WorldWideScience

Sample records for bulk semiconductor detectors

  1. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  2. Signal processing for semiconductor detectors

    International Nuclear Information System (INIS)

    A balanced perspective is provided on the processing of signals produced by semiconductor detectors. The general problems of pulse shaping to optimize resolution with constraints imposed by noise, counting rate and rise time fluctuations are discussed

  3. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  4. Radiation damage in semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced.

  5. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  6. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  7. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  8. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  9. Semiconductors detectors: basics principals, fabrication and repair

    International Nuclear Information System (INIS)

    The fabrication and repairing techniques of semiconductor detectors, are described. These methods are shown in the way they are applied by the semiconductor detector laboratory of the KFA-Julich, where they have been developed during the last 15 years. The history of the semiconductor detectors is presented here, being also described the detector fabrication experiences inside Brazil. The key problems of manufacturing are raised. In order to understand the fabrication and repairing techniques the working principles of these detectors, are described. The cases in which worked during the stay in the KFA-Julich, particularly the fabrication of a plane Ge (Li) detector, with side entry, and the repair of a coaxial Ge (Li) is described. The vanguard problems being researched in Julich are also described. Finally it is discussed a timetable for the semiconductor detector laboratory of the UFRJ, which laboratory is in the mounting stage now. (Author)

  10. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  11. Semiconductor High-Energy Radiation Scintillation Detector

    OpenAIRE

    Kastalsky, A.; Luryi, S.; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on d...

  12. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  13. Electrical limitations to energy resolution in semiconductor particle detectors

    International Nuclear Information System (INIS)

    Based on the assumption that the noise contribution of a semiconductor detector is due solely to its bulk properties, equations are presented which indicate the theoretical limits of noise in detectoramplifier combinations. These equations show that an optimum amplifier time-constant and detector bias voltage exist for which condition the minimum noise is independent of the semiconductor resistivity. The optimum performance of a detector-amplifier system is shown to depend only upon detector area, input capacity (less detector capacity), semiconductor minority carrier lifetime and the transconductance of the amplifier input tube. A new detector structure which includes a guard-ring electrode as an integral part of the detector structure is described which has the effect of largely eliminating noise due to surface leakage. Experimental results for detector leakage and energy resolution which agree well with theory are presented. The theoretical limit of noise, expressed as full width at half maximum, is from 7 to 10 keV for 1-cm2 p-type silicon detectors at 25oC. (author)

  14. Semiconductor high-energy radiation scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kastalsky, A. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States); Luryi, S. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States)]. E-mail: serge.luryi@stonybrook.edu; Spivak, B. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)

    2006-09-15

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability.

  15. Rise and plasma times in semiconductor detectors

    International Nuclear Information System (INIS)

    The use of the rise time of the pulse from a semiconductor detector as a measure of the decay time of the plasma produced by a heavily ionising particle is discussed. Taking a simple model for plasma decay, conditions are developed under which the plasma decay time can be validity determined in this way. Both partially and totally depleted detectors are considered. (orig.)

  16. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  17. Semiconductor detectors with proximity signal readout

    Energy Technology Data Exchange (ETDEWEB)

    Asztalos, Stephen J. [XIA, LLC, Hayward, CA (United States)

    2014-01-30

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

  18. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  19. Alpha spectroscopy apparatus using a semiconductor detector

    International Nuclear Information System (INIS)

    Semiconductor detectors permit precise measurement of α particle energy. The experimental equipment described includes: a detection head surrounding a primary vacuum and arranged specially for a spectroscopy, a low-background preamplifier with a response proportional to the charge collected by the detector, a conventional amplifier and a multi-channel selector. The electronic background is reduced by selecting the most appropriate entrance and pulseshaping circuits. The source and detector are placed in such a way as to ensure minimum dispersion of the energy of the incident α particles. Resolutions of approximately 30 keV have been obtained for the α particles of U233 with a recent prototype detector (LTT). (author)

  20. Compound semiconductor bulk materials and characterizations, v.2

    CERN Document Server

    Oda, Osamu

    2012-01-01

    This book is concerned with compound semiconductor bulk materials, and has been written for students, researchers and engineers in material science and device fabrication. It provides the elementary and intermediate knowledge of compound semiconductor bulk materials necessary for entry into this field. The first volume described the physical properties, crystal growth technologies, principles of crystal growth, various defects in crystals, characterization techniques and applications, and reviewed various III-V and II-V compound semiconductor materials. In this second volume, other materials a

  1. Radiation tests of semiconductor detectors

    OpenAIRE

    Chmill, Valery

    2006-01-01

    This thesis investigates the response of Gallium Arsenide (GaAs) detectors to ionizing irradiation. Detectors based on π-υ junction formed by deep level centers doping. The detectors have been irradiated with 137Cs γ-rays up to 110 kGy, with 6 MeV mean energy neutron up to approximately 6 · 1014 n/cm2, with protons and mixed beam up to 1015 p/cm2. Results are presented for the effects on leakage currents and charge collection efficiencies for minimum ionizing electrons and alpha particles. Th...

  2. New materials for radiation hard semiconductor detectors

    CERN Document Server

    Sellin, P J; CERN. Geneva

    2006-01-01

    We present a review of the current status of research into new semiconductor materials for use as particle tracking detectors in very high radiation environments. This work is carried out within the framework of the CERN RD50 collaboration, which is investigating detector technologies suitable for operation at the proposed Super-LHC facility (SLHC). Tracking detectors operating at the SLHC in this environment will have to be capable of withstanding radiation levels arising from a luminosity of 1035 cm-2s-1 which will present severe challenges to current tracking detector technologies. The "new materials" activity within RD50 is investigating the performance of various semiconductor materials that potentially offer radiation hard alternatives to silicon devices. The main contenders in this study are silicon carbide, gallium nitride and amorphous silicon. In this paper we review the current status of these materials, in terms of material quality, commercial availability, charge transport properties, and radiati...

  3. Basic processes and scintillator and semiconductor detectors

    International Nuclear Information System (INIS)

    In the following course, the interaction of heavy charged particles, electrons and Γ with matter is represented. Two types of detectors are studied, organic and inorganic scintillators and semiconductors. The signal formation is analysed. (author). 13 refs., 48 figs., 5 tabs

  4. Spin Splitting and Spin Current in Strained Bulk Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We present a theory for two recent experiments in bulk strained semiconductors and show that a new, previously overlooked, strain spin-orbit coupling term may play a fundamental role. We propose simple experiments that could clarify the origin of strain-induced spin-orbit coupling terms in inversion asymmetric semiconductors. We predict that a uniform magnetization parallel to the electric field will be induced in the samples studied in for specific directions of the applied electric field. We also propose special geometries to detect spin currents in strained semiconductors.

  5. Behaviour of semiconductor nuclear-particle detectors

    International Nuclear Information System (INIS)

    Experimental and theoretical studies of the behaviour of semiconductor nuclear-particle detectors have been carried out over the temperature range of 0.2oK to 300oK. A simple theoretical model for the detector behaviour, which is found to describe the observed behaviour over a wide range of parameters, is presented. The importance of semiconductor purity and bias voltage in connection with pulse height, pulse rise-time and detector area is discussed. Empirical studies of noise and energy resolution indicate that for alpha particles the smallest observed peak-widths are substantially larger than those expected on the basis of electrical noise from the detector and amplifier. Equivalent noise values of ≤ 3 keV full-width at half maximum (FWHM) have been found for a 40-mm2 silicon surface-barrier detector at 77oK. Semiconductor detectors exhibit a ''pulse-height defect'' for fission fragments. There is evidence that this defect is not caused by a ''dead layer''. If electric fields which are insufficient to insure complete ''collection'' are responsible for the defect, the necessary minimum field (at the surface) is > 3 x 104 V/cm for fission fragments, as compared to the value of 2 x 103 V/cm which is found necessary in the case of alpha particles in Ge and Si. Detailed considerations regarding pulse rise-time at the amplifier have shown that in high-resistivity material both the ''dielectric'' relaxation time and the resistance associated with the undepleted base material can play an important role. A quantative description of the effect of detector and amplifier parameters on the shapes and rise-times associated with the pulse are presented. The advantages and problems associated with the use of surface-barrier detectors in several unique low-temperature nuclear-alignment experiments are discussed. These experiments involved fission-fragment angular distributions and resolution of alpha-fine structure with long-term stability. Matched expansion

  6. Charge collection in semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Semiconductor particle-detectors operate like ion chambers by collecting the charge liberated by an incident-ionizing particle. However the mechanism of charge collection is much more complicated than that of the ion chamber, depending in detail on the properties of the semiconductor, the potential distribution in the device and the ionization density along the initial track. Loss of charge can be attributed to two effects - recombination along the initial track and subsequent trapping of the moving carriers. These effects can be separated by using particles of widely differing ionization densities. Such investigations have been carried out for various silicon devices fabricated in different ways and covering a wide range of resistivities. Analytical results have been derived applicable to the general case of charge loss through trapping, and some results have also been obtained concerning recombination loss. (author)

  7. Fabrication of prototypes of Ge(li) semiconductor detector

    International Nuclear Information System (INIS)

    The fabrication process of Ge(Li) semiconductor detector prototypes, from specific chemical treatments of doped monocrystal with receptor impurities (p+ semicondutor) is presented. The detector characteristics, such as resulotion and operation tension are shown. (M.C.K.)

  8. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  9. Semiconductor neutron detectors using depleted uranium oxide

    Science.gov (United States)

    Kruschwitz, Craig A.; Mukhopadhyay, Sanjoy; Schwellenbach, David; Meek, Thomas; Shaver, Brandon; Cunningham, Taylor; Auxier, Jerrad Philip

    2014-09-01

    This paper reports on recent attempts to develop and test a new type of solid-state neutron detector fabricated from uranium compounds. It has been known for many years that uranium oxide (UO2), triuranium octoxide (U3O8) and other uranium compounds exhibit semiconducting characteristics with a broad range of electrical properties. We seek to exploit these characteristics to make a direct-conversion semiconductor neutron detector. In such a device a neutron interacts with a uranium nucleus, inducing fission. The fission products deposit energy-producing, detectable electron-hole pairs. The high energy released in the fission reaction indicates that noise discrimination in such a device has the potential to be excellent. Schottky devices were fabricated using a chemical deposition coating technique to deposit UO2 layers a few microns thick on a sapphire substrate. Schottky devices have also been made using a single crystal from UO2 samples approximately 500 microns thick. Neutron sensitivity simulations have been performed using GEANT4. Neutron sensitivity for the Schottky devices was tested experimentally using a 252Cf source.

  10. Electron Spin Relaxation in Intrinsic Bulk InP Semiconductor

    CERN Document Server

    Ma, Hong; Wang, Lihua; Ma, Guohong

    2010-01-01

    Electron spin dynamics is studied by time resolved pump probe reflectivity (TRPPR) technique using the co- and counter-circularly polarized femtosecond pulses in intrinsic bulk Indium Phosphide (InP) crystal at room temperature and 70 K. The reflectivity change from bleaching into absorption enhancement is observed with increasing pump photon energy. This phenomenon can be explained in terms of the spin sensitive band filling and band gap renormalization effects. Although electron spin relaxation process at room temperature is much faster than that at 70K, carrier density dependence of electron spin relaxation shows similar tendency. With increasing carrier density, the electron spin relaxation time increases initially and then decreases after reaching a maximum value. Our experimental results agree well with the recent theoretical prediction and D'yakonov-Perel' mechanism is considered as a dominating contribution to the electron spin relaxation in intrinsic bulk InP semiconductor.

  11. Unipolar charge sensing with coplanar electrodes -- Application to semiconductor detectors

    International Nuclear Information System (INIS)

    A novel method to perform preferential sensing of single-polarity charge carriers in ionization detectors is presented. It achieves the same function as Frisch grids commonly employed in gas ion chambers but uses a coplanar electrode configuration that allows it to be applied to semiconductor detectors. Through the use of this method, good energy resolution can be obtained from room-temperature compound semiconductor detectors despite their poor hole-collection characteristics. Experiment using a CdZnTe detector demonstrates the effectiveness of this technique. Schemes to correct for electron trapping and to obtain position information are also described

  12. Effects of bulk and surface conductivity on the performance of CdZnTe pixel detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.;

    2002-01-01

    We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition, the exis......We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition......, the existence of a thin (10-100 A) oxide layer on the surface of CZT, formed during the fabrication process, affects both bulk and surface leakage currents. We demonstrate that the measured I-V dependencies of bulk current can be explained by considering the CZT detector as a metal-semiconductor-metal system...... between the pixel contacts. When the grid is negatively biased, the strong electric field in the gaps between the pixels forces the electrons landing on the surface to move toward the contacts, preventing the charge loss. We have investigated these effects by using CZT pixel detectors indium bump...

  13. Introduction to low frequency local plasmons in bulk extrinsic semiconductors

    Directory of Open Access Journals (Sweden)

    Kornyushin Yuri

    2003-01-01

    Full Text Available It is shown that restoring force acts on the electronic cloud of the outer electrons of a neutral or charged impurity atom when it is shifted relative to the inner charged core (or expanded. Because of this the dipole oscillations arise which influence considerably the dispersion law of the plasma oscillations in bulk extrinsic semiconductors. Assuming that only one transition of electron from the ground state to the first excited state is essential, the dispersion law is calculated. It is shown that the calculated dispersion law consists of two separate branches, one of them originates from the regular plasma oscillations of the free electrons of a conductivity band, and the other one stems from the local oscillations of the outer electrons bounded to the impurity atoms.

  14. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Science.gov (United States)

    Zhao, Xiaolong; Chen, Liang; He, Yongning; Liu, Jinliang; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting; Zhang, Zhongbing; Ouyang, Xiaoping

    2016-04-01

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 1013 Ω cm due to the compensation of the donor defects (VO) and acceptor defects (VZn and Oi) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  15. Front-end electronics for multichannel semiconductor detector systems

    CERN Document Server

    Grybos, P

    2010-01-01

    Front-end electronics for multichannel semiconductor detektor systems Volume 08, EuCARD Editorial Series on Accelerator Science and Technology The monograph is devoted to many different aspects related to front-end electronics for semiconductor detector systems, namely: − designing and testing silicon position sensitive detectors for HEP experiments and X-ray imaging applications, − designing and testing of multichannel readout electronics for semiconductor detectors used in X-ray imaging applications, especially for noise minimization, fast signal processing, crosstalk reduction and good matching performance, − optimization of semiconductor detection systems in respect to the effects of radiation damage. The monograph is the result mainly of the author's experience in the above-mentioned areas and it is an attempt of a comprehensive presentation of issues related to the position sensitive detection system working in a single photon counting mode and intended to X-ray imaging applications. The structure...

  16. Measurement of ionising radiation semiconductor detectors: a review

    International Nuclear Information System (INIS)

    Manufacturing techniques for nuclear detectors using semiconductors are constantly advancing, and a large range of models with different specificities and characteristics are available. After a theoretical reminder, this report describes the main types of detectors, their working and their preferential use. A comparative table guides the neophyte reader in his choice

  17. Semiconductor neutron detectors based on new types of materials

    International Nuclear Information System (INIS)

    Neutron detection in hostile environments such as nuclear reactors has been performed using a new kind of semiconductor detector. So far, crystalline semiconductor detectors are not used in nuclear reactor instrumentation because of their sensitivity to radiation damage. For doses in excess of a few tens of kilo rads, radiation induced lattice defects produce a strong loss in the standard semiconductor detector performances. In the last few years, new semiconductor materials having amorphous or polycrystalline structures such as silicon, silicon carbide or CVD diamond, became available. These semiconductors, produced by Chemical Vapor Deposition, come in the form of thin layers being typically a few tens of micron thick. Their crystalline structure is particularly resistant to radiation damage up to a few Mrads but prevent the material use in spectrometry measurements. Nevertheless, these detectors, working in a counting mode, are suitable for the detection of alpha particles produced by the neutron capture reaction with boron. Such thin film detectors have a very poor sensitivity to γ-ray background. Furthermore, they are easier and cheaper to implement than current neutron gas counters. Preliminary results obtained with diamond and amorphous silicon diodes exposed to α particles are presented. (authors). 7 figs., 3 tabs., 11 refs

  18. Low frequency noise in semiconductor detectors

    International Nuclear Information System (INIS)

    Noise characteristics of surface-barrier detectors based on Au contacts on n-Si were measured and analyzed. The metal layers were deposited by evaporation to 40-100 nm thickness. Standard surface-barrier detectors based on Au/Si structures are known to have favorable characteristics, but they tend to degrade with aging and under severe working conditions. Degradation is particularly related to the increase in noise level, leakage current and the reduction of detector efficiency and resolution. Therefore, practical applications of surface-barrier detectors demand their constant upgrading. Improvements of detector properties are concentrated mainly on the front surface and front (rectifying) contact. The aim was to improve the noise characteristics of the surface-barrier structures and retain the favorable detector properties of the Au/Si system. (authors)

  19. Fabrication and utilization of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    This paper describes the assembly of the equipment for the fabrication of Ge-Li drifted detectors and the technique used in the preparation of a Planar detector of 7 cm2 x 0,5 cm for the Laboratory of the Linear Accelerator at the University of Sao Paulo, as well as the utilization of a 22 cm3 coaxial detector for the analysis of fission product gamma rays at the Instituto de Engenharia Nuclear, Rio de Janeiro, R J, Brazil. (author)

  20. Integrated superconducting detectors on semiconductors for quantum optics applications

    Science.gov (United States)

    Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.

    2016-05-01

    Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

  1. Fast timing methods for semiconductor detectors. Revision

    International Nuclear Information System (INIS)

    This tutorial paper discusses the basic parameters which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter

  2. Theoretical framework for mapping pulse shapes in semiconductor radiation detectors

    CERN Document Server

    Prettyman, T H

    1999-01-01

    An efficient method for calculating of charge pulses produced by semiconductor detectors is presented. The method is based on a quasi-steady-state model for semiconductor detector operation. A complete description of the model and underlying assumptions is given. Mapping of charge pulses is accomplished by solving an adjoint carrier continuity equation. The solution of the adjoint equation yields Green's function, a time- and position-dependent map that contains all possible charge pulses that can be produced by the detector for charge generated at discrete locations (e.g., by gamma-ray interactions). Because the map is generated by solving a single, time-dependent problem, the potential for reduction in computational effort over direct mapping methods is significant, particularly for detectors with complex electrode structures. In this paper, the adjoint equation is presented and the mapping method is validated for a benchmark problem.

  3. Development of the semiconductor detector of lead iodide

    International Nuclear Information System (INIS)

    Lead iodide (PbI2) crystal is one of the most promising semiconductor detectors to be operated at room temperature. It is a semiconductor with a wide band gap energy and high atomic numbers. The preparation of a detector crystal consists of the purification of starting material, in quartz ampoules, by zone refining technique and growth of crystals by Bridgman method. The ability to obtain high purity crystals containing a relatively low number of defects and the physical-chemistry characterization are necessary pre-requisites for the production of good quality radiation detectors. This work reports the lead iodide monocrystal purification and growth methods to obtain those crystals with appropriate characteristics for their application as radiation detectors. (author)

  4. Dosimetry study on A p-n junction semiconductor detector

    International Nuclear Information System (INIS)

    A p-n junction semiconductor may be used as a radiation detector. Such a study is reported here. Its dosimetry specificities, include dose, dose rate, precision, stability, depth dose distribution and directional response, were studied in a 60Co field. It is shown that the detector performs well. It exhibited a precision of ±0.05% (std dev.) and a stability of ±0.16% (std dev.), respectively. (author)

  5. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  6. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    International Nuclear Information System (INIS)

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI2 semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  7. Investigation of Ion Backflow in Bulk Micromegas Detectors

    CERN Document Server

    Bhattacharya, Purba; Mukhopadhyay, Supratik; Bhattacharya, Sudeb; Majumdar, Nayana; Sarkar, Sandip; Colas, Paul; Attie, David

    2016-01-01

    The operation of gas detectors is often limited by secondary effects, originating from avalanche-induced photons and ions. Ion backflow is one of the effects limiting the operation of a gas detector at high flux, by giving rise to space charge which disturbs the electric field locally. For the Micromegas detector, a large fraction of the secondary positive ions created in the avalanche can be stopped at the micro-mesh. The present work involves measurements of the ion backflow fraction (using an experimental setup comprising of two drift planes) in bulk Micromegas detectors as a function of detector design parameters. These measured characteristics have also been compared in detail to numerical simulations using the Garfield framework that combines packages such as neBEM, Magboltz and Heed. Further, the effect of using a second micro-mesh on ion backflow and other parameters has been studied numerically.

  8. Spectra of radioactive nuclides radiation, measured with semiconductor detectors. 2

    International Nuclear Information System (INIS)

    The second part of the atlas 'Radiation spectra of radionuclides measured with semiconductor detectors' is presented including 259 spectra of 126 alpha, beta, gamma, and X ray emitters. Some spectra of the first part of the atlas are given at another scale and sometimes for other energy ranges. The total number of investigated radionuclides amounts to 261 of which 69 are new ones

  9. CdTe and CdZnTe semiconductor gamma detectors equipped with ohmic contacts

    CERN Document Server

    Lachish, U

    1999-01-01

    Semiconductor gamma detectors, equipped with ohmic contacts, are uniform and fast response devices that are not sensitive to hole trapping. Gamma generated charges flow within the detector bulk towards the ohmic contacts, and induce additional charge flow from the contacts towards them. The additional flow stems from the fundamental principles of Poisson and the continuity equations. Electrons flow from the negative contacts towards the holes and recombine with them, therefore, they overcome hole trapping. The ohmic contact effect transforms the detector into a single carrier device. Good quality ohmic contact detectors are achieved from a crystal grown by standard methods, that initially has too many traps, by adjustment of the Fermi level position within the forbidden band. The device design and its principle of operation are discussed.

  10. Semiconductor detectors and double beta decay

    International Nuclear Information System (INIS)

    The underlying theory of double beta decay is discussed as well as some experimental observations. A class of second generation 76Ge detector experiments is then discussed. The design and physics considerations involved in the system used by LBL are explained, particularly the means of rejecting background activity. 24 references, 18 figures, 3 tables

  11. A nuclear spectrum generator for semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    A nuclear spectrum generator for semiconductor X-ray detectors is designed in this paper. It outputs step ramp signals with random distribution in amplitude and time according to specified reference spectrum. The signals are similar to the signals from an actual semiconductor X-ray detector, and can be use to check spectrum response characteristics of an X-ray fluorometer. This helps improving energy resolution of the X-ray fluorometer. The spectrum generator outputs step ramp signals satisfying the probability density distribution function of any given reference spectrum in amplitude through sampling on the basis of 32-bit randomizer. The system splits 1024 interval segmentation of the time that the step ramp signals appear, and calculates the appearance probability of step ramp signals in different intervals and the average time between the time intervals, by random sampling. The step ramp signals can meet the rule of exponential distribution in time. Test results of the spectrum generator show that the system noise is less than 2.43 mV, the output step ramp signals meet the Poisson distribution in counting rate and the probability density distribution function of the reference spectrum in amplitude. The counting rate of the output step ramp signals can be adjusted. It meets the rule of the output signals from semiconductor X-ray detectors, such as Si-pin detector and silicon drift detector. (authors)

  12. Dispersion regions overlapping for bulk and surface polaritons in a magnetic-semiconductor superlattice

    CERN Document Server

    Fesenko, Volodymyr I; Tuz, Vladimir R

    2016-01-01

    Extraordinary dispersion features of both bulk and surface polaritons in a finely-stratified magnetic-semiconductor structure which is under an action of an external static magnetic field in the Voigt geometry are discussed in this letter. It is shown that the conditions for total overlapping dispersion regions of simultaneous existence of bulk and surface polaritons can be reached providing a conscious choice of the constitutive parameters and material fractions for both magnetic and semiconductor subsystems.

  13. Contribution to the manufacture of silicon semiconductor detectors

    International Nuclear Information System (INIS)

    Production methods used for making silicon semi-conductor detectors at the Nuclear Physics Laboratory in Grenoble are described. Detectors are of two types, either the lithium-compensated p.i.n. type up to 3.5 mm thick, or the surface barrier type from 2 mm down to 10 μ thick. The research into the surface barrier type concerned essentially the resolving power of the chemical contact obtained by Be evaporation (or Ni deposit), after a chemical attack (type C.P.I.) which is thickness-controlled and which gives a low surface current and a satisfactory flatness. The resolving power obtained (α 8.78 MeV, T ≅ - 20 deg. C) is of the order of 20 keV for thick detectors (surface barrier) and ≅ 50 keV for very thin detectors (10 μ), and for p.i.n. type detectors (≅ 50 keV at T + 20 deg. C). (author)

  14. Characterization of the first prototypes of Silicon Photomultipliers with bulk-integrated quench resistor fabricated at MPI semiconductor laboratory

    International Nuclear Information System (INIS)

    In this paper new results of the characterization of Silicon Photomultipliers (SiPMs) with bulk-integrated quench resistor will be presented. The novel detector concept was developed at the Max-Planck-Institute (MPI) semiconductor laboratory and allows a metal and polysilicon free entrance window which offers an improvement in photon detection efficiency (PDE). For electrical separation and suppression of optical cross talk (OCT) an insensitive area (gap) between neighboring cells is required. Based on simulations the first prototypes with devices of different combinations of cell size and gap were fabricated, providing the opportunity to study the influence of these parameters on the detector performance. First PDE measurements of the new detector are presented together with results of the influence of geometrical variations. Also an outlook on possible future developments of the concept with single cell read-out is given

  15. An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, P; Santos, A [Centro de Investigacion Biomedica de Bioningenieria, Biomateriales y Nanomedicina, CEEI-Modulo 3, C/ Maria de Luna, 11, 50018 Zaragoza (United States); Darambara, D G, E-mail: pguerra@ciber-bbn.e [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Fulham Road, London SW3 6JJ (United Kingdom)

    2009-09-07

    The operation of any semiconductor detector depends on the movement of the charge carriers, which are created within the material when radiation passes through, as a result of energy deposition. The carrier movement in the bulk semiconductor induces charges on the metal electrodes, and therefore a current on the electrodes and the external circuit. The induced charge strongly depends on the material transport parameters as well as the geometrical dimensions of a pixellated semiconductor detector. This work focuses on the performance optimization in terms of energy resolution, detection efficiency and intrinsic spatial resolution of a room-temperature semiconductor pixellated detector based on CdTe/CdZnTe. It analyses and inter-relates these performance figures for various dimensions of CdTe and CdZnTe detectors and for an energy range spanning from x-ray (25 keV) to PET (511 keV) imaging. Monte Carlo simulations, which integrate a detailed and accurate noise model, are carried out to investigate several CdTe/CdZnTe configurations and to determine possible design specifications. Under the considered conditions, the simulations demonstrate the superiority of the CdZnTe over the CdTe in terms of energy resolution and sensitivity in the photopeak. Further, according to the results, the spatial resolution is maximized at high energies and the energy resolution at low energies, while a reasonable detection efficiency is achieved at high energies, with a 1 x 1 x 6 mm{sup 3} CdZnTe pixellated detector.

  16. Electrical-modelling, design and simulation of cumulative radiation effects in semiconductor pixels detectors: prospects and limits

    CERN Document Server

    Fourches, Nicolas T; Chipaux, Rémi

    2014-01-01

    Silicon detectors have gained in popularity since silicon became a widely used micro/nanoelectronic semiconductor material. Silicon detectors are used in particle physics as well as imaging for pixel based detecting systems. Over the past twenty years a lot of experimental efforts have been focused on the effects of ionizing and non-ionizing radiation on silicon pixels. Some of this research was done in the framework of high luminosity particle physics experiments, along with radiation hardness studies of basic semiconductors devices. In its simplest form the semiconductor pixel detectors reduce to a PIN or PN structure partially or totally depleted, or in some MOS and APD (Avalanche PhotoDiode) structures. Bulk or surface defects affect considerably transport of free carriers. We propose guidelines for pixel design, which will be tested through a few pixel structures. This design method includes into the design the properties of defects. The electrical properties reduce to parameters, which can be introduced...

  17. Neutron detectors made from chemically vapor deposited semiconductors

    International Nuclear Information System (INIS)

    In this paper, the authors present the results of investigations on the use of semiconductors deposited by chemical vapor deposition (CVD) for the fabrication of neutron detectors. For this purpose, 20 microm thick hydrogenated amorphous silicon (a-Si:H) pin diodes and 100 microm thick polycrystalline diamond resistive detectors were fabricated. The detectors were coupled to a neutron-charged particle converter: a layer of either gadolinium or boron (isotope 10 enriched) deposited by evaporation. They have demonstrated the capability of such neutron detectors to operate at neutron fluxes ranging from 101 to 106 neutrons/cm2.s. The fabrication of large area detectors for neutron counting or cartography through the use of multichannel reading circuits is discussed. The advantages of these detectors include the ability to produce large area detectors at low cost, radiation hardness (∼ 4 Mrad for a-Si:H and ∼ 100 Mrad for diamond), and for diamond, operation at temperatures up to 500 C. These properties enable the use of these devices for neutron detection in harsh environments. Thermal neutron detection efficiency up to 22% and 3% are expected by coupling a-Si:H diodes and diamond detectors to 3 microm thick gadolinium (isotope 157) and 2 microm thick boron layers, respectively

  18. Photon detector composed of metal and semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Applying the function of the single electron transistor, a novel photon detector consisting of a self-assembled structure of metal and semiconductor nanoparticles and an organic insulating layer was developed. It showed coulomb blockade behavior under dark conditions and remarkable increase in current corresponding to light intensity under light irradiation. Ultraweak photon emission of about 600 counts per second in the ultraviolet region could be detected at room temperature by this photon counter

  19. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd2Si is discussed. A palladium film 100A thick is deposited at 3000C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  20. Present status and future trends of semiconductor detectors

    International Nuclear Information System (INIS)

    Some examples of the applications of semiconductor radiation detectors are briefly outlined, in order to illustrate development trends. The major parameters including energy resolution and dead time are discussed, and their improvement by the application of temporally varying parameter filters is pointed out. Development trends point toward low-loss signal processing by using adaptive filtering, possibly digital filtering. (R.P.) 14 refs.; 3 figs

  1. Use of semiconductor detectors for radioactive waste account and control

    CERN Document Server

    Davydov, L N; Zakharchenko, A A

    2002-01-01

    The possibilities and development status of the contemporary semiconductor detectors and detecting devices intended for radiation monitoring at nuclear industry enterprises, including Chernobyl Shelter and depositories of nuclear wastes are shown. Such devices,created in the last years, can be successfully used for measurements of the gamma-radiation dose rate as well as for the isotope composition evaluation of nuclear materials and wastes, both during the work cycles and in emergency situations.

  2. Semiconductor detectors and double beta decay

    International Nuclear Information System (INIS)

    Theoretical physicists have devoted great effort to developing an adequate theory for linking the weak, electromagnetic, and strong forces of nature. Recent theoretical studies and observations of the stability of galaxies have strongly indicated the presence of large amounts of invisible mass. One element in the uncertainty associated with missing mass is the question of whether the neutrino has rest mass. A better understanding of the neutrino, explored in this paper by the possibility of double beta decay in the germanium 76 isotope, could perhaps provide some answers. Nuclear transitions are only energetically possible where the final nucleus is more tightly bound than its parent. The decay of germanium 76 to arsenic 76 is not energetically possible because the arsenic isotope is about 0.9 MeV less tightly bound than the germanium. The selenium 76 isotope, on the other hand, is about 2 MeV more tightly bound; therefore, a transition involving emission of two electrons by a germanium 76 nucleus to form a selenium 76 nucleus is energetically possible. The total energy release in kinetic energy of the beta particles and corresponding neutrinos from the excited daughter product is determined by the energy difference. This energetically possible event, if observed, will provide a breakthrough in understanding the universe. This paper discusses the underlying theory and a germanium detector experiment which could make such a contribution to the resolution of this question

  3. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  4. Semiconductor Pixel detectors and their applications in life sciences

    International Nuclear Information System (INIS)

    Recent advances in semiconductor technology allow construction of highly efficient and low noise pixel detectors of ionizing radiation. Steadily improving quality of front end electronics enables fast digital signal processing in each pixel which offers recording of more complete information about each detected quantum (energy, time, number of particles). All these features improve an extend applicability of pixel technology in different fields. Some applications of this technology especially for imaging in life sciences will be shown (energy and phase sensitive X-ray radiography and tomography, radiography with heavy charged particles, neutron radiography, etc). On the other hand a number of obstacles can limit the detector performance if not handled. The pixel detector is in fact an array of individual detectors (pixels), each of them has its own efficiency, energy calibration and also noise. The common effort is to make all these parameters uniform for all pixels. However an ideal uniformity can be never reached. Moreover, it is often seen that the signal in one pixel can affect the neighbouring pixels due to various reasons (e.g. charge sharing). All such effects have to be taken into account during data processing to avoid false data interpretation. A brief view into the future of pixel detectors and their applications including also spectroscopy, tracking and dosimetry is given too. Special attention is paid to the problem of detector segmentation in context of the charge sharing effect.

  5. A semiconductor parameter analyzer for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Electrometers and ion chamber are normally used to make several types of measurements in a radiation field and there is a unique voltage applied to each detector type. Some electronic devices that are built of semiconductor materials like silicon crystal can also be used for the same purpose. In this case, a characteristic curve of the device must be acquired to choose an operation point which consists of an electrical current or voltage to be applied to the device. Unlike ion chambers, such an electronic device can have different operation points depending on its current versus voltage curve (I x V). The best operation point of the device is also a function of the radiation, energy, dose rate and fluence. The purpose of this work is to show a semiconductor parameter analyzer built to acquire I x V curves as usually, and the innovation here is the fact that it can be used to obtain such a parametric curve when a quad-polar device is under irradiation. The results demonstrate that the system is a very important tool to scientists interested to evaluate a semiconductor detector before, during and after irradiation. A collection of results for devices under an X-ray beam and a neutron fluence are presented: photodiode, phototransistors, bipolar transistor and MOSFET. (author)

  6. Testing in a stratospheric balloon of a semiconductor detector altimeter

    International Nuclear Information System (INIS)

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors)

  7. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  8. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  9. Energy resolution in semiconductor gamma radiation detectors using heterojunctions and methods of use and preparation thereof

    Science.gov (United States)

    Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.

    2012-09-04

    In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.

  10. The use of portable semiconductor detectors in nuclear medicine

    International Nuclear Information System (INIS)

    A new biotelemetric system, CdTe semiconductor detectors with portable hard memory, for the registration of time activity curves in particular body regions of patients is introduced. The hard- and software connection of the system to the already present EDV configuration is described. The characteristics of the detectors are studied, theoretically explained and compared to the information given by the producers. By means of the determination of the ortho-iodine hippuric acid clearance (OIH) from the registration of the time activity curves in the chest the first information about the practicability in clinical use as well as the validity of the method are deduced. The detector system proved itself to be susceptible to problems, especially from manipulation of the cable or from movement of the patient. The determination of the OIH clearance from the partial body curve was problematic, because an extrapolation to the whole body based on the specific OIH kinetic in the small, observed tissue section is difficult. The comparison with the camera picture should be carefully evaluated, because this method has in principle the same inadequacies. (orig./HP)

  11. Technique of absolute efficiency determination for gamma radiation semiconductor detectors

    International Nuclear Information System (INIS)

    Simple technique is suggested to determine the absolute efficiency (E) of semiconductor detectors (SCD) which employes low-intensity neutron sources wide spread in scientific laboratories. The technique is based on using radioactive nuclide gamma radiation in decay chains of heavy element fission fragments, uranium-235, for example. Cumulative yields of a number of nulcides following heavy element fission are measured to a high accuracy (1-5%), which permits to . the value E is determined for a wide energy range (from X- ray to some MeV); using a nuclide with a well known decay scheme and measured to a high accuracy cumulative yield 140La, for example, one can calibrate in absolute values comparatively easily obtained plots of the SCD relative efficiency. The technique allows to determine the E value for extended plane (and volumetric) sources of an arbitrary form. Some nuclides, convenient for the determination of E, and their nuclear characteristics are tabulated

  12. Experimental study of the response of semiconductor detectors to low-energy photons

    CERN Document Server

    Lepy, M C; Laborie, J M; Plagnard, J; Stemmler, P; Teesdale, W J

    2000-01-01

    Six semiconductor detectors (Si(Li) and HPGe) are calibrated in the 1-10 keV energy range by means of tuneable monochromatised synchrotron radiation. Significant improvement in the quality of the response is observed in very recent detectors. A peak shape calibration is established using a modified Hypermet-type function to model the detector response for each energy step; electron effects induce individual background and tail shapes for each detector material. Fano factors for both semiconductor materials are experimentally derived. The efficiency calibration is determined using a proportional counter as reference: the front semiconductor layer acts as a partially active zone.

  13. Detector modules for the endcaps of the ATLAS semiconductor tracker

    CERN Document Server

    Moorhead, G F

    2002-01-01

    The endcaps of the ATLAS Semiconductor Tracker will be composed of about 2000 detector modules of three different layouts. Up to four single-sided sensors are glued back-to-back with a small stereo angle to form double-sided modules. Five different wedge shaped sensor designs are needed, with a strip pitch varying in the range from 55 to 95 mu m. The sensors are read out by a copper/Kapton multilayer hybrid which carries 12 binary read-out ASICs and all components for the optical transmission of commands and data. Within the tight constraints imposed by the need for radiation hardness, high rate capability, low mass, low cost and overlap between neighbouring modules for detector hermiticity the design has been optimised for a thermal split between the read-out chips and the silicon sensors. The performance of prototype modules stand-alone, in multi-module system tests and in the testbeam will be shown. (9 refs).

  14. Development and characterization of the lead iodide semiconductor detector

    International Nuclear Information System (INIS)

    A methodology for purification and growth of PbI2 crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of (241Am) alpha particle and (241Am, 57Co, 133Ba and 137Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for 241 Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI2 crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  15. Performance of bulk SiC radiation detectors

    CERN Document Server

    Cunningham, W; Lamb, G; Scott, J; Mathieson, K; Roy, P; Bates, R; Thornton, P; Smith, K M; Cusco, R; Glaser, M; Rahman, M

    2002-01-01

    SiC is a wide-gap material with excellent electrical and physical properties that may make it an important material for some future electronic devices. The most important possible applications of SiC are in hostile environments, such as in car/jet engines, within nuclear reactors, or in outer space. Another area where the material properties, most notably radiation hardness, would be valuable is in the inner tracking detectors of particle physics experiments. Here, we describe the performance of SiC diodes irradiated in the 24 GeV proton beam at CERN. Schottky measurements have been used to probe the irradiated material for changes in I-V characteristics. Other methods, borrowed from III-V research, used to study the irradiated surface include atomic force microscope scans and Raman spectroscopy. These have been used to observe the damage to the materials surface and internal lattice structure. We have also characterised the detection capabilities of bulk semi-insulating SiC for alpha radiation. By measuring ...

  16. Effects of stirring on the bulk etch rate of CR-39 detector

    International Nuclear Information System (INIS)

    It is well established that the bulk etch rates for solid state nuclear track detectors are affected by the concentration and the temperature of the etchant. Recently, we found that the bulk etch rate for the LR 115 detector to be affected by stirring during etching. In the present work, the effects of stirring on the bulk etch rate of the CR-39 detector is investigated. One set of sample was etched under continuous stirring by a magnetic stirrer at 70 deg. C in a 6.25 N NaOH solution, while the other set of samples was etched without the magnetic stirrer. After etching, the bulk etch thickness was measured using Form Talysurf PGI (Taylor Hobson, Leicester, England). It was found that magnetic stirring did not affect the bulk etch of the CR-39 detector, which was in contrast to the results for the LR 115 detector

  17. Position sensitive detector with semiconductor and image electron tube comprising such a detector

    International Nuclear Information System (INIS)

    This invention concerns a position sensitive detector comprising a semiconducting substrate. It also concerns the electron tubes in which the detector may be incorporated in order to obtain an image formed at the tube input by an incident flux of particles or radiation. When a charged particle or group of such particles, electrons in particular, enter the space charge region of an inversely biased semiconductor diode, the energy supplied by these particles releases in the diode a certain number of electron-hole pairs which move in the field existing in the area towards the diode contacts. A corresponding current arises in the connections of this diode which constitutes the signal corresponding to the incident energy. Such a tube or chain of tubes is employed in nuclear medicine for observing parts of the human body, particularly by gamma radiation

  18. Radiation damage measurements in room-temperature semiconductor radiation detectors

    CERN Document Server

    Franks, L A; Olsen, R W; Walsh, D S; Vizkelethy, G; Trombka, J I; Doyle, B L; James, R B

    1999-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI sub 2) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 sup 1 sup 0 p/cm sup 2 and significant bulk leakage after 10 sup 1 sup 2 p/cm sup 2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5x10 sup 9 p/cm sup 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from a moderated fission spectrum of neutrons after fluences up to 10 sup 1 sup 0 n/cm sup 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particles at fluences up to 1.5x10 sup 1 sup 0 alpha/cm sup 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5x10 sup 9 alpha/cm sup 2. CT detectors show resolution...

  19. Semiconductor Detector Developments for High Energy Space Astronomy

    CERN Document Server

    Meuris, Aline

    2014-01-01

    The rise of high energy astrophysics and solar physics in the 20th century is linked to the development of space telescopes; since the 1960s they have given access to the X-ray and gamma-ray sky, revealing the most violent phenomena in the Universe. Research and developments in imaging concepts and sensing materials haven't stopped since yet to improve the sensitivity of the X-ray and gamma-ray observatories. The paper proposes an overview of instrument realizations and focuses on the innovative detection techniques and technologies for applications from 0.1 keV to 10 MeV energy range. Solid-state detectors are prominent solutions for space instrumentation because of their excellent imaging and spectroscopic capabilities with limited volume and power resources. Various detection concepts based on semiconductors (Compton camera, Cd(Zn)Te pixel hybrids, DePFET active pixel sensors) are under design or fabrication for the near-future missions like Astro-H, BepiColombo, Solar Orbiter. New technologies on sensing ...

  20. High frame rate measurements of semiconductor pixel detector readout IC

    International Nuclear Information System (INIS)

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  1. Semiconductor detector developments for high energy space astronomy

    International Nuclear Information System (INIS)

    The rise of high energy astrophysics and solar physics in the 20th century is linked to the development of space telescopes; since the 1960s they have given access to the X-ray and gamma-ray sky, revealing the most violent phenomena in the Universe. Research and developments in imaging concepts and sensing materials haven't stopped since yet to improve the sensitivity of the X-ray and gamma-ray observatories. The paper proposes an overview of instrument realizations and focuses on the innovative detection techniques and technologies for applications from 0.1 keV to 10 MeV energy range. Solid-state detectors are prominent solutions for space instrumentation because of their excellent imaging and spectroscopic capabilities with limited volume and power resources. Various detection concepts based on semiconductors (Compton camera, Cd(Zn)Te pixel hybrids, DePFET active pixel sensors) are under design or fabrication for the near-future missions like Astro-H, BepiColombo, Solar Orbiter. New technologies on sensing materials, front-end electronics, interconnect processes are under study for the next generation of instruments to push back our knowledge of star and galaxy formation and evolution

  2. High-resistance low-noise registor for spectrometers with a cooled semiconductor detector

    International Nuclear Information System (INIS)

    High-resistance 10-50 GΩ low-noise resistors for preamplifiers of spectrometers with cooled semiconductor detectors are designed and tested. The noise level of these resistors is four times lower than that of serial KVM type resistors

  3. Industrial workshop on LASL semiconductor radiation-detector research and development

    International Nuclear Information System (INIS)

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations

  4. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser.

    Science.gov (United States)

    Kisel, V E; Rudenkov, A S; Pavlyuk, A A; Kovalyov, A A; Preobrazhenskii, V V; Putyato, M A; Rubtsova, N N; Semyagin, B R; Kuleshov, N V

    2015-06-15

    A high-power, diode-pumped, semiconductor saturable absorber mode-locked Yb(5%):KGW bulk laser was demonstrated with high optical-to-optical efficiency. Average output power as high as 8.8 W with optical-to-optical efficiency of 37.5% was obtained for Nm-polarized laser output with 162 fs pulse duration and 142 nJ pulse energy at a pulse repetition frequency of 62 MHz. For Np polarization, 143 fs pulses with pulse energy of 139 nJ and average output power of up to 8.6 W with optical-to-optical efficiency of 31% were generated. PMID:26076242

  5. Low-noise analog front-end signal processing channel integration for pixelated semiconductor radiation detector

    OpenAIRE

    Lin, Ming-Cheng

    2012-01-01

    In the research development of the medical nuclear imaging, the low noise performance has always been a mandatory requirement in the design of the semiconductor pixelated radiation detector system in order to achieve the high detectability of the charge signal. The noise-optimized analog front-end signal processing channel composed of the charge sensitive amplifier and the pulse shaper is used extensively in processing the radiation charge signals from the pixelated semiconductor detector. Th...

  6. Bulk GaAs as a solar neutrino detector

    International Nuclear Information System (INIS)

    A GaAs detector may offer the unique possibility to independently study neutrino properties and solar physics. The ability to measure the flux of p-p, 7Be and pep solar neutrinos would allow one to approach a solution of the 'solar neutrino problem', i.e. the explanation of the significant deficit in observed capture rate of solar neutrinos. A large GaAs solar neutrino detector would allow to measure parameters for possible Mikheyev-Smirnov-Wolfenstein neutrino oscillations with unprecedented precision. A model-independent test for sterile neutrinos is also possible. A direct measurement of the temperature profile of the Sun center appears feasible. A GaAs detector would also provide the ability to observe neutral current interactions in addition to addressing a wide range of other interesting physics. In order to measure the p-p, pep and 7Be neutrinos a detector is required with low threshold (< 350 keV), good energy resolution (< 2 keV) and low background. A GaAs solid-state detector could meet the listed requirements. A large GaAs detector would be composed of approximately 40,000 intrinsic GaAs crystals, each weighting 3.2 kg. Such a detector would have a mass of 125 ton and would contain 60 ton of Ga occupying a volume of roughly 3 m on one side. Previous efforts by many groups have resulted in producing very small detectors with reasonably good resolution. However, it has thus far proved impossible to make large detectors with good resolution. Thus, a solar neutrino detector such as the one described above is obviously very ambitious, but the scientific motivation is sufficiently high that we have begun a research and development program with the goal of determining the technical feasibility of constructing large GaAs crystals with the requisite electronic properties to serve as particle detectors

  7. Surface photovoltage phase spectroscopy - a handy tool for characterisation of bulk semiconductors and nanostructures

    International Nuclear Information System (INIS)

    A new approach is proposed for determining the semiconductor conductivity type (n or p) based on measurements of surface photovoltage (SPV) phase spectra in metal-insulator-semiconductor structures under modulated super-bandgap optical excitation. It is shown that the sign of the bandgap-related knee in the spectrum of the SPV phase modulus gives information about the surface band bending direction and thus about the semiconductor type. The proposed approach can be applied also to multilayered structures, containing buried interfaces in order to obtain the band bending in the sample region, where the light is absorbed. Further on, the SPV phase spectral dependence is discussed taking into account the recombination processes in the system under study. It is concluded that for the cases of non-linear recombination the SPV phase spectrum reveals the peculiarities of the optical absorption coefficient spectrum, which is known until now only for the SPV amplitude spectrum. This is confirmed by SPV phase and amplitude spectral measurements in bulk Si, as well as in GaAs quantum wells

  8. Optical characterization of wide-gap detector-grade semiconductors

    International Nuclear Information System (INIS)

    Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd1-xZnxTe, x∼0.1) and Thallium Bromide (Tl Br), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and Tl Br as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064 nm wavelength and 7 ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300 K to 110 K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (Tl Br) and compared with the results for cadmium zinc telluride (CZT) in a

  9. System for numeric-pulsed correction of energetic characterization of semiconductor detectors

    International Nuclear Information System (INIS)

    The system of numeric-pulsed correction of energetic characterization of semiconductor detectors such as pulses from detector are amplified in amplifier, transmitted by main track of measuring system having amplitude discriminator and by track of correction system and then pulses from both tracks are summed up in the system of logical sum. 2 figs. (A.S.)

  10. An Approach to Unfold Neutron Spectra Measured by a 3He Semiconductor Detector

    International Nuclear Information System (INIS)

    In measurements of fast neutron spectra by a 3He semiconductor detector, the unfolding method is not usually required. The unfolding method based on principle of maximum likelihood that incorporates the Gaussian approximation of counting statistics is developed and implemented in the MLMHE31 numerical code for application in fast neutron spectrometry by 3He semiconductor detectors. The derived likelihood equations have been solved using method of the singular value decomposition of the response matrix. For this inverse problem, the detector responses were generated by the Monte Carlo technique. (author)

  11. Cd1-xMnxTe semiconductor radiation detectors for medical applications

    International Nuclear Information System (INIS)

    Full text : This work tells about semiconductor nuclear radiation detectors which had experienced a rather rapid development in the last few years. They are now used in a large variety of fields, including nuclear physics, X-ray and gamma-ray astronomy and nuclear medicine. In recent years a substantial international effort had been invested in developing a range of compound semiconductors with wide band gap and high atomic number for X- and gamma-ray detectors. Among the compound semiconductors, cadmium manganese telluride were the most promising materials for radiation detectors with good energy resolution, high detection efficiency and room temperature operation. Also these detectors were suitable for the development of portable systems for mammographic X-ray spectroscopy.

  12. Semiconductor scintillator detector for gamma radiation; Detector cintilador semicondutor para radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S., E-mail: ftvdl@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: jorge.zabadal@ufrgs.br [Universidade Federal do Rio Grande do Sul (GENUC/DEMEC/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares. Departamento de Engenharia Mecanica

    2015-07-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  13. Plasmonic Nanoslit Array Enhanced Metal-Semiconductor-Metal Optical Detectors

    CERN Document Server

    Eryilmaz, Sukru Burc; Okyay, Ali K

    2014-01-01

    Metallic nanoslit arrays integrated on germanium metal-semiconductor-metal photodetectors show many folds of absorption enhancement for transverse-magnetic polarization in the telecommunication C-band. Such high enhancement is attributed to resonant interference of surface plasmon modes at the metal-semiconductor interface. Horizontal surface plasmon modes were reported earlier to inhibit photodetector performance. We computationally show, however, that horizontal modes enhance the efficiency of surface devices despite reducing transmitted light in the far field.

  14. Continued development of room temperature semiconductor nuclear detectors

    Science.gov (United States)

    Kim, Hadong; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Kargar, Alireza; Higgins, William; O'Dougherty, Patrick; Kim, Suyoung; Squillante, Michael R.; Shah, Kanai

    2010-08-01

    Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results and preliminary results from Cinnabar (HgS) detectors.

  15. Photoelectric cell on the base of bulk heterostructure of organic semiconductors of copper phthalocyanine and metal free phthalocyanine

    International Nuclear Information System (INIS)

    Present article is devoted to photoelectric cell on the base of bulk heterostructure of organic semiconductors of copper phthalocyanine and metal free phthalocyanine. The properties of the photoelectric cell based on bulk heterojunction of copper phthalocyanine and metal free phthalocyanine of organic semiconductors were studied. By vacuum sublimation the thin films of thickness of (200-300) nm of the copper phthalocyanine and metal free phthalocyanine blend were deposited on conductive glass substrates. Volt-ampere characteristics, dependencies of current on intensity of light and absorption spectrum of the photoelectric cell at the range of wavelength 200-850 nm were studied as well. (author)

  16. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    International Nuclear Information System (INIS)

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field corrections in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented

  17. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    Energy Technology Data Exchange (ETDEWEB)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field corrections in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.

  18. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  19. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  20. Development of the ''X'tal cube''. The next generation PET detector using semiconductor photo-detectors

    International Nuclear Information System (INIS)

    We are engaged in the development of an ''X'tal cube'' which is a three-dimensional (3D) block detector for the next-generation positron emission tomography (PET) system. It consists of a 3D array of cubic crystal segments (a crystal block) and semiconductor photo-detectors such as Avalanche photodiodes (APD) or Multi-Pixel Photon Counters (MPPC). By identifying the light-emitted crystal segments, it is possible to obtain 3D position information of gamma-rays absorbed in the crystal block. In the crystal block, there are no reflectors inserted between the crystal segments, and the photo-detectors are located on the surface area of the crystal block. This detector arrangement minimizes light attenuation in the crystal block as the path length from the scintillation points to the photo-detectors is minimum so as to achieve favorable detector performance. By sparsely arranging the photo-detectors on the surface of the crystal block, it is possible to reduce the number of photo-detectors. The area not coupled to the photo-detectors is covered with reflectors. We have investigated crystal identification performance as a function of the photo-detector arrangement as a preliminary study to the development of an X'tal cube. (author)

  1. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  2. Direct determination of bulk etching rate for LR-115-II solid state nuclear track detectors

    Indian Academy of Sciences (India)

    T A Salama; U Seddik; T M Heggazy; A Ahmed Morsy

    2006-09-01

    The thickness of the removed layer of the LR-115-II solid state nuclear track detector during etching is measured directly with a rather precise instrument. Dependence of bulk etching rate on temperature of the etching solution is investigated. It has been found that the bulk etching rate is 3.2 m/h at 60°C in 2.5 N NaOH of water solution. It is also found that the track density in detectors exposed to soil samples increases linearly with the removed layer.

  3. Simulation of one-dimensionally polarized X-ray semiconductor detectors

    OpenAIRE

    Engel, K.J.; C. Herrmann

    2011-01-01

    Abstract: A pixelated X-ray semiconductor detector (=“direct converter”) is studied which contains an inhomogeneous electric field parallel to the depth axis caused by different concentrations of p- or n-doping. The X-ray energy deposition and charge movement within the detector is modeled in Monte-Carlo simulations which give access to astatistical analysis of electron drift times and current pulse widths for various degrees of static polarization. Integral charges induced on the pixel elect...

  4. Avalanche Process in Semiconductor Photo Detectors in the Context of the Feedback Theory

    Czech Academy of Sciences Publication Activity Database

    Kushpil, Vasilij

    Rijeka : InTech, 2012 - (Gateva, S.), s. 207-230 ISBN 978-953-51-0358-5. - (Electrical and Electronic Engineering) R&D Projects: GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : avalanche process * photo detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders http://www.intechopen.com/books/photodetectors/avalanche-process-in-semiconductor-photo-detectors-in-the-context-of-the-feedback- theory -

  5. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors.

    Science.gov (United States)

    Liu, Yuanfeng; Sahoo, Pranati; Makongo, Julien P A; Zhou, Xiaoyuan; Kim, Sung-Joo; Chi, Hang; Uher, Ctirad; Pan, Xiaoqing; Poudeu, Pierre F P

    2013-05-22

    The thermopower (S) and electrical conductivity (σ) in conventional semiconductors are coupled adversely through the carriers' density (n) making it difficult to achieve meaningful simultaneous improvements in both electronic properties through doping and/or substitutional chemistry. Here, we demonstrate the effectiveness of coherently embedded full-Heusler (FH) quantum dots (QDs) in tailoring the density, mobility, and effective mass of charge carriers in the n-type Ti(0.1)Zr(0.9)NiSn half-Heusler matrix. We propose that the embedded FH QD forms a potential barrier at the interface with the matrix due to the offset of their conduction band minima. This potential barrier discriminates existing charge carriers from the conduction band of the matrix with respect to their relative energy leading to simultaneous large enhancements of the thermopower (up to 200%) and carrier mobility (up to 43%) of the resulting Ti(0.1)Zr(0.9)Ni(1+x)Sn nanocomposites. The improvement in S with increasing mole fraction of the FH-QDs arises from a drastic reduction (up to 250%) in the effective carrier density coupled with an increase in the carrier's effective mass (m*), whereas the surprising enhancement in the mobility (μ) is attributed to an increase in the carrier's relaxation time (τ). This strategy to manipulate the transport behavior of existing ensembles of charge carriers within a bulk semiconductor using QDs is very promising and could pave the way to a new generation of high figure of merit thermoelectric materials. PMID:23607819

  6. Study of semiconductor detectors applied to diagnostic X-ray

    International Nuclear Information System (INIS)

    This work aims an evaluation of procedures for photons spectrum determination, produced by a X ray tube, normally used for medical diagnoses which operation voltage ranges from 20 to 150 kVp, to allow more precise characterization of the photon beam. The use of spectrum analysis will contribute to reduce the uncertainty in the ionization camera calibrations. For this purpose, two kind of detectors were selected, a Cadmium Zinc Telluride (CZT) and a planar HPGe detector. The X ray interaction with the detector's crystal produces, by electronic processes, a pulse high distribution as an output, which is no the true photon spectrum, due to the presence of K shell escape peaks, Compton scattering and to the fact that the detectors efficiency diminish rapidly with the increase of the photon energy. A detailed analysis of the contributing factors to distortions in the spectrum is necessary and was performed by Monte Carlo calculation with the MCNP 4B computer code. In order to determine the actual photon spectrum for a X ray tube a spectra stripping procedure is described for the HPGe detector. The detector's response curves, determined by the Monte Carlo calculation, were compared to the experimental ones, for isotropic point sources. For the methodology validation, stripped spectra were compared to the theoretical ones, for the same X ray tube's settings, for a qualitative evaluation. The air kerma rate calculated with the photon spectra were compared to the direct measurement using an ionization chamber, for a quantitative evaluation. (author)

  7. Experimental characterization of semiconductor-based thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Bortot, D.; Pola, A.; Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN—Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Sacco, D. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); INAIL—DIT, Via di Fontana Candida 1, 00040 Monteporzio Catone (Italy); Esposito, A.; Gentile, A.; Buonomo, B. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Palomba, M.; Grossi, A. [ENEA Triga RC-1C.R. Casaccia, via Anguillarese 301, 00060 S. Maria di Galeria, Roma (Italy)

    2015-04-21

    In the framework of NESCOFI@BTF and NEURAPID projects, active thermal neutron detectors were manufactured by depositing appropriate thickness of {sup 6}LiF on commercially available windowless p–i–n diodes. Detectors with different radiator thickness, ranging from 5 to 62 μm, were manufactured by evaporation-based deposition technique and exposed to known values of thermal neutron fluence in two thermal neutron facilities exhibiting different irradiation geometries. The following properties of the detector response were investigated and presented in this work: thickness dependence, impact of parasitic effects (photons and epithermal neutrons), linearity, isotropy, and radiation damage following exposure to large fluence (in the order of 10{sup 12} cm{sup −2})

  8. On the Theory of Compensation in Lithium drifted Semiconductor Detectors

    International Nuclear Information System (INIS)

    The lithium ion drift method produces detectors with a highly but not perfectly compensated intrinsic region. The amount of fixed space charge left in the depleted layer and its dependence on drift and clean-up parameters is of great practical interest. The imperfect compensation is mainly due to the presence in the depletion layer of thermally generated electron-hole pairs swept apart by the voltage applied to the detector during drift. A theoretical model is developed which takes into account the influence on the fixed space charge of mobile carrier generation and recombination. When recombination of free electrons and holes is negligible the theory predicts the formation of linear space charge gradients. When recombination is strong a constant space charge throughout a large part of the compensated layer may result. The theoretical calculations are compared with experimental findings. The influence of space charge on detector performance is discussed

  9. Development of Thyroid Diagnostic Equipment Using Semiconductor Detector

    International Nuclear Information System (INIS)

    Current commercial gamma-ray imaging system are general purpose device designed to support a diagnosis for thyroid cancer. These generally require a reasonably large detector plate and the ability to image the thyroid. Recently, new applications of gamma-ray imaging system have emerged which place different demands on gamma-ray imaging system instrumentation, requiring high spatial resolution and sensitivity, in particular for imaging small volumes. These emerging applications, a large plate is not only not required but also limits the performance that can be achieved when imaging small volumes. Significant research has been undertaken in the development of read out schemes of scintillator crystal configurations in an attempt to improve the spatial resolution of gamma-ray imaging system. Silicon Photomultiplier (SiPM) detectors are attractive candidates for the replacement of Photomultiplier in nuclear imaging. Provide high gain with low voltage and fast response. We are developing a new gamma-ray imaging system detection module with depth of interaction capability. Pixilated scintillation crystals read out by SiPM 4 x 4 arrays form the basis of the new module. This article concentrates on comparison of the some kind of scintillator performance of the SiPM. In particular we are interested in measuring and quantitative improvement of the detector efficiency, linearity, and energy resolution of the SiPM based detector. Initial characterization of prototype detector consisting of a 4 x 4 SiPM array coupled to either the front surface of a 3 mm x 3 mm x 15 mm x 16 pics LYSO crystal. The readout system include SensL preamplifier circuit, anger logic circuit, Notice Scintillate ADC(FADC) and collect and analysis data software root. The parameters that have been measured are: detector efficiency, linearity, and energy resolution. Best energy resolution was experimentally measured 11% for 511 keV and spatial resolutions < 3 mm (22Na, luCi).. (authors)

  10. Organic semiconductors as real-time radiation detectors

    International Nuclear Information System (INIS)

    In this study, the possibility of using π-conjugated organic semiconducting polymers as real-time radiation detectors was explored. Polyaniline (PAni) was used to fabricate radiation sensors because of its relative long-term stability in air. Each fabricated sensor was then subjected to irradiation by α- and β-particles, and the real-time response was measured. The multichannel analyzer (MCA) data of the response signal for each irradiation was acquired and the detection efficiency, relative to the electrode bias voltage of the detector, was extracted

  11. A full numerical calculation of the Franz-Keldysh effect on magnetoexcitons in a bulk semiconductor

    Institute of Scientific and Technical Information of China (English)

    Zhang Tong-Yi; Zhao Wei; Zhu Hai-Yan; Zhu Shao-Lan; Liu Xue-Ming

    2006-01-01

    We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial value method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.

  12. Existence of the transverse relaxation time in optically excited bulk semiconductors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hai-Chao; Lin Wei-Zhu; Wang Yu-Zhu

    2006-01-01

    Two basic types of depolarization mechanisms,carrier-carrier (CC) and carrier-phonon (CP) scattering,are investigated in optically excited bulk semiconductors (3D),in which the existence of the transverse relaxation time is proven based on the vector property of the interband transition matrix elements.The dephasing rates for both CC and CP scattering are determined to be equal to one half of the total scattering-rate-integrals weighted by the factors (1-COSx),wherex are the scattering angles.Analytical expressions of the polarization dephasing due to CC scattering are established by using an uncertainty broadening approach,and analytical ones due to both the polar optical-phonon and non-polar deformation potential scattering (including inter-valley scattering) are also presented by using the sharp spectral functions in the dephasing rate calculations.These formulas,which reveal the trivial role of the Coulomb screening effect in the depolarization processes,are used to explain the experimental results at hand and provide a clear physical picture that is difficult to extract from numerical treatments.

  13. Dynamical thermoelectric coefficients of bulk semiconductor crystals: Towards high thermoelectric efficiency at high frequencies

    International Nuclear Information System (INIS)

    We investigate in this work the fundamental behavior of the dynamical thermoelectric coefficients of a bulk cubic semiconductor (SC) crystal. The treatment is based on solving Boltzmann electron transport equation in the frequency domain after simultaneous excitations by dynamical temperature and electric potential gradients, within the framework of the single relaxation time approximation. The SC crystal is assumed to be a linear, elastic homogenous, and isotropic medium having a parabolic energy band structure. We further assume to deal with one type of carriers (electrons or holes) that reside in a single energy band, and we neglect any phonon drag effect. Our approach allows us to obtain very compact expressions for the different dynamical thermoelectric coefficients that nicely capture the essential features of the dynamics of electron transport. We emphasize our study about the dynamical behavior of the thermoelectric figure of merit ZT(Ω) of the SC crystal by considering the coupled electron-phonon transport. Our study revealed a very interesting and compelling result in which ZT increases in the high frequency regime with respect to its steady-state value. The fundamental reason of this enhancement is due to the intrinsic uncoupling in the dynamics of electrons and phonons in the high frequency regime.

  14. Dynamical thermoelectric coefficients of bulk semiconductor crystals: Towards high thermoelectric efficiency at high frequencies

    Science.gov (United States)

    Ezzahri, Younès; Joulain, Karl

    2014-06-01

    We investigate in this work the fundamental behavior of the dynamical thermoelectric coefficients of a bulk cubic semiconductor (SC) crystal. The treatment is based on solving Boltzmann electron transport equation in the frequency domain after simultaneous excitations by dynamical temperature and electric potential gradients, within the framework of the single relaxation time approximation. The SC crystal is assumed to be a linear, elastic homogenous, and isotropic medium having a parabolic energy band structure. We further assume to deal with one type of carriers (electrons or holes) that reside in a single energy band, and we neglect any phonon drag effect. Our approach allows us to obtain very compact expressions for the different dynamical thermoelectric coefficients that nicely capture the essential features of the dynamics of electron transport. We emphasize our study about the dynamical behavior of the thermoelectric figure of merit ZT(Ω) of the SC crystal by considering the coupled electron-phonon transport. Our study revealed a very interesting and compelling result in which ZT increases in the high frequency regime with respect to its steady-state value. The fundamental reason of this enhancement is due to the intrinsic uncoupling in the dynamics of electrons and phonons in the high frequency regime.

  15. The absolute calibration of semiconductor detectors in the Neutrino beam of CERN

    International Nuclear Information System (INIS)

    The report describes a method for the calibration of semiconductor detectors. A nuclear emulsion is exposed to charged particles (muons) immediately in front of the detector. The muons also scatter delta electrons which give traces in the emulsion. The traces can be counted under a microscope. The separation of the muons and delta electrons takes place by angular distribution. The muons are counted per area unit. The flow is related to the signal of the detector and an absolute counting is achieved. (G.B)

  16. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  17. X-ray imaging using single photon processing with semiconductor pixel detectors

    International Nuclear Information System (INIS)

    More than 10 years experience with semiconductor pixel detectors for vertex detection in high-energy physics experiments together with the steady progress in CMOS technology opened the way for the development of single photon processing pixel detectors for various applications including medical X-ray imaging. The state of the art of such pixel devices consists of pixel dimensions as small as 55x55 μm2, electronic noise per pixel 100 e- rms, signal-to-noise discrimination levels around 1000 e- with a spread 50 e- and a dynamic range up to 32 bits/pixel. Moreover, the high granularity of hybrid pixel detectors makes it possible to probe inhomogeneities of the attached semiconductor sensor

  18. X-ray imaging using single photon processing with semiconductor pixel detectors

    CERN Document Server

    Mikulec, Bettina; Heijne, Erik H M; Llopart-Cudie, Xavier; Tlustos, Lukas

    2003-01-01

    More than 10 years experience with semiconductor pixel detectors for vertex detection in high energy physics experiments together with the steady progress in CMOS technology opened the way for the development of single photon processing pixel detectors for various applications including medical X-ray imaging. The state of the art of such pixel devices consists of pixel dimensions as small as 55x55 um2, electronic noise per pixel <100 e- rms, signal-to-noise discrimination levels around 1000 e- with a spread <50 e- and a dynamic range up to 32 bits per pixel. Moreover, the high granularity of hybrid pixel detectors makes it possible to probe inhomogeneities of the attached semiconductor sensor.

  19. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Manolopoulos, S.; Bates, R.; Campbell, M.; Snoeys, W.; Heijne, E.; Pernigotti, E.; Raine, C.; Smith, K. E-mail: k.smith@physics.gla.ac.uk; Watt, J.; O' Shea, V.; Ludwig, J.; Schwarz, C

    1999-09-11

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the {omega}3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  20. Current problems in semiconductor detectors for high energy physics after particle irradiations

    International Nuclear Information System (INIS)

    The use of semiconductor materials as detectors in high radiation environments, as expected in future high energy accelerators or in space missions, poses severe problems in long-time operations, due to changes in the properties of the material, and consequently in the performances of detectors. This talk presents the major theoretical areas of current problems, reviews the works in this field and the stage of their understanding, including author's contributions The mechanisms of interaction of the projectile with the semiconductor, the production of primary defects, the physical quantities and the equations able to characterise and describe the radiation effects, and the equations of kinetics of defects are considered. Correlation between microscopic damage and detector performances and the possible ways to optimise the radiation hardness of materials are discussed. (author)

  1. CDZNTE ROOM-TEMPERATURE SEMICONDUCTOR GAMMA-RAY DETECTOR FOR NATIONAL-SECURITY APPLICATIONS

    International Nuclear Information System (INIS)

    One important mission of the Department of Energy's National Nuclear Security Administration is to develop reliable gamma-ray detectors to meet the widespread needs of users for effective techniques to detect and identify special nuclear- and radioactive-materials. Accordingly, the Nonproliferation and National Security Department at Brookhaven National Laboratory was tasked to evaluate existing technology and to develop improved room-temperature detectors based on semiconductors, such as CdZnTe (CZT). Our research covers two important areas: Improving the quality of CZT material, and exploring new CZT-based gamma-ray detectors. In this paper, we report on our recent findings from the material characterization and tests of actual CZT devices fabricated in our laboratory and from materials/detectors supplied by different commercial vendors. In particular, we emphasize the critical role of secondary phases in the current CZT material and issues in fabricating the CZT detectors, both of which affect their performance

  2. Development of large area silicon semiconductor detectors for use in the current mode

    International Nuclear Information System (INIS)

    Large area silicon semiconductor detectors for use in the current mode, with their dimensions of φ40, φ50 and φ60 mm, their depletion thickness of 200-300 μm, have been developed. Their performance measurements have been made, which indicate that the developed detectors can satisfactorily meet the needs in expectation. Compared with the detectors commercially available on the market, authors' large PIN detectors can serve both as reliable and efficient high-resolution devices for nuclear counting experiments, as well as monitors of high-intensity radiation fields in the current mode under a bias of 100-1000 V, while the detectors commercially available are only for the counting use

  3. X-ray measurement with Pin type semiconductor detectors

    International Nuclear Information System (INIS)

    Here are presented the experimental results of the applications of Pin type radiation detectors developed in a National Institute of Nuclear Research (ININ) project, in the measurement of low energy gamma and X-rays. The applications were oriented mainly toward the Medical Physics area. It is planned other applications which are in process of implementation inside the National Institute of Nuclear Research in Mexico. (Author)

  4. Fine-pitch semiconductor detector for the FOXSI mission

    CERN Document Server

    Ishikawa, Shin-nosuke; Tajima, Hiroyasu; Tanaka, Takaaki; Watanabe, Shin; Odaka, Hirokazu; Fukuyama, Taro; Kokubun, Motohide; Takahashi, Tadayuki; Terada, Yukikatsu; Krucker, Sam; Christe, Steven; McBride, Steve; Glesener, Lindsay

    2015-01-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a NASA sounding rocket mission which will study particle acceleration and coronal heating on the Sun through high sensitivity observations in the hard X-ray energy band (5-15 keV). Combining high-resolution focusing X-ray optics and fine-pitch imaging sensors, FOXSI will achieve superior sensitivity; two orders of magnitude better than that of the RHESSI satellite. As the focal plane detector, a Double-sided Si Strip Detector (DSSD) with a front-end ASIC (Application Specific Integrated Circuit) will fulfill the scientific requirements of spatial and energy resolution, low energy threshold and time resolution. We have designed and fabricated a DSSD with a thickness of 500 {\\mu}m and a dimension of 9.6 mm x 9.6 mm, containing 128 strips with a pitch of 75 {\\mu}m, which corresponds to 8 arcsec at the focal length of 2 m. We also developed a low-noise ASIC specified to FOXSI. The detector was successfully operated in the laboratory at a temperature of -20 C and w...

  5. Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons

    International Nuclear Information System (INIS)

    Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239Pu–Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm. -- Highlights: ► Application of the MCNPX code for fast neutron detector design is demonstrated. ► Simulations of the particle transport through conversion film of HDPE are presented. ► Simulations of the particle transport through detector active region are presented. ► The optimal thickness of the HDPE conversion film has been calculated. ► Detection efficiency of 0.135% was reached for 500 μm thick HDPE conversion film

  6. A spectrometer using semi-conductor detectors; study and applications (1963)

    International Nuclear Information System (INIS)

    The low average energy, 2.5 to 3.5 eV, required to produce one hole-electron pair in a semiconductor allows an accurate measurement of the energy of the ionizing particles. A high resolution spectrometer has been built using semiconductor detectors. The limit of resolution, due to electronics associated to the detector, to the detector itself and to the source of particles is studied here. The present practical limit of resolution of the spectrometer is 1700 elementary electric charges (full width at half maximum of a ray of a spectrum) or 6 keV in terms of energy lost by a particle in a silicon detector. The physical resolution usually obtained is 20 keV (0.33 per cent) with α particles of the 212Bi (6.087 MeV). It depends a lot of the kind of detector used. Some results, concerning the background of the detectors and limit of measurements for low energies are given. Various applications are presented: spectrometry β, spectrometry γ and X, spectrometry of mixtures of α radioactive elements, collection of α spectra. (author)

  7. Progress report, Semiconductor Detector Group, April 1, 1974 to March 31, 1975

    International Nuclear Information System (INIS)

    This report is an annual progress report of Semiconductor Detector Group and describes the work made during one year between April 1, 1974 and March 31, 1975. The related themes to the Group were ''semiconductor detector development and application'' and ''fuel failure detector sodium in-pile loop test (III) ( a contract study between Power Reactor and Nuclear Fuel Development Corporation and J.A.E.R.I. )''. This includes a brief description of the results obtained in the following studies; portable Ge(Li) gamma-ray spectrometer fabrication, its application to gamma-ray spectrometry in Japan Research Reactor No.3 and to in-situ measurement of environmental gamma-rays, temperature cycling test of a hyperpure germanium detector, silicon detector fabrication by N+ ion implantation, PDP-8/L program development for an ND-50/50 multichannel analyser, X-ray spectrometry of Japan Fusion Tokamak No.2 plasma using a Si(Li) detector, sodium in-pile loop test of four types of fuel failure detection systems, and various kinds of technical service. The publications and lectures made in this period are also listed. (auth.)

  8. Inter-electrode charge collection in high-purity germanium detectors with amorphous semiconductor contacts

    International Nuclear Information System (INIS)

    High-purity germanium (HPGe) radiation detectors with segmented signal readout electrodes combine excellent energy resolution with fine spatial resolution, opening exciting possibilities in radiation imaging applications. Segmenting the electrodes provides the ability to determine the positions of radiation interactions in the detector, but it also brings potential challenges that can inhibit performance. A challenge unique to segmented electrode detectors is collection of charge carriers to the gap between adjacent electrodes rather than to the electrodes themselves, which gives a deficit in the summed energy. While amorphous semiconductor electrical contacts have enabled a simplified fabrication process capable of fine electrode segmentation, the amorphous semiconductor passivation layer between electrodes is prone to inter-electrode charge collection. This article presents a study of the impact of fabrication process parameters on the energy deficit due to inter-electrode charge collection for double-sided strip detectors. Eight double-sided strip HPGe detectors were fabricated with amorphous germanium (a-Ge) and amorphous silicon (a-Si) contacts formed by sputter deposition. Each detector was evaluated for inter-electrode charge collection performance, using as a metric the deficit in the summed signal of two adjacent electrodes. It is demonstrated that both a-Ge and a-Si contacts can be produced with nearly non-existent inter-electrode charge collection when the appropriate combination of sputter gas hydrogen content and gas pressure are selected

  9. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector

    International Nuclear Information System (INIS)

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a 252Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10−4, whereas three-fold greater efficiency was obtained for a 241AmBe neutron spectrum. - Highlights: • We investigated the response of a semiconductor alpha detector to fast neutrons emitted by nuclear materials. • Low background and insensitivity to gamma rays are advantages of the detector operating at ambient air pressure. • A polyethylene converter placed in front of the detector increased the detection efficiency by a factor of four. • Intrinsic detection efficiency for fast neutrons from unshielded 252Cf and 241AmBe sources was 2.5×10−4 and 7.6×10−4, respectively

  10. Use of different scintillation and semiconductor detectors for rapid estimation of internal contamination of people

    International Nuclear Information System (INIS)

    In radiological emergencies, it is necessary to evaluate among other possible internal contamination of people. The main tool for this purpose is whole body counter, however , when a large group of people could be affected or when a triage is necessary, simple rapid methods are important. Semiconductor and scintillation detectors (table 1) were calibrated with the use of point sources and phantoms, representing human body .Background of each of detector was measured in different surroundings -in shielding chamber of whole body counter, in the room and in partially shielded container of mobile whole body counter. Generally, all investigated detectors are suitable for rapid whole body counting. When contaminant is just one radionuclide, scintillation detectors could be used. For complicated mixture of radionuclides, either use of semiconductor detector is necessary or at least, preliminary determination of mixture of radionuclides has to be performed. New LaBr detector is suitable from the point of view of better resolution, however, it has to have in mind its higher intrinsic background. (authors)

  11. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  12. Compound semiconductor GaAs and CdTe nuclear radiation detectors

    International Nuclear Information System (INIS)

    The preparation technology and characteristics of semi-insulating bulk single crystal GaAs surface-barrier detectors and single crystal CdTe surface-barrier detectors are described. The spectroscopic performance of the detectors for γ-rays from 125I, 241Am and 57Co at room temperature is given. The influence of the magnitude of forward resistive induced by ohmic contacts and of the surface passivation and aging in the fabrication process of surface-barrier detectors on the performance of the detectors is discussed. Finally, the influence of the fabrication technology of ohmic contacts and selected materials, such as Ni-Ge-Au and In-Ge-Ag, on the performance of the detectors is also studied

  13. X-ray measurement with Pin type semiconductor detectors; Medicion de rayos X con detectores de semiconductor tipo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Electronica, C.P. 52045 Salazar, Estado de Mexico (Mexico)

    2000-07-01

    Here are presented the experimental results of the applications of Pin type radiation detectors developed in a National Institute of Nuclear Research (ININ) project, in the measurement of low energy gamma and X-rays. The applications were oriented mainly toward the Medical Physics area. It is planned other applications which are in process of implementation inside the National Institute of Nuclear Research in Mexico. (Author)

  14. Investigation about semiconductor gamma ray detector - Evaluation of Ge(Li) detectors life expectation

    International Nuclear Information System (INIS)

    A list of germanium lithium gamma ray detectors has been drawn up by a working group after investigations in various laboratories. Authors analyse the historical account of each detector and try to give an answer about some questions as: - detectors life expectation, - deficiencies and death reasons, - influence of detector type and volume. Differents parameters are also collected by the working group for future works (standard geometry, low level measurements, etc.). In the list, the characteristics of 228 detectors, collected between january 1965 and december 1977 are put together. The principal conclusions of the authors are: - with a probability of 95%, half of the detectors is dead before 6.1 years, - the average age of dead population (33% of detectors) is 3.9 years, - resolution and efficiency evolution are good indicators of possible deficiency, - the fiability of vertical cryostat is better than the other systems

  15. The influence of electron track lengths on the γ-ray response of compound semiconductor detectors

    International Nuclear Information System (INIS)

    The charge-trapping effect in compound semiconductor γ-ray detectors in the presence of a uniform electric field is commonly described by Hecht's relation. However, Hecht's relation ignores the geometrical spread of charge carriers caused by the finite range of primary and secondary electrons (δ-rays) in the detector. In this paper, a method based on the Shockley–Ramo theorem is developed to calculate γ-ray induced charge pulses by taking into account the charge-trapping effect associated with the geometrical spread of charge carriers. The method is then used to calculate the response of a planar CdTe detector to energetic γ-rays by which the influence of electron track lengths on the γ-ray response of the detectors is clearly shown

  16. The influence of electron track lengths on the γ-ray response of compound semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nakhostin, M., E-mail: M.Nakhostin@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Esmaili-Torshabi, A. [Department of Electrical and Computer Engineering, Kerman University of Technology, Kerman (Iran, Islamic Republic of)

    2015-10-11

    The charge-trapping effect in compound semiconductor γ-ray detectors in the presence of a uniform electric field is commonly described by Hecht's relation. However, Hecht's relation ignores the geometrical spread of charge carriers caused by the finite range of primary and secondary electrons (δ-rays) in the detector. In this paper, a method based on the Shockley–Ramo theorem is developed to calculate γ-ray induced charge pulses by taking into account the charge-trapping effect associated with the geometrical spread of charge carriers. The method is then used to calculate the response of a planar CdTe detector to energetic γ-rays by which the influence of electron track lengths on the γ-ray response of the detectors is clearly shown.

  17. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  18. Prototype gamma-camera system with CdZnTe semiconductor detectors

    International Nuclear Information System (INIS)

    The CdZnTe semiconductor detector, which works at room temperature, may lead to the development of next-generation gamma-camera systems due to its high spatial resolution and high energy resolution. We fabricated a prototype gamma-camera system with CdZnTe detectors to evaluate the feasibility of such a semiconductor gamma-camera. An energy resolution of 7.35% full width half maximum (FWHM) (at 140 keV) and an intrinsic spatial resolution of 1.8 mm FWHM were achieved. Single photon emission computed tomography (SPECT) images acquired using this gamma-camera system showed that the system can resolve hot and cold rods with a diameter of 3 mm. (author)

  19. Mercuric iodide (HgI/sub 2/) semiconductor devices as charged particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beccetti, F.D.; Raymond, R.S.; Ristinen, R.A. (Colorado Univ., Boulder (USA). Nuclear Physics Lab.); Schnepple, W.F.; Ortale, C. (EG and G, Inc., Goleta, CA (USA). Santa Barbara Div.)

    1983-07-15

    The properties of HgI/sub 2/ semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with fwhm resolution of 5-15% is observed for sup(1.2)H and sup(3.4)He ions, E < 40 MeV. Fast proton damage is observed for > 10/sup 10/ protons/cm/sup 2/. However, based on measurements with the HgI/sub 2/ detectors, little fast neutron damage is apparent at fluences up to 10/sup 15/ neutrons/cm/sup 2/. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  20. Mercuric iodide (HgI/sub 2/) semiconductor devices as charged-particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, F.D.; Raymond, R.S.; Ristinen, R.A.; Schnepple, W.F.; Ortale, C.

    1981-01-01

    The properties of HgI/sub 2/ semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with FWHM resolution of 5 to 15% is observed for /sup 1/ /sup 2/H and /sup 3/ /sup 4/He ions, E < 40 MeV. Fast proton damage is observed for > 10/sup 10/ protons/cm/sup 2/. However, based on measurements with two HgI/sub 2/ detectors, little fast neutron damage is apparent at fluences up to 10/sup 15/ neutrons/cm/sup 2/. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  1. Mercuric iodide (HgI2) semiconductor devices as charged particle detectors

    International Nuclear Information System (INIS)

    The properties of HgI2 semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with fwhm resolution of 5-15% is observed for sup(1.2)H and sup(3.4)He ions, E 1010 protons/cm2. However, based on measurements with the HgI2 detectors, little fast neutron damage is apparent at fluences up to 1015 neutrons/cm2. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices. (orig.)

  2. Mercuric iodide (HgI 2) semiconductor devices as charged particle detectors

    Science.gov (United States)

    Becchetti, F. D.; Raymond, R. S.; Ristinen, R. A.; Schnepple, W. F.; Ortale, C.

    1983-07-01

    The properties of HgI 2 semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with fwhm resolution of 5-15% is observed for 1,2H and 3,4He ions, E < 40 MeV. Fast proton damage is observed for 10 10 protons/cm 2. However, based on measurements with two HgI 2 detectors, little fast neutron damage is apparent at fluences up to 10 15 neutrons/cm 2. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  3. Mercuric iodide (HgI2) semiconductor devices as charged-particle detectors

    International Nuclear Information System (INIS)

    The properties of HgI2 semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with FWHM resolution of 5 to 15% is observed for 12H and 34He ions, E 1010 protons/cm2. However, based on measurements with two HgI2 detectors, little fast neutron damage is apparent at fluences up to 1015 neutrons/cm2. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices

  4. Digital approach to high-resolution pulse processing for semiconductor detectors

    International Nuclear Information System (INIS)

    A new design philosophy for processing signals produced by high resolution, large volume semiconductor detectors is described. These detectors, to be used in the next generation of spectrometer arrays for nuclear research (i.e. EUROBALL, etc.), present a set of problems like resolution degradation due to charge trapping and ballistic defect effects, low resolution at a high count rate, poor long term stability, etc. To solve these problems, a new design approach has been developed, including reconstruction of the event charge, providing a pure triangular residual function, and suppressing low frequency noise. 5 refs., 4 figs

  5. Counting losses from pulsed optical-feedback preamplifiers used with semiconductor detectors

    International Nuclear Information System (INIS)

    Problems encountered with semiconductor detectors that are coupled to pulsed optical-feedback preamplifiers have been investigated theoretically. The resetting of the preamplifier causes a deadtime followed by a second deadtime during which counting of pulses in the multichannel analyzer is inhibited. Counts are lost also by the resetting itself, if this is not prevented by special electronics. In order to account for pile-up and deadtime losses the pulse-generator method is frequently applied. It is shown that this method is inadequate for the problem and that the counting losses depend on the detector- and generator-pulse amplitudes. (author)

  6. Counting losses from pulsed optical-feedback preamplifiers used with semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Funck, E. (Physikalisch-Technische Bundesanstalt, Braunschweig (Germany, F.R.))

    1983-08-01

    Problems encountered with semiconductor detectors that are coupled to pulsed optical-feedback preamplifiers have been investigated theoretically. The resetting of the preamplifier causes a deadtime followed by a second deadtime during which counting of pulses in the multichannel analyzer is inhibited. Counts are lost also by the resetting itself, if this is not prevented by special electronics. In order to account for pile-up and deadtime losses the pulse-generator method is frequently applied. It is shown that this method is inadequate for the problem and that the counting losses depend on the detector- and generator-pulse amplitudes.

  7. Evaluation of a Fabricated Charge Sensitive Amplifier for a Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    A CSA(Charge Sensitive Amplifier) was designed and fabricated for application in a radiation detection system based on a semiconductor detector such as Si, SiC, CdZnTe and etc.. A fabricated hybrid.type CSA was evaluated by comparison with a commercially available CSA. A comparison was performed by using calculation of ENC (Equivalent Noise Charge) and by using energy resolutions of fabricated radiation detectors based on Si. In energy resolution comparison, a fabricated CSA showed almost the same performance compared with a commercial one. In this study, feasibility of a fabricated CSA was discussed

  8. Effects of nuclear fusion produced neutrons on silicon semiconductor plasma X-ray detectors

    CERN Document Server

    Kohagura, J; Hirata, M; Numakura, T; Minami, R; Watanabe, H; Sasuga, T; Nishizawa, Y; Yoshida, M; Nagashima, S; Tamano, T; Yatsu, K; Miyoshi, S; Hirano, K; Maezawa, H

    2002-01-01

    The effects of nuclear fusion produced neutrons on the X-ray energy responses of semiconductor detectors are characterized. The degradation of the response of position-sensitive X-ray tomography detectors in the Joint European Torus (JET) tokamak is found after neutron exposure produced by deuterium-deuterium and deuterium-tritium plasma fusion experiments. For the purpose of further detailed characterization of the neutron degradation effects, an azimuthally varying-field (AVF) cyclotron accelerator is employed using well-calibrated neutron fluence. These neutron effects on the detector responses are characterized using synchrotron radiation from a 2.5 GeV positron storage ring at the Photon Factory (KEK). The effects of neutrons on X-ray sensitive semiconductor depletion thicknesses are also investigated using an impedance analyser. Novel findings of (i) the dependence of the response degradation on X-ray energies as well as (ii) the recovery of the degraded detector response due to the detector bias applic...

  9. Development of a novel 2D position-sensitive semiconductor detector concept

    OpenAIRE

    Bassignana, D.; Fernández, M; Jaramillo, R.; Lozano Fantoba, Manuel; Muñoz Sánchez, F. J.; Pellegrini, Giulio; Quirion, D; Vila, Iván

    2011-01-01

    A novel 2D position-sensitive semiconductor detector concept has been developed employing resistive electrodes in a single-sided silicon microstrip sensor. The resistive charge division method has been implemented reading out each strip at both ends, in order to get the second coordinate of an ionizing event along the strips length. Two generations of prototypes, with different layout, have been produced and characterized using a pulsed near infra-red laser. The feasibility of the resistive c...

  10. An updated system of electronic modules for X-ray spectrometers with cooled semiconductor detectors

    International Nuclear Information System (INIS)

    An updated system of program-controlled analog and analog-to-digital modules for X-ray spectrometers with semiconductor detectors is reported. Ways to increase the count rate capacity of pulse-drain feedback charge-sensitive preamplifiers to 106 cps for EX=5.9 keV are considered in detail. A new analog processor model AP-007 incorporating Kandiah's cusp-shaper is described. Some problems of further improvements in the modular system are discussed. (orig.)

  11. The measurement of the radioactive aerosol diameter by position sensitive semiconductor detectors, 1

    International Nuclear Information System (INIS)

    The measurement of the diameter of radioactive aerosol, in particular plutonium aerosol, is very important for the internal dose estimation. Determination of the diameter of radioactive aerosol is performed by using position sensitive semiconductor detector (PSD). The filter paper with the radioactive aerosols is contacted to the PSD which is connected to the data processor so that the diameter of the aerosol is calculated from the measured radioactivity. This investigation was performed in cooperation with Rikkyo University. (author)

  12. Assessment of present and future large-scale semiconductor detector systems

    International Nuclear Information System (INIS)

    The performance of large-scale semiconductor detector systems is assessed with respect to their theoretical potential and to the practical limitations imposed by processing techniques, readout electronics and radiation damage. In addition to devices which detect reaction products directly, the analysis includes photodetectors for scintillator arrays. Beyond present technology we also examine currently evolving structures and techniques which show potential for producing practical devices in the foreseeable future

  13. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    Science.gov (United States)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  14. Alternative method to determine the bulk etch rate of Lr-115 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, D.; Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas (Venezuela, Bolivarian Republic of); Palacios, F. [Universidad de Oriente, Santiago de Cuba (Cuba)

    2010-02-15

    The measurements using the Lr-115 solid-state nuclear track detector depend critically on the removed thickness of the active layer during etching. In this work, Lr-115 detectors exposed to alpha particles were etched under no stirring in a 2.5 N NaOH solution at a temperature of 60{+-}1 C and different etching times (from 0.5 to 2.5 hours). The thickness of the removed layer was determined by a variant of the gravimetric method, so that the bulk etch rate could be deduced from mass change measurements of detectors. The bulk etch rate was found to be 3.63 {+-} 0.09 {mu}m.h{sup -}1, which agrees with most of the reported values. Comparisons of our results with the obtained by the optical density method are in correspondence. We propose here a fast, simple, and nondestructive method to determine the active-layer thickness of the Lr-115 solid-state nuclear track detector with good accuracy for routine measurements. (Author)

  15. The study of response of wide band gap semiconductor detectors using the Geant4

    Directory of Open Access Journals (Sweden)

    Hussain Riaz

    2014-01-01

    Full Text Available The energy dependence on the intrinsic efficiency, absolute efficiency, full energy peak absolute efficiency and peak-to-total ratio have been studied for various wide band gap semiconductor detectors using the Geant4 based Monte Carlo simulations. The detector thickness of 1-4 mm and the area in 16-100 mm2 range were considered in this work. In excellent agreement with earlier work (Rybka et al., [20], the Geant4 simulated values of detector efficiencies have been found to decrease with incident g-ray energy. Both for the detector thickness and the detector area, the increasing trends have been observed for total efficiency as well as for full-energy peak efficiency in 0.1 MeV-50 MeV range. For Cd1-xZnxTe, the detector response remained insensitive to changes in relative proportions of Zn. For various wide band gap detectors studied in this work, the detection efficiency of TlBr was found highest over the entire range of energy, followed by the HgI2, CdTe, and then by CZT.

  16. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean M.

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  17. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors.

    Science.gov (United States)

    Ryno, Sean M; Risko, Chad; Brédas, Jean-Luc

    2016-06-01

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density. PMID:27183361

  18. Current applications of semiconductor x-ray detectors in chemical analysis

    International Nuclear Information System (INIS)

    In the last few years, semiconductor detectors have been used as X-ray detectors with great success, and the routine rapid accumulation of X-ray spectra is now possible. This review surveys the historical development of the detectors, the utilisation, and relative merits of various means of exciting the X-radiation from the elements in the sample, and compares the technique with other methods claiming to offer the capability of simultaneous multi-element analysis. It is concluded that it is of average sensitivity, but offers some advantages from its non-destructive nature, and in some cases its ability to offer information about the spatial distribution of elements in a sample. Other types of analysis may also be possible simultaneously. Sample preparation techniques are reviewed, especially techniques of manufacturing thin samples. An appendix contains details of the very wide variety of samples which have been analysed. More than 350 references are included. (auth.)

  19. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    Science.gov (United States)

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. PMID:24792122

  20. Provisional shielding for laboratory measurements of low level activities with semiconductor detectors

    International Nuclear Information System (INIS)

    The application of semiconductor spectrometry in low level counting requires the use of detector shielding to weaken the effect of ambient sources of ionizing radiation. The design is described of provisional shields of lead bricks for three different types of high-purity Ge detectors by Canberra. In the configuration of six polyethylene vessels around the detector with a total sample volume of 1200 ml, minimal detectable activities were determined of selected radionuclides. The experiment showed that the determination of minimal detectable activity in this configuration shows sufficient values for determining the content of natural and artificial radionuclides for monitoring samples from the environment of nuclear power plants. (Z.M.). 5 figs., 3 tabs., 2 refs

  1. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    Science.gov (United States)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  2. Non equilibrium optical properties in semiconductors from first--principles: a combined theoretical and experimental study of bulk silicon

    CERN Document Server

    Sangalli, Davide; Manzoni, Cristian; Cerullo, Giulio; Marini, Andrea

    2016-01-01

    The calculation of the equilibrium optical properties of bulk silicon by using the Bethe--Salpeter equation solved in the Kohn--Sham basis represents a cornerstone in the development of an ab--initio approach to the optical and electronic properties of materials. Nevertheless calculations of the {\\em transient} optical spectrum using the same efficient and successful scheme are scarce. We report, here, a joint theoretical and experimental study of the transient reflectivity spectrum of bulk silicon. Femtosecond transient reflectivity is compared to a parameter--free calculation based on the non--equilibrium Bethe--Salpeter equation. By providing an accurate description of the experimental results we disclose the different phenomena that determine the transient optical response of a semiconductor. We give a parameter--free interpretation of concepts like bleaching, photo--induced absorption and stimulated emission, beyond the Fermi golden rule. We also introduce the concept of optical gap renormalization, as a...

  3. Dual radioisotopes simultaneous SPECT of 99mTc-tetrofosmin and 123I-BMIPP using a semiconductor detector

    OpenAIRE

    Yasuyuki Takahashi; Masao Miyagawa; Yoshiko Nishiyama; Naoto Kawaguchi; Hayato Ishimura; Teruhito Mochizuki

    2015-01-01

    Objective(s): The energy resolution of a cadmium-zinc-telluride (CZT) solid-state semiconductor detector is about 5%, and is superior to the resolution of the conventional Anger type detector which is 10%. Also, the window width of the high-energy part and of the low-energy part of a photo peak window can be changed separately. In this study, we used a semiconductor detector and examined the effects of changing energy window widths for 99mTc and 123 I simultaneous SPECT. ...

  4. Response function of semiconductor detectors, Ge and Si(Li); Funcao resposta de detectores semicondutores, Ge e Si(Li)

    Energy Technology Data Exchange (ETDEWEB)

    Zevallos Chavez, Juan Yury

    2003-07-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm{sup 3} , 50 cm{sup 3} , 8 cm{sup 3} and 5 cm{sup 3}, and one Si(Li) with 0.143 cm{sup 3} of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  5. Comparison of bulk and epitaxial 4H-SiC detectors for radiation hard particle tracking

    CERN Document Server

    Quinn, T; Bruzzi, M; Cunningham, W; Mathieson, K; Moll, M; Nelson, T; Nilsson, H E; Pintillie, I; Rahman, M; Reynolds, L; Sciortino, S; Sellin, P J; Strachan, H; Svensson, B G; Vaitkus, J

    2003-01-01

    Measurements and simulations have been carried out using bulk and epitaxial SiC detectors. Samples were irradiated to fluences of around 10**1**4 hardrons/cm**2. Material of thickness 40um gave a charge collection efficiency of 100% dropping to around 60% at 100mum thickness. Detailed MEDICI simulations incorporated the main defect levels in SiC, the vanadium center, Z-center and a mid-gap level as measured by deep level transient spectroscopy and other techniques. Calculated recombination currents and charge collection efficiencies at varying fluences were comparable to experimental data. The study suggests that SiC detectors will operate up to fluences around 10 **1**6/cm**2 as required by future particle physics experiments.

  6. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg;

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...

  7. CdZnTe semiconductor parallel strip Frisch grid radiation detectors

    International Nuclear Information System (INIS)

    CdZnTe wide band gap compound semiconducting material offers promise as a room temperature operated gamma ray spectrometer. Position-dependent free charge carrier losses during transport can prevent efficient charge carrier extraction from semiconductor detectors and severely reduce energy resolution. Hole trapping losses in CdZnTe radiation detectors are far worse than electron trapping losses and resolution degradation in CdZnTe detectors results primarily from severe hole trapping during transport. Coplanar radiation detectors improved energy resolution by sensing the induced charge primarily from the motion of electrons. Demonstrated is an alternative approach to single free charge carrier sensing, in which a parallel strip Frisch grid is fabricated on either side of a parallelepiped block. The detectors are three terminal devices, but require only one preamplifier for the output signal. The prototype devices demonstrate a considerable increase in energy resolution when operated in the true Frisch grid mode rather than the planar mode, with a demonstrated room temperature energy resolution for 662 keV gamma rays of 5.91 % at FWHM for a 10 mm x 2 mm x 10 mm device. Presently, high surface leakage currents prevent large voltages from being applied to the devices, which ultimately reduces their maximum achievable energy resolution. Further improvements are expected with the realization of reduced surface leakage currents

  8. Determination and stabilization of the altitude of an aircraft in space using semi-conductor detectors

    International Nuclear Information System (INIS)

    The device studied in this report can be used as altimeter or as altitude stabilizer (B.F. number PV 100-107, March 23, 1967). It includes essentially a 'surface barrier' semiconductor detector which counts alpha particles of a radioactive source. Two sources are used corresponding to two possible utilizations of the device. This report describes experiences made in laboratory which comprises electronic tests and a physic study. Systematic analysis of experimental errors is made comparatively with aneroid altimeters. An industrial device project is given. (author)

  9. The detector control system for the ATLAS semiconductor tracker assembly phase

    CERN Document Server

    Sfyrla, Anna; Basiladze, Sergei G; Brenner, Richard; Chamizo-Llatas, Maria; Codispoti, Giuseppe; Ferrari, Pamela; Mikulec, Bettina; Phillips, Peter; Sandaker, Heidi; Stanecka, Ewa

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) consists of 4088 silicon microstrip modules, with a total of 6.3 million readout channels. These are arranged into 4 concentric barrel layers and 2 endcaps of 9 disks each. The coherent and safe operation of the SCT during commissioning and subsequent operation is an essential task of the Detector Control System (DCS). The main building blocks of the SCT DCS, the cooling system, the power supplies and the environmental system, are described. First results from DCS testing are presented.

  10. Perfluorocarbons and their use in Cooling Systems for Semiconductor Particle Detectors

    CERN Document Server

    Vacek, V; Ilie, S; Lindsay, S

    2000-01-01

    We report on the development of evaporative fluorocarbon cooling for the semiconductor pixel and micro-strip sensors of inner tracking detector of the ATLAS experiment at the future CERN Large Hadron Collider (LHC). We proceeded with studies using perfluoro-n-propane (3M-"PFG 5030"; C3F8), perfluoro-n-butane (3M-"PFG 5040"; C4F10), trifluoro-iodo-methane (CF3I) and custom C3F8/C4F10 mixtures. Certain thermo-physical properties had to be verified for these fluids.

  11. Detection of secondary electrons with pixelated hybrid semiconductor detectors; Sekundaerelektronennachweis mit pixelierten hybriden Halbleiterdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Ulrike Sonja

    2011-09-14

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10{sup -5} mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm{sup 2} area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm{sup 2}. To achieve this, a new photocathode was mounted in a shorter distance to the detector. The

  12. LRAD, semiconductor, and other radiation detectors applied to environmental monitoring for alpha and beta contamination

    International Nuclear Information System (INIS)

    The very short range of alpha particles in air (typically 2 to 3 cm) has severely limited the use of traditional alpha monitors for detecting and identifying small amounts of alpha-producing contamination in soil, water, and other materials. Monitors based on the traditional alpha detector technology are often hard pressed to meet continually increasing sensitivity requirements. The long-range alpha detector (LRAD) avoids the distance restriction by detecting the ions produced by the interaction of alpha particles with air, rather than the alpha particles directly. The ions are swept into an ion detector either by a moving air current (generated by a fan) or a weak electric field. The LRAD is limited by the distance the ions can travel in the ∼5-s ion lifetime (1 to 100 m), rather than by the several-centimeter range of the alpha particles. The LRAD can be used to perform sensitive (less than 10 disintegrations per minute per 100 cm2) field scans of large surface areas (ranging from hundreds of square meters of concrete floor to thousands of square meters of soil). Because the 'active' element in a LRAD is a solid-metal ion collection plate, the detector is relatively inexpensive, easy to service, and quite rugged. However, the LRAD cannot supply any spectroscopic information to help identify the contaminant. Semiconductor, ionization chamber, and other types of particle detector can generate clean spectra from small samples of material and can identify trace amounts of surface contamination. Furthermore, these detectors are rugged enough to use routinely in a mobile laboratory for isotope identification of 'hot spots' located by the LRAD system. The combination of the LRAD with either an alpha spectrometer or a mobile laboratory with other particle detectors has applications for field beta-particle monitoring (such as would result from tritium contamination) as well as alpha particle detection. (author)

  13. Development of a novel 2D position-sensitive semiconductor detector concept

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    A novel 2D position-sensitive semiconductor detector concept has been developed employing resistive electrodes in a single-sided silicon microstrip sensor. The resistive charge division method has been implemented reading out each strip at both ends, in order to get the second coordinate of an ionizing event along the strips length. Two generations of prototypes, with different layout, have been produced and characterized using a pulsed near infra-red laser. The feasibility of the resistive charge division method in silicon microstrip detectors has been demonstrated and the possibility of single-chip readout of the device has been investigated. Experimental data were compared with the theoretical expectations and the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The agreement between experimental and simulation results validates the developed simulation as a tool for the optimization of future sensor prototypes.

  14. Gamma-Ray Assay with Lithium-Drifted Germanium Semiconductor Nuclear Detectors

    International Nuclear Information System (INIS)

    The characteristics and applications of the semiconductor nuclear radiation detectors which have been fabricated from germanium and compensated to high resistivity by the Pell lithium-drift method to obtain a large sensitive volume for gamma-ray detection are presented. Detector thicknesses of 1 mm to 4 mm are readily fabricated whereas 6 mm and greater are low-yield devices. Areas of 1 cm2 to 6 cm2 are available but the yield depends inversely upon the area. Gamma-ray resolutions of less than 10 keV are obtainable under standard laboratory conditions and less than 3 keV under ideal conditions. Such high resolutions will have immediate effect on gamma-ray assay as it may prove possible in many applications to remove the need for chemical separation. Results with 207Bi, 166Ho and other sources are given. (author)

  15. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-08-23

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described.

  16. 4. International Conference on Application of Semiconductor Detectors in Nuclear Physical Problems. Abstracts

    International Nuclear Information System (INIS)

    This was the fourth successive conference on semiconductor detectors (SD) of nuclear radiations that were held in Jurmala by the Riga Research and Development Institute for Radioisotope apparatus - the leading producer in the former USSR of SDs and equipment that use those. This conference used to attract leading experts of the USSR in physics and detector technology, as well as in other various fields of science and technology that use equipment with SDs. The main aim of the conference was to get together specialists who use SDs, consider problems they face and define the trends in development of appliances with SDs. Abstracts of this conference is arranged in following parts: Scientific researches, Radionuclide analysis for control of environmental objects, X-ray fluorescence and neutron activation analysis, Nuclear energetics, Medicine and biology, Special aspects of SD devices design

  17. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described

  18. Characterization of a large CdZnTe coplanar quad-grid semiconductor detector

    CERN Document Server

    Ebert, Joachim; Gehre, Daniel; Hagner, Caren; Heidrich, Nadine; Klingenberg, Rainer; Kröninger, Kevin; Nitsch, Christian; Oldorf, Christian; Quante, Thomas; Rajek, Silke; Rebber, Henning; Rohatsch, Katja; Tebrügge, Jan; Temminghoff, Robert; Theinert, Robert; Timm, Jan; Wonsak, Björn; Zatschler, Stefan; Zuber, Kai

    2015-01-01

    The COBRA collaboration aims to search for neutrinoless double beta-decay of $^{116}$Cd. A demonstrator setup with 64 CdZnTe semiconductor detectors, each with a volume of 1cm$^3$, is currently being operated at the LNGS underground laboratory in Italy. This paper reports on the characterization of a large (2 $\\times$ 2 $\\times$ 1.5)cm$^3$ CdZnTe detector with a new coplanar-grid design for applications in $\\gamma$-ray spectroscopy and low-background operation. Several studies of electric properties as well as of the spectrometric performance, like energy response and resolution, are conducted. Furthermore, measurements including investigating the operational stability and a possibility to identify multiple-scattered photons are presented.

  19. Furnace design for the mercuric iodide crystal growth for new semiconductor radiation detector

    International Nuclear Information System (INIS)

    Mercuric iodide has been attracted an interest for 40 years due to its efficiency as room temperature detector for X and γ-rays. It is worthy to note that commercial γ-ray detectors such as Ge semiconductor detectors should cool down to liquid nitrogen temperature. Compared to other semiconductor detectors such as CdZnTe and CdTe, mercuric iodide has higher efficiency, lower leakage current and less degradation. In addition, mercuric iodide has useful properties such as large band gap of 2.15 eV, low electron-hole pair creation energy of 4.2 eV, and high atomic number (Hg : 80 and I : 53). However, it is difficult to obtain high quality single crystals and the long term reliability problem in devices so that the applications of α-HgI2 are limited. Mercuric iodide undergoes a structural phase transition from an orthorhombic yellow phase (β-HgI2) to a tetragonal red phase (α-HgI2) at 127 .deg. C. In addition, the melting temperature of HgI2 is 259 .deg. C. Thus, when it grows through a melting method over 259 .deg. C, the β-HgI2 phase can be included in the final crystals in the room temperature. In general, in order to grow α-HgI2single crystals, the operating temperature is below 127 .deg. C. Note that the crystals from the solution method have contamination problems and the crystals from the physical vapor method usually display a higher quality with a well defined structure. A good thing for the physical vapor method is that α-HgI2 has high vapor pressure (∼0.1 Torr at 120 .deg. C) indicating that α-HgI2 can be grown in closed ampoules

  20. Interpretation of the bulk etching process in LR-115 detectors by the many-hit model

    International Nuclear Information System (INIS)

    The formalism of the many-hit model (MHM) [Fromm, M., Awad, E.M., Ditlov, V.A., 2004. Many-hit model calculation for track etch rate in CR-39 SSNTD using confocal microscope data. Nucl. Instr. Phys. Res. B 26, 565-575; Ditlov, V.A., Awad, E.M., Fromm, M., Hermsdorf, D., 2005. The Bragg-peak studies in CR-39 SSNTD on the basis of many-hit model for track etch rates. Radiat. Meas. 40, 249-254] is applied in order to describe the bulk etching rate VB of non-irradiated polymer detectors. In such a case the etching process should be easier to understand in terms of interactions of physical and chemical processes superimposing material diffusion and reaction kinetics. In a paper [Ditlov, V.A., 2005. Formation model of bulk etching rate for polymer detectors. Radiat. Meas. 40, 240-248] first attempts have been made to develop formulae for the calculation of VB dependence on the concentration C and temperature T of the etchant solution. Therein, it is shown that VB have to be studied in a broad range of C and T including very low and very high values. The formulae of the MHM contain some free adjustable parameters of definite physical meaning, which have to be determined by fitting the experimental data. In the present paper data for VB of LR-115 cellulose nitrate detectors have been analysed to decide on the reliability of the modelling of etching processes and to determine possible physical-based parameters

  1. Operation of CdZnTe Semiconductor Detectors in Liquid Scintillator for the COBRA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oldorf, Christian

    2015-08-15

    COBRA, the Cadmium-Zinc-Telluride O-neutrino double-Beta Research Apparatus, is an experiment aiming for the measurement of the neutrinoless double beta decay with several isotopes, in particular {sup 116}Cd, {sup 106}Cd and {sup 130}Te. A highly granular large scale experiment with about 400 kg of CdZnTe semiconductor detectors is currently under development. To provide evidence for the neutrinoless double beta decay of {sup 116}Cd, a background rate in the order of 10{sup -3} counts/keV/kg/a is needed to achieve the required half-life sensitivity of at least 2 . 10{sup 26} years. To reach this target, the detectors have to be operated in a highly pure environment, shielded from external radiation. Liquid scintillator is a promising candidate as a circum fluent replacement for the currently used lacquer. Next to the function as highly pure passivation material, liquid scintillator also acts as a neutron shield and active veto for external gammas. Within this thesis, the design, construction and assembly of a test set-up is described. The operation of four CdZnTe detectors after several years of storage in liquid scintillator is demonstrated. Next to extensive material compatibility tests prior to the assembly, the commissioning of the set-up and the characterization of the detectors are shown. Finally, results concerning the background reduction capability of liquid scintillator and the detection of cosmic muons are presented and compared to a Monte Carlo simulation.

  2. Development of gamma ray monitor using CdZnTe semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Rasolonjatovo, A.H.D.; Shiomi, T.; Nakamura, T. [Tohoku Univ., Department of Quantum Science and Energy Engineering, Sendai, Miyagi (Japan); Nishizawa, H.; Tsudaka, Y.; Fujiwara, H.; Araki, H.; Matsuo, K. [Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan)

    2000-12-01

    In this study, we aimed to develop a new X-ray and gamma ray monitor using the CdZnTe semiconductor detector, which have high sensitivity at room temperature. The pulse height spectra and the detection efficiencies of 10x10 mm{sup 2} by 2 mm thick CdZnTe detector were measured in the energy range of 10 keV to 1.8 MeV by using monoenergetic X-ray and gamma ray sources. The measured results showed very good agreement with the results calculated using the EGS4 Monte Carlo code taking into account the charge collection efficiency in the detector. By using two CZT detectors of 10x10x2 mm{sup 3} and 3x3x2 mm{sup 3} coupled with a filter, the weighted sum of a few energy channels with different cut-off energies was finally found out to realize a flat energy response to equivalent dose (counts per mSv) within {+-}30% or {+-}10% deviation. (author)

  3. Picosecond timing of high-energy heavy ions with semiconductor detectors

    Science.gov (United States)

    Eremin, Vladimir; Kiselev, Oleg; Egorov, Nicolai; Eremin, Igor; Tuboltsev, Yuri; Verbitskaya, Elena; Gorbatyuk, Andrei

    2015-10-01

    Construction of new accelerating facilities to investigate reactions with heavy ions requires upgrading of the Time-of-Flight (TOF) systems for on-line ion identification. The requested time resolution of the TOF system developed for Super FRagment Separator in the frame of the FAIR program at GSI, Germany, is in the range of tens of picoseconds, which can be realized by using planar silicon detectors. Such resolution will allow characterization of relativistic ions from Lithium to Uranium. However, fast timing of heavy ions with semiconductor detectors is expected to be limited by the so-called plasma effect due to a high concentration of electron-hole pairs in tracks. Here the results of the experiment with relativistic 197Au ions (the energy of 920 MeV per nucleon) obtained with Si detectors are described, which showed the TOF time resolution around 14 ps rms. The physical mechanism of charge collection from high-density penetrating tracks of relativistic heavy ions is considered and the analysis of timing characteristics is performed taking into account track polarization. Polarization is shown to have a strong influence on the formation of the leading edge of the detector current response generated by relativistic heavy ions, which allows us to explain the observed high time resolution.

  4. Performance of CdZnTe geometrically weighted semiconductor Frisch grid radiation detectors

    International Nuclear Information System (INIS)

    Semiconductor Frisch grid radiation detectors have been manufactured and tested with encouraging results. Resolution enhancement occurs as a result of combining the geometric weighting effect, the small pixel effect and the Frisch grid effect. The devices are operated at ambient temperature without any pulse shape correction, rejection and compensation techniques. The new devices are manufactured from CdZnTe and do not require any cooling for operation. The geometrically weighted detectors have only one signal output to a standard commercially available Ortec 142A preamplifier. The detectors operate with simple commercially available NIM electronics, hence the device design can be coupled to any typical NIM system without the need for special electronic instruments or circuits. Geometrically weighted detectors that are 1 cubic centimeter in volume were fabricated from counter grade material, yet have shown room temperature energy resolution of 7.5% FWHM (at 29 C) for 57Co 122 keV gamma rays and 2.68% FWHM (at 23 C) for 137Cs 662 keV gamma rays

  5. Contribution to the three-dimensional simulation of semiconductor detectors in gamma rays spectrometry

    International Nuclear Information System (INIS)

    Parallel to the scientific investigations on gamma radioactivity, technological research on gamma ray detectors have rapidly developed. Gamma ray imaging is changing towards systems using room temperature semiconductors, whose principal advantages are compactness and intrinsic materials performances, due to the direct conversion of the gamma rays into electric charges. In the research field, the available solutions are numerous, thus justifying numerical simulation. Modelling presents a double interest for technological improvement and fast development of new techniques. A fully three-dimensional model of a semiconductor gamma ray detector is presented. It takes into account the physical phenomena involved in the detection process and models the readout electronic response and noise. The model successively involves the finite element transient computation of the adjoint transport equation, the Monte Carlo simulation of the photon transport and the electronic signal processing including an accurate noise model. The simulation outputs are pulse height spectra and bi parametric spectra (rise time versus pulse height). The validation carried out on each part of the simulator and also on the whole simulator confirms that the set of chosen models is correct and that our implementation is reliable. (author)

  6. Shubnikov-de Haas Oscillations in the Bulk Rashba Semiconductor BiTeI

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C.; Bahramy, M.S.; Murakawa, H.; Checkelsky, J.G.; Arita, R.; Kaneko, Y.; Onose, Y.; Nagaosa, N.; Tokura, Y.; Hwang, H.Y.

    2012-07-11

    Bulk magnetoresistance quantum oscillations are observed in high quality single crystal samples of BiTeI. This compound shows an extremely large internal spin-orbit coupling, associated with the polarity of the alternating Bi, Te, and I layers perpendicular to the c-axis. The corresponding areas of the inner and outer Fermi surfaces around the A-point show good agreement with theoretical calculations, demonstrating that the intrinsic bulk Rashba-type splitting is nearly 360 meV, comparable to the largest spin-orbit coupling generated in heterostructures and at surfaces.

  7. A self-biased neutron detector based on an SiC semiconductor for a harsh environment.

    Science.gov (United States)

    Ha, Jang Ho; Kang, Sang Mook; Park, Se Hwan; Kim, Han Soo; Lee, Nam Ho; Song, Tae-Yung

    2009-01-01

    Neutron detector based on radiation-hard semiconductor materials like SiC, diamond and AlN has recently emerged as an attractive device for an in-core reactor neutron flux monitoring, a spent fuel characterization, and a home land security application. For the purpose of field measurement activity, a radiation detector having a low-power consumption, a mechanical stability and a radiation hardness is required. Our research was focused on the development of a radiation-resistive neutron semiconductor detector based on a wide band-gap SiC semiconductor. And also it will be operated at a zero-biased voltage using a strong internal electric field. The charge collection efficiency (CCE) was over 80% when the biased voltage was zero. When the biased voltage was applied above 20V, the charge collection efficiency reached 100%. PMID:19362006

  8. Development and characterization of the lead iodide semiconductor detector; Desenvolvimento e caracterizacao do detector semicondutor de iodeto de chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2001-07-01

    A methodology for purification and growth of PbI{sub 2} crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ({sup 241}Am) alpha particle and ({sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for {sup 241} Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI{sub 2} crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  9. Prompt gamma ray measurement in the KUR irradiation room by Cd-Zn-Te semiconductor detector for PG-SPECT

    International Nuclear Information System (INIS)

    Prompt gamma-rays from 10B(n,αγ)7Li reaction yielded in polyethylene plate containing 30 wt% 10B and/or 50 ppm 10B water phantom were measured in the medical irradiation room at the KUR-HWNIF, by Cd-Zn-Te semiconductor detector with tungsten collimator which has a hole of 3 mm diameter and 8 cm and/or 14 cm length. An application possibility of Cd-Zn-Te semiconductor detector to PG-SPECT was examined experimentally for BNCT. (author)

  10. Advanced radiation detector development: Advanced semiconductor detector development: Development of a room-temperature, gamma ray detector using gallium arsenide to develop an electrode detector. Annual progress report, September 30, 1994--September 29, 1995

    International Nuclear Information System (INIS)

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. The general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, the authors have worked primarily in the development of semiconductor spectrometers with ''single carrier'' response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. They have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in the laboratory in the Phoenix Building on the North Campus

  11. Picosecond timing of high-energy heavy ions with semiconductor detectors

    International Nuclear Information System (INIS)

    Construction of new accelerating facilities to investigate reactions with heavy ions requires upgrading of the Time-of-Flight (TOF) systems for on-line ion identification. The requested time resolution of the TOF system developed for Super FRagment Separator in the frame of the FAIR program at GSI, Germany, is in the range of tens of picoseconds, which can be realized by using planar silicon detectors. Such resolution will allow characterization of relativistic ions from Lithium to Uranium. However, fast timing of heavy ions with semiconductor detectors is expected to be limited by the so-called plasma effect due to a high concentration of electron–hole pairs in tracks. Here the results of the experiment with relativistic 197Au ions (the energy of 920 MeV per nucleon) obtained with Si detectors are described, which showed the TOF time resolution around 14 ps rms. The physical mechanism of charge collection from high-density penetrating tracks of relativistic heavy ions is considered and the analysis of timing characteristics is performed taking into account track polarization. Polarization is shown to have a strong influence on the formation of the leading edge of the detector current response generated by relativistic heavy ions, which allows us to explain the observed high time resolution. - HighLights: • The study on timing of relativistic Au ions using Time-Of-Flight method is performed. • Time resolution better than 20 ps rms is reached using Si planar detectors in TOF. • The model is proposed to explain high time resolution in timing of relativistic ions. • The model considers polarization in plasma state in high-density penetrating tracks

  12. A comparative study of bulk etch rate measurement methods in polycarbonate detectors

    International Nuclear Information System (INIS)

    The response of a plastic detector to an incoming charged particle is given by the ratio of track etch rate vt to bulk etch rate vg along its path. Although the accurate determination of vt offers no difficulty as cone length can be comfortably measured, there seems to be a certain ambiguity as how to measure vg. Several LEXAN and TUFFAK polycarbonate plates have been exposed to normally incident Californium-252 fission fragments, etched in a stirred aqueous NaOH solution saturated with etch products and with a 0.05% of Dowfax surfactant, for different etching times, concentrations and temperatures. We have used three methods to measure vg and we obtain consistent results in agreement with those published in the literature. Surface quality and, consequently, ellipses neatness, are far superior in TUFFAK than in LEXAN. (author)

  13. Fast spectroscopic imaging with pixel semiconductor detector Timepix and parallel data reading

    International Nuclear Information System (INIS)

    Non-invasive techniques utilizing X-ray radiation offer a powerful tool for the inspection of the inner composition of a wide variety of objects. The highly sensitive hybrid semiconductor pixel detector Timepix is capable of detecting and resolving subtle and low-contrast differences in radiography measurements. Moreover the Timepix detector offers 65536 individual pixels with spectrometric capabilities. With proper per-pixel energy calibration this feature enables the application of various energy based imaging techniques - from basic energy windowing to fully spectroscopic imaging. The main limitations of these methods are the detector energy resolution and data acquisition speed of 100 frames per second - the necessity of taking frames with low occupancy for event by event cluster analysis leads to several hours long measurements. The latter nuisance can be overcome by the utilization of the newly developed modular read-out FITPix3 with the adapter chipboard designed for parallel data reading. This read-out version can acquire over 850 compressed frames per second which reduces the measurement time of many spectroscopic measurements by factor of ten (spectra with high enough statistics are taken in tens of minutes). The short description of the new FITPix3 parallel read-out together with the progression in spectroscopic multi-channel energy imaging demonstrated on model samples are presented in this contribution

  14. Monte Carlo simulation for the electron cascade due to gamma rays in semiconductor radiation detectors

    International Nuclear Information System (INIS)

    A Monte Carlo code was developed for simulating the electron cascade in radiation detector materials. The electron differential scattering cross sections were derived from measured electron energy-loss and optical spectra, making the method applicable for a wide range of materials. The detector resolution in a simplified model system shows dependence on the bandgap, the plasmon strength and energy, and the valence band width. In principle, these parameters could be optimized to improve detector performance. The intrinsic energy resolution was calculated for three semiconductors: silicon (Si), gallium arsenide (GaAs), and zinc telluride (ZnTe). Setting the ionization thresholds for electrons and holes is identified as a critical issue, as this strongly affects both the average electron-hole pair energy w and the Fano factor F. Using an ionization threshold from impact ionization calculations as an effective bandgap yields pair energies that are well matched to measured values. Fano factors of 0.091 (Si), 0.100 (GaAs), and 0.075 (ZnTe) were calculated. The Fano factor calculated for silicon using this model was lower than some results from past simulations and experiments. This difference could be attributed to problems in simulating inter-band transitions and the scattering of low-energy electrons.

  15. Monte Carlo simulation for the electron cascade due to gamma rays in semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Raman D.; Miranda, Ryan; Rez, Peter [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2012-03-15

    A Monte Carlo code was developed for simulating the electron cascade in radiation detector materials. The electron differential scattering cross sections were derived from measured electron energy-loss and optical spectra, making the method applicable for a wide range of materials. The detector resolution in a simplified model system shows dependence on the bandgap, the plasmon strength and energy, and the valence band width. In principle, these parameters could be optimized to improve detector performance. The intrinsic energy resolution was calculated for three semiconductors: silicon (Si), gallium arsenide (GaAs), and zinc telluride (ZnTe). Setting the ionization thresholds for electrons and holes is identified as a critical issue, as this strongly affects both the average electron-hole pair energy w and the Fano factor F. Using an ionization threshold from impact ionization calculations as an effective bandgap yields pair energies that are well matched to measured values. Fano factors of 0.091 (Si), 0.100 (GaAs), and 0.075 (ZnTe) were calculated. The Fano factor calculated for silicon using this model was lower than some results from past simulations and experiments. This difference could be attributed to problems in simulating inter-band transitions and the scattering of low-energy electrons.

  16. Improvement of the sensitivity of CdTe semiconductor detector in the high energy region

    International Nuclear Information System (INIS)

    Cadmium Telluride, CdTe, semiconductor detectors have sufficient band gap energy (1.47 eV) to use at room temperature, and their atomic number are so large (48 and 52) that their photon detection efficiency is more excellent than that of Si or Ge. Recently CdTe crystals have become easily available because of improvements in the crystal growth method. It is a useful X-ray detector, because it has good energy resolution and high efficiency at the full energy peak at less than a few hundred keV of incident photon energy. However, if the incident photon energy become higher, the efficiency of the full energy peak become worse, and it is very difficult to distinguish the full energy peak above 1 MeV, because the mobility of charge carriers in the CdTe crystal is much smaller than in Si and Ge and it is difficult to produce a larger volume element. In order to analyze the energy of several radioisotopes, it is necessary to improve the sensitivity of CdTe detectors in high energy regions. We have previously suggested a multilayered structure of CdTe elements. This paper describes a simulation and experiment to improve the efficiency of the full energy peak in the high energy region above 1 MeV. (author)

  17. Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging

    Science.gov (United States)

    Abbaszadeh, Shiva; Allec, Nicholas; Wang, Kai; Chen, Feng; Karim, Karim S.

    2011-03-01

    Previously, metal-semiconductor-metal (MSM) lateral amorphous selenium (a-Se) detectors have been proposed for indirect detector medical imaging applications. These detectors have raised interest due to their high-speed and photogain. The gain measured from these devices was assumed to have been photoconductive gain; however the origin of this gain was not fully understood. In addition, whether or not there was any presence of photocurrent multiplication gain was not investigated. For integration-type applications photocurrent multiplication gain is desirable since the total collected charge can be greater than the total number of absorbed photons. In order to fully appreciate the value of MSM devices and their benefit for different applications, whether it is counting or integration applications, we need to investigate the responsible mechanisms of the observed response. In this paper, we systematically study, through experimental and theoretical means, the nature of the photoresponse and its responsible mechanisms. This study also exposes the possible means to increase the performance of the device and under what conditions it will be most beneficial.

  18. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI2, using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgIz2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  19. Development of novel semiconductor detectors for the detection of ionizing radiation

    International Nuclear Information System (INIS)

    The present thesis treats the development of novel energy- and position-resolving semiconductor detectors: Fully depletable pn CCD's. In experiments of high-energy physics they are suited as highly resolving position-sensitive detectors for minimally ionizing particles. In nuclear and atomic physics they can be applied as position-resolving energy spectrometers. Increasing interest detectors of this type find also at synchrotron-radiation sources with photon energies from 20 eV to 50 keV. As focal instruments of X-ray telescopes they are in astrophysical measurements in an energy range from 100 eV to 15 keV of use. The required accuracy in the energy measurement amounts to 100 eV (FWHM) at an X-ray energy of 1 keV, at a simultaneous precision of the position determination of 50 μm. The measurement results which are here presented on the first fully depletable CCD's show that the components posses the potential to fulfill these requirements. (orig.)

  20. Bulk and surface band structure of the new family of semiconductors BiTeX (X=I, Br, Cl)

    Energy Technology Data Exchange (ETDEWEB)

    Moreschini, L., E-mail: lmoreschini@lbl.gov [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Autès, G. [Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Crepaldi, A. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Moser, S. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Johannsen, J.C. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Kim, K.S. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang 790-784 (Korea, Republic of); Berger, H.; Bugnon, Ph.; Magrez, A. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Denlinger, J.; Rotenberg, E.; Bostwick, A. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yazyev, O.V. [Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); and others

    2015-05-15

    Highlights: • We provide an ARPES comparison between the three tellurohalides BiTeX (X = I, Br, Cl). • They present a similar band structure with namely spin-split bulk and surface states. • They offer, except for BiTeCl, the possibility of ambipolar conduction. • They can be easily doped. • From the data appeared so far, BiTeBr may be the most appealing for applications. - Abstract: We present an overview of the new family of semiconductors BiTeX (X = I, Br, Cl) from the perspective of angle resolved photoemission spectroscopy. The strong band bending occurring at the surface potentially endows them with a large flexibility, as they are capable of hosting both hole and electron conduction, and can be modified by inclusion or adsorption of foreign atoms. In addition, their trigonal crystal structure lacks a center of symmetry and allows for both bulk and surface spin-split bands at the Fermi level. We elucidate analogies and differences among the three materials, also in the light of recent theoretical and experimental work.

  1. Total energy, equation of state and bulk modulus of AlP, AlAs and AlSb semiconductors

    Indian Academy of Sciences (India)

    A R Jivani; H J Trivedi; P J Gajjar; A R Jani

    2005-01-01

    Recently proposed model potential which combines both linear and quadratic types of interactions is employed for the investigation of some properties like the total energy, equation of state and bulk modulus of AlP, AlAs and AlSb semiconductor compounds using higher-order perturbation theory. The model potential parameter is determined using zero pressure condition. The ratio of the covalent bonding term E cov to the second-order term 2 is 6.77% to 11.85% which shows that contribution from higher order terms are important for zinc-blende-type crystals. The calculated numerical results of the total energy, energy band gap at Jones-zone face and bulk modulus of these compounds are in good agreement with the experimental data and found much better than other such theoretical findings. We have also studied pressure–volume relations of these compounds. The present study is carried out using six different screening functions along with latest screening function proposed by Sarkar et al. It is found from the present study that effect of exchange and correlation is clearly distinguishable.

  2. Bulk and surface band structure of the new family of semiconductors BiTeX (X=I, Br, Cl)

    International Nuclear Information System (INIS)

    Highlights: • We provide an ARPES comparison between the three tellurohalides BiTeX (X = I, Br, Cl). • They present a similar band structure with namely spin-split bulk and surface states. • They offer, except for BiTeCl, the possibility of ambipolar conduction. • They can be easily doped. • From the data appeared so far, BiTeBr may be the most appealing for applications. - Abstract: We present an overview of the new family of semiconductors BiTeX (X = I, Br, Cl) from the perspective of angle resolved photoemission spectroscopy. The strong band bending occurring at the surface potentially endows them with a large flexibility, as they are capable of hosting both hole and electron conduction, and can be modified by inclusion or adsorption of foreign atoms. In addition, their trigonal crystal structure lacks a center of symmetry and allows for both bulk and surface spin-split bands at the Fermi level. We elucidate analogies and differences among the three materials, also in the light of recent theoretical and experimental work

  3. PC based analysis of gamma ray spectra generated by semiconductor detectors

    International Nuclear Information System (INIS)

    This report describes a spectrum analysis method and computer program for analysis of gamma spectra obtained by using semiconductor detectors and multichannel analysers. The analysis steps incorporated are smoothing, peak location using signal processing method of convolution, selectable background subtraction viz linear, polynomial and step like, peak fitting both for singlets and doublets using Mukoyama's method for evaluation of full width at half maximum and area evaluation including errors in its evaluation. The program also provides a facility for energy calibration. Typical results of analysis for singlets and doublets are included. This report is based on Wilson's report which has been modified and extended. The program is written in BASIC and its listing is included in the appendices. (author). 20 refs., 2 figs., 2 tabs

  4. High-efficiency microstructured semiconductor neutron detectors for direct 3He replacement

    International Nuclear Information System (INIS)

    High-efficiency Microstructured Semiconductor Neutron Detectors (MSNDs) have been tiled and arranged in a cylindrical form factor in order to serve as a direct replacement to aging and increasingly expensive 3He gas-filled proportional neutron detectors. Two 6-in long by 2-in diameter cylinders were constructed and populated with MSNDs which were then directly compared to a 4 atm Reuter Stokes 3He detector of the same dimensions. The Generation 1 MSND-based 3Helium-Replacement (HeRep Mk I) device contained sixty-four 1-cm2 active-area MSNDs, each with an intrinsic neutron detection efficiency of approximately 7%. A Generation 2 device (the HeRep Mk II) was populated with thirty 4-cm2 active-area MSNDs, with an intrinsic thermal neutron detection efficiency of approximately 30%. The MSNDs of each HeRep were integrated to count as a single device. The 3He proportional counter and the HeRep devices were tested while encased in a cylinder of high-density polyethylene measuring a total of 6-in by 9-in. The 3He counter and the HeRep Mk II were each placed 1 m from a 54-ng 252Cf source and tested for efficiency. The 3He proportional counter had a net count rate of 17.13±0.10 cps at 1 m. The HeRep Mk II device had a net count rate of 17.60±0.10 cps, amounting to 102.71±2.65% of the 3He gas counter while inside of the moderator. Outside of moderator, the 3He tube had a count rate of 3.35±0.05 cps and the HeRep Mk II device reported 3.19±05, amounting to 95.15±9.04% of the 3He neutron detector

  5. Study of a New Design of P-N Semiconductor Detector Array for Nuclear Medicine Imaging by Monte Carlo Simulation Codes

    OpenAIRE

    Hajizadeh-Safar, M.; Ghorbani, M.; Khoshkharam, S.; Ashrafi, Z.

    2014-01-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX...

  6. Treatment verification and in vivo dosimetry for total body irradiation using thermoluminescent and semiconductor detectors

    International Nuclear Information System (INIS)

    The objective of this work is the characterization of thermoluminescent and semiconductor detectors and their applications in treatment verification and in vivo dosimetry for total body irradiation (TBI) technique. Dose measurements of TBI treatment simulation performed with thermoluminescent detectors inserted in the holes of a “Rando anthropomorphic phantom” showed agreement with the prescribed dose. For regions of the upper and lower chest where thermoluminescent detectors received higher doses it was recommended the use of compensating dose in clinic. The results of in vivo entrance dose measurements for three patients are presented. The maximum percentual deviation between the measurements and the prescribed dose was 3.6%, which is consistent with the action level recommended by the International Commission on Radiation Units and Measurements (ICRU), i.e., ±5%. The present work to test the applicability of a thermoluminescent dosimetric system and of a semiconductor dosimetric system for performing treatment verification and in vivo dose measurements in TBI techniques demonstrated the value of these methods and the applicability as a part of a quality assurance program in TBI treatments. - Highlights: • Characterization of a semiconductor dosimetric system. • Characterization of a thermoluminescent dosimetric system. • Application of the TLDs for treatment verification in total body irradiation treatments. • Application of semiconductor detectors for in vivo dosimetry in total body irradiation treatments. • Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  7. Semiconductor diodes as neutron detectors for position-sensitive measurements and for application in personal neutron dosimetry

    Science.gov (United States)

    Balzhaeuser, Michael; Dehoff, A.; Engels, R.; Hoengesberg, F.; Lauter, J.; Luth, Hans; Reetz, M.; Reinartz, Richard; Richter, H.; Schelten, Jim; Schmitz, Th.; Steffen, A.; Vockenberg, Th.

    1997-02-01

    A new design for a position-sensitive detector system for thermal neutrons is introduced. The detection principle with a thin 6LiF converter on the surface of a semiconductor diode is described. In experiments with thermal neutrons, a spatial resolution of 1.25 mm was obtained. The detector is insensitive to (gamma) -rays with energies up to 1.5 MeV. The design of a detector with an improvement of the detection efficiency for thermal neutrons from 2.5 percent up to 35 percent is also proposed and the present state of the process development for its fabrication is described.

  8. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    International Nuclear Information System (INIS)

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8–10 bit resolution, 50–100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors

  9. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rivetti, Angelo

    2014-11-21

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8–10 bit resolution, 50–100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  10. In vivo dosimetry with semiconductor and thermoluminescent detectors applied to head and neck cancer treatment

    International Nuclear Information System (INIS)

    In vivo dosimetry in radiotherapy, i. e, the assessment of the doses received by patients during their treatments, permits a verification of the therapy quality. A routine of in vivo dosimetry is, undoubtedly, a direct benefit for the patient. Unfortunately, in Brazil and in Latin America this procedure is still a privilege for only a few patients. This routine is of common application only in developed countries. The aim of this work is to show the viability and implementation of a routine in vivo dosimetry, using diodes semiconductors and thermoluminescent dosimeters (TLD), at the radiotherapy section of the National Institute of Cancer in Brazil, in the case of head and neck cancer treatment. In order to reach that aim, the characteristics of the response of diodes ISORAD-p and LiF:Mg;Ti (TLD-100) thermoluminescent detectors in powder form were determined. The performance of those detectors for in vivo dosimetry was tested using an RANDO Alderson anthropomorfic phantom and, once their adequacy proved for the kind of measurements proposed, they were used for dose assessment in the case of tumour treatments in the head and neck regions, for Cobalt-60 irradiations. (author)

  11. Optical cross-talk effect in a semiconductor photon-counting detector array

    Science.gov (United States)

    Prochazka, Ivan; Hamal, Karel; Kral, Lukas; Blazej, Josef

    2005-09-01

    Solid state single photon detectors are getting more and more attention in various areas of applied physics: optical sensors, communication, quantum key distribution, optical ranging and Lidar, time resolved spectroscopy, opaque media imaging and ballistic photon identification. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP and InGaAs/InGaAsP at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Recently, there is a strong demand for the photon counting detector in a form of an array; even small arrays 10x1 or 3x3 are of great importance for users. Although the photon counting array can be manufactured, there exists a serious limitation for its performance: the optical cross-talk between individual detecting cells. This cross-talk is caused by the optical emission of the avalanche photon counting structure which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon shallow junction type photodiode. The timing properties, radiation pattern and spectral distribution of the emitted light have been measured for various detection structures and their different operating conditions. The ultimate limit for the cross-talk has been determined and the methods for its limitation have been proposed.

  12. Design and implementation of a photo detector using a complementary metal-oxide semiconductor

    International Nuclear Information System (INIS)

    In this paper, we present a photo detector using a complementary metal-oxide semiconductor (CMOS) for plastic optical fiber (POF) applications. Generally, the PIN photodiode and optical receiver front-end circuit are made from III-V compound materials, such as GaAs, InP, and HEMT (High Electron Mobility Transistor), due to their high speed and low noise characteristics. However, silicon deep-submicron CMOS technology is more attractive due to its low cost and high integration capacity. A PIN photodiode using a CMOS suffers from a low responsivity (R) a slow spreading speed of drift and diffusion current generated by photon. To overcome the low responsivity of the CMOS PIN photodiode, we exploit a PN junction between the N-well and the P-substrate. We propose a finger-shaped arrangement of the P-substrate to compensate for the slow spreading speed of the drift currents. The implemented CMOS PIN photodiode exhibits 0.12-A/W responsivity and 4.5-pF parasitic capacitance. Also, the optical receiver front-end circuit for the POF applications is integrated with the CMOS PIN photodiode. The designed photo detector exhibits a 112-MHz 3-dB bandwidth and consumes only 3-mA of DC current from a single 3.3 V supply voltage.

  13. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    Science.gov (United States)

    Rivetti, Angelo

    2014-11-01

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  14. Localized photovoltaic investigations on organic semiconductors and bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Newly synthesized organic electronics materials are often available in submicrogram amounts only. Photoelectrochemical scanning droplet cell microscopy is a powerful method that allows a comprehensive characterisation of such small amounts including oxidation, reduction potentials, doping, determination of charge carriers, band gap, charge capacity, over-oxidation sensitivity and many more. Localized photoelectrochemical characterization of the poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2, 6-diyl-alt-4-substituted-thieno [3,4-b] thiophene-2,6-diyl] (PBDTTT-c) and PBDTTT-c:PCBM bulk heterojunction was performed using photoelectrochemical scanning droplet cell microscopy (PE-SDCM). The optical properties and the real and imaginary part of the dielectric function, of the polymer were determined using spectroscopic ellipsometry. The photoelectrochemical characterizations were performed in a three and two electrode configuration of PE-SDCM under laser and white light illumination. The effect of illumination was characterized using dark/illumination sequences. The stability of the photocurrent was studied using longer term (600 s) illumination. Finally the effect of cell configuration and illumination conditions on the photovoltage was studied. (paper)

  15. Angle software for semiconductor detector gamma-efficiency calculations: applicability to radioactive waste characterization

    International Nuclear Information System (INIS)

    ANGLE software for semiconductor detector efficiency calculations in its various forms has been in use for 15 years now in numerous gamma-spectrometry based analytical laboratories all around. It goes about a semi-empirical approach, which combines advantages of both absolute and relative methods to determining sample activity by gamma-spectrometry, while conciliating and minimizing their drawbacks. Physical model behind is the concept of the effective solid angle - a parameter calculated upon the input data on geometrical, physical and chemical (composition) characteristics of: 1) The source (incl. its container vessel); 2) The detector (incl. crystal housing and end-cap); and 3) Counting arrangement (incl. intercepting layers between the latter two). It was shown earlier that only simultaneous differential treatment of gamma attenuation, counting geometry and detector response - as is the case with ANGLE - is essentially justified for this type of calculations. Attempting the other-way-round, i.e. to separately calculating these three phenomena, generally lead to (over)simplifications, which further require complex corrections with limited success. The program can be applied to practically all situations encountered in gamma-laboratory practice: point, disc, cylindrical or Marinelli samples, small and large, of any matrix composition. No standards are required, but a start-up 'reference efficiency curve' should be obtained ('once for ever') by measuring a set of calibrated point sources at a large source-to-detector distance (e.g. 20-30 cm, to avoid true coincidence effects). Calibration sources are chosen to cover gamma-energy region of analytical interest (e.g. 50-3000 keV). This initial effort is largely paid back in future exploitation. Briefly, ANGLE is characterized by: 1) A broad application range; 2) Pretty fair accuracy for this type of calculations (of a few percent order); 3) Comfortable data manipulation (under WINDOWS); 4) Short computation times; 5

  16. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    Science.gov (United States)

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-01

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications. PMID:25884131

  17. Dosimetric evaluation of semiconductor detectors for application in neutron dosimetry and microdosimetry in nuclear reactor and radiosurgical facilities

    International Nuclear Information System (INIS)

    The main objective of this research is the dosimetric evaluation of semiconductor components (surface barrier detectors and PIN photodiodes) for applications in dose equivalent measurements on low dose fields (fast and thermal fluxes) using an AmBe neutron source, the IEA-R1 reactor neutrongraphy facility (epithermal and thermal fluxes) and the Critical Unit facility IPEN/MB-01 (fast fluxes). As moderator compound to fast neutrons flux from the AmBe source was used paraffin and boron and polyethylene as converter for thermal and fast neutrons measurements. The resulting fluxes were used to the irradiation of semiconductor components (SSB - Surface Barrier Detector and PIN photodiodes). A mixed converter made of a borated polyethylene foil (Kodak) was also used. Monte Carlo simulation methodology was employed to evaluate analytically the optimal paraffin thickness. The obtained results were similar to the experimental data and allowed the evaluation of emerging neutron flux from moderator, as well as the fast neutron flux reaching the polyethylene covering the semiconductor sensitive surface. Gamma radiation levels were evaluated covering the whole detector with cadmium foil 1 mm thick, allowing thermal neutrons blockage and gamma radiation measurements. The IPEN/MB-01 facility was employed to evaluate the detector response for high neutron flux. The results were in good agreement with other studies published. Using the obtained spectra an approach to dose equivalent calculation was established. (author)

  18. Recent improvements in detection performances of radiation detectors based on bulk semi-insulating InP

    CERN Document Server

    Dubecky, F; Necas, V; Sekacova, M; Fornari, R; Gombia, E; Bohácek, P; Krempasky, M; Pelfer, P G

    2002-01-01

    In this work, bulk semi-insulating (SI) InP wafers of four various producers have been used for the fabrication of radiation detectors. The tested detectors were prepared starting from the different materials in just one run in order to be sure that their performances were not influenced by technological processes. On one type of material various electrode technologies were used with the aim to analyze their role on the detector performances. The fabricated detectors were tested for detection performance by the sup 2 sup 4 sup 1 Am and sup 5 sup 7 Co gamma-ray sources at below room temperature. The best detector was calibrated and tested also using sup 1 sup 3 sup 3 Ba and sup 1 sup 3 sup 7 Cs gamma sources. The best detector gives an energy resolution of 7 keV FWHM and a charge collection efficiency (CCE) of 82% (59.5 keV photopeak) at a temperature of 216 K. According to our knowledge, these results are the best which have been obtained with InP radiation detectors till now. The operation of SI InP detector...

  19. Angle Software for Semiconductor Detector Gamma-Efficiency Calculations: Applicability to Reactor Neutron Flux Characterization

    International Nuclear Information System (INIS)

    Angle software for semiconductor detector efficiency calculations in its various forms has been in use for 15 years now in numerous gamma-spectrometry based analytical laboratories all around. It goes about a semi-empirical approach, which combines advantages of both absolute and relative methods to determining sample activity by gamma-spectrometry, while conciliating and minimizing their drawbacks. Physical model behind is the concept of the effective solid angle - a parameter calculated upon the input data on geometrical, physical and chemical (composition) characteristics of (1) the source (incl. its container vessel), (2) the detector (incl. crystal housing and end-cap) and (3) counting arrangement (incl. intercepting layers between the latter two). It was shown earlier that only simultaneous differential treatment of gamma attenuation, counting geometry and detector response, as is the case with Angle, is essentially justified for this type of calculations. Attempting the other-way-round, i.e. to separately calculate these three phenomena, generally lead to (over)simplifications, which further require complex corrections with limited success. The program can be applied to practically all situations encountered in gamma-laboratory practice: point, disc, cylindrical or Marinelli samples, small and large, of any matrix composition. No standards are required, but a start-up 'reference efficiency curve' should be obtained (''once for ever'') by measuring a set of calibrated point sources at a large source-to-detector distance (e.g. 20-30cm, to avoid true coincidence effects). Calibration sources are chosen to cover gamma-energy region of analytical interest (e.g. 50-3000 keV). This initial effort is largely paid back in future exploitation. Briefly, ANGLE is characterized by (1) a broad application range, (2) good accuracy for this type of calculations (of a few percent order), (3) comfortable data manipulation (Windows), (4) short computation times, (5

  20. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F; Talamonti, R; Watts, S; Zanet, A

    1999-01-01

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors. (5 refs).

  1. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    International Nuclear Information System (INIS)

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors

  2. Development of neutron/gamma generators and a polymer semiconductor detector for homeland security applications

    Science.gov (United States)

    King, Michael Joseph

    -energetic gamma generators that operate at low-acceleration energies and leverage neutron generator technologies. The dissertation focused on the experimental characterization of the generator performance and involved MCNPX simulations to evaluate and analyze the experimental results. The emission of the 11.7 MeV gamma-rays was observed to be slightly anisotropic and the gamma yield was measured to be 2.0*105 gamma/s-mA. The lanthanum hexaboride target suffered beam damage from a high power density beam; however, this may be overcome by sweeping the beam across a larger target area. The efficient detection of fast neutrons is vital to active interrogation techniques for the detection of both SNM and explosives. Novel organic semiconductors are air-stable, low-cost materials that demonstrate direct electronic particle detection. As part of the development of a pi-conjugated organic polymer for fast neutron detection, charge generation and collection properties were investigated. By devising a dual, thin-film detector test arrangement, charge collection was measured for high energy protons traversing the dual detector arrangement that allowed the creation of variable track lengths by tilting the detector. The results demonstrated that an increase in track length resulted in a decreased signal collection. This can be understood by assuming charge carrier transport along the track instead of along the field lines, which was made possible by the filling of traps. However, this charge collection mechanism may be insufficient to generate a useful signal. This dissertation has explored the viability of a new generation of radiation sources and detectors, where the newly developed ion source technologies and prototype generators will further enhance the capabilities of existing threat detection systems and promote the development of cutting-edge detection technologies.

  3. Status of radiation damage measurements in room temperature semiconductor radiation detectors

    International Nuclear Information System (INIS)

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI2) is reviewed for the purpose of determining their applicability to space applications. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 1010 p/cm2 and significant bulk leakage after 1012 p/cm2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 x 109 p/cm2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum neutrons after fluences up to 1010 n/cm2, although activation was evident. CT detectors show resolution losses after fluences of 3 x 109 p/cm2 at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 x 1010 n/cm2. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 1012 p/cm2 and with 1.5 GeV protons at fluences up to 1.2 x 108 p/cm2. Neutron exposures at 8 MeV have been reported at fluences up to 1015 n/cm2. No radiation damage was found under these irradiation conditions

  4. A new method for charge-loss correction of room-temperature semiconductor detectors using digital trapezoidal pulse shaping

    International Nuclear Information System (INIS)

    It is well known that semiconductor detectors operating at room temperature can be read out at high rate, with good noise performance and low sensitivity to ballistic deficit, by using trapezoidal (flat-topped) pulse shaping. Nevertheless, the energy resolution of these detectors is also affected by chargetrapping inside the detector crystal, which can not be compensated by the standard trapezoidal pulse shaping. A new digital algorithm based on trapezoidal pulse shaping, to compensate for the charge-trapping effect while minimizing the electronic noise, has been developed. The application of the pulse processing algorithm to a 5 × 5 × 1 mm3 planar Schottky CdTe detector leads to an energy resolution of 1.15% FWHM at 662 keV at room temperature, which is considerably superior to the results of the standard pulse filters.

  5. Low-noise front-end electronics for semiconductor x-ray and gamma-ray detectors

    International Nuclear Information System (INIS)

    This thesis deals with improving the performance of semiconductor X-ray and gamma-ray detection systems with the help of low-noise analog electronics. Several methods were used to improve the performance of the detection systems: using optimum preamplifier topologies, cooling the detector and input FET in order to reduce leakage currents and noise, using low-noise JFETS as input devices of the preamplifier, matching the JFET capacitance as closely as possible with the detector capacitance, using good-quality low-loss materials for mounting the detector and the JFET in order minimize the dielectric noise, and using rise-time discrimination at the pulse-shaping amplifier in order to reduce the effect of photon events that have experienced charge carrier trapping in the detector materials

  6. Measurement stand for diagnosis of semiconductor detectors based on IBM PC/XT computer (4-way spectrometric analysis of pulses)

    International Nuclear Information System (INIS)

    The technical assumptions and partial realization of our technological stand for quality inspection of semiconductor detectors for ionizing radiation manufactured in the INP in Cracow are described. To increase the efficiency of the measurements simultaneous checking of 4 semiconductor chips or finished products is suggested. In order to justify this measurement technique a review of possible variants of the measurement apparatus is presented for the systems consisting of home made units. Comparative parameters for the component modules and for complete measuring systems are given. The construction and operation of data acquisition system based on IBM PC/XT are described. The system ensures simultaneous registration of pulses obtained from 4 detectors with maximal rate of up to 500 x 103 pulses/s. 42 refs., 6 figs., 3 tabs. (author)

  7. Triggering on hadronic tau decays in ATLAS: Semiconductor tracking detectors in action

    International Nuclear Information System (INIS)

    Identifying the decay of the hadronic tau leptons plays a crucial role in the search for physics beyond the Standard Model as well as in Standard Model measurements. However, these decays are difficult to identify and trigger on due to their resemblance to QCD jets. Given the large production cross-section of QCD processes, designing and operating a trigger system with the capability to efficiently select hadronic tau decays, while maintaining the rate within the bandwidth limits, is a difficult challenge. This contribution will summarize the status and performance of the ATLAS tau trigger system during the 2011 data taking period, emphasizing the key role of semiconductor tracking detectors for tracking and vertexing. Different methods that have been explored to obtain the trigger efficiency curves from data will be shown. Finally, in light of the vast statistics collected in 2011, future prospects for triggering on hadronic tau decays in this exciting new period of increased instantaneous luminosity will be presented. -- Highlights: ► The ATLAS Tau trigger successfully operated during the 2011 run. ► Tracking is a core part of the triggering process of ATLAS. ► The system attained very high levels of efficiency for track reconstruction. ► Data/simulation comparisons of tau trigger show very good agreement.

  8. Diagnostic analysis of silicon strips detector readout in the ATLAS Semi-Conductor Tracker module production

    International Nuclear Information System (INIS)

    The ATLAS Semi-Conductor Tracker (SCT) Collaboration is currently in the production phase of fabricating and testing silicon strips modules for the ATLAS detector at the Large Hadron Collider being built at the CERN laboratory in Geneva, Switzerland. A small but relevant percentage of ICs developed a new set of defects after being mounted on hybrids that were not detected in the wafer screening. To minimize IC replacement and outright module failure, analysis methods were developed to study IC problems during the production of SCT modules. These analyses included studying wafer and hybrid data correlations to finely tune the selection of ICs and tests to utilize the ability to adjust front-end parameters of the IC in order to reduce the rejection and replacement rate of fabricated components. This paper will discuss a few examples of the problems encountered during the production of SCT hybrids and modules in the area of ICs performance, and will demonstrate the value of the flexibility built into the ABCD3T chip

  9. Diagnostic analysis of silicon strips detector readout in the ATLAS Semi-Conductor Tracker module production

    CERN Document Server

    Ciocio, Alessandra

    2005-01-01

    The ATLAS Semi-Conductor Tracker (SCT) Collaboration is currently in the production phase of fabricating and testing silicon strips modules for the ATLAS detector at the Large Hadron Collider being built at the CERN laboratory in Geneva, Switzerland. A small but relevant percentage of ICs developed a new set of defects after being mounted on hybrids that were not detected in the wafer screening. To minimize IC replacement and outright module failure, analysis methods were developed to study IC problems during the production of SCT modules. These analyses included studying wafer and hybrid data correlations to finely tune the selection of ICs and tests to utilize the ability to adjust front-end parameters of the IC in order to reduce the rejection and replacement rate of fabricated components. This paper will discuss a few examples of the problems encountered during the production of SCT hybrids and modules in the area of ICs performance, and will demonstrate the value of the flexibility built into the ABCD3T ...

  10. Purification of bismuth (III) iodide for application as radiation semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Caue de Mello; Armelin, Maria Jose A.; Oliveira, Rene Ramos de; Martins, Joao F. Trencher; Omi, Nelson M.; Hamada, Margarida M., E-mail: cauemferraz@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work describes the experimental procedure of a purification method of BiI{sub 3} powder, aiming a future application of these semiconductor crystals as room temperature radiation detector. The Repeated Vertical Bridgman Technique applied to the purification, based on the melting and nucleation phenomena. An ampoule filled with a maximum of 25% by volume of BiI{sub 3} powder mounted into the Bridgman furnace and vertically moved at a speed of 2 millimeters per hour, inside the furnace with programmed thermal gradient and temperature profile, at a maximum temperature of 530 deg C. The reduction of the impurities in the BiI, after each purification procedure, analyzed by the Instrumental Neutron Activation Analysis (IINAA), in order to evaluate the efficiency of the purification technique established in this work, to trace metal impurities. It demonstrated that the Repeated Bridgman is effective to reduce the concentration of many impurities in BiI{sub 3}, such as Ag, As, Br, Cr, K, Mo, Na and Sb. The crystalline structure of the BiI{sub 3} crystal purified twice and three times was similar to the BiI{sub 3} pattern. However, for BiI{sub 3} powder and purified once, an intensity contribution of BiOI observed in the diffractograms. (author)

  11. Calibration of Ge(Li) semiconductor detector by method using agar volume source

    International Nuclear Information System (INIS)

    The Ge(Li) semiconductor detector was calibrated for measurements of environmental samples. The radioisotopes used for standard sources are 22Na, 51Cr, 56Co, 57Co, 133Ba, 137Cs, 144Ce and 241Am. These are mixed with hot agar aqueous solution and fixed uniformly in a cylindrical plastic case in cooling. The agar volume source is advantageous in handling over the fluid aqueous source. The prepared cylindrical standard sources are in diameters 6 and 8 cm and thicknesses 1, 5, 10, 20, 30 and 40 mm (only for 8 cm diameter). The radioactivities of prepared standard sources are between 0.03 μCi and 0.2 μCi. It takes only a week to make the calibration except data processing. The obtained full energy peak efficiency curves include 5 - 10% error due to preparation of agar source, reference radioactivity data of purchased standard solutions, reference data of branching ratio of gamma-ray and sum effect. The efficiency curves, however, are sufficient for quantitative analysis of environmental samples. (author)

  12. Purification of bismuth (III) iodide for application as radiation semiconductor detector

    International Nuclear Information System (INIS)

    This work describes the experimental procedure of a purification method of BiI3 powder, aiming a future application of these semiconductor crystals as room temperature radiation detector. The Repeated Vertical Bridgman Technique applied to the purification, based on the melting and nucleation phenomena. An ampoule filled with a maximum of 25% by volume of BiI3 powder mounted into the Bridgman furnace and vertically moved at a speed of 2 millimeters per hour, inside the furnace with programmed thermal gradient and temperature profile, at a maximum temperature of 530 deg C. The reduction of the impurities in the BiI, after each purification procedure, analyzed by the Instrumental Neutron Activation Analysis (IINAA), in order to evaluate the efficiency of the purification technique established in this work, to trace metal impurities. It demonstrated that the Repeated Bridgman is effective to reduce the concentration of many impurities in BiI3, such as Ag, As, Br, Cr, K, Mo, Na and Sb. The crystalline structure of the BiI3 crystal purified twice and three times was similar to the BiI3 pattern. However, for BiI3 powder and purified once, an intensity contribution of BiOI observed in the diffractograms. (author)

  13. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    OpenAIRE

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro

    2015-01-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton...

  14. Study on the effect of humidity and dust on leakage current of bulk micro-MEGAS detector

    CERN Document Server

    Wang, Bo; Qi, Hui-Rong; Liu, Jing; Zhang, Xin-Shuai; Zhang, Tian-Chong; Yi, Fu-Ting; Ou-Yang, Qun; Chen, Yuan-Bo

    2013-01-01

    In this paper, the effect of humidity and dust trapped in avalanche region on leakage current of bulk micro-MEGAS detector is studied. Pyralux PC1025 layers of DuPont are introduced in bulk technique and micro-MEGAS detector with pillars of 300{\\mu}m in diameter is fabricated. Leakage current is tested in air with different humidity. Silicon carbide powder and PMMA (polymethyl methacrylate) powder are added as dust to avalanche region. Leakage current with and without powder is tested in air and results are depicted in the same figure. Test results indicate that leakage current increases with both storage humidity and test humidity, and also increases when powder is introduced in avalanche region.

  15. Photoprecursor Approach Enables Preparation of Well-Performing Bulk-Heterojunction Layers Comprising a Highly Aggregating Molecular Semiconductor.

    Science.gov (United States)

    Suzuki, Mitsuharu; Yamaguchi, Yuji; Takahashi, Kohei; Takahira, Katsuya; Koganezawa, Tomoyuki; Masuo, Sadahiro; Nakayama, Ken-ichi; Yamada, Hiroko

    2016-04-01

    Active-layer morphology critically affects the performance of organic photovoltaic cells, and thus its optimization is a key toward the achievement of high-efficiency devices. However, the optimization of active-layer morphology is sometimes challenging because of the intrinsic properties of materials such as strong self-aggregating nature or low miscibility. This study postulates that the "photoprecursor approach" can serve as an effective means to prepare well-performing bulk-heterojunction (BHJ) layers containing highly aggregating molecular semiconductors. In the photoprecursor approach, a photoreactive precursor compound is solution-deposited and then converted in situ to a semiconducting material. This study employs 2,6-di(2-thienyl)anthracene (DTA) and [6,6]-phenyl-C71-butyric acid methyl ester as p- and n-type materials, respectively, in which DTA is generated by the photoprecursor approach from the corresponding α-diketone-type derivative DTADK. When only chloroform is used as a cast solvent, the photovoltaic performance of the resulting BHJ films is severely limited because of unfavorable film morphology. The addition of a high-boiling-point cosolvent, o-dichlorobenzene (o-DCB), to the cast solution leads to significant improvement such that the resulting active layers afford up to approximately 5 times higher power conversion efficiencies. The film structure is investigated by two-dimensional grazing-incident wide-angle X-ray diffraction, atomic force microscopy, and fluorescence microspectroscopy to demonstrate that the use of o-DCB leads to improvement in film crystallinity and increase in charge-carrier generation efficiency. The change in film structure is assumed to originate from dynamic molecular motion enabled by the existence of solvent during the in situ photoreaction. The unique features of the photoprecursor approach will be beneficial in extending the material and processing scopes for the development of organic thin-film devices. PMID

  16. Optimization of the SPECT systems based on a CdTe pixelated semiconductor detector using novel parallel-hole collimators

    International Nuclear Information System (INIS)

    Recently, many studies have been conducted using semiconductor materials to improve the system's sensitivity and spatial resolution. We are able to improve the spatial resolution by using a pixelated parallel-hole collimator with equal hole and pixel sizes. However, pixelated parallel-hole collimator appears to be problematic to manufacture collimator with small holes. Therefore, we presented an idea for a novel parallel-hole collimator with a cadmium telluride (CdTe) pixelated semiconductor detector. The purpose of this study was to evaluate and optimize the novel parallel-hole collimator geometric designs with CdTe pixelated semiconductor detector using GATE simulation program. This detector was modeled on PID 350 (Oy Ajat, Finland). We designed a novel parallel-hole collimator which consists of the two overlapped pixelated parallel-hole collimators. The overlap ratios of these collimators are 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1. To evaluate the performance of this system, system's sensitivity and spatial resolution were estimated. Additionally, image figure of merit (FOM) were calculated from the sensitivity and spatial resolution for the optimization of the novel parallel-hole collimator. According to the results, the measured averages of sensitivity using the 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1 ratio were 4.45, 7.56, 7.51, 12.76, 12.65, 20.01, and 19.90 times higher than that of the pixelated parallel-hole collimator, respectively, and the measured averages of spatial resolution were estimated various values depending on the source-to-collimator distances. Finally, the FOM using the pixelated parallel-hole collimator, 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1 ratio were 0.57, 0.73, 1.05, 1.13, 1.47, 1.62, 1.95, and 2.15, respectively. We designed a novel parallel-hole collimator with various ratios of collimator septal heights using a CdTe pixelated semiconductor detector. In conclusion, we successfully established a novel parallel-hole collimator

  17. Dual radioisotopes simultaneous SPECT of 99mTc-tetrofosmin and 123I-BMIPP using a semiconductor detector.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Takahashi

    2015-01-01

    Full Text Available Objective(s: The energy resolution of a cadmium-zinc-telluride (CZT solid-state semiconductor detector is about 5%, and is superior to the resolution of the conventional Anger type detector which is 10%. Also, the window width of the high-energy part and of the low-energy part of a photo peak window can be changed separately. In this study, we used a semiconductor detector and examined the effects of changing energy window widths for 99mTc and 123 I simultaneous SPECT. Methods: The energy “centerline” for 99mTc was set at 140.5 keV and that for 123I at 159.0 keV. For 99mTc, the “low-energy-window width” was set to values that varied from 3% to 10% of 140.5 keV and the “high-energy-window width” were independently set to values that varied from 3% to 6% of 140.5 keV. For 123I, the “low energy-window-width” varied from 3% to 6% of 159.0 keV and the high-energy-window width from 3% to 10% of 159 keV. In this study we imaged the cardiac phantom, using single or dual radionuclide, changing energy window width, and comparing SPECT counts as well as crosstalk ratio. Results: The contamination to the 123I window from 99mTc (the crosstalk was only 1% or less with cutoffs of 4% at lower part and 6% at upper part of 159KeV. On the other hand, the crosstalk from 123I photons into the 99mTc window mostly exceeded 20%. Therefore, in order to suppress the rate of contamination to 20% or less, 99mTc window cutoffs were set at 3% in upper part and 7% at lower part of 140.5 KeV. The semiconductor detector improves separation accuracy of the acquisition inherently at dual radionuclide imaging. In, this phantom study we simulated dual radionuclide simultaneous SPECT by 99mTc-tetrofosmin and 123 I-BMIPP. Conclusion: We suggest that dual radionuclide simultaneous SPECT of 99mTc and 123I using a CZT semiconductor detector is possible employing the recommended windows.

  18. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  19. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  20. Single-charge-carrier-type sensing with an insulated Frisch ring CdZnTe semiconductor radiation detector

    International Nuclear Information System (INIS)

    Performance optimization of an insulated Frisch ring design was investigated for a 3x3x6 mm CdZnTe planar semiconductor detector. The Frisch ring was composed of copper and was insulated from the detector surface with Teflon. Optimization variables included the Frisch ring length and the bias voltage. Optimized overall device performance was found using a 5 mm long Frisch ring extending from the cathode toward the anode, leaving a 1 mm separation between the Frisch ring and the anode. The best energy resolution observed was 1.7% full width at half maximum at 662 keV with the ring extending 4 mm from the cathode toward the anode

  1. SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.

    Science.gov (United States)

    Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi

    2011-08-01

    In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. PMID:21808317

  2. X-ray diffuse scattering for evaluation of wide bandgap semiconductor nuclear radiation detectors

    International Nuclear Information System (INIS)

    The crystalline perfection of solid state radiation detectors was examined using triple axis x-ray diffraction. Triple axis techniques provide a means to analyze the origin of diffraction peak broadening: the effects of strain (due to deviations in alloy composition or stoichiometry) and lattice tilts (mosaic structure) can be separated. Cd1-xZnxTe (x∼0.1), HgI2, and GaAs detector materials were studied. In the cases of Cd1-xZnxTe and HgI2 the crystalline properties of detectors with different spectral responses to γ-radiation were determined. Increased mosaicity was universally found to be related to deteriorated detector properties. For Cd1-xZnxTe, detectors with poor performance possessed greater levels of diffuse scatter due to lattice tilts than did high quality detectors. For GaAs, low angle grain boundaries were attributed to impaired detector performance. Additionally, in large HgI2 detectors, deviations from stoichiometry were also related to reduced performance. Interestingly, HgI2 detectors which possessed a sharp spectral response to γ-radiation but also showed polarization were of comparable crystallinity to those detectors which did not exhibit polarization effects. This initial analysis suggests that polarization is related to native point defects or chemical impurities which do not significantly alter the crystallinity of the material. Overall, within a given class of materials, improved detector performance (better spectral response) always correlated with better material quality. (orig.)

  3. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of)

    2012-07-15

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radio pharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  4. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    International Nuclear Information System (INIS)

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radio pharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  5. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    Science.gov (United States)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung

    2012-07-01

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radiopharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small-animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  6. Influence of insulator-semiconductor interface parameters and bulk parameters on frequency dependence of GaAs MIS conductance

    International Nuclear Information System (INIS)

    The numerical calculations of MIS conductance vs frequency at fixed gate voltage have been presented. The equivalent circuit of MIS structure including a. c. losses in insulator and series resistance has been used. The analysis is based on the idea that frequency behaviour of conductance is evoked by tunnelling of electrons between semiconductor and spatially distributed insulator-semiconductor interface states. The existence of acceptor and donor states with exponential energy dependence and Gaussian type distribution of density in space have been assumed. The possibility of explanations of experimental data for SiO2-GaAs MIS structure in the frame of accepted model has been presented. (author)

  7. Analysis and modelling of the performance of a new solid-state detector in nuclear medicine: from Anger- to Semiconductor-detectors

    International Nuclear Information System (INIS)

    Myocardial single-photon emission computed tomography (SPECT) is considered as the gold standard for the diagnosis of coronary artery disease. Developed in the 1980's with rotating Anger gamma cameras, this technique could be dramatically enhanced by new imaging systems working with semiconductor detectors and which performances are clearly enhanced. Two semiconductor cameras, dedicated to nuclear cardiology and equipped with Cadmium Zinc Telluride detectors, have been recently commercialized: the Discovery NM- 530c (General Electric) and the DSPECT (Spectrum Dynamics). The performances of these CZT cameras were compared: 1) by a comprehensive analysis of phantom and human SPECT images considered as normal and 2) with the parameters commonly recommended for SPECT recording and reconstruction. The results show the superiority of the CZT cameras in terms of detection sensitivity, spatial resolution and contrast-to-noise ratio, compared to conventional Anger cameras. These properties might lead to dramatically reduce acquisition times and/or the injected activities. However, the limits of these new CZT cameras, as well as the mechanism of certain artefacts, remain poorly known. This knowledge could be enhanced by a numerical modeling of the DSPECT camera, and this might also help to optimize acquisition and reconstruction parameters. We developed a simulator where the geometry of the detectors of the DSPECT camera and their energy response were modeled in the GATE platform. In order to validate this simulator, actually recorded data were compared with simulated data through three performance parameters: detection sensitivity, spatial resolution and energy resolution. Results were in agreement between simulated and actually recorded data. This observation validates the DSPECT simulator and opens the door to further studies planed to optimize the recorded and reconstruction processes, especially for complex protocols such as simultaneous dual-radionuclide acquisition

  8. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    International Nuclear Information System (INIS)

    Based on results of investigations of the thin-film smoke sensors made of Bi2O3, irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold

  9. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    CERN Document Server

    Adamian, A Z; Aroutiounian, V M

    2001-01-01

    Based on results of investigations of the thin-film smoke sensors made of Bi sub 2 O sub 3 , irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold.

  10. Performance of thallium bromide semiconductor detectors produced by repeated Bridgman method

    International Nuclear Information System (INIS)

    TlBr crystals have been grown by the Repeated Bridgman method from commercial TlBr materials and characterized to be used as radiation detectors. We have shown that the Repeated Bridgman is effective to reduce the concentration of impurities in TlBr. It was observed that detectors fabricated from higher purity crystal exhibit significant improvement in performance compared to those produced from low purity crystals. However, problems still exist in TlBr detectors, due to the low charge carrier collection efficiency, which is probably caused by additional impurities or defects incorporated during crystal growth and detector fabrication processes. (author)

  11. Performance of an improved thermal neutron activation detector for buried bulk explosives

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.E., E-mail: jemcfee@gmail.com [Defence R and D Canada – Suffield, Medicine Hat (Canada); Faust, A.A. [Defence R and D Canada – Suffield, Medicine Hat (Canada); Andrews, H.R.; Clifford, E.T.H. [Bubble Technology Industries Inc., Chalk River (Canada); Mosquera, C.M. [Defence R and D Canada – Suffield, Medicine Hat (Canada)

    2013-06-01

    First generation thermal neutron activation (TNA) sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on multi-sensor landmine detection systems. The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr{sub 3}(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. The sensor is described, with emphasis on the improvements. Experiments to characterize the performance of the second generation TNA in detecting buried landmines and improvised explosive devices (IEDs) hidden in culverts are described. Performance results, including comparisons between the performance of the first and second generation systems are presented.

  12. Experimental results on radiation induced bulk damage effects in float-zone and epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dezillie, B. [European Organization for Nuclear Research, Geneva (Switzerland); Lemeilleur, F. [European Organization for Nuclear Research, Geneva (Switzerland); Glaser, M. [European Organization for Nuclear Research, Geneva (Switzerland); Casse, G.-L. [European Organization for Nuclear Research, Geneva (Switzerland); Leroy, C. [Montreal Univ., PQ (Canada)

    1997-02-11

    A comparative study of the radiation hardness of silicon pad detectors, manufactured from float-zone and epitaxial n-type monocrystals and irradiated with protons and neutrons up to fluence of 3.5 x 10{sup 14} cm{sup -2} is presented. The results are compared in terms of their reverse current, depletion voltage, and charge collection as a function of fluence during irradiation and as a function of time after irradiation. (orig.).

  13. The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research

    International Nuclear Information System (INIS)

    The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays

  14. K-mean clustering algorithm for processing signals from compound semiconductor detectors

    International Nuclear Information System (INIS)

    The K-mean clustering algorithm was employed for processing signal waveforms from TlBr detectors. The signal waveforms were classified based on its shape reflecting the charge collection process in the detector. The classified signal waveforms were processed individually to suppress the pulse height variation of signals due to the charge collection loss. The obtained energy resolution of a 137Cs spectrum measured with a 0.5 mm thick TlBr detector was 1.3% FWHM by employing 500 clusters.

  15. Recent advances in the development of semiconductor detectors for very high luminosity colliders

    International Nuclear Information System (INIS)

    For the luminosity upgrade of the LHC, the SLHC, the tracking systems of the LHC experiments need to be replaced. A main concern is the extreme radiation hardness requirement up to 1x1016cm-2 1 MeV neutron equivalent. This paper describes an extract of recent results on radiation hardening technologies developed within the RD50 Collaboration (http://www.cern.ch/rd50) for the tracker upgrades. Silicon detectors have been designed and produced on n- and p-type wafers made by Float Zone, epitaxy and Czochralski technology. Their charge collection efficiency after proton, neutron and mixed irradiation has been studied. Novel detector concepts, as 3D detectors, have been designed, produced and studied as well. Radiation induced microscopic disorder has been also investigated and correlated with the performance degradation of irradiated detectors.

  16. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector

    International Nuclear Information System (INIS)

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by 241Am (59 keV), 133Ba (80 e 355 keV), 57Co (122 keV), 22Na (511 keV) and 137 Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  17. High-z semiconductor nuclear radiation detectors for room-temperature gamma-ray spectrometry

    International Nuclear Information System (INIS)

    A bibliographical review (182 articles of periodicals, conferences, reports, thesis and french patents) is presented, as addendum of the report CEA-BIB-210 (1974) on high-Z semiconductor compounds used as materials for the gamma and X-ray detection and spectrometry. This publication reviews issues from 1974 to 1977. References and summaries (in french) are incorporated into 182 bibliograhical notices. Index for authors, corporate authors, documents and periodicals, and subjects is included

  18. A Comparison of the Valence Band Structure of Bulk and Epitaxial GeTe-based Diluted Magnetic Semiconductors

    International Nuclear Information System (INIS)

    In this work we present a comparison of the experimental results, which have been obtained by the resonant photoelectron spectroscopy for a set of selected diluted magnetic semiconductors based on GeTe, doped with manganese. The photoemission spectra are acquired for the photon energy range of 40-60 eV, corresponding to the Mn 3p → 3d resonances. The spectral features related to Mn 3d states are revealed in the emission from the valence band. The Mn 3d states contribution manifests itself in the whole valence band with a maximum at the binding energy of 3.8 eV. (authors)

  19. Comparison of ionisation chamber and semiconductor detector devices for measurement of the dose–width product for panoramic dental units

    International Nuclear Information System (INIS)

    Doses for panoramic dental radiography are assessed in terms of the dose–width product (DWP) or dose–area product, which gives a measure of the radiation through a whole exposure. The DWP can be measured using a pencil ionisation chamber (IC) similar to that used for computed tomography dose assessment. However, ICs are sensitive to radiation incident from all directions and so backscatter from the image receptor may increase the recorded dose. This study compares measurements performed using four options: a pencil IC mounted straight on the image receptor, the IC mounted with a steel plate to the rear to standardise scatter conditions, the IC mounted with a steel plate and lead collimators in front to minimise the effect of extra-focal radiation, and a Quart Dido employing a one square centimetre semiconductor detector (SD) designed for panoramic measurements. The results indicate that modification of the current method by incorporating a steel plate reduced the measurement dose by 7% on average, but the reduction was greater for units with semiconductor imaging plates. The measurements with the SD agree more closely with the IC with the steel plate to the rear. An IC with a backing plate to standardise scatter or a suitable SD is recommended for measurement on panoramic dental units. (paper)

  20. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    Science.gov (United States)

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  1. The plasma decay time in semiconductor detectors for energetic heavy ions

    International Nuclear Information System (INIS)

    The decay times tsub(p) of the electron-hole plasma formed in the wake of fission fragments and alpha particles stopped in a number of silicon surface barrier detector are measured from the resulting current pulse rise times. Detector field and fragment mass and energy dependence data are presented for the five detectors used. Use of the field strength Fsub(c) at the charge centroid of the plasma column for both fragments and alphas removes or reduces a systematic detector resistivity dependence observable in the results obtained when the front face maximum detector field F0 is used as a parameter. We obtain tsub(p) approx. equal to Fsub(c)sup(0.85+-0.06) for fragments and tsub(p) approx. equal to Fsub(c)sup(-0.7+-0.1) for alphas. These are slightly weaker field dependences than the commonly used inversely proportional relationship, which we too observe when F0 is used. No appreciable fragment mass dependence is observed, while the fragment energy (E) dependence is tsub(p) approx. equal to Esup(0.47). These results are shown to accord with theoretical expectations. (orig.)

  2. Propagation of ultrasonic waves in bulk gallium Nitride (GaN) semiconductor in the presence of high-frequency electric Field

    International Nuclear Information System (INIS)

    The propagation of ultrasound is studied in bulk GaN semiconductor in the presence of a strong, ac field oscillating at a frequency much higher than that of the ultrasound. Analytical expressions have been obtained for the attenuation coefficient (α) and the renormalized velocity (ν) of the acoustic wave. It is shown that the dependencies of the ultrasonic absorption coefficient of the conduction electrons and the renormalized sound velocity on the field amplitude and the sound frequency have an oscillatory character which can be used to determine the effective mass and mobility of the material. The threshold field Emin = 3.3x102 V/ cm needed to observe the oscillation is two orders smaller than that needed in the case of CdS. (author)

  3. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance

    International Nuclear Information System (INIS)

    A bulk diluted magnetic semiconductor was found in the K and Mn co-doped BaCd2As2 system. Different from recently reported tetragonal ThCr2Si2-structured II-II-V based (Ba,K)(Zn,Mn)2As2, the Ba1−yKyCd2−xMnxAs2 system has a hexagonal CaAl2Si2-type structure with the Cd2As2 layer forming a honeycomb-like network. The Mn concentration reaches up to x ∼ 0.4. Magnetization measurements show that the samples undergo ferromagnetic transitions with Curie temperature up to 16 K. With low coercive field of less than 10 Oe and large magnetoresistance of about −70%, the hexagonal structured Ba1−yKyCd2−xMnxAs2 can be served as a promising candidate for spin manipulations

  4. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Demko, L.; Tokura, Y. [Multiferroics Project, ERATO, JST, c/o Department of Applied Physics, University of Tokyo (Japan); Schober, G.A.H. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kocsis, V.; Kezsmarki, I. [Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences (Hungary); Bahramy, M.S.; Murakawa, H. [CMRG and CERG, RIKEN ASI (Japan); Lee, J.S.; Arita, R.; Nagaosa, N. [Department of Applied Physics, University of Tokyo (Japan)

    2013-07-01

    We study the magneto-optical (MO) response of the polar semiconducting BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  5. Growth, fabrication, and testing of bismuth tri-iodide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Bismuth tri-iodide (BiI3) is an attractive material for high energy resolution radiation detectors. For the purpose of this research, detectors were fabricated using single crystals grown from ultra-pure BiI3 powder; synthesized by the Physical Vapor Transport (PVT) technique. This technique yielded powder with total impurity level of 7.9 ppm. Efforts were also made to purify commercial BiI3 powder using a custom-built Traveling Zone Refining (TZR) system. Initial trial runs were successful in reducing the total impurity level of the commercial powder from 200 ppm to less than 50 ppm. Using the modified vertical Bridgman technique and a customized sharp tip ampoule, a large BiI3 single crystal was grown. The crystal had a surface area of 2.2 cm2 and a thickness of 0.8 cm, which corresponds to a volume of 1.78 cm3. Radiation detectors were fabricated and then tested by measuring their electrical characteristics and radiation response. An alpha particle spectrum (using a 241Am α-source) was recorded at room temperature with a BiI3 detector 0.09 cm thick and with a surface area of 0.16 cm2. The electron mobility was estimated to be 433 ± 79 cm2/V. - Highlights: • Ultrapure BiI3 crystal was grown by the modified vertical Bridgman technique. • BiI3 radiation detectors were fabricated and tested. • The ultrapure detectors showed superior electrical characteristics. • Radiation response was measured by recording an α-spectrum at room temperature. • Electron mobility was estimated

  6. Determination of the dynamic nonlinearity of semiconductor and combined detectors for computer-assisted tomography

    International Nuclear Information System (INIS)

    The experimental arrangement described reproduces values of the x-ray photon flux density that are typical of computer-assisted tomography (108-1010 cm-2 x sec-1) and its rates of relative change. The authors give the results of determination of the dynamic nonlinearity γ/sup d/ of combined detectors [CsI(Tl) +- Si photodiode and CdWO4 + FEU-60 photomultiplier] and semiconducting CdTe. The CdTe detector has the highest value, γ/sup d/ ≥ 36%, while CdWO4 + FEU-60 has the lowest values, γ/sup d/ ≤ 1%, on the trailing edge of the current signal

  7. Micro and nanophotonics for semiconductor infrared detectors towards an ultimate uncooled device

    CERN Document Server

    Jakšic, Zoran

    2014-01-01

    The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of

  8. Investigation of temperature dependence of semiconductor detectors used in medicine for radiation measurements

    OpenAIRE

    Altunkok Simay Ozleyis; Tuncel Nina; Ucar Nazim

    2015-01-01

    In this study, the temperature dependence of p-type semiconductor diodes that are a part of in-vivo dosimetry system was assessed in Co-60 photon energy. The collimator and gantry angle on zero degree, SSD 100 cm, field size 20x20 cm2 was selected. The IBA EDP-5, EDP-10 and EDP-20 diode types that included in this study have different thickness of build-up material so the depth of measurements at water equivalent phantom by FC65-p ion chamber was selected at 5, 10 and 20 mm. Along the process...

  9. Dose-rate effects on the bulk etch-rate of CR-39 track detector exposed to low-LET radiations

    CERN Document Server

    Yamauchi, T; Oda, K; Ikeda, T; Honda, Y; Tagawa, S

    1999-01-01

    The effect of gamma-rays and pulsed electrons has been investigated on the bulk etch rate of CR-39 detector at doses up to 100 kGy under various dose-rate between 0.0044 and 35.0 Gy/s. The bulk etch rate increased exponentially with the dose at every examined dose-rates. It was reveled to be strongly depend on the dose-rate: the bulk etch rate was decreased with increasing dose-rate at the same total dose. A primitive model was proposed to explain the dose-rate effect in which oxygen dissolved was assumed to dominate the damage formation process.

  10. Optical determination of phosphorus acceptor binding energy in bulk wide-gap II-VI semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Zn1-xMnxTe and Cd1-xMnxTe semimagnetic semiconductors doped with phosphorus have been investigated by means of the resistivity, Hall effect, photoluminescence and reflectance measurements. The high p-type doping level of these materials was achieved using Zn3P2 and CdP2 as the sources of P-impurities. By applying a unique technology of high-pressure annealing we were able to overcome a self-compensation in Zn1-xMnxTe:P. As a result, the sample with high and controllable concentration of electrical active acceptors were produced. The ground state binding energy of phosphorus acceptors in both Zn1-xMnxTe and Cd1-xMnxTe as well as its variation with the phosphorus doping level were optically determined. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Kutcher, Susan W [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Palsoz, Witold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Berding, Martha [SRI International, Menlo Park, CA (United States); Burger, Arnold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States)

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  12. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    CERN Document Server

    Watanabe, Shin; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2015-01-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and ...

  13. Nonperturbative Interband Response of a Bulk InSb Semiconductor Driven Off Resonantly by Terahertz Electromagnetic Few-Cycle Pulses

    OpenAIRE

    Junginger, F.; Mayer, B.; Schmidt, C.(Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany); Schubert, O.; Mährlein, S.; Leitenstorfer, A.; Huber, R.; Pashkin, A.

    2012-01-01

    Intense multiterahertz pulses are used to study the coherent nonlinear response of bulk InSb by means of field-resolved four-wave mixing spectroscopy. At amplitudes above 5  MV/cm the signals show a clear temporal substructure which is unexpected in perturbative nonlinear optics. Simulations based on a model of a two-level quantum system demonstrate that in spite of the strongly off-resonant character of the excitation the high-field few-cycle pulses drive the interband resonances into a nonp...

  14. SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S [Wayne State University, Detroit, MI (United States); Kaye, W; Jaworski, J [H3D, Inc., Ann Arbor, MI (United States); He, Z [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinhole camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired for

  15. Propagation of ultrasonic waves in bulk gallium nitride (GaN) semiconductor in the presence of high-frequency electric field II

    International Nuclear Information System (INIS)

    We report the calculations of the electron mobility and electron drift-velocity in the propagation of ultrasound in bulk GaN semiconductor in the presence of a strong ac field oscillating at a frequency much higher than that of the ultrasound. Analytical expressions have been obtained for the attenuation coefficient (α) and the renormalized velocity (v) of the acoustic wave. It is shown that the dependencies of the ultrasonic absorption coefficient of the conduction electrons and the renormalized sound velocity on the field amplitude and the sound frequency have an oscillatory character which can be used to determine the effective mass and mobility of the material. The threshold field Emin = 3.3 x 102 V / cm needed to observe the oscillations is two orders smaller than that needed in the case of CdS. The electron mobility μ = 1500cm2 / Vs and electron drift-velocity vD 2.7 x 107 cm/s are obtained for bulk GaN in the presence of the high-frequency electric field. (author)

  16. Semiconductor detectors for medical tomography with high-energy heavy ions

    International Nuclear Information System (INIS)

    High-energy heavy ion beams are in use at the Lawrence Berkeley Laboratory for cancer therapy. In order to take full advantage of the very favorable depth-dose characteristics of those beams, it is necessary to determine the stopping characteristics of the ions in the complex media of a human with greater accuracy than obtainable with x-ray CAT scanning. Initial measurements with an array of Si dE/dx position sensitive detectors and a windowless thin planar Ge detector used in a side entry mode show the potential for fabricating an instrument for high accuracy on-line CAT scanning using the same ions to be used for therapy. It is estimated that one tomography can be obtained with a dose of 0.72 Rad-gm

  17. Canister cryogenic system for cooling germanium semiconductor detectors in borehole and marine probes

    Science.gov (United States)

    Boynton, G.R.

    1975-01-01

    High resolution intrinsic and lithium-drifted germanium gamma-ray detectors operate at about 77-90 K. A cryostat for borehole and marine applications has been designed that makes use of prefrozen propane canisters. Uses of such canisters simplifies cryostat construction, and the rapid exchange of canisters greatly reduces the time required to restore the detector to full holding-time capability and enhances the safety of a field operation where high-intensity 252Cf or other isotopic sources are used. A holding time of 6 h at 86 K was achieved in the laboratory in a simulated borehole probe in which a canister 3.7 cm diameter by 57 cm long was used. Longer holding times can be achieved by larger volume canisters in marine probes. ?? 1975.

  18. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    Directory of Open Access Journals (Sweden)

    Anna Maria Mancini

    2009-05-01

    Full Text Available Over the last decade, cadmium telluride (CdTe and cadmium zinc telluride (CdZnTe wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si and germanium (Ge, CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors.

  19. First investigation of a novel 2D position-sensitive semiconductor detector concept

    OpenAIRE

    Bassignana, D.; Fernández, M; Jaramillo, R.; Lozano Fantoba, Manuel; Muñoz Sánchez, F. J.; Pellegrini, Giulio; Quirion, D; Vila, Iván

    2011-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sen...

  20. Quality assurance and testing before, during, and after construction of semiconductor tracking detectors

    International Nuclear Information System (INIS)

    We discuss the most frequent problems met with during the construction of three generations of microvertex detectors and a silicon-tungsten luminometer for the OPAL experiment, and during the many small projects and R and D work for other experiments and university projects. The emphasis will be on describing technical details and work practices adopted to prevent damage to and loss of expensive material, and the techniques preferred to prevent disaster during construction. (orig.)

  1. Photo detectors and sources of polarized light on the basis of strong anisotropic semiconductors

    International Nuclear Information System (INIS)

    Investigation of emitting and photo electrical properties of anisotropic GaSe, InSe, CdSnP2, CdIn2Se4 monocrystals and heterojunction on their basis established degree of anisotropy of electroluminescence and photoconductivity specified with anisotropy of electron condition. Principe of the creation of optoelectronic devises of new generation polar metric detectors and inverter of sources and collectors of the linearly polarized irradiation

  2. Optimizing the design and analysis of cryogenic semiconductor dark matter detectors for maximum sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Pyle, Matt Christopher [Stanford Univ., CA (United States)

    2012-01-01

    In this thesis, we illustrate how the complex E- field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's T3 c scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs.

  3. Gamma-ray imaging and spectroscopy system using room-temperature semiconductor detector elements

    International Nuclear Information System (INIS)

    We report on the design, construction, and testing of a gamma-ray imaging system with spectroscopic capabilities. The imaging system consists of an orthogonal strip detector made from either HgI2 or CdZnTe crystals. The detectors utilize an 8x8 orthogonal strip configuration with 64 effective pixels. Both HgI2 or CdZnTe detectors are 1 cm2 devices with a strip pitch of approximately 1.2 mm (producing pixels of 1.2 mm x 1.2 mm). The readout electronics consist of parallel channels of preamplifier, shaping amplifier, discriminators, and peak sensing ADC. The preamplifiers are configured in hybrid technology, and the rest of the electronics are implemented in NIM and CAMAC with control via a Power Macintosh computer. The software used to readout the instrument is capable of performing intensity measurements as well as spectroscopy on all 64 pixels of the device. We report on the performance of the system imaging gamma-rays in the 20-500 keV energy range and using a pin-hole collimator to form the image. (author)

  4. Medical Compton cameras based on semiconductor detectors design and experimental development

    CERN Document Server

    Scannavini, M G

    2001-01-01

    The work presented in this thesis is aimed at the study of Compton scatter as an alternative method of collimating gamma-rays in nuclear medicine applications. Conventional approaches to radioisotope medical imaging and their current limitations are examined. The theory of electronic collimation based on Compton scatter is introduced and it is shown that in principle its application could provide an advantageous imaging method, with both high spatial resolution and high sensitivity. The current status of research in the field, of Compton cameras is assessed and potential niches for applications of clinical interest are suggested. The criteria for the design of a Compton scatter camera are examined. A variety of semiconductors are considered for the construction of an electronic collimator and results from Monte Carlo computer simulations are presented for photon energies of clinical interest. It is concluded that the most viable approach is to design a silicon collimator for the imaging of high-energy (511 ke...

  5. Digital X-ray microscopy of small biological samples using Medipix2 semiconductor pixel detector

    Czech Academy of Sciences Publication Activity Database

    Dammer, J.; Weyda, František; Jakůbek, J.; Sopko, V.; Žemlička, J.; Hanus, Robert

    Badajoz: Formatex, 2010 - (A. Méndez-Vilas, J.), s. 415-421. (Microscopy Book Series). ISBN 978-84-614-6189-9 R&D Projects: GA MŠk 2B06007; GA AV ČR IAA600550614; GA MŠk 2B06005 Grant ostatní: GA MŠk(CZ) 1P04LA211; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50070508 Keywords : X-ray imaging * Digital radiography * Computed tomography (CT) * Photon and X-ray detectors Subject RIV: CC - Organic Chemistry

  6. Amplitude and rise time compensated timing optimized for large semiconductor detectors

    International Nuclear Information System (INIS)

    The ARC timing described has excellent timing properties even when using a wide energy range, eg from 10 keV to over 1 MeV. The detector signal from a preamplifier is accepted directly by the unit as a timing filter amplifier with a sensitivity of 1 mV is incorporated. The adjustable rise time rejection feature makes it possible to achieve a good prompt time spectrum with symmetrical exponential shape down to less than 1/100 of the peak value. A complete schematic of the unit is given together with results of extensive tests of its performance. For example the time spectrum for (1330+-20) keV of 60Co taken with a 43 ccm Ge(Li) detector has the following parameters: FWHM=2.2 ns, FW(.1)M = 4.4 ns and FW(.01)M = 7.6 ns and for (50+-10) keV of 22Na the following was obtained: FWHM =10.8 ns, FW(.1)M =21.6 ns and FW(.01)M = 34.6 ns. In another experiment with two fast plastic scintillators (NE 102A) and using a 20 % dynamic energy range the following was measured FWHM =280 ps, FW(.1)M = 470 ps and FW(.01)M =710 ps. (Auth.)

  7. Holmium-166m: multi-gamma standard to determine the activity of radionuclides in semiconductor detectors

    International Nuclear Information System (INIS)

    The efficiency and calibration curves as function of gamma-ray energy for a germanium detector are usually established by using many standard gamma ray sources of radionuclides decaying with few gamma rays or radionuclides having complex decay scheme, as 152Eu or 133Ba. But these radionuclides cannot be used alone, because they have a few gamma lines with high intensity and these lines have a irregular distribution in the energy spectrum. 166mHo is found to be a convenient single source for such calibration, because it decays by β- with subsequent emission of about 40 strong and well distributed gamma lines between 80 and 1500 keV. Moreover, its long half - life (1200 years) and X-rays characteristics between 40 and 50 keV makes it a good standard for calibration of germanium detectors. However, it is necessary to know with accuracy and precision the gamma ray intensities of their main lines, due to the fact that literature has showed discrepant values. Then, a methodology to determine the emission probability of its main lines is proposed by means of combined use of gamma spectrometry and coincidence 4πβ -γ techniques. The experimental results show consistence to the others authors, with lower or compatible uncertainties. (author)

  8. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    International Nuclear Information System (INIS)

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60–600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0–2.0 keV (FWHM) at 60 keV and 1.6–2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype. - Highlights: • The final prototype of the Si/CdTe Compton camera for the ASTRO-H SGD was completed. • The detailed design of the Compton camera is described. • The unprecedented high efficiency and high

  9. Investigation of temperature dependence of semiconductor detectors used in medicine for radiation measurements

    Science.gov (United States)

    Ozleyis Altunkok, Simay; Tuncel, Nina; Ucar, Nazim

    2015-07-01

    In this study, the temperature dependence of p-type semiconductor diodes that are a part of in-vivo dosimetry system was assessed in Co-60 photon energy. The collimator and gantry angle on zero degree, SSD 100 cm, field size 20x20 cm2 was selected. The IBA EDP-5, EDP-10 and EDP-20 diode types that included in this study have different thickness of build-up material so the depth of measurements at water equivalent phantom by FC65-p ion chamber was selected at 5, 10 and 20 mm. Along the process the room and phantom temperature was measured and recorded (19°C). The special water filled PMMA phantom was used for diode set-up on its surface and a thermometer for determine phantom temperature was employed. Each type of diodes irradiated separately for one minute and the signal to dose sensitivity and calibration was performed at room temperature (19°C) by OmniPro-InViDos software with DPD-12 electrometer. Examination was repeated from 33°C to 20°C temperatures. The temperature correction factors were found from slope of the linear drawings for each diode types. The obtained correction factor for EDP-5 and EDP-10 was 0.29 %°C/cGy and 0.30 %°C/cGy respectively, that higher than recommended factor (%0.25°C/cGy). While the more fluctuation for EDP-20 was realized.

  10. First investigation of a novel 2D position-sensitive semiconductor detector concept

    International Nuclear Information System (INIS)

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  11. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    Science.gov (United States)

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-01

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics. PMID:24103966

  12. First Investigation on a novel 2D position sensitive semiconductor detector concept

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  13. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation

    International Nuclear Information System (INIS)

    To assess the diagnostic performance of a novel ultrafast cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors for nuclear myocardial perfusion imaging (MPI). The study group comprised 75 consecutive patients (55 men, BMI range 19-45 kg/m2) who underwent a 1-day 99mTc-tetrofosmin adenosine-stress/rest imaging protocol. Scanning was performed first on a conventional dual-detector SPECT gamma camera (Ventri, GE Healthcare) with a 15-min acquisition time each for stress and rest. All scans were immediately repeated on an ultrafast CZT camera (Discovery 530 NMc, GE Healthcare) with a 3-min scan time for stress and a 2-min scan time for rest. Clinical agreement (normal, ischaemia, scar) between CZT and SPECT was assessed for each patient and for each coronary territory using SPECT MPI as the reference standard. Segmental myocardial tracer uptake values (percent of maximum) using a 20-segment model and left ventricular ejection fraction (EF) values obtained using CZT were compared with those obtained using conventional SPECT by intraclass correlation and by calculating Bland-Altman limits of agreement. There was excellent clinical agreement between CZT and conventional SPECT on a per-patient basis (96.0%) and on a per-vessel territory basis (96.4%) as shown by a highly significant correlation between segmental tracer uptake values (r=0.901, p<0.001). Similarly, EF values for both scanners were highly correlated (r=0.976, p<0.001) with narrow Bland-Altman limits of agreement (-5.5-10.6%). The novel CZT camera allows a more than fivefold reduction in scan time and provides clinical information equivalent to conventional standard SPECT MPI. (orig.)

  14. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation

    Energy Technology Data Exchange (ETDEWEB)

    Buechel, Ronny R.; Herzog, Bernhard A.; Husmann, Lars; Burger, Irene A.; Pazhenkottil, Aju P.; Treyer, Valerie; Valenta, Ines; Schulthess, Patrick von; Nkoulou, Rene; Wyss, Christophe A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2010-04-15

    To assess the diagnostic performance of a novel ultrafast cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors for nuclear myocardial perfusion imaging (MPI). The study group comprised 75 consecutive patients (55 men, BMI range 19-45 kg/m{sup 2}) who underwent a 1-day {sup 99m}Tc-tetrofosmin adenosine-stress/rest imaging protocol. Scanning was performed first on a conventional dual-detector SPECT gamma camera (Ventri, GE Healthcare) with a 15-min acquisition time each for stress and rest. All scans were immediately repeated on an ultrafast CZT camera (Discovery 530 NMc, GE Healthcare) with a 3-min scan time for stress and a 2-min scan time for rest. Clinical agreement (normal, ischaemia, scar) between CZT and SPECT was assessed for each patient and for each coronary territory using SPECT MPI as the reference standard. Segmental myocardial tracer uptake values (percent of maximum) using a 20-segment model and left ventricular ejection fraction (EF) values obtained using CZT were compared with those obtained using conventional SPECT by intraclass correlation and by calculating Bland-Altman limits of agreement. There was excellent clinical agreement between CZT and conventional SPECT on a per-patient basis (96.0%) and on a per-vessel territory basis (96.4%) as shown by a highly significant correlation between segmental tracer uptake values (r=0.901, p<0.001). Similarly, EF values for both scanners were highly correlated (r=0.976, p<0.001) with narrow Bland-Altman limits of agreement (-5.5-10.6%). The novel CZT camera allows a more than fivefold reduction in scan time and provides clinical information equivalent to conventional standard SPECT MPI. (orig.)

  15. Investigation of temperature dependence of semiconductor detectors used in medicine for radiation measurements

    Directory of Open Access Journals (Sweden)

    Altunkok Simay Ozleyis

    2015-01-01

    Full Text Available In this study, the temperature dependence of p-type semiconductor diodes that are a part of in-vivo dosimetry system was assessed in Co-60 photon energy. The collimator and gantry angle on zero degree, SSD 100 cm, field size 20x20 cm2 was selected. The IBA EDP-5, EDP-10 and EDP-20 diode types that included in this study have different thickness of build-up material so the depth of measurements at water equivalent phantom by FC65-p ion chamber was selected at 5, 10 and 20 mm. Along the process the room and phantom temperature was measured and recorded (19°C. The special water filled PMMA phantom was used for diode set-up on its surface and a thermometer for determine phantom temperature was employed. Each type of diodes irradiated separately for one minute and the signal to dose sensitivity and calibration was performed at room temperature (19°C by OmniPro-InViDos software with DPD-12 electrometer. Examination was repeated from 33°C to 20°C temperatures. The temperature correction factors were found from slope of the linear drawings for each diode types. The obtained correction factor for EDP-5 and EDP-10 was 0.29 %°C/cGy and 0.30 %°C/cGy respectively, that higher than recommended factor (%0.25°C/cGy. While the more fluctuation for EDP-20 was realized.

  16. Characteristics of TlBr single crystals grown using the vertical Bridgman-Stockbarger method for semiconductor-based radiation detector applications

    Directory of Open Access Journals (Sweden)

    Jin Kim Dong

    2016-06-01

    Full Text Available TlBr single crystals grown using the vertical Bridgman-Stockbarger method were characterized for semiconductor based radiation detector applications. It has been shown that the vertical Bridgman-Stockbarger method is effective to grow high-quality single crystalline ingots of TlBr. The TlBr single crystalline sample, which was located 6 cm from the tip of the ingot, exhibited lower impurity concentration, higher crystalline quality, high enough bandgap (>2.7 eV, and higher resistivity (2.5 × 1011 Ω·cm which enables using the fabricated samples from the middle part of the TlBr ingot for fabricating high performance semiconductor radiation detectors.

  17. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    OpenAIRE

    Anna Maria Mancini; Andrea Zappettini; Ezio Caroli; Leonardo Abbene; Stefano Del Sordo; Pietro Ubertini

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status...

  18. Modeling of detection efficiency of HPGe semiconductor detector by Monte Carlo method

    International Nuclear Information System (INIS)

    Over the past ten years following the gradual adoption of new legislative standards for protection against ionizing radiation was significant penetration of gamma-spectrometry between standard radioanalytical methods. In terms of nuclear power plant gamma-spectrometry has shown as the most effective method of determining of the activity of individual radionuclides. Spectrometric laboratories were gradually equipped with the most modern technical equipment. Nevertheless, due to the use of costly and time intensive experimental calibration methods, the possibilities of gamma-spectrometry were partially limited. Mainly in late 90-ies during substantial renovation and modernization works. For this reason, in spectrometric laboratory in Nuclear Power Plants Bohunice in cooperation with the Department of Nuclear Physics FMPI in Bratislava were developed and tested several calibration procedures based on computer simulations using GEANT program. In presented thesis the calibration method for measuring of bulk samples based on auto-absorption factors is described. The accuracy of the proposed method is at least comparable with other used methods, but it surpasses them significantly in terms of efficiency and financial time and simplicity. The described method has been used successfully almost for two years in laboratory spectrometric Radiation Protection Division in Bohunice nuclear power. It is shown by the results of international comparison measurements and repeated validation measurements performed by Slovak Institute of Metrology in Bratislava.

  19. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector

    OpenAIRE

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C.; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J.; Yliperttula, Marjo

    2015-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is ...

  20. Advanced semiconductor detector development: Development of a room-temperature, gamma ray detector using gallium arsenide to develop an electrode detector. Progress report, September 30, 1994--September 29, 1995

    International Nuclear Information System (INIS)

    Devices fabricated from wide bandgap materials that can be operated without cooling suffer from poor energy resolution and are limited to very small volumes; this arises largely from poor hole mobility in compound semiconductors. Three different device configurations are being investigated for possibly overcoming this limitation: buried grid-single carrier devices, trenched single carrier devices, and devices using patterned coplanar electrodes (CdZnTe). In the first, leakage problems were encountered. For the second, a set of specifications has been completed, and electron cyclotron resonance etching will be done at an off-campus facility. For the third, Aurora will supply 3 different CdZnTe detectors. An analytical study was done of the patterned electrode approach

  1. Study of bulk semi-insulating GaAs radiation detectors: role of ohmic contact metallization in electrical charge transport and detection performance

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Zat'ko, B.; Hubík, Pavel; Boháček, P.; Gombia, E.; Chromík, Š.

    Piscataway, N.J : IEEE Operation Center, 2008 - (Haščík, Š.; Osvald, J.), 295 - 298 ISBN 978-1-4244-2325-5. [International Conference on Advanced Semiconductor Devices and Microsystems /7./. Smolenice Castle (SK), 12.10.2008-16.10.2008] R&D Projects: GA AV ČR IAA1010404 Institutional research plan: CEZ:AV0Z10100521 Keywords : radiation detector * semi-insulating GaAs * ohmic contact * work function Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. The bulk-etch thickness for the formation of etched through tracks in CR-39 detectors as a tool for nuclear spectrometry: a computational study

    International Nuclear Information System (INIS)

    The bulk-etch thickness which is removed from a single surface of CR-39 nuclear track detectors for the formation of etched through tracks has been calculated using various charged particles with ranges greater than the particle's trajectory in the detector. An attempt is made to explore the possibility of making use of the bulk-etch thickness at the moment of perforation for energy spectroscopy and particle identification. In the calculations track development kinetics were used for varying track etch rate ratio V. The value of V is determined for nuclei of Z≤26 and was found to be a function of the atomic number Z, the mass number A and the residual range of the nuclear particle. Also an empirical formula between the track length and the minor track diameter, the dip angle and the bulk-etch thickness is obtained. Present calculations show that the etched-off thickness from the detector surface at the moment of perforation of CR-39 depends upon REL and is also a function of Z/β of the nuclear particle. The obtained results have important applications in the fields of nuclear spectroscopy and the production of nuclear track filters

  3. Multielement X-ray radiometric analysis with application of semiconductor detectors and automatic processing of the results of measurements

    International Nuclear Information System (INIS)

    Problems of complex extraction of useful components from the ores with compound composition demand to ensure multielement analysis having the accuracy which is sufficient for practical purposes. Great possibilities has the X-ray-radiometric analysis with application of semiconductor detectors (SD) and with processing the results of measurements by means of mini- or micro-computers. Present state in the detection and computation techniques permits to introduce the said instruments into the practical use in the analytical laboratories of the mining enterprises. On the base of discussion of the practical tasks in analysis of different types of ores, in the paper basic principles of the multielement X-ray-radiometric analysis for industrial purposes have been formulated. First of all it is an installation with few channels. The main requirement in creation of such installations is to ensure high relaibility and stability of their performance. A variant is given of such analyzer, constructed with use of SiLi or Ge detecting blocks. Possibility for quick change of the excitation sources made of the set of iron-55, cadmium-109, americium-241 or cobalt-57 ensures effective excitation of elements in the range from calcium to uranium. Some practical methods of analysis have been discussed in the paper. They are based both on the methods of passive and active experiments at the calibration stages. Accuracy of these methods is enough for change of ordinary chemical analysis by the radiometric one. Problems are discussed of application of mini- and micro-computers, permitting processing of information according to the metods of analysis having been developed. Some examples are given of practical realization of the multielement X-ray-radiometric analysis of the lead-zinc, cppper-molybdenum, lead-barite and some other types of ores and also of the products of processing of ores

  4. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10×5 Timepix chips

    International Nuclear Information System (INIS)

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3×7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample

  5. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    Science.gov (United States)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  6. The drift-diffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level

    Science.gov (United States)

    Cvikl, B.

    2010-01-01

    The closed solution for the internal electric field and the total charge density derived in the drift-diffusion approximation for the model of a single layer organic semiconductor structure characterized by the bulk shallow single trap-charge energy level is presented. The solutions for two examples of electric field boundary conditions are tested on room temperature current density-voltage data of the electron conducting aluminum/tris(8-hydroxyquinoline aluminum/calcium structure [W. Brütting et al., Synth. Met. 122, 99 (2001)] for which jexp∝Va3.4, within the interval of bias 0.4 V≤Va≤7. In each case investigated the apparent electron mobility determined at given bias is distributed within a given, finite interval of values. The bias dependence of the logarithm of their lower limit, i.e., their minimum values, is found to be in each case, to a good approximation, proportional to the square root of the applied electric field. On account of the bias dependence as incorporated in the minimum value of the apparent electron mobility the spatial distribution of the organic bulk electric field as well as the total charge density turn out to be bias independent. The first case investigated is based on the boundary condition of zero electric field at the electron injection interface. It is shown that for minimum valued apparent mobilities, the strong but finite accumulation of electrons close to the anode is obtained, which characterize the inverted space charge limited current (SCLC) effect. The second example refers to the internal electric field allowing for self-adjustment of its boundary values. The total electron charge density is than found typically to be of U shape, which may, depending on the parameters, peak at both or at either Alq3 boundary. It is this example in which the proper SCLC effect is consequently predicted. In each of the above two cases, the calculations predict the minimum values of the electron apparent mobility, which substantially

  7. Determination of spectrum-dose conversion operator for a pure germanium semi-conductor detector for environmental γ-ray measurement

    International Nuclear Information System (INIS)

    The G(E) functions of the spectrum-dose conversion operator for a cylindrical pure germanium semi-conductor detector to evaluate the exposure rate were determined. Effective volume of the detector is 106.5 cm3 (5.43 cm PHI x 4.6 cm), and the energy range of gamma-ray applicable for the G(E) function is from 40 keV up to 3 MeV. Authors have already determined G(E) functions for cylindrical NaI(TL) scintillation detectors and for spherical ones. However, as germanium detectors are far superior to NaI(TL) scintillation detectors in the point of energy resolution, they are very useful in the field of environmental gamma-ray measurement for gamma-ray energy analysis and exposure evaluation using their pulse height spectrum. The present G(E) functions are prepared for a pure germanium detector for environmental gamma-ray measurement. Exposure rate can be evaluated accurately and easily by using these G(E) functions. The measuring accuracy in the range of 40 keV up to 3 MeV for exposure unit are within about 5%. These G(E) functions are useful for interconnecting the results measured by various instruments in environmental monitoring. (author)

  8. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    CERN Document Server

    Cesareo, R; Castellano, A

    1999-01-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd sub 1 sub - sub x Zn sub x Te and HgI sub 2 , coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 mu m, an area of about 2x3 mm sup 2 , an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 mu m. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching approx 9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd sub 1 sub - sub x Zn sub x Te detector ha...

  9. SiliPET: Design of an ultra-high resolution small animal PET scanner based on stacks of semi-conductor detectors

    Science.gov (United States)

    Cesca, N.; Auricchio, N.; Di Domenico, G.; Zavattini, G.; Malaguti, R.; Andritschke, R.; Kanbach, G.; Schopper, F.

    2007-03-01

    We studied with Monte Carlo simulations, using the EGSnrc code, a new scanner for small animal positron emission tomography (PET), based on stacks of double-sided semiconductor detectors. Each stack is composed of planar detectors with dimension 70×60×1 mm 3 and orthogonal strips on both sides with 500 μm pitch to read the two interaction coordinates, the third being the detector number in the stack. Multiple interactions in a stack are discarded. In this way, we achieve a precise determination of the first interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results of scanners based on Si planar detectors are presented and the initial tomographic reconstructions demonstrate very good spatial resolution limited only by the positron range. This suggests that, this is a promising new approach for small animal PET imaging. We are testing some double-sided silicon detectors, equipped with 128 orthogonal p and n strips on opposite sides using VATAGP3 ASIC by IDEAS.

  10. SiliPET: Design of an ultra-high resolution small animal PET scanner based on stacks of semi-conductor detectors

    International Nuclear Information System (INIS)

    We studied with Monte Carlo simulations, using the EGSnrc code, a new scanner for small animal positron emission tomography (PET), based on stacks of double-sided semiconductor detectors. Each stack is composed of planar detectors with dimension 70x60x1 mm3 and orthogonal strips on both sides with 500 μm pitch to read the two interaction coordinates, the third being the detector number in the stack. Multiple interactions in a stack are discarded. In this way, we achieve a precise determination of the first interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results of scanners based on Si planar detectors are presented and the initial tomographic reconstructions demonstrate very good spatial resolution limited only by the positron range. This suggests that, this is a promising new approach for small animal PET imaging. We are testing some double-sided silicon detectors, equipped with 128 orthogonal p and n strips on opposite sides using VATAGP3 ASIC by IDEAS

  11. Nanoimprinted Hybrid Metal-Semiconductor Plasmonic Multilayers with Controlled Surface Nano Architecture for Applications in NIR Detectors

    OpenAIRE

    Akram A. Khosroabadi; Palash Gangopadhyay; Steven Hernandez; Kyungjo Kim; Nasser Peyghambarian; Norwood, Robert A.

    2015-01-01

    We present a proof of concept for tunable plasmon resonance frequencies in a core shell nano-architectured hybrid metal-semiconductor multilayer structure, with Ag as the active shell and ITO as the dielectric modulation media. Our method relies on the collective change in the dielectric function within the metal semiconductor interface to control the surface. Here we report fabrication and optical spectroscopy studies of large-area, nanostructured, hybrid silver and indium tin oxide (ITO) st...

  12. Characterization and comparison of lateral amorphous semiconductors with embedded Frisch grid detectors on 0.18μm CMOS processed substrate for medical imaging applications

    Science.gov (United States)

    Hristovski, Christos; Goldan, Amir; Majid, Shaikh Hasibul; Wang, Kai; Shafique, Umar; Karim, Karim

    2011-03-01

    An indirect digital x-ray detector is designed, fabricated, and tested. The detector integrates a high speed, low noise CMOS substrate with two types of amorphous semiconductors on the circuit surface. Using a laterally oriented layout a-Si:H or a-Se can be used to coat the CMOS circuit and provide high speed photoresponse to complement the high speed circuits possible on CMOS technology. The circuit also aims to reduce the effect of slow carriers by integrated a Frisch style grid on the photoconductive layer to screen for the slow carriers. Simulations show a uniform photoresponse for photons absorbed on the top layer and an enhanced response when using a Frisch grid. EQE and noise results are presented. Finally, possible applications and improvements to the area of indirect x-ray imaging that are capable of easily being implemented on the substrate are suggested.

  13. Low-Mass WIMP Sensitivity and Statistical Discrimination of Electron and Nuclear Recoils by Varying Luke-Neganov Phonon Gain in Semiconductor Detectors

    CERN Document Server

    Pyle, M; Cabrera, B; Hall, J; Schnee, R W; Thakur, R Basu; Yellin, S

    2012-01-01

    Amplifying the phonon signal in a semiconductor dark matter detector can be accomplished by operating at high voltage bias and converting the electrostatic potential energy into Luke-Neganov phonons. This amplification method has been validated at up to |E|=40V/cm without producing leakage in CDMSII Ge detectors, allowing sensitivity to a benchmark WIMP with mass = 8GeV and cross section 1.8e-42cm^2 assuming flat electronic recoil backgrounds near threshold. Furthermore, for the first time we show that differences in Luke-Neganov gain for nuclear and electronic recoils can be used to discriminate statistically between low-energy background and a hypothetical WIMP signal by operating at two distinct voltage biases. Specifically, 99% of events have p-value<1e-8 for a simulated 20kg-day experiment with a benchmark WIMP signal with mass =8GeV and cross section =3.3e-41cm^2.

  14. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  15. Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

    CERN Multimedia

    Gregor, I; Dierlamm, A H; Sloan, T; Campbell, D; Tuboltsev, Y V; Marone, M; Artuso, M; Cindro, V; Bruzzi, M; Bhardwaj, A; Bohm, J; Mikestikova, M; Altenheiner, S; Walz, M; Breindl, M A; Ruzin, A; Marunko, S; Guskov, J; Pospisil, S; Fadeyev, V; Makarenko, L; Kaminski, P; Zelazko, J; Pintilie, L; Radu, R; Nistor, S V; Ullan comes, M; Storasta, J V; Gaubas, E; Garutti, E; Buhmann, P; Khomenkov, V; Poehlsen, J A; Fernandez garcia, M; Curras rivera, E; Buttar, C; Eklund, L M; Jones, B; Eremin, V; Aleev, A; Modi, B; Van beuzekom, M G; Kozlowski, R; Lozano fantoba, M; Leroy, C; Pernegger, H; Centis vignali, M; Vila alvarez, I; Lounis, A; Eremin, I; Ilyashenko, I; Fadeeva, N; Rogozhkin, S; Shivpuri, R K; Haerkoenen, J J; Sicho, P; Abt, M; Savic, N; Lopez paz, I; Monaco, V; Visser, J; Lynn, D; Horazdovsky, T; Solar, M; Dervan, P J; Affolder, A; Seiden, A; Kazuchits, N; Brzozowski, A; Kozubal, M; Lazanu, S; Nistor, L C; Fretwurst, E; Hoenniger, F; Schwandt, J; Hartmann, F; Maneuski, D; Seidel, S C; Gisen, A J; Preiss, J; Macchiolo, A; Nisius, R; Grinstein, S; Marchiori, G; Gonella, L; Slavicek, T; Masek, P; Casse, G; Meng, L; Flores, D; Tuuva, T; Charron, S; Rubinskiy, I; Jansen, H; Eichhorn, T V; Matysek, M; Andersson-lindstroem, G; Donegani, E; Palomo pinto, F R; Oshea, V; Chilingarov, A; Verbitskaya, E; Mitina, D; Grigoriev, E; Zaluzhnyy, A; Mikuz, M; Kramberger, G; Scaringella, M; Ranjeet, R; Jain, A; Luukka, P R; Tuominen, E M; Goessling, C; Klingenberg, R; Bomben, M; Cartiglia, N; Kohout, Z; Quirion, D; Lauer, K; Collins, P; Gallrapp, C; Rohe, T V; Fox, H; Nikitin, A; Spiegel, L G; Creanza, D M; Menichelli, D; Mcduff, H; Carna, M; Weigell, P; Chauveau, J; Staiano, A; Bellan, R; Szumlak, T; Sopko, V; Spencer, E N; Pawlowski, M; Pintilie, I; Pellegrini, G; Rafi tatjer, J M; Golovleva, M; Moll, M; Eckstein, D; Klanner, R; Gomez, G; Shepelev, A; Golubev, A; Uplegger, L A; Lipton, R J; Borgia, A; Zavrtanik, M; Manna, N; Ranjan, K; Chhabra, S; Kuhn, S S; Beyer, J; Korolkov, I; Sadrozinski, H; Surma, B; Esteban, S; Kazukauskas, V; Kalendra, V; Mekys, A; Glaser, M; Tackmann, K; Steinbrueck, G; Pohlsen, T; Nellist, C J M; Bolla, G; Mandic, I; Zontar, D; Focardi, E; Maeenpaeae, T H; Vrba, V; Wunstorf, R; Parzefall, U; Moser, H; Lange, J C; Calderini, G; Briglin, D L; Sopko, B; Buckland, M D; Vaitkus, J V; Ortlepp, T

    2002-01-01

    The requirements at the Large Hadron Collider (LHC) at CERN have pushed the present day silicon tracking detectors to the very edge of the current technology. Future very high luminosity colliders or a possible upgrade scenario of the LHC to a luminosity of 10$^{35}$ cm$^{-2}$s$^{-1}$ will require semiconductor detectors with substantially improved properties. Considering the expected total fluences of fast hadrons above 10$^{16}$ cm$^{-2}$ and a possible reduced bunch-crossing interval of $\\approx$10 ns, the detector must be ultra radiation hard, provide a fast and efficient charge collection and be as thin as possible.\\\\ We propose a research and development program to provide a detector technology, which is able to operate safely and efficiently in such an environment. Within this project we will optimize existing methods and evaluate new ways to engineer the silicon bulk material, the detector structure and the detector operational conditions. Furthermore, possibilities to use semiconductor materials othe...

  16. The detector control system of the ATLAS SemiConductor tracker during macro-assembly and integration

    Czech Academy of Sciences Publication Activity Database

    Abdesselam, A.; Barr, A.; Basiladze, S.; Böhm, Jan; Šťastný, Jan

    2008-01-01

    Roč. 3, - (2008), P02007/1-P02007/29. ISSN 1748-0221 R&D Projects: GA MŠk LA08032; GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : solid state detectors * large detector systems for particle and astroparticle physics * detector control systems Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.333, year: 2008

  17. Application of microchips AMPL-8.3 and DISC-8.3 for work with semiconductor strip detectors

    International Nuclear Information System (INIS)

    The objective of the work was to widespread the sphere of microchips AMPL-8.3 and DISC-8.3 application to the silicon strip detectors. As a result two versions of preamplifiers were designed for 16-channel PCB ADB-16, intended for gaseous detectors. At present this electronics is used for methodical researches of detectors, for stand tests and creation of prototype systems for new high energy physics experiments. (authors)

  18. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se

    International Nuclear Information System (INIS)

    Purpose: The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. Methods: A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Results: Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. Conclusions: The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  19. Comparison of beam quality parameters computed from mammographic x-ray spectra measured with different high-resolution semiconductor detectors

    International Nuclear Information System (INIS)

    In this work, the x-ray spectra of standard mammographic radiation qualities were measured with Si(Li), SDD and CdTe detectors. The x-ray source was an industrial x-ray tube with an Mo anode, operating at constant tube potentials between 20 and 35 kV, and adapted with filters of Mo and Al, in order to reproduce standard mammographic beam qualities. The measured spectra were corrected by the energy response of each detector, which were determined using Monte Carlo simulation. From the corrected spectra, values of HVL and mean energies were computed. The results show that, after correction by the energy response functions, all detectors provided similar bremsstrahlung spectra, whereas greater differences were observed in the characteristic peaks, due to the different energy resolutions of the detection systems. The comparison between values of HVL and mean energies calculated from the spectra obtained with each detector also show good agreement, with differences up to 5.5%. For most of the conditions studied, the differences between the measured values of HVL and those computed from the corrected spectra are lesser than the experimental uncertainties. Finally, our results show that, although the detectors Si(Li), SDD and CdTe provide similar spectra, the use of the first two detectors, which combine high energy resolution and low spectral distortions, is recommended, since they provide more accurate spectra from which several quality parameters can be determined. - Highlights: ► The Si(Li), SDD and CdTe detectors were applied for mammographic x-ray spectroscopy. ► The x-ray spectra measured with these detectors are similar, showing differences only in the characteristic peaks. ► The mean energies and values of HVL computed from the measured spectra with these detectors also show small differences. ► The use of Si(Li) detectors and SDD is advantageous due to their better energy resolution

  20. Experimental results on radiation-induced bulk damage effects in float-zone and epitaxial silicon detectors

    CERN Document Server

    Dezillie, B; Glaser, M; Casse, G L; Leroy, C

    1996-01-01

    A comparative study of the radiation hardness of silicon pad detectors, manufactured from Float-Zone and Epitaxial n-type monocrystals and irradiated with protons and neutrons up to a fluence of 3.5 1014 cm-2 is presented. The results are compared in terms of their reverse current, depletion voltage, and charge collection as a function of fluence during irradiation and as a function of time after irradiation.

  1. Ultrafast bandgap technique: light-induced semiconductor augmentation

    Science.gov (United States)

    Zakharova, I. K.; Rafailov, M. K.

    2014-06-01

    Bleaching by ultra-short pulses is discussed as an opportunity for semiconductor optical augmentation. The ability of ultra-short laser pulse to excite and remove electrons in-bulk from valence band may be used to prevent generation of thermal electrons for extended period of time. That time is correlated with recombination time. Diminishing the number of electrons that are available for thermal excitation leads to thermal noise reduction in the same way as semiconductor cooling. Technology based on the effect may be used as effective alternative to thermal cooling, and may allow some semiconductors effectively be exploited at ambient temperatures. Specifically, high sensitive and fast detectors as well as semiconductor lasers covering long and very long-wavelengths may actually work without extra cooling., needed to reduce thermal noise. In this paper, we will consider the effects caused by relatively low pulse energy ultra-short pulse lasers.

  2. Development of Ion-Implanted Si-PIN Semiconductor Radiation Detector%离子注入型Si-PIN半导体探测器的研制

    Institute of Scientific and Technical Information of China (English)

    宋明东; 卜忍安

    2011-01-01

    本文系统地介绍了Si-PIN探测器对带电粒子、中子、射线的探测原理.针对灵敏面积为φ30mm×420μm的Si-PIN探测器,详细地介绍了设计方法和工艺流程,并指出了影响探测器性能的关键工艺.采用离子注入和平面工艺不仅能够降低漏电流,提高探测器的能量分辨率,而且使得探测器对高温环境和真空都很稳定.最后初步介绍了探测器的电特性(I-V特性,C-V特性)的变化趋势,以及探测特性参数的测量方法.%The principle of Si-PIN semiconductor detector detecting charged particle, neutron and radiation are introduced systematically in this article. The design procedures and technology process of the detector whose sensitive area is φ30 mm X 420 um are introduced. The key technologies which affect performance of the detector are also presented. The ion-implanted planar technology could reduce leakage current and enhance resolution of the detector as well as improves stability of the detector in high-temperature and vacuum environment. At last, I-V and C-V characteristics curves as well as detecting characteristic parameters are also introduced preliminarily.

  3. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  4. EFFECTIVENESS OF ELECTROSTATIC SHIELDING AND ELECTRONIC SUBTRACTION TO CORRECT FOR THE HOLE TRAPPING IN CDZNTE SEMICONDUCTOR DETECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    BOLOTNIKOV,A.E.; CAMARDA, G.S.; HOSSAIN, A.; CUI, Y.; JAMES, R.B.

    2007-08-26

    CdZnTe (CZT) is a very promising material for nuclear-radiation detectors. CZT detectors operate at ambient temperatures and offer high detection efficiency and excellent energy resolution, placing them ahead of high-purity Ge for those applications where cryogenic cooling is problematic. The progress achieved in CZT detectors over the past decade is founded on the developments of robust detector designs and readout electronics, both of which helped to overcome the effects of carrier trapping. Because the holes have low mobility, only electrons can be used to generate signals in thick CZT detectors, so one must account for the variation of the output signal versus the locations of the interaction points. To obtain high spectral resolution, the detector's design should provide a means to eliminate this dependence throughout the entire volume of the device. In reality, the sensitive volume of any ionization detector invariably has two regions. In the first, adjacent to the collecting electrode, the amplitude of the output signal rapidly increases almost to its maximum as the interaction point is located farther from the anode; in the rest of the volume, the output signal remains nearly constant. Thus, the quality of CZT detector designs can be characterized based on the magnitude of the signals variations in the drift region and the ratio between the volumes of the driR and induction regions. The former determines the ''geometrical'' width of the photopeak i.e., the line width that affects the total energy resolution and is attributed to the device's geometry when all other factors are neglected. The latter determines the photopeak efficiency and the area under the continuum in the pulse-height spectra. In this work, we describe our findings from systematizing different designs of CZT detectors and evaluating their performance based on these two criteria.

  5. Study on residual radioactivity measurement method for site release of nuclear facilities. In-situ radioactivity measurement test with the use of portable Ge semiconductor detector (Contract research)

    International Nuclear Information System (INIS)

    Nuclear facility sites after decommissioning are allowed to be released from nuclear safety regulations after confirming that sites have been decontaminated to acceptable levels. In-situ measurement with the use of a portable pure-germanium semiconductor detector (Ge detector) is a suitable technology for confirmatory survey. A method to conservatively evaluate residual radioactivity on the sites was proposed in this study. In the evaluation method concept, the radionuclide (Cs-137, etc.), which are in reality distributed across the area of interest, is assumed to be the single point source located at the furthest position on the ground surface of the area from the Ge detector. Based on this assumption, the detectable minimum time of the interest radionuclide was predicted by the calculation. If radiation from the point source is not detected for longer than the predicted detectable time, it can be proven that the radioactivity remaining in the interest area is lower than the radioactivity corresponding to the assumed point source. Results of the field test in JAEA site indicated that the proposed evaluation method was reasonable for the conservative evaluation of residual radioactivity. (author)

  6. High-contrast X-ray radiography using hybrid semiconductor pixel detectors with 1 mm thick Si sensor as a tool for monitoring liquids in natural building stones

    International Nuclear Information System (INIS)

    For the preservation of buildings and other cultural heritage, the application of various conservation products such as consolidants or water repellents is often used. X-ray radiography utilizing semiconductor particle-counting detectors stands out as a promising tool in research of consolidants inside natural building stones. However, a clear visualization of consolidation products is often accomplished by doping with a contrast agent, which presents a limitation. This approach causes a higher attenuation for X-rays, but also alters the penetration ability of the original consolidation product. In this contribution, we focus on the application of Medipix type detectors newly equipped with a 1 mm thick Si sensor. This thicker sensor has enhanced detection efficiency leading to extraordinary sensitivity for monitoring consolidants and liquids in natural building stones even without any contrast agent. Consequently, methods for the direct monitoring of organosilicon consolidants and dynamic visualization of the water uptake in the Opuka stone using high-contrast X-ray radiography are demonstrated. The presented work demonstrates a significant improvement in the monitoring sensitivity of X-ray radiography in stone consolidation studies and also shows advantages of this detector configuration for X-ray radiography in general

  7. Floating-zone growth of CdMnTe crystals and their characterization as room-temperature semiconductor gamma-ray detectors

    Science.gov (United States)

    Liu, T. S.; Wang, F. Y.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Roy, U.; Lee, K.; Yang, G.; James, R.; Gu, G. D.

    2014-03-01

    CdMnTe (CMT) is a promising candidate for room-temperature semiconductor gamma-ray detectors. In the past, several groups have grown detector-grade CMT material by using a low-pressure Bridgman method. The performance of the test devices fabricated from CMT crystals was found to be slightly lower to that achieved with CdZnTe detectors. For example, the best electron mu-tau product reported for CMT was about 5 times lower compared to that achieved for the best commercial CZT material. Also, the crystal quality of the CMT crystals was reduced due to strong twinning, presence of subgrain boundaries and, in some cases, Te inclusions. Here, we report on our attempt to grow CMT crystals by using a modified floating-zone growth technique, which has not been used previously to grow CMT crystals. There are several advantages of this technique over the traditional Bridgman methods: a higher purity of as-grown crystals, better doping control, more stable growth conditions with uniform compositional distribution, and a better control of the seeding and morphology of the growing crystal. We present the new growth technique and results from CMT crystal characterization and device testing. The work is supported by office NA22, DOE.

  8. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  9. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  10. Analysis of lateritic material from Cerro Impacto by instrumental neutron activation employing a low-energy photon semiconductor and a high-energy Ge(Li) detector

    International Nuclear Information System (INIS)

    Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration process of different elements based upon the hardness of the different minerals. The analysis was performed by excitation of the sample with a high, slow neutron flux followed by gamma-ray spectroscopy with both a conventional Ge(Li) high-energy detector and a low-energy photon detector (LEPD). The accuracy of this method was studied with the use of two standard reference materials, SY-2 and SY-3, which are similar to the real samples. The values determined were also compared with a secondary target x-ray fluorescence method for all the elements that were suitable to both methods. Actually, the x-ray fluorescence method was found to be more complementary than competitive. 10 refs., 2 figs., 4 tabs

  11. A Needle-Type p-i-n Junction Semiconductor Detector for In-Vivo Measurement of Beta Tracer Activity

    International Nuclear Information System (INIS)

    A miniature detector probe has been developed for in-vivo detection of beta tracer activity. A lithium-drifted p-i-n detector shaped as a cylinder 0.9 mm in diameter and 3 mm long acts as the sensing element. The detector is encased in a stainless steel tube 50 mm long, fastened to a holder fitted with a miniature coaxial contact. The free end of the tube has a syringe-like, entirely tight tip. The steel tube has an outer diameter of 1.4 mm except for 10 mm at the free end where the outer diameter is 1.1 mm corresponding to a wall thickness of 005 mm. The detector is placed in the 1.1 mm part of the tube. The construction and the properties of the probe are described

  12. Application of the TSVD unfolding method for reconstruction of primary X-ray spectra using semiconductor detectors

    International Nuclear Information System (INIS)

    A thorough knowledge of the primary spectrum is very important to perform a quality control (QC) of X-ray tubes. In previous works, a methodology to assess primary spectrum using a Compton spectrometer has been analyzed. In summary, this methodology consists of the use of a Monte Carlo model (normally the MCNP code is applied) to reproduce the physical phenomena involving the interaction of photons and electrons with the Compton spectrometer and with a high purity Germanium detector. By means of this Monte Carlo model, a response matrix can be built, relating the Pulse Height Distribution (PHD) registered in the detector, with the primary X-ray spectrum. Subsequently, an unfolding method based on the application of a Truncated Singular Value Decomposition (TSVD) is applied to the response matrix in order to assess the primary spectrum. Germanium detectors present an optimal Full Width at Half Maximum (FWHM) value for energies up to 150 keV covering mammographic and diagnostic energy range. However, the need of a liquid nitrogen cooling system introduces some troubles in the data acquisition process. In this work, two other detection systems are proposed, a Silicon and a Cadmium-Telluride detector (CdTe), which do not require liquid nitrogen cooling system, and consequently the acquisition process is simplified. The weak point of this kind of detectors is the loss of energy resolution. Despite their low resolution the Silicon and CdTe detector have been considered due to both their low cost and easy handling and portability. The main goal of this paper is to determine whether the TSVD unfolding method is adequate to provide an acceptable reproduction of characteristics lines despite the low resolution of the detectors considered. The MCNP5 code, based on the Monte Carlo method has been used to simulate the actual physic processes for spectra acquisition analysis with Germanium, Silicon and CdTe detectors. (author)

  13. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    Science.gov (United States)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  14. Mining the bulk positron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Aourag, H.; Guittom, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger Gare - Algiers (Algeria)

    2009-02-15

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. A New Brain Positron Emission Tomography Scanner With Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients With Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PETCONVWB) versus the new brain (BR) PET system using semiconductor detectors (PETNEWBR). Methods and Materials: Twelve patients with NPC were enrolled in this study. [18F]Fluorodeoxyglucose-PET images were acquired using both the PETNEWBR and the PETCONVWB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PETCONVWB and PETNEWBR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PETCONVWB (GTVCONV) images or PETNEWBR (GTVNEW) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. Results: The average absolute volume (±standard deviation [SD]) of GTVNEW was 15.7 ml (±9.9) ml, and that of GTVCONV was 34.0 (±20.5) ml. The average GTVNEW was significantly smaller than that of GTVCONV (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLANNEW) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Conclusion: Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning.

  17. Semiconductor Thermistors

    CERN Document Server

    McCammon, D

    2005-01-01

    Semiconductor thermistors operating in the variable range hopping conduction regime have been used in thermal detectors of all kinds for more than fifty years. Their use in sensitive bolometers for infrared astronomy was a highly developed empirical art even before the basic physics of the conduction mechanism was understood. Today we are gradually obtaining a better understanding of these devices, and with improvements in fabrication technologies thermometers can now be designed and built with predictable characteristics. There are still surprises, however, and it is clear that the theory of their operation is not yet complete. In this chapter we give an overview of the basic operation of doped semiconductor thermometers, outline performance considerations, give references for empirical design and performance data, and discuss fabrication issues.

  18. Advanced radiation detector development mercuric iodide, silicon with internal gain, hybrid scintillator/semiconductor detectors. Comprehensive summary report, 1976-1985

    International Nuclear Information System (INIS)

    Accomplishments are reported in the development of a compound semi-insulator mercuric iodide (HgI2) for nuclear radiation detection and spectroscopy, early lung cancer detection and localization in the uranium miner/worker population, computer digital image processing and image reconstruction research, and a concept for multiple, filtered x-ray computed tomography scanning to reveal chemical compositional information. Another area of interest is the study of new advances in the area of silicon detectors with internal gain (''avalanche'')

  19. Two-dimensional strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector

    Science.gov (United States)

    Müller-Caspary, Knut; Oelsner, Andreas; Potapov, Pavel

    2015-08-01

    A delay-line detector is established for electron detection in the field of scanning transmission electron microscopy (STEM) and applied to two-dimensional strain mapping in Si-based field effect transistors. We initially outline the functional principle of position-sensitive delay-line detection, based on highly accurate time measurements for electronic pulses travelling in meandering wires. In particular, the detector is a single-counting device essentially providing an infinite time stream of position-resolved events so that acquisition speed is not hindered by detector read-outs occurring in conventional charge-coupled devices. By scanning the STEM probe over stressor- and gate regions of a field effect transistor on a 100 × 100 raster, 10 000 diffraction patterns have been acquired within 3-6.5 min, depending on the scan speed. Evaluation of the 004 and 220 reflections yields lateral and vertical strain at a spatial resolution of 1.6 nm. Dose-dependent strain precisions of 1.2 -1.8 ×10-3 could be achieved for frame times of 40 and 20 ms, respectively. Finally, the detector is characterised as to quantum efficiency and further scopes of application are outlined.

  20. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    Science.gov (United States)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  1. Simultaneous measurement of neutron and gamma-ray radiation levels from a TRIGA reactor core using silicon carbide semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dulloo, A.R.; Ruddy, F.H.; Seidel, J.G. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States); Davison, C.; Flinchbaugh, T.; Daubenspeck, T. [Pennsylvania State Univ., University Park, PA (United States). Radiation Science and Engineering Center

    1999-06-01

    The ability of a silicon carbide radiation detector to measure neutron and gamma radiation levels in a TRIGA reactor`s mixed neutron/gamma field was demonstrated. Linear responses to epicadmium neutron fluence rate (up to 3 {times} 10{sup 7} cm{sup {minus}2} s{sup {minus}1}) and to gamma dose rate (0.6--234 krad-Si h{sup {minus}1}) were obtained with the detector. Axial profiles of the reactor core`s neutron and gamma-ray radiation levels were successfully generated through sequential measurements along the length of the core. The SiC detector shows a high level of precision for both neutrons and gamma rays in high-intensity radiation environments--1.9% for neutrons and better than 0.6% for gamma rays. These results indicate that SiC detectors are well suited for applications such as spent fuel monitoring where measurements in mixed neutron/gamma fields are desired.

  2. Nanoimprinted Hybrid Metal-Semiconductor Plasmonic Multilayers with Controlled Surface Nano Architecture for Applications in NIR Detectors

    Directory of Open Access Journals (Sweden)

    Akram A. Khosroabadi

    2015-08-01

    Full Text Available We present a proof of concept for tunable plasmon resonance frequencies in a core shell nano-architectured hybrid metal-semiconductor multilayer structure, with Ag as the active shell and ITO as the dielectric modulation media. Our method relies on the collective change in the dielectric function within the metal semiconductor interface to control the surface. Here we report fabrication and optical spectroscopy studies of large-area, nanostructured, hybrid silver and indium tin oxide (ITO structures, with feature sizes below 100 nm and a controlled surface architecture. The optical and electrical properties of these core shell electrodes, including the surface plasmon frequency, can be tuned by suitably changing the order and thickness of the dielectric layers. By varying the dimensions of the nanopillars, the surface plasmon wavelength of the nanopillar Ag can be tuned from 650 to 690 nm. Adding layers of ITO to the structure further shifts the resonance wavelength toward the IR region and, depending on the sequence and thickness of the layers within the structure, we show that such structures can be applied in sensing devices including enhancing silicon as a photodetection material.

  3. Optical properties of bulk semiconductors and graphene/boron nitride: the Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    through the BSE using the statically screened interaction evaluated in the random phase approximation. For a representative set of semiconductors and insulators we find excellent agreement with experiments for the dielectric functions, onset of absorption, and lowest excitonic features. For the two......-dimensional systems of graphene and hexagonal boron-nitride (h-BN) we find good agreement with previous many-body calculations. For the graphene/h-BN interface we find that the fundamental and optical gaps of the h-BN layer are reduced by 2.0 and 0.7 eV, respectively, compared to freestanding h-BN. This reduction...

  4. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    Science.gov (United States)

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the

  5. Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 552, - (2005), s. 292-328. ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : front-end electronics * binary readout * silicon strip detectors * application specific integrated circuits * quality assurance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  6. The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

    Directory of Open Access Journals (Sweden)

    Haoyang Cui

    2013-01-01

    Full Text Available The transient photovoltaic (PV characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  7. Detector response to high repetition rate ultra-short laser pulses. I

    Science.gov (United States)

    Zakharova, I. K.; Rafailov, Michael K.

    2015-05-01

    Optical nonlinearities in semiconductors and semiconductor detectors have been widely investigated and exploited for many scientific and industrial applications. The correlation of optical and electronic characteristics in these detector materials under exposure of ultra-short laser pulses at high pulse repetition rates is still not very well known. These effects may be quite beneficial for many applications ranging from chemical and biological sensing to light-induced superconductivity. In this paper, we discuss the effect of extended bleaching in order to demonstrate sensing applications of such phenomenon as an example. Pump-probe measurements in bulk semiconductors will be presented to quantify the transient absorption dynamics and relate this to the electronic response of the detector devices. This effect is not limited semiconductors and may affect other matter states and electronic structures, like dielectrics.

  8. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  9. In vivo dosimetry with semiconductor and thermoluminescent detectors applied to head and neck cancer treatment; Dosimetria in vivo com uso de detectores semicondutores e termoluminescentes aplicada ao tratamento de cancer de cabeca e pescoco

    Energy Technology Data Exchange (ETDEWEB)

    Viegas, Claudio Castelo Branco

    2003-03-15

    In vivo dosimetry in radiotherapy, i. e, the assessment of the doses received by patients during their treatments, permits a verification of the therapy quality. A routine of in vivo dosimetry is, undoubtedly, a direct benefit for the patient. Unfortunately, in Brazil and in Latin America this procedure is still a privilege for only a few patients. This routine is of common application only in developed countries. The aim of this work is to show the viability and implementation of a routine in vivo dosimetry, using diodes semiconductors and thermoluminescent dosimeters (TLD), at the radiotherapy section of the National Institute of Cancer in Brazil, in the case of head and neck cancer treatment. In order to reach that aim, the characteristics of the response of diodes ISORAD-p and LiF:Mg;Ti (TLD-100) thermoluminescent detectors in powder form were determined. The performance of those detectors for in vivo dosimetry was tested using an RANDO Alderson anthropomorfic phantom and, once their adequacy proved for the kind of measurements proposed, they were used for dose assessment in the case of tumour treatments in the head and neck regions, for Cobalt-60 irradiations. (author)

  10. (Ba1-xKx)(Cu2-xMnx)Se2: A copper-based bulk form diluted magnetic semiconductor with orthorhombic BaCu2S2-type structure

    Science.gov (United States)

    Guo, Shengli; Man, Huiyuan; Gong, Xin; Ding, Cui; Zhao, Yao; Chen, Bin; Guo, Yang; Wang, Hangdong; Ning, F. L.

    2016-02-01

    A new copper-based bulk form diluted magnetic semiconductor (DMS) (Ba1-xKx)(Cu2-xMnx)Se2 (x=0.075, 0.10, 0.125, and 0.15) with TC ∼18 K has been synthesized. K substitution for Ba introduces hole-type carriers, while Mn substitution for Cu provides local spins. Different from previous reported DMSs, this material crystallizes into orthorhombic BaCu2S2-type crystal structure. No ferromagnetism is observed when only doping Mn, and clear ferromagnetic transition and hysteresis loop have been observed as K and Mn are codoped into the parent compound BaCu2Se2.

  11. Semiconductor detector systems (dE/dx and E) for the detection and mass identification of protons, deuterons, tritons, He3 and alpha particles in the 10 to 30-MeV energy region

    International Nuclear Information System (INIS)

    In the 10 to 30-MeV region of energy many different reactions can occur in a charged-particle scattering experiment and, without proper mass identification, complex spectra from different reactions are superimposed and in many cases impossible to analyse. A semiconductor detector system for the detection and mass separation of He3 and alpha particles was described recently by the author. Briefly, a dE/dx p-n junction detector was constructed of a thin wafer of 6000-Ωcm p-type silicon, 0.002 in thick, with a useful area of ∼ 70 mm2. The E detector employed in this study was a 1-cm2 silicon p-n junction. This semiconductor detector system could separate alpha from He3 particles with intensity ratios as high as 100:1 to 1000:1 over a 10 to 25-MeV range of energies. Comparisons between the semiconductor and gas ion chamber dE/dx detectors showed that the energy resolution of the semiconductor detector was improved over the gas ion chamber in accord with the ionization efficiency of the stopping media. This system has been redesigned into a compact package more practical for experimental applications. The advantages and details of this new design will be discussed. The general method has been extended to protons, deuterons and tritons with the use of semiconductor detectors for E and gas ion chambers for dE/dx. Protons, deuterons, and tritons from reactions induced in Be9 by 28-MeV alpha particles have been analysed with these systems and mass-separated spectra of each of the above particles will be shown. Although many of the particles were energetic enough to penetrate completely through the E detector (i.e., > 10-MeV protons) the system was still able to separate the three masses effectively. An experimental lithium-diffused p-n junction with a ∼ 2-mm thick space-charge region detected 15-MeV protons, 17-MeV deuterons, and 15-MeV tritons with ∼ 1% energy resolution and excellent mass separation. The advantages of these systems when applied to low

  12. Liquid chromatographic method for the simultaneous determination of captopril, piroxicam, and amlodipine in bulk drug, pharmaceutical formulation, and human serum by programming the detector.

    Science.gov (United States)

    Sultana, Najma; Arayne, M Saeed; Ali, Saeeda Nadir

    2013-10-01

    A highly sensitive LC method with UV detection has been developed for the simultaneous determination of coadministered drugs captopril, piroxicam, and amlodipine in bulk drug, pharmaceutical formulations, and human serum at the isosbestic point (235 nm) and at individual λmax (220, 255, and 238 nm, respectively) by programming the detector with time to match the individual analyte's chromophore, which enhanced the sensitivity with linear range. The assay involved an isocratic elution of analytes on a Bondapak C18 (10 μm, 25 × 0.46 cm) column at ambient temperature using a mobile phase of methanol/water 80:20 at pH 2.9 and a flow rate of 1.0 mL/min. Linearity was found to be 0.25-25, 0.10-6.0, and 0.20-13.0 μg/mL with correlation coefficient >0.998 and detection limits of 7.39, 3.90, and 9.38 ng/mL, respectively, whereas calibration curves for wavelength-programmed analysis were 0.10-6.0, 0.04-2.56, and 0.10-10.0 μg/mL with correlation coefficient >0.998 and detection limits of 5.79, 2.68, and 3.87 ng/mL, respectively. All the validated parameters were in the acceptable range. The recovery of drugs was 99.32-100.39 and 98.65-101.96% in pharmaceutical formulation and human serum, respectively, at the isosbestic point and at individual λmax . This method is applicable for the analysis of drugs in bulk drug, tablets, serum, and in clinical samples without interference of excipients or endogenous serum components. PMID:23897845

  13. Performance of Geant4 in simulating semiconductor particle detector response in the energy range below 1 MeV

    International Nuclear Information System (INIS)

    Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range between 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to β particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data

  14. Three-dimensional amplitude-time analysis of γγ coincidences with usage of semiconductor detectors

    International Nuclear Information System (INIS)

    The system for three-dimensional amplitude-time analysis of gamma coincidences, containing two li-drifted Ge detectors and one scintillation detector, is described. The HP 2116C computer is used as control and recording system. The einterface electronic equipment is constructed according to a standard fast-slow accumulation scheme. The process of information accumulation sorting and processing is considered in detail. Process of collection of information with its further magnetic tape recording is realized by SAVE3 computer code. Two buffers are singled out in the computer memory. When one buffer is filling in, the second one is processing and after the filling in of one buffer they change places. Acceleration of the sorting of three-dimensional coincidences is realized by the optimization of a central processor operation and by creation of a large additional buffer in mass memory. Brief descriptions of the computer code for data calibration and computer codes for one- dimensional gamma spectra processing are also presented. Several examples are given, which illustrate possibilities of the system for three-dimensional analysis to study the schemes of radioactive nuclei decay in particular, the 161Y→161Tm decay scheme is given

  15. Methods of Measurement for Semiconductor Materials, Process Control, and Devices

    Science.gov (United States)

    Bullis, W. M. (Editor)

    1973-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is reported. Significant accomplishments include: (1) Completion of an initial identification of the more important problems in process control for integrated circuit fabrication and assembly; (2) preparations for making silicon bulk resistivity wafer standards available to the industry; and (3) establishment of the relationship between carrier mobility and impurity density in silicon. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers, including gold, in silicon; evaluation of wire bonds and die attachment; study of scanning electron microscopy for wafer inspection and test; measurement of thermal properties of semiconductor devices; determination of S-parameters and delay time in junction devices; and characterization of noise and conversion loss of microwave detector diodes.

  16. Detection of radioactivity by semiconductors

    International Nuclear Information System (INIS)

    The class of detectors discussed in this chapter has a responsive component involving a diode, a junction between two types of semiconductor materials. Although diode detectors are not particularly efficient in counting radioactive emissions, they are superior to other commercially available detectors in spectroscopy. Consequently, diode detectors are used extensively for quanlitative purposes and for quantitative purposes when mixtures of radionuclides are present, not the usual situation with biological or medical research. Topics addressed in this chapter are as follows: Band Theory; Semiconductors and Junctions; and Radiation Detectors. 6 refs., 14 figs

  17. Quantitative study of valence and configuration interaction parameters of the Kondo semiconductors CeM{sub 2}Al{sub 10} (M = Ru, Os and Fe) by means of bulk-sensitive hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, F., E-mail: strigari@ph2.uni-koeln.de [Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne (Germany); Sundermann, M. [Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne (Germany); Muro, Y. [Department of Liberal Arts and Sciences, Toyama Prefectural University, Izumi 939-0398 (Japan); Yutani, K. [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Takabatake, T. [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Tsuei, K.-D.; Liao, Y.F. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30077, Taiwan (China); Tanaka, A. [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Thalmeier, P.; Haverkort, M.W.; Tjeng, L.H. [Max Planck Institute for Chemical Physics of Solids, Nöthnizer Straße 40, 01187 Dresden (Germany); Severing, A., E-mail: severing@ph2.uni-koeln.de [Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne (Germany)

    2015-02-15

    Highlights: • Bulk-sensitive HAXPES study of 4f occupancy in Kondo semiconducting compounds. • Combination of configuration interaction model and full multiplet calculations. • Accurate correction of plasmon excitations in the core-level photoemission spectra. • Existence of substantial Kondo screening in magnetically ordered systems. - Abstract: The occupancy of the 4f{sup n} contributions in the Kondo semiconductors CeM{sub 2}Al{sub 10} (M = Ru, Os and Fe) has been quantitatively determined by means of bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES) on the Ce 3d core levels. Combining a configuration interaction scheme with full multiplet calculations allowed to accurately describe the HAXPES data despite the presence of strong plasmon excitations in the spectra. The configuration interaction parameters obtained from this analysis – in particular the hybridization strength V{sub eff} and the effective f binding energy Δ{sub f} – indicate a slightly stronger exchange interaction in CeOs{sub 2}Al{sub 10} compared to CeRu{sub 2}Al{sub 10}, and a significant increase in CeFe{sub 2}Al{sub 10}. This shows the existence of a substantial amount of Kondo screening in these magnetically ordered systems and places the entire CeM{sub 2}Al{sub 10} family in the region of strong exchange interactions.

  18. Quantitative study of valence and configuration interaction parameters of the Kondo semiconductors CeM2Al10 (M = Ru, Os and Fe) by means of bulk-sensitive hard X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Highlights: • Bulk-sensitive HAXPES study of 4f occupancy in Kondo semiconducting compounds. • Combination of configuration interaction model and full multiplet calculations. • Accurate correction of plasmon excitations in the core-level photoemission spectra. • Existence of substantial Kondo screening in magnetically ordered systems. - Abstract: The occupancy of the 4fn contributions in the Kondo semiconductors CeM2Al10 (M = Ru, Os and Fe) has been quantitatively determined by means of bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES) on the Ce 3d core levels. Combining a configuration interaction scheme with full multiplet calculations allowed to accurately describe the HAXPES data despite the presence of strong plasmon excitations in the spectra. The configuration interaction parameters obtained from this analysis – in particular the hybridization strength Veff and the effective f binding energy Δf – indicate a slightly stronger exchange interaction in CeOs2Al10 compared to CeRu2Al10, and a significant increase in CeFe2Al10. This shows the existence of a substantial amount of Kondo screening in these magnetically ordered systems and places the entire CeM2Al10 family in the region of strong exchange interactions

  19. Comparative study on interface and bulk charges in AlGaN/GaN metal-insulator-semiconductor heterostructures with Al2O3, AlN, and Al2O3/AlN laminated dielectrics

    Science.gov (United States)

    Zhu, Jie-Jie; Ma, Xiao-Hua; Chen, Wei-Wei; Hou, Bin; Xie, Yong; Hao, Yue

    2016-05-01

    In this paper, the interface and bulk charges in AlGaN/GaN metal-insulator-semiconductor (MIS) heterostructures with AlN, Al2O3, and Al2O3/AlN laminated dielectrics were studied. In situ plasma pretreatment resulted negligible interface trap states and voltage hysteresis. The fixed charge density at Al2O3/AlN (or Al2O3/barrier) interface was estimated to be 1.66 × 1013 cm-2 by using flat-band voltage shift, and the oxide bulk charge concentration was 2.86 × 1017 cm-3. The interface charge density at other interfaces were at the order of 1011 cm-2. Simulation results using the above charge density/concentration indicated that Al2O3/AlN interface fixed charges dominated the dielectric-related voltage shift in AlGaN/GaN MIS heterostructures, which caused a large voltage shift of -3 V with 10 nm Al2O3 thickness, while the flat-band voltage variety resulting from other types of charges was within 0.1 V.

  20. The low-frequency noise characteristics of p-type metal-oxide-semiconductor field effect transistors with a strained-Si0.88Ge0.12 channel grown on bulk Si and a PD-SOI substrate

    International Nuclear Information System (INIS)

    Low-frequency noise properties have been investigated for SiGe p-type metal-oxide- semiconductor field effect transistors with different substrates using Si bulk and a partially depleted silicon-on-insulator (PD SOI). The electrical properties of SiGe PD SOI were enhanced in the subthreshold slope and drain induced barrier lowering. However, the low-frequency noise for the PD SOI was found to degrade significantly in terms of the power spectral density. The low frequency noise was observed to follow the typical 1/fγ(γ = 1) dependence in SiGe bulk devices, but abnormal changes with γ = 2 were revealed in the SiGe PD SOI. The difference of the noise frequency exponent was mainly attributed to generation–recombination by traps presented at the silicon–oxide interface of the SOI. Regardless of the degraded noise performance in the SOI structure, the low-frequency noise level remained well at an acceptable level by virtue of the effective carrier confinement in the SiGe channel

  1. Operating semiconductor timepix detector with optical readout in an extremely hostile environment of laser plasma acceleration experiment

    Czech Academy of Sciences Publication Activity Database

    Kocoň, Dariusz; Klír, Daniel; Krása, Josef; Laštovička, Tomáš; Přibyl, Lukáš; Vrána, Roman; Granja, C.; Jakubek, J.; Platkevič, M.

    Oxford : Diamond Light Source Ltd, 2013 - (Martin, I.), s. 208-211 ISBN 978-3-95450-127-4. [International Beam Instrumentation Conference /2/ - IBIC 2013. Oxford (GB), 16.09.2013-19.09.2013] R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA ČR GAP205/12/0454 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; Laser Zdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 Laser Gen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : Timepix * hybrid silicon pixel detector * laser -driven plasma acceleration * PALS Subject RIV: BH - Optics, Masers, Laser s

  2. Effect of interface and bulk traps on the C–V characterization of a LPCVD-SiNx/AlGaN/GaN metal-insulator-semiconductor structure

    Science.gov (United States)

    Bao, Qilong; Huang, Sen; Wang, Xinhua; Wei, Ke; Zheng, Yingkui; Li, Yankui; Yang, Chengyue; Jiang, Haojie; Li, Junfeng; Hu, Anqi; Yang, Xuelin; Shen, Bo; Liu, Xinyu; Zhao, Chao

    2016-06-01

    Silicon nitride (SiNx) film grown by low-pressure chemical vapor deposition (LPCVD) is utilized as a gate dielectric for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). Trap distribution at the gate-dielectric/III-nitrides interface is characterized by a temperature-dependent ac-capacitance technique. The extracted interface state density D it decreases from 2.92 × 1013 to 1.59 × 1012 cm‑2 eV‑1 as the energy level depth (E C-E T) increases from 0.29 to 0.50 eV, and then levels off to E C-E T = 0.80 eV. Capacitance-mode deep level transient spectroscopy (C-DLTS) and energy band diagram simulations reveal that deep levels with E C-E T > 0. 83 eV are responsible for the dispersion of capacitances at high temperature (>125 °C) and low frequencies (<1 kHz). A high-resolution transmission electron microscope (TEM) reveals that re-oxidation of the RCA-treated AlGaN barrier surface may be responsible for the relatively high density of shallow states at the LPCVD-SiNx/III-nitride interface.

  3. The application of a semiconductor detector in the estimation of the effective dose in radiographic examination of the extremities

    CERN Document Server

    Eyden, A C

    2001-01-01

    15 energy dependent calibration coefficients formulated from the data gathered at the NRPB. The dose in air was then multiplied by the appropriate mass energy absorption coefficient for each particular tissue type and following a scatter correction factor the organ dose was calculated. ICRP weighting factors (1990, P68) were then applied to the organ and tissue doses to calculate the effective dose. The effective dose value was found to be 0.42 mu Sv for a male and 0.41 mu Sv for a female. The aim of this project was to measure the effective dose from radiographic examination of the ankle. Previous work investigating effective dose values resultant from extremity examinations has made estimations using computer simulations of scattering processes. To measure the effective dose, certain key pieces of apparatus were required. The dose levels within the body were in the order of 10 sup - sup 9 Gy and therefore an extremely sensitive x-ray detector was required. To estimate the effective dose, a specific set of o...

  4. Measurement of gamma-ray intensities of sup 2 sup 3 sup 1 Th using semiconductor detectors

    CERN Document Server

    Chatani, H

    1999-01-01

    Nuclide sup 2 sup 3 sup 1 Th was yielded by the sup 2 sup 3 sup 2 Th(n, 2n) reaction with neutron irradiation in the Kyoto University Reactor (KUR). Moreover, the thorium was purified chemically. Gamma-ray spectra of thorium have been measured using low-energy photon spectrometers and a high-purity germanium detector. Relative gamma-ray intensities ranging from 25 to 352 keV in the decay of sup 2 sup 3 sup 1 Th have been determined with satisfactory accuracy. The results are in very good agreement with those of earlier studies. We observe two new gamma-rays at 77.69 and 177.66 keV, whose intensities are found to be (0.063+-0.010)% and (0.00095+-0.00020)%, respectively, relative to that of 84.21 keV taken as 100%. Absolute intensity of 84.21 keV gamma-ray which is the most prominent one from the decay of sup 2 sup 3 sup 1 Th and that of 185.739 keV following the decay of sup 2 sup 3 sup 5 U are also determined from the secular equilibrium for sup 2 sup 3 sup 5 U- sup 2 sup 3 sup 1 Th. The results obtained in t...

  5. An upgraded drift-diffusion model for evaluating the carrier lifetimes in radiation-damaged semiconductor detectors

    Science.gov (United States)

    Garcia Lopez, J.; Jimenez-Ramos, M. C.; Rodriguez-Ramos, M.; Forneris, J.; Ceballos, J.

    2016-03-01

    The transport properties of a series of n- and p-type Si diodes have been studied by the ion beam induced charge (IBIC) technique using a 4 MeV proton microbeam. The samples were irradiated with 17 MeV protons at fluences ranging from 1 × 1012 to 1 × 1013 p/cm2 in order to produce a uniform profile of defects with depth. The analysis of the charge collection efficiency (CCE) as a function of the reverse bias voltage has been carried out using an upgraded drift-diffusion (D-D) model which takes into account the possibility of carrier recombination not only in the neutral substrate, as the simple D-D model assumes, but also within the depletion region. This new approach for calculating the CCE is fundamental when the drift length of carriers cannot be considered as much greater that the thickness of the detector due to the ion induced damage. From our simulations, we have obtained the values of the carrier lifetimes for the pristine and irradiated diodes, which have allowed us to calculate the effective trapping cross sections using the one dimension Shockley-Read-Hall model. The results of our calculations have been compared to the data obtained using a recently developed Monte Carlo code for the simulation of IBIC analysis, based on the probabilistic interpretation of the excess carrier continuity equations.

  6. [{sup 18}F]fluoromisonidazole and a New PET System With Semiconductor Detectors and a Depth of Interaction System for Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Koichi [Department of Radiology, Hokkaido University Graduate School of Medicine, Hokkaido (Japan); Onimaru, Rikiya, E-mail: ronimaru@pop.med.hokudai.ac.jp [Department of Radiology, Hokkaido University Graduate School of Medicine, Hokkaido (Japan); Okamoto, Shozo; Shiga, Tohru [Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido (Japan); Katoh, Norio; Tsuchiya, Kazuhiko [Department of Radiology, Hokkaido University Graduate School of Medicine, Hokkaido (Japan); Suzuki, Ryusuke [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Hokkaido (Japan); Takeuchi, Wataru [Central Research Laboratory, Hitachi Ltd, Hitachi, Ibaraki (Japan); Kuge, Yuji [Central Institute of Isotope Science, Hokkaido University, Sapporo (Japan); Tamaki, Nagara [Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido (Japan); Shirato, Hiroki [Department of Radiology, Hokkaido University Graduate School of Medicine, Hokkaido (Japan)

    2013-01-01

    Purpose: The impact of a new type of positron emission tomography (New PET) with semiconductor detectors using {sup 18}F-labeled fluoromisonidazole (FMISO)-guided intensity modulated radiation therapy (IMRT) was compared with a state-of-the-art PET/computed tomography (PET/CT) system in nasopharyngeal cancer (NPC) patients. Methods and Materials: Twenty-four patients with non-NPC malignant tumors (control group) and 16 patients with NPC were subjected to FMISO-PET. The threshold of the tumor-to-muscle (T/M) ratio in each PET scan was calculated. The hypoxic volume within the gross tumor volume (GTVh) was determined using each PET ({sub NewPET}GTVh and {sub PET/CT}GTVh, respectively). Dose escalation IMRT plans prescribing 84 Gy to each GTVh were carried out. Results: The threshold of the T/M ratio was 1.35 for New PET and 1.23 for PET/CT. The mean volume of {sub NewPET}GTVh was significantly smaller than that of {sub PET/CT}GTVh (1.5 {+-} 1.6 cc vs 4.7 {+-} 4.6 cc, respectively; P=.0020). The dose escalation IMRT plans using New PET were superior in dose distribution to those using PET/CT. Dose escalation was possible in all 10 New PET-guided plans but not in 1 PET/CT-guided plan, because the threshold dose to the brainstem was exceeded. Conclusions: New PET was found to be useful for accurate dose escalation in FMISO-guided IMRT for patients with NPC.

  7. A 65 nm CMOS broadband self-calibrated power detector for the square kilometre array radio telescope

    OpenAIRE

    Ge Wu; Leonid Belostotski; James W. Haslett

    2014-01-01

    In this study, a 65 nm complementary metal oxide semiconductor (CMOS) broadband self-calibrated high-sensitivity power detector for use in the Square Kilometre Array (SKA), the next-generation high-sensitivity radio telescope, is presented. The power detector calibration is performed by adjusting voltages at the bulk terminals of the input transistors to compensate for mismatches in the output voltages because of process, voltage and temperature variations. Measurements show that the power de...

  8. Bulk semiconducting scintillator device for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  9. A ΔE-E semiconductor detector combined with CsI(Tl) crystal for monitoring the relative electrons flux generated in interaction of accelerated nuclei beam on thin targets

    International Nuclear Information System (INIS)

    Experimental data are presented, obtained with a ΔE-E semiconductor detector combined with a CsI(Tl) inorganic scintillator crystal. The interaction between a beam of accelerated nuclei and thin targets is analyzed. We show that, as a result of this interaction, the secondary particles, including δ-electrons, are generated. In the case of δ-electrons it is possible to study the beam characteristics and the nature of interaction processes, which is of great interest in high-energy interaction

  10. Evaluation of clinical use of OneDose™ metal oxide semiconductor field-effect transistor detectors compared to thermoluminescent dosimeters to measure skin dose for adult patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Huda Ibrahim Al-Mohammed

    2011-01-01

    Full Text Available Background: Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to their bone marrow transplant. It involves the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore, it is important to measure and monitor the skin dose during the treatment. Thermoluminescent dosimeters (TLDs and the OneDose™ metal oxide semiconductor field effect transistor (MOSFET detectors are used during treatment delivery to measure the radiation dose and compare it with the target prescribed dose. Aims: The primary goal of this study was to measure the variation of skin dose using OneDose MOSFET detectors and TLD detectors, and compare the results with the target prescribed dose. The secondary aim was to evaluate the simplicity of use and determine if one system was superior to the other in clinical use. Material and Methods : The measurements involved twelve adult patients diagnosed with acute lymphoblastic leukemia. TLD and OneDose MOSFET dosimetry were performed at ten different anatomical sites of each patient. Results : The results showed that there was a variation between skin dose measured with OneDose MOSFET detectors and TLD in all patients. However, the variation was not significant. Furthermore, the results showed for every anatomical site there was no significant different between the prescribed dose and the dose measured by either TLD or OneDose MOSFET detectors. Conclusion: There were no significant differences between the OneDose MOSFET and TLDs in comparison to the target prescribed dose. However, OneDose MOSFET detectors give a direct read-out immediately after the treatment, and their simplicity of use to compare with TLD detectors may make them preferred for clinical use.

  11. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  12. Photocapacitive MIS infrared detectors

    Science.gov (United States)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  13. Interface visualization of multiphase flow by using a fast x-ray CT scanner. Development of sensitive semi-conductor detector and its application to two-phase flow measurement

    International Nuclear Information System (INIS)

    Multi-dimensional interface dynamics in gas-liquid two-phase flow was measured by using a fast X-ray CT scanner recently developed with increased sensitivity in detector devices. CdTe, a composite semi-conductor material highly sensitive to X-ray, was employed in the sensing elements. Prior to installation into the CT system, the detector was placed in a line sensor format to examine their visualization capability. Hardware objects on a moving belt were successfully visualized. Using the CT system equipped with the CdTe detector module, measurement accuracy of interface area and volume of objects were evaluated by numerical simulation and by measuring plastic models representing typical interface shapes observed in two phase flow. By comparing the measurements with their corresponding known dimensions, we estimated the measurement accuracy of cross section and interface length of bubbles, which is a function of object diameter, moving velocity, and location at which the object was detected. With the knowledge of measurement accuracy, we applied the fast X-ray CT to gas-liquid two-phase flow. Gas-phase distribution in the cross section was visualized and analyzed to provide instantaneous void fraction and interface length, both quantities not available with previous techniques. Interface deformation was quantitatively measured by introducing the deformation factor. (author)

  14. Second harmonic spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Yu, Ping; Bozhevolnyi, Sergey I.;

    1999-01-01

    Semiconductor nanostructures and their application to optoelectronic devices have attracted much attention recently. Lower-dimensional structures, and in particular quantum dots, are highly anisotropic resulting in broken symmetry as compared to their bulk counterparts. This is not only reflected...

  15. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author)

  16. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector; Desenvolvimento do cristal semicondutor de brometo de talio para aplicacoes como detector de radiacao e fotodetector

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2006-07-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by {sup 241}Am (59 keV), {sup 133}Ba (80 e 355 keV), {sup 57}Co (122 keV), {sup 22}Na (511 keV) and {sup 137} Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  17. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  18. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  19. Long Term Monitoring of Aircraft Exposure with a Semiconductor Device and some passive Detectors ů Results of 2001 to 2003 studies

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Dachev, T.

    Delft : TUDelft, 2003. s. 69. [Symposium on Neutron Dosimetry/9./ Advances in Nuclear Particle Dosimetry for Radiation Protection and Medicine . 28.09.2003-03.10.2003, Delft] Institutional research plan: CEZ:AV0Z1048901 Keywords : aircraft * detectors * spectrometers Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders

  20. Materials for infrared detectors and sources; Proceedings of the Symposium, Boston, MA, Dec. 1-5, 1986

    Science.gov (United States)

    Farrow, R. F. C.; Schetzina, J. F.; Cheung, J. T.

    The present conference discusses epitaxial semiconductor structures for the IR, materials requirements for IR detectors and imagers, HgCdTe for LWIR imagers and heterojunction devices, epitaxial IV-VI semiconductor films, the growth of bulk IR sensor-material crystals, structure-property relationships in semiconductor alloys, high quality growth of CdTe by the gradient-freeze method, the electronic properties and vacancy-formation energies of HgCdTe vs HgZnTe, and the structure of hydrogenated amorphous carbon IR coatings. Also discussed are tailored microstructures for IR detection, the X-ray characterization of IR materials, subsurface microlattice strain mapping, deep-level defects in CdTe, the MBE HgTe growth process, interdiffused multilayer processing in alloy growth, HgTe-CdTe superlattices grown by photo-MOCVD, InSb in IR detector applications, and CdTe films grown on InSb substrates by organometallic epitaxy.

  1. Materials for infrared detectors and sources; Proceedings of the Symposium, Boston, MA, Dec. 1-5, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, R.F.C.; Schetzina, J.F.; Cheung, J.T.

    1987-01-01

    The present conference discusses epitaxial semiconductor structures for the IR, materials requirements for IR detectors and imagers, HgCdTe for LWIR imagers and heterojunction devices, epitaxial IV-VI semiconductor films, the growth of bulk IR sensor-material crystals, structure-property relationships in semiconductor alloys, high quality growth of CdTe by the gradient-freeze method, the electronic properties and vacancy-formation energies of HgCdTe vs HgZnTe, and the structure of hydrogenated amorphous carbon IR coatings. Also discussed are tailored microstructures for IR detection, the X-ray characterization of IR materials, subsurface microlattice strain mapping, deep-level defects in CdTe, the MBE HgTe growth process, interdiffused multilayer processing in alloy growth, HgTe-CdTe superlattices grown by photo-MOCVD, InSb in IR detector applications, and CdTe films grown on InSb substrates by organometallic epitaxy.

  2. Macroporous Semiconductors

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2010-05-01

    Full Text Available Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  3. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  4. Experimental study on the 1/f noise in surface-barrier particle detectors

    International Nuclear Information System (INIS)

    The results of experimental investigations of the 1/f noise origins in a surface-barrier particle detector are presented. In these experiments an ordinary surface-barrier detector provided with a reasonably designed guard-ring was used. The measurements of the noise spectra were performed in the ''floating'' and ''balanced'' guard-ring conditions. This way two components of the 1/f noise were determined: the noise occuring due to the surface phenomena, connected with the flow of the surface leakage current, and the noise originated in the bulk of semiconductor, caused by the mobility fluctuation of charge carriers. 9 refs., 5 figs., 2 tabs. (author)

  5. Semiconductor heterojunctions

    CERN Document Server

    Sharma, B L

    1974-01-01

    Semiconductor Heterojunctions investigates various aspects of semiconductor heterojunctions. Topics covered include the theory of heterojunctions and their energy band profiles, electrical and optoelectronic properties, and methods of preparation. A number of heterojunction devices are also considered, from photovoltaic converters to photodiodes, transistors, and injection lasers.Comprised of eight chapters, this volume begins with an overview of the theory of heterojunctions and a discussion on abrupt isotype and anisotype heterojunctions, along with graded heterojunctions. The reader is then

  6. Ultrafast Degenerate Transient Lens Spectroscopy in Semiconductor Nanosctructures

    Directory of Open Access Journals (Sweden)

    Leontyev A.V.

    2015-01-01

    Full Text Available We report the non-resonant excitation and probing of the nonlinear refractive index change in bulk semiconductors and semiconductor quantum dots through degenerate transient lens spectroscopy. The signal oscillates at the center laser field frequency, and the envelope of the former in quantum dots is distinctly different from the one in bulk sample. We discuss the applicability of this technique for polarization state probing in semiconductor media with femtosecond temporal resolution.

  7. Photothermal investigations of doping effects on opto-thermal properties of bulk GaSb

    International Nuclear Information System (INIS)

    GaSb is a direct gap semiconductor (0.72 ev) having good carriers motility and significant electro-optical potential in the near IR range. As substrate or active layer, GaSb can be employed in conjunction with many semiconductors such as (AlGa)Sb or In(AsSb) and has interesting hetero junction potential for detectors, lasers and quantum well structures. The aim of this work is to investigate the influence of doping on the opto-thermal properties (optical absorption, refractive index and thermal diffusivity) of doped and undoped GaSb bulk throw, the phothermal deflection and spectroscopic reflectivity. It is found that absorption below the gap and thermal diffusivity increases with doping concentration.

  8. Photothermal investigations of doping effects on opto-thermal properties of bulk GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Abroug, Sameh [Photothermal Laboratory, Nabeul (Tunisia); Saadallah, Faycel, E-mail: Faycel1@yahoo.f [Photothermal Laboratory, Nabeul (Tunisia); Yacoubi, Noureddine [Photothermal Laboratory, Nabeul (Tunisia)

    2009-09-18

    GaSb is a direct gap semiconductor (0.72 ev) having good carriers motility and significant electro-optical potential in the near IR range. As substrate or active layer, GaSb can be employed in conjunction with many semiconductors such as (AlGa)Sb or In(AsSb) and has interesting hetero junction potential for detectors, lasers and quantum well structures. The aim of this work is to investigate the influence of doping on the opto-thermal properties (optical absorption, refractive index and thermal diffusivity) of doped and undoped GaSb bulk throw, the phothermal deflection and spectroscopic reflectivity. It is found that absorption below the gap and thermal diffusivity increases with doping concentration.

  9. Surface Leakage Mechanisms in III-V Infrared Barrier Detectors

    Science.gov (United States)

    Sidor, D. E.; Savich, G. R.; Wicks, G. W.

    2016-09-01

    Infrared detector epitaxial structures employing unipolar barriers exhibit greatly reduced dark currents compared to simple pn-based structures. When correctly positioned within the structure, unipolar barriers are highly effective at blocking bulk dark current mechanisms. Unipolar barriers are also effective at suppressing surface leakage current in infrared detector structures employing absorbing layers that possess the same conductivity type in their bulk and at their surface. When an absorbing layer possesses opposite conductivity types in its bulk and at its surface, unipolar barriers are not solutions to surface leakage. This work reviews empirically determined surface band alignments of III-V semiconductor compounds and modeled surface band alignments of both gallium-free and gallium-containing type-II strained layer superlattice material systems. Surface band alignments are used to predict surface conductivity types in several detector structures, and the relationship between surface and bulk conductivity types in the absorbing layers of these structures is used as the basis for explaining observed surface leakage characteristics.

  10. Detector materials: germanium and silicon

    International Nuclear Information System (INIS)

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented

  11. The Efficiency Of Coincidence Spectroscopy With Two Semi-Conductor Detectors At 0.5 - 8 MeV Energy Region

    International Nuclear Information System (INIS)

    The efficiency function of detector is provided by manufacturer only when user request to manufacture. Even in this case, these functions still need to be tested by experiments. The efficiency of spectrometer is a function which depend energy, measurement geometry and sample geometry. Further more in the coincidence spectrometer, the efficiency depend both of detector efficiencies and distribute cascade energy. So, determined efficiency function of coincidence spectrometer is very complex. This report presents the results of determining the relative efficiency of coincidence spectrometer at Dalat Nuclear Research Institute. The experimental was determined by 35Cl(nth,γ)36Cl reaction and interpolated for 0.5 - 8 MeV energy region. (author)

  12. Use of semiconductor detector c-Si microstrip type in obtaining the digital radiographic imaging of phantoms and biological samples of mammary glands

    International Nuclear Information System (INIS)

    The present work synthesizes the experimental results obtained in the characterization of 64 micro strips crystalline silicon detector designed for experiments in high energies physics, with the objective of studying its possible application in advanced medical radiography, specifically in digital mammography and angiography. The research includes the acquisition of two-dimensional radiography of a mammography phantom using the scanning method, and its comparison with similar images simulated mathematically for different X rays sources. The paper also shows the experimental radiography of two biological samples taken from biopsies of mammas, where it is possible to identify the presence of possible pathological lesions. The results reached in this work point positively toward the effective possibility of satisfactorily introducing those advanced detectors in medical digital imaging applications. (Author)

  13. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  14. Bulk undercooling

    Science.gov (United States)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  15. Basic properties of semiconductors

    CERN Document Server

    Landsberg, PT

    2013-01-01

    Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title. Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form. The first three chapters discuss various aspects of modern band theory and the

  16. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  17. On the problem of the Fano factor definition in semiconductors

    International Nuclear Information System (INIS)

    A model of charge collection in a semiconductor detector (SCD) is considered for determining extreme spectrometric responces of SCD and estimating the Fano factor. The expression is given for the dispersion of the line shape of a semiconductor spectrometer under the effect of fluctuations of ionization and collection of carriers in a heterogeneous detector. A method is suggested for experimental evaluation from below of the Fano factor in semiconductors

  18. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  19. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  20. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  1. Technology development of 3D detectors for high energy physics and medical imaging

    CERN Document Server

    Pellegrini, G

    2003-01-01

    This thesis is concerned with the fabrication, characterisation and simulation of 3D semiconductor detectors. Due to their geometry, these detectors have more efficient charge collection properties than current silicon and gallium arsenide planar detectors. The unit cell of these detectors is hexagonal with a central anode surrounded by six cathode contacts. This geometry gives a uniform electric field with the maximum drift and depletion distance set by electrode spacing, 85m in this project, rather than detector thickness, as in the case of planar detectors (typically 100-300m). This results in lower applied biases (35-40 V in the work of this project) compared to >200 V in typical planar detectors. The reduction in bias offers the possibility of improved detector operation in the presence of bulk radiation damage as lower voltage reduces leakage current which limits the signal to noise ratio and hence the overall detector efficiency. In this work, 3D detectors realised in Si, GaAs and SiC have ...

  2. Complementary barrier infrared detector (CBIRD)

    Science.gov (United States)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  3. Doping semiconductor nanocrystals.

    Science.gov (United States)

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  4. Solid State Neutron Detector - A Review of Status

    International Nuclear Information System (INIS)

    The PowerPoint presentation was organized into the following areas: Driving forces behind research in semiconductor neutron devices; The (sup 3)He shortage crisis; Alternative detectors for neutron; Semiconductor diodes coated with boron; Perforated semiconductors for neutron detection; and, Three dimensional pillar and trench structured semiconductors.

  5. Measurement of uranium and thorium in coal fly ash and bottom ash samples from a thermal power plant by using a high resolution semiconductor detector

    International Nuclear Information System (INIS)

    A low background γ-ray detection system has been constructed for measuring the natural radioactivity in coal samples. It is based on a high-purity Ge detector mounted within a massive lead shield which reduces the normal background level by a factor of about 20. This makes it possible to measure the low intensity γ-rays from the natural radioactivity present in the samples. Using this equipment uranium and thorium concentrations in coal fly ash and bottom ash samples from a coal fired power plant located at Bathinda, India have been measured. The uranium activity found in the samples is within the range of concentrations observed in other countries while the thorium activity is found to be somewhat higher. (Author)

  6. PHONON ECHOES IN BULK AND POWDERED MATERIALS

    OpenAIRE

    Kajimura, K.

    1981-01-01

    Experimental and theoretical studies of phonon echoes in bulk and powdered materials are reviewed. Phonon echoes have been observed in many materials such as bulk piezoelectric crystals, paramagnets, glasses, doped semiconductors, and piezoelectric, magnetic, and metallic powders, etc. The echoes arise from a time reversal of the phase, like spin echoes, of a primary pulsed acoustic excitation due to a second acoustic or rf pulse. The phase reversal occurs through the nonlinear interactions o...

  7. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  8. Fabrication and parameters calculation of room temperature terahertz detector with micro-bridge structure

    Science.gov (United States)

    Wang, Jun; Li, Weizhi; Gou, Jun; Wu, Zhiming; Jiang, Yadong

    2015-01-01

    Room temperature terahertz (THz) detector indicates great potentials in imaging application because of real-time, compact bulk and unique spectral characteristics. Different dimension THz detectors based on micro-bridge structure were designed and simulated to get optimizing microbolometer parameters from the simulation results of membrane temperature changing and THz absorption. Those microbolometers were fabricated with complex semiconductor process and three dimension deformations of micro-bridges were obtained by laser scanning confocal microscope to identify the focal plane array micro-bridge design. The noise equivalent power of THz detector achieves 123 pW/Hz1/2 and average response time of the detector is 6.7 ms, which is suitable for the application of active THz imaging.

  9. Software for the on-off-line A-A-T coincidence experiment with use of semiconductor detector of nuclear radiation

    International Nuclear Information System (INIS)

    Full text: In γ-spectra measurements with 200 cm3 HPGe-detector with energy resolution (FWHM) of 3.5 keV for α-rays 1.33 MeV 60Co, 60 cm3 Ge(Li)-detector with energy resolution of 1.9 keV for γ -rays 1.33 MeV 60Co, 2 cm3 HPGe-detector with energy resolution of 1.0 keV for α-rays 122 keV 57Co and planar 250 mm3 HPGe-detector with energy resolution of 0.5 keV for γ -rays 53 keV 133Ba. For accumulation and analysis of the experimental information the analog electronics produced companies ORTEC, CANBERRA, Dzhelepov Laboratory of Nuclear Problem of JINR, units of the digital electronics of standard KAMAK, personal computers were used. The accumulation of information on the coincidence spectra was provided by record of each event (E1, E2, t)-coincidence (in list mode) and single spectra E1 and E2 that gave the broad possibilities for analysis result after completion experiment by means of the multiple sorting of information on spectra of the coincidences with installation the energy and time windows. In the report, a description of programs of the management and control of the on-off-line experiment designed at the begin 90-s being performed in Dubna by the YASNAPP-2 program [1-3] on the experimental complex for study nuclei far from the drip-line β-stability is given. The publication of the description of controlling programs is retard from publication of descriptions of the measuring equipment and result of the physical studies [4-6] due to in particular with creation in Institute of Nuclear Physics in Tashkent of the experimental complex γ-γ -coincidences, which can be used to accumulate the unpublished material by authors. The programs are formed in the Turbo-Pascal language with reference to the KAMAK-standard digital equipment and spectrometric equipment in standard NIM. It is properly to classify beforehand the programs in amount of 50 items: Program of the accumulation coincidence spectra of the type A-A-T with using the digital windows and ANC for 4096

  10. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  11. Analysis of Technology Trend on a SiC Semiconductor Radiation Sensor

    International Nuclear Information System (INIS)

    Silicon carbide(SiC) is a promising semiconductor materials by virtue of its chemical and physical stability due to high binding energy of silicon and carbon. This report is for suggestion of domestic research direction based on SiC semiconductor radiation detector by analysis of technological trend on world SiC semiconductor radiation detector research. Crystalline structure and electrical characteristics of SiC semiconductor are presented. To fabricated a SiC semiconductor radiation detector, epitaxial growth and junction technologies are also addressed. Characteristics of a SiC semiconductor radiation detector for charged/uncharged particles are analyzed. Radiation hardness of a SiC semiconductor radiation detector are also included

  12. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  13. Reverse Schottky-Asymmetry Spin Current Detectors

    OpenAIRE

    Lu, Yuan; Appelbaum, Ian

    2010-01-01

    By reversing the Schottky barrier-height asymmetry in hot-electron semiconductor-metal-semiconductor ballistic spin filtering spin detectors, we have achieved: 1. Demonstration of >50% spin polarization in silicon, resulting from elimination of the ferromagnet/silicon interface on the transport channel detector contact, and 2. Evidence of spin transport at temperatures as high as 260K, enabled by an increase of detector Schottky barrier height.

  14. Nitride semiconductor devices fundamentals and applications

    CERN Document Server

    Morkoç, Hadis

    2013-01-01

    This book gives a clear presentation of the necessary basics of semiconductor and device physics and engineering. It introduces readers to fundamental issues that will enable them to follow the latest technological research. It also covers important applications, including LED and lighting, semiconductor lasers, high power switching devices, and detectors. This balanced and up-to-date treatment makes the text an essential educational tool for both advanced students and professionals in the electronics industry.

  15. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  16. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  17. Solid state parallel detectors

    International Nuclear Information System (INIS)

    We discuss semiconductors phoso-sensitive arrays and channel plate electron multiplier detectors. Currents applications include light detection in the spectral range from visible to X-rays, with sensitivity threshold from 103 to a single photon, and single electron/ion detection. (A.C.A.S.)

  18. Solid state detector

    International Nuclear Information System (INIS)

    The design of a position sensitive, semi-conductor detector for use in a gamma camera system is discussed in detail. Explicit descriptions are also given of the electronic circuitry required to produce 2-dimensional position information and of the method of data processing. The problems and limitations introduced by noise are discussed in full. (U.K.)

  19. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  20. Cryogenic semiconductor high-intensity radiation monitors

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, V.G. E-mail: vittorio.palmieri@cern.ch; Bell, W.H.; Borer, K.; Casagrande, L.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Esposito, A.; Granata, V.; Hauler, F.; Jungermann, L.; Li, Z.; Lourenco, C.; Niinikoski, T.O.; Shea, V. O' ; Ruggiero, G.; Sonderegger, P

    2003-09-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux.

  1. Cryogenic semiconductor high-intensity radiation monitors

    CERN Document Server

    Palmieri, V G; Borer, K; Casagrande, L; Da Vià, C; Devine, S R H; Dezillie, B; Esposito, A; Granata, V; Hauler, F; Jungermann, L; Li, Z; Lourenço, C; Niinikoski, T O; O'Shea, V

    2003-01-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux.

  2. Gamma probe dry bulk densities

    International Nuclear Information System (INIS)

    The gamma density probe is a useful instrument for measuring water content in small volumes of soil. Essentially, the gamma probe measures the density of the soil and water between a source and a detector. To transpose the gamma densities into water content, the dry bulk density of the soil is needed. A nondestructive method for estimating dry bulk densities for use with the gamma probe is proposed. The procedure is based on the assumption that water content values in a field dry condition were more stable than the dry bulk density values and could be transferred from one point to another. The procedure was successfully used on three areas in Reynolds Creek Experimental Watershed in southwest Idaho. (U.S.)

  3. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  4. Ion chamber based neutron detectors

    Science.gov (United States)

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  5. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  6. Green Chemical Synthesis of II-VI Semiconductor Quantum Dots

    OpenAIRE

    Shahid, Robina

    2012-01-01

    Nanotechnology is the science and technology of manipulating materials at atomic and molecular scale with properties different from bulk. Semiconductor QDs are important class of nanomaterials with unique physical and chemical properties owing to the quantum confinement effect. Size dependent optical properties make research on semiconductor QDs more attractive in the field of nanotechnology. Semiconductor QDs are usually composed of combination of elements from groups II–VI, III–V, or IV–VI ...

  7. Semiconductor arrays for nuclear medicine imaging

    International Nuclear Information System (INIS)

    Full text: Gamma-ray imaging of an injected radiotracer is used in nuclear medicine to determine organ function or locate the site of pathology such as cancer. Current gamma cameras use scintillation detectors with analog position estimation and are characterized by poor spatial resolution (0.4 cm) and poor energy resolution (11% FWHM at 140 keV). Energy resolution is important for suppressing the effects of Compton scattering in tissue. Single photon emission computed tomography (SPECT) is used to generate a three-dimensional representation of the source distribution. Another technique, positron emission tomography (PET), images the annihilation radiation from a positron emitter but is more costly than SPECT and is less widely available. Arrays of semiconductor detectors have long been considered an attractive alternative to scintillators for use in gamma cameras. Semiconductor detectors have excellent energy resolution and can be fabricated into large arrays of small pixel size and thus good spatial resolution using photolithography techniques. The best semiconductor detectors are Si and Ge, but these are less attractive for nuclear medicine purposes because of low gamma-ray stopping power or the need for expensive cryogenics. Most interest has centered on room-temperature semiconductor detectors such as CdTe and HgI2. However, until now, the main use of semiconductors in nuclear medicine has been as detectors in probes used to locate radiotracer-labelled tumors or other pathology at surgery or endoscopy. There are a number of reasons why a practical semiconductor camera has not yet been developed: semiconductor detectors are very expensive. Large detector areas (0.1 - 0.2 square meter) will be required for a camera. Electronics for reading out as many as a million separate detector pixels must be provided. Room-temperature semiconductor detectors suffer from charge carrier trapping that limits their useful efficiency. Current multibore collimators must trade off

  8. Gain dynamics and saturation in semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher

    2004-01-01

    Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor ...... ultrafast gain dynamics....

  9. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sfyrla, Anna; /Geneva U.

    2008-03-01

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb{sup -1} of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is {sigma}{sub WW/WZ}{sup theory} x Br(W {yields} {ell}{nu}; W/Z {yields} jj) = 2.09 {+-} 0.14 pb. They measured N{sub Signal} = 410 {+-} 212(stat) {+-} 102(sys) signal events that correspond to a cross section {sigma}{sub WW/WZ} x Br(W {yields} {ell}{nu}; W/Z {yields} jj) = 1.47 {+-} 0.77(stat) {+-} 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be {sigma} x Br(W {yields} {ell}{nu}; W/Z {yields} jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on

  10. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sfyrla, Anna [Univ. of Geneva (Switzerland)

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  11. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  12. The Quantum Boltzmann Equation in Semiconductor Physics

    OpenAIRE

    Snoke, D. W.

    2010-01-01

    The quantum Boltzmann equation, or Fokker-Planck equation, has been used to successfully explain a number of experiments in semiconductor optics in the past two decades. This paper reviews some of the developments of this work, including models of excitons in bulk materials, electron-hole plasmas, and polariton gases.

  13. The ATLAS semiconductor tracker

    CERN Document Server

    Mikuz, Marko

    2003-01-01

    The ATLAS Semiconductor Tracker (SCT) is presented. About 16000 silicon micro-strip sensors with a total active surface of over 60 m **2 and with 6.3 million read-out channels are built into 4088 modules arranged into four barrel layers and nine disks covering each of the forward regions up to an eta of 2.5. Challenges are imposed by the hostile radiation environment with particle fluences up to 2 multiplied by 10**1**4 cm**-**2 1 MeV neutron NIEL equivalent and 100 kGy TID, the 25 ns LHC bunch crossing time and the need for a hermetic, lightweight tracker. The solution adopted is carefully designed strip detectors operated at -7 degree C, biased up to 500 V and read out by binary radhard fast BiCMOS electronics. A zero-CTE carbon fibre structure provides mechanical support. 30 kW of power are supplied on aluminiutn/Kapton tapes and cooled by C//3F//8 evaporative cooling. Data and commands are transferred by optical links. Prototypes of detector modules have been built, irradiated to the maximum expected flue...

  14. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  15. Kansas Advanced Semiconductor Project: Final Report

    International Nuclear Information System (INIS)

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  16. Measuring Thermal Diffusivity of Molten Semiconductors

    Science.gov (United States)

    Crouch, R.; Holland, L.; Taylor, R. E.

    1986-01-01

    Thermal diffusivity of molten and solid mercury cadmium telluride measured with aid of new apparatus. Knowledge gained from such measurements help efforts to grow high-quality single crystals of this semiconductor for use in infrared detectors: Without knowledge of thermal diffusivity, difficult to control growth rate of solid from molten material.

  17. ATLAS SemiConductor Tracker and Pixel Detector: Status and Performance

    CERN Document Server

    Reeves, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In the talk the current status of the SCT and Pixel Detector will be reviewed. We will report on the operation of the detectors including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk ...

  18. Particlc detectors. Foundations and applications; Teilchendetektoren. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolanoski, Hermann; Wermes, Norbert

    2016-08-01

    The following topics are dealt with: Interaction of particles with matter, motion of charge carriers in electric and magnetic fields, signal generation by moving charges, non-electronic detectors, gas-filled detectors, semiconductor detectors, track reconstruction and momentum measurement, photodetectors, Cherenkov detectors, transition-radiation detectors, scintillation detectors, particle identification, calorimeters, detection of cosmic particles, signal processing and noise, trigger and data acquisition systems. (HSI)

  19. Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires

    Science.gov (United States)

    Piccione, Brian; Aspetti, Carlos O.; Cho, Chang-Hee; Agarwal, Ritesh

    2014-08-01

    Understanding interactions between light and matter is central to many fields, providing invaluable insights into the nature of matter. In its own right, a greater understanding of light-matter coupling has allowed for the creation of tailored applications, resulting in a variety of devices such as lasers, switches, sensors, modulators, and detectors. Reduction of optical mode volume is crucial to enhancing light-matter coupling strength, and among solid-state systems, self-assembled semiconductor and hybrid-plasmonic nanowires are amenable to creation of highly-confined optical modes. Following development of unique spectroscopic techniques designed for the nanowire morphology, carefully engineered semiconductor nanowire cavities have recently been tailored to enhance light-matter coupling strength in a manner previously seen in optical microcavities. Much smaller mode volumes in tailored hybrid-plasmonic nanowires have recently allowed for similar breakthroughs, resulting in sub-picosecond excited-state lifetimes and exceptionally high radiative rate enhancement. Here, we review literature on light-matter interactions in semiconductor and hybrid-plasmonic monolithic nanowire optical cavities to highlight recent progress made in tailoring light-matter coupling strengths. Beginning with a discussion of relevant concepts from optical physics, we will discuss how our knowledge of light-matter coupling has evolved with our ability to produce ever-shrinking optical mode volumes, shifting focus from bulk materials to optical microcavities, before moving on to recent results obtained from semiconducting nanowires.

  20. Tailoring light–matter coupling in semiconductor and hybrid-plasmonic nanowires

    International Nuclear Information System (INIS)

    Understanding interactions between light and matter is central to many fields, providing invaluable insights into the nature of matter. In its own right, a greater understanding of light–matter coupling has allowed for the creation of tailored applications, resulting in a variety of devices such as lasers, switches, sensors, modulators, and detectors. Reduction of optical mode volume is crucial to enhancing light–matter coupling strength, and among solid-state systems, self-assembled semiconductor and hybrid-plasmonic nanowires are amenable to creation of highly-confined optical modes. Following development of unique spectroscopic techniques designed for the nanowire morphology, carefully engineered semiconductor nanowire cavities have recently been tailored to enhance light–matter coupling strength in a manner previously seen in optical microcavities. Much smaller mode volumes in tailored hybrid-plasmonic nanowires have recently allowed for similar breakthroughs, resulting in sub-picosecond excited-state lifetimes and exceptionally high radiative rate enhancement. Here, we review literature on light–matter interactions in semiconductor and hybrid-plasmonic monolithic nanowire optical cavities to highlight recent progress made in tailoring light–matter coupling strengths. Beginning with a discussion of relevant concepts from optical physics, we will discuss how our knowledge of light–matter coupling has evolved with our ability to produce ever-shrinking optical mode volumes, shifting focus from bulk materials to optical microcavities, before moving on to recent results obtained from semiconducting nanowires. (review article)

  1. Experimental studies of radiation damage of silicon detectors

    International Nuclear Information System (INIS)

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences

  2. Superheating Suppresses Structural Disorder in Layered BiI3 Semiconductors Grown by the Bridgman Method

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung; Baciak, James E.; Bliss, Mary; Nino, Juan C.

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In the work presented here, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate this structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown to improve crystal quality in non-layered semiconductor crystals; thus the technique was here explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient to the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, x-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.

  3. High-Performance Thermoelectric Semiconductors

    Science.gov (United States)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  4. Quantum Cascade Detectors

    OpenAIRE

    Giorgetta, Fabrizio R.; Baumann, Esther; Graf, Marcel; Yang, Quankui; Manz, Christian; Köhler, Klaus; Beere, Harvey E.; Ritchie, David A.; Linfield, Edmund; Davies, Alexander G.; Fedoryshyn, Yuriy; Jackel, Heinz; Fischer, Milan; Faist, Jérôme; Hofstetter, Daniel

    2010-01-01

    This paper gives an overview on the design, fabrication, and characterization of quantum cascade detectors. They are tailorable infrared photodetectors based on intersubband transitions in semiconductor quantum wells that do not require an external bias voltage due to their asymmetric conduction band profile. They thus profit from favorable noise behavior, reduced thermal load, and simpler readout circuits. This was demonstrated at wavelengths from the near infrared at 2 μm to THz radiation a...

  5. Gain and Index Dynamics in Semiconductor Lasers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    Semiconductor optical amplifiers (SOAs) provide ultrafast, i.e. broadband components for optical communication systems. They enter not only as signal generators and amplifiers, but also as nonlinear elements for ultrafast signal processing such as wavelength conversion, switching, and regeneration...... gradually changed character from bulk semiconductor to quantum wells and most recently to quantum dots. By quantum confinement of the carriers, the light-matter interactions can be significantly modified and the optical properties, including dynamics, can be engineered to match the required functionalities...

  6. III-V semiconductor materials and devices

    CERN Document Server

    Malik, R J

    1989-01-01

    The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.

  7. X spectrometry with pulse detectors

    International Nuclear Information System (INIS)

    A comparison is made of various types of pulse X-ray detectors (scintillators + photomultipliers, proportional counters, ionisation chambers, semi-conductor detectors: Si (Li) and Ge (Li) ) as well as of their associated electronic equipment, from the point of view of the resolving power, the detection efficiency and the working surface, for photons of from 100 eV to 100 KeV. Semiconductor detectors (Si (Li) up to 50 KeV, Ge (Li) from 10 KeV up to 100 KeV) should rapidly find uses in all cases where an excellent resolving power is necessary (in X-fluorescence for example), whereas proportional counters present greater advantages for applications calling for a high detection surface, and also for very soft X-rays because the window of the detector can be very thin. (author)

  8. Handbook of spintronic semiconductors

    CERN Document Server

    Chen, Weimin

    2010-01-01

    Offers a review of the field of spintronic semiconductors. This book covers a range of topics, including growth and basic physical properties of diluted magnetic semiconductors based on II-VI, III-V and IV semiconductors, developments in theory and experimental techniques and potential device applications.

  9. HOT ELECTRON POPULATION INVERSION AND BULK NDC IN SEMICONDUCTORS

    OpenAIRE

    Kozlov, V.

    1981-01-01

    The population inversion of the radiative transition between light and heavy hole subbands results in negative differential conduvtivity in submillimetre and far infrared waveband. The means of producing of the light hole overpopulation in pure p-Ge samples at low lattice temperatures in strong electric and magnetic fields are discussed in the report. The overpopulation of light hole subband arises due to accumulation of light holes in the specific regions of the momentum space where the ener...

  10. The role of thermophysics in the design, optimization and understanding of semiconductor crystal growth in space

    Science.gov (United States)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1979-01-01

    The compound semiconductor material PbSnTe has been investigated by NASA Langley Research Center as part of the Material Processing in Space (MPS) experiment in the framework of the Space Shuttle program. The long-range goal of the research is the improving of the performance of infrared detectors for use in remote sensing experiments. Three distinct techniques will be used in the low-g environment of space: two techniques involving bulk growth from melt and a vapor growth technique. In order to establish realistic estimates of the required time for experiments and to determine the thermal gradients that will be required to avoid constitutional supercooling, the diffusion coefficients must be accurately measured, however more data especially in the vapor-solid phase relations are needed.

  11. SOIKID, SOI pixel detector combined with superconducting detector KID

    CERN Document Server

    Ishino, Hirokazu; Kida, Yosuke; Yamada, Yousuke

    2015-01-01

    We present the development status of the SOIKID, a detector combining the SOI pixel detector and the superconducting detector KID (Kinetic Inductance Detector). The aim of the SOIKID is to measure X-ray photon energy with the resolution better than that of the semiconductor detector. The silicon substrate is used as the X-ray photon absorber. The recoiled electron creates athermal phonons as well as the ionizing electron-hole pairs. The KID formed at one side of the substrate surface detects the phonons to measure the total energy deposited, while the SOI pixel detector formed on the other side of the substrate detects the ionized carries to measure the position. Combining the position and energy measurements, it is in principle possible to have the extremely high energy resolution.

  12. Bulk and interface dielectric functions: New results within the tight-binding approximation

    International Nuclear Information System (INIS)

    A tight-binding approach is used to analyze the dielectric behaviour of bulk semiconductors and semiconductor interfaces. This time interactions between second nearest neighbours are taken into account and several electrostatic models are proposed for the induced charge density around the atoms. The bulk dielectric function of different semiconductors (Si, Ge, GaAs and AlAs) are obtained and compared with other theoretical and experimental results. Finally, the energy band offset for GaAs-AlAs(1,0,0) interface is obtained and related to bulk properties of both semiconductors. The results presented in this paper show how the use of very simple but more realistic electrostatic models improve the analysis of the screening properties in semiconductors, giving a new support to the consistent tight-binding method for studying characteristics related to those properties. (Author)

  13. The ATLAS semiconductor tracker (SCT)

    CERN Document Server

    Jackson, J N

    2005-01-01

    The ATLAS detector (CERN/LHCC/94-43 (1994)) is designed to study a wide range of physics at the CERN Large Hadron Collider (LHC) at luminosities up to 10**3**4 cm**-**2 s**-**1 with a bunch-crossing rate of 40 MHz. The Semiconductor Tracker (SCT) forms a key component of the Inner Detector (vol. 1, ATLAS TDR 4, CERN/LHCC 97-16 (1997); vol. 2, ATLAS TDR 5, CERN/LHCC 97-17 (1997)) which is situated inside a 2 T solenoid field. The ATLAS Semiconductor Tracker (SCT) utilises 4088 silicon modules with binary readout mounted on carbon fibre composite structures arranged in the forms of barrels in the central region and discs in the forward region. The construction of the SCT is now well advanced. The design of the SCT modules, services and support structures will be briefly outlined. A description of the various stages in the construction process will be presented with examples of the performance achieved and the main difficulties encountered. Finally, the current status of the construction is reviewed.

  14. Semiconductor circuits worked examples

    CERN Document Server

    Abrahams, J R; Hiller, N

    1966-01-01

    Semiconductor Circuits: Worked Examples is a companion volume to Semiconductor Circuits: Theory, Design and Experiment. This book is a presentation of many questions at the undergraduate and technical level centering on the transistor. The problems concern basic physical theories of energy bands, covalent bond, and crystal lattice. Questions regarding the intrinsic property and impurity of semiconductors are also asked after the book presents a brief discussion of semiconductors. This book addresses the physical principles of semiconductor devices by presenting questions and worked examples o

  15. Investigation of porosity and fractal properties of the sintered metal and semiconductor layers in the MDS capacitor structure

    OpenAIRE

    Skatkov Leonid; Gomozov Valeriy; Bayrachniy Boris

    2012-01-01

    MDS capacitor (metal - dielectric - semiconductor) is a structure in which metal plate is represented by compact bulk-porous pellets of niobium sintered powder, and semiconductor plate - by pyrolytic layer of MnO2. In the present paper we report the results of investigation of microporosity of sintered Nb and pyrolytic MnO2 and also the fractal properties of semiconductor layer.

  16. Radiation damage of germanium detectors

    Science.gov (United States)

    Pehl, R. H.

    1978-01-01

    Energetic particles can produce interstitial-vacancy pairs in a crystal by knocking the atoms from their normal positions. Detectors are unique among semiconductor devices in depending on very low concentrations of electrically active impurities, and also on efficient transport of holes and electrons over relatively large distances. Because the dense regions of damage produced by energetic particles may result in donors and/or acceptors, and also provide trapping sites for holes and electrons, detectors are very sensitive to radiation damage. In addition to these effects occurring within the detector, radiation may also change the characteristics of the exposed surfaces causing unpredictable effects on the detector leakage current. Radiation-induced surface degradation has rarely, if ever, been observed for germanium detectors. The possibility of minimizing hole trapping in charge collection by the use of a high-purity germanium coaxial detector configured with the p (+) contact on the coaxial periphery is discussed.

  17. Combining two major ATLAS inner detector components

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The semiconductor tracker is inserted into the transition radiation tracker for the ATLAS experiment at the LHC. These make up two of the three major components of the inner detector. They will work together to measure the trajectories produced in the proton-proton collisions at the centre of the detector when the LHC is switched on in 2008.

  18. Oscillatory regime of avalanche particle detectors

    International Nuclear Information System (INIS)

    We describe the model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. We show that this detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out. (author). 15 refs, 7 figs

  19. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.;

    2002-01-01

    We have produced GaAs-based quantum-dot edge-emitting lasers operating at 1.16 mu m with record-low transparency current, high output power, and high internal quantum efficiencies. We have also realized GaAs-based quantum-dot lasers emitting at 1.3 mu m, both high-power edge emitters and low-power...... biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...... surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier is...

  20. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  1. Printable semiconductor structures and related methods of making and assembling

    Science.gov (United States)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  2. Semiconductor telescope spectrometer for β ray spectra

    International Nuclear Information System (INIS)

    A semiconductor telescope spectrometer for β ray spectra and the associated program for analysis of δ spectra have been built and tested. The spectrometer consists of a ΔE detector (0.3 mm x 200 mm2 Si (Au)) and an E detector (15 mm x 500 mm2 Hp Ge). Its energy resolution for single energy electrons is 20 keV. Multibranch β spectra can conveniently be analyzed, and then their endpoint energies and branching ratios can be obtained by means of the program, in which the response function of the telescope has been taken into account. The endpoint energies and branching ratios for three well known β emitters, i. e. 152Eu, 90Y and 56Mn, have been extracted experimentally, which are in good agreement with published results. Since the HP Ge detector is rather thin, it can also be used as a low energy γ ray detector

  3. Development of revitalisation technique for impaired lithium doped germanium detector

    International Nuclear Information System (INIS)

    Semiconductor detectors play very significant role in photon detection and are important tools in the field of gamma spectroscopy. Lithium doped germanium detectors belong to this category. The development of revitalisation technique for these impaired detectors are discussed in this report

  4. Study of lead iodide semiconductor crystals doped with silver

    Czech Academy of Sciences Publication Activity Database

    Matuchová, Marie; Žďánský, Karel; Zavadil, Jiří

    Beijing : Institute of Semiconductor Materials Science , 2005. s. 133. [DRIP /11./. 15.09.2005-19.09.2005, Beijing] R&D Projects: GA ČR(CZ) GA102/03/0379; GA ČR(CZ) GA102/04/0959; GA AV ČR(CZ) KSK1010104 Institutional research plan: CEZ:AV0Z20670512 Keywords : semiconductor technology * rare earth compounds * detector circuits Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  6. The k p Method Electronic Properties of Semiconductors

    CERN Document Server

    Willatzen, Morten

    2009-01-01

    This book presents a detailed exposition of the formalism and application of k.p theory for both bulk and nanostructured semiconductors. For bulk crystals, this is the first time all the major techniques for deriving the most popular Hamiltonians have been provided in one place. For nanostructures, this is the first time the Burt-Foreman theory has been made accessible. Thus, the reader will gain a clear understanding of the k.p method, will have an explicit listing of the various Hamiltonians in a consistent notation for their use, and a set of representative results. In addition, the reader can derive an excellent understanding of the electronic structure of semiconductors.

  7. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  8. Silicon detectors

    International Nuclear Information System (INIS)

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  9. Neutron moisture gage for bulk material

    International Nuclear Information System (INIS)

    Desing and operation of neutron moisture gage of bulk materials intended for the determination of moisture of coke, agglomerated charge, and iron ore concentrate in black metallurgy is described. The moisture gage operates both under ''measurement'' and ''calibration'' conditions, contains a fast neutron source, and two groups of slow neutron detectors. Technical and economic efficiency of the moisture gage utilization consists in the improved accuracy of moisture detection at the expense of more accurate calibration, optimum arrangement of the carriage in a hopper, and stabilization of detector temperature. The device service is also simplified

  10. Interconnected semiconductor devices

    Science.gov (United States)

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  11. EDITORIAL: Frontiers in semiconductor-based devices Frontiers in semiconductor-based devices

    Science.gov (United States)

    Krishna, Sanjay; Phillips, Jamie; Ghosh, Siddhartha; Ma, Jack; Sabarinanthan, Jayshri; Stiff-Roberts, Adrienne; Xu, Jian; Zhou, Weidong

    2009-12-01

    -based devices, plasmonic and photonic crystal resonators, infrared detectors and focal plane arrays, and photovoltaic devices and solar cells. This cluster presents a subset of the symposium topics, namely semiconductor emitters, semiconductor detectors, and semiconductor-based flexible devices.

  12. Responsivity Calibration of Pyroelectric Terahertz Detectors

    CERN Document Server

    Berry, Christopher W; Jarrahi, Mona

    2014-01-01

    There has been a significant advancement in terahertz radiation sources in the past decade, making milliwatt terahertz power levels accessible in both continuous-wave and pulsed operation. Such high-power terahertz radiation sources circumvent the need for cryogenic-cooled terahertz detectors such as semiconductor bolometers and necessitate the need for new types of calibrated, room-temperature terahertz detectors. Among various types of room-temperature terahertz detectors, pyroelectric detectors are one of the most widely used detectors, which can offer wide dynamic range, broad detection bandwidth, and high sensitivity levels. In this article, we describe the calibration process of a commercially available pyroelectric detector (Spectrum Detector, Inc, SPI-A-65 THz), which incorporates a 5 mm diameter LiTaO3 detector with an organic terahertz absorber coating.

  13. Development of Three-Dimensional Position-Sensitive Room Temperature Semiconductor Gamma-Ray Spectrometers

    International Nuclear Information System (INIS)

    Semiconductor detectors can provide better spectroscopic performance than scintillation or gas-filled detectors because of the small ionization energy required to generate each electron-hole pair. Indeed, cryogenically cooled high-purity germanium detectors have played the dominant role whenever the best gamma-ray spectroscopy is required. A decades-long search for other semiconductor detectors that could provide higher stopping power and could operate at room temperature has been ongoing. Wide-bandgap semiconductors, such as CdTe, CdZnTe, and HgI2, have captured the most attention. However, the use of these semiconductors in detectors has been hindered primarily by problems of charge trapping and material nonuniformity. Introduced in 1994, single-polarity charge sensing on semiconductor detectors has shown great promise in avoiding the hole-trapping problem, and the newly demonstrated three-dimensional position-sensing technique can significantly mitigate the degradation of energy resolution due to nonuniformity of detector material. In addition, three-dimensional position sensitivity will provide unique imaging capabilities of these gamma-ray spectrometers. These devices are of interest for nuclear nonproliferation, medical imaging, gamma-ray astronomy, and high-energy physics applications. This paper describes the three-dimensional position-sensing method and reports our latest results using second-generation three-dimensional position-sensitive semiconductor spectrometers

  14. The basics of experimental determination of the Fano factor in intrinsic semiconductors

    International Nuclear Information System (INIS)

    Intrinsic semiconductors such as High Purity Germanium Detectors are exceptional X-ray and gamma-ray detectors because of their large sizes and small band gap. They are used for fundamental scientific researches, nuclear material safeguards and security, environmental protection, and human health and safety. The fundamental limit of the energy resolution of a semiconductor detector is determined by variance in the number of electron-hole pairs produced by X-rays in detector volume. The principal characteristic of material for using as semiconductor detector is the Fano factor that determines the fluctuation in the number of electron-hole pairs. Now, all existing methods of experimental determination of the Fano factor in semiconductors are based on the subtraction of electronic noise from the signal variance. In this work, I propose the method of experimental determination of the Fano factor in a planar semiconductor detector based on dependences of the mean amplitude and the energy resolution on the electric field. It was shown that inverse electric field expansion of these dependences allow determining the Fano factor, electron mobility lifetime product, and relative variance of electron lifetime due to inhomogeneous charge transport in semiconductor material. The important advantage of the proposed method is independence on detector electronic noise. (authors)

  15. Scaled down physical properties of semiconductor nanowires for nanoelectronics scaling up

    OpenAIRE

    Carapezzi, Stefania

    2014-01-01

    Semiconductor nanowires (NWs) are one- or quasi one-dimensional systems whose physical properties are unique as compared to bulk materials because of their nanoscaled sizes. They bring together quantum world and semiconductor devices. NWs-based technologies may achieve an impact comparable to that of current microelectronic devices if new challenges will be faced. This thesis primarily focuses on two different, cutting-edge aspects of research over semiconductor NW arrays as pivotal component...

  16. Spin injection into semiconductors

    Science.gov (United States)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  17. Semiconductor Research Experimental Techniques

    CERN Document Server

    Balkan, Naci

    2012-01-01

    The book describes the fundamentals, latest developments and use of key experimental techniques for semiconductor research. It explains the application potential of various analytical methods and discusses the opportunities to apply particular analytical techniques to study novel semiconductor compounds, such as dilute nitride alloys. The emphasis is on the technique rather than on the particular system studied.

  18. Molecular Semiconductors: An Introduction

    Science.gov (United States)

    de Mello, John; Halls, Jonathan James Michael

    2005-10-01

    Introducing the fundamental ideas and concepts behind organic semiconductors, this book provides a clear impression of the broad range of research activities currently underway. Aimed specifically at new entrant doctoral students from a wide variety of backgrounds, including chemistry, physics, electrical engineering and materials science, it also represents an ideal companion text to undergraduate courses in organic semiconductors.

  19. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  20. Applications of Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    LI Te; SUN Yan-fang; NING Yong-qiang; WANG Li-jun

    2005-01-01

    An overview of the applications of semiconductor lasers is presented. Diode lasers are widely used today,and the most prevalent use of the laser is probably in CD and DVD drives for computers and audio/video media systems. Semiconductor lasers are also used in many other fields ranging from optical fiber communications to display,medicine and pumping sources.

  1. Ionization detector

    International Nuclear Information System (INIS)

    A novel ionization detector for use in X-ray tomography is described in detail. To achieve the ultimate resolution, the use of small detectors is necessary and, for ionization detectors, this implies using xenon gas at high pressure. Conventional small detectors can suffer from ''bowing'' but the present design overcomes their problems. (U.K.)

  2. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads to a...... decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate the...

  3. Development of semiconductor radiation sensors for portable alarm-dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Moon, B. S.; Chung, C. E.; Hong, S. B.; Kim, J. Y.; Kim, J. B.; Han, S. H.; Lee, W. G. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-01-01

    We studied Semiconductor Radiation Sensors for Portable Alarm-Dosimeter. We calculated response functions for gamma energy 0.021, 0.122, 0.662, 0.835, 1.2 MeV using EGS4 codes. When we measured at various distance from source to detector, the detection efficiency of Si semiconductor detector was better than that of GM tube. The linear absorption coefficients of steel and aluminum plate were measured. These experimental results of the response of detector for intensity of radiation field coincide to the theoretical expectation. The count value of Si detector was changed with changing thickness of steel as changing threshold voltage of discriminator, and the linear absorption coefficient increased with increasing threshold voltage. Radiation detection efficiency shows difference at each threshold voltage condition. This results coincided to the theoretical simulation. 33 refs., 27 figs., 8 tabs. (Author)

  4. Operation and performance of the ATLAS semiconductor tracker

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernabéu, José; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; Garcia Argos, Carlos; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodrick, Maurice; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivarsson, Jenny; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joseph, John; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubik, Petr; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pieron, Jacek Piotr; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Rick; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sopko, Bruno; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warren, Matthew; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.

  5. A new configuration of the Moxon-Rae detector based on Si detector

    International Nuclear Information System (INIS)

    A new Moxon-Rae detector configuration based on Si semiconductor detector was proposed in this paper. Three γ-ray sources, 137Cs, 60Co, and 24Na, were employed to make actual measurements using the new Moxon-Rae detector. The measured pulse height spectra and detection efficiencies were compared with the EGS4 simulated values. The results revealed that the proposed new configuration is indeed a successful method and specially a useful technique for higher energy γ-ray measurement

  6. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  7. Semiconductor materials: From gemstone to semiconductor

    Science.gov (United States)

    Nebel, Christoph E.

    2003-07-01

    For diamond to be a viable semiconductor it must be possible to change its conductivity by adding impurities - known as dopants. With the discovery of a new dopant that generates electron conductivity at room temperature, diamond emerges as an electronic-grade material.

  8. Impact of metal overhang and guard ring techniques on breakdown voltage of Si strip sensors - 2003 IEEE nuclear science symposium, medical imaging conference, and workshop of room-temperature semiconductor detectors

    CERN Document Server

    Ranjan, K; Namrata, S; Chatterji, S; Srivastava-Ajay, K; Kumar, A; Jha, Manoj Kumar; Shivpuri, R K

    2004-01-01

    The importance of Si sensors in high-energy physics (HEP) experiments can hardly be overemphasized. However, the high luminosity and the high radiation level in the future HEP experiments, like Large Hadron Collider (LHC), has posed a serious challenge to the fabrication of Si detectors. For the safe operation over the full LHC lifetime, detectors are required to sustain very high voltage operation, well exceeding the bias voltage needed to full deplete the heavily irradiated Si sensors. Thus, the main effort in the development of Si sensors is concentrated on a design that avoids p-n junction breakdown at operational biases. Among various proposed techniques, Field-limiting Ring (FLR) (or guard ring) and Metal-Overhang (MO) are technologically simple and are suitable for vertical devices. Since high-voltage planar Si junctions are of great importance in the HEP experiments, it is very interesting to compare these two aforementioned techniques for achieving the maximum breakdown voltage under optimal conditio...

  9. AlN Based Extreme Ultraviolet (EUV) Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I project is to investigate the feasibility for achieving EUV detectors for space applications by exploiting the ultrahigh bandgap semiconductor - AlN....

  10. Sensitivity of a new-developed neutron detector

    Institute of Scientific and Technical Information of China (English)

    PENG Tai-Ping; ZHU Xue-Bin; YANG Hong-Qiong; YANG Jian-Lun; YANG Gao-Zhao; LI Lin-Bo; SONG Xian-Cai

    2005-01-01

    We develop a kind of neutron detector, which consists of a polyethylene thin film and two PIN semiconductors connected face-to-face. The detector is insensitive to γ-rays. Its sensitivity to neutron has been calculated with MCNP program and calibrated by experiments, and the results indicate that the neutron sensitivity of the compensation detector will vary with polyethylene converter. The compensation PIN detector can be employed to measure pulse neutron in neutron and gamma mixture radiation field.

  11. Investigation of the operational quality of germanium gamma detectors. Estimation of Ge:Li detector survival rates

    International Nuclear Information System (INIS)

    A working group has produced tables of information on gamma semiconductor Ge detectors: Ge(Li) or intrinsic Ge. The information was obtained as a result of enquirres addressed to various laboratories, and concerns 228-sources in France and Belgium

  12. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H

    1996-01-01

    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  13. Solar cells on the base of organic semiconductors

    International Nuclear Information System (INIS)

    The parameters of organic solar cells on the base of different organic semiconductors as poly epoxypropyl carbazole, copper phthalocyanine and bordeaux perylene are considered. Moreover the properties of solar cells on the base of n-GaAs and copper phthalocyanine heterostructure are described. The new technologies in the field of organic solar cells as bulk heterostructure solar cells are discussed. (author)

  14. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  15. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  16. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  17. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  18. Proceedings of wide band gap semiconductors

    International Nuclear Information System (INIS)

    This book contains the proceedings of wide band gap semiconductors. Wide band gap semiconductors are under intense study because of their potential applications in photonic devices in the visible and ultraviolet part of the electromagnetic spectrum, and devices for high temperature, high frequency and high power electronics. Additionally, due to their unique mechanical, thermal, optical, chemical, and electronic properties many wide band gap semiconductors are anticipated to find applications in thermoelectric, electrooptic, piezoelectric and acoustooptic devices as well as protective coatings, hard coatings and heat sinks. Material systems covered in this symposium include diamond, II-VI compounds, III-V nitrides, silicon carbide, boron compounds, amorphous and microcrystalline semiconductors, chalcopyrites, oxides and halides. The various papers addressed recent experimental and theoretical developments. They covered issues related to crystal growth (bulk and thin films), structure and microstructure, defects, doping, optoelectronic properties and device applications. A theoretical session was dedicated to identifying common themes in the heteroepitaxy and the role of defects in doping, compensation and phase stability of this unique class of materials. Important experimental milestones included the demonstrations of bright blue injection luminescence at room temperatures from junctions based on III-V nitrides and a similar result from multiple quantum wells in a ZnSe double heterojunction at liquid nitrogen temperatures

  19. A simulation study on the focal plane detector of the LAUE project

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M., E-mail: mkhalil@in2p3.fr [APC Laboratory, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy); Frontera, F. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy); INAF/IASF-Bologna, Via P. Gobetti 101, Bologna (Italy); Caroli, E. [INAF/IASF-Bologna, Via P. Gobetti 101, Bologna (Italy); Virgilli, E.; Valsan, V. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy)

    2015-06-21

    The LAUE project, supported by the Italian Space Agency (ASI), is devoted to the development of a long focal length (even 20 m or longer) Laue lens for gamma ray astronomy between 80 and 600 keV. These lenses take advantage of Bragg diffraction to focus radiation onto a small spot drastically improving the signal to noise ratio as well as reducing the required size of the detector significantly. In this paper we present a Monte-Carlo simulation study with MEGALIB to optimize, for space applications, the detector size to achieve high detection efficiency, and to optimize the position resolution of the detector to reconstruct the Point Spread Function of the lens considered for the LAUE project. Then we will show simulations, using the SILVACO semiconductor simulation toolkit, on the optimized detector to estimate its capacitance per channel and depletion voltage. In all of the simulations, two materials were compared; a low density material (Silicon) and a high density material (Germanium). - Highlights: • The quantized Hall plateaus and Shubnikov de Haas oscillations in transition metal doped topological insulators are observed. • The evidence of a two-dimensional/layered transport of the bulk electrons is reported. • An obvious ferromagnetism in doped topological insulators is observed. • Care should be taken to pindown the transport of the topological SS in topological insulators.

  20. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    Vijay A Singh; Manoj K Harbola; Praveen Pathak

    2008-02-01

    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures (SN) has been in progress for the past two decades, the role of impurities in them has been only sketchily studied. We outline theoretical approaches to the electronic structure of shallow impurities in SN and discuss their limitations. We find that shallow levels undergo a SHADES (SHAllow-DEep-Shallow) transition as the SN size is decreased. This occurs because of the combined effect of quantum confinement and reduced dielectric constant in SN. Level splitting is pronounced and this can perhaps be probed by ESR and ENDOR techniques. Finally, we suggest that a perusal of literature on (semiconductor) cluster calculations carried out 30 years ago would be useful.