WorldWideScience

Sample records for bulk pdxcu1-x alloys

  1. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  2. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  3. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  4. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  5. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  6. Bulk metallic glasses and high entropy alloys for reprocessing applications

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Jayaraj, J.

    2016-01-01

    Recent breakthroughs in materials engineering have generated complex alloys that retain a glassy state in bulk form (bulk metallic glasses or BMGs) via ingot casting. High corrosion resistance is expected for BMGs (amorphous) as they are free from defects associated with the crystalline state such as grain boundaries, dislocations and stacking faults. Compared with conventional alloys containing one or two principal elements, the recently developed HEAs are usually composed of five or more elements with equimolar or near equimolar elemental fractions, which forms single solid solution phase. These HEAs exhibit excellent microstructural stability with better mechanical, wear and corrosion resistance properties as they are essentially single phase. Reprocessing of spent fuel from the fast breeder reactor involves the use of high concentration of (11.5 M) nitric acid under boiling conditions for the dissolution of the fuel. Conventional AISI type 304LSS and nitric acid grade 304L stainless steel would undergo inter-granular corrosion under these conditions and cannot be used for the fabrication of dissolver vessel. Currently titanium is used and zirconium alloys are proposed for future dissolver applications. Thus searching for newer materials with higher corrosion resistance suggests metallic glasses and HEAs for critical components of the dissolver application. Several Zr-based glassy alloys with different microstructural states and Ni-Nb based glassy alloys and TiZrHfNbTa HEA were cast and characterized for microstructure and corrosion resistance in nitric acid medium. From these studies, factors such as the corrosive environment (nitric acid, chloride and fluoride), and the presence of passivating elements in the alloy were emphasized for better corrosion resistance of BMGs and HEA. Attempts were also made to prepare coatings of Zr-and Ni-based glassy alloys on 304LSS by laser based deposition technique and their corrosion properties were evaluated. (author)

  7. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  8. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  9. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  10. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  11. Synthesis of bulk nanocrystalline Pb-Sn-Te alloy under high pressure

    International Nuclear Information System (INIS)

    Zhu, P W; Chen, L X; Jia, X; Ma, H A; Ren, G Z; Guo, W L; Liu, H J; Zou, G T

    2002-01-01

    Pb-Sn-Te bulk nanocrystalline (NC) materials are prepared successfully by quenching melts under high pressure. The mean particle size is about 100 nm and the crystal structure is NaCl type. The mechanism of formation of the bulk NC alloy is explained: there is an increasing of the nucleation rate and a decrease in the growth rate of nuclei with increase of pressure during the solidification processes. The thermoelectric properties of Pb-Sn-Te bulk NC alloy are enhanced. This method is promising for producing thermoelectric materials with improved high-energy conversion efficiency

  12. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  13. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Science.gov (United States)

    Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.

    2014-05-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  14. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  15. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    International Nuclear Information System (INIS)

    García-Rosales, C.; López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N.; Koch, F.; Brinkmann, J.

    2014-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO 3 in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr 2 O 3 layer is found at the outer surface, below which a Cr 2 WO 6 scale and Ti 2 CrO 5 layers alternating with WO 3 are formed. The Cr 2 O 3 , Cr 2 WO 6 and Ti 2 CrO 5 scales act as protective barriers against fast inward O 2− diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W

  16. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    Energy Technology Data Exchange (ETDEWEB)

    García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Koch, F.; Brinkmann, J. [Max-Planck-Institut für Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany)

    2014-10-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO{sub 3} in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr{sub 2}O{sub 3} layer is found at the outer surface, below which a Cr{sub 2}WO{sub 6} scale and Ti{sub 2}CrO{sub 5} layers alternating with WO{sub 3} are formed. The Cr{sub 2}O{sub 3}, Cr{sub 2}WO{sub 6} and Ti{sub 2}CrO{sub 5} scales act as protective barriers against fast inward O{sup 2−} diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W.

  17. Investigation of new type Cu-Hf-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Nagy, E; Ronto, V; Solyom, J; Roosz, A

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu 49 Hf 42 Al 9 , Cu 46 Hf 45 Al 9 , Cu 50 Hf 42.5 Al 7.5 and Cu 50 Hf 45 Al 5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  18. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    International Nuclear Information System (INIS)

    Long-Chao, Zhuo; Shu-Jie, Pang; Hui, Wang; Tao, Zhang

    2009-01-01

    Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al 86 Si 0.5 Ni 4.06 Co 2.94 Y 6 Sc 0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability. (condensed matter: structure, mechanical and thermal properties)

  19. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    International Nuclear Information System (INIS)

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  20. Ceramic filters for bulk inoculation of nickel alloy castings

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2011-07-01

    Full Text Available The work includes the results of research on production technology of ceramic filters which, besides the traditional filtering function, playalso the role of an inoculant modifying the macrostructure of cast nickel alloys. To play this additional role, filters should demonstratesufficient compression strength and ensure proper flow rate of liquid alloy. The role of an inoculant is played by cobalt aluminateintroduced to the composition of external coating in an amount from 5 to 10 wt.% . The required compression strength (over 1MPa isprovided by the supporting layers, deposited on the preform, which is a polyurethane foam. Based on a two-level fractional experiment24-1, the significance of an impact of various technological parameters (independent variables on selected functional parameters of theready filters was determined. Important effect of the number of the supporting layers and sintering temperature of filters after evaporationof polyurethane foam was stated.

  1. High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys

    Science.gov (United States)

    An, X. H.; Han, W. Z.; Huang, C. X.; Zhang, P.; Yang, G.; Wu, S. D.; Zhang, Z. F.

    2008-05-01

    Lack of plasticity is the main drawback for nearly all ultrafine-grained (UFG) materials, which restricts their practical applications. Bulk UFG Cu-Al alloys have been fabricated by using equal channel angular pressing technique. Its ductility was improved to exceed the criteria for structural utility while maintaining a high strength by designing the microstructure via alloying. Factors resulting in the simultaneously enhanced strength and ductility of UFG Cu-Al alloys are the formation of deformation twins and their extensive intersections facilitating accumulation of dislocations.

  2. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  3. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  4. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  5. Similar and dissimilar friction welding of Zr-Cu-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Park, Jung-Soo; Jung, Yoon-Chul; Ahn, Jung-Ho; Yokoyama, Yoshihiko; Inoue, Akihisa

    2009-01-01

    The friction welding of three kinds of Zr-Cu-Al bulk glassy alloys (BGAs) which show eutectic or hypoeutectic compositions to similar and dissimilar BGAs and crystalline metals has been tried. The shape and volume of the protrusion formed at the weld interface were investigated. In order to characterize the friction welded interface, micrographic observation and X-ray diffraction analysis on the weld cross-section were carried out. A successful joining of Zr-Cu-Al bulk glassy alloys to similar and dissimilar BGAs was achieved without occurrence of crystallizations at the weld interface through the precise control of friction conditions. In addition, the joining of Zr 50 Cu 40 Al 10 BGA to crystalline alloys was tried, but it was only successful for specific material combinations. The residual strength after welding of dissimilar BGAs was evaluated by the four-point bending test.

  6. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and tempo......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  7. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  8. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  9. EFFECT OF THE TEMPERATURE ON THE FRICTION AND WEAR PROPERTIES OF BULK AMORPHOUS ALLOY

    OpenAIRE

    DAWIT ZENEBE SEGU; PYUNG HWANG; SEOCK-SAM KIM

    2014-01-01

    The present paper report the results of an experimental investigation of the temperature effect on the sliding friction and wear properties of the bulk metallic glass (BMG). To improve the friction and wear properties of the BMG, the disk specimens were developed in the alloy system of Fe67.6C7.1Si3.3B5.5P8.7Cr2.3Mo2.6Al2Co1.0 using hot metal and industrial ferro-alloys. The friction and wear test was performed using flat-on-flat contact configuration of unidirectional tribometer and Si3N4 ce...

  10. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  11. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  12. Critically designing today’s melt processed bulk magnesium alloys using boron rich nanoparticles

    International Nuclear Information System (INIS)

    Paramsothy, Muralidharan; Gupta, Manoj

    2015-01-01

    Highlights: • B 4 C nanoparticles increased the tensile ductility of Mg–Al alloy to about 25%. • SiB 6 nanoparticles increased the tensile ductility of Mg–Zn alloy to about 23%. • ZrB 2 nanoparticles increased the tensile strength of Mg–RE alloy to above 400 MPa. • Hypothetically, 5–10% cold working could significantly increase tensile strength. • Hypothetically, 5–10% cold working could maintain tensile ductility above 10%. - Abstract: In this work, boron rich nanoparticles (B 4 C, SiB 6 and ZrB 2 ) were added to bulk melt processed Mg–Al, Mg–Zn and Mg–RE (Rare Earth) series contemporary magnesium alloys, respectively. The most obvious positive effect when adding B 4 C nanoparticles to the Mg–Al alloy was the significant increase in tensile ductility (to about 25%). Here, there was no significant change in grain size or crystallographic texture due to nanoparticle addition. However, it was observed that stacking faults formed more easily in the magnesium matrix due to nanoparticle addition. Also, it was observed that coarser nanoparticles broke down high strain zones (HSZs) during tensile deformation. The addition of SiB 6 to Mg–Zn alloy also resulted in similar significant increase in tensile ductility (to about 23%). Tensile deformation induced alignment of more rounded and spherical nanoparticles was observed. Stacking faults forming more easily in the alloy matrix was also observed. However, the formation of nanograins (nanoscale recrystallization) during room temperature tensile deformation was observed in this system. This implied that nanograin rotation during deformation was also responsible for the observed enhanced tensile ductility. When ZrB 2 was added to Mg–RE alloy, the tensile strength was significantly enhanced (yield strength >400 MPa) after thermal ageing. Here, the ZrB 2 nanoparticles induced the formation of thermal ageing resistant long period stacking/ordered (LPSO) nanograins and nanolayers in the Mg

  13. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    spectrum, photoluminescence (PL), and refractive index measurements. Other methods such as infrared imagery and micro probe wavelength dispersing ...States. AFIT/DS/ENP/11-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF MELT- GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ...CHARACTERIZATION OF MELT-GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ALLOYS Jean Wei, BS, MS Approved

  14. Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)

    2017-05-15

    The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)

  15. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  16. Crystallization Behavior of A Bulk Amorphous Mg62Cu26Y12 Alloy

    Science.gov (United States)

    Wu, Shyue-Sheng; Chin, Tsung-Shune; Su, Kuo-Chang

    1994-07-01

    The crystallization temperature, the associated activation energy and the crystallized structure of a bulk amorphous Mg62Cu26Y12 alloy with a diameter of 2.5 mm were studied. It possesses a one-step crystallization behavior. The crystallization reaction was found to be represented by: AM(MG62Cu26Y12)→Mg2Cu+MgY+CuY+Mg, ( Tx=188°C, Eac=134 kJ/mol) where AM represents the amorphous state, T x the crystallization temperature at an infinitesimal heating rate, and E ac the associated activation energy. The amount of crystalline phases were found to be Mg2Cu:MgY:CuY=76:17:7. The Mg phase is identifiable only by high resolution electron microscopy, not by X-ray diffraction. The crystallization leads to a sharp rise in electrical resistivity which is reversed to those of iron-based amorphous alloys.

  17. Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy

    Science.gov (United States)

    Kenzhin, Roman M.; Bauman, Yuri I.; Volodin, Alexander M.; Mishakov, Ilya V.; Vedyagin, Aleksey A.

    2018-01-01

    Catalytic chemical vapor deposition (CCVD) of chlorobenzene over bulk nickel alloy (nichrome) was studied. The bulk Ni-containing samples being exposed to a contact with aggressive reaction medium undergo self-disintegration followed by growth of carbon nanofibers. This process, also known as a metal dusting, requires the simultaneous presence of chlorine and hydrogen sources in the reaction mixture. Molecule of chlorobenzene complies with these requirements. The experiments on CCVD were performed in a flow-through reactor system. The initial stages of nickel disintegration process were investigated in a closed system under Autogenic Pressure at Elevated Temperature (RAPET) conditions. Scanning and transmission electron microscopies and ferromagnetic resonance spectroscopy were applied to examine the samples after their interaction with chlorobenzene. Introduction of additional hydrogen into the flow-through system was shown to affect the morphology of grown carbon nanofibers.

  18. Non-destructive identification of unknown minor phases in polycrystalline bulk alloys using three-dimensional X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yiming, E-mail: yangyiming1988@outlook.com [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Liang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yudan; Du, Guohao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Yang, Sam [Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC 3168 (Australia); Xiao, Tiqiao, E-mail: tqxiao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-15

    Minor phases make considerable contributions to the mechanical and physical properties of metals and alloys. Unfortunately, it is difficult to identify unknown minor phases in a bulk polycrystalline material using conventional metallographic methods. Here, a non-destructive method based on three-dimensional X-ray diffraction (3DXRD) is developed to solve this problem. Simulation results demonstrate that this method is simultaneously able to identify minor phase grains and reveal their positions, orientations and sizes within bulk alloys. According to systematic simulations, the 3DXRD method is practicable for an extensive sample set, including polycrystalline alloys with hexagonal, orthorhombic and cubic minor phases. Experiments were also conducted to confirm the simulation results. The results for a bulk sample of aluminum alloy AA6061 show that the crystal grains of an unexpected γ-Fe (austenite) phase can be identified, three-dimensionally and nondestructively. Therefore, we conclude that the 3DXRD method is a powerful tool for the identification of unknown minor phases in bulk alloys belonging to a variety of crystal systems. This method also has the potential to be used for in situ observations of the effects of minor phases on the crystallographic behaviors of alloys. - Highlights: •A method based on 3DXRD is developed for identification of unknown minor phase. •Grain position, orientation and size, is simultaneously acquired. •A systematic simulation demonstrated the applicability of the proposed method. •Experimental results on a AA6061 sample confirmed the practicability of the method.

  19. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yao, Ke-Fu, E-mail: kfyao@tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-07-15

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe{sub 81}P{sub 8.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe{sub 82}Mo{sub 1}P{sub 6.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications. - Highlights: • Novel Fe-based BAA with no other metallic element except 81 at% Fe was prepared. • Fe-based bulk amorphous alloy (BAA) with the highest Fe content (82%) was prepared. • Very high saturation magnetization of 1.59 T has been achieved. • A new thought for designing Fe-based BAA with high Fe content was provided.

  20. Free volume and elastic properties changes in Cu-Zr-Ti-Pd bulk glassy alloy on heating

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Yavari, Alain Reza; Fukuhara, Mikio; Ota, Katsumi; Xie, Guoqiang; Vaughan, Gavin; Inoue, Akihisa

    2007-01-01

    The variation of free volume and elastic properties of the Cu 55 Zr 30 Ti 10 Pd 5 glassy alloy on heating was studied. The structure changes on heating were studied by synchrotron X-ray diffraction, differential scanning and isothermal calorimetries. The studied glassy alloy shows a rather high Poisson's ratio exceeding 0.42 which is maintained after the structure relaxation and primary devitrification. Young's and Shear modules decrease upon primary devitrification while Bulk modulus exhibits a maximum after structural relaxation

  1. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  2. Characterization of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F. [Institute of Materials Engineering, National Taiwan Ocean University, No. 2, Beining Road, Keelung (China); Lin, H.M. [Department of Materials Engineering, Tatung University, No.40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei 104 Taiwan (China); Lee, P.Y.

    2008-11-15

    This study explored the feasibility of preparing CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} bulk metallic glass (BMG) composites though powder metallurgy route. The CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites were obtained by consolidating the 8h mechanically alloyed composite powders by vacuum hot pressing process. A significant increase in hardness (9.34 GPa) and fracture strength (1937 MPa) was achieved for the Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites containing 12 vol. % CNT. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Observation of giant exchange bias in bulk Mn50Ni42Sn8 Heusler alloy

    Science.gov (United States)

    Sharma, Jyoti; Suresh, K. G.

    2015-02-01

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn50Ni42Sn8 Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (Tf) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  4. Physical properties of Zr50Cu40-xAl10Pdx bulk glassy alloys

    International Nuclear Information System (INIS)

    Wencka, M.; Jagodic, M.; Gradisek, A.; Kocjan, A.; Jaglicic, Z.; McGuiness, P.J.; Apih, T.; Yokoyama, Y.; Dolinsek, J.

    2010-01-01

    It was shown recently (Yokoyama et al. ) that the addition of a small amount of Pd to the Zr 50 Cu 40 Al 10 bulk glassy alloy (BGA) has a beneficial effect on fatigue-strength enhancement, where the composition Zr 50 Cu 37 Al 10 Pd 3 behaved in a resonant-like way by showing the highest fatigue limit of 1050 MPa and the minimum Vickers hardness. We performed a study of the magnetic properties, the specific heat, the electrical resistivity and the hydrogen-diffusion constant for a series of compositions Zr 50 Cu 40-x Al 10 Pd x (x = 0-7 at.%), in order to determine their physical properties and to check for the influence of the Pd content on these properties. The Zr 50 Cu 40-x Al 10 Pd x BGAs are nonmagnetic, conducting alloys, where the Pauli spin susceptibility of the conduction electrons is the only source of paramagnetism. The low-temperature specific heat indicates an enhancement of the conduction-electron effective mass m* below 5 K, suggesting that the Zr 50 Cu 40-x Al 10 Pd x BGAs are not free-electron-like compounds. The electrical resistivities of the Zr 50 Cu 40-x Al 10 Pd x BGAs amount to about 200 μΩ cm and show a small, negative temperature coefficient (NTC) with an increase from 300 to 2 K of 4%. The hydrogen self-diffusion constant D in hydrogen-loaded samples shows classical over-barrier-hopping temperature dependence and is of comparable magnitude to the related icosahedral and amorphous Zr 69.5 Cu 12 Ni 11 Al 7.5 hydrogen-storage alloys. No correlation between the investigated physical parameters and the Pd content of the samples could be observed.

  5. Wetting behavior of molten In-Sn alloy on bulk amorphous and crystalline Cu40Zr44Al8Ag8

    International Nuclear Information System (INIS)

    Ma, G. F.; Zhang, H. F.; Li, H.; Hu, Z. Q.

    2007-01-01

    Using the sessile-drop method, the wettability of the molten In-Sn alloy on bulk amorphous and crystalline Cu 40 Zr 44 Al 8 Ag 8 alloy was studied at different temperatures. It was found that the equilibrium contact angle of In-Sn alloy melt on bulk amorphous substrate was smaller than that of the crystalline one. An intermetallic compound existed at the interface of In-Sn alloy on amorphous Cu 40 Zr 44 Al 8 Ag 8 , while no intermediate reaction layer was formed at the interface of In-Sn alloy on crystalline Cu 40 Zr 44 Al 8 Ag 8 in the temperature range studied

  6. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass

    Science.gov (United States)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-02-01

    The effect of alloying elements (e.g. Fe, Al, and Ni) on the room temperature creep behavior of a lightweight Ti41Zr25Be34 bulk metallic glass (BMG) was investigated via nanoindentation tests. The generalized Kelvin model was adopted to describe the creep curves. The strain rate sensitivity m has been derived as a measure of the creep resistance. The compliance spectrum and retardation spectrum were also derived. The results show that the creep resistance of Ti41Zr25Be34 alloy can be obviously improved with the addition of alloying elements, and the most effective element is found to be Al. The mechanism for enhancing the creep resistance was discussed in terms of the scale variation of the shear transformation zone induced by alloying.

  7. Effects of Nb and Si on densities of valence electrons in bulk and defects of Fe3Al alloys

    Institute of Scientific and Technical Information of China (English)

    邓文; 钟夏平; 黄宇阳; 熊良钺; 王淑荷; 郭建亭; 龙期威

    1999-01-01

    Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and th

  8. A multi-component Zr alloy with comparable strength and Higher plasticity than Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Ma, M.Z.; Jing, R.; Yu, P.F.; Zhang, Y.F.; Wang, B.A.; Liu, R.P.

    2013-01-01

    Zirconium (Zr)-based bulk metallic glass possesses the highest potential as a structural material among metallic glasses. Although Zr-based bulk metallic glass exhibits extremely high strength, its potential application has been restricted by a number of issues, such as fragility, small size, difficult fabrication into different shapes and poisonous beryllium content, among others. In this paper, a Zr-based crystal alloy with comparable strength and higher plasticity than Zr-based bulk metallic glass is presented. The proposed Zr-based alloy has a tensile strength greater than 1600 MPa. That value is comparable to the 1500 MPa to 2000 MPa strength of Zr-based bulk metallic glasses (BMGs). The ductility in terms of elongation reached 6.2%; at the same time, the 1400 MPa tensile strength was retained. This phenomenon is not possible for Zr-based BMGs. XRD results show that the proposed ultrahigh-strength Zr-based crystal alloy has two-phase structures: an hcp-structured α phase and a bcc-structured β phase. The forged specimen exhibits a typical basket-weave microstructure, which is characterised by the interlaced plate α phase separated from the β phase matrix. Fine, short bar-shaped α phases precipitated along the original β grain boundary together with ultrafine dot-shaped α phases that presented inside the original β grain when the ageing temperature was between 500 °C and 525 °C. As the ageing temperature increased, the dot-shaped α phase grew into plate shapes, decreasing the material's strength and increasing its plasticity. The ultrafine dot-shaped and short bar-shaped α phases in the original β phase matrix are the main strengthening mechanisms of the ultrahigh-strength Zr-based crystal alloy.

  9. Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A., E-mail: ainouebmg@yahoo.co.jp [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia); Wang, Z.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Han, Y. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Kong, F.L. [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); Shalaan, E.; Al-Marzouki, F. [Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia)

    2015-07-25

    Highlights: • A multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy was formed. • The high-order multiplication suppression of the decrease in mechanical strength. • The BGAs show good corrosion resistance and slow growth rate of primary precipitates. - Abstract: We examined the formation, thermal stability, mechanical properties and corrosion behavior of a multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy, with the aim of clarifying the effect of high-order multiplication of the number of components on their properties. The bulk glassy alloy rods of 2 and 6 mm in diameter were formed by suction casting even at the low total content of typical glass-forming 3-d late transition metals like Co, Ni and Cu. The Vickers hardness is different in the center region and in the outer surface region. The difference seems to reflect the relaxation level of glassy structure. The Young’s modulus and the compressive fracture strength are nearly the same for the base Zr{sub 55}Al{sub 10}Ni{sub 5}Cu{sub 30} alloy in spite of the existence of immiscible atomic pairs. Moreover, the multicomponent alloy exhibits better corrosion resistance than that for the base alloy. The glassy phase changes to a supercooled liquid state at 720 K and then starts to crystallize at 754 K with a single exothermic peak, in contrast to the appearance of a wide supercooled liquid region for the base alloy. The primary crystalline phase precipitates with very short incubation time and very low growth rate, which are different from those for the base alloy. The extremely low growth rate of the crystallites is presumably due to the reduction of diffusivity of late transition metal elements resulting from multiplication. Thus, the high-order multiplication has the features of (1) the maintenance of high glass-forming ability even at the lower Co, Ni and Cu content and in the absence of

  10. Influence of minor alloying additions on the glass-forming ability of Mg-Ni-La bulk metallic glasses

    International Nuclear Information System (INIS)

    Gonzalez, S.; Figueroa, I.A.; Todd, I.

    2009-01-01

    Bulk metallic glasses of Mg 60 Ni 23.6 Y x La (16.4-x) and Mg 65 Ni 20 Y x LaMM (15-x) with 0 ≤ x ≤ 1 at.% have been produced by injection casting. For the La-containing alloy a maximum amorphous diameter of 4 mm for x = 0.5 and 0.75 was obtained. The LaMM-containing alloy showed a maximum amorphous diameter of 2 mm for x = 0 and 0.25 but decreased to 1 mm with further Y additions. The glass-forming ability of the Mg 60 Ni 23.6 La 16.4 alloy decreased when La is partially substituted by small amounts of small atoms (Si or B) or by large atoms (Y and Si).

  11. Direct and indirect measurement of the magnetocaloric effect in bulk and nanostructured Ni-Mn-In Heusler alloy

    Science.gov (United States)

    Ghahremani, Mohammadreza; Aslani, Amir; Hosseinnia, Marjan; Bennett, Lawrence H.; Della Torre, Edward

    2018-05-01

    A systematic study of the magnetocaloric effect of a Ni51Mn33.4In15.6 Heusler alloy converted to nanoparticles via high energy ball-milling technique in the temperature range of 270 to 310 K has been performed. The properties of the particles were characterized by x-ray diffraction, electron microscopy, and magnetometer techniques. Isothermal magnetic field variation of magnetization exhibits field hysteresis in bulk Ni51Mn33.4In15.6 alloy across the martensitic transition which significantly lessened in the nanoparticles. The magnetocaloric effects of the bulk and nanoparticle samples were measured both with direct method, through our state of the art direct test bed apparatus with controllability over the applied fields and temperatures, as well as an indirect method through Maxwell and thermodynamic equations. In direct measurements, nanoparticle sample's critical temperature decreased by 6 K, but its magnetocaloric effect enhanced by 17% over the bulk counterpart. Additionally, when comparing the direct and indirect magnetocaloric curves, the direct method showed 14% less adiabatic temperature change in the bulk and 5% less adiabatic temperature change in the nanostructured sample.

  12. Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys

    International Nuclear Information System (INIS)

    Lee, Seok-Woo; Huh, Moo-Young; Fleury, Eric; Lee, Jae-Chul

    2006-01-01

    This study examined the parameter governing the plasticity observed in various Cu-Zr containing monolithic amorphous alloys. All the alloys were fully amorphous in their as-cast condition but exhibited different plastic strains. Microscopic observations of the quasi-statically compressed alloys showed abundant nanocrystallites in the amorphous matrices in the alloys that exhibited pronounced plasticity. On the other hand, insignificant changes in the microstructure were observed in the alloy that did not show plasticity. The mechanism for the formation of these deformation-induced nanocrystallites was examined from the viewpoints of thermodynamics and kinetics. The role of the deformation-induced nanocrystallites on the plasticity of the amorphous alloy was examined using high-resolution transmission electron microscopy. The results demonstrate that compressive loading facilitates nanocrystallization in monolithic Cu-Zr containing amorphous alloys, resulting in plasticity. The parameter governing the plasticity in these monolithic Cu-Zr containing amorphous alloys lies in the activation energy for the overall crystallization process

  13. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    Science.gov (United States)

    Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2013-05-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still

  14. Structural and magnetic properties of rapidly quenched and as-cast bulk NdFeBCu alloys

    International Nuclear Information System (INIS)

    Sanchez Ll, J.L.; Bustamante S, R.; Barthem, V.M.T.S.; Miranda, P.E.V. de

    2005-01-01

    A study of the structural and magnetic properties of as-cast and melt spun (x)Nd 2 Fe 14 B(100-x)Nd 70 Cu 30 alloys (x=10, 50 and 75%wt.) is presented. In as-cast alloys for x=10wt%. the formation of a high coercivity phase, referred to as N (T C =240 deg. C, i H C =4.9kOe) is found. N is a (Nd-Fe)-based phase with a Fe/Nd ratio lower than that of phase Nd 2 Fe 14 B (φ). It is suggested that this phase is related to the A 1 phase found in binary Nd-Fe alloys. In melt-spun alloys, at the same x value of 10wt%, another hard phase is found which is suggested to be the Nd 6 Fe 13 Cu δ-phase (T C =192 deg. C, i H C =4.8kOe). Transmission electron microscope (TEM) micrographs of the ribbons with x=10wt% shows the formation of nanograins with a non-uniform grain size distribution. In cast alloys with x=50 and 75wt% large slab-like grains of φ are formed, in the inter-granular region a Nd-Cu eutectic phase and Nd grains, are observed. High coercivities are obtained in ribbons with x=50wt% ( i H C =19.7kOe) and 75wt% ( i H C =13.0kOe). A slight reduction in the Curie temperature of the φ-phase with respect to the bulk value is found in these ribbons

  15. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    International Nuclear Information System (INIS)

    Philippe, M.P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A.; Vanderheyden, B.; Vanderbemden, P.

    2014-01-01

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  16. First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys

    International Nuclear Information System (INIS)

    Asta, M.; Foiles, S.M.; Quong, A.A.

    1998-01-01

    The configurational thermodynamic properties of fcc-based Al-Sc alloys and coherent Al/Al 3 Sc interphase-boundary interfaces have been calculated from first principles. The computational approach used in this study combines the results of pseudopotential total-energy calculations with a cluster-expansion description of the alloy energetics. Bulk and interface configurational-thermodynamic properties are computed using a low-temperature-expansion technique. Calculated values of the {100} and {111} Al/Al 3 Sc interfacial energies at zero temperature are, respectively, 192 and 226mJ/m 2 . The temperature dependence of the calculated interfacial free energies is found to be very weak for {100} and more appreciable for {111} orientations; the primary effect of configurational disordering at finite temperature is to reduce the degree of crystallographic anisotropy associated with calculated interfacial free energies. The first-principles-computed solid-solubility limits for Sc in bulk fcc Al are found to be underestimated significantly in comparison with experimental measurements. It is argued that this discrepancy can be largely attributed to nonconfigurational contributions to the entropy which have been neglected in the present thermodynamic calculations. copyright 1998 The American Physical Society

  17. Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy

    International Nuclear Information System (INIS)

    Lowhaphandu, P.; Montgomery, S.L.; Lewandowski, J.J.

    1999-01-01

    Recent successes in producing bulk amorphous alloys have renewed interest in this class of materials. Although amorphous metallic alloys have been shown to exhibit strengths in excess of 2.0 GPa, most of the earlier studies on such materials were conducted on tape or ribbon specimens due to the high cooling rates required to achieve the amorphous structure. The primary purpose of this investigation was to determine the effects of superimposed hydrostatic pressure on the flow and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass utilizing procedures successfully utilized on a range of structural materials, as reviewed recently. In general, few studies of this type have been conducted on metallic glasses, although thin ribbons (i.e., 300 microm thick) of a Pd-Cu-Si amorphous material tested with superimposed pressure have been reported previously. In particular, the effects of superimposed hydrostatic pressure over levels ranging from 50 MPa to 575 MPa on the flow/fracture behavior of cylindrical tensile specimens were compared to the flow and fracture behavior of identical materials tested in uniaxial tension and compression. It is shown that changes in stress triaxiality, defined as σ m /bar σ, over the range of -0.33 to 0.33 produced a negligible effect on the fracture stress and fracture strain, while the orientation of the macroscopic fracture plane with respect to the loading axis was significantly affected by changes in σ m /bar σ

  18. High thermal shock resistance of the hot rolled and swaged bulk W–ZrC alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.M.; Liu, R.; Miao, S.; Yang, X.D. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T., E-mail: zhangtao@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F.; Wang, X.P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Lian, Y.Y. [Southwestern Institute of Physics, Chengdu (China); Liu, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    The thermal shock (single shot) resistance and mechanical properties of the W–0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m{sup 2} for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m{sup 2} for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ∼2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3}, about 10 times higher than that of the swaged WZC (2.9 × 10{sup 6} J/m{sup 3}). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity. - Graphical abstract: (Left panel) surface morphology observed by optical microscope after a single pulse for 5 ms with various absorbed power densities at RT on the rolled WZC. (Right panel) curves of flexural stress versus strain at RT (a) and the calculated fracture energy (b) for the swaged WZC and rolled WZC alloys. - Highlights: • No cracks or surface melting were detected on the rolled WZC alloy samples after thermal shock at 0.66 GW/m{sup 2} for 5 ms. • Hot rolled WZC alloy plates exhibit a flexural strength of 2.4 GPa and a strain of 1.8% at RT. • The fracture energy of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3} at RT, about 10 times higher than that of the swaged WZC. • A detailed analysis of the relationships between the mechanical properties and the thermal shock resistance is given.

  19. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Kato, Hidemi; Inoue, Akihisa

    2005-01-01

    High-strength Ti-Fe-Co alloys were produced in the shape of arc-melted ingots with the dimensions of about 20-25mm in diameter and 7-10mm in height. The structure of the Ti-Fe-Co alloys (at Fe/Co ratio >1) studied by X-ray diffractometry and scanning electron microscopy consisted of an ordered Pm3-bar m Ti(FeCo) compound and a disordered body-centered cubic Im3-bar m β-Ti solid solution. The optimization of the Ti-Fe-Co alloy composition is performed from the viewpoint of both high strength and ductility. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength of about 2000MPa and a plastic deformation of 15%. The high strength and ductility values can be achieved without using the injection mould casting or rapid solidification procedure. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail

  20. Effect of boron addition to the hard magnetic bulk Nd60Fe30Al10 amorphous alloy

    International Nuclear Information System (INIS)

    Kong, H.Z.; Li, Y.; Ding, J.

    2000-01-01

    A detailed study of the effect of boron addition to crystallinity, magnetic properties and thermal properties was carried out for alloys Nd 60-x Fe 30 Al 10 B x with x=0, 1, 3 and 5 produced by copper mold chill casting and melt-spinning. The cast rods of alloys Nd 60-x Fe 30 Al 10 B x were largely amorphous. Remanence up to 0.154 T and coercivity up to 355 kA/m were observed, which were higher than those of the bulk amorphous Nd 60 Fe 30 Al 10 rod of the same diameter. A step in hysteresis loop was observed for the hard magnetic cast rod and ribbon melt-spun at a low speed of 5 m/s of the alloys with boron addition. Consistent increase in the amplitude of the step and magnetic field (H) at which the step was observed as the boron content increased. A single magnetic phase with low coercivity was observed for fully amorphous ribbon melt-spun at high speed of 30 m/s. Full crystallization due to heat treatment resulted in transition of hard magnetic amorphous phase of Nd 55 Fe 30 Al 10 B 5 cast rod to paramagnetic crystalline phases. TEM results of the as-cast rods illustrated the existence of numerous minute Nd-crystallites in amorphous matrix

  1. Is Cu60Ti10Zr30 a bulk glass-forming alloy?

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saida, J.; Kato, H.

    2003-01-01

    . Nanocrystals with a significant volume fraction are randomly distributed in the amorphous matrix. The copper element is enriched in nanocrystals while a slightly high zirconium content is found in the matrix. We classify that the Cu60Ti10Zr30 alloy prepared by both of the aforementioned methods...

  2. Co-based soft magnetic bulk glassy alloys optimized for glass ...

    Indian Academy of Sciences (India)

    diameter of 5 mm by conventional copper mould casting method. It reveals ... For example, Co43Fe20Ta5.5B31.5 glassy alloy with a ... coercive force (Hc) of 0.25 A m. −1 ..... [7] Lu Z P, Liu C T, Thompson J R and Porter W D 2004 Phys. Rev.

  3. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  4. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  5. Surface and bulk characterization of molten In and In-Sn alloys

    Directory of Open Access Journals (Sweden)

    Ricci E.

    2011-05-01

    Full Text Available In this work a double contribution to the characterization of molten In and In-Sn alloys considered as main components of an important class of lead free solder materials is shown: the study of the influence of oxygen on the capillary phenomena and the XRD investigation of the structure of liquid in a range of temperatures around that of liquidus. The surface tension behaviour of In-Sn binary alloys at different compositions, in terms of effective oxygen pressure, were compared with the data of pure In and the theoretical predictions, revealing that the lower oxidizability of indium was shown to control indium–tin alloys with a tin content up to about 80 at% , due to the presence of the most volatile oxide In2O. From the XRD spectra the radial distribution functions (RDF have been determined for each alloys. Experiments of High Temperature X-ray diffraction (HT-XRD showed that atomic clustering forms in the melt immediately before the appearing of the first solid. The structure of clusters is correlated to that of solid.

  6. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    International Nuclear Information System (INIS)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-01-01

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation

  7. Bulk glass formation and crystallization in Zr54.5Cu20Al10Ni8Ti7.5 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Kumar, V.; Ranganathan, S.

    2006-01-01

    The present work was aimed at fabrication, characterization and crystallization of Zr 54.5 Cu 20 Al 10 Ni 8 Ti 7.5 bulk metallic glass. The glass forming alloy was made by arc melting and then subjected to copper mold casting into 3 mm diameter bulk glass rods. The as-cast microstructure was characterized by optical microscopy and transmission electron microscopy (TEM)

  8. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    International Nuclear Information System (INIS)

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  9. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Science.gov (United States)

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  10. Two-fold origin of the deformation-induced ferromagnetism in bulk Fe60Al40 (at.%) alloys

    International Nuclear Information System (INIS)

    Menendez, E; Surinach, S; Baro, M D; Sort, J; Liedke, M O; Fassbender, J; Nogues, J

    2008-01-01

    The transition from the atomically ordered B2-phase to the chemically disordered A2-phase and the concomitant deformation-induced ferromagnetism have been investigated in bulk polycrystalline Fe 60 Al 40 (at.%) alloys subjected to compression processes. A detailed correlation between structural, magnetic and mechanical properties reveals that the generated ferromagnetism depends on the stress level but is virtually independent of the loading rate. The mechanisms governing the induced ferromagnetism also vary as the stress level is increased. Namely, in the low-stress regime both lattice cell expansion and atomic intermixing play a role in the induced ferromagnetic behavior. Conversely, lattice expansion seems to become the main mechanism contributing to the generated ferromagnetism in the high-stress regime. Furthermore, a correlation is also observed between the order-disorder transition and the mechanical hardness. Hence, a combination of magnetic and mechanical measurements can be used, in synergetic manner, to investigate this deformation-induced phase transition.

  11. The Magnetization Reversal Processes Of Bulk (Nd, Y-(Fe, Co-B Alloy In The As-Quenched State

    Directory of Open Access Journals (Sweden)

    Dośpiał M.

    2015-09-01

    Full Text Available The magnetization reversal processes of bulk Fe64Co5Nd6Y6B19 alloy in the as-quenched state have been investigated. From the analysis of the initial magnetization curve and differential susceptibility versus an internal magnetic field it was deduced, that the main mechanism of magnetization reversal process is the pinning of domain walls at the grain’s boundaries of the Nd2Fe14B phase. Basing on the dependence of the reversible magnetization component as a function of magnetic field it was found that reversible rotation of a magnetic moment vector and motion of domain walls in multi-domain grains result in high initial values of the reversible component. The presence of at least two maxima on differential susceptibility of irreversible magnetization component in function of magnetic field imply existence of few pinning sites of domain walls in Fe64Co5Nd6Y6B19 alloy. The dominant interactions between particles have been determined on the basis of the Wohlfarth dependence. Such a behavior of Wohlfarth’s plot implies that the dominant interaction between grains becomes short range exchange interactions.

  12. Effect of Pore Size, Morphology and Orientation on the Bulk Stiffness of a Porous Ti35Nb4Sn Alloy

    Science.gov (United States)

    Torres-Sanchez, Carmen; McLaughlin, John; Bonallo, Ross

    2018-04-01

    The metal foams of a titanium alloy were designed to study porosity as well as pore size and shape independently. These were manufactured using a powder metallurgy/space-holder technique that allowed a fine control of the pore size and morphology; and then characterized and tested against well-established models to predict a relationship between porosity, pore size and shape, and bulk stiffness. Among the typically used correlations, existing power-law models were found to be the best fit for the prediction of macropore morphology against compressive elastic moduli, outperforming other models such as exponential, polynomial or binomial. Other traditional models such as linear ones required of updated coefficients to become relevant to metal porous sintered macrostructures. The new coefficients reported in this study contribute toward a design tool that allows the tailoring of mechanical properties through porosity macrostructure. The results show that, for the same porosity range, pore shape and orientation have a significant effect on mechanical performance and that they can be predicted. Conversely, pore size has only a mild impact on bulk stiffness.

  13. Synthesis and mechanical properties of bulk Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinfu; Wang, Kun; Li, Zhendong; Wang, Xingfu; Wang, Dan; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2015-05-25

    Graphical abstract: Different regions indentation morphologies under 50 g load consolidated at 723 K (left), nanohardness of the Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy as a function consolidation temperature (right). It can be seen from the above figures that the consolidated sample presents white regions, and the microhardness in the white regions is a little lower than the matrix, which could be caused by the difference of the chemical composition and chemical bonding forces between them. Interestingly, the cracks were formed around the indentation periphery in the white regions, which are not shown in the matrix. The nanohardness of the bulk composites increased from 11.16 to 13.27 GPa with the consolidation temperature increasing, mechanical softening was also found in the present alloys. - Highlights: • Bulk amorphous–nanocrystalline Al-based alloys were prepared by HPS process. • The Vickers microhardness of bulk samples is in the range of 945–1177HV0.1. • The nanohardness agrees well with the Vickers hardness testing results. - Abstract: Mechanically alloyed amorphous Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} (at.%) alloy powder was consolidated by high-pressure sintering process. The influence of the consolidation temperature on the structure and mechanical properties of the consolidated bulk alloys was examined by X-ray diffraction (XRD), Optical microscopy (OM), Scanning electron microscopy (SEM), Vickers Hardness Tester and Nano Indenter. Structural investigations of the bulk materials revealed that most of the amorphous structure was retained after consolidation at 623 K, however, compaction at 723 K and 823 K caused crystallization of the amorphous phase with the appearance of white regions. The results also indicate that application of high pressure affected the crystallization products of the present alloy. Micro mechanical analysis showed that the microhardness of the bulk composites increased from 945HV{sub 0.1} to 1177HV

  14. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD method based on tight-binding (TB potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  15. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  16. Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, O.; Crisan, A.D.; Mercioniu, I. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania); Nicula, R. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Vasiliu, F., E-mail: fvasiliu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania)

    2016-03-01

    FePt-based alloys are currently under scrutiny for their possible use as materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that may operate at higher temperatures than the classic Nd–Fe–B magnets. Within this study, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. In the as-cast FeCoPt ribbons, a three-phase structure comprising well-ordered CoFePt and CoPt L1{sub 0} phases embedded in a disordered fcc FePt matrix was evidenced by XRD, HREM and SAED. Extended transmission electron microscopy analysis demonstrates the incipient formation of ordered L1{sub 0} phases. X-ray diffraction was used to characterize the phase structure and to obtain the structural parameters of interest for L1{sub 0} ordering. In the as-cast state, the co-existence of hard magnetic CoFePt and CoPt L1{sub 0} tetragonal phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains (grain sizes from 1 to 7 nm). Following a thermal treatment of 1 h at 670 °C, the soft magnetic fcc matrix phase transforms to tetragonal L1{sub 0} phases (disorder–order transition). The resulting CoPt and CoFePt L1{sub 0} phases have grains of around 5–20 nm in size. In the as-cast state, magnetic measurements show a quite large remanence (0.75 T), close to the value of the parent L1{sub 0} FePt phase. Coercive fields of about 200 kA/m at 5 K were obtained, comparable with those reported for some FePt-based bulk alloys. Upon annealing both remanence and coercivity are increased and values of up to 254 kA/m at 300 K are obtained. The polycrystalline structure of the annealed FeCoPt samples, as well as the formation of multiple c-axis domains in different CoPt and CoFePt regions (which leads to a reduction of the magneto-crystalline anisotropy) may account for the observed coercive fields that are

  17. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    International Nuclear Information System (INIS)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh; Tahmasbi Rad, Armin; Tayebi, Lobat

    2014-01-01

    Nanocomposite thermoelectric compound of bismuth telluride (Bi 2 Te 3 ) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi 2 Te 3 were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  18. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    Science.gov (United States)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride

  19. Evidence of an Intermediate Phase in bulk alloy oxide glass sysem

    Science.gov (United States)

    Chakraborty, S.; Boolchand, P.

    2011-03-01

    Reversibility windows have been observed in modified oxides (alkali-silicates and -germanates) and identified with Intermediate Phases(IPs). Here we find preliminary evidence of an IP in a ternary oxide glass, (B2 O3)5 (Te O2)95-x (V2O5)x , which is composed of network formers. Bulk glasses are synthesized across the 18% x 35 % composition range, and examined in Raman scattering, modulated DSC and molar volume experiments. Glass transition temperatures Tg (x) steadily decrease with V2O5 content x, and reveal the enthalpy of relaxation at Tg to show a global minimum in the 24% x < 27 range, the reversibility window (IP). Molar volumes reveal a minimum in this window. Raman scattering reveals a Boson mode, and at least six other vibrational bands in the 100cm-1 < ν < 1700cm-1 range. Compositional trends in vibrational mode strengths and frequency are established. These results will be presented in relation to glass structure evolution with vanadia content and the underlying elastic phases. Supported by NSF grant DMR 08-53957.

  20. Atomic-scale simulation study of some bulk and interfacial properties of iron aluminium ordered alloys

    International Nuclear Information System (INIS)

    Besson, Remy

    1997-01-01

    A semi-empirical potential was designed for B 2 and DO 3 iron aluminides and used to study point defects and grain boundaries in these compounds. At low temperature, departure from B 2 stoichiometry is accommodated with antisite defects; when T increases, iron vacancies appear and defects have a trend to form clusters, the structure of which is very sensitive to this departure. Our calculations, relying on T = 0 K formation energies, predict the nature of major defects, but lead to underestimated quantitative results, which may point out the essential role of atomic vibrations. In the stoichiometric B 2 compound, the diffusion of both species is induced by four-jump cycles involving iron vacancies. Although the agreement between our calculated activation energies and other experiments is good, the calculated diffusion coefficients are below the experimental ones. Here again, this discrepancy may be put down to the overlooking of phonon contributions. The second application concerns the atomic structures of the [001] (310) symmetric tilt grain boundary in the B 2 and DO 3 compounds. At low temperature, in the stoichiometric B 2 compound, we obtain an iron-rich single stable structure (pseudo-symmetric), whose structure is strongly influenced by the bulk composition (with intergranular segregation of the major element). In the stoichiometric DO 3 compound, many energetically equivalent structures exist, all being systematically aluminium-rich. The study of the B 2 grain boundary structure at high temperature shows a phase transition favouring a symmetric structure. Its high excess energy at low temperature emphasizes the influence of atomic vibrations in the interfacial properties of B 2 Fe-Al compounds. (author) [fr

  1. Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Ha; Cho, Seung Hyun; Ahn, Bong Young; Kwon, Hyu Sang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed: this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.

  2. Bulk synthesis by spray forming of Al–Cu–Fe and Al–Cu–Fe–Sn alloys containing a quasicrystalline phase

    International Nuclear Information System (INIS)

    Srivastava, V.C.; Huttunen-Saarivirta, E.; Cui, C.; Uhlenwinkel, V.; Schulz, A.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 40 kg Bulk material spray formed based on Al–Cu–Fe and Al–Cu–Fe + Sn. • Deposited Al–Cu–Fe alloy showed single phase bulk quasicrystals(QC). • DSC, XRD and microscopic analyses were done to ascertain the QC nature. • Sn does not help in single phase quasicrystal formation in the deposit. • The possible structural evolution mechanisms have been discussed in detail. - Abstract: In this study, Al–Cu–Fe alloys without and with the addition of Sn and containing a quasicrystalline phase were spray deposited. The spray-deposited bulk materials were characterized in terms of microstructure and hardness. The results showed that the Al 62.5 Cu 25 Fe 12.5 alloy contains the icosahedral quasicrystalline phase (i-phase) along with the minor λ-Al 13 Fe 4 phase, whereas the Al 62.5 Cu 25 Fe 12.5 + Sn alloy contains five phases: the major i-phase and the crystalline phases of Sn, θ-Al 2 Cu, λ-Al 13 Fe 4 and β-AlFe(Cu) phases. These results have been corroborated by X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM) and differential scanning calorimetry (DSC). The hardness value of the Al–Cu–Fe alloy reached 10.5 GPa at 50 g load and then decreased steadily with increase in the applied load, while that for Al–Cu–Fe–Sn alloy it was originally somewhat lower, then decreased dramatically with slight increase in the applied load but stayed constant with further load increase. The hardness indentations in Al–Cu–Fe alloy introduced cracking in the material, whereas in the case of Al–Cu–Fe–Sn alloy the Sn-rich areas inhibited the crack growth. The present study provides an insight into the mechanism of phase and microstructural evolutions during spray forming of the studied alloys. Furthermore, the role of Sn in terms of microstructure and properties is highlighted

  3. Influences of hydrostatic pressure during casting and Pd content on as-cast phase in Zr-Al-Ni-Cu-Pd bulk alloys

    International Nuclear Information System (INIS)

    Kato, Hidemi; Inoue, Akihisa; Saida, Junji

    2004-01-01

    The influences of sample diameter (D), Pd content (x), and hydrostatic pressure (P) in a chamber during casting on the structure of as cast Zr 65 Al 7.5 Ni 10 Cu 17.5-x Pd x (x=10,17.5 at.%) bulk alloys were investigated. Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 and Zr 65 Al 7.5 Ni 10 Pd 17.5 alloys (D=3 mm) cast in a vacuum chamber (P∼4.0x10 -3 Pa) were mainly of the tetragonal-Zr 2 Ni equilibrium phase and nanosize icosahedral primary phase, respectively, while the same alloys cast in inert argon gas at atmospheric pressure (P∼0.1 MPa) were of the single glassy phase. Due to the higher cooling rate obtained by decreasing the sample diameter (D=2 mm) even in the vacuum chamber, the Zr 65 Al 7.5 Ni 10 Pd 17.5 alloy was still of the icosahedral phase, while the Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 alloy froze into a single glassy phase. These results indicate that the temperature- and time- transformation curves for the icosahedral and subsequent equilibrium phase formations in the alloy system shifts to a shorter time side with decreasing P, and the pressure sensitivity of the icosahedral phase formation increases with x

  4. Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu system

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang, Q.S.; Zhang, W.; Yubuta, K.; Son, K.S.; Wang, X.M.

    2009-01-01

    Bulk glassy alloy rods with a diameter of 20 mm were produced for Zr 61 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 17.5 and Zr 60 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 18.5 by a tilt casting method. The replacement of Zr by a small amount of Ti and Nb caused a distinct increase in the maximum diameter from 16 mm for Zr 65 Al 7.5 Ni 10 Cu 17.5 to 20 mm, accompanying the decrease in liquidus temperature and the increase in reduced glass transition temperature. The primary precipitation phase from supercooled liquid also shows a distinct change, i.e., from coexistent Zr 2 Cu, Zr 2 Ni and Zr 6 NiAl 2 phases for the 65%Zr alloy to an icosahedral phase for the 61%Zr and 60%Zr alloys. These results allow us to presume that the enhancement of the glass-forming ability is due to an increase in the stability of supercooled liquid against crystallization caused by the development of icosahedral short-range ordered atomic configurations. The 60%Zr specimens taken from the central and near-surface regions in the transverse cross section at the site which is 15 mm away from the bottom surface of the cast glassy rod with a diameter of 20 mm exhibit good mechanical properties under a compressive deformation mode, i.e., Young's modulus of 81 GPa, large elastic strain of 0.02, high yield strength of 1610 MPa and distinct plastic strain of 0.012. Besides, a number of shear bands are observed along the maximum shear stress plane on the peripheral surface near the final fracture site. The finding of producing the large scale Zr-based bulk glassy alloys exhibiting reliable mechanical properties is encouraging for future advancement of bulk glassy alloys as a new type of functional material. (author)

  5. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  6. Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering

    International Nuclear Information System (INIS)

    Wen, Haiming; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.

    2013-01-01

    A bulk nanostructured alloy with the nominal composition Cu–30Zn–0.8Al wt.% (commercial designation brass 260) was fabricated by cryomilling of brass powders and subsequent spark plasma sintering (SPS) of the cryomilled powders, yielding a compressive yield strength of 950 MPa, which is significantly higher than the yield strength of commercial brass 260 alloys (∼200–400 MPa). Transmission electron microscopy investigations revealed that cryomilling results in an average grain diameter of 26 nm and a high density of deformation twins. Nearly fully dense bulk samples were obtained after SPS of cryomilled powders, with average grain diameter 110 nm. After SPS, 10 vol.% of twins is retained with average twin thickness 30 nm. Three-dimensional atom-probe tomography studies demonstrate that the distribution of Al is highly inhomogeneous in the sintered bulk samples, and Al-containing precipitates including Al(Cu,Zn)–O–N, Al–O–N and Al–N are distributed in the matrix. The precipitates have an average diameter of 1.7 nm and a volume fraction of 0.39%. Quantitative calculations were performed for different strengthening contributions in the sintered bulk samples, including grain boundary, twin boundary, precipitate, dislocation and solid-solution strengthening. Results from the analyses demonstrate that precipitate and grain boundary strengthening are the dominant strengthening mechanisms, and the calculated overall yield strength is in reasonable agreement with the experimentally determined compressive yield strength

  7. Evolution of thermoelectric performance for (Bi,Sb)2Te3 alloys from cutting waste powders to bulks with high figure of merit

    Science.gov (United States)

    Fan, Xi‧an; Cai, Xin zhi; Han, Xue wu; Zhang, Cheng cheng; Rong, Zhen zhou; Yang, Fan; Li, Guang qiang

    2016-01-01

    Bi2Te3 based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi2Te3 based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb)2Te3 alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb)2Te3 alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi0.44Sb1.56Te3 was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi0.36Sb1.64Te3 and Bi0.4Sb1.6Te3 alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi2Te3 based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers.

  8. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  9. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi' an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Cai, Xin zhi, E-mail: xzcwust@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Han, Xue wu, E-mail: hanxuewu1990@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Zhang, Cheng cheng, E-mail: zcc516990418@live.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); and others

    2016-01-15

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials

  10. Evolution of thermoelectric performance for (Bi,Sb)2Te3 alloys from cutting waste powders to bulks with high figure of merit

    International Nuclear Information System (INIS)

    Fan, Xi'an; Cai, Xin zhi; Han, Xue wu; Zhang, Cheng cheng

    2016-01-01

    Bi 2 Te 3 based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi 2 Te 3 based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb) 2 Te 3 alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb) 2 Te 3 alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi 0.44 Sb 1.56 Te 3 was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi 0.36 Sb 1.64 Te 3 and Bi 0.4 Sb 1.6 Te 3 alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi 2 Te 3 based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi 2 Te 3 based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed.

  11. Bulk amorphous alloys: Preparation and properties of (Mg0.98Al0.02)x(Cu0.75Y0.25)100

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, Allan Schrøder; Ohnuma, M.

    2000-01-01

    New bulk amorphous quaternary alloys of the composition (Mg1-xAlx)(60)Cu30Y10 (x = 0 - 0.17) were recently reported by the authors and preliminary results of the influence of Al content on the ability to form a bulk amorphous phase were presented. In the present note we extend this work to look...... for the influence of the Mg-Al content on the glass forming ability by studying a range of compositions, (Mg0.98Al0.02)(x)(Cu0.75Y0.25)(100-x) for x = 60 - 80 at.%. As previously, the alloys were prepared by a relatively simple technique, i.e. rapid cooling of the melt in a wedge-shaped copper mould. This method...... provides a range of cooling rates within a single ingot during the solidification that link the slowly and rapidly cooled microstructure for each alloy composition. Hence, the maximum thickness of the amorphous part of the cast material will be a measure of the glass forming ability (GFA) of the particular...

  12. Structural relaxations in the bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Błoch, K., E-mail: 23kasia1@wp.pl; Nabiałek, M.; Gondro, J.

    2017-05-01

    The paper presents studies of annealing effect on the disaccommodation phenomenon in bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}. The investigated sample was prepared by suction-casting method in the form of rod. The annealing process has been performed at temperature well below the crystallisation temperature. The amorphous structure has been confirmed using X-ray diffractometer. The susceptibility and its disaccommodation were determined using completely automated set up. The disaccommodation curve was decomposed into three elementary processes, each of them was described by Gaussian distribution of relaxation times. The obtained results indicate that the disaccommodation phenomenon in studied alloy is related with directional ordering of atom pairs near the free volumes; this is in agreement with H. Kronmüller's theorem.

  13. Influence of the mould on the size of A A 8090 alloy in the material melting bulk state

    International Nuclear Information System (INIS)

    Bolfarini, Claudemiro

    1996-01-01

    Wedge like samples were casted into investment moulds of alumina and spodumen. The later were additionally coated with lithium, barium, magnesium and calcium fluorides and chlorides based salts and other special materials. It was used the 2,6% Li-containing alloy AA8090. The grain size was measured as a function of the wedge thickness nd mould material. The results showed a strong dependence of the grain size to the mould materials for the same cast conditions: pouring temperature, mould temperature and chemical composition of the alloy. The AA8090 alloy had no addition of titanium-boron based grain refiner. (author)

  14. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  15. Effect of Mo-Fe substitution on glass forming ability, thermal stability, and hardness of Fe-C-B-Mo-Cr-W bulk amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E.; Cheney, Justin L. [University of California, San Diego Materials Science and Engineering Program, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States); Vecchio, Kenneth S. [University of California, San Diego Department of NanoEngineering, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)], E-mail: kvecchio@ucsd.edu

    2008-08-25

    Amorphous Fe{sub 67-x}C{sub 10}B{sub 9}Mo{sub 7+x}Cr{sub 4}W{sub 3} (x = 1-7 at.%) plates with 640 {mu}m thickness were prepared by copper mold casting. The thermal properties and microstructural development during heat treatments were investigated by a combination of differential scanning calorimetry (DSC), differential thermal analysis, and X-ray diffractometry (XRD). The glass forming ability (GFA) and activation energy for crystallization have a distinct dependence on Mo content. Fe{sub 62}C{sub 10}B{sub 9}Mo{sub 12}Cr{sub 4}W{sub 3} is the best glass former in this study, demonstrating a supercooled liquid region, {delta}T{sub x} = 51 K, and an activation energy for crystallization, Q = 453 kJ/mol. The GFA of alloys in this system was governed by elastic strain optimization resulting directly from the variation in Mo content. Heat treatments were performed to demonstrate resistance to crystallization under typical processing conditions. Alloys in this system exhibited a three-phase evolution during crystallization. A second set of heat treatments was performed to identify each phase. Hardness data was collected at each of the heat treatment conditions, and a bulk metallic glasses (BMG)-derived composite containing a Mo-rich phase exhibited Vickers Hardness in excess of 2000. The fully amorphous alloys had an average hardness approaching 1500.

  16. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  17. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  18. Growth of a Copper-Gold Alloy Phase by Bulk Copper Electrodeposition on Gold Investigated by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1995-01-01

    the potential in the double-layer charging region from 500 to -100 mV and back to 500 mV at a sweep rate of 1 mV/s in an acidified copper sulfate electrolyte (0.01M H2SO4, 0.01M CuSO4, and Millipore water). After completion of the first cycle the gold surface had recrystallized and nuclei of an alloy phase were...... in peak potential for the anodic current transient from E = 20 mV to E = -2 mV was observed after completion of four subsequent cycles of copper electrodeposition/dissolution. The shift is suggested to be equal to the change in potential of the working electrode owing to the formation of the alloy phase....

  19. Hyperfine interactions in dilute Se doped Fe{sub x}Sb{sub 1−x} bulk alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Mitesh, E-mail: miteshsarkar-msu@yahoo.com; Agrawal, Naveen [The M. S. University of Baroda, Department of Physics (India); Chawda, Mukesh [Polytechnic, The M. S. University of Baroda, Department of Applied Physics (India)

    2016-12-15

    Hyperfine Interaction technique like Moessbauer spectroscopy is a very sensitive tool to study the local probe interactions in Iron doped alloys and compounds. We report here the Moessbauer study of the effect of Fe concentration variations in dilute magnetic semiconducting Se{sub 0.004}Fe{sub x}Sb{sub 1−x} alloys for x = 0.002, 0.004 and 0.008. The materials were characterized using X-ray diffraction technique (XRD), Fourier Transform Infra-red spectroscopy (FTIR), Neutron depolarization and Moessbauer spectroscopy. The FTIR result shows the semiconducting behavior of the alloys with band gap of 0.18 eV. From Moessbauer spectroscopy two magnetic sites (A and B) were observed. The value of hyperfine magnetic fields (HMF) of ∼ 308 kOe (site A) and 270 kOe (site B) was constant with increase in Fe concentration. A nonmagnetic interaction was also observed with quadrupole splitting (QS) of 1.26 mm/sec (site C) for x = 0.004 and x = 0.008. The Neutron depolarization studies indicate that the clusters of Fe or Fe based compounds having net magnetic moments with a size greater than 100 Å is absent.

  20. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K. G., E-mail: suresh@iitb.ac.in [Magnetic Materials Laboratory, Department of Physics, Indian institute of Technology Bombay, Mumbai, Maharashtra 400076 (India)

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  1. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Boykin, Timothy [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama (United States)

    2014-03-28

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  2. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    International Nuclear Information System (INIS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard; Boykin, Timothy

    2014-01-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales

  3. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Science.gov (United States)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  4. Convection Effects During Bulk Transparent Alloy Solidification in DECLIC-DSI and Phase-Field Simulations in Diffusive Conditions

    Science.gov (United States)

    Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.

    2017-08-01

    To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.

  5. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  6. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bimber, Beth A. [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Hamilton, Reginald F., E-mail: rfh13@psu.edu [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Keist, Jayme; Palmer, Todd A. [Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804 (United States)

    2016-09-30

    The microstructure and superelasticity in additive manufactured NiTi shape memory alloys (SMAs) were investigated. Using elementally blended Ni and Ti powder feedstock, Ni-rich build coupons were fabricated via the laser-based directed energy deposition (LDED) technique. The build volumes were large enough to extract tensile and compressive test specimens from selected locations for spatially resolving microconstituents and the underlying stress-induced martensitic phase transformation (SIMT) morphology. In the as-deposited condition, X-ray diffraction identified the B2 atomic crystal structure of the austenitic parent phase in NiTi SMAs, and Ni{sub 4}Ti{sub 3} precipitates were the predominant microconstituent identified through scanning electron microscopy. The microstructure exhibited anisotropy, which was characterized by the Ni{sub 4}Ti{sub 3} precipitate morphology being coarsest nearest the substrate, while a finer morphology was observed farthest from the substrate. In-situ full-field deformation measurements calculated using digital image correlation confirmed that the SIMT predominately occurred in the finer precipitate morphology. Heat treatment reduced the degree of anisotropy, and DIC analysis revealed localized SIMT strains increased compared to the as-deposited condition.

  7. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    Energy Technology Data Exchange (ETDEWEB)

    Aji, D. P. B.; Johari, G. P., E-mail: joharig@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-12-14

    Consequences of increase in structural fluctuations on heating Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20} and Zr{sub 46.75}Ti{sub 8.25}Cu{sub 7.5}Ni{sub 10}Be{sub 27.5} through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the T{sub g} (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (−dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-T{sub g} feature and a rapid rise at T near T{sub g}. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  8. Use of portable X-ray fluorescence instrument for bulk alloy analysis on low corroded indoor bronzes

    International Nuclear Information System (INIS)

    Šatović, D.; Desnica, V.; Fazinić, S.

    2013-01-01

    One of the most often used non-destructive methods for elemental analysis when performing field measurements on bronze sculptures is X-ray fluorescence (XRF) analysis based on portable instrumentation. However, when performing routine in-situ XRF analysis on corroded objects obtained results are sometimes considerably influenced by the corrosion surface products. In this work the suitability of portable XRF for bulk analysis of low corroded bronzes, which were initially precisely characterized using sophisticated and reliable laboratory methods, was investigated and some improvements in measuring technique and data processing were given. Artificially corroded bronze samples were analyzed by a portable XRF instrument using the same methodology and procedures as when performing in-situ analysis on real objects. The samples were first investigated using sophisticated complementary laboratory techniques: Scanning Electron Microscopy, Proton-Induced X-ray Emission Spectroscopy and Rutherford Backscattering Spectrometry, in order to gain precise information on the formation of the corrosion product layers and in-depth elemental profile of corrosion layers for different aging parameters. It has been shown that for corrosion layers of up to ca. 25 μm a portable XRF can yield very accurate quantification results. - Highlights: • XRF quantification is very accurate for bronze corrosion layers of up to ca. 25 μm. • Corrosion layer formation on bronze described in two phases. • Corrosion layers precisely characterized using PIXE, RBS and SEM. • Corrosion approximated as CuO for layer thickness calculations via X-ray attenuations • Increasingly lighter corrosion matrix may cause SnLα radiation intensity inversion

  9. Use of portable X-ray fluorescence instrument for bulk alloy analysis on low corroded indoor bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Šatović, D., E-mail: dsatovic@alu.hr [Department of Conservation and Restoration, Academy of Fine Arts, Ilica 85, 10000 Zagreb (Croatia); Desnica, V. [Department of Conservation and Restoration, Academy of Fine Arts, Ilica 85, 10000 Zagreb (Croatia); Fazinić, S. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2013-11-01

    One of the most often used non-destructive methods for elemental analysis when performing field measurements on bronze sculptures is X-ray fluorescence (XRF) analysis based on portable instrumentation. However, when performing routine in-situ XRF analysis on corroded objects obtained results are sometimes considerably influenced by the corrosion surface products. In this work the suitability of portable XRF for bulk analysis of low corroded bronzes, which were initially precisely characterized using sophisticated and reliable laboratory methods, was investigated and some improvements in measuring technique and data processing were given. Artificially corroded bronze samples were analyzed by a portable XRF instrument using the same methodology and procedures as when performing in-situ analysis on real objects. The samples were first investigated using sophisticated complementary laboratory techniques: Scanning Electron Microscopy, Proton-Induced X-ray Emission Spectroscopy and Rutherford Backscattering Spectrometry, in order to gain precise information on the formation of the corrosion product layers and in-depth elemental profile of corrosion layers for different aging parameters. It has been shown that for corrosion layers of up to ca. 25 μm a portable XRF can yield very accurate quantification results. - Highlights: • XRF quantification is very accurate for bronze corrosion layers of up to ca. 25 μm. • Corrosion layer formation on bronze described in two phases. • Corrosion layers precisely characterized using PIXE, RBS and SEM. • Corrosion approximated as CuO for layer thickness calculations via X-ray attenuations • Increasingly lighter corrosion matrix may cause SnLα radiation intensity inversion.

  10. Structural analysis of quaternary Se{sub 85−x}Sb{sub 10}In{sub 5}Ag{sub x} bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India)

    2015-08-28

    The physical properties of chalcogenide semiconductor have attracted much attention recently due to their applications in optical recording media and inorganic resist due to photo induced structural transformations observed in these materials. The bulk samples of Se{sub 85-x}Sb{sub 10}In{sub 5}Ag{sub x} system are prepared by melt-quenching technique. X-ray diffraction technique and RAMAN spectroscopy have been used to study the role of Ag additive on the amorphous/crystalline nature and molecular structure of Se{sub 85}Sb{sub 10}In{sub 5} glassy alloys. The phases Sb{sub 2}Se{sub 3}, In-Sb and In{sub 2}Se{sub 3} has been observed by X-ray diffraction. The formation of AgInSe{sub 2} phase along with the enhancement in intensity has been observed with the Ag addition.Three bands observed by raman spectroscopy for Se85Sb10In5 are at 70 cm-1, 212cm-1 and 252cm-1. The formation of small bands up to wavenumber 188cm{sup -1} and shifting in second band along with the increase in intensity up to sample x=5 has been observed with the Ag addition. The enhancement in intensity in third band with Ag content has been observed.

  11. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  12. Crystallization behavior and the thermal properties of Zr63Al7.5Cu17.5Ni10B2 bulk amorphous alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.; Jiang, Y.T.; Wong, P.W.

    2003-01-01

    The ribbons of amorphous Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys with 0.1 mm thickness were prepared by melt spinning method. The thermal properties and micro structural development during the annealing of amorphous alloy have been investigated by a combination of differential thermal analysis, differential scanning calorimetry, high-temperature optical microscope, X-ray diffractometry and TEM. The glass transition temperature for the Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys are measured about 645 K (372 C). This alloy also obtains a large temperature interval ΔT x about 63 K. Meanwhile, the calculated T rg for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy presents the value of 0.57. The activation energy of crystallization for the alloy Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 was about 370± 10 kJ/mole as determined by the Kissinger and Avrami plot, respectively. These values are about 20% higher than the activation energy of crystallization for the Zr 65 Al 7.5 Cu 17.5 Ni 10 alloy (314 kJ/mol.). This implies that the boron additions exhibit the effect of improving the thermal stability for the Zr-based alloy. The average value of the Avrami exponent n were calculated to be 1.75±0.15 for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy. This indicates that this alloy presents a crystallization process with decreasing nucleation rate. (orig.)

  13. Thermo-physical characterization of the Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 bulk metallic glass forming alloy

    International Nuclear Information System (INIS)

    Bochtler, Benedikt; Gross, Oliver; Gallino, Isabella; Busch, Ralf

    2016-01-01

    The iron-phosphorus based bulk metallic glass forming alloy Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 is characterized with respect to its thermophysical properties, crystallization and relaxation behavior, as well as its viscosity. The alloy provides a high critical casting thickness of 13 mm, thus allowing for the casting of amorphous parts with a considerable size. Calorimetric measurements reveal the characteristic transformation temperatures, transformation enthalpies, and the specific heat capacity. The analyses show that no stable supercooled liquid region exists upon heating. The specific heat capacity data are used to calculate the enthalpy, entropy, and Gibbs free energy differences between the crystalline and the supercooled liquid state. The crystallization behavior of amorphous samples upon heating is analyzed by differential scanning calorimetry and X-ray diffraction, and a time-temperature-transformation diagram is constructed. Dilatometry is used to determine the thermal expansion behavior. The equilibrium viscosity below the glass transition as well as volume relaxation behavior are measured by three-point beam bending and dilatometry, respectively, to assess the kinetic fragility. With a kinetic fragility parameter of D* = 21.3, the alloy displays a rather strong liquid behavior. Viscosity above the melting point is determined using electromagnetic levitation in microgravity on a reduced gravity aircraft in cooperation with the German Aerospace Center (DLR). These high-temperature viscosity data are compared with the low-temperature three-point beam bending measurements. The alloy displays a strong liquid behavior at low temperatures and a fragile behavior at high temperatures. These results are analogous to the ones observed in several Zr-based bulk metallic glass forming liquids, indicating a strong to fragile liquid-liquid transition in the undercooled liquid, which is obscured by crystallization.

  14. Frequency-dependent complex modulus at the glass transition in Pd40Ni10Cu30P20 bulk amorphous alloys

    International Nuclear Information System (INIS)

    Lee, M.L.; Li, Y.; Feng, Y.P.; Carter, W.C.

    2003-01-01

    We report frequency-dependent measurements of the dynamic elastic modulus of a Pd 40 Cu 30 Ni 10 P 20 bulk amorphous phase near its glass transition temperature. The storage and loss moduli exhibit a structural relaxation similar to those observed by other characterization techniques. Parameters obtained by fitting to the Vogel-Fulcher-Tamman equation and the Kohlrausch-Williams-Watts model exhibit similar behaviors to those other methods

  15. Titanium and zirconium based wrought alloys and bulk metallic glasses for fluoride ion containing 11.5 M HNO3 medium

    International Nuclear Information System (INIS)

    Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2016-01-01

    Aqueous reprocessing of plutonium-rich mixed oxide fuels require fluoride as a catalyst in boiling nitric acid for an effective dissolution of the spent fuel. The corrosion behavior of the candidate dissolver materials zircaloy-4 (Zr-4) and commercial pure titanium (CP-Ti grade 2) in boiling 11.5 M HNO 3 + 0.05 M NaF has been established. High corrosion rates were obtained for Zr- 4 and CP-Ti in nitric acid containing fluoride ions. Complexing the fluoride ions either with Al(NO 3 ) 3 or ZrO(NO 3 ) 2 aided in decreasing the corrosion rates of Zr-4 and CP-Ti. High corrosion resistance is claimed as one of the principal property of the amorphous alloy when compared to the crystalline alloy. Thus Ni 60 Nb 40 and Ni 60 Nb 30 Ta 10 amorphous ribbons were prepared and exposed in boiling 11.5 M HNO 3 and 11.5 M HNO 3 + 0.05 M NaF. In nitric acid these alloys did not show any sign of corrosion attack. XPS analysis confirmed that the passivity was due to the formation passive films of thickness ≈3 nm enriched with Nb 2 O 5 and of ≈1.5 nm enriched with both Nb 2 O 5 and Ta 2 O 5 on the respective surfaces of the ribbons. In boiling 11.5 M HNO 3 + 0.05 M NaF, severe corrosion attack was observed on Ni 60 Nb 40 ribbon, due to the instability of the oxide/metal interface. The Ni 60 Nb 30 Ta 10 amorphous ribbon exhibited corrosion resistance of at least an order of magnitude higher than that for Ni 60 Nb 40 ribbon

  16. The practical limits for enhancing magnetic property combinations for bulk nanocrystalline NdFeB alloys through Pr, Co and Dy substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.W. [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (Singapore)]. E-mail: phylz@nus.edu.sg; Davies, H.A. [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (Singapore)

    2007-06-15

    Pr, Co and Dy additions have been employed to improve the combinations of magnetic properties for nanocrystalline Nd {sub x} Fe{sub 94-} {sub x} B{sub 6} melt spun alloys. The dependences of the magnetic properties on the solute element concentrations have been extensively investigated and the relationships between the measured remanence, maximum energy product (BH){sub max} and intrinsic coercivity for several compositional series are discussed. The composition ranges for these elemental substitutions which can be used to achieve the highest values of (BH){sub max} are identified. It is found that, when we employ individual or combined substitutions of Pr and Dy for Nd and Co for Fe in NdFeB alloys with various RE:Fe ratios, the practical limit of (BH){sub max} lies in the range {approx}160-180 kJ/m{sup 3}, combined with a coercivity in the range {approx}400-800 kA/m.

  17. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    Science.gov (United States)

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. Quasi-static and dynamic compressive deformation of a bulk nanolayered Ag–Cu eutectic alloy: Macroscopic response and dominant deformation mechanisms

    International Nuclear Information System (INIS)

    Kingstedt, O.T.; Eftink, B.; Lambros, J.; Robertson, I.M.

    2014-01-01

    Nanostructured multilayered material systems offer an attractive method of increasing material strength. This work examines the response of a bulk eutectic silver–copper material (Ag 60 Cu 40 , subscripts indicating atomic percent) which has a hierarchical structure of alternating Ag and Cu layers with thicknesses down to 50 nm. The hierarchical structure consists of two primary arrangements of layers, eutectic colonies of parallel layers, most commonly found at the material interior, and “grains” consisting of alternating Ag and Cu layers which emanate from a central region in a radial pattern, most commonly found at the material exterior surface. We show that the hierarchical structure causes a significant increase in the measured strength response when comparing the Ag 60 Cu 40 response to that of the constituent materials in their bulk nanograined or micrograined form. The deformation mechanisms of this material are studied under compressive loading over the quasi-static and dynamic regime (10 −3 –10 3 s −1 ) with strain between 5% and 50%

  19. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  20. Ab initio-based bulk and surface thermodynamics of InGaN alloys. Investigating the effects of strain and surface polarity

    Energy Technology Data Exchange (ETDEWEB)

    Duff, Andrew I.; Lymperakis, Liverios; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung, Duesseldorf (Germany)

    2015-05-15

    The growth of high In content InGaN with sufficiently high crystal quality is challenging due to the differences in the GaN and InN thermodynamics. The surprisingly different thermodynamics is due to a complex competition between strain and chemistry and mediated by the different indium and gallium atomic radii as well as their different bonding enthalpies with nitrogen. In the present work, we investigate bulk and surface thermodynamics of molecular beam epitaxial (MBE) growth of In{sub x}Ga{sub 1-x}N for the technologically relevant (0001) and (000 anti 1) growth planes by means of density functional theory calculations. Our calculations confirm that coherent growth fully suppresses phase separation through spinodal decomposition. However, the biaxial strain is found to have a marginal effect on the critical temperatures for In{sub x}Ga{sub 1-x}N decomposition. Furthermore, the thermal stability of excess indium is found to be remarkably higher on N-polar surfaces than on the Ga-polar surfaces. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Atomic structure of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} bulk metallic glass alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hui, X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: huixd01@hotmail.com; Fang, H.Z.; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shang, S.L.; Wang, Y. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Qin, J.Y. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University - Southern Campus, Jinan 250061 (China); Liu, Z.K. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-01-15

    Ab initio molecular dynamics (AIMD) calculations were performed on the atomic configuration of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} bulk metallic glass. The local structures were characterized in terms of structure factors (SF), pair correlation functions (PCF), coordinate numbers, bond pairs and Voronoi polyhedra. The glass transition temperature, generalized PCF and SF predicated by AIMD are in good agreement with the experimental data. Icosahedral short-range orders (ISRO) are found to be the most dominant, in view of the presence of the majority of bond pairs with 1551, 1541 and 1431, and Voronoi polyhedra with <0,3,6,1>, <0,2,8,1>, <0,0,12,0> and <0,2,8,4>. Icosahedral medium range orders (IMROs) are formed from icosahedra via the linkage of vertex-, edge-, face- and intercross-shared atoms. The glass structure on the nanometer scale is accumulated by polyhedra through an efficient packing mode. It is suggested that the extraordinary glass-forming ability of this alloy is essentially attributable to the formation of ISRO and IMRO, and the dense packing of atoms.

  2. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  3. Study of the mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (x = 0 or 3) bulk amorphous and crystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nabialek, Marcin G. [Institute of Physics, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Szota, Michal [Institute of Materials Engineering, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Dospial, Marcin J.

    2010-05-15

    The microstructure, thermal stability, mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (where x = 0 or 3) bulk metallic glasses (BMG) and their crystalline equivalents were investigated. The crystalline materials were smelted on a copper mould using an electric arc; their amorphous equivalents were prepared using the induction suction casting method (ISC). All samples investigated were in the form of plates with dimensions of 10x10x0.5mm. From X-ray diffraction and Moessbauer spectroscopy, it was found that both investigated alloys prepared using this method have an amorphous structure. From magnetic measurements obtained by a vibrating sample magnetometer (VSM), it was shown that all measured samples displayed soft magnetic properties with relatively high saturation of the magnetization. The thermal stability and glass-forming ability (GFA) for investigated alloys were derived from differential scanning calorimetry (DSC) curves. The measurements of mechanical properties for amorphous alloys were found to be better than those for crystalline alloys with the same atomic composition. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)

  5. Palladium diffusion into bulk copper via the (100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, E; Kellogg, G L [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Sun, J; Pohl, K [Department of Physics and Materials Science Program, University of New Hampshire, Durham, NH 03824 (United States)

    2009-08-05

    Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T>240 deg. C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 +- 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu{sub 3}Pd L 1{sub 2} bulk alloy phase.

  6. The fluctuation field and anomalous magnetic viscosity in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Collocott, S.J. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)], E-mail: stephen.collocott@csiro.au; Dunlop, J.B. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)

    2008-08-15

    The fluctuation field, H{sub f}, is a useful parameter for characterising any ferromagnetic material that displays hysteresis, as it is a measure of the thermally activated rate processes that govern magnetisation reversals. Anomalous magnetic viscosity, i.e. nonmonotonic behaviour of the time dependent magnetisation, where the magnetisation is seen to increase, reach a peak, and then decrease, has been observed on both the upper and lower branches of minor loops or recoil curves in some ferromagnetic materials. Parameters relevant to the Preisach model are discussed as to their usefulness in predicting anomalous magnetic viscosity in ferromagnetic materials. This is done with reference to measurements of H{sub f} and the time dependent magnetisation in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}.

  7. Structural features in Ni-Al alloys

    International Nuclear Information System (INIS)

    Abylkalykova, R.B.; Kveglis, L.I.; Rakhimova, U.A.; Nasokhova, Sh.B.; Tazhibaeva, G.B.

    2007-01-01

    Purpose of the work is study of structural transformations under diverse memory effect in Ni-Al alloys. Examination were conducted in following composition samples: Ni -75 at.% and Al - 25 at.%. The work is devoted to clarification reasons both formation atom-ordered structures in inter-grain boundaries of bulk samples under temperature action and static load. Revealed inter-grain inter-boundary layers in Ni-Al alloy both bulk and surface state have complicated structure

  8. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  9. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  10. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glasses; in situ composites; ductile phase; wear behaviours. 1. Introduction ... crystalline alloys [2], which led to an abnormal phenomenon that the wear ... of BMGs does not follow the empirical Archard's wear equa- tion which ...

  11. Criticality in Bulk Metallic Glass Constituent Elements

    Science.gov (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-11-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  12. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  13. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    Science.gov (United States)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-03-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  14. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    International Nuclear Information System (INIS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-01-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain

  15. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-03-28

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  16. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  17. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  18. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  19. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  20. Characterisation of bulk solids

    Energy Technology Data Exchange (ETDEWEB)

    D. McGlinchey [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

    2005-07-01

    Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, including minerals processing. With contributions from leading authors in their respective fields, this book provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. Contents: Characterising particle properties; Powder mechanics and rheology; Characterisation for hopper and stockpile design; Fluidization behaviour; Characterisation for pneumatic conveyor design; Explosiblility; 'Designer' particle characteristics; Current industrial practice; and Future trends. 130 ills.

  1. Micromegas in a bulk

    International Nuclear Information System (INIS)

    Giomataris, I.; De Oliveira, R.; Andriamonje, S.; Aune, S.; Charpak, G.; Colas, P.; Fanourakis, G.; Ferrer, E.; Giganon, A.; Rebourgeard, Ph.; Salin, P.

    2006-01-01

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine

  2. Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses

    International Nuclear Information System (INIS)

    Jiang, W.H.; Liu, F.X.; Wang, Y.D.; Zhang, H.F.; Choo, H.; Liaw, P.K.

    2006-01-01

    As-cast bulk and as-spun ribbon Cu 60 Zr 30 Ti 10 metallic glasses were characterized using differential-scanning calorimetry and instrumented nanoindentation. Two alloys show a significant difference in the amount of free volume, which is attributed to the difference in a cooling rate, while exhibiting a similar serrated plastic flow. Atomic-force-microscopy observations demonstrate the pile-ups containing shear bands around the indents in both alloys. The as-cast bulk alloy has higher hardness and elastic modulus than the as-spun ribbon alloy. The difference in the strengths of two alloys may be related to the different amount of free volume. The strength seems to be more sensitive to a cooling rate during solidification than the plastic-flow behavior in the Cu 60 Zr 30 Ti 10

  3. Bulk ordering and surface segregation in Ni50Pt50

    DEFF Research Database (Denmark)

    Pourovskii, L.P.; Ruban, Andrei; Abrikosov, I.A.

    2001-01-01

    in the bulk compare well with experimental data. The surface-alloy compositions for the (111) and (110) facets above the ordering transition temperature are also found to be in a good agreement with experiments. It is demonstrated that the segregation profile at the (110) surface of NiPt is mainly caused...... by the unusually strong segregation of Pt into the second layer and the interlayer ordering due to large chemical nearest-neighbor interactions....

  4. Optical characteristics of jewellery gold alloys

    International Nuclear Information System (INIS)

    Wan Mahmood bin Mat Yunus; Zainal Abidin bin Talib; Maarof bin Moksin; Abdul Fatah bin Awang Mat

    1994-01-01

    Measurements of the reflection of various sample of gold alloys were made over the wavelength range 400-800 nm. Samples were measured using a single beam spectrophotometer at 45 deg. angle of incidence. In this measurement no attempt was made to obtain the optical constants of the samples. The results showed that there were significant differences between bulk and thick samples, with sufficient spectra difference between different composition of the alloys

  5. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  6. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  7. Fe-based bulk metallic glasses used for magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Va; Codrean, C; UTu, D [Politehnica University of Timisoara, Depart for Materials Science and Welding, 1, M. Viteazu Bvd., 300222, Timisoara (Romania); ErcuTa, A, E-mail: serban@mec.upt.r [West University of Timisoara, Faculty of Physics, 4, Vasile Parvan Bdv., Timisoara 300223 (Romania)

    2009-01-01

    The casting in complex shapes (tubular) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small addition of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  8. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  9. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, K; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    1999-01-01

    Fracture surfaces of ductile failure of two types bulk amorphous metallic alloys were studied using quantitative and qualitative fractographic analysis. The observed fractographic behaviour of ductile failure in comparison with the ductile failure of amorphous alloy ribbons shows signs of the same

  10. First-principles study on the effect of alloying elements on the elastic deformation response in β-titanium alloys

    International Nuclear Information System (INIS)

    Gouda, Mohammed K.; Gepreel, Mohamed A. H.; Nakamura, Koichi

    2015-01-01

    Theoretical deformation response of hypothetical β-titanium alloys was investigated using first-principles calculation technique under periodic boundary conditions. Simulation was carried out on hypothetical 54-atom supercell of Ti–X (X = Cr, Mn, Fe, Zr, Nb, Mo, Al, and Sn) binary alloys. The results showed that the strength of Ti increases by alloying, except for Cr. The most effective alloying elements are Nb, Zr, and Mo in the current simulation. The mechanism of bond breaking was revealed by studying the local structure around the alloying element atom with respect to volume change. Moreover, the effect of alloying elements on bulk modulus and admissible strain was investigated. It was found that Zr, Nb, and Mo have a significant effect to enhance the admissible strain of Ti without change in bulk modulus

  11. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  12. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  13. Materials processing and machine applications of bulk HTS

    Science.gov (United States)

    Miki, M.; Felder, B.; Tsuzuki, K.; Xu, Y.; Deng, Z.; Izumi, M.; Hayakawa, H.; Morita, M.; Teshima, H.

    2010-12-01

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa2Cu3O7 - d (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  14. Materials processing and machine applications of bulk HTS

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Xu, Y; Deng, Z; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H [Kitano Seiki Co. Ltd, 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Morita, M; Teshima, H, E-mail: d082025@kaiyodai.ac.j [Nippon Steel Co. Ltd, 20-1, Shintomi, Huttsu-shi, Chiba 293-8511 (Japan)

    2010-12-15

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa{sub 2}Cu{sub 3}O{sub 7-d} (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  15. Nonswelling alloy

    Science.gov (United States)

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  16. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  17. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  18. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  19. Ageing, fragility and the reversibility window in bulk alloy glasses

    International Nuclear Information System (INIS)

    Chakravarty, S; Georgiev, D G; Boolchand, P; Micoulaut, M

    2005-01-01

    Non-reversing relaxation enthalpies (ΔH nr ) at glass transitions T g (x) in the P x Ge x Se 1-2x ternary display wide, sharp and deep global minima (∼0) in the 0.09 g s become thermally reversing. In this reversibility window, glasses are found not to age, in contrast to ageing observed for fragile glass compositions outside the window. Thermal reversibility and lack of ageing seem to be paradigms of self-organization which molecular glasses share with protein structures which repetitively and reversibly change conformation near T g and the folding temperature respectively. (letter to the editor)

  20. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    International Nuclear Information System (INIS)

    Pilarczyk, Wirginia

    2014-01-01

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr 55 Cu 30 Ni 5 Al 10 alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is important for future

  1. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  2. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  3. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Muonium hyperfine parameters in Si1-x Ge x alloys

    International Nuclear Information System (INIS)

    King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro

    2006-01-01

    We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys

  5. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    Science.gov (United States)

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.

  6. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  7. TEM of nanostructured metals and alloys

    International Nuclear Information System (INIS)

    Karnthaler, H.P.; Waitz, T.; Rentenberger, C.; Mingler, B.

    2004-01-01

    Nanostructuring has been used to improve the mechanical properties of bulk metals and alloys. Transmission electron microscopy (TEM) including atomic resolution is therefore appropriate to study these nanostructures; four examples are given as follows. (1) The early stages of precipitation at RT were investigated in an Al-Mg-Si alloy. By high resolution TEM it is shown that the precipitates lie on (0 0 1) planes having an ordered structure. (2) In Co alloys the fronts of martensitic phase transformations were analysed showing that the transformation strains are very small thus causing no surface relief. (3) Re-ordering and recrystallization were studied by in situ TEM of an Ni 3 Al alloy being nanocrystalline after severe plastic deformation. (4) In NiTi severe plastic deformation is leading to the formation of amorphous shear bands. From the TEM analysis it is concluded that the amorphization is caused by plastic shear instability starting in the shear bands

  8. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Nowosielski, Ryszard; Pawlyta, Mirosława [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble (France); Burian, Andrzej [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice (Poland)

    2015-04-15

    New magnesium-based bulk metallic glasses Mg{sub 60}Cu{sub 30}Y{sub 10} have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample.

  9. Superconducting alloys

    International Nuclear Information System (INIS)

    Bowers, J.E.

    1976-01-01

    Reference is made to superconductors having high critical currents. The superconductor described comprises an alloy consisting of a matrix of a Type II superconductor which is a homogeneous mixture of 50 to 95 at.% Pb and 5 to 40 at.%Bi and/or 10 to 50 at.%In. Dispersed in the matrix is a material to provide pinning centres comprising from 0.01% to 20% by volume of the alloy; this material is a stable discontinuous phase of discrete crystalline particles of Cu, Mn, Te, Se, Ni, Ca, Cr, Ce, Ge or La, either in the form of the element or a compound with a component of the matrix. These particles should have an average diameter of not more than 2μ. A method for making this alloy is described. (U.K.)

  10. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  11. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  12. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei

    2003-01-01

    Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties and the ......Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties...... and the cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory......, the Pareto-optimal set, to determine optimal alloy solutions for the compromise between low compressibility, high stability, and cost....

  13. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  14. Research activities of biomedical magnesium alloys in China

    Science.gov (United States)

    Zheng, Yufeng; Gu, Xuenan

    2011-04-01

    The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.

  15. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  16. Chemical and electrical characterisation of the segregation of Al from a CuAl alloy (90%:10% wt) with thermal anneal

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, C., E-mail: conor.byrne2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Brady, A.; Walsh, L.; McCoy, A.P.; Bogan, J. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); McGlynn, E. [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Rajani, K.V. [School of Electronic Engineering, Dublin City University, Dublin 9 (Ireland); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-01-29

    A copper–aluminium (CuAl) alloy (90%:10% wt) has been investigated in relation to segregation of the alloying element Al, from the alloy bulk during vacuum anneal treatments. X-ray photoelectron spectroscopy (XPS) measurements were used to track the surface enrichment of Al segregating from the alloy bulk during in situ ultra-high vacuum anneals. Secondary ion mass spectroscopy (SIMS) indicates a build-up of Al at the surface of the annealed alloy relative to the bulk composition. Metal oxide semiconductor (MOS) CuAl/SiO{sub 2}/Si structures show a shift in flatband voltage upon thermal anneal consistent with the segregation of the Al to the alloy/SiO{sub 2} interface. Electrical four point probe measurements indicate that the segregation of Al from the alloy bulk following thermal annealing results in a decrease in film resistivity. X-ray diffraction data shows evidence for significant changes in crystal structure upon annealing, providing further evidence for expulsion of Al from the alloy bulk. - Highlights: • CuAl alloy (90%:Al 10% wt) deposited and vacuum annealed • XPS and SIMS data show segregation of Al from the alloy bulk. • Chemical changes seen indicate the reduction of Cu oxide and growth of Al Oxide. • Electrical measurements indicate a chemical change at the metal/SiO{sub 2} interface. • All data consistent with Cu diffusion barrier layer formed.

  17. Thermal expansion: Metallic elements and alloys. [Handbook

    Science.gov (United States)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  18. Auger electron spectroscopy of alloy surfaces

    International Nuclear Information System (INIS)

    Overbury, S.H.; Somorjai, G.A.

    1975-03-01

    Regular solution models are used to predict surface segregation of the constituent of lowest surface free energy in homogeneous multicomponent systems. Analysis of the Auger electron emission intensities from alloys yield the surface composition and the depth distribution of the composition near the surface. Auger Electron Spectroscopy (AES) studies of the surface composition of the Ag--Au and Pb--In systems have been carried out as a function of bulk composition and temperature. Although these alloys have very different regular solution parameters their surface compositions are predictable by the regular solution models. (U.S.)

  19. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  20. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  1. Stress-induced magnetic anisotropy in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Varga, L.K.; Gercsi, Zs.; Kovacs, Gy.; Kakay, A.; Mazaleyrat, F.

    2003-01-01

    Stress-annealing experiments were extended to both nanocrystalline alloy families, Finemet and Nanoperm (Hitperm), and, for comparison, to amorphous Fe 62 Nb 8 B 30 alloy. For both Finemet and bulk amorphous, stress-annealing results in a strong induced transversal anisotropy (flattening of hysteresis loop) but yields longitudinal induced anisotropy (square hysteresis loop) in Nanoperm and Hitperm. These results are interpreted in terms of back-stress theory

  2. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  3. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    International Nuclear Information System (INIS)

    Cheng, Feng; He, Xiang; Chen, Zhao-Xu; Huang, Yu-Gai

    2015-01-01

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys

  4. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); He, Xiang [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); Huang, Yu-Gai [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); JiangSu Second Normal University, Nanjing (China)

    2015-11-05

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys.

  5. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  6. 21 CFR 872.3070 - Dental amalgam, mercury, and amalgam alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental amalgam, mercury, and amalgam alloy. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3070 Dental amalgam, mercury... elemental mercury, supplied as a liquid in bulk, sachet, or predosed capsule form, and amalgam alloy...

  7. Antisite-defect-induced surface segregation in ordered NiPt alloy

    DEFF Research Database (Denmark)

    Pourovskii, L.V.; Ruban, Andrei; Abrikosov, I.A.

    2003-01-01

    alloys corresponds to the (111) truncation of the bulk L1(0) ordered structure. However, the (111) surface of the nickel deficient Ni49Pt51 alloy is strongly enriched by Pt and should exhibit the pattern of the 2x2 structure. Such a drastic change in the segregation behavior is due to the presence...

  8. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  9. The effect of the solidification mode on eutectic structure in Fe-C-V alloys

    International Nuclear Information System (INIS)

    Fras, E.; Guzik, E.

    1980-01-01

    The aim of the study was to determine such a chemical composition of Fe-C-V alloys which would ensure the formation of perfectly eutectic structures as well as to investigate the eutectic morphology of these alloys when undergoing bulk and directional solidification. Attempts have been done to get in situ composites from Fe-C-V alloys. The adopted testing methods as well as obtained results are described in detail. (H.M.)

  10. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  11. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    Energy Technology Data Exchange (ETDEWEB)

    Pilarczyk, Wirginia, E-mail: wirginia.pilarczyk@polsl.pl

    2014-12-05

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is

  12. Interatomic spacing distribution in multicomponent alloys

    International Nuclear Information System (INIS)

    Toda-Caraballo, I.; Wróbel, J.S.; Dudarev, S.L.; Nguyen-Manh, D.; Rivera-Díaz-del-Castillo, P.E.J.

    2015-01-01

    A methodology to compute the distribution of interatomic distances in highly concentrated multicomponent alloys is proposed. By using the unit cell parameter and bulk modulus of the elements involved, the method accurately describes the distortion in the lattice produced by the interaction of the different atomic species. To prove this, density functional theory calculations have been used to provide the description of the lattice in a monophasic BCC MoNbTaVW high entropy alloy and its five sub-quaternary systems at different temperatures. Short-range order is also well described by the new methodology, where the mean error in the predicted atomic coordinates in comparison with the atomistic simulations is in the order of 1–2 pm over all the compositions and temperatures considered. The new method can be applied to tailor solid solution hardening, highly dependent on the distribution of interatomic distances, and guide the design of new high entropy alloys with enhanced properties

  13. General aspects of surface alloy formation

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Engstfeld, Albert K.; Roetter, Ralf T.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Berko, Andras

    2010-07-01

    Surface confined alloys are excellent model systems for studies of structure-property relationships of bimetallic surfaces. They are formed by deposition of a guest metal B onto a substrate A, followed by annealing to a temperature, where place exchange between adatoms and atoms from the underlying surface layer becomes possible and diffusion into the bulk is sufficiently slow. We exemplarily confirmed by scanning tunneling microscopy and Auger electron spectroscopy for PtRu/Ru(0001), PdRu/Ru(0001), AuPt/Pt(111), AgPt/Pt(111), and AgPd/Pd(111), surface alloys are obtained for systems where metal B has a negative surface segregation energy within metal A. By exchanging A and B, however, AB surface alloys are most likely overgrown by metal B, which we demonstrate for RuPt/Pt(111) in comparison to PtRu/Ru(0001).

  14. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  15. Diffusion slowdown in the nanostructured liquid Ga-Sn alloy

    International Nuclear Information System (INIS)

    Podorozhkin, Dmitri Y.; Charnaya, Elena V.; Lee, Min Kai; Chang, Lieh-Jeng; Haase, Juergen; Michel, Dieter; Kumzerov, Yurii A.; Fokin, Alexsandr V.

    2015-01-01

    The diffusion of gallium in liquid Ga-Sn alloy embedded into different porous silica matrices was studied by NMR. Spin relaxation was measured for two gallium isotopes, 71 Ga and 69 Ga, at two magnetic fields. Pronounced rise of quadrupole contribution to relaxation was observed for the nanostructured alloy which increased with decreasing the pore size. The correlation time of atomic mobility was evaluated and found to be much larger than in the relevant bulk melt which evidenced a pronounced diffusion slowdown in the Ga-Sn alloy under nanoconfinement. It is shown that the diffusion was slower by a factor of 30 for the alloy within 7 nm pores. The spectral densities of electric field gradients at zero frequency were found to double for the finest pores. The Knight shift was found to decrease but slightly for the nanostructured alloy. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  17. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  18. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  19. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  20. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I. E., E-mail: andersoni@ameslab.gov; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J. [Ames Laboratory (USDOE), Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  1. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  2. Peculiarities of phase transformation in Ni3Fe powder alloy

    International Nuclear Information System (INIS)

    Nuzhdin, A.A.

    1990-01-01

    Ordering process in sintered powder alloy Ni 3 Fe by normal and high temperatures was studied. Thermal stresses connected with porosity level of material effect on transformation peculiarities. The changes of electric conductivity, thermal expansion coefficient, bulk modulus during transformation were studied. The analysis of this changes was made

  3. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  4. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  5. Studies of alloy structures and properties. Annual summary report, December 1, 1976--December 1, 1977

    International Nuclear Information System (INIS)

    Duwez, P.

    1977-01-01

    Brief summaries of research activities in the following areas are given: superconductivity to ferromagnetism in amorphous Gd--La--Au alloys; magnetic regimes in amorphous Ni--Fe--P--B alloys; electronic and magnetic properties of amorphous Fe--P--B alloys; critical phenomena and magnetic properties of amorphous gadolinium based ferromagnets; Kondo effect, spin correlations, and superconductivity in amorphous alloys doped with magnetic impurities; flux pinning by crystalline phase precipitates embedded in an amorphous superconducting matrix; kinetics of crystallization of amorphous alloys; properties of the flux lattice in amorphous superconductors; low temperature calorimeter; low temperature heat capacity of metastable superconductors; thermal relaxation effects and crystallization of amorphous alloys; fundamental studies of amorphous superconductors using superconductive tunneling; low temperature calorimetry of bulk amorphous metals; and mictomagnetism in amorphous alloys

  6. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  7. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  8. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    Science.gov (United States)

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

  9. Development of friction welding process of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Shin, Hyung Seop; Jeong, Young Jin; Kim, Ki Hyun

    2004-01-01

    Bulk Metallic Glasses(BMG) with good mechanical properties have problems that engineering application fields have been limited because of limitation of the alloy size. In order to solving this problem, the friction welding of BMG has been tried using the superplastic-like deformation behavior under the supercooled liquid region. The apparatus for friction welding test was designed and constructed using pneumatic cylinder and gripper based on a conventional lathe. Friction welding have been tried to combination of same BMG alloy and crystalline alloys. The results of welding test were evaluated by X-ray diffraction, measurement of hardness and mechanical properties test. In order to obtain the optimized welding test conditions the temperature of friction interface was measured using Infrared thermal imager

  10. High-entropy bulk metallic glasses as promising magnetic refrigerants

    International Nuclear Information System (INIS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei; Inoue, Akihisa

    2015-01-01

    In this paper, the Ho 20 Er 20 Co 20 Al 20 RE 20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS M pk ) and refrigerant capacity (RC) reaches 15.0 J kg −1 K −1 and 627 J kg −1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS M pk and RC. In addition, the magnetic ordering temperature, ΔS M pk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures

  11. Bulk handling benefits from ICT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.

  12. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  13. Design of multi materials combining crystalline and amorphous metallic alloys

    International Nuclear Information System (INIS)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suéry, M.; Blandin, J.J.

    2012-01-01

    Highlights: ► Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. ► Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. ► Sandwich structures produced by co-pressing. ► Detection of atomic diffusion from the glass to the crystalline alloys during the processes. ► Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  14. Development of microstructure in thermomechanical processing of zirconium alloys

    International Nuclear Information System (INIS)

    Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Zirconium based alloys are used for the manufacture of fuel tubes pressure tubes calandria tubes and other components of Pressurized Heavy Water Reactors (PHWRS). In single or two phase zirconium alloy system a variety of microstructure can be generated by suitable heat treatments by the process of equilibrium and non equilibrium phase transformations Microstructure can also be modified by alloying with α and β stabilizers. The microstructure in Zr alloys could be single hexagonal phase (α alloys) two phase bcc and hexagonal (α + β alloys) phase, single metastable martensitic microstructure and β with ω phase. The microstructural and micro textural evolution during thermo mechanical treatments depends strongly on such initial microstructure. Hot extrusion is a significant bulk deformation step which decides the initial microstructure of the alloy. It is carried out at elevated temperature i e above the recrystallization temperature, which enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature, strain rate (Ram speed), reduction ratio etc. In the present paper development of microstructures, microtexture and texture have been examined. An attempt is also made to optimise the hot working parameters for different Zirconium alloys with help of these studies. (author)

  15. Anomalies in the Thermophysical Properties of Undercooled Glass-Forming Alloys

    Science.gov (United States)

    Hyers, Robert W.; Rogers, Jan R.; Kelton, Kenneth F.; Gangopadhyay, Anup

    2008-01-01

    The surface tension, viscosity, and density of several bulk metallic glass-forming alloys have been measured using noncontact techniques in the electrostatic levitation facility (ESL) at NASA Marshall Space Flight Center. All three properties show unexpected behavior in the undercooled regime. Similar deviations were previously observed in titanium-based quasicrystal-forming alloys,but the deviations in the properties of the glass-forming alloys are much more pronounced. New results for anomalous thermophysical properties in undercooled glass-forming alloys will be presented and discussed.

  16. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  17. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  18. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ang-Yang, E-mail: ayyu@imr.ac.cn; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-15

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO{sub 2}interface. We calculate the segregation energy of the doped Ti/TiO{sub 2} interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO{sub 2} interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO{sub 2} interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO{sub 2} interfaces. Alloying effects on the Curie temperature of the Ti/TiO{sub 2} interface have been elaborated. - Highlights: • We consider the segregation of alloying atoms on the Ti(101¯0)/TiO{sub 2}(100) interface. • Alloying the Ti//TiO{sub 2} interface with Fe and Ni has a great advantage of improving the oxidation resistance. • Fe, Co and Nican enhance the magnetic properties of the investigated system. • The variation of permeability with temperature has been presented.

  19. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  20. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  1. Magnetic and anomalous magnetic viscosity in the bulk amorphous ferromagnet Pr58Fe24Al18 and partially amorphous ferromagnet Pr60Fe24Al16

    International Nuclear Information System (INIS)

    Collocott, S.J.; Dunlop, J.B.

    2009-01-01

    A number of ferromagnetic Pr-Fe-Al alloys have been prepared by argon arc melting and quenching into a copper mould. The alloy of composition Pr 58 Fe 24 Al 18 is identified as being amorphous (bulk metallic glass or bulk amorphous ferromagnet), and a range of magnetic measurements have been performed to explore differences and similarities between it and a partially amorphous alloy, containing a significant crystalline fraction, Pr 60 Fe 24 Al 16 . For both alloys, measurements of the irreversible susceptibility, and magnetic viscosity on the major hysteresis loop are reported. From the magnetic viscosity data, the fluctuation field is determined. The behaviour of the anomalous magnetic viscosity (non-monotonic behaviour of the magnetic viscosity, where the magnetisation as a function of time is seen to increase, reach a peak, and then decrease), on the recoil curve that leads to the dc demagnetised state is investigated. Both alloys display non-monotonic behaviour. After dc demagnetisation, spontaneous remagnetisation is observed in both alloys, and some comments are made on the thermal remagnetisation behaviour of the amorphous alloy. The anomalous magnetic viscosity is interpreted in the context of the Preisach model, as it predicts a simple functional relationship between the time taken to reach a peak and the applied magnetic field. The experimental data for both alloys is in good agreement with this prediction.

  2. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  3. Manufacturing and testing of self-passivating tungsten alloys of different composition

    Directory of Open Access Journals (Sweden)

    A. Calvo

    2016-12-01

    Bulk W-15Cr, W-10Cr-2Ti and W-12Cr-0.5Y alloys were manufactured by mechanical alloying followed by can encapsulation and HIP. This route resulted in fully dense materials with nano-structured grains. The ability of Ti and especially of Y to inhibit grain growth was observed in the W-10Cr-2Ti and W-12Cr-0.5Y alloys. Besides, Y formed Y-rich oxide nano-precipitates at the grain boundaries, and is thus expected to improve the mechanical behaviour of the Y-containing alloy. Isothermal oxidation tests at 800 ºC (1073K and oxidation tests under accident-like conditions revealed that the W-12Cr-0.5Y alloy exhibits the best oxidation behaviour of all alloys, especially in the accident-like scenario. Preliminary HHF tests performed at GLADIS indicated that the W-10Cr-2Ti alloy is able to withstand power densities of 2 MW/m2 without significant damage of the bulk structure. Thermo-shock tests at JUDITH-1 to simulate mitigated disruptions resulted in chipping of part of the surface of the as-HIPed W-10Cr-2Ti alloy. An additional thermal treatment at 1600 °C (1873K improves the thermo-shock resistance of the W-10Cr-2Ti alloy since only crack formation is observed.

  4. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  5. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  6. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  7. Aspects of silicon bulk lifetimes

    Science.gov (United States)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  8. Crystallization in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhou, T.J.; Rasmussen, Helge Kildahl

    2000-01-01

    The effect of pressure on the crystallization behavior of the bulk metallic glass-forming Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy with a wide supercooled liquid region has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction measurements using synchrotron radiation......)], reporting a decrease of the crystallization temperature under pressure in a pressure range of 0-6 GPa for the bulk glass Zr41Ti14Cu12.5Ni9Be22.5C1 alloy. Compressibility with a volume reduction of approximately 22% at room temperature does not induce crystallization in the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk...... glass alloy. This indicates that the densification effect induced by pressure in the pressure range investigated plays a minor role in the crystallization behavior of this bulk glass alloy. The different crystallization behavior of the carbon-free and the carbon-containing glassy alloys has been...

  9. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  10. The Relation Between Alloy Chemistry and Hot-Cracking

    Science.gov (United States)

    Nunes, A. C., Jr.; Talia, J. E.

    2000-01-01

    Hot cracking is a problem in welding 2195 aluminum-lithium alloy. Weld wire additives seem to reduce the problem. This study proposes a model intended to clarify the way alloying elements affect hot-cracking. The brittle temperature range of an alloy extends wherever the tensile stress required to move the meniscus of the liquid film at the grain/dendrite boundaries is less than the bulks flow stress Sigma(sub B) of the grains: 2gamma/delta alloys outgas.) If the above condition is not met, the grains deform under stress and the liquid film remains in place. Curves of 2gamma/delta and sigma(sub B) vs. temperature in the range just below the melting temperature determine the hot cracking susceptibility of an alloy. Both are zero at onset of solidification. sigma(sub B) rises as the thermal activation of the slip mechanism is reduced. 2gamma/delta rises as the film thickness delta which can be estimated from the Scheil equation, drops. But, given an embrittled alloy, whether the alloy actually cracks is determined by the strain imposed upon it in the embrittled condition. A critical strain is estimated, Epsilon(sub C) on the order of Epsilon(sub C) is approximately delta/l where L = grain size and where the the volume increment due to the strain, concentrated at the liquid film, is on the order of the liquid film volume. In the early 80's an empirical critical strain cracking envelope Epsilon(sub C)(T) was incorporated into a damage criterion to estimate the effect of welding parameters on the formation of microfissures in a superalloy with good results. These concepts, liquid film decoherence vs. grain bulk deformation and critical strain, form the key elements of a quantitative theory of hot-cracking applicable for assessing the effect of alloying elements on hot-cracking during welding.

  11. Compressibility of Ir-Os alloys under high pressure

    International Nuclear Information System (INIS)

    Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim; Gromilov, Sergey A.; Kurnosov, Alexander V.; Prescher, Clemens; Prakapenka, Vitali B.; Hanfland, Michael; Smaalen, Sander van; Margadonna, Serena; Dubrovinsky, Leonid S.

    2015-01-01

    Highlights: • fcc- and hcp-Ir-Os alloys were prepared from single-source precursors. • Their atomic volumes measured at ambient conditions using powder X-ray diffraction follow nearly linear dependence. • Compressibility of alloys have been studied up to 30 GPa at room temperature in diamond anvil cells. • Their bulk moduli increase with increasing osmium content. - Abstract: Several fcc- and hcp-structured Ir-Os alloys were prepared from single-source precursors in hydrogen atmosphere at 873 K. Their atomic volumes measured at ambient conditions using powder X-ray diffraction follow nearly linear dependence as a function of composition. Alloys have been studied up to 30 GPa at room temperature by means of synchrotron-based X-ray powder diffraction in diamond anvil cells. Their bulk moduli increase with increasing osmium content and show a deviation from linearity. Bulk modulus of hcp-Ir 0.20 Os 0.80 is identical to that of pure Os (411 GPa) within experimental errors. Peculiarities on fcc-Ir 0.80 Os 0.20 compressibility curve indicate possible changes of its electronic properties at ∼20 GPa

  12. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  13. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  14. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  15. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  16. High-strength Ti Alloy Prepared via Promoting Interstitial-Carbon Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Young; Lee, Jae-Chul [Korea University, Seoul (Korea, Republic of); Ko, Se-Hyun [KITECH, Incheon (Korea, Republic of)

    2017-05-15

    Feasibility studies are performed to determine the suitability of a novel simple synthesis technique for fabricating a new Ti alloy with improved strength and ductility, while exhibiting lower cell toxicity. Through consolidating pure Ti powders under a C atmosphere at elevated temperatures, a bulk form of the Ti alloy, in which a quantifiable amount of C is dissolved, is synthesized. While the alloy is free from toxic elements such as Al and V, the strength and ductility of the developed alloy are comparable to, or better than, those of its commercial Ti-6Al-4V alloy counterpart. In this study, the method to design the alloy, its synthesis, and the resultant properties are reported.

  17. Electroless synthesis of 3 nm wide alloy nanowires inside Tobacco mosaic virus

    International Nuclear Information System (INIS)

    Balci, Sinan; Kern, Klaus; Bittner, Alexander M; Hahn, Kersten; Kopold, Peter; Kadri, Anan; Wege, Christina

    2012-01-01

    We show that 3 nm wide cobalt–iron alloy nanowires can be synthesized by simple wet chemical electroless deposition inside tubular Tobacco mosaic virus particles. The method is based on adsorption of Pd(II) ions, formation of a Pd catalyst, and autocatalytic deposition of the alloy from dissolved metal salts, reduced by a borane compound. Extensive energy-filtering TEM investigations at the nanoscale revealed that the synthesized wires are alloys of Co, Fe, and Ni. We confirmed by high-resolution TEM that our alloy nanowires are at least partially crystalline, which is compatible with typical Co-rich alloys. Ni traces bestow higher stability, presumably against corrosion, as also known from bulk CoFe. Alloy nanowires, as small as the ones presented here, might be used for a variety of applications including high density data storage, imaging, sensing, and even drug delivery. (paper)

  18. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  19. Electrical and magnetic properties of Fe-based bulk metallic glass with minor Co and Ni addition

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H.Y. [IFW Dresden, Institute for Complex Materials, D–01069 Dresden (Germany); Stoica, M. [IFW Dresden, Institute for Complex Materials, D–01069 Dresden (Germany); POLITEHNICA University of Timisoara, P-ta Victoriei 2, Timisoara (Romania); Yi, S. [Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 702–701 Daegu (Korea, Republic of); Kim, D.H. [Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, 120–749 Seoul (Korea, Republic of); Eckert, J. [IFW Dresden, Institute for Complex Materials, D–01069 Dresden (Germany); University of Technology Dresden, Institute of Materials Science, D–01062 Dresden (Germany)

    2014-09-01

    The effect of minor Co and Ni alloying on soft magnetic properties and electrical resistivity of Fe{sub 75.5}C{sub 7.0}Si{sub 3.3}B{sub 5.5}P{sub 8.7} (at%) bulk metallic glass has been investigated. Within examined compositional range (Co and Ni up to 4 at%, respectively), the saturation magnetization and electrical resistivity of the alloys continuously decrease with increasing Co or Ni content, while the Curie temperature and initial permeability increase. Comparing the effect of Co and Ni additions, the alloys with Co addition have much higher Curie temperature and saturation magnetization than the alloy with Ni addition. Also, the Co-added alloys show smaller coercivity and larger permeability than the Ni-added alloys. The present results suggest that minor addition of Co can provide better effectiveness to enhance the magnetic softness of Fe-based BMGs than minor Ni addition. - Highlights: • Soft magnetic characteristics of CI-based BMGs can be enhanced with minor Co and Ni alloying. • Minor Co addition can provide better effectiveness to enhance the magnetic softness of CI-based BMG than Ni addition. • Optimum Co addition enlarges atomic packing density and randomness of amorphous structure.

  20. New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer

    Science.gov (United States)

    Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2018-07-01

    We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.

  1. Structure of the c(2x2) Mn/Ni(001) surface alloy by quantitative photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Denlinger, J.; Chen, X. [Univ. of Wisconsin, Milwaukee, WI (United States)] [and others

    1997-04-01

    Surface alloys are two-dimensional metallic systems that can have structures that are unique to the surface, and have no counterpart in the bulk binary phase diagram. A very unusual structure was reported for the Mn-Ni system, based on a quantitative LEED structure determination, which showed that the Mn atoms were displaced out of the surface by a substantial amount. This displacement was attributed to a large magnetic moment on the Mn atoms. The structure of the Mn-Ni surface alloy was proposed to be based on a bulk termination model. Magnetic measurements on the Mn-Ni surface alloys, however, showed conclusively that the magnetic structure of these surface alloys is completely different from the bulk alloy analogs. For example, bulk MnNi is an antiferromagnet, whereas the surface alloy is ferromagnetic. This suggests that the proposed structure based on bulk termination, may not be correct. X-ray Photoelectron Diffraction (XPD) techniques were used to investigate this structure, using both a comparison to multiple scattering calculations and photoelectron holography. In this article the authors present some of the results from the quantitative analysis of individual diffraction patterns by comparison to theory.

  2. Overview of surface alloying by ion, electron, and laser beams

    International Nuclear Information System (INIS)

    Rehn, L.E.; Picraux, S.T.; Wiedersich, H.

    1986-01-01

    Surface composition and microstructure play critical roles in determining the usefulness of many technological materials. For example, the mechanical interactions of an alloy with its environment such as friction and wear, chemical effects such as oxidation and corrosion, and even its outward appearance are all controlled by the properties of a very thin layer of material at the surface. For this reason, the properties required at the surface of an alloy for a given application are often different from, and frequently even incompatible with, property requirements for the bulk material. This constraint has spawned a great variety of traditional surface alloying and coating techniques, ranging from the simple application of paints, to considerably more sophisticated electroplating, nitriding, and surface diffusion treatments. In favorable circumstances, surface alloying can be used to independently optimize the surface and bulk properties of a material for a given application. Unfortunately, equilibrium solubility limits and low solid-state diffusivities impose severe restrictions on conventional surface alloying methods, and problems of adhesion frequently plague coating techniques

  3. Sample preparation of metal alloys by electric discharge machining

    Science.gov (United States)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  4. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory.

  5. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J.

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory

  6. Thermal stability and magnetocaloric properties of GdDyAlCo bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hui, X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: huixd01@hotmail.com; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2008-01-25

    Gd{sub 56-x}Dy{sub x}Al{sub 24}Co{sub 20} (x = 16, 20 and 22) bulk metallic glasses (BMGs) alloys with a diameter of 2, 3 and 3 mm, respectively, were prepared by using copper mold casting. These alloys exhibit higher values of the glass transition temperature, crystallization temperature, and activation energy of the glass transition and crystallization, compared with those of other known rare-earth-based BMGs. A maximum magnetic entropy changes of 15.78 J/(kg K) is obtained in Gd{sub 40}Dy{sub 16}Al{sub 24}Co{sub 20}, which is the maximal among all the bulk metallic glasses, and is much larger than those of the known crystalline magnetic refrigerant compound Gd{sub 5}Si{sub 2}Ge{sub 1.9}Fe{sub 0.1} and pure Gd metal. All the three BMG alloys have a broader temperature range of the entropy change peak, resulting in larger refrigerate capacities (RC) than those of conventional crystalline materials. The excellent magnetocaloric properties combining with high thermal stability make them an attractive candidate for magnetic refrigerants in the temperature range of 20-100 K.

  7. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  8. Composition design and mechanical properties of ternary Cu–Zr–Ti bulk metallic glasses

    International Nuclear Information System (INIS)

    Pan, Ye; Zeng, Yuqiao; Jing, Lijun; Zhang, Lu; Pi, Jinhong

    2014-01-01

    Highlights: • Newly designed monolithic bulk metallic glasses are of good glass-forming ability. • Cu 50 Zr 44 Ti 6 exhibits excellent plastic deformation up to ∼7.4%. • Copious and intersected shear bans are observed in the fractography of Cu 50 Zr 44 Ti 6 . • Cu 50 Zr 44 Ti 6 has the best plasticity in the ternary Cu–Zr–Ti bulk metallic glasses. - Abstract: The new compositions of ternary Cu–Zr–Ti bulk metallic glasses are predicted by integrating calculation of vacancy formation energy, mixing enthalpy and configuration entropy of the alloys based on thermodynamics of glass formers. The monolithic amorphous rods of 3 mm diameter have been successfully fabricated, and characterized by X-ray diffractometry, differential scanning calorimetry, scanning electronic microscopy, transmission electronic microscopy and compression tests. The results show that the designed alloys possess good glass forming ability and excellent mechanical properties. The mechanical properties of the samples can be effectively improved by regulating their composition. The monolithic amorphous rod of Cu 50 Zr 44 Ti 6 exhibits a high fracture strength of 1855 MPa and excellent plastic deformation up to ∼7.4%. The formation and propagation of shear bands in samples are also investigated. The enhancement of plastic deformation is mainly contributed to multiplication and intersection of shear bands

  9. Distribution of oxides in a Zr-Cu-Ni-Al-Nb-Si bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Jochen; Busch, Ralf [Chair of Metallic Materials, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany); Mueller, Frank; Huefner, Stefan [Chair of Experimental Physics, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany)

    2010-07-01

    The course of oxide presence with distance from the sample surface and bonding partner was studied for the bulk metallic glass with the nominal composition Zr{sub 57.9}Cu{sub 15.4}Ni{sub 12.7}Al{sub 10.2}Nb{sub 2.8}Si{sub 1} (at%) by X-ray photoelectron spectroscopy (XPS). Investigated specimens are taken from vacuum quench-cast rods subjected to oxidation at room temperature and atmosphere. Binding energies were determined in various depths using ion beam ablation of up to 100 nanometers. XPS spectra confirm oxidation primarily of the pure zirconium and aluminum constituents, all other peaks correspond to metallic bonds. While the surface area shows a passivating zirconia layer a few nanometers thick, oxygen is bonded predominantly with aluminum inside the bulk. Since the concentration of oxygen is a crucial factor in the crystallization behavior of bulk metallic glass forming liquids on basis of oxygen affine metals, so far only high purity materials were thought to be suitable. The findings in this study, however, are promising for alloys with industrial grade elements with sufficient glass forming ability. Comparisons of the alloy with differing oxygen content support the conclusion that aluminum acts as an appropriate scavenger for both adsorbed and large amounts of intrinsic oxygen in zirconium based amorphous metals.

  10. X-ray diffraction (XRD) characterization of microstrain in some iron and uranium alloys

    International Nuclear Information System (INIS)

    Kimmel, G.; Dayan, D.; Frank, G.A.; Landau, A.

    1996-01-01

    The high linear attenuation coefficient of steel, uranium and uranium based alloys is associated with the small penetration depth of X-rays with the usual wavelength used for diffraction. Nevertheless, by using the proper surface preparation technique, it is possible of obtaining surfaces with bulk properties (free of residual mechanical microstrain). Taking advantage of the feasibility to obtain well prepared surfaces, extensive work has been conducted in studying XRD line broadening effects from flat polycrystalline samples of steel, uranium and uranium alloys

  11. Compatibility of refractory alloys with space reactor system coolants and working fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.; DiStefano, J.R.; Hoffman, E.E.

    1984-01-01

    The bulk of this report deals with compatibility studies in liquid lithium and boiling potassium. Substantial information is also presented concerning the reactivity of niobium and tantalum alloys with residual gases in high and ultrahigh vacuum atmospheres. The remaining information, which is much less extensive, covers the compatibility behavior of molybdenum and tungsten alloys in alkali metals and a qualitative assessment of the use of refractory metals for containing helium in a closed Brayton cycle. 22 references, 29 figures, 14 tables

  12. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    Science.gov (United States)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  13. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    International Nuclear Information System (INIS)

    Haase, Christian; Tang, Florian; Wilms, Markus B.; Weisheit, Andreas; Hallstedt, Bengt

    2017-01-01

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  14. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Christian, E-mail: christian.haase@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen (Germany); Tang, Florian [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany); Wilms, Markus B.; Weisheit, Andreas [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hallstedt, Bengt [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany)

    2017-03-14

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  15. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  16. Bulk Leisure--Problem or Blessing?

    Science.gov (United States)

    Beland, Robert M.

    1983-01-01

    With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)

  17. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  18. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  19. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  20. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  1. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  2. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  3. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  4. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Akihiro [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: amakino@imr.tohoku.ac.jp; Kubota, Takeshi; Chang, Chuntao [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Makabe, Masahiro [Makabe R and D Co., Ltd., 3-1-25 Nagatake, Sendai 983-0036 (Japan); Inoue, Akihisa [Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2008-10-15

    Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (J{sub s}) of 1.5-1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 10{sup 4} K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, J{sub s} depends on Fe content; hence, high J{sub s} requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high J{sub s} and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high J{sub s} of 1.51 T comparable to the ordinary Fe-Si-B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.

  5. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C. E-mail: dejulian@padova.infm.it; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D' Acapito, F

    2001-04-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu{sub 50}Ni{sub 50} nanoparticles are similar to those of the Cu{sub 60}Ni{sub 40} bulk alloy. The crystal structure of Co{sub x}Ni{sub 1-x} (0{<=}x{<=}1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10{sup 16} ions/cm{sup 2} total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy.

  6. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    International Nuclear Information System (INIS)

    De Julian Fernandez, C.; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D'Acapito, F.

    2001-01-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu 50 Ni 50 nanoparticles are similar to those of the Cu 60 Ni 40 bulk alloy. The crystal structure of Co x Ni 1-x (0≤x≤1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10 16 ions/cm 2 total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy

  7. Oxidation behaviour of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, Bin

    2011-01-01

    The Zr-based bulk metallic glasses, developed since the late 1980's, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO 2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T ≥ Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T ≤ Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses

  8. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    Science.gov (United States)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  9. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    Science.gov (United States)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  10. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  11. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  12. Microstructure and texture evolution in cryorolled Al 7075 alloy

    International Nuclear Information System (INIS)

    Jayaganthan, R.; Brokmeier, H.-G.; Schwebke, Bernd; Panigrahi, S.K.

    2010-01-01

    The present work investigates the microstructure and texture evolution of cryorolled Al 7075 alloy using FE-SEM, TEM, and neutron diffraction, respectively. The solution treated bulk Al 7075 alloy is subjected to rolling at liquid nitrogen temperature to produce sheets with different thickness reductions such as 35%, 50%, 70%, and 90%, respectively. It is evident from the microstructural characterisations of cryorolled samples that with the increasing deformation strain induced in the materials, the grains are fragmented and produce high amount of dislocation density due the suppression of dynamic recovery. The texture analysis of the cryorolled Al 7075 alloy has shown that the ideal fibres observed in the starting solution treated alloy has been destroyed during rolling. The Goss/Brass orientation of the cryorolled Al alloy is shifting towards the Brass components with increasing deformation strain induced in the samples. The orientation distribution functions of the cryorolled Al 7075 alloy clearly indicate the progressive weakening of the texture components, during cryorolling, with increasing strain, therefore, fragmentation and reorientation of micron sized grains occurs easily for the formation of subgrains and ultrafine-grained microstructures as evident from EBSD and TEM micrographs.

  13. Computer modelling of age hardening for cast aluminium alloys

    International Nuclear Information System (INIS)

    Wu, Linda; Ferguson, W George

    2009-01-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  14. Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing

    International Nuclear Information System (INIS)

    Azimi, Amin; Shokuhfar, Ali; Zolriasatein, Ashkan

    2014-01-01

    Nanostructured Al–7.8 wt% Zn–2.6 wt% Mg–2 wt% Cu–0.1 wt% Zr alloy was mechanically alloyed (MA) from elemental powders and consolidated by hot press technique. The effect of the milling time and hot pressing process on microstructure was investigated by means of X-ray diffraction measurements (XRD) and analytical and scanning electron microscopy (SEM). Furthermore mechanical properties of samples with different MA time as well as pure aluminum were investigated by microhardness and compression tests. The results show that an Al–Zn–Mg–Cu–Zr homogenous supersaturated solid solution with a crystallite size of 27 nm was obtained after 40 h of milling time. Microstructure refinement and morphological changes of powders from flake to spherical shape were observed by increasing milling time. Phase and microstructural characterization of high density bulk nanostructured samples revealed that increasing milling time up to 40 h leads to formation of MgZn 2 precipitation in the alloy matrix. With increasing milling time, density of the samples and crystalline size decrease. Significant enhancement of hardness and compressive strength is observed in the aluminum alloy by increasing milling time up to 40 h which is much higher than pure aluminum. Crystallite size refinement in pure aluminum samples from micro- to nanoscales resulted in 107% and 100% improvement in compressive strength and hardness, respectively. Furthermore the compressive strength and hardness of Al–Zn–Mg–Cu–Zr alloy nanostructured samples increased to 179% and 172%, respectively, compared to nanostructured pure Al, which was produced as reference specimen. 40 h of MA was the optimum case for preparing such an Al alloy and more milling up to 50 h led to deterioration of mechanical properties

  15. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  16. Fatigue and corrosion of a Pd-based bulk metallic glass in various environments

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, L.Y. [East Los Angeles College, Monterey Park, CA 91754 (United States); Roberts, S.N. [Keck Laboratory of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Baca, N. [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330 (United States); Wiest, A. [Naval Surface Warfare Center, Norco, CA (United States); Garrett, S.J. [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330 (United States); Conner, R.D., E-mail: rdconner@csun.edu [Department of Manufacturing Systems Engineering and Management, California State University Northridge, 18111 Nordhoff St., Mail Code 8295, Northridge, CA 91330 (United States)

    2013-10-15

    Bulk metallic glasses (BMGs) possess attractive properties for biomedical applications, including high strength, hardness and corrosion resistance, and low elastic modulus. In this study, we conduct rotating beam fatigue tests on Pd{sub 43}Ni{sub 10}Cu{sub 27}P{sub 20} bulk metallic glass in air and Eagle's medium (EM) and measure the corrosive resistance of the alloy by submersion in acidic and basic electrolytes. Fatigue results are compared to those of commonly used biometals in EM. Rotating beam fatigue tests conducted in air and in Eagle's medium show no deterioration in fatigue properties in this potentially corrosive environment out to 10{sup 7} cycles. A specimen size effect is revealed when comparing fatigue results to those of a similar alloy of larger minimum dimensions. Corrosion tests show that the alloy is not affected by highly basic (NaOH) or saline (NaCl) solutions, nor in EM, and is affected by chlorinated acidic solutions (HCl) to a lesser extent than other commonly used biometals. Corrosion in HCl initiates with selective leaching of late transition metals, followed by dissolution of Pd. - Highlights: • Fatigue limit of 600 MPa with no deterioration when exposed to Eagle's medium. • Fatigue shows sample size effect. • Pd-based BMG is unaffected by saline or strong basic solutions. • Pd-based BMG is substantially more resistant to chlorinated acids than CoCrMo, 316 L Stainless, or Ti6Al4V alloys. • Corrosion shows selective leaching of late transition metals, followed by Pd and P.

  17. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang Tao

    1997-01-01

    Bulk amorphous alloys were prepared for Nd 70 Al 10 TM 20 and Nd 60 Al 10 TM 30 (TM=Fe or Co) alloys by copper mold casting. The maximum sample thickness for glass formation reaches 15 mm for the Nd-Al-Fe alloys and 5 mm for the Nd-Al-Co alloys. A significant difference in the phase transition upon heating is recognized between the Fe- and Co-containing alloys. No glass transition before crystallization is observed for the Nd-Al-Fe alloys, but the Nd-Al-Co alloys exhibit the glass transition. The ΔT x (=T x -T g ) and T g /T m are 40-55 K and 0.65-0.67, respectively, for the latter alloys. The absence of supercooled liquid for the former alloys is different from those for all bulk amorphous alloys reported up to date. The T x /T m and ΔT m (=T m -T x ) are 0.85-0.89 and 88-137 K, respectively, for the Nd-Al-Fe alloys and, hence, the large glass-forming ability is presumably due to the high T x /T m and small ΔT m values. (orig.)

  18. Vanadium-based alloy hydrides for heat pumps, compressors, and isotope separation

    International Nuclear Information System (INIS)

    Libowitz, G.G.

    1988-01-01

    A series of body-centered cubic (b.c.c.) solid solution alloys have been developed which appears to be unusually suitable for several applications involving metal hydrides. It is normally very difficult to induce the body-centered cubic metals, Nb, V, and Ta, to react with hydrogen; in bulk form the reaction will simply not occur at room temperature. Alloys containing Nb exhibited very large hysteresis effects on hydride formation and thus are not suitable for most applications. However, the V-Ti based alloys showed relatively little hysteresis, and because of their unusual thermodynamic properties offer significant advantages for the specific applications discussed below. (orig./HB)

  19. Nonlinear acoustic properties of the B95 aluminum alloy and the B95/nanodiamond composite

    Science.gov (United States)

    Korobov, A. I.; Prokhorov, V. M.

    2016-11-01

    Research results for the nonlinear acoustic properties of the B95 polycrystalline aluminum alloy and the B95/nanodiamond composite have been described. The nonlinear properties of the alloys have been studied by the spectral method that measures the efficiency of generation of the second harmonic of a bulk acoustic wave at a frequency of 2 f = 10 MHz in the field of a finite-amplitude longitudinal acoustic wave at a frequency of f = 5 MHz. The results derived by this method have been compared with the results of studies of the nonlinear acoustic properties of the test alloys using the Thurston-Brugger quasi-static method.

  20. An interatomic potential for studying CuZr bulk metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Kenoufi, Abdel; Bailey, Nicholas

    2007-01-01

    -scale deformation events and may furthermore involve localization through formation of shear bands. In this paper, an Effective Medium Theory (EMT) potential optimized for modeling the mechanical and thermodynamic properties of CuZr bulk metallic glass is studied. The late transition metals crystallizing in close......The mechanical properties of BMGs are remarkably different from the ones of ordinary metallic alloys due to the atomic level disorder in the glassy state. Unlike crystalline materials plastic deformation in metallic glasses cannot be caused by lattice defects but takes place through atomic...

  1. Synthesis and devitrification of high glass-forming ability bulk metallic glasses.

    OpenAIRE

    Huang, Hong.

    2007-01-01

    In this thesis, literature on the production, microstructures and properties of bulk metallic glasses (BMG) has been reviewed with particular reference to glass forming ability (GFA) and alloys of the Fe-Zr-B and Zr-based BMG systems. The experimental procedures used in the research are presented and the results for the amorphous Fe80Zr12B8 ribbon and the Zr57Ti5Al10Cu20Ni8, Zr57Nb5Al10Cu20Ni8, Zr53Nb2Al8Cu30Ni7 BMGs are given and discussed. Wedge-shaped ingots of the Zr-based BMGs were produ...

  2. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  3. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  4. Giant magnetoresistive properties of FexAu100-x alloys produced by mechanical alloying

    International Nuclear Information System (INIS)

    Socolovsky, L.M.; Sanchez, F.H.; Shingu, P.H.

    2001-01-01

    The Fe x Au 100- x alloys were produced for the first time by mechanical alloying. Resistance of samples with iron concentrations of x=15, 20, 25, and 30 at% were measured at 77 K under an applied field of 14 kOe. A maximum in magnetoresistive ratio (Δρ/ρ) of 3.5% was obtained for Fe 25 Au 75 . Samples were annealed in order to enhance magnetoresistive properties. These samples exhibit larger ratios, primarily due to the elimination of defects. X-ray diffraction Moessbauer spectroscopy and magnetoresistance measurements were performed, in order to correlate bulk and hyperfine magnetic properties with crystalline structure. X-ray diffractograms show an FCC structure, with no evidence for a BCC one

  5. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    Science.gov (United States)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  6. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  7. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  8. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  9. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  10. The improvement of the superconducting Y-Ba-Cu-O magnet characteristics through shape recovery strain of Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Shimpo, Y.; Seki, H.; Wongsatanawarid, A.; Taniguchi, S.; Maruyama, T.; Kurita, T.; Murakami, M.

    2010-01-01

    Since bulk Y-Ba-Cu-O superconductors are brittle ceramics, reinforcement of mechanical properties is important for practical applications. It has been reported that bulk Y-Ba-Cu-O can be reinforced with Al or Fe based alloy ring, in that compression force acts on bulk Y-Ba-Cu-O due to a difference in thermal expansion coefficients. However, the shrinkage of the metal ring was not so large, and therefore careful adjustment of the circumference of the bulk and the metal rings was necessary. In this study, we employed Fe-Mn-Si shape memory alloy rings to reinforce bulk Y-Ba-Cu-O. The advantage of the shape memory alloy is that the shrinkage can take place on heating, and furthermore, the alloy shrinks and compresses the bulk body on cooling. Bulk Y-Ba-Cu-O superconductor 22.8 mm in diameter was inserted in a Fe-Mn-Si ring 23.0 mm in inner diameter at room temperature. Beforehand, the Fe-Mn-Si ring was expanded by 12% strain at room temperature. Then the composite was heated to 673 K. At room temperature, the Fe-Mn-Si ring firmly gripped the bulk superconductor. We then measured trapped fields before and after the ring reinforcement, and found that the trapped field was improved through the treatment.

  11. Effect of annealing on the magnetic properties of Nd70Fe20Al10 bulk metallic glasses

    International Nuclear Information System (INIS)

    Olivetti, Elena; Baricco, Marcello; Ferrara, Enzo; Tiberto, Paola; Martino, Luca

    2005-01-01

    In this work, the influence of thermal treatments on the hysteresis behaviour of Nd 70 Fe 20 Al 10 bulk metallic glasses is studied. Two samples obtained applying different quenching rates have been characterized: (a) master alloy ingots, prepared through arc melting, and (b) cone-shaped ingots obtained by copper mould casting. DSC measurements have been performed on both alloys. Selected samples have been submitted to subsequent annealing. Hard magnetic properties have been observed at room temperature either in the as-cast master alloy or in the cone-shaped ingots. High values of coercivity are still observed after treatment at temperatures close to the crystallisation temperature (up to 500 deg. C). The different magnetic behaviour of the samples is discussed in terms of differences in the residual amorphous phase composition

  12. Periodic Cellular Structure Technology for Shape Memory Alloys

    Science.gov (United States)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  13. Emerging Applications Using Magnesium Alloy Powders: A Feasibility Study

    Science.gov (United States)

    Tandon, Rajiv; Madan, Deepak

    The use of powder metallurgy offers a potential processing route based on tailored compositions and unique microstructures to achieve high performance in magnesium alloys. This paper highlights recent advances in the production, qualification, and characterization of gas atomized AZ91E, WE43 and Elektron21 alloy powders. Transmission electron microscopy (TEM) was used to understand the bulk and surface structure of the atomized powder. The potential for using these magnesium alloy powders for emerging applications involves establishing compatibility with viable consolidation processes such as cold spray, laser assisted deposition, forging and extrusion. This study summarizes the preliminary results for various ongoing investigations using WE43 powder as an example. Results show that powder metallurgy processed WE43 results in comparable properties to those obtained from cast and wrought and offers potential for improvement.

  14. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  15. Neutron-absorbing alloys

    International Nuclear Information System (INIS)

    Portnoi, K.I.; Arabei, L.B.; Gryaznov, G.M.; Levi, L.I.; Lunin, G.L.; Kozhukhov, V.M.; Markov, J.M.; Fedotov, M.E.

    1975-01-01

    A process is described for the production of an alloy consiting of 1 to 20% In, 0.5 to 15% Sm, and from 3 to 18% Hf, the balance being Ni. Such alloys show a good absorption capacity for thermal and intermediate neutrons, good neutron capture efficiency, and good corrosion resistance, and find application in nuclear reactor automatic control and safety systems. The Hf provides for the maintenance of a reasonably high order of neutron capture efficiency throughout the lifetime of a reactor. The alloys are formed in a vacuum furnace operating with an inert gas atmosphere at 280 to 300 mm.Hg. They have a corrosion resistance from 3 to 3.5 times that of the Ag-based alloys commonly employed, and a neutron capture efficiency about twice that of the Ag alloys. Castability and structural strength are good. (U.K.)

  16. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    International Nuclear Information System (INIS)

    López-Ruiz, P.; Ordás, N.; Iturriza, I.; Walter, M.; Gaganidze, E.; Lindig, S.; Koch, F.; García-Rosales, C.

    2013-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO 3 . Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr) 5 Si 3 ; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material

  17. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  18. Module 13: Bulk Packaging Shipments by Highway

    International Nuclear Information System (INIS)

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ''Training.'' Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination

  19. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    Science.gov (United States)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  20. Welding of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Elahi, M.

    2010-01-01

    Recently, many bulk metallic glass (BMG) materials with high specific strength, hardness and superior corrosion resistance have been developed and the maximum thickness of some Zr-based BMGs have reached several tenths of millimeters. Nevertheless, homogeneous glassy BMGs are not thick enough to be used for structural applications. In order to extend the engineering applications of BMG materials, BMG welding technologies needed to be developed. Specifically, the welding technologies of dissimilar materials such as BMG materials to crystalline alloys are to be developed. The functional use of the specific properties of each material in dissimilar material combination provides flexible design possibilities for products. In this project electron beam welding is employed to join BMG with BMG of different composition as well as with different crystalline materials (i.e. Hastealoy C-276, Inconel-625 and pure Ti metal). Defects free weld joint was achieved in BMG-BMG welding. Some cracks were produced in melt zone of BMG-Ti and BMG-Hastealoy C-276 welding while at joint they fuse properly with BMG. Inconel-625 could not properly weld with BMG. In all cases, hardness of melt zone was found to be higher than the base metals and the heat affected zone (HAZ). (author)

  1. Memory phenomenon in a lanthanum based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Zhao, Yong; Ding, Zhen; Li, Yan; Tor, Shu Beng; Liu, Erjia

    2016-01-01

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  2. Zr-(Cu,Ag)-Al bulk metallic glasses

    International Nuclear Information System (INIS)

    Jiang, Q.K.; Wang, X.D.; Nie, X.P.; Zhang, G.Q.; Ma, H.; Fecht, H.-J.; Bendnarcik, J.; Franz, H.; Liu, Y.G.; Cao, Q.P.; Jiang, J.Z.

    2008-01-01

    In this paper, we report the formation of a series Zr-(Cu,Ag)-Al bulk metallic glasses (BMGs) with diameters at least 20 mm and demonstrate the formation of about 25 g amorphous metallic ingots in a wide Zr-(Cu,Ag)-Al composition range using a conventional arc-melting machine. The origin of high glass-forming ability (GFA) of the Zr-(Cu,Ag)-Al alloy system has been investigated from the structural, thermodynamic and kinetic points of view. The high GFA of the Zr-(Cu,Ag)-Al system is attributed to denser local atomic packing and the smaller difference in Gibbs free energy between amorphous and crystalline phases. The thermal, mechanical and corrosion properties, as well as elastic constants for the newly developed Zr-(Cu,Ag)-Al BMGs, are also presented. These newly developed Ni-free Zr-(Cu,Ag)-Al BMGs exhibit excellent combined properties: strong GFA, high strength, high compressive plasticity, cheap and non-toxic raw materials and biocompatible property, as compared with other BMGs, leading to their potential industrial applications

  3. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui

    2010-09-23

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (Td) site. The diffusion of a Li atom in the Si lattice is through a Td-Hex-Td trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a LixSi alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration. © 2010 IOP Publishing Ltd.

  4. Memory phenomenon in a lanthanum based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Huang, Wei Min, E-mail: mwmhuang@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Zhao, Yong [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Ding, Zhen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Li, Yan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Tor, Shu Beng; Liu, Erjia [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2016-07-05

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  5. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  6. Dendritic morphology observed in the solid-state precipitation in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Husain, S.W.; Ahmed, M.S.; Qamar, I. [Dr. A.Q. Khan Research Labs., Rawalpindi (Pakistan)

    1999-06-01

    The precipitation of {gamma}{sub 2} phase in Cu-Al {beta}-phase alloys has been observed to occur in the dendritic morphology. Such morphology is rarely observed in the solid-state transformations. Earlier it was reported that the {gamma} precipitates were formed in the dendritic shape when Cu-Zn {beta}-phase alloys were cooled from high temperature. The characteristics of these two alloy systems have been examined to find the factors promoting the dendritic morphology in the solid-state transformations. Rapid bulk diffusion and fast interfacial reaction kinetics would promote such morphology. The kinetics of atom attachment to the growing interface is expected to be fast when crystallographic similarities exist between the parent phase and the precipitate. The authors have predicted the dendritic morphology in the solid-state precipitation in many binary alloy systems simply based on such crystallographic similarities. These alloys include, in addition to Cu-Al and Cu-Zn, the {beta}-phase alloys in Ag-Li, Ag-Zn, Cu-Ga, Au-Zn, and Ni-Zn systems, {gamma}-phase alloys in Cu-Sn and Ag-Cd systems, and {delta}-phase alloys in Au-Cd system. Of these, the alloys in Ag-Zn, Ni-Zn, Ag-Cd, and Cu-Sn systems were prepared and it was indeed found that the precipitates formed in the dendritic shape.

  7. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  8. Physical metallurgy of titanium alloys

    International Nuclear Information System (INIS)

    Collings, E.W.

    1988-01-01

    Researches in electric, magnetic, thermophysical properties of titanium alloys in the wide range of temperatures (from helium upto elevated one), as well as stability of phases in alloys of different types are generalized. Fundamental description of physical properties of binary model alloys is given. Acoustic emission, shape memory and Bauschinger effects, pseudoelasticity, aging and other aspects of physical metallurgy of titanium alloys are considered

  9. Bulk-memory processor for data acquisition

    International Nuclear Information System (INIS)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user

  10. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  11. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  12. Ion-induced Auger electron spectroscopy: a new detection method for compositional homogeneities of alloyed atoms in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A [Osaka Univ., Japan; Imura, T; Iwami, M; Kim, S C; Ushita, K; Okamoto, H; Hamakawa, Y

    1979-09-01

    Auger spectra of Si LMM transitions induced by keV Ar/sup +/ ion bombardment of Si alloy systems have been studied. The spectra observed are composed of two well-defined peaks termed elsewhere the atomic-like and bulk-like peaks, repsectively. A clear correlation has been found between the intensity of the atomic-like peak lying at 88 eV and the content of the foreign atoms alloyed with Si. Experiments were carried out on metallic silicides, or Si alloys with Au, Cu, Pd and Ni, and covalently bonded non-metallic Si alloys of C and H. From these studies, we propose that ion-induced Auger electron spectroscopy might be a useful tool for the determination of alloyed foreign atoms as well as for the study of their compositional homogeneity in binary alloy systems of silicon.

  13. Big bang nucleosynthesis constraints on bulk neutrinos

    International Nuclear Information System (INIS)

    Goh, H.S.; Mohapatra, R.N.

    2002-01-01

    We examine the constraints imposed by the requirement of successful nucleosynthesis on models with one large extra hidden space dimension and a single bulk neutrino residing in this dimension. We solve the Boltzmann kinetic equation for the thermal distribution of the Kaluza-Klein modes and evaluate their contribution to the energy density at the big bang nucleosynthesis epoch to constrain the size of the extra dimension R -1 ≡μ and the parameter sin 2 2θ which characterizes the mixing between the active and bulk neutrinos

  14. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  15. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  16. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  17. Technetium and technetium alloys

    International Nuclear Information System (INIS)

    Ijdo, W.L.

    1993-10-01

    This report presents the results of a literature survey on technetium and technetium alloys. The literature has been searched through 1993. The survey was focused on technetium and (binary cubic) technetium alloys, but other important information on technetium has not been omitted from this survey. This report has been written with the aim to collect more information about phase systems which could be of importance in the transmutation process by neutrons of technetium. With the information presented in this report, it should be possible to select a suitable technetium alloy for further investigation regarding to the transmutation process. (orig.)

  18. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled barges...

  19. A thermokinetic model for Mg-Si couple formation in Al-Mg-Si alloys

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Shan, Y. V.; Kozeschnik, E.; Fischer, F. D.

    2016-01-01

    Roč. 24, č. 3 (2016), č. článku Art . Num. 035021. ISSN 0965-0393 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : aluminium alloys * cluster assisted nucleation * kinetics * bulk diffusion * thermodynamic modelling Subject RIV: BJ - Thermodynamics Impact factor: 1.891, year: 2016

  20. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  1. Anodising of Al-Mg-Si-(Cu) alloys produced by R-HPDC

    CSIR Research Space (South Africa)

    Chauke, L

    2013-07-01

    Full Text Available Die Casting (R-HPDC) was studied. R-HPDC components suffer from surface liquid segregation (SLS), the surface layer of the casting is enriched in alloying elements and it is expected to have different properties than the bulk material. An advantage...

  2. PRODUCTION OF ROTARY ENGINES’ PARTS FROM ALUMINUM ALLOYS USING LOST FOAM CASTING PROCESS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2018-01-01

    Full Text Available The production technology of casting details for rotary engine from the aluminum alloy АК12М2 is developed. The bulk density of expanded polystyrene to ensure the best quality of the surface of castings has been experimentally established. The lost foam casting shop was organized in the experimental department of the Institute.

  3. 33 CFR 127.313 - Bulk storage.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...: (1) LNG. (2) LPG. (3) Vessel fuel. (4) Oily waste from vessels. (5) Solvents, lubricants, paints, and...

  4. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  5. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization is cond...

  6. Bulk viscosity in 2SC quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Schmitt, Andreas

    2007-01-01

    The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star

  7. Combating wear in bulk solids handling plants

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of five papers presented at a seminar on problems of wear caused by abrasive effects of materials in bulk handling. Topics of papers cover the designer viewpoint, practical experience from the steel, coal, cement and quarry industries to create an awareness of possible solutions.

  8. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  9. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  10. A stereoscopic look into the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Sully, James [Theory Group, SLAC National Accelerator LaboratoryMenlo Park, CA 94025 (United States)

    2016-07-26

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.

  11. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model.

  12. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  13. Hexaferrite multiferroics: from bulk to thick films

    Science.gov (United States)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  14. Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daniel R. [Department of Material Science and Engineering, Florida State University, Tallahassee, FL 32304 (United States); National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Han, Ke; Niu, Rongmei [National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Siegrist, Theo; Besara, Tiglet [Department of Material Science and Engineering, Florida State University, Tallahassee, FL 32304 (United States); Department of Chemical Engineering, Florida Agricultural and Mechanical University-Florida State University, Tallahassee, FL 32304 (United States)

    2016-05-15

    Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealed Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.

  15. Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment

    Directory of Open Access Journals (Sweden)

    Daniel R. Brown

    2016-05-01

    Full Text Available Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn0.8Ga0.2 system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealed Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.

  16. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Sánchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Salas, E. [Spline Spanish CRG Beamline at the European Synchrotron Radiation Facilities, ESRF, BP 220-38043, Grenoble Cedex (France); Arce, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  17. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  18. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with integration of a 50-80% efficient power management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of <1microW in active-mode (measured) and <5pA in sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  19. Stress Concentration in the Bulk Cr2O3: Effects of Temperature and Point Defects

    Directory of Open Access Journals (Sweden)

    Mazharul M. Islam

    2017-01-01

    Full Text Available Modeling the growth and failure of passive oxide films formed on stainless steels is of general interest for the use of stainless steel as structural material and of special interest in the context of life time extension of light water reactors in nuclear power plants. Using the DFT+U approach, a theoretical investigation on the resistance to failure of the chromium-rich inner oxide layer formed at the surface of chromium-containing austenitic alloys (stainless steel and nickel based alloys has been performed. The investigations were done for periodic bulk models. The data at the atomic scale were extrapolated by using the Universal Binding Energy Relationships (UBERs model in order to estimate the mechanical behavior of a 10 μm thick oxide scale. The calculated stress values are in good agreement with experiments. Tensile stress for the bulk chromia was observed. The effects of temperature and structural defects on cracking were investigated. The possibility of cracking intensifies at high temperature compared to 0 K investigations. Higher susceptibility to cracking was observed in presence of defects compared to nondefective oxide, in agreement with experimental observation.

  20. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  1. Electroplating on titanium alloy

    Science.gov (United States)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  2. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  3. HVEM in situ deformation of Al-Li-X alloys

    International Nuclear Information System (INIS)

    Crooks, R.E.; Kenik, E.A.; Starke, E.A. Jr.

    1983-01-01

    Lithium additions to aluminum alloys increase both the strength and elastic modulus while decreasing the density, thereby resulting in very attractive combinations of properties. The commercial utilization of these alloys, however, has been hindered by a lack of adequate ductility at peak strength. Recent investigations have attributed the low ductility to intense, localized deformation. This is considered to be due to the promotion of planar slip by coherent, shearable, delta' (Al 3 Li) precipitates and the presence of precipitate free zones (PFZ's) at high angle grain boundaries. An Al-Cu-Li-Mg-Zr alloy, produced by rapidly solidified powder processing, was found to exhibit ductility improvements over comparable, lithium-containing alloys. Thin foils prepared from bulk tensile samples were examined by transmission electron microscopy (TEM), and no evidence of localized deformation was found. These, however, were only successfully produced from the region of uniform elongation below the neck and were thus limited to approximately 4% plastic strain. In order to observe the deformation behavior under severe strain, an in situ deformation study was conducted in a high voltage electron microscope (HVEM). Several investigators have used in situ HVEM techniques to study ductile fracture processes. The advantages of HVEM versus TEM for this purpose include: thicker specimens (due to a lower energy exchange of the electrons), a lower specimen contamination rate and a negligible increase in specimen temperature. Two lithium-containing alloys which had been previously reported to demonstrate localized, planar slip were studied for comparison

  4. Segregation in ternary alloys: an interplay of driving forces

    International Nuclear Information System (INIS)

    Luyten, J.; Helfensteyn, S.; Creemers, C.

    2003-01-01

    Monte Carlo (MC) simulations combined with the constant bond energy (CBE) model are set up to explore and understand the general segregation behaviour in ternary alloys as a function of composition and more in particular the segregation to Cu-Ni-Al (1 0 0) surfaces. Besides its simplicity, allowing swift simulations, which are necessary for a first general survey over all possible compositions, one of the advantages of the CBE model lies in the possibility to clearly identify the different driving forces for segregation. All simulations are performed in the Grand Canonical Ensemble, using a new algorithm to determine the chemical potential of the components. Notwithstanding the simplicity of the CBE model, one extra feature is evidenced: depending on the values of the interatomic interaction parameters, in some regions of the ternary diagram, a single solid solution becomes thermodynamically unstable, leading to demixing into two conjugate phases. The simulations are first done for three hypothetical systems that are however representative for real alloy systems. The three systems are characterised by different sets of interatomic interaction parameters. These extensive simulations over the entire composition range of the ternary alloy yield a 'topographical' segregation map, showing distinct regions where different species segregate. These distinct domains originate from a variable interplay between the driving forces for segregation and attractive/repulsive interactions in the bulk of the alloy. The results on these hypothetical systems are very helpful for a better understanding of the segregation behaviour in Cu-Ni-Al and other ternary alloys

  5. The Magnetic Properties of Metal-Alloy Glass Composites Prepared by Ion Implantation

    International Nuclear Information System (INIS)

    Julian Fernandez, Cesar de; Mattei, Giovanni; Sada, Cinzia; Maurizio, Chiara; Padovani, Sara; Mazzoldi, Paolo; Sangregorio, Claudio; Gatteschi, Dante

    2003-01-01

    The structural and magnetic properties of Co-Ni, Co-Fe and Ni-Cu alloy nanoparticles formed in silica matrix by sequential ion implantation are presented. These nanoparticles show crystal structure similar to the corresponding bulk alloys. In the Co-Ni and Co-Fe, magnetization saturation and coercive field depend on the the alloy composition, crystal structure and size effects. Ferromagnetic resonance studies show that collective magnetic processes are present and these are determined by the film-like morphology of the implanted region. The temperature dependence of the magnetization of the NixCu100-x samples indicates that their Curie Temperatures are larger than the corresponding bulk ones. This feature is discussed considering the composition of the nanoparticles and the size effects

  6. Magnetic susceptibility of CoFeBSiNb alloys in liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V., E-mail: vesidor@mail.ru [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Hosko, J. [Institute of Physics SAS, Bratislava (Slovakia); Mikhailov, V.; Rozkov, I.; Uporova, N. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Svec, P.; Janickovic, D.; Matko, I.; Svec Sr, P. [Institute of Physics SAS, Bratislava (Slovakia); Malyshev, L. [Ural Federal University, Ekaterinburg (Russian Federation)

    2014-03-15

    The influence of small additions of gallium and antimony on magnetic susceptibility of the bulk glass forming Co{sub 47}Fe{sub 20.9}B{sub 21.2}Si{sub 4.6}Nb{sub 6.3} alloy was studied in a wide temperature range up to 1830 K by the Faraday’s method. The undercooling for all the samples was measured experimentally. Both Ga and Sb additions were found to increase liquidus and solidification temperatures. However, gallium atoms strengthen interatomic interaction in the melts, whereas antimony atoms reduce it. - Highlights: • Bulk metallic glasses from CoFeBSiNb-based alloys were produced as in situ composites. • Magnetic susceptibility of these alloys was measured in a wide temperature range including liquid state. • Undercooling of these melts was measured experimentally. • Ga additions strengthen interatomic interaction in BMG melts, whereas Sb atoms reduce it.

  7. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  8. Refractory alloy component fabrication

    International Nuclear Information System (INIS)

    Young, W.R.

    1984-01-01

    Purpose of this report is to describe joining procedures, primarily welding techniques, which were developed to construct reliable refractory alloy components and systems for advanced space power systems. Two systems, the Nb-1Zr Brayton Cycle Heat Receiver and the T-111 Alloy Potassium Boiler Development Program, are used to illustrate typical systems and components. Particular emphasis is given to specific problems which were eliminated during the development efforts. Finally, some thoughts on application of more recent joining technology are presented. 78 figures

  9. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  10. Bulk solitary waves in elastic solids

    Science.gov (United States)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  11. Electroplating technologies of alloys

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, Seung Ho; Jeong, Hyun Kyu; Hwnag, Sung Sik; Seo, Yong Chil; Kim, Dong Jin; Seo, Moo Hong

    2001-12-01

    In localization of electrosleeving technique, there are some problems like the following articles. Firstly, Patents published by OHT have claimed Ni-P, Ni-B alloy plating and Mo, Mn Cr, W, Co as a pinning agent. Secondly, alloy platings have many restrictions. There are some method to get alloy plating in spite of the various restrictions. If current density increase above limiting current density in one of the metals, both of the metals discharge at the same time. The addition of surface active agent(sufactant) in the plating solution is one of the methods to get alloy plating. Alloy plating using pulse current easily controls chemical composition and structure of deposit. Ni-Fe alloy plating is known to exhibit anomalous type of plating behavior in which deposition of the less noble metal is favoured. Presence of hypophohphite ion can control the iron codeposition by changing the deposition mechanism. Hypophohphite suppresses the deposition of Fe and also promotes Ni. Composite plating will be considered to improve the strength at the high temperature. Addition of particle size of 10δ400μm makes residual stress compressive in plate layer and suppress the grain growth rate at the high temperature. Addition of particle makes suface roughness high and fracture stress low at high temperature. But, selection of the kinds of particle and control of additives amount overcome the problems above

  12. Influence of Co addition on the magnetocaloric effect of FeCoSiAlGaPCB amorphous alloys

    OpenAIRE

    Franco García, Victorino; Borrego Moro, Josefa María; Conde Amiano, Alejandro

    2006-01-01

    The FeCoSiAlGaPCB alloys can be prepared as bulk amorphous materials, with outstanding mechanical properties and increased electrical resistivity. These features can be beneficial for their application as a magnetic refrigerant. The influence of Co addition on the magnetic entropy change of the alloy has been studied. This compositional modification displaces the temperature of the peak entropy change closer to room temperature, but reduces the refrigerant capacity of the material...

  13. Influence of Microstructure on Microhardness of Fe81Si4B13C2 Amorphous Alloy after Thermal Treatment

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica, M.; Blagojević, V.; Minić, Dušan M.; Gavrilović, A.; Rafailović, L.; Žák, Tomáš

    42A, č. 13 (2011), s. 4106-4112 ISSN 1073-5623 R&D Projects: GA MŠk(CZ) 1M0512 Institutional research plan: CEZ:AV0Z2041904 Keywords : bulk metallic-glass * mechanical properties * Fe81B13SI4C2 alloy * B alloys * alpha-Fe * crystallization * phase * nanocrystallization * behavior Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.545, year: 2011

  14. Mechanical properties of a high-strength Al{sub 90}Mn{sub 8}Ce{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.C.; Zhao, Z.K.; Jiang, Q. [Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China)

    2003-03-01

    A lightweight alloy with excellent strength and wear resistance, Al{sub 90}Mn{sub 8}Ce{sub 2}, has been manufactured in bulk by powder metallurgy. The best colligative mechanical properties of the alloy made by this technique are achieved by pressing at 753 K, where the porosity reaches a minimum, and the plasticity a maximum. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@list.ru; Filatova, V.S.; Makeeva, I.N.; Vasylyev, M.A.

    2017-06-30

    Highlights: • Ultrasonic impact treatment in air enhances oxidation of CoCrMo alloy. • Impact treatment promotes segregation and accumulation of carbon on the surface. • Intense deformation brings about partial dissolution of carbides. • Impact-induced fcc-to-hcp transformation and hardening of the alloy. • Impact treatment improves corrosion properties of the alloy. - Abstract: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and X-ray diffraction were employed to study the effect of intense mechanical treatment on the surface chemical state, composition and structure of a commercial biomedical CoCrMo alloy (‘Bondi-Loy’). The ultrasonic impact treatment of the alloy in air with duration up to 30 s was found to cause the deformation-enhanced oxidation and deformation-induced surface segregation of the components and impurities from the bulk. The compositionally inhomogeneous mixed oxide layer formed under impact treatment was composed mainly of Cr{sub 2}O{sub 3} and silicon oxide with admixture of CoO, MoO{sub 2}, MoO{sub 3} and iron oxide/hydroxide, the latter being transferred onto the alloy surface from the steel pin. The impact treatment promoted a progressive accumulation of carbon on the alloy surface due to its deformation-induced segregation from the bulk and deformation-induced uptake of hydrocarbons from the ambient; concurrently, the dissolution/refinement of carbides originally present in the as-cast CoCrMo alloy occurred. The impact treatment gave rise to a two-fold increase in the volume fraction of the martensitic hcp ε-phase, a 30% increase in the surface microhardness and improved resistance to corrosion in the solution of artificial saliva compared to the as-polished alloy.

  16. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  17. Effect of Si addition on glass-forming ability and mechanical properties of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Zhang, W.; Seyedein, S.H.; Gholamipour, R.; Makino, A.; Inoue, A.

    2010-01-01

    Research highlights: The Cu 50 Zr 43 Al 7 alloy has a surprising GFA, and the glassy rods with diameter of 10 mm have been produced in this research. It has not been reported that the Cu-based glassy rods (Cu ≥ 50 at.%) to be produced with the critical diameter greater than 10 mm. The novelty of this research is that the glass formation has been improved and the critical diameter increased to 12 mm for the alloy having x = 1 with the addition of Si. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. - Abstract: The effect of Si addition on the glass-forming ability (GFA) and mechanical properties of (Cu 50 Zr 43 Al 7 ) 100-x Si x (x = 0, 0.5, 1, 1.5 and 2 at.%) alloys were investigated. The GFA of Cu 50 Zr 43 Al 7 alloy is improved by addition of a small amount of Si, and the critical diameter for glass formation increases from 10 mm for the alloy with x = 0-12 mm for the alloy with x = 1 when prepared using copper mold casting. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. In the uniaxial compression, the bulk glassy alloys exhibit a limited plastic strain of less than 1%, but the compressive fracture strength and Young's modulus were obtained in high values of 1969-2129 MPa and 101-144 GPa, respectively. Fracture surface and shear bands of samples were studied by using scanning electron microscopy (SEM).

  18. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  19. Perpendicular Magnetic Anisotropy in Heusler Alloy Films and Their Magnetoresistive Junctions

    Directory of Open Access Journals (Sweden)

    Atsufumi Hirohata

    2018-01-01

    Full Text Available For the sustainable development of spintronic devices, a half-metallic ferromagnetic film needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane devices due to their scalability, lattice distortion is required by introducing atomic substitution and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially, focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the performance of spintronic devices with higher recording capacity.

  20. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  1. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  2. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  3. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment

    Energy Technology Data Exchange (ETDEWEB)

    Pan Jie; Chen Qi; Li Ning [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu Lin [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-mail: lliu2000@public.wh.hb.cn

    2008-09-08

    The formation of a Fe{sub 43.7}Co{sub 7.3}Cr{sub 14.7}Mo{sub 12.6}C{sub 15.5}B{sub 4.3}Y{sub 1.9} bulk metallic glass (BMG) was attempted in low vacuum environment and in air using commercial raw materials. The glass forming ability of the Fe-based alloys was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It was found that cylindric rods with diameters ranging from 10 mm to 5 mm could be successfully fabricated by copper-mold casting in the pressures from 1.5 Pa to 10{sup 5} Pa (10{sup 5} Pa = 1 atm). All BMGs exhibit a distinct glass transition and wide supercooled liquid region. The preparation condition seems not significantly affected by the thermodynamic parameters of BMG, such as supercooled liquid region, glass transition temperature and melting process. The oxygen content of the alloys prepared in different vacuum conditions was measured by a LECO oxygen analyzer, which revealed that the oxygen content was less than 100 ppm for all BMGs prepared, even in air. The good glass forming ability and excellent oxidation resistance for the present Fe-based alloy are discussed.

  4. Texture in low-alloyed uranium alloys

    International Nuclear Information System (INIS)

    Sariel, J.

    1982-08-01

    The dependence of the preferred orientation of cast and heat-treated polycrystalline adjusted uranium and uranium -0.1 w/o chromium alloys on the production process was studied. The importance of obtaining material free of preferred orientation is explained, and a survey of the regular methods to determine preferred orientation is given. Dilatometry, tensile testing and x-ray diffraction were used to determine the extent of the directionality of these alloys. Data processing showed that these methods are insufficient in a case of a material without any plastic forming, because of unreproducibility of results. Two parameters are defined from the results of Schlz's method diffraction test. These parameters are shown theoretically and experimentally (by extreme-case samples) to give the deviation from isotropy. Application of these parameters to the examined samples showes that cast material has preferred orientation, though it is not systematic. This preferred orientation was reduced by adequate heat treatments

  5. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  6. Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe-based powders

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.; Roth, S.

    2007-01-01

    Ball milling of CoFeZrB ribbons and subsequent compaction of the resulting powders were used to prepare bulk amorphous samples. Further, two sets of powder samples were prepared by cryomilling of FeCuNbMoSiB alloy in amorphous and nanocrystalline state. Amorphous and nanocrystalline FeCuNbMoSiB powders were blended with CoFeZrB powder at different concentrations. Such powder mixtures were consolidated and several bulk nanocomposites have been synthesized. An addition of nanocrystalline or amorphous FeCuNbMoSiB powder to amorphous CoFeZrB powder caused a decrease of the magnetostriction of the resultant bulk samples, while the coercivity shows an opposite behavior. Our results show that the powder consolidation by hot pressing is an alternative method for the preparation of bulk metallic glasses, which are difficult to prepare by casting methods

  7. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    macrophage interactions with nanopatterned bulk metallic glasses (BMGs), a class of metallic alloys with amorphous microstructure and formability like polymers. We show that nanopatterned BMGs modulate macrophage polarization and transiently induce less fibrotic and more angiogenic responses. Overall, we demonstrate nanopatterning of BMG implants as a technique to polarize macrophages and modulate the FBR. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  9. Nuclear Matter Bulk Parameter Scales and Correlations

    International Nuclear Information System (INIS)

    Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.

    2015-01-01

    We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)

  10. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  11. ANFO bulk loading in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gajjar, A.

    1987-08-01

    With India's total coal production projected to increase from 152 to 237 million tons by 1990, net additional production from new mines must be more because of substantial depletion in existing mines. This article discusses the best possible application of explosive techniques in open-cast coal mines to economize production cost. The most energy-efficient and safest explosive is ANFO (ammonium nitrate, fuel oil); however, manual charging by INFO is not possible. Therefore, the solution is the application of bulk-loading systems of ANFO for giant mining operations. Cost of blasting per ton of coal production in India is in the range of Rs 25. Thus, the author suggests it will be the responsibility of mining engineers to see that the ANFO based bulk-loading system is implemented and the cost of production per ton reduced to Rs 19.50.

  12. Nonlinear AC susceptibility, surface and bulk shielding

    Science.gov (United States)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  13. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  14. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  15. Induction detection of concealed bulk banknotes

    International Nuclear Information System (INIS)

    Fuller, Christopher; Chen, Antao

    2011-01-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects

  16. Induction detection of concealed bulk banknotes

    Science.gov (United States)

    Fuller, Christopher; Chen, Antao

    2012-06-01

    The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.

  17. Bulk viscous cosmology with causal transport theory

    International Nuclear Information System (INIS)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried

    2011-01-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8

  18. Characteristics of slowly cooled Zr-Al-Cu-Ni bulk samples with different oxygen content

    International Nuclear Information System (INIS)

    Gebert, A.; Eckert, J.; Bauer, H.-D.; Schultz, L.

    1998-01-01

    Bulk samples of the glass-forming Zr 65 Al 7.5 Cu 17.5 Ni 10 and Zr 55 Al 10 Cu 30 Ni 5 alloys with 3 mm diameter were prepared by die casting into a copper mould. The oxygen content of the samples was varied between 0.26 at.% and 0.73 at.% by adjusting the oxygen partial pressure in the argon atmosphere upon casting. Characterization of the microstructure of as-cast samples and of specimens continuously heated to 873 K was carried out by X-ray diffraction (XRD), optical microscopy (OM) and transmission electron microscopy (TEM). Thermal stability was investigated by constant-rate differential scanning calorimetry (DSC). The phase formation and the thermal stability of the slowly cooled zirconium-based bulk samples are essentially influenced by the oxygen content of the material. Furthermore, the sensitivity to oxygen depends on the composition of the alloy. In bulk Zr 65 Al 7.5 Cu 17.5 Ni 10 samples only small oxygen traces induce nucleation and crystal growth during slow cooling whereas Zr 55 Al 10 Cu 30 Ni 5 samples are completely amorphous for all oxygen contents investigated. The processes of the oxygen-induced phase formation are discussed in detail also with respect to the results obtained for the heat treated samples. With increasing oxygen content the thermal stability deteriorates, as it is obvious from a diminution of the supercooled liquid region (ΔT x = T x - T g ) which is mainly due to a reduction of the crystallization temperature T x . Furthermore, the thermal behaviour of Zr 65 Al 7.5 Cu 17.5 Ni 10 and Zr 55 Al 10 Cu 30 Ni 5 reveals significant differences. (orig.)

  19. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  20. Depositing bulk or micro-scale electrodes

    Science.gov (United States)

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  1. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  2. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A bulk viscosity driven inflationary model

    International Nuclear Information System (INIS)

    Waga, I.; Falcao, R.C.; Chanda, R.

    1985-01-01

    Bulk viscosity associated with the production of heavy particles during the GUT phase transition can lead to exponential or 'generalized' inflation. The condition of inflation proposed is independent of the details of the phase transition and remains unaltered in presence of a cosmological constant. Such mechanism avoids the extreme supercooling and reheating needed in the usual inflationary models. The standard baryongenesis mechanism can be maintained. (Author) [pt

  4. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  5. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  6. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  7. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  8. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  9. Design of Thermo Mechanicaln Processing and Transformation Behaviour of Bulk Si-Mn Trip Steel

    Directory of Open Access Journals (Sweden)

    Zrnik, J.

    2006-01-01

    Full Text Available In the last decade, a lot of effort has been paid to optimising the thermomechanical processing of TRIP steels that stands for transformation induced plasticity. The precise characterization of the resulting multiphase microstructure of low alloyed TRIP steels is of great importance for the interpretation and optimisation of their mechanical properties. The results obtained in situ neutron diffraction laboratory experiment concerning the austenite to ferrite transformation in Si-Mn bulk TRIP steel specimens, displaying the transformation induced plasticity (TRIP, are presented. The advancement of ferrite formation during transformation in conditioned austenite is investigated at different transformation temperatures and has been monitored using neutron diffraction method. The relevant information on transformation proceeding is extracted from neutron diffraction spectra. The integrated intensities of austenite and ferrite neutron diffraction profiles developed during the transformation are then assumed as a measure of the phase volume fractions of both phases in dependence on transformation temperature and austenite conditioning. According to the yielding information on ferrite volume fractions from isothermal transformation kinetics data the thermo mechanical processing of bulk specimen was designed in order to support austenite stabilization through bainitic transformation. The volume fractions of retained austenite resulting at alternating transformation conditions were measured by neutron and X-ray diffraction respectively. The stability of retained austenite in bulk specimens during room temperature mechanical testing was characterized by in situ neutron diffraction experiments as well.

  10. Enhancement of magnetic coupling between permanent magnets and bulk superconductors through iron embedding

    International Nuclear Information System (INIS)

    Seki, H.; Kurabayashi, H.; Suzuki, A.; Ikeda, M.; Akiyama, S.; Murakami, M.

    2009-01-01

    Magnetic torque can be transferred without contact through the coupling of permanent magnets (PM) and bulk superconductors (BSC). For this purpose, permanent magnets should have multiple pole configuration like NSNS. The magnitude of the transferable torque depends on the field strength and the gap between PM and BSC. It was found that the torque decays quickly with the gap. In order to enhance the strength of transferable magnetic torque, we prepared bulk Y-Ba-Cu-O superconductors for which Fe bars are embedded. Holes about 1 mm in diameter were mechanically drilled into bulk Y-Ba-Cu-O, and Fe bars about 0.9 mm in diameter were inserted followed by impregnation of Bi-Pb-Sn alloys with low melting points. The composite of Y-Ba-Cu-O and Fe bars attract magnetic fields generated from permanent magnet before cooling, and thereby magnetic coupling will be improved. We have found that the magnetic torque force can be greatly enhanced through iron embedding.

  11. Preparation, thermal stability, and magnetic properties of Fe-Zr-Mo-W-B bulk metallic glass

    International Nuclear Information System (INIS)

    Liu, D.Y.; Sun, W.S.; Wang, A.M.; Zhang, H.F.; Hu, Z.Q.

    2004-01-01

    A bulk metallic glass (BMG) cylinder of Fe 60 Co 8 Zr 10 Mo 5 W 2 B 15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (T g ), crystallization temperature (T x ), supercooled liquid region (ΔT x ) between T g and T x , and reduced glass transition temperature T rg (T g /T m ) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases α-Fe, ZrFe 2 , Fe 3 B, MoB 2 , Mo 2 FeB 2 , and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Moessbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. α-Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses

  12. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  13. Laser cladding to select new glassy alloys

    International Nuclear Information System (INIS)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P.; Ramasco, B.

    2016-01-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh 1/2 . The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  14. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  15. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  16. Studies of bulk materials for thermoelectric cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J W; Nolas, G S; Volckmann, E H

    1997-07-01

    The authors discuss ongoing work in three areas of thermoelectric materials research: (1) broad band semiconductors featuring anion networks, (2) filled skutterudites, and (3) polycrystalline Bi-Sb alloys. Key results include: a preliminary evaluation of a previously untested ternary semiconductor, KSnSb; the first reported data in which Sn is used as a charge compensator in filled antimonide skutterudites; the finding that Sn doping does not effect polycrystalline Bi{sub 1{minus}x}Sb{sub x} as it does single crystal samples.

  17. Rapid solidification of Ni50Nb28Zr22 glass former alloy through suction-casting

    International Nuclear Information System (INIS)

    Miyamoto, M.I.; Santos, F.S.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S.

    2010-01-01

    To select new alloys with high glass forming ability (GFA) to present amorphous structure in millimeter scale, several semi-empirical models have been developed. In the present work, a new alloy, Ni 50 Nb 28 Zr 22 d, was designed based on the combination of topological instability lambda (A) criterion and electronegativity difference (Δe). The alloy was rapidly solidified in a bulk wedge sample by cooper mold suction casting in order to investigate its amorphization. The sample was characterized by the combination of scanning electron microscopy (MEV), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). For the minimum thickness of 200 μm analyzed, it was found that the alloy did not show a totally amorphous structure. Factor such as low cooling rate, existence of oxides on the surface of the elements and presence of oxygen in the atmosphere of equipment did not allowed the achievement of higher amorphous thickness. (author)

  18. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  19. Glass formation, magnetic properties and magnetocaloric effect of ternary Ho–Al–Co bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang, Huiyan; Li, Ran; Ji, Yunfei; Liu, Fanmao; Luo, Qiang; Zhang, Tao

    2012-01-01

    A ternary Ho–Al–Co system with high glass-forming ability (GFA) was developed and fully glassy rods with diameters up to 1 cm can be produced for the best glass former of Ho 55 Al 27.5 Co 17.5 alloy. The thermal stability and low-temperature magnetic properties of the Ho 55 Al 27.5 Co 17.5 bulk metallic glass (BMG) were studied. The magnetic transition temperature of this alloy is ∼14 K as determined by the thermomagnetic measurement. Two indicators, i.e. isothermal magnetic entropy change (ΔS M ) and the relative cooling power (RCP), were adopted to evaluate the magnetocaloric effect (MCE) of the alloy under a low magnetic field up to 2 T, which can be generated by permanent magnets. The values of |ΔS M | and RCP are 7.98 J kg −1 K −1 and 191.5 J kg −1 , respectively. The Ho 55 Al 27.5 Co 17.5 BMG with good MCE and high GFA provides an attractive candidate for magnetic refrigeration applications, like hydrogen liquefaction and storage. - Highlights: ► A ternary Ho–Al–Co BMG system with high glass-forming ability was developed. ► Fully glassy rods of Ho 55 Al 27.5 Co 17.5 alloy were produced up to 1 cm in diameter. ► The thermal stability and magnetic properties of the BMG were evaluated. ► The BMG exhibits good magnetocaloric effect under a low magnetic field up to 2 T.

  20. Fe-based bulk metallic glasses with a larger supercooled liquid region and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, K.Q. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110178 (China)], E-mail: kqqiu@yahoo.com.cn; Pang, J.; Ren, Y.L.; Zhang, H.B. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110178 (China); Ma, C.L.; Zhang, T. [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-12-20

    Bulk metallic glasses (BMGs) with compositions of Fe{sub 61.5-x}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}M{sub x} (x = 2, 3; M = Ni, Nb) were fabricated by copper mold casting using raw industrial materials. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical tester and scanning electron microscope (SEM) were employed to check the phase constituent, the thermal stability, the mechanical properties and the fracture surfaces of as-cast samples. The results indicate that the BMGs with diameters of 1.5-3 mm were fabricated for the alloys investigated. The largest supercooled liquid region (SLR) up to 76 K was found for Fe{sub 58.5}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}Ni{sub 3} BMG. The BMGs with Ni addition exhibit not only high fracture strengths reaching 3770 MPa for x = 2 and 3980 MPa for x = 3 alloys, respectively, but also apparently plastic strains up to 0.67% and 0.93%, respectively. The fracture surfaces of the Fe{sub 61.5-x}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}Ni{sub x} (x = 2, 3) alloys with plasticity show narrow ridges characteristic of venous patterns combining with tearing flow between the ridges. While the Nb containing alloys show not only a lower SLR below 60 K but also a lower stress below 2400 MPa, as well as almost no plastic strain before fracture.

  1. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  2. The Surface and Bulk Magnetic Properties of Fe-Al Alloys

    Czech Academy of Sciences Publication Activity Database

    Hendrych, A.; Žitovsky, O.; Jirásková, Yvonna; Matko, I.

    2014-01-01

    Roč. 126, č. 1 (2014), s. 58-59 ISSN 0587-4246. [CSMAG Czech and Slovak Conference on Magnetism /15./. Košice, 17.06.2013-21.06.2013] R&D Projects: GA MŠk 7AMB12SK009 Institutional support: RVO:68081723 Keywords : Fe-Al * MOKE * Surface properties * MFM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2014

  3. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  4. Alloys under irradiation

    International Nuclear Information System (INIS)

    Martin, G.; Bellon, P.; Soisson, F.

    1997-01-01

    During the last two decades, some effort has been devoted to establishing a phenomenology for alloys under irradiation. Theoretically, the effects of the defect supersaturation, sustained defect fluxes and ballistic mixing on solid solubility under irradiation can now be formulated in a unified manner, at least for the most simple cases: coherent phase transformations and nearest-neighbor ballistic jumps. Even under such restrictive conditions, several intriguing features documented experimentally can be rationalized, sometimes in a quantitative manner and simple qualitative rules for alloy stability as a function of irradiation conditions can be formulated. A quasi-thermodynamic formalism can be proposed for alloys under irradiation. However, this point of view has limits illustrated by recent computer simulations. (orig.)

  5. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  6. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    Wille, G.W.; Davis, J.W.

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500 0 C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150 0 C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  7. Transfer points of belt conveyors operating with unfavorable bulk

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, H [Technische Universitaet, Dresden (German Democratic Republic)

    1989-06-01

    Describes design of belt conveyor chutes that transfer bulk of surface mines from one conveyor to another. Conveyor belt velocity is a significant parameter. Unfavorable chute design may lead to bulk flow congestion, bulk velocity losses etc. The bulk flow process is analyzed, bulk flow velocities, belt inclinations and bulk feeding from 2 conveyors into one chute are taken into account. Conventional chutes have parabolic belt impact walls. An improved version with divided impact walls is proposed that maintains a relatively high bulk velocity, reduces friction at chute walls and decreases wear and dirt build-up. Design of the improved chute is explained. It is built to adapt to existing structures without major modifications. The angle between 2 belt conveyors can be up to 90 degrees, the best bulk transfer is noted at conveyor angles below 60 degrees. Various graphs and schemes are provided. 6 refs.

  8. Brane Lorentz symmetry from Lorentz breaking in the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Carvalho, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2007-05-15

    We propose the mechanism of spontaneous symmetry breaking of a bulk vector field as a way to generate the selection of bulk dimensions invisible to the standard model confined to the brane. By assigning a nonvanishing vacuum value to the vector field, a direction is singled out in the bulk vacuum, thus breaking the bulk Lorentz symmetry. We present the condition for induced Lorentz symmetry on the brane, as phenomenologically required.

  9. Silumins alloy crystallization

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available This paper presents the results of research, by ATD method, of hypo-, near- and hyperutectic silumins crystallization containing the following alloying additives: Mg, Ni, Cu, Cr, Mo, W, V. It has been shown that, depending on their concentration may crystallize pre-eutectic or eutectic multicomponent phases containing these alloy additives. It has been revealed that any subsequent crystallizable phase nucleate and grows near the liquid/former crystallized phase interface. In multiphases compound also falls the silicon, resulting in a reduction in its quantity and the fragmentation in the eutectic mixture. As a result, it gets a high hardness of silumins in terms of 110-220HB.

  10. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1992-01-01

    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  11. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of

  12. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  13. Characterization and bulk properties of oxides

    International Nuclear Information System (INIS)

    Sonder, E.; Connolly, T.F.

    1979-06-01

    The bulk properties of oxides are divided into two classes, intrinsic properties which depend solely on the identity of the material, and extrinsic ones, which differ for different samples of the same compound. Sources of tabulated numerical values of intrinsic properties are given and modern developments in information storage and retrieval are discussed. Extrinsic properties are shown to depend on defects and trace impurities in the samples. Techniques of trace impurity analysis are discussed and realistic limits of detection and accuracies are given for routine analyses

  14. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  15. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  16. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  17. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  18. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  19. Bulk monitoring and segregation of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Beddow, H.; Adsley, I.; Pearman, I.; Sweeney, A.; Davies, M., E-mail: helen.beddow@nuvia.co.uk [Nuvia Limited, Harwell Oxford, Didcot, Oxfordshire (United Kingdom)

    2014-07-01

    Several sites in the UK are contaminated by radioactive legacy wastes. These include; radium luminising sites and more recently the oil, and (potentially) fracking industries; sites contaminated from thorium gas mantle factories; old nuclear research sites; nuclear power sites, and the Sellafield reprocessing site. Nuvia has developed a suite of technologies to map the location of and to recover and process wastes during remedial operations. The main method for delineating contaminated areas in-situ is by use of the Groundhog system, whilst bulk monitoring methods employ the Gamma Excavation Monitor, the High Resolution Assay Monitor, and the Conveyor Active Particle System. (author)

  20. Bulk monitoring and segregation of radioactive wastes

    International Nuclear Information System (INIS)

    Beddow, H.; Adsley, I.; Pearman, I.; Sweeney, A.; Davies, M.

    2014-01-01

    Several sites in the UK are contaminated by radioactive legacy wastes. These include; radium luminising sites and more recently the oil, and (potentially) fracking industries; sites contaminated from thorium gas mantle factories; old nuclear research sites; nuclear power sites, and the Sellafield reprocessing site. Nuvia has developed a suite of technologies to map the location of and to recover and process wastes during remedial operations. The main method for delineating contaminated areas in-situ is by use of the Groundhog system, whilst bulk monitoring methods employ the Gamma Excavation Monitor, the High Resolution Assay Monitor, and the Conveyor Active Particle System. (author)

  1. Fundamental study of bulk power HVDC transmission

    International Nuclear Information System (INIS)

    1981-01-01

    Study on the HVDC power transmission have been conducted since 1956. Shinshinano-Frequency Changer had been operated at first on 1977, as our home product, and Hokkaido-Honshu DC transmission also realized at 1979. Research and Development of the bulk power HVDC have been promoted by the UHV transmission special committee in our Institute from 1980. This paper is a comprehensive report published in the parts of operating control, insulation of DC line and countermeasure of fault current, and interferences in order to contribute for planning, design and operating of the UHV DC transmission in future. (author)

  2. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  3. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  4. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  5. 7 CFR 58.313 - Print and bulk packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Print and bulk packaging rooms. 58.313 Section 58.313 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....313 Print and bulk packaging rooms. Rooms used for packaging print or bulk butter and related products...

  6. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  7. Enhancement of surface magnetism due to bulk bond dilution

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.; Albuquerque, E.L. de

    1985-01-01

    Within a renormalization group scheme, the phase diagram of a semi-infinite simple cubic Ising ferromagnet is discussed, with arbitrary surface and bulk coupling constants, and including possible dilution of the bulk bonds. It is obtained that dilution makes easier the appearance of surface magnetism in the absence of bulk magnetism. (Author) [pt

  8. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Riesgo, O.; Bianchi, G.L.; Duffo, G.S.

    1993-01-01

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  9. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  10. Fracture of Shape Memory Alloys

    OpenAIRE

    Miyazaki, Shuichi; Otsuka, Kazuhiro

    1981-01-01

    The initiation and the propagation of cracks during both quenching and deformation in polycrystalline Cu-Al-Ni alloys have been investigated under various conditions. The fracture surfaces of Ti-Ni and Cu-Al-Ni alloys were also observed by a scanning electron microscope. From these results, it was concluded that the brittleness of Cu-Al-Ni alloy and other β phase alloys are due to large elastic anisotropy and large grain sizes, while that the large ductility in Ti-Ni alloy being due to the sm...

  11. Use of containers to carry bulk and break bulk commodities and its impact on gulf region ports and international trade.

    Science.gov (United States)

    2014-08-01

    The University of New Orleans Transportation Institute was tasked by the Louisiana Transportation Research Center (LTRC) in mid-2012 to assess the use of containers to transport bulk and break bulk commodities and to determine what their impact would...

  12. EDF's approach to determine specifications for nuclear power plant bulk chemicals

    International Nuclear Information System (INIS)

    Basile, Alix; Dijoux, Michel; Le-Calvar, Marc; Gressier, Frederic; Mole, Didier

    2012-09-01

    Chemical impurities in the primary, secondary and auxiliary nuclear power plants circuits generate risks of corrosion of the fuel cladding, steel and nickel based alloys. The PMUC (Products and Materials Used in plants) organization established by EDF intends to limit this risk by specifying maximum levels of impurities in products and materials used for the operation and maintenance of Nuclear Power Plants (NPPs). Bulk chemicals specifications, applied on primary and secondary circuit chemicals and hydrogen and nitrogen gases, are particularly important to prevent chemical species to be involved in the corrosion of the NPPs materials. The application of EDF specifications should lead to reasonably exclude any risk of degradation of the first and second containment barriers and auxiliary circuits Important to Safety (IPS) by limiting the concentrations of chlorides, fluorides, sulfates... The risk of metal embrittlement by elements with low melting point (mercury, lead...) is also included. For the primary circuit, the specifications intend to exclude the risk of activation of impurities introduced by the bulk chemicals. For the first containment barrier, to reduce the risk of deposits like zeolites, PMUC products specifications set limit values for calcium, magnesium, aluminum and silica. EDF's approach for establishing specifications for bulk chemicals is taking also into account the capacity of industrial production, as well as costs, limitations of analytical control methods (detection limits) and environmental releases issues. This paper aims to explain EDF's approach relative to specifications of impurities in bulk chemicals. Also presented are the various parameters taken into account to determine the maximum pollution levels in the chemicals, the theoretical hypothesis to set the specifications and the calculation method used to verify that the specifications are suitable. (authors)

  13. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    Science.gov (United States)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal

  14. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    Science.gov (United States)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion

  15. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-02-01

    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  16. Elastic properties of superconducting bulk metallic glasses

    International Nuclear Information System (INIS)

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  17. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-09-01

    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  18. Bulk delivery of explosives offers positive advantages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    The bulk delivery of precisely-formulated explosives directly to the shothole is a safe, secure and cost effective way of bringing rock to the quarry floor. This article describes several of the latest generation of Anfo trucks. The typical Anfo truck carries ammonium nitrate and fuel oil in bulk, together with several other mix constituents, including an emulsifying agent. These are designed to form the basis of a range of emulsion-type explosives. In effect, these are water in oil emulsions where the water phase consists of droplets of a saturated solution of the oxidizing material suspended in oil. The formulations may be further tailored to the shothole requirements by the addition of oils or waxes, which can alter the viscosity of the explosive. The precise and programmable controls which determine the exact quantities of materials delivered to the mixer mean that the explosive mixtures can be tailored exactly to the requirements of the blasting operation, be it the amount of rock to be dislodged, the geological conditions, or the state of the shothole - either wet or dry. 4 systems are described in detail. 3 figs.

  19. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  20. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  1. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    Science.gov (United States)

    Koch, F.; Brinkmann, J.; Lindig, S.; Mishra, T. P.; Linsmeier, Ch

    2011-12-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  2. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    International Nuclear Information System (INIS)

    Koch, F; Brinkmann, J; Lindig, S; Mishra, T P; Linsmeier, Ch

    2011-01-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  3. Influence of Microstructure on Corrosion Property of Mg-Al-Zn Alloy

    International Nuclear Information System (INIS)

    Lee, Jeong Ja; Na, Seung Chan; Yang, Won Seong; Hwang, WoonSuk; Jang, Si Sung; Yoo, Hwang Ryong

    2006-01-01

    Influence of microstructure on the corrosion property of Mg-Al-Zn Alloy was investigated using potentiodynamic polarization experiments, galvanic coupling experiments, and scanning electron microscopy in sodium chloride solutions. Pitting was the mot common form of attack in chloride solution, and filiform corrosion was also occurred in AZ91D-T4 alloy. On the contrary, filiform attack in the bulk matrix was predominant corrosion form in AZ91D-T6 alloy, and the number and size of pit were decreased than those of AZ91D-T4 alloy. Galvanic coupling effect between Mg 17 Al 12 and matrix was existed, but the propagation of galvanic corrosion was localized only near the Mg 17 Al 12 phase in AZ91D-6T alloy. The corrosion resistance of Mg-Al matrix increased with decreasing Al content in the matrix. And, it could be regarded that Al content in the matrix is decreased by precipitation of Mg 17 Al 12 curing the aging treatment and it decreases the anodic reaction rate of the matrix and galvanic effect in AZ91D-T6 alloy. It could be considered that the composition and macrostructure of surface protective layer would be varied by precipitation of Mg 17 Al 12 and subsequent decreasing of Al content in the matrix. And it would contribute the corrosion resistance of AZ91D-T6 aging alloy

  4. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy

    Institute of Scientific and Technical Information of China (English)

    高英俊; 班冬梅; 韩永剑; 钟夏平; 刘慧

    2004-01-01

    The valence electron structures of Al-Mg alloy with minor Sc and Zr were calculated according to the empirical electron theory(EET) in solid. The results show that because of the strong interaction of Al atom with Zr and Sc atom in melting during solidification, the Al3 Sc and Al3 (Sc1-xZrx) particles which act as heterogeneous nuclear are firstly crystallized in alloy to make grains refine. In progress of solidification, the Al-Sc, Al-Zr-Sc segregation regions are formed in solid solution matrix of Al-Mg alloy owing to the strong interaction of Al atom with Zr, Scatoms in bulk of alloy, so in the following homogenization treatment, the finer dispersed Al3 Sc and Al3 (Sc1-x Zrx) second-particles which are coherence with the matrix are precipitated in the segregation region. These finer second particles with the strong Al-Zr, Al-Sc covalent bonds can strengthen the covalent bonds in matrix of the alloy, and also enhance the hardness and strength of Al-Mg alloy. Those finer second-particles precipitated in interface of sub-grains can also strengthen the covalence bonds there, and effectively hinder the interface of sub-grains from migrating and restrain the sub-grains from growing, and cause better thermal stability of Al-Mg alloy.

  5. Soft x-ray emission studies of several aluminum alloys

    International Nuclear Information System (INIS)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-01-01

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole

  6. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  7. Structure and energetics of bimetallic surface confined alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Roetter, Ralf T.; Engstfeld, Albert K.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany); Gross, Axel [Institute for Theoretical Chemistry, Ulm University (Germany)

    2009-07-01

    The atomic distribution in a number of A{sub x}B{sub 1-x}/B type surface alloys was determined by STM imaging with chemical contrast and statistically evaluated. Whereas in the systems Au{sub x}Pt{sub 1-x}/Pt(111), Ag{sub x}Pt{sub 1-x}/Pt(111), and Pd{sub x}Ru{sub 1-x}/Ru(0001) we find preferences for larger homoatomic aggregates, the atom distribution in Pt{sub x}Ru{sub 1-x}/Ru(0001) and Ag{sub x}Pd{sub 1-x}/Pd(111) is very close to a random one[1]. In Ag{sub x}Pd{sub 1-x}/Pd(111), our data show a small tendency towards clustering for x{sub Ag}<0.5, whereas at x{sub Ag}>0.5 this is reversed to a slight preference for heteroatomic neighborhoods. Based on these experimental results, we have derived effective cluster interaction energies for all surface alloys. These allow us to calculate phase diagrams for the surface alloys that we compare to predictions from theoretical work and to the behaviour of the corresponding bulk systems. We also discuss in how far the different atom distributions affect chemical and catalytic properties of the surface alloys.

  8. Soft x-ray emission studies of several aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-09-23

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole.

  9. Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, T.; Bian, X.F.; Jiang, J.

    2006-01-01

    Two metallic bulk glasses, Cu 60 Zr 30 Ti 10 and Cu 47 Ti 33 Zr 11 Ni 8 Si 1 , with a diameter of 3 mm were prepared by copper mold casting method. Dilatometric measurement was carried out on the two glassy alloys to obtain information about the average nearest-neighbour distance r 0 and the effective depth of pair potential V 0 . By assuming a Lennard-Jones potential, r 0 and V 0 were calculated to be 0.28 nm and 0.16 eV for Cu 60 Zr 30 Ti 10 and 0.27 nm and 0.13 eV for Cu 47 Ti 33 Zr 11 Ni 8 Si 1 , respectively. It was found that the glassy alloy Cu 60 Zr 30 Ti 10 was more stable than Cu 47 Ti 33 Zr 11 Ni 8 Si 1 against heating from both experiment and calculation

  10. Synthesis and Characterization of Two Component Alloy Nanoparticles

    Science.gov (United States)

    Tabatabaei, Salomeh

    Alloying is an old trick used to produce new materials by synergistically combining at least two components. New developments in nanoscience have enabled new degrees of freedom, such as size, solubility and concentration of the alloying element to be utilized in the design of the physical properties of alloy nanoparticles (ANPs). ANPs as multi-functional materials have applications in catalysis, biomedical technologies and electronics. Phase diagrams of ANPs are very little known and may not represent that of bulk picture, furthermore, ANPs with different crystallite orientation and compositions could remain far from equilibrium. Here, we studied the synthesis and stability of Au-Sn and Ag-Ni ANPs with chemical reduction method at room temperature. Due to the large difference in the redox potentials of Au and Sn, co-reduction is not a reproducible method. However, two step successive reductions was found to be more reliable to generate Au-Sn ANPs which consists of forming clusters in the first step (either without capping agent or with weakly coordinated surfactant molecules) and then undergoing a second reduction step in the presence of another metal salt. Our observation also showed that capping agents (Cetrimonium bromide or (CTAB)) and Polyacrylic acid (PAA)) play a key role in the alloying process and shorter length capping agent (PAA) may facilitate the diffusion of individual components and thus enabling better alloying. Different molar ratios of Sn and Au precursors were used to study the effect of alloying elements on the melting point and the crystalline structures and melting points were determined by various microscopy and spectroscopy techniques and differential scanning calorimetry (DSC). A significant depression (up to150°C) in the melting transition was observed for the Au-Sn ANPs compared to the bulk eutectic point (Tm 280°C) due to the size and shape effect. Au-Sn ANPs offer a unique set of advantages as lead-free solder material which can

  11. Metastable bcc Fe-Mn alloys produced by rf sputtering

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Kadono, Masaru; Nakamura, Yoji

    1981-01-01

    Fe sub(1-x)Mn sub(x) alloy films obtained by rf sputtering technique have been investigated by X-ray diffraction, magnetization and Moessbauer effect measurements. The single bcc phase extends up to about x = 0.2, while a bcc-fcc mixed phase appears for x = 0.2 - 0.26. The lattice constants of the bcc phase are about 0.5% larger than those of the bulk specimens. The magnetization decreases monotonically with increasing x in the bcc phase, while it decreases sharply in the bcc-fcc mixed phase. These results are consistent with the Moessbauer spectra of these alloy films. The volume fraction of bcc and fcc phases has been estimated from Moessbauer analyses as well as magnetization measurements. (author)

  12. 78 FR 72841 - List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug Substances That...

    Science.gov (United States)

    2013-12-04

    .... FDA-2013-N-1525] List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug... proposed rule to list bulk drug substances used in pharmacy compounding and preparing to develop a list of... Formulary monograph, if a monograph exists, and the United States Pharmacopoeia chapter on pharmacy...

  13. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  14. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  15. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  16. Effect of Zr Purity and Oxygen Content on the Structure and Mechanical Properties of Melt-Spun and Suction-Cast Cu46Zr42Al7Y5 Alloy

    Directory of Open Access Journals (Sweden)

    Kozieł T.

    2016-06-01

    Full Text Available The effect of oxygen content in zirconium on the structure and mechanical properties of the Cu46Zr42Al7Y5 alloy, in the form of melt-spun ribbons and suction-cast rods, was investigated. Two types of Zr, rod and crystal bar of different nominal purities and oxygen contents, were used to synthesize the alloy by arc melting. Rapidly solidified ribbons were produced by melt spinning and their amorphous structures were confirmed by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Bulk samples in the form of rods were cast using a special water-cooled suction casting unit attached to the arc melting system. XRD and DSC studies proved the amorphous structure of the bulk alloy synthesized from low-oxygen Zr and partial crystallization of the same alloy for high-oxygen Zr. In both bulk samples, uniformly distributed crystalline particles were identified as yttrium oxides. Higher mean compressive strength of amorphous alloy was observed. The hardness of amorphous phase was close to 500 HV1 in both bulk alloys, while the hardness of crystalline dendritic areas, observed in the alloy synthesized from high oxygen Zr, was lower by about 50 HV1.

  17. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    International Nuclear Information System (INIS)

    Pang, Shujie; Liu, Ying; Li, Haifei; Sun, Lulu; Li, Yan; Zhang, Tao

    2015-01-01

    Highlights: • Novel Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 10 5 N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications

  18. Phase stability and elastic properties of Cr-V alloys

    Science.gov (United States)

    Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.

    2013-02-01

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  19. Phase stability and elastic properties of Cr-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  20. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  1. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    Science.gov (United States)

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  2. Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, C., E-mail: carsten.blawert@gkss.d [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Fechner, D.; Hoeche, D.; Heitmann, V.; Dietzel, W.; Kainer, K.U. [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Zivanovic, P.; Scharf, C.; Ditze, A.; Groebner, J.; Schmid-Fetzer, R. [TU Clausthal, Institut fuer Metallurgie, Robert-Koch-Str. 42, 38678 Clausthal-Zellerfeld (Germany)

    2010-07-15

    The development of secondary magnesium alloys requires a completely different concept compared with standard alloys which obtain their corrosion resistance by reducing the levels of impurities below certain alloy and process depending limits. The present approach suitable for Mg-Al based cast and wrought alloys uses a new concept replacing the {beta}-phase by {tau}-phase, which is able to incorporate more impurities while being electro-chemically less detrimental to the matrix. The overall experimental effort correlating composition, microstructure and corrosion resistance was reduced by using thermodynamic calculations to optimise the alloy composition. The outcome is a new, more impurity tolerant alloy class with a composition between the standard AZ and ZC systems having sufficient ductility and corrosion properties comparable to the high purity standard alloys.

  3. Rheo-processing of semi-solid metal alloys: a new technology for manufacturing automotive and aerospace components

    CSIR Research Space (South Africa)

    Ivanchev, L

    2008-01-01

    Full Text Available The latest trend in the automotive industry to produce fuel-efficient vehicles has resulted in the increased use of aluminium and magnesium alloys. Liquid metal high pressure die-casting (HPDC) currently satisfies the bulk of the automotive industry...

  4. Selective Laser Melting of Ti-45Nb Alloy

    Directory of Open Access Journals (Sweden)

    Holger Schwab

    2015-04-01

    Full Text Available Ti-45Nb is one of the potential alloys that can be applied for biomedical applications as implants due to its low Young’s modulus. Ti-45Nb (wt.% gas atomized powders were used to produce bulk samples by selective laser melting with three different parameter sets (energy inputs. A β-phase microstructure consisting of elliptical grains with an enriched edge of titanium was observed by scanning electron microscopy and X-ray diffraction studies. The mechanical properties of these samples were evaluated using hardness and compression tests, which suggested that the strength of the samples increases with increasing energy input within the range considered.

  5. μ+ studies of dilute PdFe alloys

    International Nuclear Information System (INIS)

    Nagamine, K.; Nishida, N.; Yamazaki, T.; British Columbia Univ., Vancouver

    1976-08-01

    In order to investigate the ordering mechanism among giant moments around Fe impurities in Pd, μ + was used to probe the conduction electron polarization in PdFe alloys above and below the critical concentration of 0.1 at. % with reference to pure Pd. Below the ordering temperatures the broadening of the μ + field for 0.015 at. % Fe is substantially larger than that for 0.28 at. % Fe, when normalized to the bulk magnetization. The results can be explained in terms of an RKKY spin oscillation in the region outside the giant moment. (author)

  6. Effect of Ge addition on mechanical properties and fracture behavior of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Gholamipour, R.; Seyedein, S.H.

    2009-01-01

    Effect of the addition of a small amount of Ge on mechanical properties and fracture behavior of Cu 50 Zr 43 Al 7 (at.%) bulk metallic glass were studied. The Cu 50 Zr 43 Al 7 alloy has a surprising glass-forming ability (GFA), and the glassy rods up to 4 mm in diameter can be formed. Partial addition of Ge causes the crystalline phases precipitate in the glassy matrix of (Cu 50 Zr 43 Al 7 ) 100-x Ge x (x = 0, 1, 2) rods with a diameter of 4 mm. In uniaxial compression, Cu 50 Zr 43 Al 7 bulk metallic glass exhibit high strength of 1692 MPa and very limited plasticity of 0.05%. When Ge increases from 0 to 2 at.%, the strength decreases, but plastic strain increases about 2.5%. Fracture surface and shear bands of samples were investigated by scanning electron microscopy (SEM).

  7. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode

    International Nuclear Information System (INIS)

    Ongul, Fatih; Yuksel, Sureyya Aydın; Bozar, Sinem; Gunes, Serap; Cakmak, Gulbeden; Guney, Hasan Yuksel; Egbe, Daniel Ayuk Mbi

    2015-01-01

    In this paper, the photovoltaic characteristics of bulk heterojunction solar cells employing an eutectic gallium–indium (EGaIn) alloy as a top metal contact which was coated by a simple and inexpensive brush-painting was investigated. The overall solar cell fabrication procedure was vacuum-free. As references, regular organic bulk heterojunction solar cells employing thermally evaporated Aluminum as a top metal contact were also fabricated. Inserting the ZnO layer between the active layer and the cathode electrodes (Al and EGaIn) improved the photovoltaic performance of the herein investigated devices. The power conversion efficiencies with and without EGaIn top electrodes were rather comparable. Hence, we have shown that the EGaIn, which is liquid at room temperature, can be used as a cathode. It allows an easy and rapid device fabrication that can be implemented through a vacuum free process. (paper)

  8. Thermal characterization of semiconducting polymer bulk heterojunctions

    Science.gov (United States)

    Remy, Roddel A.

    Polymer semiconductors are intriguing due to their potential use in flexible electronics. Poly (3-hexylthiophene) (P3HT)--a very common polymer in this field--is semicrystalline and it is known that crystalline P3HT has a higher hole mobility than amorphous P3HT. Quantifying each fraction in the bulk and thin film states is therefore crucial to understanding its performance in transistor and other applications. In polymer solar cells, it acts as an electron donor and is typically mixed with the nanoparticle-like molecule, phenyl-C61-butyric acid methyl ester (PCBM)--an electron acceptor--in a thin film morphology termed a bulk heterojunction (BHJ). The structural hierarchy within the bulk heterojunction is complicated and its characterization, with a focus on P3HT morphology, is the topic of this dissertation. Calorimetry can play an important role in the elucidation of P3HT morphology with quantitative analysis of the crystalline and amorphous fractions present in the material. This was demonstrated by employing differential scanning calorimetry (DSC) to obtain the enthalpy of fusion of 100% crystalline P3HT (42.9 J/g) using oligomeric P3HT measurements. The more sensitive temperature modulated DSC (TMDSC) was then used to examine the glass transition of P3HT and the crystalline, mobile amorphous and rigid amorphous phases were quantified. The presence of these phases can play a large role in understanding the charge transfer process in polymer semiconductors. BHJ thin films of 50 wt.% PCBM were then analyzed and a polymer crystallinity of 30% was found after thermal annealing from initially non-crystalline polymer material. With assistance from previously acquired small angle neutron scattering data, a thorough analysis of the entire BHJ morphology was accomplished. A surprisingly large rigid amorphous polymer phase is present in the BHJ which could be located at the P3HT/PCBM interface, affecting charge transfer. Finally, interlayer diffusion of PCBM was

  9. Radiation effects in bulk and nanostructured silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrom, E.

    2012-07-01

    Understanding radiation effects in silicon (Si) is of great technological importance. The material, being the basis of modern semiconductor electronics and photonics, is subjected to radiation already at the processing stage, and in many applications throughout the lifetime of the manufactured component. Despite decades of research, many fundamental questions on the subject are still not satisfactorily answered, and new ones arise constantly as device fabrication shifts towards the nanoscale. In this study, methods of computational physics are harnessed to tackle basic questions on the radiation response of bulk and nanostructured Si systems, as well as to explain atomic-scale phenomena underlying existing experimental results. Empirical potentials and quantum mechanical models are coupled with molecular dynamics simulations to model the response of Si to irradiation and to characterize the created crystal damage. The threshold displacement energy, i.e., the smallest recoil energy required to create a lattice defect, is determined in Si bulk and nanowires, in the latter system also as a function of mechanical strain. It is found that commonly used values for this quantity are drastically underestimated. Strain on the nanowire causes the threshold energy to drop, with an effect on defect production that is significantly higher than in an another nanostructure with similar dimensions, the carbon nanotube. Simulating ion irradiation of Si nanowires reveals that the large surface area to volume ratio of the nanostructure causes up to a three-fold enhancement in defect production as compared to bulk Si. Amorphous defect clusters created by energetic neutron bombardment are predicted, on the basis of their electronic structure and abundance, to cause a deleterious phenomenon called type inversion in Si strip detectors in high-energy physics experiments. The thinning of Si lamellae using a focused ion beam is studied in conjunction with experiment to unravel the cause for

  10. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  11. Bubble formation in Zr alloys under heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, L. Jr.; Motta, A.T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Nuclear Engineering; Birtcher, R.C. [Argonne National Lab., IL (United States). Materials Science Div.

    1995-12-01

    Kr ions were used in the HVEM/Tandem facility at ANL to irradiate several Zr alloys, including Zircaloy-2 and -4, at 300-800 C to doses up to 2{times}10{sup 16}ion.cm{sup -2}. Both in-situ irradiation of thin foils as well as irradiation of bulk samples with an ion implanter were used in this study. For the thin foil irradiations, a distribution of small bubbles in the range of 30-100 {angstrom} was found at all temperatures with the exception of the Cr-rich Valloy where 130 {angstrom} bubbles were found. Irradiation of bulk samples at 700-800 C produced large faceted bubbles up to 300 {angstrom} after irradiation to 2{times}10{sup 16}ion.cm{sup -2}. Results are examined in context of existing models for bubble formation and growth in other metals.

  12. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  13. Low Thermal Conductivity of Bulk Amorphous Si1- x Ge x Containing Nano-Sized Crystalline Particles Synthesized by Ball-Milling Process

    Science.gov (United States)

    Muthusamy, Omprakash; Nishino, Shunsuke; Ghodke, Swapnil; Inukai, Manabu; Sobota, Robert; Adachi, Masahiro; Kiyama, Makato; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro; Santhanakrishnan, Harish; Ikeda, Hiroya; Hayakawa, Yasuhiro

    2018-06-01

    Amorphous Si0.65Ge0.35 powder containing a small amount of nano-sized crystalline particles was synthesized by means of the mechanical alloying process. Hot pressing for 24 h under the pressure of 400 MPa at 823 K, which is below the crystallization temperature, allowed us to obtain bulk amorphous Si-Ge alloy containing a small amount of nanocrystals. The thermal conductivity of the prepared bulk amorphous Si-Ge alloy was extremely low, showing a magnitude of less than 1.35 Wm-1 K-1 over the entire temperature range from 300 K to 700 K. The sound velocity of longitudinal and transverse waves for the bulk amorphous Si0.65Ge0.35 were measured, and the resulting values were 5841 m/s and 2840 m/s, respectively. The estimated mean free path of phonons was kept at the very small value of ˜ 4.2 nm, which was mainly due to the strong scattering limit of phonons in association with the amorphous structure.

  14. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  15. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  16. Thermogravimetric study of oxidation of a PdCr alloy used for high-temperature sensors

    Science.gov (United States)

    Boyd, Darwin L.; Zeller, Mary V.

    1994-01-01

    In this study, the oxidation of Pd-13 weight percent Cr, a candidate alloy for high-temperature strain gages, was investigated by thermogravimetry. Although the bulk alloy exhibits linear electrical resistivity versus temperature and stable resistivity at elevated temperatures, problems attributed to oxidation occur when this material is fabricated into strain gages. In this work, isothermal thermogravimetry (TG) was used to study the oxidation kinetics. Results indicate that the oxidation of Pd-13 weight percent Cr was approximately parabolic in time at 600 C but exhibited greater passivation from 700 to 900 C. At 1100 C, the oxidation rate again increased.

  17. Computational analysis of the atomic size effect in bulk metallic glasses and their liquid precursors

    International Nuclear Information System (INIS)

    Kokotin, V.; Hermann, H.

    2008-01-01

    The atomic size effect and its consequences for the ability of multicomponent liquid alloys to form bulk metallic glasses are analyzed in terms of the generalized Bernal's model for liquids, following the hypothesis that maximum density in the liquid state improves the glass-forming ability. The maximum density that can be achieved in the liquid state is studied in the 2(N-1) dimensional parameter space of N-component systems. Computer simulations reveal that the size ratio of largest to smallest atoms are most relevant for achieving the maximum packing for N = 3-5, whereas the number of components plays a minor role. At small size ratio, the maximum packing density can be achieved by different atomic size distributions, whereas for medium size ratios the maximum density is always correlated to a concave size distribution. The relationship of the results to Miracle's efficient cluster packing model is also discussed

  18. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Bletry, M.; Guyot, P.; Blandin, J.J.; Soubeyroux, J.L.

    2006-01-01

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition region. Compression tests at different temperatures and strain rates have been conducted. The mechanical behavior is analyzed in the framework of the free volume model, taking into account the dependence of the flow defect concentration on deformation. The activation volume is evaluated and allows one to gather the viscosity data (for the different strain rates and temperatures) on a unique master curve. It is also shown that, due to the relation between flow defect concentration and free volume, it is not possible to deduce the equilibrium flow defect concentration directly from mechanical measurements. However, if this parameter is arbitrarily chosen, mechanical measurements give access to the other parameters of the model, these parameters for the alloy under investigation being of the same order of magnitude as those for other metallic glasses

  19. Grindability of dental magnetic alloys.

    Science.gov (United States)

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  20. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  1. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al{sub x}CoCrFeNi high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jithin, E-mail: jithin@deakin.edu.au [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia); Jarvis, Tom; Wu, Xinhua [Monash Centre for Additive Manufacturing, Monash University, Clayton 3168 (Australia); Stanford, Nicole; Hodgson, Peter; Fabijanic, Daniel Mark [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia)

    2015-05-01

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the Al{sub x}CoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85 M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA's.

  2. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  3. Bulk nanoscale materials in steel products

    International Nuclear Information System (INIS)

    Chehab, B; Wang, X; Masse, J-P; Zurob, H; Embury, D; Bouaziz, O

    2010-01-01

    Although a number of nanoscale metallic materials exhibit interesting mechanical properties the fabrication paths are often complex and difficult to apply to bulk structural materials. However a number of steels which exhibit combinations of plasticity and phase transitions can be deformed to produce ultra high strength levels in the range 1 to 3 GPa. The resultant high stored energy and complex microstructures allow new nanoscale structures to be produced by combinations of recovery and recrystallisation. The resultant structures exhibit totally new combinations of strength and ductility to be achieved. In specific cases this also enables both the nature of the grain boundary structure and the spatial variation in structure to be controlled. In this presentation both the detailed microstructural features and their relation to the strength, work-hardening capacity and ductility will be discussed for a number of martensitic and austenitic steels.

  4. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  5. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio

    2018-01-01

    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  6. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mechanical reliability of bulk high Tc superconductors

    International Nuclear Information System (INIS)

    Freiman, S.W.

    1990-01-01

    Most prospective applications for high T c superconductors in bulk form, e.g. magnets, motors, will require appreciable mechanical strength. Work at NIST [National Institute of Standards and Technology] has begun to address issues related to mechanical reliability. For example, recent studies on Ba-Y-Cu-O have shown that the intrinsic crack growth resistance, K IC , of crystals of this material is even smaller than was first reported, less than that of window glass, and is sensitive to moisture. Processing conditions, particularly sintering and annealing atmosphere, have been shown to have a major influence on microstructure and internal stresses in the material. Large internal stresses result from the tetragonal to orthorhombic phase transformation as well as the thermal expansion anisotropy in the grains of the ceramic. Because stress relief is absent, microcracks form which have a profound influence on strength

  8. On bulk viscosity and moduli decay

    International Nuclear Information System (INIS)

    Laine, Mikko

    2010-01-01

    This pedagogically intended lecture, one of four under the header 'Basics of thermal QCD', reviews an interesting relationship, originally pointed out by Boedeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form. (author)

  9. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system......In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  10. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.

    2005-01-01

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru

  11. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    Science.gov (United States)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  12. Hydrogen and deuterium permeation in copper alloys, copper--gold brazing alloys, gold, and the in situ growth of stable oxide permeation barriers

    International Nuclear Information System (INIS)

    Begeal, D.R.

    1978-01-01

    The deuterium permeation through several copper alloys has been measured over a temperature range of 550 to 830 K using the membrane technique. In some cases, the hydrogen permeability was also measured. The results were divided into three categories: common alloys, gold alloys, and stable oxide forming alloys. Common alloys which showed typical bulk metallic diffusion with litle change in the permeation activation energy as compared to copper (77 kJ/mol for D 2 ) were: (additions are in weight percent) 5% Sn, 2.3% U, 0.15% Zr, 4% Sn+4% Pb+4% Zn, 3% Si, and 7% Al+2% Fe. Compared to copper, the D 2 permeability at 573 K was reduced by factors of 2.0, 2.7, 4.5, 5.3, 5.9, and 7.0, respectively. A series of gold--copper alloys including pure gold, 80% Au, 50% Au, 49% Au, and 35% Au also showed typical bulk metallic diffusion with a trend of decreasing permeability (increasing activation energies for permeation) with increasing gold content. There were also pronounced inflections or shifts in the permeability at approx.370 0 C, or about the order--disorder transition for Cu 3 Au and CuAu, for the 80% and 50% alloys. Two alloys did not exhibit bulk metallic permeation behavior and the permeabiltiy was in fact controlled by surface oxide layers. It was found that a layer of beryllium oxide could be formed on Cu+2% Be and a layer of aluminum oxide could be formed on Cu+7% Al+2% Si. As compared to 0.25 mm-thick copper, the deuterium permeability at 500 0 C was reduced by a factor of approx.250 for Cu--Be and approx.1000 for Cu--Al--Si. The activation energies for deuterium permeation were 98 kJ/mol and 132 kJ/mol, respectively. The mechanism for the oxide growth is the high-temperature hydrogen reduction of nearby less stable oxides, simultaneous with oxidation of the active metal, Be or Al, by trace amounts of water in the hydrogen. Ion microprobe mass analysis identified the oxide layers as containing beryllium or aluminum but not containing copper

  13. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  14. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  15. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, P.; Ordás, N.; Iturriza, I. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Walter, M.; Gaganidze, E. [Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Lindig, S.; Koch, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain)

    2013-11-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO{sub 3}. Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr){sub 5}Si{sub 3}; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material.

  16. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  17. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  18. Alloying effects on structural and thermal behavior of Ti1-xZrxC: A first principles study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti 1-x Zr x C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti 1-x Zr x C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  19. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  20. Search for fully compensated ferrimagnet in Co substituted Mn2VGa alloy

    International Nuclear Information System (INIS)

    Deka, Bhargab; Singh, R.K.; Srinivasan, A.

    2015-01-01

    Crystallographic and magnetic properties of bulk (Mn 1−x Co x ) 2 VGa alloys with 0≤x≤0.50 are reported in this work. All the alloys exhibit stable L2 1 structure. Unit cell volume of this series of alloys decreased from 207.5 Å 3 to 195.1 Å 3 as x was increased from 0 to 0.50. All the alloys shows ferrimagnetic behavior with Curie temperature decreasing from 763 K to 367 K with increase in x. Saturation magnetization (M s ) measured for the alloys with x=0, 0.25 and 0.50 are 1.84 μ B /f.u., 0.85 μ B /f.u. and 0.30 μ B /f.u., respectively, as compared to the values of 2.00 μ B /f.u., 1.00 μ B /f.u. and 0 μ B /f.u., predicted by the Slater–Pauling (S–P) rule. While explaining the deviations in the M s from the values predicted by the S–P rule, a fully compensated ferrimagnet is expected in an alloy with total number of valance electrons of 24.1. - Highlights: • (Mn 1−x Co x ) 2 VGa alloys with highly ordered L2 1 structure has been obtained • With Co substitution, magnetization of (Mn 1-x Co x ) 2 VGa alloys reduces to 0.3= B /f.u. • Fully compensated ferrimagnet is expected in the alloy with 24.1 valance electrons