Ramos-Almeida, Cristina; Alonso-Herrero, Almudena; Levenson, Nancy; Radomski, James; Ichikawa, Kohei; Garcia-Bernete, Ismael; Gonzalez-Martin, Omaira; Diaz-Santos, Tanio; Martinez-Parades, Mariela
2016-01-01
We present 31.5 micron imaging photometry of 11 nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We tentatively detect extended 31 micron emission for the first time in our sample. In combination with this new data set, subarcsecond resolution 1-18 micron imaging and 7.5-13 micron spectroscopic observations were used to compute the nuclear spectral energy distribution (SED) of each galaxy. We found that the turnover of the torus emission does not occur at wavelengths <31.5 micron, which we interpret as a lower-limit for the wavelength of peak emission. We used CLUMPY torus models to fit the nuclear infrared (IR) SED and infer trends in the physical parameters of the AGN torus for the galaxies in the sample. Including the 31.5 micron nuclear flux in the SED 1) reduces the number of clumpy torus models compatible with the data, and 2) modifies the model output for the outer radial exten...
Topological Representations of $U_q(sl_2)$ on the Torus and the Mapping Class Group
Crivelli, M; Wieczerkowski, C; Felder, Giovanni
1993-01-01
We compute the mapping class group action on cycles on the configuration space of the torus with one puncture, with coefficients in a local system arising in conformal field theory. This action commutes with the topological action of the quantum group $U_q(sl_2)$, and is given in vertex form.
The spectrum of the torus profile to a geometric variational problem with long range interaction
Ren, Xiaofeng; Wei, Juncheng
2017-08-01
The profile problem for the Ohta-Kawasaki diblock copolymer theory is a geometric variational problem. The energy functional is defined on sets in R3 of prescribed volume and the energy of an admissible set is its perimeter plus a long range interaction term related to the Newtonian potential of the set. This problem admits a solution, called a torus profile, that is a set enclosed by an approximate torus of the major radius 1 and the minor radius q. The torus profile is both axially symmetric about the z axis and reflexively symmetric about the xy-plane. There is a way to set up the profile problem in a function space as a partial differential-integro equation. The linearized operator L of the problem at the torus profile is decomposed into a family of linear ordinary differential-integro operators Lm where the index m = 0 , 1 , 2 , … is called a mode. The spectrum of L is the union of the spectra of the Lm's. It is proved that for each m, when q is sufficiently small, Lm is positive definite. (0 is an eigenvalue for both L0 and L1, due to the translation and rotation invariance.) As q tends to 0, more and more Lm's become positive definite. However no matter how small q is, there is always a mode m of which Lm has a negative eigenvalue. This mode grows to infinity like q - 3 / 4 as q → 0.
Observations of the He+ pickup ion torus velocity distribution function with SOHO/CELIAS/CTOF
Taut, Andreas; Berger, Lars; Bochsler, Peter; Drews, Christian; Klecker, Berndt; Wimmer-Schweingruber, Robert F.
2016-03-01
Interstellar PickUp Ions (PUIs) are created from neutrals coming from the interstellar medium that get ionized inside the heliosphere. Once ionized, the freshly created ions are injected into the magnetized solar wind plasma with a highly anisotropic torus-shaped Velocity Distribution Function (VDF). It has been commonly assumed that wave-particle interactions rapidly destroy this torus by isotropizing the distribution in one hemisphere of velocity space. However, recent observations of a He+ torus distribution using PLASTIC on STEREO showed that the assumption of a rapid isotropization is oversimplified. The aim of this work is to complement these studies. Using He+ data from the Charge Time-Of-Flight (CTOF) sensor of the Charge, ELement, and Isotope Analysis System (CELIAS) on-board the SOlar and Heliospheric Observatory (SOHO) and magnetic field data from the Magnetic Field Investigation (MFI) magnetometer of the WIND spacecraft, we derive the projected 1-D VDF of He+ for different magnetic field configurations. Depending on the magnetic field direction, the initial torus VDF lies inside CTOF's aperture or not. By comparing the VDFs derived under different magnetic field directions with each other we reveal an anisotropic signature of the He+ VDF.
REPRESENTATIONS OF A CLASS OF ASSOCIATIVE ALGEBRAS ON THE QUANTUM TORUS OF RANK n
Institute of Scientific and Technical Information of China (English)
Lin Shangyuan; You Zhefeng
2008-01-01
In this paper,we present three types of representations over Anq defined based on the quantum torus of rank n,which are closely related to modules over some vertex algebras. The isomorphism classes among these modules are also determined.
One-to-one embedding between honeycomb mesh and Petersen-Torus networks.
Seo, Jung-Hyun; Sim, Hyun; Park, Dae-Heon; Park, Jang-Woo; Lee, Yang-Sun
2011-01-01
As wireless mobile telecommunication bases organize their structure using a honeycomb-mesh algorithm, there are many studies about parallel processing algorithms like the honeycomb mesh in Wireless Sensor Networks. This paper aims to study the Peterson-Torus graph algorithm in regard to the continuity with honeycomb-mesh algorithm in order to apply the algorithm to sensor networks. Once a new interconnection network is designed, parallel algorithms are developed with huge research costs to use such networks. If the old network is embedded in a newly designed network, a developed algorithm in the old network is reusable in a newly designed network. Petersen-Torus has been designed recently, and the honeycomb mesh has already been designed as a well-known interconnection network. In this paper, we propose a one-to-one embedding algorithm for the honeycomb mesh (HMn) in the Petersen-Torus PT(n,n), and prove that dilation of the algorithm is 5, congestion is 2, and expansion is 5/3. The proposed one-to-one embedding is applied so that processor throughput can be minimized when the honeycomb mesh algorithm runs in the Petersen-Torus.
Degree-Regular Triangulations of Torus and Klein Bottle-Erratum
Indian Academy of Sciences (India)
Basudeb Datta; Ashish Kumar Upadhyay
2005-08-01
A triangulation of a connected closed surface is called weakly regular if the action of its automorphism group on its vertices is transitive. A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. Clearly, a weakly regular triangulation is degree-regular. In [8], Lutz has classified all the weakly regular triangulations on at most 15 vertices. In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices. In this article, we have proved that any degree-regular triangulation of the torus is weakly regular. We have shown that there exists an -vertex degree-regular triangulation of the Klein bottle if and only if is a composite number ≥ 9. We have constructed two distinct -vertex weakly regular triangulations of the torus for each ≥ 12 and a (4+2)-vertex weakly regular triangulation of the Klein bottle for each ≥ 2. For 12 ≤ ≤ 15, we have classified all the -vertex degree-regular triangulations of the torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among the last 7, only one is weakly regular.
IRIS - A concept for microwave sensing of soil moisture and ocean salinity
Moghaddam, M.; Njoku, E.
1997-01-01
A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.
First wall and blanket concepts for experimental fusion reactors
Energy Technology Data Exchange (ETDEWEB)
Casini, G.; Biggio, M.; Cardella, A.; Daenner, W.; Farfaletti-Casali, F.; Ponti, C.; Rieger, M.; Vieider, G.
1985-07-01
The paper describes the progress of the studies on first wall and liquid breeder blankets for tritium production in the Next European Torus (NET). Two concepts of first wall/blanket segments are described, using 17Li83Pb as breeder and water as coolant. In both concepts the first wall is integrated in a steel box enveloping the breeder units which are cylindrical vessels with an inside heat transfer system. The thermomechanical and neutronics features of the two concepts are evaluated. Finally, the questions related to tritium permeation into coolant and tritium recovery from breeder are discussed on the basis of the analysis in progress in Europe.
Alternative approaches to plasma confinement
Roth, J. R.
1978-01-01
The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.
Novel routes to chaos through torus breakdown in non-invertible maps
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai; Mosekilde, Erik
2009-01-01
The paper describes a number of new scenarios for the transition to chaos through the formation and destruction of multilayered tori in non-invertible maps. By means of detailed, numerically calculated phase portraits we first describe how three- and five-layered tori arise through period......-doubling and/or pitchfork bifurcations of the saddle cycle on an ordinary resonance torus. We then describe several different mechanisms for the destruction of five-layered tori in a system of two linearly coupled logistic maps. One of these scenarios involves the destruction of the two intermediate layers...... of the five-layered torus through the transformation of two unstable node cycles into unstable focus cycles, followed by a saddle-node bifurcation that destroys the middle layer and a pair of simultaneous homoclinic bifurcations that produce two invariant closed curves with quasiperiodic dynamics along...
Torus breakdown in the symmetry-reduced state space of the Kuramoto-Sivashinsky system
Budanur, Nazmi Burak
2015-01-01
Systems such as fluid flows in channels and pipes or the complex Ginzburg-Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2). We formulate a novel symmetry-reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto-Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcation to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very ha...
Research on Next-Generation Scalable Routers Implemented with H-Torus Topology
Institute of Scientific and Technical Information of China (English)
You-Jian Zhao; Zu-Hui Yue; Jian-Ping Wu
2008-01-01
The exponential growth of user traffic has been driving routers to run at higher capacity. In a traditional router, the centralized switching fabric is becoming the bottleneck for its limited number of ports and complicated scheduling algorithms. Direct networks, such as 3-D Torus topology, have been successfully applied to the design of scalable routers.They show good scalability and fault tolerance. Unfortunately, its scalability is limited in practice. In this paper, we introduce another type of direct network, called H-Torus. This network shows excellent topological properties. On its basis,the designs of line card and routing algorithms are introduced. Extensive simulations show that the routing algorithm is very important in such a system and results in low latency with high throughpnt.
Energy Technology Data Exchange (ETDEWEB)
Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2013-05-15
The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.
Stability of small-amplitude torus knot solutions of the localized induction approximation
Calini, Annalisa; Ivey, Thomas
2011-08-01
We study the linear stability of small-amplitude torus knot solutions of the localized induction approximation equation for the motion of a thin vortex filament in an ideal fluid. Such solutions can be constructed analytically through the connection with the focusing nonlinear Schrödinger equation using the method of isoperiodic deformations. We show that these (p, q) torus knots are generically linearly unstable for p q, in contrast with an earlier linear stability study by Ricca (1993 Chaos 3 83-95 1995 Chaos 5 346; 1995 Small-scale Structures in Three-dimensional Hydro and Magneto-dynamics Turbulence (Lecture Notes in Physics vol 462) (Berlin: Springer)). We also provide an interpretation of the original perturbative calculation in Ricca (1995), and an explanation of the numerical experiments performed by Ricca et al (1999 J. Fluid Mech. 391 29-44), in light of our results.
Bilateral Mandibular Torus and an Ankylosed Third Molar: A Case Report
Directory of Open Access Journals (Sweden)
Hasan Onur Şimşek
2016-04-01
Full Text Available Environmental factors, genetic heritage, increased biting function and nutrition are some of the reason for intraoral exostosis to get developed. Torus mandibularis is one of the types of exostosis in the oral region, which is unilaterally or bilaterally located in the lingual aspect of the body of the mandible above the mylohyoid line. There is usually no need for biopsy for the diagnosis of tori. In symptomatic cases, excision is the treatment of choice. In this paper, a 65-year-old man with a wide bilateral mandibular torus and an ankylosed mandibular right third molar tooth with mucosal retention is presented and general information was given about tori. In relation with this case, it was thought that dental ankylosis and tori may occur together because of similar etiological factors.
Superpolynomials for torus knots from evolution induced by cut-and-join operators
Dunin-Barkowski, P.; Mironov, A.; Morozov, A.; Sleptsov, A.; Smirnov, A.
2013-03-01
The colored HOMFLY polynomials, which describe Wilson loop averages in Chern-Simons theory, possess an especially simple representation for torus knots, which begins from quantum R-matrix and ends up with a trivially-looking split W representation familiar from character calculus applications to matrix models and Hurwitz theory. Substitution of MacDonald polynomials for characters in these formulas provides a very simple description of "superpolynomials", much simpler than the recently studied alternative which deforms relation to the WZNW theory and explicitly involves the Littlewood-Richardson coefficients. A lot of explicit expressions are presented for different representations (Young diagrams), many of them new. In particular, we provide the superpolynomial {P}_{{[ 1 ]}}^{{[ {m,km± 1} ]}} for arbitrary m and k. The procedure is not restricted to the fundamental (all antisymmetric) representations and the torus knots.
Spectrum in the presence of brane-localized mass on torus extra dimensions
Sakamura, Yutaka
2016-01-01
The lightest mass eigenvalue of a six-dimensional theory compactified on a torus is numerically evaluated in the presence of the brane-localized mass term. The dependence on the cutoff scale $\\Lambda$ is non-negligible even when $\\Lambda$ is two orders of magnitude above the compactification scale, which indicates that the mass eigenvalue is sensitive to the size of the brane, in contrast to five-dimensional theories. We obtain an approximate expression of the lightest mass in the thin brane limit, which well fits the numerical calculations, and clarifies its dependence on the torus moduli parameter $\\tau$. We found that the lightest mass is typically much lighter than the compactification scale by an order of magnitude even in the limit of a large brane mass.
Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas
Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira
2010-11-01
As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.
Quintilio, R.; Viegas, S. M.
1997-01-01
Theoretical emission-line profiles are obtained for active galactic nuclei (AGNs) taking into account the presence of an obscuring torus around the central energy source. For the sake of simplicity, the torus is represented by a cylindrical shell characterized by the inner and outer radius and the opening angle. In this paper we discuss the results with angle of sight equal to 0, i.e., for a face-on torus. Different line profiles are obtained following the torus parameters. The line profiles may show more than one peak and bumps, depending on the torus dimensions. The main parameter determining the number of peaks or bumps is the opening angle. Thus, the observed line shape may be a good indicator of the torus characteristics. As an example, the fit to the observed [O III] λ5007 emission line of NGC 4151 is presented. The model reproduces the FWHM and the asymmetrical bumps observed. Partially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grant 92/4335-9.
Hierarchical Cantor set in the large scale structure with torus geometry
Energy Technology Data Exchange (ETDEWEB)
Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com
2008-12-15
The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.
The impact of the dusty torus on obscured quasar halo mass measurements
DiPompeo, M. A.; Runnoe, J. C.; Hickox, R. C.; Myers, A. D.; Geach, J. E.
2016-07-01
Recent studies have found that obscured quasars cluster more strongly and are thus hosted by dark matter haloes of larger mass than their unobscured counterparts. These results pose a challenge for the simplest unification models, in which obscured objects are intrinsically the same as unobscured sources but seen through a dusty line of sight. There is general consensus that a structure like a `dusty torus' exists, meaning that this intrinsic similarity is likely the case for at least some subset of obscured quasars. However, the larger host halo masses of obscured quasars imply that there is a second obscured population that has an even higher clustering amplitude and typical halo mass. Here, we use simple assumptions about the host halo mass distributions of quasars, along with analytical methods and cosmological N-body simulations to isolate the signal from this population. We provide values for the bias and halo mass as a function of the fraction of the `non-torus-obscured' population. Adopting a reasonable value for this fraction of ˜25 per cent implies a non-torus-obscured-quasar bias that is much higher than the observed obscured quasar bias, because a large fraction of the obscured population shares the same clustering strength as the unobscured objects. For this non-torus-obscured population, we derive a bias of ˜3, and typical halo masses of ˜3 × 1013 M⊙ h-1 at z = 1. These massive haloes are likely the descendants of high-mass unobscured quasars at high redshift, and will evolve into members of galaxy groups at z = 0.
THE SCENERY FLOW FOR GEOMETRIC STRUCTURES ON THE TORUS: THE LINEAR SETTING
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The authors define the scenery flow of the torus. The flow space is the union of all flat 2- dimensional tori of area 1 with a marked direction (or equivalently, the union of all tori with a quadratic differential of norm 1). This is a 5-dimensional space, and the flow acts by following individual points under an extremal deformation of the quadratic differential. The authors define associated horocycle and translation flows; the latter preserve each torus and are the horizontal and vertical flows of the corresponding quadratic differential. The scenery flow projects to the geodesic flow on the modular surface, and admits, for each orientation preserving hyperbolic toral automorphism, an invariant 3-dimensional subset on which it is the suspension flow of that map. The authors first give a simple algebraic definition in terms of the group of affine maps of the plane, and prove that the flow is Anosov. They give an explicit formula for the first-return map of the flow on convenient cross-sections. Then, in the main part of the paper, the authors give several different models for the flow and its cross-sections, in terms of: ● stacking and rescaling periodic tilings of the plane; ● symbolic dynamics: the natural extension of the recoding of Sturmian sequences, or the S-adic system generated by two substitutions; ● zooming and subdividing quasi-periodic tilings of the real line, or aperiodic quasicrystals of minimal complexity; ● the natural extension of two-dimensional continued fractions; ● induction on exchanges of three intervals; ● rescaling on pairs of transverse measure foliations on the torus, or the Teichmiiller flow on the twice-punctured torus.
DEFF Research Database (Denmark)
Gravesen, Jens; Willatzen, Morten; Voon, L.C. Lew Yan
2005-01-01
The theory of a quantum-mechanical particle confined to a surface of revolution is described using differential geometry methods including the derivation of a general set of three ordinary differential equations in curved coordinates. The problem is shown to be completely separable with the prese...... hard-wall boundary conditions. Two case studies of recent experimental interest. the nanocone and torus-shaped nanoring structures. are analyzed in terms of eigenstates, energies. and symmetry characteristics based on the theory presented....
Algebraic K-theory and derived equivalences suggested by T-duality for torus orientifolds
Rosenberg, Jonathan
2016-01-01
We show that certain isomorphisms of (twisted) KR-groups that underlie T-dualities of torus orientifold string theories have purely algebraic analogues in terms of algebraic K-theory of real varieties and equivalences of derived categories of (twisted) coherent sheaves. The most interesting conclusion is a kind of Mukai duality in which the "dual abelian variety" to a smooth projective genus-1 curve over R with no real points is (mildly) noncommutative.
Indecomposable representations of the Lie algebra of derivations for d-torus
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Let DerA be the Lie algebra of derivations of the d-torus A = C[t1± 1, . . . , td±1]. By applying Shen-Larsson’s functors we get a class of indecomposable DerA-modules from finite-dimensional indecomposable gld-modules. We also give a complete description of the submodules of these indecomposable DerA-modules. Our results generalize those obtained by Rao.
Quantization of a class of piecewise affine transformations on the torus
De Bièvre, S; De Bievre, S; Giachetti, R
1995-01-01
We present a unified framework for the quantization of a family of discrete dynamical systems of varying degrees of ``chaoticity". The systems to be quantized are piecewise affine maps on the two-torus, viewed as phase space, and include the automorphisms, translations and skew translations. We then treat some discontinuous transformations such as the Baker map and the sawtooth-like maps. Our approach extends some ideas from geometric quantization and it is both conceptually and calculationally simple.
Creation of a dense torus in the coalescence of a black hole with a neutron star
1999-01-01
We used a newtonian SPH (smooth-particle hydrodynamics) code to follow the final stages of evolution of a coalescing binary system of a neutron star and a black hole. We find that the outcome of the "merger" is very sensitive to the equation of state describing the neutron star. A neutron star with a soft equation of state (polytrope with index Gamma=5/3) is completely disrupted, and a fairly large and long-lived accretion torus is formed.
Quantum revivals in two degrees of freedom integrable systems : the torus case
Lablée, Olivier
2010-01-01
The paper deals with the semi-classical behaviour of quantum dynamics for a semi-classical completely integrable system with two degrees of freedom near Liouville regular torus. The phenomomenon of wave packet revivals is demonstrated in this article. The framework of this paper is semi-classical analysis (limit :). For the proofs we use standard tools of real analysis, Fourier analysis and basic analytic number theory.
Determining the torus covering factors for a sample of type 1 AGN in the local Universe
Ezhikode, Savithri H; Done, Chris; Ward, Martin; Dewangan, Gulab C; Misra, Ranjeev; Philip, Ninan Sajeeth
2016-01-01
The unification scheme of active galactic nuclei (AGN) proposes the presence of a dusty torus around the central source, governing the differences between AGN spectral properties. A fraction of the AGN luminosity is absorbed by the dusty torus and is re-radiated in the infrared (IR) band. Thus the fraction of the sky covered by the torus as seen from the central source, known as the covering factor f_c, can be obtained from the ratio of the IR to the bolometric luminosities of the source. However, because of the uncertainty in determining bolometric luminosities, the estimation of covering factors has proven difficult, especially in the local Universe where the peak of the observed spectral energy distributions (SEDs) lie in the ultraviolet. In this work, we determine the covering factors of an X-ray/optically selected sample of 51 type 1 AGN analysed by Jin et al. The bolometric luminosities of these sources can be derived using a self-consistent, energy-conserving model that estimates the contribution in th...
A mid-infrared statistical investigation of clumpy torus model predictions
García-González, J.; Alonso-Herrero, A.; Hönig, S. F.; Hernán-Caballero, A.; Ramos Almeida, C.; Levenson, N. A.; Roche, P. F.; González-Martín, O.; Packham, C.; Kishimoto, M.
2017-09-01
We present new calculations of the Clumpy AGN Tori in a 3D geometry (CAT3D) clumpy torus models, which now include a more physical dust sublimation model as well as active galactic nucleus (AGN) anisotropic emission. These new models allow graphite grains to persist at temperatures higher than the silicate dust sublimation temperature. This produces stronger near-infrared emission and bluer mid-infrared (MIR) spectral slopes. We make a statistical comparison of the CAT3D model MIR predictions with a compilation of sub-arcsecond resolution ground-based MIR spectroscopy of 52 nearby Seyfert galaxies (median distance of 36 Mpc) and 10 quasars. We focus on the AGN MIR spectral index αMIR and the strength of the 9.7 μm silicate feature SSil. As with other clumpy torus models, the new CAT3D models do not reproduce the Seyfert galaxies with deep silicate absorption (SSil low photon escape probabilities, while the quasars and the Seyfert 1-1.5 require generally models with higher photon escape probabilities. Quasars and Seyfert 1-1.5 tend to show steeper radial cloud distributions and fewer clouds along an equatorial line of sight than Seyfert 2. Introducing AGN anisotropic emission besides the more physical dust sublimation models alleviates the problem of requiring inverted radial cloud distributions (i.e. more clouds towards the outer parts of the torus) to explain the MIR spectral indices of type 2 Seyferts.
Condensates and instanton – torus knot duality. Hidden Physics at UV scale
Directory of Open Access Journals (Sweden)
A. Gorsky
2015-11-01
Full Text Available We establish the duality between the torus knot superpolynomials or the Poincaré polynomials of the Khovanov homology and particular condensates in Ω-deformed 5D supersymmetric QED compactified on a circle with 5d Chern–Simons (CS term. It is explicitly shown that n-instanton contribution to the condensate of the massless flavor in the background of four-observable exactly coincides with the superpolynomial of the T(n,nk+1 torus knot where k is the level of CS term. In contrast to the previously known results, the particular torus knot corresponds not to the partition function of the gauge theory but to the particular instanton contribution and summation over the knots has to be performed in order to obtain the complete answer. The instantons are sitting almost at the top of each other and the physics of the “fat point” where the UV degrees of freedom are slaved with point-like instantons turns out to be quite rich. Also we see knot polynomials in the quantum mechanics on the instanton moduli space. We consider the different limits of this correspondence focusing at their physical interpretation and compare the algebraic structures at the both sides of the correspondence. Using the AGT correspondence, we establish a connection between superpolynomials for unknots and q-deformed DOZZ factors.
Io's volcanic influence on the Io plasma torus: HISAKI observation in 2015
Tsuchiya, F.; Yoshioka, K.; Kimura, T.; Murakami, G.; Yoneda, M.; Koga, R.; Kagitani, M.; Sakanoi, T.; Kasaba, Y.; Yamazaki, A.; Yoshikawa, I.
2015-12-01
The satellite Io which has many active volcanos supplies volcanic gases to the Jovian magnetosphere with typical rate of 1 ton/sec and has been known be a primary source of plasmas in the magnetosphere. Change in the volcanic activity on Io should cause change of the supply rate and could affect structure of the magnetosphere and dynamics occurs in it. However, responses of the magnetosphere to the volcanic activity is still not fully understood; one of the reasons is lack of continuous and long term observations of Io' volcanic gas extended around Io, plasmas in the Io torus, and activity of the magnetosphere. The extreme ultraviolet (EUV) spectroscope, EXCEED, onboard the HISAKI satellite has capability to measure ion and atomic emission lines in EUV range (55-145nm) and is dedicated to observing solar system planets. The satellite has been successfully launched on Sep. 2013 and 2nd campaign of Io plasma torus and Jovian northern EUV aurora observation has been done from the end of Nov. 2014 to middle of May 2015. On middle of Jan. 2015, HISAKI detected gradual increase in intensity of S+ emission lines and decrease of S3+ ones in the plasma torus. The S+ intensity showed a maximum around the end of Feb. and S++ and S3+ intensities also showed maxima subsequently. Simultaneous ground based observation of the sodium nebula showed increase of the emission intensity from the middle of Jan. to the beginning of Mar. These observations suggest that the volcanic activity began at the middle of Jan. and increase neutral atom and ion densities in the Io torus. The intensities of S+ and S2+ ions returned to the pre-increase level by the middle of May 2015. S3+ had still been in the decay phase at the end of the observation. Change in radial structure of the plasma torus was also found during the volcanic event. The intensity of S+ ion began to increase around the orbit of Io (6 Jovian radii). The brightened region propagated outward and reached at 8.5 Jovian radii from
From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation
Burke, John; Desroches, Mathieu; Granados, Albert; Kaper, Tasso J.; Krupa, Martin; Vo, Theodore
2016-04-01
In this article, we study canard solutions of the forced van der Pol equation in the relaxation limit for low-, intermediate-, and high-frequency periodic forcing. A central numerical observation made herein is that there are two branches of canards in parameter space which extend across all positive forcing frequencies. In the low-frequency forcing regime, we demonstrate the existence of primary maximal canards induced by folded saddle nodes of type I and establish explicit formulas for the parameter values at which the primary maximal canards and their folds exist. Then, we turn to the intermediate- and high-frequency forcing regimes and show that the forced van der Pol possesses torus canards instead. These torus canards consist of long segments near families of attracting and repelling limit cycles of the fast system, in alternation. We also derive explicit formulas for the parameter values at which the maximal torus canards and their folds exist. Primary maximal canards and maximal torus canards correspond geometrically to the situation in which the persistent manifolds near the family of attracting limit cycles coincide to all orders with the persistent manifolds that lie near the family of repelling limit cycles. The formulas derived for the folds of maximal canards in all three frequency regimes turn out to be representations of a single formula in the appropriate parameter regimes, and this unification confirms the central numerical observation that the folds of the maximal canards created in the low-frequency regime continue directly into the folds of the maximal torus canards that exist in the intermediate- and high-frequency regimes. In addition, we study the secondary canards induced by the folded singularities in the low-frequency regime and find that the fold curves of the secondary canards turn around in the intermediate-frequency regime, instead of continuing into the high-frequency regime. Also, we identify the mechanism responsible for this
Snowflake divertor configuration studies in National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V. A.; McLean, A. G.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; Menard, J. E.; Paul, S. F.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Battaglia, D.; Bell, M. G.; Gates, D. A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); and others
2012-08-15
Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4-6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width {lambda}{sub q} was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flattened and decreased to 0.5-1 MW/m{sup 2} (from 4-7 MW/m{sup 2} in the standard divertor) indicative of radiative heating. An up to 50% increase in divertor, P{sub rad} in the snowflake divertor was accompanied by broadening of the intrinsic C III and C IV radiation zones, and a nearly order of magnitude increase in divertor high-n Balmer line emission indicative of volumetric recombination onset. Magnetic reconstructions showed that the x-point connection length, divertor plasma-wetted area and divertor volume, all critical parameters for geometric reduction of deposited heat flux, and increased volumetric divertor losses were significantly increased in the snowflake divertor, as expected from theory.
Balokovic, Mislav; Harrison, Fiona; Brightman, Murray
2017-08-01
The obscuring torus is one of the main components of the basic unified model of active galactic nuclei (AGN), needed to create anisotropy in obscuration as a function of the viewing angle. We present the first study of the geometrical properties of the AGN torus in a large and representative sample of type II Seyfert nuclei. The sample consists of 124 AGN selected in the hard X-ray band from the Swift/BAT 70-month catalog and observed simultaneously with NuSTAR and Swift/XRT. These data enable us to explore the constraints that observed spectra place on the properties of the obscuring torus in individual AGN and in the local population of Seyfert II nuclei. We make use of empirically motivated spectral models for X-ray reprocessing in approximately toroidal geometry for constraining the distribution of the average column density of the torus, and the distribution of the torus covering factor within this sample. We find that the torus-averaged column density is independent of the line-of-sight column density, with typical column density that is borderline Compton-thick, i.e., around the unity optical depth for Compton scattering. The distribution of torus covering factors is broad but shows a preference for high covering, peaking around the covering factor of 90%, with the median at 70%, in agreement with recent sample studies in the infrared band. We also examine the dependence of the covering factor on intrinsic luminosity, finding that the median covering factor peaks around the intrinsic X-ray luminosity of 10^42.5 erg/s and decreases toward both lower and higher luminosities.
Schwendimann, Beat Adrian
2014-01-01
A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...
Yoshioka, K.; Tsuchiya, F.; Kimura, T.; Kagitani, M.; Murakami, G.; Yamazaki, A.; Kuwabara, M.; Suzuki, F.; Hikida, R.; Yoshikawa, I.; Bagenal, F.; Fujimoto, M.
2017-03-01
The Io plasma torus, situated in the Jovian inner magnetosphere (6-8 Jovian radii from the planet) is filled with heavy ions and electrons, a large part of which are derived from Io's volcanos. The torus is the key area connecting the primary source of plasma (Io) with the midmagnetosphere (>10 Jovian radii), where highly dynamic phenomena are taking place. Revealing the plasma behavior of the torus is a key factor in elucidating Jovian magnetospheric dynamics. A global picture of the Io plasma torus can be obtained via spectral diagnosis of remotely sensed ion emissions generated via electron impact excitation. Hisaki, an Earth-orbiting spacecraft equipped with an extreme ultraviolet spectrograph Extreme Ultraviolet Spectroscope for Exospheric Dynamics, has observed the torus at moderate spectral resolution. The data have been submitted to spectral analysis and physical chemistry modeling under the assumption of axial symmetry. Results from the investigation are radial profiles of several important parameters including electron density and temperature as well as ion abundances. The inward transport timescale of midmagnetospheric plasma is obtained to be 2-40 h from the derived radial profile for the abundance of suprathermal electrons. The physical chemistry modeling results in a timescale for the outward transport of Io-derived plasma of around 30 days. The ratio between inward and outward plasma speed ( 1%) is consistent with the occurrence rate of depleted flux tubes determined using in situ observations by instruments on the Galileo spacecraft.
Topological Strings, Two-Dimensional Yang-Mills Theory and Chern-Simons Theory on Torus Bundles
Caporaso, N; Griguolo, L; Pasquetti, S; Seminara, D; Szabó, R J
2006-01-01
We study the relations between two-dimensional Yang-Mills theory on the torus, topological string theory on a Calabi-Yau threefold whose local geometry is the sum of two line bundles over the torus, and Chern-Simons theory on torus bundles. The chiral partition function of the Yang-Mills gauge theory in the large N limit is shown to coincide with the topological string amplitude computed by topological vertex techniques. We use Yang-Mills theory as an efficient tool for the computation of Gromov-Witten invariants and derive explicitly their relation with Hurwitz numbers of the torus. We calculate the Gopakumar-Vafa invariants, whose integrality gives a non-trivial confirmation of the conjectured nonperturbative relation between two-dimensional Yang-Mills theory and topological string theory. We also demonstrate how the gauge theory leads to a simple combinatorial solution for the Donaldson-Thomas theory of the Calabi-Yau background. We match the instanton representation of Yang-Mills theory on the torus with ...
Energy Technology Data Exchange (ETDEWEB)
Diez-Jimenez, Efren, E-mail: ediez@ing.uc3m.e [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque, 15, E28911 Leganes (Spain); Sander, Berit; Timm, Lauri; Perez-Diaz, Jose-Luis [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque, 15, E28911 Leganes (Spain)
2011-04-15
Research highlights: {yields} A local model is used to demonstrate a flip effect in the orientation of a magnet over a superconductor. {yields} A superconducting torus shape is studied. {yields} Increasing the inner radius of the torus elevates the flip effect point. {yields} There are linear piecewises in the geometrical dependency functions that help to fit the flip effect point. - Abstract: In a previous study, a general local model was used in order to demonstrate the apparition of a flip effect in the equilibrium orientation of a magnet when it is over a superconducting torus. This effect can be easily used in devices such as binary position detectors for magneto-microscopy, contactless sieves or magnetic levels amongst others. We present an initial study useful to design devices based on the flip effect between magnets and torus superconductors. It demonstrates that varying different geometrical parameters the flip effect point can be fixed. Also, it can be observed that increasing the inner radius of the torus elevates the flip effect point. A magneto-mechanical explanation of this phenomenon is exposed. For an increment of cross-section diameter occurs the same behavior. There are linear piecewises in the geometrical dependency functions that can be used for a more accurate fitting of the flip effect point.
Active galactic nucleus torus models and the puzzling infrared spectrum of IRAS F10214+4724
Efstathiou, A.; Christopher, N.; Verma, A.; Siebenmorgen, R.
2013-12-01
We present a revised model for the infrared emission of the hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first present and discuss a grid of smooth active galactic nucleus (AGN) torus models computed with the method of Efstathiou & Rowan-Robinson and demonstrate that the combination of these models and the starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of Seyfert 2s and spectra of individual type 2 quasars measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the νSν distribution of the galaxy falls very steeply with increasing frequency (a characteristic that is usually indicative of heavy absorption by dust) but shows a silicate feature in emission. Such emission features are not expected in sources with optical/near-infrared type 2 AGN spectral signatures. The Herschel data show that there is more power emitted in the rest-frame 20-50 μm wavelength range compared with the model presented by Efstathiou which assumes three components of emission: an edge-on torus, clouds (at a temperature of 610 and 200 K) that are associated with the narrow-line region (NLR) and a highly obscured starburst that dominates in the submillimetre. We present a revised version of that model that assumes an additional component of emission which we associate with NLR clouds at a temperature of 100 K. The 100 K dust component could also be explained by a highly obscured hot starburst. The model suggests that the NLR of IRAS F10214+4724 has an unusually high covering factor (≥17 per cent) or more likely the magnification of the emission from the NLR clouds is significantly higher than that of the emission from the torus.
First observation of ELM pacing with vertical jogs in a spherical torus
Energy Technology Data Exchange (ETDEWEB)
Gerhardt, S.P. [Princeton Plasma Physics Laboratory (PPPL); Ahn, Joon-Wook [Oak Ridge National Laboratory (ORNL); Canik, John [ORNL; Maingi, R. [Oak Ridge National Laboratory (ORNL); Bell, R. [Princeton Plasma Physics Laboratory (PPPL); Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Goldston, R. [Princeton Plasma Physics Laboratory (PPPL); Hawryluk, R. [Princeton Plasma Physics Laboratory (PPPL); Le Blanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Sontag, Aaron C [ORNL; Sabbagh, S. A. [Columbia University; Tritz, K. [Johns Hopkins University
2010-01-01
Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies.
First observation of ELM pacing with vertical jogs in a spherical torus
Gerhardt, S. P.; Ahn, J.-W.; Canik, J. M.; Maingi, R.; Bell, R.; Gates, D.; Goldston, R.; Hawryluk, R.; Le Blanc, B. P.; Menard, J.; Sontag, A. C.; Sabbagh, S.; Tritz, K.
2010-06-01
Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies.
Análise da máquina Torus sob frenagem eletrodinâmica
Jonas Obert Martins Osório
2011-01-01
Este trabalho foi desenvolvido com o objetivo de estudar a aplicação, para sistema de frenagem veicular, de uma máquina elétrica sem escovas, de armadura toroidal, e fluxo magnético axial produzido por ímãs permanentes de terras raras, a chamada máquina Torus. A máquina foi construída no LMEAE e estudada inicialmente como motor em outro trabalho. Mas, para que se possa avaliar seu funcionamento em sistema de frenagem, o foco é do ponto de vista da máquina como gerador. São realizados testes d...
The non-Maxwellian energy distribution of ions in the warm Io torus
Richardson, J. D.; Siscoe, G. L.
1983-01-01
Observations of Io's torus indicate that the majority of ions have energies of 55-75 eV, with a high-energy tail extending up to the corotation energy. It was found that such a distribution can be established via the Coulomb cooling of ions heated at the corotation energy onto the cold 5-eV electrons. The energy E(asterisk) of the main body of the ions and the shape of the energy distribution are functions of the transport loss time. Matching E(asterisk) with the data (E/asterisk/ = 55-75 eV) requires transport loss times in the range 25-1000 days.
First Observation Of ELM Pacing With Vertical Jogs In A Spherical Torus
Energy Technology Data Exchange (ETDEWEB)
Gerhardt, S P; Canik, J M; Maingi, R; Bell, R; Gates, d; Goldston, R; Hawryluk, R; Le Blanc, B P; Menard, J; Sontag, A C; Sabbagh, S
2010-07-15
Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies. __________________________________________________
Energy Technology Data Exchange (ETDEWEB)
Efthimion, P.C.; Arunasalam, V.; Hosea, J.C.
1979-11-01
Fundamental electron cyclotron resonance damping for 4 mm waves with ordinary polarization is measured for propagation along the major radius traversing the midplane of the plasma in the Princeton Large Torus (PLT). Optical depths obtained from the data are in good agreement with those predicted by the relativistic hot plasma theory. Near blackbody emission over much of the plasma midplane is obtained and, in conjunction with the damping measurements, indicates that the vessel reflectivity is high. The practical use of ordinary mode fundamental electron cyclotron resonance heating (ECRH) in existing and future toroidal devices is supported by these results.
Tangential and Vertical Compact Torus Injection Experiments on the STOR-M Tokamak
Institute of Scientific and Technical Information of China (English)
Xiao Chijin; Liu D.; S. Livingstone; A. K. Singh; E. Zhang; A. Hirose
2005-01-01
This paper describes the setup and results of compact torus (CT) injection experiments on the STOR-M tokamak. Tangential CT injection into STOR-M induced H-mode-like phenomena including doubling the electron density, reduction in the Ha radiation level, suppression of the floating potential fluctuations, suppression of the m = 2 Mirnov oscillations, and increase in the global energy confinement time. Experimental setup, bench-test results, and some preliminary injection data for vertical CT injection experiments on STOR-M will be shown. In addition, numerical simulations of the CT trajectories in tokamak discharges for both tangential and vertical injection geometries will be discussed.
Position-dependent mass approach and quantization for a torus Lagrangian
Yeşiltaş, Özlem
2016-09-01
We have shown that a Lagrangian for a torus surface can yield second-order nonlinear differential equations using the Euler-Lagrange formulation. It is seen that these second-order nonlinear differential equations can be transformed into the nonlinear quadratic and Mathews-Lakshmanan equations using the position-dependent mass approach developed by Mustafa (J. Phys. A: Math. Theor. 48, 225206 (2015)) for the classical systems. Then, we have applied the quantization procedure to the nonlinear quadratic and Mathews-Lakshmanan equations and found their exact solutions.
Structure and deformations of strongly magnetized neutron stars with twisted torus configurations
Ciolfi, R; Gualtieri, L
2010-01-01
We construct general relativistic models of stationary, strongly magnetized neutron stars. The magnetic field configuration, obtained by solving the relativistic Grad-Shafranov equation, is a generalization of the twisted torus model recently proposed in the literature; the stellar deformations induced by the magnetic field are computed by solving the perturbed Einstein's equations; stellar matter is modeled using realistic equations of state. We find that in these configurations the poloidal field dominates over the toroidal field and that, if the magnetic field is sufficiently strong during the first phases of the stellar life, it can produce large deformations.
Energy Technology Data Exchange (ETDEWEB)
Smith, D. R.; Mazzucato, E.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, Jr., N. C.
2009-02-13
A collective scattering system has been installed on the National Spherical Torus Experiment (NSTX) to measure electron gyroscale fluctuations in NSTX plasmas. Up to five distinct wavenumbers are measured simultaneously, and the large toroidal curvature of NSTX plasmas provides enhanced spatial localization. Steerable optics can position the scattering volume throughout the plasma from the magnetic axis to the outboard edge. Initial measurements indicate rich turbulent dynamics on the electron gyroscale. The system will be a valuable tool for investigating the connection between electron temperature gradient turbulence and electron thermal transport in NSTX plasmas.
Coincidence Properties for Maps from the Torus to the Klein Bottle
Institute of Scientific and Technical Information of China (English)
Daciberg L. GON(C)ALVES; Michael R. KELLY
2008-01-01
The authors study the coincidence theory for pairs of maps from the Torus to the Klein bottle. Reidemeister classes and the Nielsen number are computed, and it is shown that any given pair of maps satisfies the Wecken property. The 1-parameter Wecken property is studied and a partial negative answer is derived. That is for all pairs of coincidence free maps a countable family of pairs of maps in the homotopy class is constructed such that no two members may be joined by a coincidence free homotopy.
Initial Results from the Lost Alpha Diagnostics on Joint European Torus
Energy Technology Data Exchange (ETDEWEB)
Darrow, Doug; Cecil, Ed; Ellis, Bob; Fullard, Keith; Hill, Ken; Horton, Alan; Kiptily, Vasily; Pedrick, Les; Reich, Matthias
2007-07-25
Two devices have been installed in the Joint European Torus (JET) vacuum vessel near the plasma boundary to investigate the loss of energetic ions and fusion products in general and alpha particles in particular during the upcoming JET experiments. These devices are (i) a set of multichannel thin foil Faraday collectors, and (ii) a well collimated scintillator which is optically connected to a charge-coupled device. Initial results, including the radial energy and poloidal dependence of lost ions from hydrogen and deuterium plasmas during the 2005–06 JET restart campaign, will be presented.
Direct torus venting analysis for Chinshan BWR-4 plant with MARK-I containment
Energy Technology Data Exchange (ETDEWEB)
Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw
2017-03-15
Highlights: • Study the effectiveness of Direct Torus Venting System (DTVS) during extended SBO of 24 h for Chinshan MARK-I plant. • Containment response is analyzed by GOTHIC based on boundary conditions from RETRAN calculation. • Analyses are performed with and without DTVS, respectively. • Suppression pool is sub-divided and thermal stratification is observed. - Abstract: The Chinshan plant, owned by Taiwan Power Company, has twin units of BWR-4 reactor and MARK-I containment. Both units have been operating at rated core thermal power of 1840 MWt. The existing Direct Torus Venting System (DTVS) is the main system used for venting the containment during the extended station blackout event. The purpose of this paper is to study the effects of the DTVS venting on the response of the containment pressure and temperature. The reactor is depressurized by manually opening the safety relief valves (SRVs) during the SBO, which causes the mass and energy to be discharged into and heat up the suppression pool. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The DTVS model is established in the GOTHIC model based on the venting size, venting piping loss, venting initiation time, and venting source. The lumped volume model, 1-D coarse-mesh model, and 3-D coarse-mesh model are considered in the torus volume. The calculation is first done without DTVS venting to establish a reference basis. Then a case with DTVS available is performed. Comparison of the two cases shows that the existing DTVS design is effective in mitigating the severity of the containment pressure and temperature transients. The results also show that the 1-D coarse-mesh model may not be appropriate since a
Kiso, Atsushi; Seki, Hirokazu
This paper describes an optimal mapping of the torus self-organizing map for a human forearm motion discrimination on the basis of the myoelectric signals. This study uses the torus self-organizing map (Torus-SOM) for the motion discrimination. The normal SOM identify input data into the same feature group by using the all units of map. Then there is a possibility of the misrecognition motion around the boundary lines of the motion groups. Therefore, this study proposes the mapping method of SOM that the learning units of the same motion concentrate on one local range and the learning unit groups of each motion separates enough. As a result, the variance in the same motion group becomes small and the variance between each motion groups becomes big. Some experiments on the myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.
Detecting the Energy Source in the Hottest Tango in the Universe:. a Torus around a Kerr Black Hole
van Putten, Maurice H. P. M.
2002-09-01
A Kerr black hole surrounded by a a torus is expected to produce emissions in various channels: bursts in baryon poor outflows along the axis of rotation of the black hole and gravitational radiation from the torus, with additional emissions in winds, thermal radiation and, when sufficiently hot, MeV neutrinos. We recently showed that the energy output as a fraction of rotational energy of the black hole is minor in these outflows and major in the emissions from the torus [van Putten & Levinson, Science, 2002, 295, 1874]. The former is proposed as the input to GRBs, consistent with their recently determined true energies. Detection of the energy output Egw in gravitational waves by gravitational wave experiments provides a method for identifying Kerr black holes in events which satisfy 2πEgwfgw > 0.005, where fgw ≃1kHz × (7M⊙/M) denotes the observed gravitational wave frequency.
Repellin, Cécile; Neupert, Titus; Bernevig, B. Andrei; Regnault, Nicolas
2015-09-01
Multilayer fractional quantum Hall wave functions can be used to construct the non-Abelian states of the Zk Read-Rezayi series upon symmetrization over the layer index. Unfortunately, this construction does not yield the complete set of Zk ground states on the torus. We develop an alternative projective construction of Zk Read-Rezayi states that complements the existing one. On the multilayer torus geometry, our construction consists of introducing twisted boundary conditions connecting the layers before performing the symmetrization. We give a comprehensive account of this construction for bosonic states, and numerically show that the full ground state and quasihole manifolds are recovered for all computationally accessible system sizes. Furthermore, we analyze the neutral excitation modes above the Moore-Read on the torus through an extensive exact diagonalization study. We show numerically that our construction can be used to obtain excellent approximations to these modes. Finally, we extend our symmetrization scheme to the plane and sphere geometries.
Izumi, T.; Kohno, K.; Fathi, K.; Hatziminaoglou, E.; Davies, R. I.; Martín, S.; Matsushita, S.; Schinnerer, E.; Espada, D.; Aalto, S.; Onishi, K.; Turner, J. L.; Imanishi, M.; Nakanishi, K.; Meier, D. S.; Wada, K.; Kawakatu, N.; Nakajima, T.
2017-08-01
We used the Atacama Large Millimeter/Submillimeter Array to map the CO(3-2) and the underlying continuum emissions around the type-1 low-luminosity active galactic nucleus (LLAGN; bolometric luminosity ≲ {10}42 erg s-1) of NGC 1097 at ˜10 pc resolution. These observations revealed a detailed cold gas distribution within a ˜100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a ˜7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of ≳2-3 less than that found for NGC 1068 by using the same CO-to-H2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 μm H2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.
Indian Academy of Sciences (India)
S S Kannan; Pranab Sardar
2009-02-01
We give a stratification of the $GIT$ quotient of the Grassmannian $G_{2,n}$ modulo the normaliser of a maximal torus of $SL_n(k)$ with respect to the ample generator of the Picard group of $G_{2,n}$. We also prove that the flag variety $GL_n(k)/B_n$ can be obtained as a $GIT$ quotient of $GL_{n+1}(k)/B_{n+1}$ modulo a maximal torus of $SL_{n+1}(k)$ for a suitable choice of an ample line bundle on $GL_{n+1}(k)/B_{n+1}$.
Directory of Open Access Journals (Sweden)
K. Marubashi
2007-11-01
Full Text Available We identified 17 magnetic clouds (MCs with durations longer than 30 h, surveying the solar wind data obtained by the WIND and ACE spacecraft during 10 years from 1995 through 2004. Then, the magnetic field structures of these 17 MCs were analyzed by the technique of the least-squares fitting to force-free flux rope models. The analysis was made with both the cylinder and torus models when possible, and the results from the two models are compared. The torus model was used in order to approximate the curved portion of the MCs near the flanks of the MC loops. As a result, we classified the 17 MCs into 4 groups. They are (1 5 MC events exhibiting magnetic field rotations through angles substantially larger than 180° which can be interpreted only by the torus model; (2 3 other MC events that can be interpreted only by the torus model as well, though the rotation angles of magnetic fields are less than 180°; (3 3 MC events for which similar geometries are obtained from both the torus and cylinder models; and (4 6 MC events for which the resultant geometries obtained from both models are substantially different from each other, even though the observed magnetic field variations can be interpreted by either of the torus model or the cylinder model. It is concluded that the MC events in the first and second groups correspond to those cases where the spacecraft traversed the MCs near the flanks of the MC loops, the difference between the two being attributed to the difference in distance between the torus axis and the spacecraft trajectory. The MC events in the third group are interpreted as the cases where the spacecraft traversed near the apexes of the MC loops. For the MC events in the fourth group, the real geometry cannot be determined from the model fitting technique alone. Though an attempt was made to determine which model is more plausible for each of the MCs in this group by comparing the characteristics of associated bidirectional electron
Bisbas, T G; Barlow, M J; Viti, S; Harries, T J; Bell, T; Yates, J A
2015-01-01
The interaction of ionizing and far-ultraviolet radiation with the interstellar medium is of great importance. It results in the formation of regions in which the gas is ionized, beyond which are photodissociation regions (PDRs) in which the gas transitions to its atomic and molecular form. Several numerical codes have been implemented to study these two main phases of the interstellar medium either dynamically or chemically. In this paper we present TORUS-3DPDR, a new self-consistent code for treating the chemistry of three-dimensional photoionization and photodissociation regions. It is an integrated code coupling the two codes TORUS, a hydrodynamics and Monte Carlo radiation transport code, and 3D-PDR, a photodissociation regions code. The new code uses a Monte Carlo radiative transfer scheme to account for the propagation of the ionizing radiation including the diffusive component as well as a ray-tracing scheme based on the HEALPix package in order to account for the escape probability and column density...
The r-process in the neutrino-driven wind from a black-hole torus
Wanajo, Shinya
2011-01-01
We examine r-process nucleosynthesis in the neutrino-driven wind from the thick accretion disk (or "torus") around a black hole. Such systems are expected as emnants of binary neutron star or neutron star -- black hole mergers. We consider a simplified, analytic, time-dependent evolution model of a 3M_sun central black hole surrounded by a neutrino emitting accretion torus with 90km radius, which serves as basis for computing spherically symmetric neutrino-driven wind solutions. We find that ejecta with modest entropies (~30 per nucleon in units of the Boltzmann constant) and moderate expansion timescales (~100ms) dominate in the mass outflow. The mass-integrated nucleosynthetic abundances are in good agreement with the solar system r-process abundance distribution if a minimal value of the electron fraction at the charged-particle freezeout, Ye,min~0.2, is achieved. In the case of Ye,min~0.3, the production of r-elements beyond A~130 does not reach to the third peak but could be still important for an explan...
The Lack of Torus Emission from BL Lacertae Objects: An Infrared View of Unification with WISE
Plotkin, Richard M; Brandt, W N; Markoff, Sera; Shemmer, Ohad; Wu, Jianfeng
2011-01-01
We use data from the Wide-Field Infrared Survey Explorer (WISE) to perform a statistical study on the mid-infrared (IR) properties of a large number ($\\sim10^2$) of BL Lac objects --- low-luminosity Active Galactic Nuclei (AGN) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions. In other BL Lac objects, however, the jet is not strong enough to completely dilute the rest of the AGN emission. We do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. The lack of observable torus emission is consistent with suggestions that BL Lac objects are fed by radiatively inefficient accretion disks. Implications for the "nature vs. nurture" debate for FR I and FR II radio galaxies are briefly discussed. Our study supports the notion that, beyond orientation, accretion rate plays an important role in AGN unification.
The Infrared Nuclear Emission of Seyfert Galaxies on Parsec Scales: Testing the Clumpy Torus models
Almeida, Cristina Ramos; Espinosa, Jose Miguel Rodriguez; Herrero, Almudena Alonso; Ramos, Andres Asensio; Radomski, James T; Packham, Chris; Fisher, R Scott; Telesco, Charles M
2009-01-01
We present subarcsecond resolution mid-infrared (mid-IR) photometry in the wavelength range from 8 to 20 micron of eighteen Seyfert galaxies, reporting high spatial resolution nuclear fluxes for the entire sample. We construct spectral energy distributions (SEDs) that the AGN dominates adding near-IR measurements from the literature at similar angular resolution. The IR SEDs of intermediate-type Seyferts are flatter and present higher 10 to 18 micron ratios than those of Seyfert 2. We fit the individual SEDs with clumpy torus models using the in-house-developed BayesClumpy tool. The models reproduce the high spatial resolution measurements. Regardless of the Seyfert type, even with high spatial resolution data, near- to mid-IR SED fitting poorly constrains the radial extent of the torus. For the Seyfert 2, we find that edge-on geometries are more probable than face-on views, with a number of clouds along equatorial rays of N = 5-15. The 10 micron silicate feature is generally modeled in shallow absorption. Fo...
Topological order and Berry connection for the Maxwell Vacuum on a four-torus
Zhitnitsky, Ariel
2014-01-01
We study novel type of contributions to the partition function of the Maxwell system defined on a small compact manifold such as torus. These new terms can not be described in terms of the physical propagating photons with two transverse polarizations. Rather, these novel contributions emerge as a result of tunnelling events when transitions occur between topologically different but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure. The infrared physics in the system can be described in terms of the topological auxiliary non-propagating fields $a_i(\\mathbf{k})$ governed by Chern-Simons -like action. The system can be studied in terms of these auxiliary fields precisely in the same way as a topological insulator can be analyzed in terms of Berry's connection ${\\cal{A}}_i(\\mathbf{k})$. We also argue that the Maxwell vacuum defined on a small 4-torus behaves very much in the same way as a topological insulator with $\\theta\
Integrable Magnetic Geodesic Flows on 2-Torus: New Examples via Quasi-Linear System of PDEs
Agapov, S. V.; Bialy, M.; Mironov, A. E.
2017-05-01
For a magnetic geodesic flow on the 2-torus the only known integrable example is that of a flow integrable for all energy levels. It has an integral linear in momenta and corresponds to a one parameter group preserving the Lagrangian function of the magnetic flow. In this paper the problem of integrability on a single energy level is considered. Then, in addition to the example mentioned above, a few other explicit examples with quadratic in momenta integrals can be constructed by means of the Maupertuis' principle. Recently we proved that such an integrability problem can be reduced to a remarkable semi-Hamiltonian system of quasi-linear PDEs and to the question of the existence of smooth periodic solutions for this system. Our main result of the present paper states that any Liouville metric with the zero magnetic field on the 2-torus can be analytically deformed to a Riemannian metric with a small magnetic field so that the magnetic geodesic flow on an energy level is integrable by means of an integral quadratic in momenta.
Integrable Magnetic Geodesic Flows on 2-Torus: New Examples via Quasi-Linear System of PDEs
Agapov, S. V.; Bialy, M.; Mironov, A. E.
2017-01-01
For a magnetic geodesic flow on the 2-torus the only known integrable example is that of a flow integrable for all energy levels. It has an integral linear in momenta and corresponds to a one parameter group preserving the Lagrangian function of the magnetic flow. In this paper the problem of integrability on a single energy level is considered. Then, in addition to the example mentioned above, a few other explicit examples with quadratic in momenta integrals can be constructed by means of the Maupertuis' principle. Recently we proved that such an integrability problem can be reduced to a remarkable semi-Hamiltonian system of quasi-linear PDEs and to the question of the existence of smooth periodic solutions for this system. Our main result of the present paper states that any Liouville metric with the zero magnetic field on the 2-torus can be analytically deformed to a Riemannian metric with a small magnetic field so that the magnetic geodesic flow on an energy level is integrable by means of an integral quadratic in momenta.
Revisiting the Infrared Spectra of Active Galactic Nuclei with a New Torus Emission Model
Fritz, J; Hatziminaoglou, E
2006-01-01
We describe improved modelling of the emission by dust in a toroidal--like structure heated by a central illuminating source within Active Galactic Nuclei (AGN). We chose a simple but realistic torus geometry, a flared disc, and a dust grain distribution function including a full range of grain sizes. The optical depth within the torus is computed in detail taking into account the different sublimation temperatures of the silicate and graphite grains, which solves previously reported inconsistencies in the silicate emission feature in type-1 AGN. We exploit this model to study the spectral energy distributions (SEDs) of 58 extragalactic (both type-1 and type-2) sources using archival optical and infrared (IR) data. We find that both AGN and starburst contributions are often required to reproduce the observed SEDs, although in a few cases they are very well fitted by a pure AGN component. The AGN contribution to the far-IR luminosity is found to be higher in type-1 sources, with all the type-2 requiring a subs...
The Impact of the Dusty Torus on Obscured Quasar Halo Mass Measurements
DiPompeo, Michael A; Hickox, Ryan C; Myers, Adam D; Geach, James E
2016-01-01
Recent studies have found that obscured quasars cluster more strongly and are thus hosted by dark matter haloes of larger mass than their unobscured counterparts. These results pose a challenge for the simplest unification models, in which obscured objects are intrinsically the same as unobscured sources but seen through a dusty line of sight. There is general consensus that a structure like a "dusty torus" exists, meaning that this intrinsic similarity is likely the case for at least some subset of obscured quasars. However, the larger host halo masses of obscured quasars implies that there is a second obscured population that has an even higher clustering amplitude and typical halo mass. Here, we use simple assumptions about the host halo mass distributions of quasars, along with analytical methods and cosmological $N$-body simulations to isolate the signal from this population. We provide values for the bias and halo mass as a function of the fraction of the "non-torus obscured" population. Adopting a reas...
TORUS: Theory of Reactions for Unstable iSotopes - Year 1 Continuation and Progress Report
Energy Technology Data Exchange (ETDEWEB)
Arbanas, G; Elster, C; Escher, J; Mukhamedzhanov, A; Nunes, F; Thompson, I J
2011-02-24
The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding started on June 1, 2010, it will have been running for nine months by the date of submission of this Annual Continuation and Progress Report on March 1, 2011. The extent of funding was reduced from the original application, and now supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.
X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus
Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.
2005-01-01
Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.
Payan, A. P.; Rajendar, A.; Paty, C. S.; Bonfond, B.; Crary, F.
2012-12-01
Io is the primary source of plasma in the Jovian magnetosphere, continuously releasing approximately 1 ton/s of SO2 from volcanic eruptions. The interaction of Io with Jupiter's magnetosphere is strongly influenced by the density structure of the resulting plasma torus and the position of Io relative to the center of the torus [Bonfond et al. 2008]. This unusual interaction produces a complex auroral feature on Jupiter's ionosphere known as the Io footprint. Hubble Space Telescope (HST) observations of Jupiter's far-UV aurora during spring 2007 showed an increased number of isolated auroral blobs along with a continuous expansion of Jupiter's main auroral oval over a few months. These blobs were associated with several large injections of hot plasma between 9 and 27 Jovian radii. These events coincided with a large volcanic eruption of the Tvashtar Paterae on Io, as observed by the New Horizons spacecraft [Spencer et al., 2007]. This, in turn, may have resulted in a significant increase in the plasma torus density. Besides, on June 7th, 2007, the Io footprint momentarily became so faint that it disappeared under a diffuse patch of emission remaining from an injection blob [Bonfond et al., 2012]. The goal of the present study is to examine the relationship between the increased density of the plasma torus and the dimming of the Io footprint. We implement a 2D model of the Io plasma torus that treats the variable-density torus as being composed of discrete layers of uniform density. As the co-rotating plasma in the plasma torus impinges on Io, Alfvén waves are launched at a pushback angle obtained from Gurnett and Goertz [1981]. The waves propagate inside the plasma torus through reflection and refraction at density discontinuities where they lose some of their initial energy. Using the above model, we can track the Alfvén wave fronts in the plasma torus and determine the longitude at which they exit the torus along with the corresponding remaining energy. Since
Energy Technology Data Exchange (ETDEWEB)
Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan (Malaysia)]. E-mail: jawaid.inayat-hussain@eng.monash.edu.my
2007-02-15
This work reports on a numerical study undertaken to investigate the response of an imbalanced rigid rotor supported by active magnetic bearings. The mathematical model of the rotor-bearing system used in this study incorporates nonlinearity arising from the electromagnetic force-coil current-air gap relationship, and the effects of geometrical cross-coupling. The response of the rotor is observed to exhibit a rich variety of dynamical behavior including synchronous, sub-synchronous, quasi-periodic and chaotic vibrations. The transition from synchronous rotor response to chaos is via the torus breakdown route. As the rotor imbalance magnitude is increased, the synchronous rotor response undergoes a secondary Hopf bifurcation resulting in quasi-periodic vibration, which is characterized by a torus attractor. With further increase in the rotor imbalance magnitude, this attractor is seen to develop wrinkles and becomes unstable resulting in a fractal torus attractor. The fractal torus is eventually destroyed as the rotor imbalance magnitude is further increased. Quasi-periodic and frequency-locked sub-synchronous vibrations are seen to appear and disappear alternately before the emergence of chaos in the response of the rotor. The magnitude of rotor imbalance where sub-synchronous, quasi-periodic and chaotic vibrations are observed in this study, albeit being higher than the specified imbalance level for rotating machinery, may possibly occur due to a gradual degradation of the rotor balance quality during operation.
Energy Technology Data Exchange (ETDEWEB)
Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Pampin, Raul [F4E, Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Levesy, Bruno [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Moro, Fabio [ENEA, Via Enrico Fermi 45, Frascati, Rome (Italy); Suarez, Alejandro [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)
2015-11-15
Shutdown dose rates for planned maintenance purposes is an active research field in ITER. In this work the radiation (neutron and gamma) cross-talk between ports in the most conservative case foreseen in ITER is investigated: the presence of a torus cryopump lower port, mostly empty for pumping efficiency reasons. There will be six of those ports: #4, #6, #10, #12, #16 and #18. The equatorial ports placed above them will receive a significant amount of additional radiation affecting the shutdown dose rates during in situ maintenance activities inside the cryostat, and particularly in the port interspace area. In this study a general situation to all the equatorial ports placed above torus cryopump lower ports is considered: a generic diagnostics equatorial port placed above the torus cryopump lower port (LP#4). In terms of shutdown dose rates at equatorial port interspace after 10{sup 6} s of cooling time, 405 μSv/h has been obtained, of which 160 μSv/h (40%) are exclusively due to radiation cross-talk from a torus cryopump lower port. Equatorial port activation due to only “local neutrons” contributes 166 μSv/h at port interspace, showing that radiation cross-talk from such a lower port is a phenomenon comparable in magnitude to the neutron leakage though the equatorial port plug.
Concepts of formal concept analysis
Žáček, Martin; Homola, Dan; Miarka, Rostislav
2017-07-01
The aim of this article is apply of Formal Concept Analysis on concept of world. Formal concept analysis (FCA) as a methodology of data analysis, information management and knowledge representation has potential to be applied to a verity of linguistic problems. FCA is mathematical theory for concepts and concept hierarchies that reflects an understanding of concept. Formal concept analysis explicitly formalizes extension and intension of a concept, their mutual relationships. A distinguishing feature of FCA is an inherent integration of three components of conceptual processing of data and knowledge, namely, the discovery and reasoning with concepts in data, discovery and reasoning with dependencies in data, and visualization of data, concepts, and dependencies with folding/unfolding capabilities.
Devil's Staircase Phase Diagram of the Fractional Quantum Hall Effect in the Thin-Torus Limit
Rotondo, Pietro; Molinari, Luca Guido; Ratti, Piergiorgio; Gherardi, Marco
2016-06-01
After more than three decades, the fractional quantum Hall effect still poses challenges to contemporary physics. Recent experiments point toward a fractal scenario for the Hall resistivity as a function of the magnetic field. Here, we consider the so-called thin-torus limit of the Hamiltonian describing interacting electrons in a strong magnetic field, restricted to the lowest Landau level, and we show that it can be mapped onto a one-dimensional lattice gas with repulsive interactions, with the magnetic field playing the role of the chemical potential. The statistical mechanics of such models leads us to interpret the sequence of Hall plateaux as a fractal phase diagram whose landscape shows a qualitative agreement with experiments.
Gangadhara, S; Craig, D; Ennis, D A; Hartog, D J Den; Fiksel, G; Prager, S C
2007-02-16
The impurity ion temperature evolution has been measured during three types of impulsive reconnection events in the Madison Symmetric Torus reversed field pinch. During an edge reconnection event, the drop in stored magnetic energy is small and ion heating is observed to be limited to the outer half of the plasma. Conversely, during a global reconnection event the drop in stored magnetic energy is large, and significant heating is observed at all radii. For both kinds of events, the drop in magnetic energy is sufficient to explain the increase in ion thermal energy. However, not all types of reconnection lead to ion heating. During a core reconnection event, both the stored magnetic energy and impurity ion temperature remain constant. The results suggest that a drop in magnetic energy is required for ions to be heated during reconnection, and that when this occurs heating is localized near the reconnection layer.
Kim, YooSung; Shi, Yue-Jiang; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Oh, Soo-Ghee; Chung, Kyoung-Jae; Hwang, Y. S.
2016-11-01
Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of Hα and Hβ radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.
Reducing the Spikes of Avalanche Photodiode Measurements at the National Spherical Torus Experiment
Brubaker, Z. E.; Foley, E. L.
2011-10-01
Avalanche Photodiodes (APD) used at the National Spherical Torus Experiment (NSTX) make important measurements for the Motional Stark Effect (MSE) diagnostic. However, they are very sensitive, and if radiation consistently reaches these detectors they are damaged over time. Furthermore, they also display spikes in their readings, which greatly complicates the data analysis for MSE. Due to our Collisionally-Induced Fluorescence Motional Stark Effect diagnostic observing significant radiation despite being shielded by a 3 foot concrete wall, we must devise a plan for shielding our new Laser-Induced Fluorescence Motional Stark Effect diagnostic, as well as determining the best possible location for them. In order to reduce the amount of spikes seen in our readings and to preserve our detectors, I investigated the type of radiation responsible, the locations most affected, and tested various materials for shielding. Results will be presented.
Experiments and simulations of particle flows in a magnetized dust torus
Energy Technology Data Exchange (ETDEWEB)
Reichenstein, T.; Wilms, J.; Greiner, F.; Piel, A. [IEAP, Christian-Albrechts-Universitaet, Kiel (Germany); Melzer, A. [Institut fuer Physik, Universitaet Greifswald (Germany)
2012-11-15
An overview is given of the confinement and dynamical phenomena observed in experiments and simulations of magnetized dust tori. Due to the presence of gravity, a strongly inhomogeneous velocity field is found along the circumference of the torus. The simulations show that the dust flow, which is unsheared and nearly incompressible, exhibits a distinct shell structure, which can be understood by rapid frictional cooling and strong Coulomb coupling. At lower frictional damping, the symmetry of the flow can be spontaneously broken, leading to a region of strong velocity shear and excitation of Kelvin-Helmholtz instabilities. New experimental evidence of counterflows is found (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
A comparison between soft x-ray and magnetic phase data on the Madison symmetric torus
Energy Technology Data Exchange (ETDEWEB)
VanMeter, P. D., E-mail: pvanmeter@wisc.edu; Reusch, L. M.; Sarff, J. S.; Den Hartog, D. J. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Franz, P. [Consorzio RFX, Padova (Italy)
2016-11-15
The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras to determine the emissivity structure of the plasma. This structure should directly correspond to the structure of the magnetic field; however, there is an apparent phase difference between the emissivity reconstructions and magnetic field reconstructions when using a cylindrical approximation. The difference between the phase of the dominant rotating helical mode of the magnetic field and the motion of the brightest line of sight for each SXR camera is dependent on both the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phase difference is shown to be consistent over multiple measurements when only toroidal or poloidal magnetic field components are considered. These differences emerge from physical effects of the toroidal geometry which are not captured in the cylindrical approximation.
Energy Technology Data Exchange (ETDEWEB)
Cartolano, M. S.; Craig, D., E-mail: darren.craig@wheaton.edu [Wheaton College, Wheaton, Illinois 60187 (United States); Den Hartog, D. J.; Kumar, S. T. A.; Nornberg, M. D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706 (United States)
2014-01-15
The connection between impurity ion heating and other physical processes in the plasma is evaluated by studying variations in the amount of ion heating at reconnection events in the Madison Symmetric Torus (MST). Correlation of the change in ion temperature with individual tearing mode amplitudes indicates that the edge-resonant modes are better predictors for the amount of global ion heating than the core-resonant modes. There is also a strong correlation between ion heating and current profile relaxation. Simultaneous measurements of the ion temperature at different toroidal locations reveal, for the first time, a toroidal asymmetry to the ion heating in MST. These results present challenges for existing heating theories and suggest a stronger connection between edge-resonant tearing modes, current profile relaxation, and ion heating than has been previously thought.
Nuclear Dominated Accretion Flows in Two Dimensions. I. Torus Evolution with Parametric Microphysics
Fernández, Rodrigo
2012-01-01
We explore the evolution of radiatively inefficient accretion disks in which nuclear reactions are dynamically important (`Nuclear Dominated Accretion Flows', or NuDAFs). Examples of such disks are those generated by the merger of a white dwarf with a neutron star or black hole, or by the collapse of a rotating star. Here we present two-dimensional hydrodynamic simulations that systematically explore the effect of adding a single nuclear reaction to a viscous torus. The equation of state, anomalous shear stress, and nuclear reactions are given parametric forms. Our results point to the existence of two qualitatively different regimes of NuDAF evolution: (1) steady accretion with quiescent burning; or (2) detonation of the disk. These outcomes are controlled primarily by the ratio of the nuclear energy released to the enthalpy at the burning radius. Disks detonate if this ratio exceeds a critical value (~1), and if burning occurs in regions where neutrino cooling is unimportant. Thermonuclear runaways are seed...
Energy Technology Data Exchange (ETDEWEB)
Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P
2011-06-03
The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.
METHOD OF DETERMINING THE CURVE OF INTERSECTION BETWEEN A CYLINDRICAL SURFACE AND A TORUS
Directory of Open Access Journals (Sweden)
Ivona Petre
2010-01-01
Full Text Available The intersections of the cylindrical surfaces with a torus are often met in practice, for instance in the pneumatictransport installations for the intermediate products resulted from grist. The descriptive geometry is the foundation ofthe engineering sciences, giving force looking into space, much necessary to the specialists in this domain. She is theway to solve the problems in design and is one interdisciplinary link in the training of specialists in engineeringscience.The general method of construction of the curve of intersection of two surfaces is to find as many of its points, that itcan be drawn as accurately. Such points can be found using auxiliary surfaces (plan or spherical, which intersects thefirsts. The paper solves graphical one of these applications, using the classical method of the descriptive geometry.
A representation formula for the Freidlin-Wentzell functional on the one dimensional torus
Faggionato, A
2010-01-01
Inspired by some recent results on fluctuation theory for piecewise deterministic Markov processes, we consider a generic diffusion on the 1D torus and give a simple representation formula for the large deviation rate functional of its invariant probability measure, in the limit of vanishing noise. Previously, this rate functional had been characterized by M.I. Freidlin and A.D. Wentzell as solution of a rather complex optimization problem. We discuss this last problem in full generality and show that it leads to our formula. Finally, we discuss some geometric and regularity properties of the rate functional. In particular, we prove a universality result showing that the rate functional is a viscosity solution of the stationary Hamilton--Jacobi equation associated to any Hamiltonian H satisfying weak suitable conditions.
Relativistic models of magnetars: the twisted-torus magnetic field configuration
Ciolfi, R; Gualtieri, L; Pons, J A
2009-01-01
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. (2008). Our method is based on the solution of the relativistic Grad-Shafranov equation, to which Maxwell's equations can be reduced in some limit. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted-torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.
Scintillator based energetic ion loss diagnostic for the National Spherical Torus Experiment.
Darrow, D S
2008-02-01
A scintillator based energetic ion loss detector has been built and installed on the National Spherical Torus Experiment (NSTX) [Synakowski et al., Nucl. Fusion 43, 1653 (2000)] to measure the loss of neutral beam ions. The detector is able to resolve the pitch angle and gyroradius of the lost energetic ions. It has a wide acceptance range in pitch angle and energy, and is able to resolve the full, one-half, and one-third energy components of the 80 keV D neutral beams up to the maximum toroidal magnetic field of NSTX. Multiple Faraday cups have been embedded behind the scintillator to allow easy absolute calibration of the diagnostic and to measure the energetic ion loss in several ranges of pitch angle with good time resolution. Several small, vacuum compatible lamps allow simple calibration of the scintillator position within the field of view of the diagnostic's video camera.
Expansion for the solutions of the Bogomolny equations on the torus
González-Arroyo, A; Gonzalez-Arroyo, Antonio; Ramos, Alberto
2004-01-01
We show that the solutions of the Bogomolny equations for the Abelian Higgs model on a two-dimensional torus, can be expanded in powers of a quantity epsilon measuring the departure of the area from the critical area. This allows a precise determination of the shape of the solutions for all magnetic fluxes and arbitrary position of the Higgs field zeroes. The expansion is carried out to 51 orders for a couple of representative cases, including the unit flux case. We analyse the behaviour of the expansion in the limit of large areas, in which case the solutions approach those on the plane. Our results suggest convergence all the way up to infinite area.
Simple neoclassical point model for transport and scaling in EBT
Energy Technology Data Exchange (ETDEWEB)
Hedrick, C.L.; Jaeger, E.F.; Spong, D.A.; Guest, G.E.; Krall, N.A.; McBride, J.B.; Stuart, G.W.
1977-04-01
A simple neoclassical point model is presented for the ELMO Bumpy Torus experiment. Solutions for steady state are derived. Comparison with experimental observations is made and reasonable agreement is obtained.
Compact Torus Accelerator Driven Inertial Confinement Fusion Power Plant HYLIFE-CT
Energy Technology Data Exchange (ETDEWEB)
Logan, B G; Moir, R W; Tabak, M; Bieri, R L; Hammer, J H; Hartman, C W; Hoffman, M A; Leber, R L; Petzoldt, R W; Tobin, M T
2005-03-30
A Compact Torus Accelerator (CTA) is used to accelerate a Compact Torus (CT) to 35 MJ kinetic energy which is focused to a 20 mm diameter where its kinetic energy is converted to a shaped x-ray pulse of 30 MJ. The capsule yield with a prescribed radiation profile is calculated to be (gain 60 times 30 MJ) 1.8 GJ. Schemes for achieving this profile are described. The CT is accelerated in a length of 30 m within an annulus of 150 mm ID and 300 mm OD where the maximum magnetic field is 28 T. A 2.5 m conical taper reduces the mean diameter of the CT from 225 mm to 20 mm. The conical section is made out of solid Li{sub 2}BeF{sub 4}. The target with its frozen conical guide section is accurately placed at the end of the accelerator about once per second. The reactor called HYLIFE uses liquid jets to attenuate blast effects including shrapnel from the shattered conical guide section and radiation so that the vessel is expected to last 30 years. The calculated cost of electricity is estimated (in constant 1988 dollars) to be about 4.8 cents/kW {center_dot} h compared to the future cost of nuclear and coal of 4.3 to 5.8 cents/kW {center_dot} h. The CT driver contributes 17% to the cost of electricity. Present CT's make 2 x 10{sup 8} W/cm{sup 2}; the goal of experiments in progress is 10{sup 11} W/cm{sup 2} with further modifications to allow 10{sup 12}W/cm{sup 2}, whereas the reactor requires 10{sup 15} W/cm{sup 2} in a shaped pulse.
Finite element analysis of an inflatable torus considering air mass structural element
Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.
2014-01-01
Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.
On the Structure of the AGN Torus through the Fraction of Optically Selected Type 1 AGNs
Khim, Honggeun; Yi, Sukyoung K.
2017-09-01
The ratio in number between unobscured (type 1) and obscured (type 2) active galactic nuclei (AGNs) is often used to explore the structure of the torus in the unified scheme for AGNs. Oh et al. (2015) investigated the type 1 AGN fraction on two-dimensional space in terms of black hole mass ({M}{BH}) and bolometric luminosity ({L}{bol}) and found that the fraction changes depending on both {M}{BH} and {L}{bol}, forming a ridge-shaped distribution. In this study, based on the up-to-date type 1 AGN catalog of Oh et al. (2015), we examine how the trend of the type 1 AGN fraction in the {M}{BH}–{L}{bol} plane is affected by the different methods used to derive {M}{BH} and {L}{bol}, and suggest an analytic model to explain the observations. We use galaxies from the Sloan Digital Sky Survey Data Release 7 in the redshift range 0.01≤slant z≤slant 0.2. In estimating {L}{bol}, we employ two different methods using [{{O}} {{III}}] and/or [{{O}} {{I}}] emission lines, and find that the {L}{bol} values obtained from the two methods agree well. We consider the {M}{BH}{--}{σ }* relation, the {{M}}{{BH}}–L bulge relation, and the single-epoch Hα-based {M}{BH} estimate in calculating {M}{BH}. We find that the trends of the type 1 AGN fraction with respect to {M}{BH} and {L}{bol} are similar for the different methods of deriving {L}{bol} but different when using different methods to derive {M}{BH}. We present a model based on the clumpy-torus scheme that reproduces the ridge-shaped distribution of the fraction parallel to the iso-Eddington ratio lines.
Two-point spin-1/2-spin-1/2 sl(2,bfC) conformal Kac-Moody blocks on the torus and their monodromies
Energy Technology Data Exchange (ETDEWEB)
Smyrnakis, J.M. [Columbia Univ., New York, NY (United States). Dept. of Mathematics
1995-10-02
Two issues of the SU(2) Wess-Zumino-Witten model are examined here, namely the computation of the untwisted conformal Kac-Moody blocks on the torus and their monodromy representations. Using the free field representation developed by Bernard and Felder, an integral representation of the twisted two point spin-1/2-spin-1/2 conformal Kac-Moody blocks on the torus is computed. From this, an integral representation of the untwisted blocks is computed after careful removal of infinities. Finally, the untwisted blocks are used to get a representation of the Braid Group on the torus on two strings, in terms of quantum group q-numbers. (orig.).
The Geometry of the Semiclassical Wave Front Set for Schrödinger Eigenfunctions on the Torus
Energy Technology Data Exchange (ETDEWEB)
Cardin, Franco, E-mail: cardin@math.unipd.it; Zanelli, Lorenzo, E-mail: lzanelli@math.unipd.it [University of Padova, Department of Mathematics “Tullio Levi Civita” (Italy)
2017-06-15
This paper deals with the phase space analysis for a family of Schrödinger eigenfunctions ψ{sub ℏ} on the flat torus #Mathematical Double-Struck Capital T#{sup n} = (ℝ/2πℤ){sup n} by the semiclassical Wave Front Set. We study those ψ{sub ℏ} such that WF{sub ℏ}(ψ{sub ℏ}) is contained in the graph of the gradient of some viscosity solutions of the Hamilton-Jacobi equation. It turns out that the semiclassical Wave Front Set of such Schrödinger eigenfunctions is stable under viscous perturbations of Mean Field Game kind. These results provide a further viewpoint, and in a wider setting, of the link between the smooth invariant tori of Liouville integrable Hamiltonian systems and the semiclassical localization of Schrödinger eigenfunctions on the torus.
Gas kinematics in the inner kiloparsec of NGC 1386: a new clue to the torus-galaxy connection?
Lena, D.
2015-09-01
We used the GMOS integral field unit on the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in the Seyfert 2 galaxy NGC 1386. We found that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and a compact bipolar outflow along the axis of the AGN 'radiation cone'. However, there is also compelling evidence for an additional kinematic component which is consistent with outflow and/or rotation in a plane that is approximately perpendicular to the axis of the AGN radiation cone. We speculate that this is a wind which is both outfowing in the equatorial plane of the torus, and rotating about the axis of the radiation cones. From the emission line surface brightness distribution, we infer the torus inclination and opening angle.
Ryan, Joshua L; Larson, Eric
2016-01-01
Bisphosphonates are medications used orally and intravenously for a variety of conditions including cancer metastatic to bone, hypercalcemia of malignancy, Paget's disease and osteoporosis. Osteonecrosis of the jaw has been related to bisphosphonate use. Osteonecrosis of the jaw most commonly occurs in the setting of intravenous bisphosphonate use and concomitant dental work or trauma. Oral bisphosphonates have much less risk of osteonecrosis of the jaw. We present an interesting case of a patient on an oral bisphosphonate for an extended period of time (nine years), with a torus palatinus, who burned her palate while eating a slice of pizza. Over six months later, she presented with an area of denuded bone and diagnosis consistent with osteonecrosis of the torus palatinus.
Energy Technology Data Exchange (ETDEWEB)
Diez-Jimenez, Efren, E-mail: ediez@ing.uc3m.e [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque, 15, E28911 Leganes (Spain); Perez-Diaz, Jose-Luis [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque, 15, E28911 Leganes (Spain)
2011-01-15
Research highlights: {yields} A torus superconductor shape has been analyzed. {yields} There is a flip effect on the stablest angular position of a magnet over the superconductor. {yields} The basis for a binary contactless proximity sensor has been presented. - Abstract: The torque between a permanent magnet and a toroidal superconductor in the Meissner state is calculated using a model previously proposed based on London's and Maxwell's equations. A flip effect on the stable orientation of the magnet as a function of position is demonstrated. At large distances the magnet tends to be perpendicular to the axis of the torus, but when you approach it, at a certain point there is a flip and it tends to be parallel to that axis while being closer than a certain limit. This effect can be easily used as a binary detector for proximity.
The narrow Fe K$\\alpha$ line and the molecular torus in active galactic nuclei - an IR/X-ray view
Ricci, Claudio; Ichikawa, Kohei; Paltani, Stephane; Boissay, Rozenn; Gandhi, Poshak; Stalevski, Marko; Awaki, Hisamitsu
2014-01-01
The narrow component of the iron K$\\alpha$ is an almost ubiquitous feature in the X-ray spectra of active galactic nuclei (AGN) and is believed to originate in neutral material, possibly located in the molecular torus. This would imply a tight connection between the Fe K$\\alpha$ equivalent width (EW) and the physical properties of the torus. In a recent work we have shown that the decrease of the covering factor of the torus with the luminosity, as expected by luminosity-dependent unification models, would be able to explain the decrease of Fe K$\\alpha$ EW with the luminosity (i.e., the X-ray Baldwin effect). Recent developments in the study of the mid-IR (MIR) spectrum of AGN allow important parameters of the torus to be deduced, such as its covering factor ($f_{\\rm\\,obs}$) and equatorial column density ($N_{\\rm\\,H}^{\\rm\\,T}$), by applying clumpy torus models. Using XMM-Newton/EPIC observations of a sample of 24 type-I AGN, we investigate the relation between the physical parameters of the torus obtained by ...
Titan's atmospheric sputtering and neutral torus produced by magnetospheric and pick-up ions
Michael, M.; Smith, H. T.; Johnson, R. E.; Shematovich, V.; Leblanc, F.; Ledvina, S.; Luhmann, J. H.
As Titan does not possess an intrinsic magnetic field, Kronian magnetospheric ions can penetrate Titan's exobase as can locally produced pick-up ions (e.g. Shematovich et al. 2003). This can cause atmospheric loss and heating of the exobase region. Penetration by slowed and deflected magnetospheric ions and by the pick-up ions is described here using a 3-D Monte Carlo model (Michael et al. 2004). The incident ions can lead to the production of fast neutrals that collide with other atmospheric neutrals producing the ejection of both atomic and molecular nitrogen and heating. The recently calculated dissociation cross sections of N2 are used in the present model (Tully and Johnson 2002). The incident flux of slowed magnetospheric N+ ions and pick-up C2H5+ ions is estimated from the work of Brecht et al. (2000). These ions, which have energies less than 1.2 keV, were shown to be more efficient in ejecting material from Titan's atmosphere than the non-deflected co-rotating ions used earlier (Lammer et al. 1993). The loss rates are comparable or larger than those produced by photo-dissociation. Exobse heating rates are given and the loss rates of N and N2 are then used as a source of nitrogen for the Titan neutral torus. If atmospheric sputtering is important this torus will contain both atomic and molecular nitrogen and, therefore, will provide a distributed source of both atomic and molecular nitrogen ions that will be readily detected by Cassini (Smith et al. 2004) Acknowledgment: This work is supported by NASA's Planetary Atmospheres Program and by the CAPS-Cassini Instrument. Brecht, S.H., J.G. Luhmann, and D.J. Larson, J. Geophys. Res., 105, 13119, 2000. Lammer, H., and S.J. Bauer,. Planet. Space Sci., 41, 657, 1993. Shematovich, V.I.,et al, J. Geophys. Res., 108, 5086, 10.1029/2003JE002096, 2003. Michael, M. et al., submitted, Icarus, 2004. Smith, H.T., et al., Titan Aeronomy Workshop, Paris, January 7-9, 2004. Tully, C., R.E. Johnson, J. Chem. Phys. 117, 6556
Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus
2011-03-01
δz difference in z coordinate, between reference torus and perturbed motion states H hamiltonian L lagrangian µ gravitational parameter µ3...velocities, L is the Lagrangian , and H is the Hamiltonian . The Lagrangian is calculated by subtracting a system’s potential energy from a term representing...Introduction Though ancient peoples have been watching the nighttime sky for millennia, the study of orbital mechanics as we know it began with such giants as
Directory of Open Access Journals (Sweden)
Chunbao Liu
2015-01-01
Full Text Available Passenger car torque converters have been designed with an increasingly flatter profile in recent years for the purpose of achieving a weight saving and more compact size. However, a flatter design tends to result in the reduced hydrodynamic performance. To improve its performance, a new flat torus of elliptic type method concentrating on the solution to flat TC was put forward, and four torque converters of different flatness ratios were designed to judge the superiority of the flat torus design method. The internal flow characteristics were numerically investigated using CFD codes and resulted in good agreement with experimental data. The results indicate that the main cause of this performance degradation can be attributed to deterioration of the velocity fields of the pump, and a case of flatness ratio 0.8 illustrates the reason that the performance designed by the flat torus design method based on the elliptic shape is more excellent than that of the traditional one. Furthermore, this study proposed a structure of removal of inner ring to improve the performance of torque converter.
An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow
Dorodnitsyn, A.; Kallman, T.; Proga, D.
2008-01-01
We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.
An axisymmetric hydrodynamical model for the torus wind in AGN. II: X-ray excited funnel flow
Dorodnitsyn, A; Proga, D
2008-01-01
We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorp...
Sarty, Gordon E.; Atkins, M. Stella; Olatunbosun, Femi; Chizen, Donna; Loewy, John; Kendall, Edward J.; Pierson, Roger A.
1999-10-01
A new numerical wavelet transform, the discrete torus wavelet transform, is described and an application is given to the denoising of abdominal magnetic resonance imaging (MRI) data. The discrete tori wavelet transform is an undecimated wavelet transform which is computed using a discrete Fourier transform and multiplication instead of by direct convolution in the image domain. This approach leads to a decomposition of the image onto frames in the space of square summable functions on the discrete torus, l2(T2). The new transform was compared to the traditional decimated wavelet transform in its ability to denoise MRI data. By using denoised images as the basis for the computation of a nuclear magnetic resonance spin-spin relaxation-time map through least squares curve fitting, an error map was generated that was used to assess the performance of the denoising algorithms. The discrete torus wavelet transform outperformed the traditional wavelet transform in 88% of the T2 error map denoising tests with phantoms and gynecologic MRI images.
DEFF Research Database (Denmark)
Hjørland, Birger
2009-01-01
Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......, evaluate and use such systems. Based on "a post-Kuhnian view" of paradigms this paper put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism and pragmatism...
Energy Technology Data Exchange (ETDEWEB)
Lee, H.Y., E-mail: brbbebbero@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Yang, J.; Kim, Y.G.; Yang, S.M.; Kim, Y.S.; Lee, K.H. [Seoul National University, Seoul (Korea, Republic of); An, Y.H. [National Fusion Research Institute, Daejon (Korea, Republic of); Chung, K.J.; Na, Y.S. [Seoul National University, Seoul (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of)
2016-11-01
Highlights: • The baking for partial wall heating and H{sub 2}/He GDC systems are developed in VEST. • The RGA and OES systems for monitoring impurities are constructed in VEST. • The partial baking and He GDC show limited effects on plasma characteristics. • H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms. • After H{sub 2} GDC, the discharge should be conducted within 3 h from treatment. - Abstract: Wall conditioning and impurity monitoring systems are developed in Versatile Experiment Spherical Torus (VEST). As a wall conditioning system, a baking system covering the vacuum vessel wall partially and a glow discharge cleaning (GDC) system using two electrodes with dc and 50 kHz power supplies are installed. The GDC system operates with hydrogen and helium gases for both chemical and physical desorption. The impurity monitoring system with residual gas analyzer (RGA), operating at <10{sup −5} Torr with a differential pumping system, is installed along with the optical emission spectroscopy (OES) system to monitor the hydrogen and impurity radiation lines. Effects of these wall conditioning techniques are investigated with the impurity monitoring system for ohmic discharges of VEST. The partial baking and He GDC show limited effects on plasma characteristics but sufficient H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms within 3 h from the end of treatment.
Torus models of the outer disc of the Milky Way using LAMOST survey data
Wang, Qiao; Wang, Yougang; Liu, Chao; Mao, Shude; Long, R. J.
2017-09-01
With a sample of 48 161 K giant stars selected from the LAMOST DR 2 catalogue, we construct torus models in a large volume extending, for the first time, from the solar vicinity to a Galactocentric distance of ∼20 kpc, reaching the outskirts of the Galactic disc. We show that the kinematics of the K giant stars match conventional models, e.g. as created by Binney in 2012, in the Solar vicinity. However such two-disc models fail if they are extended to the outer regions, even if an additional disc component is utilized. If we loosen constraints in Sun's vicinity, we find that an effective thick disc model could explain the anticentre of the MW. The Large Area Multi-Object Spectroscopic Telescope data imply that the sizes of the Galactic discs are much larger, and that the outer disc is much thicker, than previously thought, or alternatively that the outer structure is not a conventional disc at all. However, the velocity dispersion σ0z of the kinematically thick disc in the best-fitting model is about 80 km s-1 and has a scale parameter Rσ for an exponential distribution function of ∼19 kpc. Such a height σ0z is strongly rejected by current measurements in the solar neighbourhood, and thus a model beyond quasi-thermal, two or three thin or thick discs is required.
Energy Technology Data Exchange (ETDEWEB)
R.J. Maqueda, D.P. Stotler and the NSTX Team.
2010-05-19
While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in Dα; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of ‘magnetic shear disconnection’ due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).
Mesh sensitivity study and optimization of fixed support for ITER torus and cryostat cryoline
Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Sarkar, B.
2010-02-01
The torus & cryostat cryoline of ITER cryodistribution system has been designed as per the process specifications. The cryoline is an ensemble of six process pipes, thermal shield, fixed, sliding support and outer jacket. The fixed support (FS), which also acts as the anchor for the bellows, is one of the most important part of the cryoline. The FS has to withstand the static weight of pipes as well as the spring and thrust forces arising from the bellows. The FS design has been optimized for the thermal, structural and for combined loads with thermal optimization criteria; less than 8 Watt at 100 K and less than 1.5 Watt at 4.5 K. ANSYS 10.0 has been used for the analysis and CATIA V5 R16 has been used for the modelling as well as geometry optimization. In order to bring the Von-Mises stress within the acceptable limit of 115 MPa, a detailed mesh sensitivity study has been carried out along with design optimization. The iterative process of mesh refinement continued till stress convergence is achieved. The stress analysis has been carried out for optimized mesh size. The paper will present the design methodology, construction details and the results of the analysis.
Cassini ENA Observations of an Asymmetric Europa Torus and Implications for JUICE
Brandt, Pontus; Westlake, Joseph H.; Smith, Howard T.; mauk, Barry; Mitchell, Don
2016-10-01
From about December 2000 to January 2001 the Ion Neutral Camera (INCA) on board the Cassini spacecraft imaged Jupiter in Energetic Neutral Atoms (ENA) that are created when singly charged ions charge exchange with neutral gas atoms or molecules. The INCA observations were obtained from a distance of about 137-250 Jovian planetary radii (RJ) over an energy range from about 10 to 300 keV. Here, we present an analysis of the ENA images implying an asymmetric Europa neutral gas torus with indications of magnetospheric dynamics. The analysis uses images with a minimum integration time and background. A forward model using a parametric energetic ion model and a neutral gas model simulates ENA images through the instrument response function of INCA in order to determine the spatial distribution of the neutral gas. Implications for the ENA observations from the ESA JUICE Mission obtained by the Jovian Energetic Neutrals and Ions (JENI) Camera on the Particle Environment Package (PEP) suite will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Gerhardt, S.P., Menard, J.E., and the NSTX Research Team
2008-12-17
A detailed analysis of the plasma current quench in the National Spherical Torus Experiment [M.Ono, et al Nuclear Fusion 40, 557 (2000)] is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change.
A high time resolution x-ray diagnostic on the Madison Symmetric Torus
DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.
2015-07-01
A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.
Active galactic nucleus torus models and the puzzling infrared spectrum of IRAS F10214+4724
Efstathiou, A; Verma, A; Siebenmorgen, R
2013-01-01
We present a revised model for the infrared emission of the hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first present and discuss a grid of smooth active galactic nucleus (AGN) torus models computed with the method of Efstathiou & Rowan-Robinson and demonstrate that the combination of these models and the starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of Seyfert 2s and spectra of individual type 2 quasars measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the nuSnu distribution of the galaxy falls very steeply with increasing frequency (a characteristic that is usually indicative of heavy absorption by dust) but shows a silicate feature in emission. Such emission features are not expected in sources with optical/near-infrared type 2 AGN ...
Reverberation Measurements of the Inner Radius of the Dust Torus in 17 Seyfert Galaxies
Koshida, S; Yoshii, Y; Kobayashi, Y; Sakata, Y; Sugawara, S; Enya, K; Suganuma, M; Tomita, H; Aoki, T; Peterson, B A
2014-01-01
We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band light curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained. The lag times strongly correlated with the optical luminosity in the luminosity range of M_V=-16 to -22 mag, and the regression analysis was performed to obtain the correlation log $\\Delta t$ (days) = -2.11 -0.2 M_V assuming $\\Delta t \\propto L^{0.5}$, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be about 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly co...
Mesh sensitivity study and optimization of fixed support for ITER torus and cryostat cryoline
Energy Technology Data Exchange (ETDEWEB)
Badgujar, S; Vaghela, H; Shah, N; Bhattacharya, R; Sarkar, B, E-mail: satishrb@ipr.res.i [ITER-INDIA, Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)
2010-02-01
The torus and cryostat cryoline of ITER cryodistribution system has been designed as per the process specifications. The cryoline is an ensemble of six process pipes, thermal shield, fixed, sliding support and outer jacket. The fixed support (FS), which also acts as the anchor for the bellows, is one of the most important part of the cryoline. The FS has to withstand the static weight of pipes as well as the spring and thrust forces arising from the bellows. The FS design has been optimized for the thermal, structural and for combined loads with thermal optimization criteria; less than 8 Watt at 100 K and less than 1.5 Watt at 4.5 K. ANSYS 10.0 has been used for the analysis and CATIA V5 R16 has been used for the modelling as well as geometry optimization. In order to bring the Von-Mises stress within the acceptable limit of 115 MPa, a detailed mesh sensitivity study has been carried out along with design optimization. The iterative process of mesh refinement continued till stress convergence is achieved. The stress analysis has been carried out for optimized mesh size. The paper will present the design methodology, construction details and the results of the analysis.
Energy Technology Data Exchange (ETDEWEB)
Neto, A.C. [Fusion for Energy, 08019 Barcelona (Spain); Stephen, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sartori, F.; Cavinato, M. [Fusion for Energy, 08019 Barcelona (Spain); Farthing, J.W. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ranz, R.; Saibene, G. [Fusion for Energy, 08019 Barcelona (Spain); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arnoux, G. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alves, D. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Blackman, T.; Boboc, A.; Card, P.J.; Dalley, S.; Day, I.E. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); De Tommasi, G. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Drewelow, P.; Elsmore, C.; Ivings, E.; Felton, R. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others
2015-10-15
The Joint European Torus (JET) is the largest tokamak currently in operation in the world. One of the greatest challenges of JET is the integrated commissioning of all its major plant systems. This is driven, partially, by the size and complexity of its operational infrastructure and also by the fact that, being an international environment, it has to address the issues of integrating, commissioning and maintaining plant systems developed by third parties. The ITER tokamak, now in construction, is a fusion device twice the size of JET and, being a joint effort between the European Union, China, India, Japan, South Korea, the Russian Federation and the USA, it will share on a wider scale all of the JET challenges regarding integration and integrated commissioning of very large and complex plant systems. With the scope of taking advantage from the history and experience of JET, Fusion for Energy (F4E) has worked together with the Culham Centre for Fusion Energy (CCFE), the host and operator of JET, for the provision of ITER relevant user experiences related to the integrated commissioning of the tokamak. This work presents and discusses the main results and the methods that were used to extract and translate the commissioning experience information into ITER requirements.
Energy Technology Data Exchange (ETDEWEB)
Auriemma, F; Zanca, P; Franz, P; Innocente, P; Lorenzini, R; Momo, B; Terranova, D [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione 35127 Padova (Italy); Bergerson, W F; Ding, W X; Brower, D L [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Chapman, B E [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)
2011-10-15
Quasi-single-helicity (QSH) states, characterized by a magnetic spectrum dominated by the innermost resonant tearing mode, are common to all the reversed field pinch (RFP) experiments. The internal magnetic field structure produced by the dominant mode is investigated for the QSH observed in the Madison Symmetric Torus (MST) RFP in discharges with zero toroidal magnetic field at the plasma boundary. The reconstruction is based on an MHD model coupled to edge measurements of the magnetic field. The model discards pressure, which has little effect on the equilibrium magnetic profile of present RFP plasmas, but adopts a realistic toroidal geometry. The technique is the adaptation to the MST configuration of a procedure already applied in RFX-mod, but a more general radial profile for the current density is needed for an adequate reconstruction of the MST case. The emerging features are similar to those found in RFX-mod. The helical flux surfaces of the dominant mode provide, with a good degree of reliability, a basis for mapping kinetic quantities such as electron density and soft-x-ray emissivity.
Interplay between MacDonald and Hall-Littlewood expansions of extended torus superpolynomials
Mironov, A; Shakirov, Sh; Sleptsov, A
2012-01-01
In arXiv:1106.4305 extended superpolynomials were introduced for the torus links T[m,mk+r], which are functions on the entire space of time variables and, at expense of reducing the topological invariance, possess additional algebraic properties, resembling those of the matrix model partition functions and the KP/Toda tau-functions. Not surprisingly, being a suitable extension it actually allows one to calculate the superpolynomials. These functions are defined as expansions into MacDonald polynomials, and their dependence on k is entirely captured by the action of the cut-and-join operator, like in the HOMFLY case. We suggest a simple description of the coefficients in these character expansions, by expanding the initial (at k=0) conditions for the k-evolution into the new auxiliary basis, this time provided by the Hall-Littlewood polynomials, which, hence, play a role in the description of the dual m-evolution. For illustration we list manifest expressions for a few first series, mk\\pm 1, mk\\pm 2, mk\\pm 3. ...
On families of differential equations on two-torus with all phase-lock areas
Glutsyuk, Alexey; Rybnikov, Leonid
2017-01-01
We consider two-parametric families of non-autonomous ordinary differential equations on the two-torus with coordinates (x, t) of the type \\overset{\\centerdot}{{x}} =v(x)+A+Bf(t) . We study its rotation number as a function of the parameters (A, B). The phase-lock areas are those level sets of the rotation number function ρ =ρ (A,B) that have non-empty interiors. Buchstaber, Karpov and Tertychnyi studied the case when v(x)=\\sin x in their joint paper. They observed the quantization effect: for every smooth periodic function f(t) the family of equations may have phase-lock areas only for integer rotation numbers. Another proof of this quantization statement was later obtained in a joint paper by Ilyashenko, Filimonov and Ryzhov. This implies a similar quantization effect for every v(x)=a\\sin (mx)+b\\cos (mx)+c and rotation numbers that are multiples of \\frac{1}{m} . We show that for every other analytic vector field v(x) (i.e. having at least two Fourier harmonics with non-zero non-opposite degrees and nonzero coefficients) there exists an analytic periodic function f(t) such that the corresponding family of equations has phase-lock areas for all the rational values of the rotation number.
Black Hole Search with Finite Automata Scattered in a Synchronous Torus
Chalopin, Jérémie; Labourel, Arnaud; Markou, Euripides
2011-01-01
We consider the problem of locating a black hole in synchronous anonymous networks using finite state agents. A black hole is a harmful node in the network that destroys any agent visiting that node without leaving any trace. The objective is to locate the black hole without destroying too many agents. This is difficult to achieve when the agents are initially scattered in the network and are unaware of the location of each other. Previous studies for black hole search used more powerful models where the agents had non-constant memory, were labelled with distinct identifiers and could either write messages on the nodes of the network or mark the edges of the network. In contrast, we solve the problem using a small team of finite-state agents each carrying a constant number of identical tokens that could be placed on the nodes of the network. Thus, all resources used in our algorithms are independent of the network size. We restrict our attention to oriented torus networks and first show that no finite team of...
Twin peak quasi-periodic oscillations as signature of oscillating cusp torus
Török, Gabriel; Horák, Jiří; Šrámková, Eva; Urbanec, Martin; Pecháček, Tomáš; Bakala, Pavel
2015-01-01
Serious theoretical effort has been devoted to explain the observed frequencies of twin-peak quasi-periodic oscillations (HF QPOs) observed in low-mass X-ray neutron star binaries. Here we propose a new model of HF QPOs. Within its framework we consider an oscillating torus with cusp that changes location $r_0$ of its centre around radii very close to innermost stable circular orbit. The observed variability is assigned to global modes of accreted fluid motion that may give strong modulation of both accretion disc radiation and the accretion rate. For a given spacetime geometry, the model predicts that QPO frequencies are function of single parameter $r_0$. We illustrate that the model can provide fits of data comparable to those reached by other models, or even better. In particular it is compared to relativistic precession model. Moreover, we also illustrate that the model consideration is compatible with consideration of models of a rotating neutron star in the atoll source 4U~1636-53.
Penna, M; Lin, W Y; Feng, A S
2001-12-01
We investigated the response selectivities of single auditory neurons in the torus semicircularis of Batrachyla antartandica (a leptodactylid from southern Chile) to synthetic stimuli having diverse temporal structures. The advertisement call for this species is characterized by a long sequence of brief sound pulses having a dominant frequency of about 2000 Hz. We constructed five different series of synthetic stimuli in which the following acoustic parameters were systematically modified, one at a time: pulse rate, pulse duration, pulse rise time, pulse fall time, and train duration. The carrier frequency of these stimuli was fixed at the characteristic frequency of the units under study (n=44). Response patterns of TS units to these synthetic call variants revealed different degrees of selectivity for each of the temporal variables. A substantial number of neurons showed preference for pulse rates below 2 pulses s(-1), approximating the values found in natural advertisement calls. Tonic neurons generally showed preferences for long pulse durations, long rise and fall times, and long train durations. In contrast, phasic and phasic-burst neurons preferred stimuli with short duration, short rise and fall times and short train durations.
Analysis of performance improvements for host and GPU interface of the APENet+ 3D Torus network
Ammendola A, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2014-06-01
APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34 Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol implemented in FPGA with specialized hardware blocks tightly coupled with embedded microprocessor. This architecture provides a high performance low latency offload engine for both trasmit and receive side of data transactions: preliminary results are encouraging, showing 50% of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+ architecture, detailing the hardware implementation and discuss the impact of such RDMA specialized hardware on host interface latency and bandwidth.
NGC 1068: No change in the mid-IR torus structure despite X-ray variability
López-Gonzaga, N; Bauer, F E; Tristram, K R W; Burtscher, L; Marinucci, A; Matt, G; Harrison, F A
2016-01-01
Context. Recent NuSTAR observations revealed a somewhat unexpected increase in the X-ray flux of the nucleus of NGC 1068. We expect the infrared emission of the dusty torus to react on the intrinsic changes of the accretion disk. Aims. We aim to investigate the origin of the X-ray variation by investigating the response of the mid-infrared environment. Methods. We obtained single-aperture and interferometric mid-infrared measurements and directly compared the measurements observed before and immediately after the X-ray variations. The average correlated and single-aperture fluxes as well as the differential phases were directly compared to detect a possible change in the structure of the nuclear emission on scales of $\\sim$ 2 pc. Results. The flux densities and differential phases of the observations before and during the X-ray variation show no significant change over a period of ten years. Possible minor variations in the infrared emission are $\\lesssim$ 8 %. Conclusions. Our results suggest that the mid-in...
Properties of the close binary and circumbinary torus of the Red Rectangle
Menshikov, A B; Tuthill, P; Weigelt, G; Yungelson, L R; Men'shchikov, Alexander B.; Schertl, Dieter; Tuthill, Peter; Weigelt, Gerd; Yungelson, Lev R.
2002-01-01
New diffraction-limited speckle images of the Red Rectangle in the wavelength range 2.1--3.3 microns with angular resolutions of 44--68 mas and previous speckle images at 0.7--2.2 microns revealed well-resolved bright bipolar outflow lobes and long X-shaped spikes originating deep inside the outflow cavities. This set of high-resolution images stimulated us to reanalyze all infrared observations of the Red Rectangle using our two-dimensional radiative transfer code. The new detailed modeling, together with estimates of the interstellar extinction in the direction of the Red Rectangle enabled us to more accurately determine one of the key parameters, the distance D=710 pc with model uncertainties of 70 pc, which is twice as far as the commonly used estimate of 330 pc. The central binary is surrounded by a compact, massive (M=1.2 Msun), very dense dusty torus with hydrogen densities reaching n_H=2.5x10^12 cm^-3 (dust-to-gas mass ratio rho_d/rho~0.01). The bright component of the spectroscopic binary HD 44179 is...
The HIT-II Spherical Torus: Physics and Key Experimental Results
Redd, A. J.; Hamp, W. T.; Izzo, V. A.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Sieck, P. E.; Smith, R. J.
2004-11-01
Discharges in the HIT-II spherical torus device [Redd et al., Phys. Plasmas 9, 2006 (2002)] can be driven by either Ohmic or Coaxial Helicity Injection (CHI) current drive. A new CHI operating regime has been explored, with toroidal plasma currents of up to 350 kA, I_p/I_TF ratios of up to 1.2, and internal probing data which may demonstrate the formation of a closed-flux core. The key to acheiving these results is the magnetic field shear in the CHI injector region, with a minimum shear necessary for current build-up. Ohmic plasma performance has also improved, with peak currents up to 300 kA, with and without transient CHI startup. The CHI startup technique [Raman et al., Phys. Plasmas 11, 2565 (2004)] provides more robust discharges, with a wider operating space and more efficient use of the transformer Volt-seconds, than unassisted Ohmic. Finally, CHI can be used to enhance an Ohmic plasma current without significantly degrading the quality of the discharge. Results will be presented for each HIT--II operating regime, including empirical performance scalings and applicable parametric operating spaces.
Energy Technology Data Exchange (ETDEWEB)
Ren, Y.; Wang, W. X.; LeBlanc, B. P.; Guttenfelder, W.; Kaye, S. M.; Ethier, S.; Mazzucato, E.; Bell, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2015-11-15
In this letter, we report the first observation of the fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)]. The observation was made in a set of RF-heated L-mode plasmas with toroidal magnetic field of 0.55 T and plasma current of 300 kA. It is observed that electron-scale turbulence spectral power (measured with a high-k collective microwave scattering system) decreases significantly following fast cessation of RF heating that occurs in less than 200 μs. The large drop in the turbulence spectral power has a short time delay of about 1–2 ms relative to the RF cessation and happens on a time scale of 0.5–1 ms, much smaller than the energy confinement time of about 10 ms. Power balance analysis shows a factor of about 2 decrease in electron thermal diffusivity after the sudden drop of turbulence spectral power. Measured small changes in equilibrium profiles across the RF cessation are unlikely able to explain this sudden reduction in the measured turbulence and decrease in electron thermal transport, supported by local linear stability analysis and both local and global nonlinear gyrokinetic simulations. The observations imply that nonlocal flux-driven mechanism may be important for the observed turbulence and electron thermal transport.
Plasma behaviour at high beta and high density in the Madison Symmetric Torus RFP
Energy Technology Data Exchange (ETDEWEB)
Wyman, M. [University of Wisconsin, Madison; Chapman, B. E. [University of Wisconsin, Madison; Ahn, J. W. [University of Wisconsin, Madison; Almagri, A. F. [University of Wisconsin, Madison; Anderson, J. [University of Wisconsin, Madison; Bonomo, F. [Consorzio RFX, Italy; Bower, D L [University of California, Los Angeles; Combs, Stephen Kirk [ORNL; Craig, D. [University of Wisconsin, Madison; Foust, Charles R [ORNL
2009-01-01
Pellet fuelling of improved confinement Madison Symmetric Torus (MST) plasmas has resulted in high density and high plasma beta. The density in improved confinement discharges has been increased fourfold, and a record plasma beta (beta(tot) = 26%) for the improved confinement reversed-field pinch (RFP) has been achieved. At higher beta, a new regime for instabilities is accessed in which local interchange and global tearing instabilities are calculated to be linearly unstable, but experimentally, no severe effect, e. g., a disruption, is observed. The tearing instability, normally driven by the current gradient, is driven by the pressure gradient in this case, and there are indications of increased energy transport ( as compared with low-density improved confinement). Pellet fuelling is also compared with enhanced edge fuelling of standard confinement RFP discharges for the purpose of searching for a density limit in MST. In standard-confinement discharges, pellet fuelling peaks the density profile where edge fuelling cannot, but transport appears unchanged. For a limited range of plasma current, MST discharges with edge fuelling are constrained to a maximum density corresponding to the Greenwald limit. This limit is surpassed in pellet-fuelled improved confinement discharges.
Self-consistent 2-phase AGN torus models: SED library for observers
Siebenmorgen, Ralf; Efstathiou, Andreas
2015-01-01
We assume that dust near active galactic nuclei (AGN) is distributed in a torus-like geometry, which may be described by a clumpy medium or a homogeneous disk or as a combination of the two (i.e. a 2-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse ISM. The dust-photon interaction is treated in a fully self-consistent three dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGN, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10mic. silic...
Do Black Holes Exist in a Finite Universe Having the Topology of a Flat 3-Torus?
Steiner, Frank
2016-01-01
Based on perturbation theory, we present the exact first-order solution to the Einstein equations for the exterior static gravitational field of an isolated non-rotating star in a spatially finite universe having the topology of a flat 3-torus. Since the method of images leads to a divergent Poincare' series, one needs a regularization which we achieve by using the Appell respectively the Epstein zeta function. The solution depends on a new positive constant which is completely fixed by the mass of the star and the spatial volume of the universe. The physical interpretation is that a stable or metastable equilibrium requires a topological dark energy which fills the whole universe with positive energy density and negative pressure. The properties of the gravitational field are discussed in detail. In particular, its anisotropy is made explicit by deriving an exact multipole expansion which shows that in this case Birkhoff's theorem does not hold. While the monopole describes the Newtonian potential, there is ...
Fast-ion Energy Loss During TAE Avalanches in the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E D; Darrow, D S; Gorelenkov, N N; Kramer, G J; Kubota, S; Podesta, M; White, R B; Bortolon, A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-07-11
Strong TAE avalanches on NSTX, the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557] are typically correlated with drops in the neutron rate in the range of 5% - 15%. In previous studies of avalanches in L-mode plasmas, these neutron drops were found to be consistent with modeled losses of fast ions. Here we expand the study to TAE avalanches in NSTX H-mode plasmas with improved analysis techniques. At the measured TAE mode amplitudes, simulations with the ORBIT code predict that fast ion losses are negligible. However, the simulations predict that the TAE scatter the fast ions in energy, resulting in a small (≈ 6%) drop in fast ion β. The net decrease in energy of the fast ions is sufficient to account for the bulk of the drop in neutron rate, even in the absence of fast ion losses. This loss of energy from the fast ion population is comparable to the estimated energy lost by damping from the Alfven wave during the burst. The previously studied TAE avalanches in L-mode are re-evaluated using an improved calculation of the potential fluctuations in the ORBIT code.
Energy Technology Data Exchange (ETDEWEB)
Bell, R E; Kaye, S M; Kolesnikov, R A; LeBlance, B P; Rewolldt, G; Wang, W X
2010-04-07
Knowledge of poloidal velocity is necessary for the determination of the radial electric field, Er, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, recent poloidal velocity measurements on the NSTX spherical torus [S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)] are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Local profiles are obtained with an inversion. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] and GTC-Neo [W. X. Wang, et al., Phys. Plasmas 13, 082501 (2006)], which has been updated to handle impurities. __________________________________________________
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2011-10-01
The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.
A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade
Energy Technology Data Exchange (ETDEWEB)
Taylor, Gary
2014-04-01
The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.
The circular loxodromic lines of the torus – Brunelleschi's constructive principle?
Directory of Open Access Journals (Sweden)
Nevena Radojevic
2015-07-01
Full Text Available The umbrella vault of Pazzi Chapel in Santa Croce church in Florence has been the subject of many, 3d survey based researches, but it’s shape has never been described in satisfactory manner. The descriptions given so far, verified through three-dimensional models, despite whether drew near to geometry, did not give any explanation of building process, that as we know, often guides design choises and principles. In the current research, attempts are made to formulate new hypotheses on the logic and form-finding processes that could have determined the choosen shape of the sail. The existing technical literature and treatises on masonry do not give any information about the building processes in the sources, which is a core issue for explaining the peculiar shape of vaults. The analyses are done by correlating detailed surveys and geometric analyses of the vault, comprising the curves, surfaces and the possible masonry texture with the hypothesized form. The form of the inner sail is obtained by a three-dimensional transformation of a toric surface, with respect to the fixed point (dome’s oculus and constant lenght (torus radius, like the Nicomedes concoid in 2d. The vault is made by the inner sail (the concoid surface and the outer sail that is not visible in this moment (the hypothesized toric surface. In this research, and especially in the verification steps, we could recognize as very useful certain measures that, at first, seemed to have no meaning. The inner sail of the umbrella vault of the Pazzi Chapel is built on the basis of a regular dodecagon, with sides of about 4.90 Florentine braccia, while the diameter of the circumscribed circle is about 8.67 braccia, the measures that could seem a bit unusual for Brunelleschian architecture practice. Even the width of the ribs has a not expected measure of 0.38 braccia.When, on the other hand, we go on to describe the genesis of this sail (the inner sail, which is given by a three
DEFF Research Database (Denmark)
Simonsen, Karen-Margrethe
2013-01-01
Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012......Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012...
The variation of Io's auroral footprint brightness with the location of Io in the plasma torus
Serio, Andrew W.; Clarke, John T.
2008-09-01
-20236], however the data were not of sufficient quality to determine functional relationships. In this paper we report the results from a second, more thorough study, using a series of higher resolution and sensitivity HST STIS observations and a model for the center to limb dependence of the optically thin auroral emission brightness based on measurements of the auroral curtain emission distribution with altitude. A search for correlations between numerous parameters has revealed a strong dependence between Io's position in the plasma torus and the resulting footprint brightness that persists over several years of observations. The local magnetic field strength near Jupiter (i.e. the size of the loss cone) and the expected north/south asymmetry in auroral brightness related to the path of currents generated near Io through the plasma torus en route to Jupiter appear to be less important than the total plasma density near Io. This is consistent with the near-Io interaction being dominated by collisions of corotating plasma and mass pickup, a long-standing view which has been subject to considerable debate. The brightness of the auroral footprint emissions, however, does not appear to be proportional to the incident plasma density or energy, and the interpretation of this result will require detailed modeling of the interaction near Io.
Directory of Open Access Journals (Sweden)
Christopher Gad
2016-06-01
Full Text Available This essay discusses the complex relation between the knowledges and practices of the researcher and his/her informants in terms of lateral concepts. The starting point is that it is not the prerogative of the (STS scholar to conceptualize the world; all our “informants” do it too. This creates the possibility of enriching our own conceptual repertoires by letting them be inflected by the concepts of those we study. In a broad sense, the lateral means that there is a many-to-many relation between domains of knowledge and practice. However, each specific case of the lateral is necessarily immanent to a particular empirical setting and form of inquiry. In this sense lateral concepts are radically empirical since it locates concepts within the field. To clarify the meaning and stakes of lateral concepts, we first make a contrast between lateral anthropology and Latour’s notion of infra-reflexivity. We end with a brief illustration and discussion of how lateral conceptualization can re-orient STS modes of inquiry, and why this matters.
Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.
2016-05-01
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.
Characterization of small, Type V edge-localized modes in the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Maingi, Rajesh [ORNL; Bell, M. [Princeton Plasma Physics Laboratory (PPPL); Fredrickson, E. [Princeton Plasma Physics Laboratory (PPPL); Lee, K. C. [Princeton Plasma Physics Laboratory (PPPL); Maqueda, R. J. [Nova Photonics, Princeton, NJ; Snyder, P. [General Atomics, San Diego; Tritz, K. [Johns Hopkins University; Zweben, S. J. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Biewer, Theodore M [ORNL; Bush, Charles E [ORNL; Boedo, J. [University of California, San Diego; Brooks, N. H. [General Atomics, San Diego; Delgado-Aparicio, L. [Johns Hopkins University; Domier, C. W. [University of California, Davis; Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Johnson, D. W. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. M. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); LaBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Luhmann, N. C. [University of California, Davis; Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Park, H. [Princeton Plasma Physics Laboratory (PPPL); Raman, R [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Stevenson, T. [Princeton Plasma Physics Laboratory (PPPL); Stutman, D. [General Atomics, San Diego
2006-01-01
There has been a substantial international research effort in the fusion community to identify tokamak operating regimes with either small or no periodic bursts of particles and power from the edge plasma, known as edge-localized modes (ELMs). While several candidate regimes have been presented in the literature, very little has been published on the characteristics of the small ELMs themselves. One such small ELM regime, also known as the Type V ELM regime, was recently identified in the National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)]. In this paper, the spatial and temporal structure of the Type V ELMs is presented, as measured by several different diagnostics. The composite picture of the Type V ELM is of an instability with one or two filaments that rotate toroidally at ~5-10 km/s, in the direction opposite to the plasma current and neutral beam injection. The toroidal extent of Type V ELMs is typically ~5 m, whereas the cross-field (radial) extent is typically 10 cm (3cm), yielding a portrait of an electromagnetic, ribbon-like perturbation aligned with the total magnetic field. The filaments comprising the Type V ELM appear to be destabilized near the top of the H-mode pedestal and drift radially outward as they rotate toroidally. After the filaments come in contact with the open field lines, the divertor plasma perturbations are qualitatively similar to other ELM types, albeit with only one or two filaments in the Type V ELM versus more filaments for Type I and Type III ELMs. Preliminary stability calculations eliminate pressure driven modes as the underlying instability for Type V ELMs, but more work is required to determine if current driven modes are responsible for destabilization.
APEnet+: a 3D Torus network optimized for GPU-based HPC Systems
Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2012-12-01
In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R&D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.
Design and development of the helicity injection system in Versatile Experiment Spherical Torus
Energy Technology Data Exchange (ETDEWEB)
Park, JongYoon; An, Younghwa; Jung, Bongki; Lee, Jeongwon; Lee, HyunYoung; Chung, Kyoung-Jae; Na, Yong-Su; Hwang, Y.S., E-mail: yhwang@snu.ac.kr
2015-10-15
Graphical abstract: - Highlights: • A high current electron gun with single pulse power for both arc and extraction is developed. • The optimal gun operation is confirmed by impedance matching between the PFN and plasma. • The gun injected currents of 0.95 kA with the voltage of ∼410 V for 5 ms with a 1.2 kV PFN. • The helicity injection system using the gun has been developed and tested successfully in VEST. • Toroidal currents of up to 3.8 kA confirm possible relaxation into tokamak-like plasma. - Abstract: A helicity injection system for the Versatile Experiment Spherical Torus (VEST) has been successfully developed and commissioned. A high current electron gun utilizing hollow cathode and washer stacks has been designed and constructed with a single pulse power system that can provide voltages for both arc discharge and extraction sequentially. Tests for electron gun operation with the single pulse power system have been conducted under various toroidal and poloidal field strengths. The estimated plasma impedance, depending on the injection magnetic field structure, can be utilized for the optimal gun operation by impedance matching between the pulse power system and plasma. With the charging voltage of 1.2 kV, injection current of 0.95 kA has been obtained with the injection voltage of 410 V for about 5 ms. Initial helicity injection experiments have been conducted under various toroidal and poloidal field strengths and a toroidal plasma current of up to 3.8 kA is observed with the current multiplication larger than the geometric stacking ratio, confirming the possibility of relaxation into tokamak-like plasma with closed flux formation.
ITER ECRH Upper Launcher: Test plan for qualification of the Diamond Torus Window Prototype III
Energy Technology Data Exchange (ETDEWEB)
Schreck, Sabine, E-mail: sabine.schreck@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Aiello, Gaetano; Meier, Andreas; Strauss, Dirk [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gagliardi, Mario; Saibene, Gabriella [F4E, Antennas and Plasma Engineering, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Scherer, Theo [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2016-11-01
Highlights: • A qualification program for the ITER diamond torus window is being developed. • The testing program for the qualification of the bare diamond disk is defined. • First qualification tests show a very good quality of the diamond disk prototypes. - Abstract: The diamond window is part of the electron cyclotron heating upper launcher system for ITER. Together with the isolation valve it constitutes the primary vacuum boundary and it also acts as first tritium barrier. Therefore the window is classified as Safety/Protection Important Component (SIC/PIC) with the nuclear safety function “confinement”. As the diamond window unit is not entirely covered by standard codes, an ad-hoc qualification program needs to be defined, including analysis, prototyping and testing. In the framework of a contract with F4E, the test program for a diamond window prototype is being developed with the aim to prove its operability for normal, accidental and incidental conditions as identified in the ITER load specifications. Tests range from dielectric loss measurements for the bare Chemical Vapour Deposition (CVD) diamond disk up to mechanical and vacuum tests for the complete window assembly. Finally mm-wave properties have to be characterized for the complete window. A clear definition of the testing requirements and of the acceptance criteria is necessary as well as a complete documentation of the process. This paper will present the development of the test plan for a window prototype, which is currently under manufacturing. First tests are directed to the characterization of the bare diamond disk with a focus on its dielectric properties.
Sputtering of the Europa surface by thermal ions from the torus and pickup ions in a diverted flow
Dols, Vincent J.; Cassidy, Timothy A.; Bagenal, Fran; Crary, Frank; Delamere, Peter A.
2016-10-01
Europa's atmosphere is very tenuous and is mainly composed of O2. It is thought to be produced by ion bombardment of its icy surface. Several ion populations may contribute to this sputtering:1) The thermal plasma of the torus (~ 1keV including ram velocity), which may be partially diverted around the moon by the ionospheric currents2) The energetic sulfur and hydrogen ions (~10 keV-MeV), which diffuse inward toward Europa's orbit3) and possibly the newly ionized O2 molecules that are picked up by the torus flow and hit the surface.The relative contribution of each sputtering ion population has been debated for more than three decades with estimated O2 sputtering rates varying by ~2 order of magnitude. Modelers have historically focused on a single piece of the puzzle: plasma modelers assume a static atmosphere and tend not to check that their sources and losses are consistent with their prescribed atmosphere; while atmospheric modelers neglect the electro-dynamic interaction that diverts torus plasma around the moon, and limits the ion flux to the surface.In this work, we present a first step to compute self-consistently the atmospheric production by the bombardment of the thermal plasma and pickup O2+ ions.1) We calculate the plasma flow around Europa with a MHD model2) We use this flow in a multi-species physical chemistry model of the plasma-atmosphere interaction to compute the ion fluxes into Europa's surface.3) We compute the production rate of O2 resulting from the ice sputtering by thermal and pickup ions and compare the resulting atmospheric source rate to previously published results.
Vazquez, Billy
The dusty torus is the key component in the Active Galactic Nuclei (AGN) Unification Scheme that explains the spectroscopic differences between Seyfert galaxies of types 1 and 2. The torus dust is heated by the nuclear source and emits the absorbed energy in the infrared (IR); but because of light travel times, the torus IR emission responds to variations of the nuclear ultraviolet/optical continuum with a delay that corresponds to the size of the emitting region. The results from a mid-infrared (MIR) monitoring campaign using the Spitzer Space Telescope and optical ground-based telescopes (B and V band imaging), which spanned over 2 years and covered a sample of 12 Seyfert galaxies, are presented. The aim was to constrain the distances from the nucleus to the regions in the torus emitting at wavelengths of 3.6 microm and 4.5 microm. MIR light curves showing the variability characteristics of these AGN are presented and the effects of photometric uncertainties on the time-series analysis of the light curves are discussed. Significant variability was observed in the IR light curves of 10 of 12 objects, with relative amplitudes ranging from ˜10% to ˜100% from their mean flux. The "reverberation lags" between the 3.6 microm and 4.5 microm IR bands were determined for the entire sample and between the optical and MIR bands for NGC6418. In NGC6418, the 3.6 microm and 4.5 microm fluxes lagged behind those of the optical continuum by 47.5+2.0-1.9) days and 62.5+2.5-2.9 days, respectively. This is consistent with the inferred lower limit to the sublimation radius for pure graphite grains at T=1800 K but smaller by a factor of 2 than the lower limit for dust grains with a "standard" interstellar medium (ISM) composition. There is evidence that the lags increased following approximately by a factor of 2 increase in luminosity, consistent with an increase in the sublimation radius.
Free compact boson on branched covering of $\\mathbb{CP}^1$ and on branched covering of the torus
Liu, Feihu
2016-01-01
We have studied free compact boson on two special kinds of Riemann surfaces: One is branched covering of $\\mathbb{CP}^1$, and the other one is branched covering of the torus. We obtain the partition function for arbitrary higher genus by directly constructing the period matrix, which can be expressed in terms of simple contour integrals. The partition function is interesting because it is related to the \\emph{product} of correlation functions of twist fields in different sectors. Also, when the branched cuts are chosen to be real, it is related to the R\\'enyi entanglement entropy of multiple intervals in a infinite (finite) system at zero (finite) temperature.
Marin, F.; Goosmann, R. W.; Petrucci, P.-O.
2016-06-01
Context. Obscuring circumnuclear dust is a well-established constituent of active galactic nuclei (AGN). Traditionally referred to as the receding dusty torus, its inner radius and angular extension should depend on the photo-ionizing luminosity of the central source. Aims: We quantify the expected time-dependent near-infrared (NIR), optical, ultraviolet (UV) and X-ray polarization of a receding dusty torus as a function of the variable X-ray flux level and spectral shape. Methods: Using a Monte Carlo approach, we simulate the radiative transfer between the multiple components of an AGN adopting model constraints from the bright Seyfert galaxy NGC 4151. We compare our model results to the observed NIR to UV polarization of the source and predict its X-ray polarization. Results: We find that the 2-8 keV polarization fraction of a standard AGN model varies from less then a few percent along polar viewing angles up to tens of percent at equatorial inclinations. At viewing angles around the type-1/type-2 transition, there is a different X-ray polarization variability in a static or a receding torus scenario. In the former case, the expected 2-8 keV polarization of NGC 4151 is found to be 1.21% ± 0.34% with a constant polarization position angle, while in the latter scenario it varies from 0.1% to 6% depending on the photon index of the primary radiation. Additionally, an orthogonal rotation of the polarization position angle with photon energy appears for very soft primary spectra. Conclusions: Future X-ray polarimetry missions will be able to test whether the receding model is valid for Seyfert galaxies seen at a viewing angle close to the torus horizon. The overall stability of the polarization position angle for photon indexes softer than Γ = 1.5 ensures that reliable measurements of X-ray polarization are possible. We derive a long-term observational strategy for NGC 4151 assuming observations with a small to medium-sized X-ray polarimetry satellite.
Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment.
Solomon, W M; Kaye, S M; Bell, R E; Leblanc, B P; Menard, J E; Rewoldt, G; Wang, W; Levinton, F M; Yuh, H; Sabbagh, S A
2008-08-08
Experiments have been conducted at the National Sperical Torus Experiment (NSTX) to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with ExB shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after nonresonant magnetic perturbations are applied to brake the plasma.
ITER ECRH upper launcher torus diamond window – Prototyping, testing and qualification
Energy Technology Data Exchange (ETDEWEB)
Schreck, Sabine, E-mail: sabine.schreck@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, Gaetano; Meier, Andreas; Strauss, Dirk [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Ikeda, Ryosuke; Oda, Yasuhisa; Sakamoto, Keishi; Takahashi, Koji [Japan Atomic Energy Agency (JAEA), Plasma Heating Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Scherer, Theo [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany)
2015-10-15
Highlights: • The diamond window prototype shows a very good transmission capability during high power RF experiments. • An ad-hoc qualification programme for the diamond torus window is being developed (contract between KIT and F4E). • The window design has been updated focused on its mechanical integrity and manufacturing aspects. - Abstract: The diamond window assembly is part of the ITER primary vacuum boundary and acts as the first tritium barrier and therefore it is classified as Safety/Protection Important Component (SIC/PIC). It consists of an ultra-low loss CVD diamond disk mounted in a system of metallic parts (copper/steel) and has to fulfil adequate transmission capability for high power mm-waves. High power RF experiments with a 1st window prototype had shown parasitic heating due to small gaps in the housing. After a design optimization directed to the mm-wave properties, the parasitic excitations of oscillations have been avoided in a 2nd prototype. This one is equipped with inserted waveguide structures, which cover gaps in the metallic structure of the window housing. From high power RF-measurements with a 0.86 MW/100 s pulse a loss tangent of 7.1 × 10{sup −6} could be estimated, corresponding to an increase of temperature of only 120 mK between inlet and outlet of the cooling system. The diamond window assemblies cannot be entirely covered by codes and standards. To comply with the French safety regulations, instead an ad-hoc qualification programme is required, being developed in the framework of a contract between KIT and F4E. A new prototype (3rd) will be built, which is designed to fit to the single HELICOFLEX sealed waveguide structures of the ex-vessel mm-system of the EC upper launcher (UL). The testing programme ranges from mechanical to vacuum tests up to dielectric loss measurements at low and high power. A clear definition of the testing requirements and of the acceptance criteria is necessary as well as a complete
Stephens, Hillary Dianne
Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient
Neutral beam excitation of Alfven continua in the madison symmetric torus reversed field pinch
Koliner, Jonathan Jay
Alfven continua and Alfven eigenmodes (AEs) have been generated for reversed-field pinch (RFP) plasma equilibria in Madison Symmetric Torus (MST). Data gathered from the extensive suite of diagnostics on MST was used to generate equilibria using MSTFIT and VMEC. Three dimensional equilibria for spontaneous helical states were generated using the equilibrium reconstruction code V3FIT. The reduced-MHD codes AE3D and STELLGAP were run on all generated equilibria to calculate the continua and AEs. All continuum solutions contain a toroidicity-induced Alfven gap at 200-400 kHz, within which AE solutions appear by coupling of m=0,1 at medium n. The first observation of beam-driven instabilities on the RFP was performed using MST magnetics during neutral beam injection (NBI). Spatially coherent bursts with n=5,m=1 were observed in plasmas with edge safety factor q_a=0. The bursts oscillate at 65 kHz, and reach maximum amplitude and decay away within 100 mus. These bursts persist for the duration of NBI. Secondary n=-1 and n=4 bursts are coupled in time, reaching maximum amplitude with 50 mus after the n=5 peak amplitude. While the n=5 bursts scale weakly with the electron density n_e and strongly with the beam velocity v_beam, the n=4 bursts scale with the Alfven speed v_A. The burst frequencies are well below those of the calculated AEs and the modes are driven even with v_ beam plasmas. In reversed plasmas, the temporally changing q profile changes the burst resonances, bringing n=6 into resonance halfway through the sawtooth cycle. The n=5 mode switches from its frequency in non-reversed plasmas to a higher frequency at the end of the sawtooth cycle. In deeply reversed plasmas, the bursts are weaker and display chirping behavior as the plasma reversal increases. During the transition to a helical state, the bursts increase in frequency as q on-axis changes, altering the parallel wavenumber k_||. When the helical state is established, the bursts terminate.
Harwit, Martin
2006-01-01
This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...
Energy Technology Data Exchange (ETDEWEB)
Rajput-Ghoshal, Renuka [JLAB; Ghoshal, Probir K. [JLAB; Fair, Ruben J. [JLAB; Hogan, John P. [JLAB; Kashy, David H. [JLAB
2015-06-01
The Jefferson Lab 12 GeV Upgrade in Hall B will need CLAS12 detector that requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a Toroidal configuration (Torus) and the second is an actively shielded solenoidal magnet (Solenoid). Both the torus and solenoid are located in close proximity to one another and are surrounded by sensitive detectors. This paper investigates the electromagnetic interactions between the two systems during normal operation as well as during various fault scenarios as part of a Risk Assessment and Mitigation (RAM).
An H2CO 6cm Maser Pinpointing a Possible Circumstellar Torus in IRAS18566+0408
Araya, E; Sewilo, M; Goss, W M; Linz, H; Kurtz, S; Olmi, L; Churchwell, E; Rodríguez, L F; Garay, G
2007-01-01
We report observations of 6cm, 3.6cm, 1.3cm, and 7mm radio continuum, conducted with the Very Large Array towards IRAS18566+0408, one of the few sources known to harbor H2CO 6cm maser emission. Our observations reveal that the emission is dominated by an ionized jet at cm wavelengths. Spitzer/IRAC images from GLIMPSE support this interpretation, given the presence of 4.5um excess emission at approximately the same orientation as the cm continuum. The 7mm emission is dominated by thermal dust from a flattened structure almost perpendicular to the ionized jet, thus, the 7mm emission appears to trace a torus associated with a young massive stellar object. The H2CO 6cm maser is coincident with the center of the torus-like structure. Our observations rule out radiative pumping via radio continuum as the excitation mechanism for the H2CO 6cm maser in IRAS18566+0408.
Institute of Scientific and Technical Information of China (English)
Yulei Wu; Geyong Min; Mohamed Ould-Khaoua; Hao Yin
2009-01-01
Interconnection networks are hardware fabrics supporting communications between individual processors in multicomputers.The low-dimensional k-ary n-cubes (or torus) with adaptive wormhole switching have attracted significant research efforts to construct high-performance interconnection networks in contemporary multi-computers.The arrival process and destination distribution of messages have great effects on network performance.With the aim of capturing the characteristics of the realistic traffic pattern and obtaining a deep understanding of the performance behaviour of interconnection networks,this paper presents an analytical model to investigate the message latency in adaptive-routed wormhole-switched torus networks where there exists hot-spot nodes and the message arrivals follow a batch arrival process.Each generated message has a given probability to be directed to the hot-spot node.The average degree of virtual channel multiplexing is computed by the GE/G/1/V queueing system with finite buffer capacity.We compare analytical results of message latency with those obtained through the simulation experiments in order to validate the accuracy of the derived model.
Collinson, James S.; Ward, Martin J.; Landt, Hermine; Done, Chris; Elvis, Martin; McDowell, Jonathan C.
2017-02-01
We continue our study of the spectral energy distributions (SEDs) of 11 active galactic nuclei (AGN) at 1.5 maximal spin (a* = 0.998) can only describe the data if the accretion disc is face-on. The outer accretion disc radii are well constrained in 8/11 objects and are found to be a factor ˜5 smaller than the self-gravity radii. We then extend our modelling campaign into the mid-IR regime with Wide-field Infrared Survey Explorer photometry, adding components for the host galaxy and dusty torus. Our estimates of the host galaxy luminosities are consistent with the MBH-bulge relationship, and the measured torus properties (covering factor and temperature) are in agreement with earlier work, suggesting a predominantly silicate-based grain composition. Finally, we deconvolve the optical-NIR spectra using our SED continuum model. We claim that this is a more physically motivated approach than using empirical descriptions of the continuum such as broken power laws. For our small sample, we verify previously noted correlations between emission linewidths and luminosities commonly used for single-epoch MBH estimates, and observe a statistically significant anticorrelation between [O III] equivalent width and AGN luminosity.
Marin, F; Petrucci, P -O
2016-01-01
Obscuring circumnuclear dust is a well-established constituent of active galactic nuclei (AGN). Traditionally referred to as the receding dusty torus, its inner radius and angular extension should depend on the photo-ionizing luminosity of the central source. Using a Monte Carlo approach, we simulate the radiative transfer between the multiple components of an AGN adopting model constraints from the bright Seyfert galaxy NGC 4151. We compare our model results to the observed near-IR to UV polarization of the source and predict its X-ray polarization. We find that the 2-8 keV polarization fraction of a standard AGN model varies from less then a few percent along polar viewing angles up to tens of percent at equatorial inclinations. At viewing angles around the type-1/type-2 transition the X-ray polarization variability differs between a static or a receding torus scenario. In the former case, the expected 2-8 keV polarization of NGC 4151 is found to be 1.21% +/- 0.34% with a constant polarization position angl...
Etheridge, A M
2011-01-01
We extend the spatial Lambda-Fleming-Viot process introduced in [BEV10] to incorporate recombination. The process models allele frequencies in a population which is distributed over the two-dimensional torus T(L) of sidelength L and is subject to two kinds of reproduction events : small events of radius O(1) and much rarer large events of radius O(L^{alpha}) for some alpha in (0,1]. We investigate the correlation between the times to the most recent common ancestor of alleles at two linked loci for a sample of size two from the population. These individuals are initially sampled from `far apart' on the torus. As L tends to infinity, depending on the frequency of the large events, the recombination rate and the initial distance between the two individuals sampled, we obtain either a complete decorrelation of the coalescence times at the two loci, or a sharp transition between a first period of complete correlation and a subsequent period during which the remaining times needed to reach the most recent common a...
Sluse, D; Anguita, T; Wucknitz, O; Wambsganss, J
2013-01-01
Multiply-imaged quasars and AGNs observed in the mid-infrared (MIR) range are commonly assumed to be unaffected by the microlensing produced by the stars in their lensing galaxy. In this paper, we investigate the validity domain of this assumption. Indeed, that premise disregards microlensing of the accretion disc in the MIR range, and does not account for recent progress in our knowledge of the dusty torus. To simulate microlensing, we first built a simplified image of the quasar composed of an accretion disc, and of a larger ring-like torus. The mock quasars are then microlensed using an inverse ray-shooting code. We simulated the wavelength and size dependence of microlensing for different lensed image types and fraction of compact objects projected in the lens. This allows us to derive magnification probabilities as a function of wavelength, as well as to calculate the microlensing-induced deformation of the spectral energy distribution of the lensed images. We find that microlensing variations as large a...
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
DEFF Research Database (Denmark)
Mantica, P.; Tala, T.; Ferreira, J.S.
2010-01-01
Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power or by modu...
Messiaen, A. M.; Ongena, J.; Unterberg, B.; Boedo, J.; Fuchs, G.; R. Jaspers,; Konen, L.; Koslowski, H. R.; Mank, G.; Rapp, J.; Samm, U.; Vandenplas, P. E.; Van Oost, G.; van Wassenhove, G.; Waidmann, G.; Weynants, R. R.; Wolf, G. H.; Bertschinger, G.; Bonheure, G.; Brix, M.; Dumortier, P.; Durodie, F.; Finken, K.H.; Giesen, B.; Hillis, D.; Hutteman, P.; Koch, R.; KramerFlecken, A.; Lyssoivan, A.; Mertens, P.; Pospieszczyk, A.; PostZwicker, A.; Sauer, M.; Schweer, B.; Schwelberger, J.; Telesca, G.; Tokar, M. Z.; Uhlemann, R.; Vervier, M.; Winter, J.
1997-01-01
An overview of the results obtained so far for the radiative I-mode regime on the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94) [Proceedings of die 16th IEEE Symposium on Fusion Engineering (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), Vol. 1, p.
Design To Manufacturing Process:Bumpy Road?
Institute of Scientific and Technical Information of China (English)
2012-01-01
Ntegration between design and manufacturing is one of the topics that normally hits a lot of discussion in the product development and PLM space.To support this process becomes more and more important in a modern enterprise manufacturing organization.You can ask me why? Let me put is simple this is one of the most important processes that can drive cost optimization in the companies.Everything a company is making need to be first designed and later manufacturing.If it breaks nothing can help.
Bumpy Power Spectra and Galaxy Clusters
Knebe, A; Silk, J; Knebe, Alexander; Islam, Ranty; Silk, Joseph
2001-01-01
The evolution of the abundance of galaxy clusters is not a reliable measure of Omega if there are features on scales of a few Mpc in the primordial power spectrum. Conversely, if we know the cosmological model parameters from other measurements, the cluster abundance evolution permits us to probe features in the power spectrum that are in the nonlinear regime at the present epoch, and hence difficult to discern directly from current epoch measurements. We have investigated the influence of an artificially introduced Gaussian feature on an otherwise unperturbed SCDM power spectrum. Using these modified spectra as an input to cosmological N-body simulations, we are able to show that in terms of the cluster abundance evolution, a SCDM model displays characteristics similar to an OCDM model. However, strong modifications would also be visible at a redshift z=0 in the dark matter power spectrum whereas minor alterations to the usual SCDM spectrum are washed away by non-linear evolution effects. We therefore conclu...
Comparative numerical and experimental study of two combined wind and wave energy concepts
Directory of Open Access Journals (Sweden)
Zhen Gao
2016-01-01
Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the
Tool-path planning for free-form surface high-speed high-resolution machining using torus cutter
Institute of Scientific and Technical Information of China (English)
WANG Yu-han; LI Ru-qiong; WU Zu-yu; CHEN Zhao-neng
2006-01-01
In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for highspeed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore,a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated.
Energy Technology Data Exchange (ETDEWEB)
Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko, E-mail: yama@sss.fukushima-u.ac.jp
2016-04-01
Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.
Energy Technology Data Exchange (ETDEWEB)
Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2013-04-15
The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.
Energy Technology Data Exchange (ETDEWEB)
Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A. [Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)
2016-11-15
The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.
The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study
DEFF Research Database (Denmark)
Guainazzi, M.; Risaliti, G.; Awaki, H.
2016-01-01
In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM–Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed...... the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation...... pressure due to the central AGN emission leaking through the patchy absorber....
Energy Technology Data Exchange (ETDEWEB)
Wiseman, M. [Jefferson Lab; Elementi, L. [Fermilab; Elouadhiri, L. [Jefferson Lab; Gabrielli, G. [Fermilab; Gardner, T. J. [Fermilab; Ghoshal, P. K. [Jefferson Lab; Kashy, D. [Jefferson Lab; Kiemschies, O. [Fermilab; Krave, S. [Fermilab; Makarov, A. [Fermilab; Robotham, B. [Fermilab; Szal, J. [Fermilab; Velev, G. [Fermilab
2015-01-01
The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sun-Ho, E-mail: shkim95@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Seung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyunwoo; Lee, Byungje [KwangWoon University, Seoul (Korea, Republic of); Jo, Jong-Gab; Lee, Hyun-Young; Hwang, Yong-Seok [Seoul National University, Seoul (Korea, Republic of)
2016-11-01
An efficient heating and current drive scheme in central or off-axis region is required to realize steady state operation of tokamak fusion reactor. And the fast wave in lower hybrid resonance range of frequency could be a candidate for such an efficient scheme in high density and high temperature plasmas. Its propagation and absorption characteristics including current drive and coupling efficiency are analyzed for Versatile Experiment Spherical Torus and it is shown that it is possible to drive current with considerable current drive efficiency in central region. The RF system for the fast wave experiment including klystron, transmission systems, inter-digital antenna, and RF diagnostics are given as well in this paper.
Raman, R; Mueller, D; Nelson, B A; Jarboe, T R; Gerhardt, S; Kugel, H W; Leblanc, B; Maingi, R; Menard, J; Ono, M; Paul, S; Roquemore, L; Sabbagh, S; Soukhanovskii, V
2010-03-05
Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.
Design and Manufacture of the Conduction Cooled Torus Coils for the Jefferson Lab 12GeV Upgrade
Energy Technology Data Exchange (ETDEWEB)
Wiseman, M; Elouadhiri, L; Ghoshal, P K; Kashy, D; Elementi, L; Gabrielli, G; Gardner, T J; Kiemschies, O; Krave, S; Makarov, A; Robotham, B; Szal, J; Velev, G
2015-06-01
The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.
Energy Technology Data Exchange (ETDEWEB)
Peterson, J. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bell, R.; Guttenfelder, W.; Hammett, G. W.; Kaye, S. M.; LeBlanc, B.; Mikkelsen, D. R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Smith, D. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. Y. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)
2012-05-15
The National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] can achieve high electron plasma confinement regimes that are super-critically unstable to the electron temperature gradient driven (ETG) instability. These plasmas, dubbed electron internal transport barriers (e-ITBs), occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the first nonlinear ETG simulations of NSTX e-ITB plasmas reinforce this observation. Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show e-ITB formation can occur when the magnetic shear becomes strongly negative. While the ETG-driven thermal flux at the outer edge of the barrier is large enough to be experimentally relevant, the turbulence cannot propagate past the barrier into the plasma interior.
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S
2010-08-19
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.
2006-05-01
In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.
Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.
2016-11-01
The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.
Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
Jost, Jürgen
2015-01-01
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...
Cheatwood, F. McNeil; Swanson, Gregory T.; Johnson, R. Keith; Hughes, Stephen; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce
2016-01-01
Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and
Energy Technology Data Exchange (ETDEWEB)
Arbanas, Goran [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, Charlotte [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nunes, Filomena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-28
The work of this collaboration during its existence is summarized. The mission of the TORUS Topical Collaboration was to develop new methods that advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct reaction calculations. This multi-institution collaborative effort was and remains directly relevant to three areas of interest: the properties of nuclei far from stability, microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory. The TORUS project focused on understanding the details of (d,p) reactions for neutron transfer to heavier nuclei. The bulk of the work fell into three areas: coupled channel theory, modeling (d,p) reactions with a Faddeev-AGS approach, and capture reactions.
The Number of Near-triangulations on the Torus%环面上近三角剖分地图的计数
Institute of Scientific and Technical Information of China (English)
郝荣霞; 蔡俊亮; 刘彦佩
2004-01-01
This paper provides the functional equation and parametric expression of rooted near triangulations on the torus with the size and the valency of the root-face as two parameters, and gives an explicit formula for the number of rooted near triangulations of the root face valency one on the torus with the size as a parameter.%本文提供了环面上带边数和根面次这两个参数的有根近三角剖分的函数方程及其参数表达式,并给出了根面次为1以边数为参数的有根近三角剖分地图的精确解.
Leighly, Karen M; Grupe, Dirk; Terndrup, Donald M; Komossa, S
2015-01-01
We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ~2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director's Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the CIV emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variabl...
Energy Technology Data Exchange (ETDEWEB)
Sazonov, S.; Churazov, E.; Krivonos, R.; Revnivtsev, M.; Sunyaev, R.; Vikhlinin, A. [Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation); Willner, S. P.; Goulding, A. D.; Jones, C.; Murray, S. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Gorjian, V.; Werner, M. W. [Jet Propulsion Laboratory, California Institute of Technology, MS 169-327, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Forman, W. R. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)
2012-10-01
We estimate the relative contributions of the supermassive black hole (SMBH) accretion disk, corona, and obscuring torus to the bolometric luminosity of Seyfert galaxies, using Spitzer mid-infrared (MIR) observations of a complete sample of 68 nearby active galactic nuclei (AGNs) from the INTEGRAL all-sky hard X-ray (HX) survey. This is the first HX-selected (above 15 keV) sample of AGNs with complementary high angular resolution, high signal-to-noise, MIR data. Correcting for the host galaxy contribution, we find a correlation between HX and MIR luminosities: L{sub 15{mu}m}{proportional_to}L{sup 0.74{+-}0.06}{sub HX}. Assuming that the observed MIR emission is radiation from an accretion disk reprocessed in a surrounding dusty torus that subtends a solid angle decreasing with increasing luminosity (as inferred from the declining fraction of obscured AGNs), the intrinsic disk luminosity, L{sub Disk}, is approximately proportional to the luminosity of the corona in the 2-300 keV energy band, L{sub Corona}, with the L{sub Disk}/L{sub Corona} ratio varying by a factor of 2.1 around a mean value of 1.6. This ratio is a factor of {approx}2 smaller than for typical quasars producing the cosmic X-ray background. Therefore, over three orders of magnitude in luminosity, HX radiation carries a large, and roughly comparable, fraction of the bolometric output of AGNs. We estimate the cumulative bolometric luminosity density of local AGNs at {approx}(1-3) Multiplication-Sign 10{sup 40} erg s{sup -1} Mpc{sup -3}. Finally, the Compton temperature ranges between kT{sub c} Almost-Equal-To 2 and Almost-Equal-To 6 keV for nearby AGNs, compared to kT{sub c} Almost-Equal-To 2 keV for typical quasars, confirming that radiative heating of interstellar gas can play an important role in regulating SMBH growth.
Energy Technology Data Exchange (ETDEWEB)
Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan; Liu, Bo; Liu, Wen-Juan; Pan, Xiang; Jiang, Peng [Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hao, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Ji, Tuo; Shi, Xiheng; Zhang, Shaohua, E-mail: lizz08@mail.ustc.edu.cn, E-mail: zhouhongyan@pric.org.cn, E-mail: haol@shao.ac.cn [Polar Research Institute of China, Jinqiao Rd. 451, Shanghai, 200136 (China)
2015-10-20
The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similar to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.
Energy Technology Data Exchange (ETDEWEB)
Leighly, Karen M.; Cooper, Erin [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Grupe, Dirk [Department of Earth and Space Science, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Terndrup, Donald M. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Komossa, S. [Max-Planck Institut für Radioastronmie, Auf dem Hügel 69, D-53121 Bonn (Germany)
2015-08-10
We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.
Design, Analysis and Test Concept for Prototype Cryoline of Iter
Sarkar, B.; Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Chakrapani, Ch.
2008-03-01
The ITER cryo-distribution and cryoline is a part of the in-kind supply for India. The design of the systems is in progress. The topology of torus and neutral beam cryoline is defined as six process pipes along with thermal shield at 80 K and outer vacuum jacket. In order to develop confidence in the concept and to establish the high level of engineering and manufacturing technology, a prototype testing has been proposed. The prototype test will be carried out on 1:1 model in terms of dimension. However, the mass flow rate of the supercritical helium at 4.5 K and gaseous helium at 80 K will be on a 1:10 scale. The prototype cryoline has been designed and analyzed for thermal, structural and hydraulic parameters. The objective of this prototype test is to verify mechanical behavior due to thermal stress and pressure force, thermal and hydraulic performances. The concept of test facility has been realized along with the Piping and Instrumentation (P & I) diagram, instrumentation, controls, data acquisition, 80 K helium generation system along with supply and return valve boxes and interfacing hardware. The design concept, methodology for analysis and results, as well as the test facility have been discussed.
Collinson, James S; Landt, Hermine; Done, Chris; Elvis, Martin; McDowell, Jonathan C
2016-01-01
We continue our study of the spectral energy distributions (SEDs) of 11 AGN at 1.5 < z < 2.2, with optical-NIR spectra, X-ray data and mid-IR photometry. In a previous paper we presented the observations and models; in this paper we explore the parameter space of these models. We first quantify uncertainties on the black hole masses (M$_{\\rm BH}$) and degeneracies between SED parameters. The effect of BH spin is tested, and we find that while low to moderate spin values (a$_*$ $\\leq$ 0.9) are compatible with the data in all cases, maximal spin (a$_*$ = 0.998) can only describe the data if the accretion disc is face-on. The outer accretion disc radii are well constrained in 8/11 objects, and are found to be a factor ~5 smaller than the self-gravity radii. We then extend our modelling campaign into the mid-IR regime with WISE photometry, adding components for the host galaxy and dusty torus. Our estimates of the host galaxy luminosities are consistent with the M$_{\\rm BH}$-bulge relationship, and the meas...
Energy Technology Data Exchange (ETDEWEB)
Lehrman, I.S.; Colestock, P.L.; McNeill, D.H.; Greene, G.J.; Bernabei, S.; Hosea, J.C.; Ono, M.; Shohet, J.L.; Wilson, J.R.
1989-04-01
Edge measurements have been conducted on the PLT tokamak under a variety of operating conditions in order to ascertain the relevant processes at work in coupling rf power to plasmas. The edge density is found to increase significantly with the application of ICRF, and electron heating occurs in the vicinity of the Faraday shield surrounding the antenna. Spectroscopic measurements indicate that the energized antenna is a significant particle source. The relative increase of metallic impurities was found to be /approximately/2.7 times larger than the corresponding increase in deuterium. In addition, the relative increase of deuterium and impurities was /approximately/3--4 times greater at the energized antenna than at other locations around the torus. Model calculations show that for deuterium released from the Faraday shield, the D/sub ..cap alpha../ emission is localized radially to a region within 4 cm of the antenna. A correlation was found between the edge density and the D/sub ..cap alpha../ intensity that justifies its use as a measure of the particle source rate. 26 refs., 14 figs.
Kraft, Ralph; Kimura, Tomoki; Elsner, Ronald; Branduardi-Raymont, Graziella; Gladstone, Randy; Badman, Sarah Victoria; Ezoe, Yuichiro; Murakami, Go; Murray, Stephen S.; Roediger, Elke; Tsuchiya, Fuminori; Yamazaki, Atsushi; Yoshikawa, Ichiro; Yoshioka, Kazuo
2014-01-01
We present preliminary results from a coordinated Hisaki/Chandra/XMM-Newton observational campaign of the Jovian aurora and Io plasma torus. The data were taken over a three week period in April, 2014. Jupiter was observed continuously with Hisaki, six times with the Chandra/HRC instrument for roughly 12 hours per observation, and twice by XMM-Newton. The goal of this observational campaign was to understand how energy and matter are exchanged between the Jovian aurora, the IPT, and the Solar wind. X-ray observations provide key diagnostics on highly stripped ions and keV electrons in the Jovian magnetosphere. We use the temporal, spatial, and spectral capabilities of the three instruments to search for correlated variability between the Solar wind, the EUV-emitting plasma of the IPT and UV aurora, and the ions responsible for the X-ray aurora. Preliminary analysis suggests a strong 45 min periodicity in the EUV emission from the electron aurora. There is some evidence for complex variability of the X-ray auroras on scales of tens of minutes. There is also clear morphological changes in the X-ray aurora that do not appear to be correlated with either variations in the IPT or Solar wind.
Tan, Mingsheng; Stone, Douglas R.; Triana, Joseph C.; Almagri, Abdulgader F.; Fiksel, Gennady; Ding, Weixing; Sarff, John S.; McCollam, Karsten J.; Li, Hong; Liu, Wandong
2017-02-01
A 40-channel capacitive probe has been developed to measure the electrostatic fluctuations associated with the tearing modes deep into Madison Symmetric Torus (MST) reversed field pinch plasma. The capacitive probe measures the ac component of the plasma potential via the voltage induced on stainless steel electrodes capacitively coupled with the plasma through a thin annular layer of boron nitride (BN) dielectric (also serves as the particle shield). When bombarded by the plasma electrons, BN provides a sufficiently large secondary electron emission for the induced voltage to be very close to the plasma potential. The probe consists of four stalks each with ten cylindrical capacitors that are radially separated by 1.5 cm. The four stalks are arranged on a 1.3 cm square grid so that at each radial position, there are four electrodes forming a square grid. Every two adjacent radial sets of four electrodes form a cube. The fluctuating electric field can be calculated by the gradient of the plasma potential fluctuations at the eight corners of the cube. The probe can be inserted up to 15 cm (r/a = 0.7) into the plasma. The capacitive probe has a frequency bandwidth from 13 Hz to 100 kHz, amplifier-circuit limit, sufficient for studying the tearing modes (5-30 kHz) in the MST reversed-field pinch.
Energy Technology Data Exchange (ETDEWEB)
Bielecki, J.; Scholz, M.; Drozdowicz, K. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Giacomelli, L. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Istituto di Fisica del Plasma “P. Caldirola,” Milano (Italy); Kiptily, V.; Kempenaars, M. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Conroy, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Department of Physics and Astronomy, Uppsala University (Sweden); Craciunescu, T. [IAP, National Institute for Laser Plasma and Radiation Physics, Bucharest (Romania); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)
2015-09-15
A method of tomographic reconstruction of the neutron emissivity in the poloidal cross section of the Joint European Torus (JET, Culham, UK) tokamak was developed. Due to very limited data set (two projection angles, 19 lines of sight only) provided by the neutron emission profile monitor (KN3 neutron camera), the reconstruction is an ill-posed inverse problem. The aim of this work consists in making a contribution to the development of reliable plasma tomography reconstruction methods that could be routinely used at JET tokamak. The proposed method is based on Phillips-Tikhonov regularization and incorporates a priori knowledge of the shape of normalized neutron emissivity profile. For the purpose of the optimal selection of the regularization parameters, the shape of normalized neutron emissivity profile is approximated by the shape of normalized electron density profile measured by LIDAR or high resolution Thomson scattering JET diagnostics. In contrast with some previously developed methods of ill-posed plasma tomography reconstruction problem, the developed algorithms do not include any post-processing of the obtained solution and the physical constrains on the solution are imposed during the regularization process. The accuracy of the method is at first evaluated by several tests with synthetic data based on various plasma neutron emissivity models (phantoms). Then, the method is applied to the neutron emissivity reconstruction for JET D plasma discharge #85100. It is demonstrated that this method shows good performance and reliability and it can be routinely used for plasma neutron emissivity reconstruction on JET.
Penna, M; Lin, W Y; Feng, A S
1997-04-01
Responses of auditory neurons in the torus semicircularis (TS) of Pleurodema thaul, a leptodactylid from Chile, to synthetic stimuli having diverse temporal patterns and to digitized advertisement calls of P. thaul and three sympatric species, were recorded to investigate their temporal response selectivities. The advertisement call of this species consists of a long sequence of sound pulses (a pulse-amplitude-modulated, or PAM, signal) having a dominant frequency of about 2000 Hz. Each of the sound pulses contains intra-pulse sinusoidal-amplitude-modulations (SAMs). Synthetic stimuli consisted of six series in which the following acoustic parameters were systematically modified, one at a time: PAM rate, pulse duration, number of pulses, and intra-pulse SAM rate. The carrier frequency of these stimuli was set at the characteristic frequency (CF) of the isolated units (n = 47). Response patterns of TS units to synthetic call variants reveal different degrees of selectivities for each of the temporal variables, with populations of neurons responding maximally to specific values found in the advertisement call of this species. These selectivities are mainly shaped by neuronal responsiveness to the overall sound energy of the stimulus and by the inability of neurons to discharge to short inter-pulse gaps.
Fredrickson, E. D.; Belova, E. V.; Battaglia, D. J.; Bell, R. E.; Crocker, N. A.; Darrow, D. S.; Diallo, A.; Gerhardt, S. P.; Gorelenkov, N. N.; LeBlanc, B. P.; Podestà, M.; NSTX-U Team
2017-06-01
In this Letter we present data from experiments on the National Spherical Torus Experiment Upgrade, where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counterpropagating global Alfvén eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfvén modes, and developing methods to control them, is important for fusion reactors like the International Tokamak Experimental Reactor, which are heated by a large population of nonthermal, super-Alfvénic ions consisting of fusion generated α 's and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k⊥ρL . A quantitative analysis of this data with the hym stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.
Energy Technology Data Exchange (ETDEWEB)
E.D. Fredrickson; N. Gorelenkov; C.Z. Cheng; R. Bell; D. Darrow, D. Gates; D. Johnson; S. Kaye; B. LeBlanc; D. McCune; J. Menard; L. Roquemore
2002-02-25
With the first injection of neutral beams into the National Spherical Torus Experiment (NSTX) [Ono, et al., Nucl. Fusion 40 (2000) 557] a broad spectrum of fluctuations consisting of nearly equally spaced peaks in the frequency range from about 0.2 to 1.2 times the ion cyclotron frequency was observed. The frequencies scale with toroidal field and plasma density consistently with Alfvin waves. From these and other observations, the modes have been identified as Compressional Alfvin Eigenmodes (CAE). It has also recently been found that the ratio of the measured ion and electron temperatures in NSTX during neutral-beam heating is anomalously high [Bell, Bull. Am. Phys. Soc. 46 (2001) 206]. To explain the anomaly in the ratio of ion to electron temperature, it has been suggested that the CAE, driven by the beam ions, stochastically heat the thermal ions [Gates, et al., Phys. Rev. Lett. 87 (2001) 205003]. In this paper, it is shown through studies of the power balance that stochastic heating of the thermal ions by the observed CAE alone is not solely responsible for the anomaly in the ion to electron temperature ratio.
Energy Technology Data Exchange (ETDEWEB)
Munaretto, S., E-mail: smunaretto@wisc.edu; Chapman, B. E.; Nornberg, M. D.; Boguski, J.; DuBois, A. M.; Almagri, A. F.; Sarff, J. S. [Department of Physics, University of Wisconsin–Madison, 1150 University Ave, Madison, Wisconsin 53706 (United States)
2016-05-15
The orientation of 3D equilibria in the Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch can now be controlled with a resonant magnetic perturbation (RMP). Absent the RMP, the orientation of the stationary 3D equilibrium varies from shot to shot in a semi-random manner, making its diagnosis difficult. Produced with a poloidal array of saddle coils at the vertical insulated cut in MST's thick conducting shell, an m = 1 RMP with an amplitude b{sub r}/B ∼ 10% forces the 3D structure into any desired orientation relative to MST's diagnostics. This control has led to improved diagnosis, revealing enhancements in both the central electron temperature and density. With sufficient amplitude, the RMP also inhibits the generation of high-energy (>20 keV) electrons, which otherwise emerge due to a reduction in magnetic stochasticity in the core. Field line tracing reveals that the RMP reintroduces stochasticity to the core. A m = 3 RMP of similar amplitude has little effect on the magnetic topology or the high-energy electrons.
Matesz, C; Kulik, A
1996-01-01
The afferent and efferent connections of the frog principal nucleus (TP) of torus semicircularis (TOS) and superior olive (SO) were examined by employing the anterograde and retrograde transport patterns of Phaseolus vulgaris leucoagglutinin (PHA-L). After injecting the tracer into these nuclei it was found that the TP projected to the ipsilateral posterior and central thalamic nuclei, all subdivisions of the bilateral TDS and the ipsilateral nucleus isthmi (NI). In the rhombencephalon the projection was restricted mainly to the contralateral SO and the cochlear nucleus (CN). Retrogradely labeled cells were found in most of the areas that contained anterogradely labeled terminals. The termination areas of the SO fibers were similar to the projections of fibers of TP origin in the diencephalic and in the mesencephalic auditory centers. A strong projection was followed into the contralateral SO; the CNs received fibers at both sides. Caudally to the SO the reticular formation, the spinal nucleus of the trigeminal nerve, the solitary nucleus and the dorsal column nuclei were supplied by the fibers of the SO origin. Retrogradely labeled cells were found in the TOS, tegmental nuclei, solitary nucleus, dorsal column nuclei and in the spinal nucleus of the trigeminal nerve. Our results indicate that the frog auditory pathway is more complex at the level of the secondary and tertiary fiber projections than has been previously recognized.
The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study
Guainazzi, M; Awaki, H; Arevalo, P; Bauer, F E; Bianchi, S; Boggs, S E; Brandt, W N; Brightman, M; Christensen, F E; Craig, W W; Forster, K; Hailey, C J; Harrison, F; Koss, M; Longinotti, A; Markwardt, C; Marinucci, A; Matt, G; Reynolds, C S; Ricci, C; Stern, D; Svoboda, J; Walton, D; Zhang, W
2016-01-01
In this paper we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy Markarian 3 carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM-Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N_H~0.8-1.1$\\times$10$^{24}$ cm$^{-2}$). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle ~66 degrees and is seen at a grazing angle through its upper rim (inclination angle ~70 degrees). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17$\\pm$5) and individual column density, [~(4.9$\\pm$1.5)$\\times$10$^{22}$ cm$^{-2}$]. The com...
Liu, D.; Heidbrink, W. W.; Tritz, K.; Fredrickson, E. D.; Hao, G. Z.; Zhu, Y. B.
2016-11-01
A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPA and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities.
Huysmans, G. T. A.; Kerner, W.; Borba, D.; Holties, H. A.; Goedbloed, J. P.
1995-05-01
The active excitation of global Alfvén modes using the saddle coils in the Joint European Torus (JET) [Plasma Physics and Controlled Nuclear Fusion Research 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfvén mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfvén Spectrum in TORoidal geometry) [18th EPS Conference On Controlled Fusion and Plasma Physics, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-n global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfvén and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfvén mode with a density and magnetic field.
Mitter, P. K.
2017-09-01
In previous papers, Mitter (J Stat Phys 163:1235-1246, 2016; Erratum: J Stat Phys 166:453-455, 2017; On a finite range decomposition of the resolvent of a fractional power of the Laplacian, http://arxiv.org/abs/1512.02877), we proved the existence as well as regularity of a finite range decomposition for the resolvent G_{α } (x-y,m^2) = ((-Δ )^{α \\over 2} + m2)^{-1} (x-y) , for 0<α <2 and all real m, in the lattice Zd for dimension d≥ 2. In this paper, which is a continuation of the previous one, we extend those results by proving the existence as well as regularity of a finite range decomposition for the same resolvent but now on the lattice torus Zd/L^{N+1}Zd for d≥ 2 provided m≠ 0 and 0<α <2. We also prove differentiability and uniform continuity properties with respect to the resolvent parameter m2. Here L is any odd positive integer and N≥ 2 is any positive integer.
Kraemer, Steven; Crenshaw, Michael; Dietrich, Matthias; Elitzur, Moshe; Gull, Theodore; Teplitz, Harry; Turner, Jane
2004-09-01
According to the unified model for AGN, Seyfert 1.8 and 1.9 galaxies are viewed at inclinations between those of Seyfert 1s (face-on) and Seyfert 2s (edge-on) with respect to the source of obscuration, typically envisioned as a dusty torus. This view is supported by the weak broad emission-line components of the Balmer lines, with ratios that are consistent with significant (E(B-V} ~ 1 mag) reddening of the broad-line region. Mid-IR spectra are the only means with which to probe the circumnuclear gas in these intermediate Seyferts and constrain the physical structure of the torus, such as its size, scale height, and clumpiness. Seyfert 1.8s and 1.9s also tend to possess relatively weak high ionization narrow lines (e.g. [Fe~VII] 6087 A) compared to Seyfert 1s, suggesting that the dusty circumnuclear gas may also obscure the inner narrow line region. We request Spitzer IRS spectra of 12 Seyfert 1.8s and 1.9s in order to 1) determine the temperature of the dust, and hence its radial distance from the central engine, to test for a torus origin, 2) determine the scale height and clumpiness of the torus atmosphere via the silicate 10 feature and comparisons with clumpy torus models, and 3) penetrate the obscuring gas via mid-IR emission lines, such as [Ne~V] 14.3 microns and [O~IV] 25.9 microns, to reveal the hidden high-ionization inner narrow line region. We have selected targets with host galaxies that are close to face-on, to minimize contamination of the mid-IR spectra by dust in their galactic planes. Among the more than 60 Seyferts in the Spitzer/IRS reserved target catalog, there are only a handful of true Seyfert 1.8s and 1.9s, and all of these have inclined (b/a < 0.5 ) host galaxies.
Conceptions of Parents, Conceptions of Self, and Conceptions of God.
Buri, John R.; Mueller, Rebecca A.
Different theorists have suggested that an individual's view of God may be related to one's view of one's father, one's mother, or one's self. A study was conducted to examine the relationship of college students' conceptions of the wrathfulness-kindliness of God to their conceptions of their father's and mother's permissiveness, authoritarianism,…
Serial concept maps: tools for concept analysis.
All, Anita C; Huycke, LaRae I
2007-05-01
Nursing theory challenges students to think abstractly and is often a difficult introduction to graduate study. Traditionally, concept analysis is useful in facilitating this abstract thinking. Concept maps are a way to visualize an individual's knowledge about a specific topic. Serial concept maps express the sequential evolution of a student's perceptions of a selected concept. Maps reveal individual differences in learning and perceptions, as well as progress in understanding the concept. Relationships are assessed and suggestions are made during serial mapping, which actively engages the students and faculty in dialogue that leads to increased understanding of the link between nursing theory and practice. Serial concept mapping lends itself well to both online and traditional classroom environments.
Swanson, G. T.; Cheatwood, F. M.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.
2016-01-01
Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the
Swanson, Gregory; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce
2016-01-01
Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. Therefore, the HIAD projects experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m-class system will introduce many new structural and logistical challenges to an already complicated manufacturing process.Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to ac-count for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori
Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D
2013-02-01
The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.
Low-cost and low-power unidirectional torus network-on-chip with corner buffer power-gating
Wang, Feng; Tang, Xiantuo; Xing, Zuocheng; Liu, Hengzhu
2016-08-01
Network-on-chip (NoC) is one of critical communication architectures for the scaling of future many-core processors. The challenge for on-chip network is reducing design complexity to save both area and power while providing high performance such as low latency and high throughput. Especially, with increase of network size, both design complexity and power consumption have become the bottlenecks preventing proper network scaling. Moreover, as technology continuously scales down, leakage power takes up a larger fraction of total NoC power. It is increasingly important for a power-efficient NoC design to reduce the increasing leakage power. Power-gating, as a representative low-power technique, can be applied to an on-chip network for mitigating leakage power. In this paper, we propose a low-cost and low-power router architecture for the unidirectional torus network, and adopt an improved corner buffer structure for the inoffensive power-gating, which has minimal impact on network performance. Besides, an explicit starvation avoidance mechanism is introduced to guarantee injection fairness while decreasing its negative impact on network throughput. Simulation results with synthetic traffic show that our design can improve network throughput by 11.3% on average and achieve significant power-saving in low- and medium-load regions. In the SPLASH-2 workload simulation, our design can save on average 27.2% of total power compared to the baseline, and decrease 42.8% average latency compared to the baseline with power-gating.
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J
2008-12-31
Experiments conducted in high-performance 1.0 MA and 1.2 MA 6 MW NBI-heated H-mode discharges with a high magnetic flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub t} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the strongly-shaped lower single null configuration with elongation {kappa} = 2.2-2.4 and triangularity {delta} = 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using the inherently high magnetic flux expansion f{sub m} = 16-25 and the partial detachment of the outer strike point at several D{sub 2} injection rates. A good core confinement and pedestal characteristics were maintained, while the core carbon concentration and the associated Z{sub eff} were reduced. The partially detached divertor regime was characterized by an increase in divertor radiated power, a reduction of ion flux to the plate, and a large neutral compression ratio. Spectroscopic measurements indicated a formation of a high-density, low temperature region adjacent to the outer strike point, where substantial increases in the volume recombination rate and CII, CIII emission rates was measured.
The Extended Enterprise concept
DEFF Research Database (Denmark)
Larsen, Lars Bjørn; Vesterager, Johan; Gobbi, Chiara
1999-01-01
This paper provides an overview of the work that has been done regarding the Extended Enterprise concept in the Common Concept team of Globeman 21 including references to results deliverables concerning the development of the Extended Enterprise concept. The first section presents the basic concept...... picture from Globeman21, which illustrates the Globeman21 way of realising the Extended Enterprise concept. The second section presents the Globeman21 EE concept in a life cycle perspective, which to a large extent is based on the thoughts and ideas behind GERAM (ISO/DIS 15704)....
Schnitzer, Howard J
2016-01-01
The R\\'enyi entropy for the $\\widehat{\\rm SU}(N)_1$ WZW model as described by $N$ free fermions coupled to a $U(1)$ constraint field is computed on an $n$-sheeted branched torus. The boundary condition of the harmonic component of the gauge field on the homology cycles of the genus $g$ Riemann surface is central to the final result. This calculation is complementary to that of arXiv:$1510.05993$, which presents the bose side of the bose-fermi equivalence.
Kamiyama, Kyohei; Endo, Tetsuro; Imai, Isao; Komuro, Motomasa
2016-06-01
Double covering (DC) bifurcation of a 2-torus quasi-periodic flow in a phase-locked loop circuit was experimentally investigated using an electronic circuit and via SPICE simulation; in the circuit, the input radio-frequency signal was frequency modulated by the sum of two asynchronous sinusoidal baseband signals. We observed both DC and period-doubling bifurcations of a discrete map on two Poincaré sections, which were realized by changing the sample timing from one baseband sinusoidal signal to the other. The results confirm the DC bifurcation of the original flow.
Energy Technology Data Exchange (ETDEWEB)
Ghoshal, Probir K. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Fair, Ruben J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kashy, David H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rajput-Ghoshal, Renuka [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampshire, Damian; Tsui, Yeekin; Haden-Gates, Virginia
2016-06-01
The Hall B 3.6-T superconducting torus magnet is being designed and built as part of the Jefferson Lab 12-GeV upgrade. The magnet consists of six trapezoidal coils connected in series, with an operating current of 3770 A. The magnet and the joints (or splices) connecting the coils are all conduction cooled by supercritical 4.6-K helium. This paper studies the design and manufacturing process of the splices made between two SSC Rutherford-type cables and discusses the tests performed to evaluate the performance of the splices under varying incident magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Gerhardt, S. P.; Brennan, D. P.; Buttery, R.; La Haye, R. J.; Sabbagh, S.; Strait, E.; Bell, M.; Bell, R.; Fredrickson, E.; Gates, D.; LeBlanc, B.; Menard, J.; Stutman, D.; Tritz, K.; Yuh, H.
2009-02-24
The onset conditions for the m/n=2/1 neoclassical tearing mode (NTM) are studied in terms of neoclassical drive, triggering instabilities, and toroidal rotation or rotation shear, in the spherical torus NSTX [M. Ono, et al., Nuclear Fusion 40, 557 (2000)]. There are three typical onset conditions for these modes, given in order of increasing neoclassical drive required for mode onset: triggering by energetic particle modes, triggering by edge localized modes, and cases where the modes appear to grow without a trigger. In all cases, the required drive increases with toroidal rotation shear, implying a stabilizing effect from the shear.
A CONCEPT FOR NEXT STEP ADVANCED TOKAMAK FUSION DEVICE
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A concept is introduced for initiating the design study of a special class of tokamak,which has a magnetic confinement configuration intermediate between contemporary advanced tokamak and the recently established spherical torus (ST,also well known by the name "spherical tokamak").The leading design parameter in the present proposal is a dimensionless geometrical parameter, the machine aspect ratio A＝R0/a0＝2.0,where the parameters a0 and R0 denote,respectively,the plasma (equatorial) minor radius and the plasma major radius.The aim of this choice is to technologically and experimentally go beyond the aspect ratio frontier (R0/a0≈2.5) of present day tokamaks and enter a broad unexplored domain existing on the (a0,R0) parameter space in current international tokamak database,between the data region already moderately well covered by the advanced conventional tokamaks and the data region planned to be covered by STs.Plasma minor radius a0 has been chosen to be the second basic design parameter, and consequently,the plasma major radius R0 is regarded as a dependent design parameter.In the present concept,a nominal plasma minor radius a0＝1.2m is adopted to be the principal design value,and smaller values of a0 can be used for auxiliary design purposes,to establish extensive database linkage with existing tokamaks.Plasma minor radius can also be adjusted by mechanical and/or electromagnetic means to smaller values during experiments,for making suitable data linkages to existing machines with higher aspect ratios and smaller plasma minor radii.The basic design parameters proposed enable the adaptation of several confinement techniques recently developed by STs,and thereby a specially arranged central-bore region inside the envisioned tokamak torus,with retrieved space in the direction of plasma minor radius,will be available for technological adjustments and maneuverings to facilitate implementation of engineering instrumentation and real time high
Hot electron stabilization of a helically symmetric plasma
Energy Technology Data Exchange (ETDEWEB)
Miller, R.L.
1986-04-01
Furth and Boozer (private communication; Proceedings of the Advanced Bumpy Torus Concepts Workshop, CONF-830758, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1983, p. 161) have suggested the use of relativistic electrons to achieve the second stability regime in a helical axis stellarator (Heliac). The hot electrons would only be required until the background plasma reached the second stability regime; the heating power maintaining the hot electron layer would then be turned off. The basic correctness of Furth and Boozer's suggestion is confirmed numerically by a localized stability analysis of helically symmetric plasma equilibria, with anisotropic pressure profiles. Stability is evaluated using the localized interchange criterion in which the hot electrons, because of their large drift speeds, are treated as rigid. A hot electron pressure profile is exhibited; it provides a stable path to the second stability regime for the background plasma.
Madureira, Nuno Luis
2014-01-01
Highlights how key energy concepts surfaced, tracing their evolution throughout history to encompasses four economic concepts and four technological-engineering concepts developed through their history to conclude with current economic and environmental sciences Considers the process of energy-substitutions through complementary usages, hybridization and technological mixes Combines a conceptual approach with key theoretical concepts from engineering, geological and economic sciences providing cross disciplinary overview of energy fundamentals in a short and focused reading
Bingolbali, Erhan; Monaghan, John
2008-01-01
Concept image and concept definition is an important construct in mathematics education. Its use, however, has been limited to cognitive studies. This article revisits concept image in the context of research on undergraduate students' understanding of the derivative which regards the context of learning as paramount. The literature, mainly on…
Threshold Concepts in Biochemistry
Loertscher, Jennifer
2011-01-01
Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…
Jagacinski, Carolyn M.; Nicholls, John G.
Two different conceptions of ability are proposed. The first conception of ability is more differentiated and generally employed by adults and older children. Here ability level is defined with reference to the performance of others assuming that optimum effort was employed. High ability means higher than others. The second conception of ability…
2011-04-01
Handheld Theodolite Concept by Alan E. Wetmore ARL-TN-0430 April 2011 Approved...to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TN-0430 April 2011 Handheld Theodolite Concept Alan E...2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 October 2009 to 30 September 2010 4. TITLE AND SUBTITLE Handheld Theodolite Concept
About periodic and quasi-periodic orbits of a new type for twist maps of the torus
Directory of Open Access Journals (Sweden)
SALVADOR ADDAS-ZANATA
2002-03-01
Full Text Available We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's. These orbits have a non-zero "vertical rotation number'' (V.R.N., in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 Provamos que para uma relevante classe de aplicações C¹ no toro, que desviam a vertical para a direita, existem órbitas periódicas e quase-periódicas de um novo tipo, se e somente se, não existem círculos rotacionais invariantes. Essas órbitas têm um número de rotação vertical não nulo (N.R.V, em contraste com o que ocorre para órbitas periódicas do tipo Birkhoff e para os conjuntos de Aubry-Mather. O número de rotação vertical é racional para uma órbita periódica e irracional para uma quase-periódica. Também provamos que a existência de uma órbita com N.R.V = a implica a existência de órbitas com N.R.V = b, para todo 0 < b < a. Como consequência destes resultados, obtemos que uma aplicação do toro que desvia a vertical e não possui círculos rotacionais invariates, necessariamente tem entropia topológica positiva, que é um resultado clássico. No fim deste trabalho apresentamos aplicações e exemplos, como o Standard map, dos resultados obtidos.
Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Darrow, D. S.; Efthimion, P. C.; Fredrickson, E. D.; Gates, D. A.; Gilmore, M.; Grisham, L. R.; Hosea, J. C.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Maingi, R.; Manickam, J.; Maqueda, R.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Ono, M.; Paoletti, F.; Park, H. K.; Paul, S. F.; Peng, Y.-K. M.; Phillips, C. K.; Ramakrishnan, S.; Raman, R.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Skinner, C. H.; Soukhanovskii, V.; Stevenson, T.; Stutman, D.; Swain, D. W.; Taylor, G.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Budny, R.; Carter, M. D.; Chang, C. S.; Chrzanowski, J.; Davis, W.; Deng, B.; Doyle, E. J.; Dudek, L.; Egedal, J.; Ellis, R.; Ferron, J. R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Goldston, R. J.; Harvey, R.; Hatcher, R. E.; Hawryluk, R. J.; Heidbrink, W.; Hill, K. W.; Houlberg, W.; Jarboe, T. R.; Jardin, S. C.; Ji, H.; Kalish, M.; Lawrance, J.; Lao, L. L.; Lee, K. C.; Levinton, F. M.; Luhmann, N. C.; Majeski, R.; Marsala, R.; Mastravito, D.; Mau, T. K.; McCormack, B.; Menon, M. M.; Mitarai, O.; Nagata, M.; Nishino, N.; Okabayashi, M.; Oliaro, G.; Pacella, D.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Pinsker, R.; Porter, G. D.; Ram, A. K.; Redi, M.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Schaffer, M.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Takase, Y.; Tang, X.; Vero, R.; Wampler, W. R.; Wurden, G. A.; Xu, X. Q.; Yang, J. G.; Zeng, L.; Zhu, W.
2003-12-01
A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with \\beta _T \\equiv \\langle p \\rangle /(B_{T0}^{2}/2\\mu_{0}) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparision of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m-2 has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique
Energy Technology Data Exchange (ETDEWEB)
Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Carfora, D.; Esposito, G.; Labate, C.; Mozzillo, R.; Renno, F.; Lanzotti, A. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Siuko, M. [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland)
2013-11-15
Highlights: • Optimization of the RH system for the FAST divertor using TRIZ. • Participative design approach using virtual reality. • Comparison of product alternatives in an immersive virtual reality environment. • Prioritization of concept alternatives based on AHP. -- Abstract: The paper focuses on the application of the Theory of Inventive Problem Solving (TRIZ) to divertor Remote Handling (RH) issues in Fusion Advanced Studies Torus (FAST), a satellite tokamak acting as a test bed for the study and the development of innovative technologies oriented to ITER and DEMO programs. The objective of this study consists in generating concepts or solutions able to overcome design and technical weak points in the current maintenance procedure. Two different concepts are designed with the help of a parametric CAD software, CATIA V5, using a top-down modeling approach; kinematic simulations of the remote handling system are performed using Digital Mock-Up (DMU) capabilities of the software. The evaluation of the concepts is carried out involving a group of experts in a participative design approach using virtual reality, classifying the concepts with the help of the Analytical Hierarchy Process (AHP)
Energy Technology Data Exchange (ETDEWEB)
Arbanas, G; Elster, C; Escher, J; Mukhamedzanov, A; Nunes, F; Thompson, I J
2012-02-24
The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.
Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng; Pan, Xiang; Wang, Ji; Jiang, Ning; Ji, Tuo; Jiang, Peng; Liu, Wenjuan; Wang, Huiyuan
2017-02-01
Broad emission line outflows of active galactic nuclei have been proposed for many years but are very difficult to quantitatively study because of the coexistence of the gravitationally bound and outflow emission. We present detailed analysis of a heavily reddened quasar, SDSS J000610.67+121501.2, whose normal ultraviolet broad emission lines (BELs) are heavily suppressed by the dusty torus as a natural “coronagraph,” and thus the blueshifted BELs (BBELs) can be reliably measured. The physical properties of the emission-line outflows are derived as follows: ionization parameter U∼ {10}-0.5, column density {N}{{H}}∼ {10}22.0 cm‑2, covering fraction of ∼0.1, and upper limit density of {n}{{H}}∼ {10}5.8 cm‑3. The outflow gases are located at least 41 pc away from the central engine, which suggests that they have expanded to the scale of the dust torus or beyond. Besides, Lyα shows a narrow symmetric component, to our surprise, which is undetected in any other lines. After inspecting the narrow emission line region and the star-forming region as the origin of the Lyα narrow line, we propose that the end result of outflows, diffusing gases in the larger region, acts as the screen of Lyα photons. Future high spatial resolution spectrometry and/or spectropolarimetric observations are needed to make a final clarification.
Energy Technology Data Exchange (ETDEWEB)
Park, Chang Kyu; Kim, Young Cheol; Kim, Young In; Kim, Young Gyun; Kim, Eui Kwang; Song, Hoon; Chung, Hyun Tai; Hwang, Woan; Nam, Cheol; Sim Yoon Sub; Kim, Yeon Sik; Wim Myung Whan; Min, Byung Tae; Yoo, Bong; Lee, Jae Han; Lee, Hyeong Yeon; Kim, Jong Bum; Koo, Gyeong Hoi; Ham, Chang Shik; Kwon, Kee Choon; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Lee, Yong Hee; Kim, Chang Hwoi; Sim, Bong Shick; Hahn, Do Hee; Choi, Jong Hyeun; Kwon, Sang Woon
1997-07-01
KAERI is working for the development of KALIMER and work is being done for methodology development, experimental facility set up and design concept development. The development target of KALIMER has been set as to make KALIMER safer, more economic, more resistant to nuclear proliferation, and yield less impact on the environment. To achieve the target, study has been made for setting up the design concept of KALIMER including the assessment of various possible design alternatives. This report is the results of the study for the KALIMER concept study and describes the design concept of KALIMER. The developed design concept study and describes the design concept of KALIMER. The developed design concept is to be used as the starting point of the next development phase of conceptual design and the concept will be refined and modified in the conceptual design phase. The scope of the work has been set as the NSSS and essential BOP systems. For systems, NSSS and functionally related major BOP are covered. Sizing and specifying conceptual structure are covered for major equipment. Equipment and piping are arranged for the parts where the arrangement is critical in fulfilling the foresaid intention of setting up the KALIMER design concept. This report consists of 10 chapters. Chapter 2 is for the top level design requirements of KALIMER and it serves as the basis of KALIMER design concept development. Chapter 3 summarizes the KALIMER concept and describes the general design features. The remaining chapters are for specific systems. (author). 29 tabs., 37 figs.
2016-04-05
same construct. If resil- iency of a system equates to the health of a person , then maybe there should be resiliency indices similar to health ... Image designed by Diane Fleischer Resilience—A CONCEPT Col Dennis J. Rensel, USAF (Ret.) Resilience takes on many definitions and ideas depending...as biomedical indices provide an indication, a concept of a person’s health . This process or concept of assessing one’s health can be equated to
Bülbül, Mustafa Şahin
2012-01-01
This study includes efficiency of some designed materials and activities for the students with special needs (blind students) about wave concept. In 9th grade Turkish High School Physics Curriculum, all the students have to learn wave concept because physics course is compulsory and wave concept was prepared as a unit. Generally, blind students only memorize some definitions about period, frequency and amplitude in that unit. This seems the easiest way for both teacher and students. Observing...
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Akcay, Cihan
A comparative study of 3-D pressureless resistive (single-fluid) magnetohydrodynamic (rMHD) and 3-D pressureless two-fluid magnetohydrodynamic (2fl-MHD) models of the Helicity Injected Torus experiment (HIT-SI) is presented. HIT-SI is a spheromak current-drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The goal of the experiment is to demonstrate that steady inductive helicity injection (SIHI) is a viable method for driving and sustaining a magnetized plasma for the eventual purpose of electricity production with magnetic fusion power. The experiment has achieved sustainment of nearly 100 kA of plasma current for ˜1~ms. Fusion power plants are expected to sustain a burning plasma for many minutes to hours with more than 10~MA of plasma current. The purpose of project is to determine the validity of the single-fluid and two-fluid MHD models of HIT-SI. The comparable size of the collisionless ion skin depth to the diameter of the injectors and resistive skin depth predicates the importance of two-fluid effects. The simulations are run with NIMROD (non-ideal magnetohydrodynamics code with rotation-open discussion), an initial-value, 3-D extended MHD code. A constant and uniform plasma density and temperature are assumed. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification and formation time
Torus mandibularis varlığında kısmi dişsiz bir hastanın protetik rehabilitasyonu: olgu sunumu
Directory of Open Access Journals (Sweden)
Arife Dogan
2011-10-01
Full Text Available
The torus mandibularis is the one of the most common intraoral exostoses. It is often bilateral, occurs at the canin to premolar region on the lingual aspect of the mandible. It has been reported that the factors such as genetic and environmental factors, masticator hiperfunction, nutrition, race and ethnic groups might play role in occurence of them. Such type of bony protuberances may present many challenges when fabricating a removable partial or complete
dentures. In this case report, after a general knowledge about mandibular tori, the prosthetic rehabilitation of a partially edentulous patient had bilaterally mandibular tori has been presented.
ÖZET
Torus mandibularis ağız içinde en sık görülen eksostoz türlerinden biridir. Genellikle, mandibulanın lingual yüzeyinde, kanin ve premolar bölgesinde yerleşim göstermesiyle karakterizedir. Etyolojisinde kalıtım, çevresel faktörler, artmış çiğneme fonksiyonu, beslenme, ırk ve etnik grup farklılıklarının etkili olduğu düşünülmektedir. Bu tür kemik büyümeleri hareketli parsiyel veya tam protez yapımında güçlüklere neden olabilir. Bu olgu sunumunda kısmi dişsiz ve çift taraflı mandibular torusa sahip bir hastanın protetik tedavisi bildirilmiş ve toruslar hakkında genel bilgi verilmiştir.
Anahtar sözcükler: Torus mandibularis, kısmi dişsiz hasta
African Journals Online (AJOL)
2015-05-12
May 12, 2015 ... concepts of Africa is shown to be based on a particular logic with both strengths and weaknesses. ... Introduction .... In this section I argue that it is indeed possible to conceive of .... early history does one find evidence of a conception of Africa .... the King ceded all his land to the French in return for their.
DEFF Research Database (Denmark)
Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andrés R.
2015-01-01
An often used approach for detecting and adapting to concept drift when doing classification is to treat the data as i.i.d. and use changes in classification accuracy as an indication of concept drift. In this paper, we take a different perspective and propose a framework, based on probabilistic ...
Energy Technology Data Exchange (ETDEWEB)
Till, C.E.; Chang, Y.I.
1986-01-01
The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.
Artis, Margaret, Ed.; And Others
This guide provides enrichment for students to develop tools and concepts used in various areas of mathematics. The first part presents arithmetic progressions, geometric progressions, and harmonic progression. In the second section, the concept of mathematic induction is developed from intuitive induction, using concrete activities, to the…
Koolen, W.M.; Warmuth, M.K.; Kivinen, J.; Kalai, A.T.; Mohri, M.
2010-01-01
We develop an online algorithm called Component Hedge for learning structured concept classes when the loss of a structured concept sums over its components. Example classes include paths through a graph (composed of edges) and partial permutations (composed of assignments). The algorithm maintains
Kierkegaard's concepts: Hypocrisy
DEFF Research Database (Denmark)
Fauth Hansen, Thomas Martin
2014-01-01
Kierkegaard’s Concepts is a comprehensive, multi-volume survey of the key concepts and categories that inform Kierkegaard’s writings. Each article is a substantial, original piece of scholarship, which discusses the etymology and lexical meaning of the relevant Danish term, traces the development...
Threshold Concepts in Economics
Shanahan, Martin
2016-01-01
Purpose: The purpose of this paper is to examine threshold concepts in the context of teaching and learning first-year university economics. It outlines some of the arguments for using threshold concepts and provides examples using opportunity cost as an exemplar in economics. Design/ Methodology/Approach: The paper provides an overview of the…
Indian Academy of Sciences (India)
Ties Behnke; LDC Concept Group
2007-11-01
In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force behind the LDC is the particle flow concept.
RAYS: a geometrical optics code for EBT
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D.B.; Goldfinger, R.C.
1982-04-01
The theory, structure, and operation of the code are described. Mathematical details of equilibrium subroutiones for slab, bumpy torus, and tokamak plasma geometry are presented. Wave dispersion and absorption subroutines are presented for frequencies ranging from ion cyclotron frequency to electron cyclotron frequency. Graphics postprocessors for RAYS output data are also described.
Directory of Open Access Journals (Sweden)
Alexander Klippel
2015-12-01
Full Text Available Experiments in this article test the hypothesis that formal direction models used in artificial intelligence correspond to intuitive direction concepts of humans. Cognitively adequate formal models of spatial relations are important for information retrieval tasks, cognitive robotics, and multiple spatial reasoning applications. We detail two experiments using two objects (airplanes systematically located in relation to each other. Participants performed a grouping task to make their intuitive direction concepts explicit. The results reveal an important, so far insufficiently discussed aspect of cognitive direction concepts: Intuitive (natural direction concepts do not follow a one-size-fits-all strategy. The behavioral data only forms a clear picture after participants' competing strategies are identified and separated into categories (groups themselves. The results are important for researchers and designers of spatial formalisms as they demonstrate that modeling cognitive direction concepts formally requires a flexible approach to capture group differences.
Concept Modeling with Superwords
El-Arini, Khalid; Guestrin, Carlos
2012-01-01
In information retrieval, a fundamental goal is to transform a document into concepts that are representative of its content. The term "representative" is in itself challenging to define, and various tasks require different granularities of concepts. In this paper, we aim to model concepts that are sparse over the vocabulary, and that flexibly adapt their content based on other relevant semantic information such as textual structure or associated image features. We explore a Bayesian nonparametric model based on nested beta processes that allows for inferring an unknown number of strictly sparse concepts. The resulting model provides an inherently different representation of concepts than a standard LDA (or HDP) based topic model, and allows for direct incorporation of semantic features. We demonstrate the utility of this representation on multilingual blog data and the Congressional Record.
Matsushita, S.; V-Trung, D.; Boone, F.; Krips, M.; Lim, J.; Muller, S.
2015-12-01
We present ˜1” (˜34 pc) resolution observations of HCN(1-0) together with CO J=1-0, 2-1, and 3-2 toward the Seyfert 2 nucleus of M51 using IRAM PdBI and SMA. HCN shows a strong emission at the nucleus only at the systemic velocity, where no obvious CO emission. HCN(1-0)/CO(1-0) >2 at this region. Based on our radiative transfer calculations, we suggest that this strong HCN emission is affected by the IR pumping and possibly weak HCN masing. This suggests the presence of an edge-on rotating circumnuclear dense molecular gas disk or torus, which remains unresolved at our resolution.
Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy
2013-10-01
A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.
Directory of Open Access Journals (Sweden)
R. Peniche
2004-01-01
Full Text Available It is proved that up to isomorphism there is only one (2,2-dimensional supertorus associated to a nontrivial representation of its underlying 2-torus, and that it has nontrivial odd brackets. This supertorus is obtained by finding out first a canonical form for its Lie superalgebra, and then using Lie's technique to represent it faithfully as supervector fields on a supermanifold. Those supervector fields can be integrated, and through their various integral flows the composition law for the supergroup is straightforwardly deduced. It turns out that this supertorus is precisely the supergroup described by Guhr (1993 following a formal analogy with the classical unitary group U(2 but with no further intrinsic characterization.
Energy Technology Data Exchange (ETDEWEB)
Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)
2016-06-15
Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.
Energy Technology Data Exchange (ETDEWEB)
S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team
2007-11-15
Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.
Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L-Å; Quintana-Lacaci, G.
2017-01-01
We have mapped 12CO J=3–2 and other molecular lines from the “water-fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0⋅″35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 106 cm−3), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10−4 M⊙ yr−1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M⊙) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed. PMID:28191303
Sahai, R.; Vlemmings, W. H. T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.-Å; Quintana-Lacaci, G.
2017-01-01
We have mapped 12CO J = 3–2 and other molecular lines from the “water fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0.″35 resolution using Atacama Large Millimeter/submillimeter Array. We find (i) two very high-speed knotty, jet-like molecular outflows; (ii) a central high-density (> {few}× {10}6 cm‑3), expanding torus of diameter 1300 au; and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5× {10}-4 M⊙ yr‑1 in the past ∼455 years. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally emitting dust, implies a substantial mass (0.017 M⊙) of very large (∼millimeter-sized) grains. The measured expansion ages of the above structural components imply that the torus (age ∼160 years) and the younger high-velocity outflow (age ∼110 years) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi–Hoyle–Lyttleton wind accretion and wind Roche-lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common-envelope evolution are needed.
Fundamental concepts of mathematics
Goodstein, R L
Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people
Directory of Open Access Journals (Sweden)
Gurpreet Rattan
2010-11-01
Full Text Available The connections between theories of concepts and issues of knowledge and epistemic normativity are complex and controversial. According to the general, broadly Fregean, view that stands in the background of this paper, these connections are taken not only to exist, but also to be fundamental to issues about the individuation of concepts. This kind of view fleshed out should clarify the nature and role of epistemic norms, and of different kinds of epistemic norms, in concept individuation. This paper takes up an aspect of this general task and tries to make explicit the nature and role of intellectual norms, and to argue that extant paradigms for theorizing concepts fail because they fail to recognize the nature and individuative relevance of intellectual norms.
Some Fundamental Cybersecurity Concepts
National Research Council Canada - National Science Library
Wilson, Kelce S; Kiy, Muge Ayse
2014-01-01
The results of successful hacking attacks against commercially available cybersecurity protection tools that had been touted as secure are distilled into a set of concepts that are applicable to many...
Rusanen, Anna-Mari; Pöyhönen, Samuli
2013-06-01
In this article we focus on the concept of concept in conceptual change. We argue that (1) theories of higher learning must often employ two different notions of concept that should not be conflated: psychological and scientific concepts. The usages for these two notions are partly distinct and thus straightforward identification between them is unwarranted. Hence, the strong analogy between scientific theory change and individual learning should be approached with caution. In addition, we argue that (2) research in psychology and cognitive science provides a promising theoretical basis for developing explanatory mechanistic models of conceptual change. Moreover, we argue that (3) arguments against deeper integration between the fields of psychology and conceptual change are not convincing, and that recent theoretical developments in the cognitive sciences might prove indispensable in filling in the details in mechanisms of conceptual change.
Common tester platform concept.
Energy Technology Data Exchange (ETDEWEB)
Hurst, Michael James
2008-05-01
This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.
Decoding Astronomical Concepts
Durisen, Richard H.; Pilachowski, Catherine A.
2004-01-01
Two astronomy professors, using the Decoding the Disciplines process, help their students use abstract theories to analyze light and to visualize the enormous scale of astronomical concepts. (Contains 5 figures.)
Directory of Open Access Journals (Sweden)
Miray Sasioglu
2013-08-01
Full Text Available The concept of alexithymia, which means no words for emotions, emerged in order to explain the symptoms of psychosomatic patients and gained a quick recognition among psychiatrists. However, current studies indicate that alexithymia may be a personality trait seen both in different pathological groups and even in healthy population. At this point, many researches have been made in order to distinguish alexithymia from existing constructs and diagnosis, and to remove the questions on reliability and validity of the con-cept and its measurement. Ongoing discussions on alexithymia will be re-viewed in this study. The controversial concept of alexithymia will be exam-ined in terms of characteristics, theoretical background, relationship with the other disorders, measurement and the critique of the measurement and the concept.
DEFF Research Database (Denmark)
Bjerrum, Peter
2005-01-01
The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program......The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program...
1981-03-24
electrgnic tabular displays ( ETABS ). - , This concept document was prepared by a team of ATC experts to review prior work, the on-going AERA program, and to...Address Beacon System (DABS), trajectory modeling and planning algorithms, and electronic tabular displays ( ETABS ). This concept document was...capability, and a Flight Management System. The development of AERA requires major efforts in system design and software and man-machine interface
Data governance implementation concept
Ullrichová, Jana
2016-01-01
This master´s thesis discusses concept of implementation for data governance. The theoretical part of this thesis is about data governance. It explains why data are important for company, describes definitoons of data governance, its history, its components, its principles and processes and fitting in company. Theoretical part is amended with examples of data governance failures and banking specifics. The main goal of this thesis is to create a concept for implementing data governance and its...
Strong, John
2004-01-01
An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie
[Mindfulness: A Concept Analysis].
Chen, Tsai-Ling; Chou, Fan-Hao; Wang, Hsiu-Hung
2016-04-01
"Mindfulness" is an emerging concept in the field of healthcare. Ranging from stress relief to psychotherapy, mindfulness has been confirmed to be an effective tool to help individuals manage depression, anxiety, obsessive-compulsive disorder, and other health problems in clinical settings. Scholars currently use various definitions for mindfulness. While some of these definitions overlap, significant differences remain and a general scholarly consensus has yet to be reached. Several domestic and international studies have explored mindfulness-related interventions and their effectiveness. However, the majority of these studies have focused on the fields of clinical medicine, consultation, and education. Mindfulness has rarely been applied in clinical nursing practice and no related systematic concept analysis has been conducted. This paper conducts a concept analysis of mindfulness using the concept analysis method proposed by Walker and Avant (2011). We describe the defining characteristics of mindfulness, clarify the concept, and confirm the predisposing factors and effects of mindfulness using examples of typical cases, borderline cases, related cases, and contrary case. Findings may provide nursing staff with an understanding of the concept of mindfulness for use in clinical practice in order to help patients achieve a comfortable state of body and mind healing.
Tazaki, Fumie; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tombesi, Francesco
2013-01-01
We present the results from broadband X-ray spectral analysis of 3C 206 and PKS 0707-35 with Suzaku and Swift/BAT, two of the most luminous unobscured and obscured radio-loud active galactic nuclei (AGNs) with hard X-ray luminosities of 10(sup 45.5) erg per second and 10(sup 44.9) erg per second (14-195 keV), respectively. Based on the radio core luminosity, we estimate that the X-ray spectrum of 3C 206 contains a significant (60% in the 14-195 keV band) contribution from the jet, while it is negligible in PKS 0707-35.We can successfully model the spectra with the jet component (for 3C 206), the transmitted emission, and two reflection components from the torus and the accretion disk. The reflection strengths from the torus are found to be R(sub torus)(=Omega/2pi) = 0.29 +/- 0.18 and 0.41 +/- 0.18 for 3C 206 and PKS 0707-35, respectively, which are smaller than those in typical Seyfert galaxies. Utilizing the torus model by Ikeda et al., we quantify the relation between the half-opening angle of a torus (theta(sub oa)) and the equivalent width of an iron-K line. The observed equivalent width of 3C 206, less than 71 eV, constrains the column density in the equatorial plane to N(sup eq)(sub H) lesst han 10(sup 23) per square centimeter, or the half-opening angle to theta(sub oa) greater than 80 deg. if N(sup eq)(sub H) = 10(sup 24) per square centimeter is assumed. That of PKS 0707-35, 72 +/- 36 eV, is consistent with N(sup eq)(sub H) 10(sup 23) per square centimeter. Our results suggest that the tori in luminous radio-loud AGNs are only poorly developed. The trend is similar to that seen in radio-quiet AGNs, implying that the torus structure is not different between AGNs with jets and without jets.
Concept Analysis: Music Therapy.
Murrock, Carolyn J; Bekhet, Abir K
2016-01-01
Down through the ages, music has been universally valued for its therapeutic properties based on the psychological and physiological responses in humans. However, the underlying mechanisms of the psychological and physiological responses to music have been poorly identified and defined. Without clarification, a concept can be misused, thereby diminishing its importance for application to nursing research and practice. The purpose of this article was for the clarification of the concept of music therapy based on Walker and Avant's concept analysis strategy. A review of recent nursing and health-related literature covering the years 2007-2014 was performed on the concepts of music, music therapy, preferred music, and individualized music. As a result of the search, the attributes, antecedents, and consequences of music therapy were identified, defined, and used to develop a conceptual model of music therapy. The conceptual model of music therapy provides direction for developing music interventions for nursing research and practice to be tested in various settings to improve various patient outcomes. Based on Walker and Avant's concept analysis strategy, model and contrary cases are included. Implications for future nursing research and practice to use the psychological and physiological responses to music therapy are discussed.
Creating Heliophysics Concept Maps
Ali, N. A.; Peticolas, L. M.; Paglierani, R.; Mendez, B. J.
2011-12-01
The Center for Science Education at University of California Berkeley's Space Sciences Laboratory is creating concept maps for Heliophysics and would like to get input from scientists. The purpose of this effort is to identify key concepts related to Heliophysics and map their progression to show how students' understanding of Heliophysics might develop from Kindergarten through higher education. These maps are meant to tie into the AAAS Project 2061 Benchmarks for Scientific Literacy and National Science Education Standards. It is hoped that the results of this effort will be useful for curriculum designers developing Heliophysics-related curriculum materials and classroom teachers using Heliophysics materials. The need for concept maps was identified as a result of product analysis undertaken by the NASA Heliophysics Forum Team. The NASA Science Education and Public Outreach Forums have as two of their goals to improve the characterization of the contents of the Science Mission Directorate and Public Outreach (SMD E/PO) portfolio (Objective 2.1) and assist SMD in addressing gaps in the portfolio of SMD E/PO products and project activities (Objective 2.2). An important part of this effort is receiving feedback from solar scientists regarding the inclusion of key concepts and their progression in the maps. This session will introduce the draft concept maps and elicit feedback from scientists.
Communication, concepts and grounding.
van der Velde, Frank
2015-02-01
This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.
Pitters, Florian Michael
2016-01-01
CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.
Energy Technology Data Exchange (ETDEWEB)
Ogane, S.; Shikama, T., E-mail: shikama@me.kyoto-u.ac.jp; Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan); Zushi, H. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan)
2015-10-15
In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steady State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.
Heineken, J; McCloskey, J C
1985-01-01
Concepts and strategies presented here provide nurses with a new perspective from which to analyze and interact with power dynamics. Understanding fundamental concepts of power will help nurses enjoy a more equal status and bargaining position within the community of health professionals and in health care delivery systems. As nurses integrate and utilize this content for enhancing professional practices and client services, our public image will also continue to be strengthened. In so doing, our power base and sphere of influence will also be broadened.
Introduction: Bridging Concepts.
Davids, Karel
2015-12-01
How can those in the history of science, history of technology, and economics communicate more with each other than they are accustomed? How can they become more globally oriented? While these three disciplines today have more convergent interests than in the past, there is still a large potential for further exchange and involvement to explore and exploit. The contributors to this Focus section discuss a number of concepts that may serve as tools to bring these three disciplines more closely together and ease their evolution in a less Eurocentric direction. These concepts include trading zones, interaction and formalization, production, and machines and self-organization.
Loneliness: a concept analysis.
Bekhet, Abir K; Zauszniewski, Jaclene A; Nakhla, Wagdy E
2008-01-01
Loneliness is a universal human experience recognized since the dawn of time, yet it is unique for every individual. Loneliness can lead to both depression and low self-esteem. This article explicates the concept of loneliness through the examination of its conceptual definition and uses, defining attributes, related concepts, and empirical referents. Literature review using hand search and database were used as sources of information. Because loneliness is commonly encountered in nursing situations, the information provided will serve as a framework for assessment, planning, intervention, and evaluation of clients.
[Concepts of rational taxonomy].
Pavlinov, I Ia
2011-01-01
The problems are discussed related to development of concepts of rational taxonomy and rational classifications (taxonomic systems) in biology. Rational taxonomy is based on the assumption that the key characteristic of rationality is deductive inference of certain partial judgments about reality under study from other judgments taken as more general and a priory true. Respectively, two forms of rationality are discriminated--ontological and epistemological ones. The former implies inference of classifications properties from general (essential) properties of the reality being investigated. The latter implies inference of the partial rules of judgments about classifications from more general (formal) rules. The following principal concepts of ontologically rational biological taxonomy are considered: "crystallographic" approach, inference of the orderliness of organismal diversity from general laws of Nature, inference of the above orderliness from the orderliness of ontogenetic development programs, based on the concept of natural kind and Cassirer's series theory, based on the systemic concept, based on the idea of periodic systems. Various concepts of ontologically rational taxonomy can be generalized by an idea of the causal taxonomy, according to which any biologically sound classification is founded on a contentwise model of biological diversity that includes explicit indication of general causes responsible for that diversity. It is asserted that each category of general causation and respective background model may serve as a basis for a particular ontologically rational taxonomy as a distinctive research program. Concepts of epistemologically rational taxonomy and classifications (taxonomic systems) can be interpreted in terms of application of certain epistemological criteria of substantiation of scientific status of taxonomy in general and of taxonomic systems in particular. These concepts include: consideration of taxonomy consistency from the
Knight, P L
1983-01-01
Concepts of Quantum Optics is a coherent and sequential coverage of some real insight into quantum physics. This book is divided into six chapters, and begins with an overview of the principles and concepts of radiation and quanta, with an emphasis on the significance of the Maxwell's electromagnetic theory of light. The next chapter describes first the properties of the radiation field in a bounded cavity, showing how each cavity field mode has the characteristics of a simple harmonic oscillator and how each can be quantized using known results for the quantum harmonic oscillator. This chapte
Innatism, Concept Formation, Concept Mastery and Formal Education
Winch, Christopher
2015-01-01
This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…
Innatism, Concept Formation, Concept Mastery and Formal Education
Winch, Christopher
2015-01-01
This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…