Multiphase composites with extremal bulk modulus
DEFF Research Database (Denmark)
Gibiansky, L. V.; Sigmund, Ole
2000-01-01
This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...
The temperature dependence of the isothermal bulk modulus at 1 bar pressure
Garai, J.; Laugier, A
2006-01-01
It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk ...
Thermodynamic regularities in compressed liquids: II. The reduced bulk modulus
International Nuclear Information System (INIS)
In a previous work, we analysed some regularities found in the behaviour of the thermal expansion coefficient, αp, in compressed liquids. We confirmed that a given liquid presents a characteristic pressure range in which the condition (∂αp/∂T)p=0 is fulfilled within a narrow range of reduced densities. We also found that the density at which the condition (∂αp/∂T)p=0 is satisfied, ρα, decreases with temperature, a key feature not described before. Earlier studies by other authors suggested that similar regularities are expected for the reduced bulk modulus, B. We present here a detailed analysis of the temperature and density dependence of B from existing experimental results at high pressures. Several liquids have been analysed: argon, krypton, xenon, ethylene, tetrafluoromethane, trifluoromethane, carbon dioxide, carbon disulfide, n-butane, n-hexane, toluene, ethanol, 1-hexanol, m-cresol, and quinoline. We locate that the density ρB that fulfils the condition (∂B/∂T)ρ=0 occurs at a particular region of the phase diagram, between 3.4 and 2.4 times the critical density of each liquid. Interestingly, the previously found density ρα is close to ρB, in a similar region of the reduced phase diagram. However, we note that ρB typically decreases to a lesser extent with temperature than ρα. In addition, we have found that ρB(T) behaves in a parallel fashion for the different liquids, showing larger values of ρB as the complexity of the molecules increases. These findings provide a strong basis for developing general equation of state models to describe the behaviour of liquids in the high-pressure regime
Effect of bulk modulus on performance of a hydrostatic transmission control system
Indian Academy of Sciences (India)
Ali Volkan Akkaya
2006-10-01
In this paper, we examine the performance of PID (proportional integral derivative) and fuzzy controllers on the angular velocity of a hydrostatic transmission system by means of Matlab-Simulink. A very novel aspect is that it includes the analysis of the effect of bulk modulus on system control. Simulation results demonstrates that bulk modulus should be considered as a variable parameter to obtain a more realistic model. Additionally, a PID controller is insufﬁcient in presence of variable bulk modulus, whereas a fuzzy controller provides robust angular velocity control.
Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique
Barker, B. J.; Strand, L. D.
1972-01-01
A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.
The bulk modulus of cubic spinel selenides: an experimental and theoretical study
DEFF Research Database (Denmark)
Waskowska, A.; Gerward, Leif; Olsen, J.S.;
2009-01-01
It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation,...
Why is the bulk modulus of jammed solids and granular packings much larger than the shear modulus?
Zaccone, Alessio; Weaire, Denis
2013-03-01
In granular packings and metallic glasses, the rigidity to compression is much more pronounced than with respect to shear, resulting in the bulk modulus being much larger than the shear modulus. This state of affairs becomes dramatic in marginal jammed solids which are solid-like to compression but not to shear (Ellenbroek, Zeravcic, van Saarloos, van Hecke, EPL 87, 34004 (2009)). For metallic glasses, it was argued by Weaire et al. some time ago (Acta Metall. 19, 779 (1971)) that this effect might be due to the nonaffinity of the particle displacements. These arise because the force acting on a particle upon strain as a result of the strain-induced motion of its neighbors is not balanced in the absence of local order. Hence the particles undergo nonaffine displacements to relax these forces to the expense of the elastic storage energy, leading to lower values of the elastic moduli. Using the nonaffine theory of Zaccone and Scossa-Romano (PRB, 83, 184205 (2011)) we found a conclusive solution to this long standing problem. We show that in packings and related materials the excluded volume between neighbors induces geometric correlations which significantly reduce the nonaffinity under compression but leave the nonaffinity in shear substantially unaltered.
Bulk modulus and thermal properties of RVO{sub 3} (R = La, Ce, Pr, Nd)
Energy Technology Data Exchange (ETDEWEB)
Gaur, N.K. [Department of Physics, Barkatullah University, Bhopal 462026 (India); Parveen, Atahar, E-mail: ataharparveen@gmail.com [Department of Physics, Barkatullah University, Bhopal 462026 (India)
2012-06-25
Highlights: Black-Right-Pointing-Pointer The stability of orthovanadates (La, Ce, Pr, Nd) VO{sub 3} increases down the series. Black-Right-Pointing-Pointer Specific heat is calculated for the first time following the structural phase transitions. Black-Right-Pointing-Pointer Being less parametric in nature MRIM has successfully predicted the cohesive properties. - Abstract: We have investigated the bulk modulus and thermal properties of orthovanadates RVO{sub 3} (R = La, Ce, Pr, Nd) probably for the first time in both monoclinic and orthorhombic phase by incorporating the effect of lattice distortions using the Modified Rigid ion model (MRIM). The calculated bulk modulus, specific heat and other thermal properties reproduce well with the available experimental data, implying that MRIM represents properly the nature of the perovskite type vanadates. The specific heat results can further be improved by including the spin and orbital ordering contributions to the specific heat.
Temperature Dependence of Interatomic Separation and Bulk Modulus for Alkali Halides
Liu, Quan
2016-07-01
The values of interatomic separation r with the change of temperature T for seven alkali halides have been investigated with the help of an isobaric equation of state. The calculated results are used to predict the values of bulk modulus at different temperatures. The results are compared with the available experimental data and other theoretical results and are further discussed in view of recent research in the field of high temperature physics.
Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.
1985-01-01
The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.
International Nuclear Information System (INIS)
We have calculated the theoretical lattice parameters, Bulk modulus, volume, energy, lattice parameters and magnetic moments for RB6 (R=La, Ce, Pr and Sm) of CaB6 type crystal structure with space group Pm3m using full potential linearized augmented plane wave (FP-LAPW) method. The bulk modulus was found to be 9.56 % higher for LaB6 and 2.4% lower for CeB6 compared to the experimental results Gupta et al. [4] and Ogita et al [5], Magnetic moments for LaB6, CeB6 were found in qualitative agreement with the earlier reported results. The results based on generalized gradient approximation (GGA) were found and compared with local spin density approximation (LSDA) results for CeB6 and SmB6 as well.
Institute of Scientific and Technical Information of China (English)
Song Ting; Sun Xiao-Wei; Liu Zi-Jiang; Li Ji1an-Feng; Tian Jun-Hong
2012-01-01
The isothermal bulk modulus and its first pressure derivative of NaCl are investigated using the classical molecular dynamics method and the quasi-harmonic Debye model.To ensure faithful molecular dynamics simulations,two types of potentials,the shell-model (SM) potential and the two-body rigid-ion Born-Mayer-Huggins-Fumi-Tosi (BMHFT)potential,are fully tested.Compared with the SM potential based simulation,the molecular dynamics simulation with the BMHFT potential is very successful in reproducing accurately the measured bulk modulus of NaC1. Particular attention is paid to the prediction of the isothermal bulk modulus and its first pressure derivative using the reliable potential and to the comparison of the SM and the BMHFT potentials based molecular dynamics simulations with the quasi-harmonic Debye model.The properties of NaCl in the pressure range of 0-30 GPa at temperatures up to the melting temperature of 1050 K are investigated.
Bulk Modulus of Spherical Palladium Nanoparticles by Chen-Mobius Lattice Inversion Method
Abdul-Hafidh, Esam
2015-03-01
Palladium is a precious and rare element that belongs to the Platinum group metals (PGMS) with the lowest density and melting point. Numerous uses of Pd in dentistry, medicine and industrial applications attracted considerable investment. Preparation and characterization of palladium nanoparticles have been conducted by many researchers, but very little effort has taken place on the study of Pd physical properties, such as, mechanical, optical, and electrical. In this study, Chen-Mobius lattice inversion method is used to calculate the cohesive energy and modulus of palladium. The method was employed to calculate the cohesive energy by summing over all pairs of atoms within palladium spherical nanoparticles. The modulus is derived from the cohesive energy curve as a function of particles' sizes. The cohesive energy has been calculated using the potential energy function proposed by (Rose et al., 1981). The results are found to be comparable with previous predictions of metallic nanoparticles. This work is supported by the Royal commission at Yanbu- Saudi Arabia.
Oh, Jae Eun
2012-02-01
Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.
Total energy, equation of state and bulk modulus of AlP, AlAs and AlSb semiconductors
Indian Academy of Sciences (India)
A R Jivani; H J Trivedi; P J Gajjar; A R Jani
2005-01-01
Recently proposed model potential which combines both linear and quadratic types of interactions is employed for the investigation of some properties like the total energy, equation of state and bulk modulus of AlP, AlAs and AlSb semiconductor compounds using higher-order perturbation theory. The model potential parameter is determined using zero pressure condition. The ratio of the covalent bonding term E cov to the second-order term 2 is 6.77% to 11.85% which shows that contribution from higher order terms are important for zinc-blende-type crystals. The calculated numerical results of the total energy, energy band gap at Jones-zone face and bulk modulus of these compounds are in good agreement with the experimental data and found much better than other such theoretical findings. We have also studied pressure–volume relations of these compounds. The present study is carried out using six different screening functions along with latest screening function proposed by Sarkar et al. It is found from the present study that effect of exchange and correlation is clearly distinguishable.
Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals
DEFF Research Database (Denmark)
Jiang, Jianzhong; Olsen, J. Staun; Gerward, Leif;
1998-01-01
GPa for the bulk material to 305 GPa for 9 nm size crystals. At the same time the transition pressure decreases from 35 to 27 GPa. The reduced transition pressure is explained in terms of nucleation and growth, the larger volume change upon transition in the nanocrystalline material being the main...
Schlosser, Herbert
1992-01-01
In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.
Institute of Scientific and Technical Information of China (English)
T. Barakat
2011-01-01
Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole （DDD） and dipole-dipole-quadrupole （DDQ） terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
Institute of Scientific and Technical Information of China (English)
Li Cheng-Bin; Li Ming-Kai; Yin Dong; Liu Fu-Qing; Fan Xiang-Jun
2005-01-01
A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals,transition metal carbides and nitrides is presented. The calculations were performed by plane-wave pseudopotential method in the framework of the density functional theory with local density approximation. The density of states and the valence charge densities of these solids are plotted. The results show that B0 does not vary monotonically when the number of the valence d electrons increases. B0 reaches a maximum and then decreases for each of the four sorts of solids. It is related to the occupation of the bonding and anti-bonding states in the solid. The value of the valence charge density at the midpoint between the two nearest metal atoms tends to be proportional to B0.
A simple model for calculating the bulk modulus of the mixed ionic crystal: NH4Cl1−xBr
Indian Academy of Sciences (India)
Vassiliki Katsika-Tsigourakou
2011-10-01
The ammonium halides are an interesting systems because of their polymorphism and the possible internal rotation of the ammonium ion. The static properties of the mixed ionic crystal NH4Cl1−Br have been recently investigated, using the three-body potential model (TDPM) by applying Vegard’s law. Here, by using a simple theoretical model, we estimate the bulk modulus of the alloys NH4Cl1−Br, in terms of the bulk modulus of the end members alone. The calculated values are comparable to those deduced from the three-body potential model (TDPM) by applying Vegard’s law.
Energy Technology Data Exchange (ETDEWEB)
Kushwah, S.S. [Department of Physics, Rishi Galav College, Morena, 476001 MP (India); Shrivastava, H.C. [Department of Physics, S.M.S. Government Model Science P.G. College, Gwalior, 474001 MP (India)]. E-mail: hcs2050@yahoo.com; Singh, K.S. [Department of Physics, R.B.S. College, Agra, UP (India)
2007-01-15
We have generalized the pressure-volume (P-V) relationships using simple polynomial and logarithmic expansions so as to make them consistent with the infinite pressure extrapolation according to the model of Stacey. The formulations are used to evaluate P-V relationships and pressure derivatives of bulk modulus upto third order (K', K'' and K''') for the earth core material taking input parameters based on the seismological data. The results based on the equations of state (EOS) generalized in the present study are found to yield good agreement with the Stacey EOS. The generalized logarithmic EOS due to Poirier and Tarantola deviates substantially from the seismic values for P, K and K'. The generalized Rydberg EOS gives almost identical results with the Birch-Murnaghan third-order EOS. Both of them yield deviations from the seismic data, which are in opposite direction as compared to those found from the generalized Poirier-Tarantola logarithmic EOS.
Thermal expansivity, bulk modulus, and melting curve of H2O-ice VII to 20 GPa
Fei, Yingwei; Mao, Ho-Kwang; Hemley, Russell J.
1993-01-01
Equation of state properties of ice VII and fluid H2O at high pressures and temperatures have been studied experimentally from 6 to 20 GPa and 300-700 K. The techniques involve direct measurements of the unit-cell volume of the solid using synchrotron X-ray diffraction with an externally heated diamond-anvil cell. The pressure dependencies of the volume and bulk modulus of ice VII at room temperature are in good agreement with previous synchrotron X-ray studies. The thermal expansivity was determined as a function of pressure and the results fit to a newly proposed phenomenological relation and to a Mie-Gruneisen equation of state formalism. The onset of melting of ice VII was determined directly by X-ray diffraction at a series of pressures and found to be in accord with previous volumetric determinations. Thermodynamic calculations based on the new data are performed to evaluate the range of validity of previously proposed equations of state for fluid water derived from static and shock-wave compression experiments and from simulations.
Hargis, Craig W.
2013-12-12
The predominant phase of calcium sulfoaluminate cement, Ca 4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al 6O12)SO4 is presented. Rietveld refinements showed the orthorhombic crystal structure to best match the observed peak intensities and positions for pure Ca4(Al6O 12)SO4. The compressibility of Ca4(Al 6O12)SO4 was studied using cubic, orthorhombic, and tetragonal crystal structures due to the lack of consensus on the actual space group, and all three models provided similar results of 69(6) GPa. With its divalent cage ions, the bulk modulus of Ca4(Al6O 12)SO4 is higher than other sodalites with monovalent cage ions, such as Na8(AlSiO4)6Cl2 or Na8(AlSiO4)6(OH)2·H 2O. Likewise, comparing this study to previous ones shows the lattice compressibility of aluminate sodalites decreases with increasing size of the caged ions. Ca4(Al6O12)SO4 is more compressible than other cement clinker phases such as tricalcium aluminate and less compressible than hydrated cement phases such as ettringite and hemicarboaluminate. © 2013 The American Ceramic Society.
Oh, Jae Eun
2011-11-01
Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of Ko = 46 ± 5 GPa (assuming Ko′ = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be Ko = 46.9 ± 0.9 GPa (Ko′ = 4.0 ± 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. © 2011 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
AVINASH DAGA
2012-03-01
Full Text Available Bulk modulus & charge density of cubic SrMO3 perovskites (M = Ti, Zr, Mo, Rh & Ru have been investigated systematically using the first principle density functional calculations. Local density approximation (LDAmethod has been used to compute the two quantities for five perovskites. It is found that the calculated bulk modulus for all the transition metal oxides are in good agreement with the available experimental data and with other theoretical results previously reported in the literature. ABINIT computer code is used to carry out all the calculations. Charge density plots for all the five cubic SrMO3 perovskites have been drawn using MATLAB. The maximum and minimum values of charge density along with the corresponding reduced coordinates are reported for all the perovskites.
International Nuclear Information System (INIS)
Study of atomic motions in the binary liquid alloys have been studied in terms of dynamical variables like velocity auto correlation, power spectrum and mean square displacement. Elastic constants and isothermal bulk modulus have been calculated to see the effeectiveness of ab-initio pseudopotentials which has been used in this paper. This appraoch is free from the fitting parameters and results obtained using this appraoch have been found very close to the average values
Energy Technology Data Exchange (ETDEWEB)
Thakur, Anil, E-mail: anil-t2001@yahoo.com; Kashyap, Rajinder [Department of Physics, Govt. P. G. College Solan-173212, Himachal Pradesh (India); Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University Shimla-171005, Himachal Pradesh (India)
2014-04-24
Study of atomic motions in the binary liquid alloys have been studied in terms of dynamical variables like velocity auto correlation, power spectrum and mean square displacement. Elastic constants and isothermal bulk modulus have been calculated to see the effeectiveness of ab-initio pseudopotentials which has been used in this paper. This appraoch is free from the fitting parameters and results obtained using this appraoch have been found very close to the average values.
Schlosser, Herbert; Ferrante, John
1989-01-01
The previous work of Schlosser and Ferrante (1988) on universality in solids is extended to the study of liquid metals. As in the case of solids, to a good approximation, in the absence of phase transitions, plots of the logarithm of the reduced-pressure function H, of the reduced-isothermal-bulk-modulus function b, and of the reduced-sound-velocity function v are all linear in 1-X. Finally, it is demonstrated that ln(Cp/C/v) is also linear in 1-X, where X = (V/V/0/)exp 1/3), and V(0) is the volume at zero pressure.
Institute of Scientific and Technical Information of China (English)
ZHAO Jing; GUO Lin; LIU Jing; YANG Yang; CHE Rong-Zheng; ZHOU Lei
2000-01-01
Structural transformation in γ-Fe2O3 nanocrystals (about 1Onm) with dodecyl benzene sulfonic (DBS) coated is studied by using high-pressure energy dispersive x-ray diffraction of synchrotron radiation and high-resolution transmission electron microscopy (HRTEM). Relative to the bulk crystal, the transition pressure showed a decrease while the compressibility increases significantly up to 375 (±9 GPa). HRTEM picture confirmed that there is surface cladding surrounding nanocrystals due to DBS, which formed new special boundaries between nanocrystals and should be different from the ordinary grain boundaries. The experimental results imply that the surface layers of γ-Fe2O3 nanocrystals have strong effect on the compressibility.
Tran, Fabien; Stelzl, Julia; Blaha, Peter
2016-05-01
A large panel of old and recently proposed exchange-correlation functionals belonging to rungs 1 to 4 of Jacob's ladder of density functional theory are tested (with and without a dispersion correction term) for the calculation of the lattice constant, bulk modulus, and cohesive energy of solids. Particular attention will be paid to the functionals MGGA_MS2 [J. Sun et al., J. Chem. Phys. 138, 044113 (2013)], mBEEF [J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014)], and SCAN [J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015)] which are meta-generalized gradient approximations (meta-GGA) and are developed with the goal to be universally good. Another goal is also to determine for which semilocal functionals and groups of solids it is beneficial (or not necessary) to use the Hartree-Fock exchange or a dispersion correction term. It is concluded that for strongly bound solids, functionals of the GGA, i.e., rung 2 of Jacob's ladder, are as accurate as the more sophisticated functionals of the higher rungs, while it is necessary to use dispersion corrected functionals in order to expect at least meaningful results for weakly bound solids. If results for finite systems are also considered, then the meta-GGA functionals are overall clearly superior to the GGA functionals.
Oh, Jae Eun
2011-01-01
Synthetic basic sodalite, Na8[AlSiO4] 6(OH)2•2H2O, cubic, P43n, (also known as hydroxysodalite hydrate) was prepared by the alkaline activation of amorphous aluminosilicate glass, obtained from the phase separation of Class F fly ash. The sample was subjected to a process similar to geopolymerization, using high concentrations of a NaOH solution at 90 °C for 24 hours. Basic sodalite was chosen as a representative analogue of the zeolite precursor existing in Na-based Class F fly ash geopolymers. To determine its bulk modulus, high-pressure synchrotron X-ray powder diffraction was applied using a diamond anvil cell (DAC) up to a pressure of 4.5 GPa. A curve-fit with a truncated third-order Birch-Murnaghan equation of state with a fixed K\\'o = 4 to pressure-normalized volume data yielded the isothermal bulk modulus, K o = 43 ± 4 GPa, indicating that basic sodalite is more compressible than sodalite, possibly due to a difference in interactions between the framework host and the guest molecules. © 2010 Elsevier Ltd.
Modulus-Pressure Equation for Confined Fluids
Gor, Gennady Y; Shen, Vincent K; Bernstein, Noam
2016-01-01
Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work [J. Chem. Phys., (2015) 143, 194506], using Monte Carlo simulations we showed that the elastic modulus $K$ of a fluid confined in a mesopore is a function of the pore size. Here we focus on modulus-pressure dependence $K(P)$, which is linear for bulk materials, a relation known as the Tait-Murnaghan equation. Using transition-matrix Monte Carlo simulations we calculated the elastic modulus of bulk argon as a function of pressure and argon confined in silica mesopores as a function of Laplace pressure. Our calculations show that while the elastic modulus is strongly affected by confinement and temperature, the slope of the modulus versus pressure is not. Moreover, the calculated slope is in a good agreement with the reference data for bulk argon and experimental data for ...
Young's modulus of nanoconfined liquids?
Khan, Shah Haidar; Hoffmann, Peter Manfred
2016-07-01
In material science, bioengineering, and biology, thin liquid films and soft matter membranes play an important role in micro-lubrication, ion transport, and fundamental biological processes. Various attempts have been made to characterize the elastic properties, such as Young's modulus, of such films using Hertz theory by incorporating convoluted mathematical corrections. We propose a simple way to extract tip-size independent elastic properties based on stiffness and force measurement through a spherical tip on a flat surface. Using our model, the Young's modulus of nanoconfined, molecularly-thin, layers of a model liquid TEHOS (tetrakis 2-ethylhexoxy silane) and water were determined using a small-amplitude AFM. This AFM can simultaneously measure the stiffness and forces of nanoscale films. While the stiffness scales linearly with the tip radius, the measured Young's modulus essentially remains constant over an order of magnitude variation in the tip radius. The values obtained for the elastic modulus of TEHOS and water films on the basis of our method are significantly lower than the confining surfaces' elastic moduli, in contrast with the uncorrected Hertz model, suggesting that our method can serve as a simple way to compare elastic properties of nanoscale thin films as well as to characterize a variety of soft films. In addition, our results show that the elastic properties (elastic modulus) of nanoconfined liquid films remain fairly independent of increasing confinement. PMID:27060229
Standard test method for Young's modulus, tangent modulus, and chord modulus
American Society for Testing and Materials. Philadelphia
2004-01-01
1.1 This test method covers the determination of Young's modulus, tangent modulus, and chord modulus of structural materials. This test method is limited to materials in which and to temperatures and stresses at which creep is negligible compared to the strain produced immediately upon loading and to elastic behavior. 1.2 Because of experimental problems associated with the establishment of the origin of the stress-strain curve described in 8.1, the determination of the initial tangent modulus (that is, the slope of the stress-strain curve at the origin) and the secant modulus are outside the scope of this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory require...
EFFECT OF DISPERSION OF MICA IN MATRIX ON YOUNG'S MODULUS OF MICA FILLED POLYETHYLENE
Institute of Scientific and Technical Information of China (English)
XU Xi; GONG Xiaoyi
1991-01-01
The correlation between Young's modulus of mica-filled high density polyethylene (HDPE), low density polyethylene(LDPE) and the state of dispersion of plasma-treated mica in the polymer matrices was studied. The modulus and the number average diameter of mica aggregates in matrix were determined with tensile testing and image analysis respectively. The interface structure of the filler/matrix and the bulk structure of matrix were examined through the dielectric spectrometry,differential scanning calorimetry (DSC) and dynamic viscoelastic spectrometry. The results show that the Young's modulus of the filled polyethylene depends to a great extent upon the state of dispersion of filler in matrix, but it is independent of the interface structure and bulk structure. The better the dispersion, the higher the Young's modulus.
Computation of Modulus of Elasticity of Concrete
Directory of Open Access Journals (Sweden)
Onwuka, D.O
2013-09-01
Full Text Available - In this presentation, a computer based method which uses a set of algebraic equations and statistical data, were used to compute concrete mixes for prescribeable elastic concrete modulus, and vice versa. The computer programs based on Simplex and Regression theories can be used to predict several mix proportions for obtaining a desired modulus of elasticity of concrete made from crushed granite rock and other materials. The modulus of elasticity of concrete predicted by these programs agreed with experimentally obtained values. The programs are easy and inexpensive to use, and give instant and accurate results. For example, if the modulus of elasticity is specified as input, the computer instantly prints out all possible concrete mix ratios that can yield concrete having the specified elastic modulus. When the concrete mix ratio is specified as input, the computer quickly prints out the elastic modulus of the concrete obtainable from a given concrete mix ratio.
Study on elastic modulus of individual ferritin
Institute of Scientific and Technical Information of China (English)
ZHANG JinHai; CUI ChengYi; ZHOU XingFei
2009-01-01
The mechanical property of individual ferriUn was measured with force-volume mapping (FV) under contact mode of atomic force microscopy (AFM) in this work. The elastic modulus of individual ferritin was estimated by the Hertz mode. The estimated value of the elastic modulus of individual ferritin was about 250-800 MPs under a small deformation. In addition, the elastic modulus of individual ferritin was compared with that of the colloid gold nanoparticle.
Various Expressions for Modulus of Random Convexity
Institute of Scientific and Technical Information of China (English)
Xiao Lin ZENG
2013-01-01
We first prove various kinds of expressions for modulus of random convexity by using an Lo(F,R)-valued function's intermediate value theorem and the well known Hahn-Banach theorem for almost surely bounded random linear functionals,then establish some basic properties including continuity for modulus of random convexity.In particular,we express the modulus of random convexity of a special random normed module Lo(F,X) derived from a normed space X by the classical modulus of convexity of X.
Li, Ming; Zhao, Aiwu; Jiang, Rui; Wang, Dapeng; Li, Da; Guo, Hongyan; Tao, Wenyu; Gan, Zibao; Zhang, Maofeng
2011-02-01
We studied the influence of the elastic modulus on the gecko-inspired dry adhesion by regulating the elastic modulus of bulk polyurethane combined with changing the size of microarrays. Segmented polyurethane (PU) was utilized to fabricate micro arrays by the porous polydimethyl siloxane (PDMS) membrane molding method. The properties of the micro arrays, such as the elastic modulus and adhesion, were investigated by Triboindenter. The study demonstrates that bulk surfaces show the highest elastic modulus, with similar values at around 175 MPa and decreasing the arrays radius causes a significant decrease in E, down to 0.62 MPa. The corresponding adhesion experiments show that decrease of the elastic modulus can enhance the adhesion which is consistent with the recent theoretical models.
Energy Technology Data Exchange (ETDEWEB)
Singh, J.P.; Sutaria, M. [Argonne National Lab., IL (United States). Energy Technology Div.; Ferber, M. [Oak Ridge National Lab., TN (United States)
1997-01-01
Elastic modulus of an yttria partially stabilized zirconia (YSZ) thermal barrier coating (TBC) was evaluated with a Knoop indentation technique. The measured elastic modulus values for the coating ranged from 68.4 {+-} 22.6 GPa at an indentation load of 50 g to 35.7 {+-} 9.8 at an indentation load of 300 g. At higher loads, the elastic modulus values did not change significantly. This steady-state value of 35.7 GPa for ZrO{sub 2} TBC agreed well with literature values obtained by the Hertzian indentation method. Furthermore, the measured elastic modulus for the TBC is lower than that reported for bulk ZrO{sub 2} ({approx} 190 GPa). This difference is believed to be due to the presence of a significant amount of porosity and microcracks in the TBCs. Hardness was also measured.
Energy Technology Data Exchange (ETDEWEB)
Omar, Yamila M.; Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae; Chiesa, Matteo, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae [Laboratory for Energy and Nanosciences, Institute Center for Energy (iEnergy), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates)
2015-07-20
Extensive work has been done in order to determine the bulk elastic modulus of isotropic samples from force curves acquired with atomic force microscopy. However, new challenges are encountered given the development of new materials constructed of one-dimensional anisotropic building blocks, such as carbon nanostructured paper. In the present work, we establish a reliable framework to correlate the elastic modulus values obtained by amplitude modulation atomic force microscope force curves, a nanoscopic technique, with that determined by traditional macroscopic tensile testing. In order to do so, several techniques involving image processing, statistical analysis, and simulations are used to find the appropriate path to understand how macroscopic properties arise from anisotropic nanoscale components, and ultimately, being able to calculate the value of bulk elastic modulus.
Size-dependent effective Young’s modulus of silicon nitride cantilevers
Babaei Gavan, K.; Westra, H.J.R.; Van der Drift, E.W.J.M.; Venstra, W.J.; Van der Zant, H.S.J.
2009-01-01
The effective Young’s modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20–684 nm by measuring resonance frequencies from thermal noise spectra. A significant deviation from the bulk value is observed for cantilevers thinner than 150 nm. To explain the observations
Kattamis, T. Z.
1984-01-01
Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.
Elastic modulus of polypyrrole nanotubes: AFM measurement
Cuenot, Stéphane; Demoustier-Champagne, Sophie; Nysten, Bernard
2001-03-01
Polypyrrole nanotubes were electrochemically synthesized within the pores of nanoporous track-etched membranes. After dissolution of the template membrane, they were dispersed on PET membranes. Their tensile elastic modulus was measured by probing them in three points bending using an atomic force microscope. The elastic modulus was deduced from force-curve measurements. In this communication, the effect of the synthesis temperature and of the nanotube diameter will be presented. Especially it will be shown that the elastic modulus strongly increases when the nanotube outer diameter is reduced from 160 nm down to 35 nm. These results are in good agreement with previous results showing that the electrical conductivity of polypyrrole nanotubes increases by more than one order of magnitude when the diameter decreases in the same range. These behaviors could be explained by a larger ratio of well-oriented defect-free polymer chains in smaller tubes.
Structural relaxation monitored by instantaneous shear modulus
DEFF Research Database (Denmark)
Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil
1998-01-01
time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid.......This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from 210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear modulus G [infinity]. The results are interpreted within the Tool-Narayanaswamy formalism with a reduced...
Revisiting Fermat's Factorization for the RSA Modulus
Gupta, Sounak
2009-01-01
We revisit Fermat's factorization method for a positive integer $n$ that is a product of two primes $p$ and $q$. Such an integer is used as the modulus for both encryption and decryption operations of an RSA cryptosystem. The security of RSA relies on the hardness of factoring this modulus. As a consequence of our analysis, two variants of Fermat's approach emerge. We also present a comparison between the two methods' effective regions. Though our study does not yield a new state-of-the-art algorithm for integer factorization, we believe that it reveals some interesting observations that are open for further analysis.
Determination of Young's modulus by nanoindentation
Institute of Scientific and Technical Information of China (English)
MA; Dejun; Chung; Wo; Ong; LIU; Jianmin; HE; Jiawen
2004-01-01
A methodology for determining Young's modulus of materials by non-ideally sharp indentation has been developed. According to the principle of the same area-to-depth ratio, a non-ideally pyramidal indenter like a Berkovich one can be approximated by a non-ideally conical indenter with a spherical cap at the tip. By applying dimensional and finite element analysis to the non-ideally conical indentation, a set of approximate one-to-one relationships between the ratio of nominal hardness/reduced Young's modulus and the ratio of elastic work/total work, which correspond to different tip bluntness, have been revealed. The nominal hardness is defined as the maximum indentation load divided by the cross-section area of the conical indenter specified at the maximum indentation depth. As a consequence, Young's modulus can be determined from a nanoindentation test only using the maximum indentation load and depth, and the work done during loading and unloading processes. The new method for determining Young's modulus is referred to as "pure energy method". The validity of the method was examined by performing indentation tests on five materials. The experimental results and the standard reference values are in good agreement, indicating that the proposed pure energy method is a promising substitution for the most widely used analysis models at present.
Loading Rate for Modulus of Rupture Test
Institute of Scientific and Technical Information of China (English)
QUMing; ZHANGYong－fang
1996-01-01
Relationship among load rate,strain rate and stress rate for modulus of ruptue test,the way of applying load with stress rate using both hydraulic compression testing machine and nechanical compression testing machine have been described.The test results are identical with selected strain rate loading and stress rate loading.
Improved method for complex modulus estimation
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang; Wismer, N.J.; Gade, S.
1996-01-01
application note describes a method developed by Mr. Fuglsang Nielsen which will allow the standard non-resonant method for the determination of complex modulus to be used at higher frequencies than otherwise possible. It is also shown how this method can be implemented using Multichannel Analysis System Type...
Elastic modulus of cetacean auditory ossicles.
Tubelli, Andrew A; Zosuls, Aleks; Ketten, Darlene R; Mountain, David C
2014-05-01
In order to model the hearing capabilities of marine mammals (cetaceans), it is necessary to understand the mechanical properties, such as elastic modulus, of the middle ear bones in these species. Biologically realistic models can be used to investigate the biomechanics of hearing in cetaceans, much of which is currently unknown. In the present study, the elastic moduli of the auditory ossicles (malleus, incus, and stapes) of eight species of cetacean, two baleen whales (mysticete) and six toothed whales (odontocete), were measured using nanoindentation. The two groups of mysticete ossicles overall had lower average elastic moduli (35.2 ± 13.3 GPa and 31.6 ± 6.5 GPa) than the groups of odontocete ossicles (53.3 ± 7.2 GPa to 62.3 ± 4.7 GPa). Interior bone generally had a higher modulus than cortical bone by up to 36%. The effects of freezing and formalin-fixation on elastic modulus were also investigated, although samples were few and no clear trend could be discerned. The high elastic modulus of the ossicles and the differences in the elastic moduli between mysticetes and odontocetes are likely specializations in the bone for underwater hearing. PMID:24523260
Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam
Energy Technology Data Exchange (ETDEWEB)
Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)
2016-02-15
The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.
On the stabilization of modulus in Randall–Sundrum model by R$\\Phi^2$ interaction
Indian Academy of Sciences (India)
Tofighi A
2016-03-01
A solution to the problem of modulus stabilization is to couple a massless bulk scalar field non-minimally to five-dimensional curvature. We present an exact treatment of the stabilization condition. Our results show that the square of effective mass of this scalar field is necessarily negative. We also find the existence of a closely spaced maximum near the minimum of the effective potential
Microscopic origin of volume modulus inflation
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [ICTP, Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Pedro, Francisco Gil [Departamento de Fisica Teórica UAM and Instituto de Fisica Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2015-12-21
High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.
Modulus of unbounded valence subdivision rules
Rushton, Brian
2011-01-01
Cannon, Floyd and Parry have studied the modulus of finite subdivision rules extensively. We investigate the properties of the modulus of subdivision rules with linear and exponential growth at every vertex, using barycentric subdivision and a subdivision rule for the Borromean rings as examples. We show that the subdivision rule arising from the Borromean rings is conformal, and conjecture that the subdivision rules for all alternating links are conformal. We show that the 1,2,3-tile criterion of Cannon, Floyd, and Parry is sufficient to prove conformality for linear growth, but not exponential growth. We show that the criterion gives a weaker form of conformality for subdivision rules of exponential growth at each vertex. We contrast this with the known, bounded-valence case, and illustrate our results with circle packings using Ken Stephenson's Circlepack.
Modulus-tunable magnetorheological elastomer microcantilevers
International Nuclear Information System (INIS)
Modulus-tunable microcantilevers are fabricated from magnetorheological elastomers (MREs) consisting of polydimethylsiloxane and carbonyl iron particles by using a simple sandwich molding method. Depending on the presence or absence of an external magnetic field during curing, isotropic or anisotropic MRE cantilevers are obtained. Randomly distributed particles are present in the polymer matrix of the isotropic microcantilevers, whereas the particles in the anisotropic microcantilevers are aligned in the direction of the magnetic field. The fractional changes in the resonance frequencies of the MRE cantilevers are measured as functions of the magnetic field intensity and the quantity of particles in the matrix. The anisotropic microcantilevers undergo greater changes in frequency than the isotropic microcantilevers when exposed to external magnetic fields, which indicates that larger changes in modulus are induced in the anisotropic microcantilevers. In addition, the dissipation and damping ratios of the MRE microcantilevers are determined by fitting the exponential decays of their deflection amplitudes with time. (paper)
Shear modulus of the neutron star crust
International Nuclear Information System (INIS)
Complete text of publication follows. The shear modulus of the solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative / T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. Additionally, the correction to the static lattice shear modulus due to the electron gas polarizability is evaluated. This effect is taken into account in the formalism of the dielectric function. Static zero temperature dielectric function of degenerate relativistic electron gas obtained in the Random Phase Approximation is used. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology. This work was partially supported by the Russian Foundation for Basic Research (grant 11-02-00253-a), by the State Program 'Leading Scientific Schools of Russian Federation' (grant NSh 3769.2010.2) and by the Ministry of Education and
Shear modulus titration in crystalline colloidal suspensions
Palberg, Thomas; Kottal, Johannes; Bitzer, Franz; Simon, Rolf; Würth, Mathias; Leiderer, Paul
1995-01-01
We present the first direct experimental access to the actual surface charge number Z of colloidal particles under conditions of strong electrostatic interaction. We further calculate a renormalized charge number Z *(Z) using the modified DLVO approximation and the dependence of the shear modulus G(Z*) on the concentration of neutral electrolyte ns. The excellent agreement of predicted and measured values provides an experimental verification of the renormalization concept under variation of ...
Fibonacci difference sequence spaces for modulus functions
Directory of Open Access Journals (Sweden)
Kuldip Raj
2015-05-01
Full Text Available In the present paper we introduce Fibonacci difference sequence spaces l(F, Ƒ, p, u and l_∞(F, Ƒ, p, u by using a sequence of modulus functions and a new band matrix F. We also make an effort to study some inclusion relations, topological and geometric properties of these spaces. Furthermore, the alpha, beta, gamma duals and matrix transformation of the space l(F, Ƒ, p, u are determined.
Shear modulus of neutron star crust
Baiko, D A
2011-01-01
Shear modulus of solid neutron star crust is calculated by thermodynamic perturbation theory taking into account ion motion. At given density the crust is modelled as a body-centered cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative $\\propto T$ contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behavior is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for li...
Shear modulus of neutron star crust
Baiko, D. A.
2011-09-01
The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝ T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.
New multitarget constant modulus array for CDMA systems
Institute of Scientific and Technical Information of China (English)
Zhang Jidong; Zheng Baoyu
2006-01-01
A new multitarget constant modulus array is proposed for CDMA systems based on least squares constant modulus algorithm. The new algorithm is called pre-despreading decision directed least squares constant modulus algorithm (DDDLSCMA). In the new algorithm, the pre-despreading is first applied for multitarget arrays to remove some multiple access signals, then the despreaded signal is processed by the algorithm which united the constant modulus algorithm and decision directed method. Simulation results illustrate the good performance for the proposed algorithm.
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; M. Heinemann; de Groot, R. A.
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa. For the first time the modulus is evaluated ab initio (no bias from experimental data) with demonstrated basis set convergence.
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.
Development of a new β Ti alloy with low modulus and favorable plasticity for implant material.
Liang, S X; Feng, X J; Yin, L X; Liu, X Y; Ma, M Z; Liu, R P
2016-04-01
One of the most important development directions of the Ti and its alloys is the applications in medical field. Development of new Ti alloys with low elastic modulus and/or favorable biocompatibility plays an important role for promoting its application in medical field. In this work, a new β Ti alloy (Ti-31Nb-6Zr-5Mo, wt.%) was designed for implant material using d-electron alloy design method. Microstructure and tensile properties of the designed alloy after hot rolling (HR) and solution followed by aging treatments (SA) were investigated. Results show that the designed alloy is composed of single β phase. However, microstructural analysis shows that the β phase in the designed alloy separates into Nb-rich and Nb-poor phase regions. The Nb-rich regions in HR specimen are typical elongated fiber texture, but are equiaxed particles with several micrometers in SA specimen. Tensile results show that the designed alloy has low Young's modulus of 44 GPa for HR specimen and 48 GPa for SA specimen which are very close to the extreme of Young's modulus of bulk titanium alloys. At the same time, the designed alloy has favorable plasticity in term of elongation of 26.7% for HR specimen and 20.6% for SA specimen, and appropriate tensile strength over 700 MPa. In short, the designed alloy has low elastic modulus close to that of bone and favorable plasticity and strength which can be a potential candidate for hard tissue replacements. PMID:26838858
Directory of Open Access Journals (Sweden)
Ibrahim Dauda Muhammad
2015-01-01
Full Text Available The single-walled zirconia nanotube is structurally modeled and its Young’s modulus is valued by using the finite element approach. The nanotube was assumed to be a frame-like structure with bonds between atoms regarded as beam elements. The properties of the beam required for input into the finite element analysis were computed by connecting energy equivalence between molecular and continuum mechanics. Simulation was conducted by applying axial tensile strain on one end of the nanotube while the other end was fixed and the corresponding reaction force recorded to compute Young’s modulus. It was found out that Young’s modulus of zirconia nanotubes is significantly affected by some geometrical parameters such as chirality, diameter, thickness, and length. The obtained values of Young’s modulus for a certain range of diameters are in agreement with what was obtained in the few experiments that have been conducted so far. This study was conducted on the cubic phase of zirconia having armchair and zigzag configuration. The optimal diameter and thickness were obtained, which will assist in designing and fabricating bulk nanostructured components containing zirconia nanotubes for various applications.
Estimating the density scaling exponent of viscous liquids from specific heat and bulk modulus data
Pedersen, Ulf R.; Hecksher, Tina; Jakobsen, Bo; Schrøder, Thomas B.; Gnan, Nicoletta; Bailey, Nicholas P.; Dyre, Jeppe C.
2009-01-01
It was recently shown by computer simulations that a large class of liquids exhibits strong correlations in their thermal fluctuations of virial and potential energy [Pedersen et al., Phys. Rev. Lett. 100, 015701 (2008)]. Among organic liquids the class of strongly correlating liquids includes van der Waals liquids, but excludes ionic and hydrogen-bonding liquids. The present note focuses on the density scaling of strongly correlating liquids, i.e., the fact their relaxation time tau at diffe...
On the realization of the bulk modulus bounds for two-phase viscoelastic composites
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Andreassen, Erik; Jensen, Jakob Søndergaard;
2014-01-01
Materials with good vibration damping properties and high stiffness are of great industrial interest. In this paper the bounds for viscoelastic composites are investigated and material microstructures that realize the upper bound are obtained by topology optimization. These viscoelastic composites...... can be realized by additive manufacturing technologies followed by an infiltration process. Viscoelastic composites consisting of a relatively stiff elastic phase, e.g. steel, and a relatively lossy viscoelastic phase, e.g. silicone rubber, have non-connected stiff regions when optimized for maximum...... damping. In order to ensure manufacturability of such composites the connectivity of the matrix is ensured by imposing a conductivity constraint and the influence on the bounds is discussed. © 2013 Elsevier Ltd. All rights reserved....
Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge
DEFF Research Database (Denmark)
Wang, Hua; Liu, J.F.; He, Yongqi;
2007-01-01
In situ energy dispersive X-ray diffraction measurements with synchrotron radiation source have been performed on nanocrystalline Ge with particle sizes 13, 49 and 100 nm by using diamond anvil cell. Whereas the percentage volume collapse at the transition is almost constant, the values of the bu...
Elastic modulus of solid-like microsphere heaps
Ortiz, Carlos; Daniels, Karen; Riehn, Robert
2013-03-01
We study the elastic modulus of heaps of repulsive microspheres to gain insight into the nature of the rigidity of the material. The heaps are initially created by flowing a colloidal microsphere suspension towards a flat-topped ridge placed within a quasi two-dimensional microfluidic channel. The suspension flow-rate determines the heap size via the angle of repose. Using fluorescence video microscopy, we measure the fluorescent heap size until it reaches steady state. We directly visualize the elastic recoil of these steady state heaps in response to controlled changes in the fluid flow rate. We change the flow rate by an amount Δv in a step-like fashion, and measure the amplitude of the bulk heap deformation ΔA . We investigate both compressions and decompressions of varying amplitudes with respect to the steady state. Three deformation regimes are observed. No deformations are observed below a critical perturbation magnitude Δvc . Above Δvc , deformation amplitudes are linear with Δv . However, for large perturbations, nonlinear deformation amplitudes are observed, and their relationship is asymmetric with respect to compression and decompression.
Energy Technology Data Exchange (ETDEWEB)
Liu, Jishan; Chen, Zhongwei [Shool of Mechanical Engineering, The University of Western Australia, WA, 6009 (Australia); Elsworth, Derek [Department of Energy and Mineral Engineering, Penn State University, PA 16802-5000 (United States); Miao, Xiexing; Mao, Xianbiao [State Key Laboratory for Geomechanics and Underground Engineering, China University of Mining and Technology (China)
2010-07-01
Although coal-gas interactions have been comprehensively investigated, most prior studies have focused on one or more component processes of effective stress or sorption-induced deformation and for resulting isotropic changes in coal permeability. In this study a permeability model is developed to define the evolution of gas sorption-induced permeability anisotropy under the full spectrum of mechanical conditions spanning prescribed in-situ stresses through constrained displacement. In the model, gas sorption-induced coal directional permeabilities are linked into directional strains through an elastic modulus reduction ratio, R{sub m}. It defines the ratio of coal bulk elastic modulus to coal matrix modulus (0 < R{sub m} < 1) and represents the partitioning of total strain for an equivalent porous coal medium between the fracture system and the matrix. Where bulk coal permeability is dominated by the cleat system, the portioned fracture strains may be used to define the evolution of the fracture permeability, and hence the response of the bulk aggregate. The coal modulus reduction ratio provides a straightforward index to link anisotropy in deformability characteristics to the evolution of directional permeabilities. Constitutive models incorporating this concept are implemented in a finite element model to represent the complex interactions of effective stress and sorption under in-situ conditions. The validity of the model is evaluated against benchmark cases for uniaxial swelling and for constant volume reservoirs then applied to match changes in permeability observed in a field production test within a coalbed reservoir. (author)
Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation
International Nuclear Information System (INIS)
Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus
Five Modulus Method for Image Compression
Directory of Open Access Journals (Sweden)
Firas A. Jassim
2012-11-01
Full Text Available Data may be compressed by reducing the redundancy in the original data, but this makes the data have more errors. In this paper a novel approach of image compression based on a new method that has been created for image compression which is called Five Modulus Method (FMM. The new method consists of converting each pixel value in an 8×8 block into a multiple of 5 for each of the R, G and B arrays. After that, the new values could be divided by 5 to get new values which are 6-bit length for each pixel and it is less in storage space than the original value which is 8-bits. Also, a new protocol for compression of the new values as a stream of bits has been presented that gives the opportunity to store and transfer the new compressed image easily.
Cold Resistant Properties of High Modulus Polyurethane
Institute of Scientific and Technical Information of China (English)
LI Minghua; XIA Ru; ZHANG Yuchuan; HUANG Zhifang; YAO Heping; HUANG Wanli; WANG Yifeng; HUI Jianqiang; WU Chunyu
2009-01-01
Six kinds of polyurethane(PU)elastomers were prepared based on different poly-esters,polyethers and chain extenders.The structure,mechanical properties and cold resistant proper-ties of PU were systematically investigated by FTIR,XRD,DMTA,universal testing machine and flex ductility machine.The results show that T_g of soft segment is the main factor of the cold resistant properties of polyurethane elastomer.Compared with the same relative molecular mass of the polyester and the polyether,the polyether flexibility is better,the glass transition temperature(T_g)is lower and the cold resistant properties is remarkable,for example the cold resistant properties of PU based on poly(tetramethylene glycol),1,4-BG and MDI achieves the fifth level.The physics performances of polyurethane elastomers,such as breakdown strength,Young's modulus and the cold resistant prop-erties,are all superior.
Wilson, Leslie Hoipkemeier
Biofouling is the accumulation of biological matter on a substrate. It is essential to elucidate and model the major factors that affect both biological settlement and adhesion to substrates in order to develop coatings that minimize initial fouling or ease the removal of this fouling. To date, models that have estimated adhesion strength to coatings primarily included bulk elastic modulus and surface energy. Topography, however, has been found to dominate both these terms in the reduction of settlement and has been found to affect the adhesion strength as well. Silicone foul release coatings have demonstrated moderate success in the prevention of marine biofouling because of their low modulus and low surface energy. Problems exist with durability and eventual fouling of the coating due to the overgrowth of foulants that prefer hydrophobic substrates. This research details the characterization and the surface and bulk modification of a commercially available silicone elastomer. The modifications include bulk additives, surface topography, and surface graft copolymers. The effect of these modifications on biological response was then assayed using the alga Ulva as a model for marine biofouling. The unmodified silicone elastomer has a bulk modulus of approximately 1 MPa. The addition of vinyl functional polydimethylsiloxane oils allowed for a greater than 200% increase or a 90% decrease in the bulk modulus of the material. The addition of non-reactive polydimethylsiloxane oils allowed for a change in the surface lubricity of the elastomer without a significant change in the mechanical properties. Topographical modifications of the surface show a profound effect on the bioresponse. Appropriately scaled engineered microtopographies replicated in the silicone elastomer can produce a 250% increase in algal zoospore fouling or an 85% reduction in settlement relative to a smooth silicone elastomer. Finally, the modification of the surface energy of this material was
Dynamic resilient modulus of silt%粉土动态回弹模量试验研究
Institute of Scientific and Technical Information of China (English)
董城; 冷伍明; 李志勇
2012-01-01
For the sake of investigating the factors which affect the silt dynamic resilient modulus and their laws, a series resilient modulus tests were carried out by conducting dynamic-triaxial test. The relationships between deviation stress, confining stress, bulk stress and dynamic resilient modulus were analyzed. Considering that dynamic resilient modulus is a function of deviation stress and bulk stress, with a brief introduction of the present resilient modulus constitutive prediction models, the dynamic resilient modulus constitutive model which reflects the effect of bulk stress and deviator stress was utilized for experimental data regression analysis. The results demonstrate that dynamic resilient modulus rise with the increase of confining stress and compaction degree, in reverse of circular deviator stress and moisture content. A high relativity between the predictive results and the experimental value shows that the model which reflects the effect of bulk stress and deviator stress is accurate and credible. A high coefficient of determination shows that the model which reflects the effect of bulk stress and deviator stress is accurate and credible. The prediction models for different compaction degrees, and moisture content were achieved, and they can provide parameters for the pavement design based on dynamic method.%利用动三轴试验,研究粉土动态回弹模量的影响因素及其规律,分析动态回弹模量对偏应力、侧应力和体应力的依赖关系,在回弹模量本构预估模型的基础上,采用偏应力和体应力为变量的动态回弹模量本构模型对试验数据进行回归分析.结果表明:动态回弹模量随围压和压实度的提高而增大,随循环偏应力和含水量的增大而减小.所选模型具有较高的决定系数,证明所选模型具有较高的合理性与可靠性,同时获得了不同含水量和压实度下粉土的动态回弹模量预估模型,可为基于动力学的路面结构设计提供参数.
Directory of Open Access Journals (Sweden)
Holmes Amey J
2005-07-01
Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.
Subgrade Resilient Modulus for Pavement Design and Evaluation
Lee, Woojin; Bohra, Nihal C.; Altschaeffl, Adolph G.; White, Thomas D.
1993-01-01
The main goal of this study was to develop a set of testing procedure for resilient modulus and to provide a set of resilient modulus data on typical Indiana soils. Soils tested were five cohesive soils and one granular soil. Resilient modulus tests were performed in the laboratory on a fully automated repeated-load triaxial equipment according to AASHTO T 274-82. A set of correlations was developed between the resilient modulus and the unconfined compression test results for normal and th...
Minimal subfamilies and the probabilistic interpretation for modulus on graphs
Albin, Nathan
2016-01-01
The notion of $p$-modulus of a family of objects on a graph is a measure of the richness of such families. We develop the notion of minimal subfamilies using the method of Lagrangian duality for $p$-modulus. We show that minimal subfamilies have at most $|E|$ elements and that these elements carry a weight related to their "importance" in relation to the corresponding $p$-modulus problem. When $p=2$, this measure of importance is in fact a probability measure and modulus can be thought as trying to minimize the expected overlap in the family.
Calculated Bulk Properties of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.
1978-01-01
Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...
Elastic Moduli Inheritance and Weakest Link in Bulk Metallic Glasses
Energy Technology Data Exchange (ETDEWEB)
Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Lu, Z.P. [University of Science and Technology, Beijing; Clausen, Bjorn [Los Alamos National Laboratory (LANL); Brown, Donald [Los Alamos National Laboratory (LANL)
2012-01-01
We show that a variety of bulk metallic glasses (BMGs) inherit their Young s modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in-situ neutron diffraction studies of an elastically deformed BMG, suggests a scenario of rubber-like viscoelasticity owing to a hierarchy of atomic bonds in BMGs.
On the Modulus of a Union of Nested Annuli
Comerford, Mark
2011-01-01
We prove a result which gives sufficient conditions for a conformal annulus which is a countable union of nested conformal annuli to have bounded modulus. Our theorem also gives estimates for the modulus of such an annulus and is proved using an interpolation result which constructs a quasiconformal map between two annuli given a smooth identification of their boundaries.
STM verification of the reduction of the Young's modulus of CdS nanoparticles at smaller sizes
Hazarika, A.; Peretz, E.; Dikovsky, V.; Santra, P. K.; Shneck, R. Z.; Sarma, D. D.; Manassen, Y.
2014-12-01
We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E ~ 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response.
Elastic modulus of phases in Ti–Mo alloys
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wei-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Yong, E-mail: yonliu11@aliyun.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Wu, Hong; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Tuo-yang [Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Lan, Xiao-dong; Yao, Tian-hang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)
2015-08-15
In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo, Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.
Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film
Energy Technology Data Exchange (ETDEWEB)
Carter, Austin D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-06-24
The purpose of this experiment was to determine the modulus of elasticity (E) and thermal expansion coefficient (α) of RF sputtered Indium Tin Oxide (ITO) as a function of temperature (T), and to collect ITO film stress data. In order to accomplish that goal, the Toho FLX-2320-S thin film stress measurement machine was used to collect both single stress and stress-temperature data for ITO coated fused silica and sapphire substrates. The stress measurement function of the FLX-2320-S cannot be used to calculate the elastic modulus of the film because the Stoney formula incorporates the elastic modulus of the substrate, rather than of the film itself.
SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING
Institute of Scientific and Technical Information of China (English)
党发宁; 荣廷玉; 孙训方
2001-01-01
Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.
Measurements of elastic modulus in Zr alloys for CANDU applications
International Nuclear Information System (INIS)
Measurements of elastic modulus as a function of temperature from 20 to 400°C were carried out on specimens of Zr-2.5Nb, Zircaloy-4, Zircaloy-2 and Excel Zr alloy using an ultrasonic resonance technique. The specimens were machined from CANDU pressure tubes, a calandria tube and commercial sheet material. Effects of crystallographic texture, neutron irradiation and hydrogen on elastic modulus were investigated. The results show that elastic modulus of the Zr alloys (1) decreases with increasing temperature, (2) depends strongly on crystallographic texture, and (3) increases slightly with neutron irradiation. (author)
Directory of Open Access Journals (Sweden)
Luiz Claudio Pardini
2002-10-01
Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.
Temperature, Frequency and Young’s Modulus of a Wineglass
2015-01-01
A crystal soda-lime wineglass, heated to temperatures ranging from 25 °C to 150 °C, was tapped and the frequency recorded. It was shown that the relative change in the frequency at different temperatures can be used to determine the effect of temperature on Young’s Modulus of the glass. This simple method of tapping a wineglass is proposed as an effective way of determining the relative effect of temperature on Young’ Modulus of glass.
Energy Technology Data Exchange (ETDEWEB)
Berryman, J G
2005-03-23
To provide quantitative measures of the importance of fluid effects on shear waves in heterogeneous reservoirs, a model material called a ''random polycrystal of porous laminates'' is introduced. This model poroelastic material has constituent grains that are layered (or laminated), and each layer is an isotropic, microhomogeneous porous medium. All grains are composed of exactly the same porous constituents, and have the same relative volume fractions. The order of lamination is not important because the up-scaling method used to determine the transversely isotropic (hexagonal) properties of the grains is Backus averaging, which--for quasi-static or long-wavelength behavior--depends only on the volume fractions and layer properties. Grains are then jumbled together totally at random, filling all space, and producing an overall isotropic poroelastic medium. The poroelastic behavior of this medium is then analyzed using the Peselnick-Meister-Watt bounds (of Hashin-Shtrikman type). We study the dependence of the shear modulus on pore fluid properties and determine the range of behavior to be expected. In particular we compare and contrast these results to those anticipated from Gassmann's fluid substitution formulas, and to the predictions of Mavko and Jizba for very low porosity rocks with flat cracks. This approach also permits the study of arbitrary numbers of constituents, but for simplicity the numerical examples are restricted here to just two constituents. This restriction also permits the use of some special exact results available for computing the overall effective stress coefficient in any two-component porous medium. The bounds making use of polycrystalline microstructure are very tight. Results for the shear modulus demonstrate that the ratio of compliance differences R (i.e., shear compliance changes over bulk compliance changes when going from drained to undrained behavior, or vice versa) is usually nonzero and can take a wide
Large area bulk superconductors
Miller, Dean J.; Field, Michael B.
2002-01-01
A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.
Variable modulus cellular structures using pneumatic artificial muscles
Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.
2014-04-01
This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.
Factors that influence muscle shear modulus during passive stretch.
Koo, Terry K; Hug, François
2015-09-18
Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. PMID:26113291
Shear modulus of shock-compressed LY12 aluminium up to melting point
Institute of Scientific and Technical Information of China (English)
Yu Yu-Ying; Tan Hua; Hu Jian-Bo; Dai Cheng-Da
2008-01-01
Asymmetric plate impact experiments are conducted on LY12 aluminium alloy in a pressure range of 85-131 GPa.The longitudinal sound speeds are obtained from the time-resolved particle speed profiles of the specimen measured with Velocity Interferometer System for Any Reflector (VISAR) technique,and they are shown to be good agreement with our previously reported data of this alloy in a pressure range of 20-70 CPa,and also with those of 2024 aluminium reported by McQueen.Using all of the longitudinal speeds and the corresponding bulk speeds calculated from the Gruneisen equation of state (EOS),shear moduli of LY12 aluminium alloy are obtained.A comparison of the shear moduli in the solid phase region with those estimated from the Steinberg model demonstrate that the latter are systematically lower than the measurements.By re-analysing the pressure effect on the shear modulus,a modified equation is proposed,in which the pressure term of P/η1/3 in the Steinberg model is replaced by a linear term.Good agreement between experiments and the modified equation is obtained,which implies that the shear modulus of LY12 aluminium varies linearly both with pressure and with temperature throughout the whole solid phase region.On the other hand,shear modulus of aluminium in a solid-liquid mixed phrase region decreases gradually and smoothly,a feature that is very different from the drastic dropping at the melting point under static conditions.
Young's modulus of a solid two-dimensional Langmuir monolayer
Bercegol, H.; Meunier, J.
1992-03-01
LANGMUIR monolayers-films of amphiphilic molecules at the surface of water-exhibit many phases1,2. Some of these behave like two-dimensional solids on experimental timescales, but previous measurements of the shear modulus of these 'solid' monolayers3-5 have yielded a value too small to be compatible with a two-dimensional crystal. The interpretation of these is complicated, however, by the likelihood of inhomogeneities in the films, which are probably assemblies of microscopic crystalline domains. Here we describe measurements of the Young's modulus of an isolated "solid' domain of NBD-stearic acid monolayers. We obtain a value large enough to be compatible with the modulus of a two-dimensional crystal6-8. This suggests that Langmuir monolayers should provide model systems for studies of melting in two dimensions6-8.
Dynamic Shear Modulus of Polymers from Molecular Dynamics Simulations
Byutner, Oleksiy; Smith, Grant
2001-03-01
In this work we describe the methodology for using equilibrium molecular dynamics simulations (MD) simulations to obtain the viscoelastic properties of polymers in the glassy regime. Specifically we show how the time dependent shear stress modulus and frequency dependent complex shear modulus in the high-frequency regime can be determined from the off-diagonal terms of the stress-tensor autocorrelation function obtained from MD trajectories using the Green-Kubo method and appropriate Fourier transforms. In order to test the methodology we have performed MD simulations of a low-molecular-weight polybutadiene system using quantum chemistry based potential functions. Values of the glassy modulus and the maximum loss frequency were found to be in good agreement with experimental data for polybutadiene at 298 K.
Determination of the elastic modulus of snow via acoustic measurements
Gerling, Bastian; van Herwijnen, Alec; Löwe, Henning
2016-04-01
The elastic modulus of snow is a key quantity from the viewpoint of avalanche research and forecasting, snow engineering or materials science in general. Since it is a fundamental property, many measurements have been reported in the literature. Due to differences in measurement methods, there is a lot of variation in the reported values. Especially values derived via computer tomography (CT) based numerical calculations using finite element methods are not corresponding to the results of other methods. The central issue is that CT based moduli are purely elastic whereas other methods may include viscoelastic deformation. In order to avoid this discrepancy we derived the elastic modulus of snow via wave propagation measurements and compared our results with CT based calculations. We measured the arrival times of acoustic pulses propagating through the snow samples to determine the P-wave velocity and in turn derive the elastic modulus along the direction of wave propagation. We performed a series of laboratory experiments to derive the P-wave modulus of snow in relation to density. The P-wave modulus ranged from 10 to 280 MPa for a snow density between 150 and 370 kg/m^3;. The moduli derived from the acoustic measurements correlated well with the CT-based values and both exhibited a power law trend over the entire density range. Encouraged by these results we used the acoustic method to investigate the temporal evolution of the elastic modulus. The rate of increase was very close to values mentioned in literature on the sintering rate of snow. Overall, our results are a first but important step towards a new measurement method to attain the elastic properties of snow.
Directory of Open Access Journals (Sweden)
M. Boudjema
2003-01-01
Full Text Available The elastic response of many rocks to quasistatic stress changes is highly nonlinear and hysteretic, displaying discrete memory. Rocks also display unusual nonlinear response to dynamic stress changes. A model to describe the elastic behavior of rocks and other consolidated materials is called the Preisach-Mayergoyz (PM space model. In contrast to the traditional analytic approach to stress-strain, the PM space picture establishes a relationship between the quasistatic data and a number density of hysteretic mesoscopic elastic elements in the rock. The number density allows us to make quantitative predictions of dynamic elastic properties. Using the PM space model, we analyze a complex suite of quasistatic stress-strain data taken on Berea sandstone. We predict a dynamic bulk modulus and a dynamic shear modulus surface as a function of mean stress and shear stress. Our predictions for the dynamic moduli compare favorably to moduli derived from time of flight measurements. We derive a set of nonlinear elastic constants and a set of constants that describe the hysteretic behavior of the sandstone.
Modulus stabilisation in a backreacted warped geometry model via Goldberger-Wise mechanism
Das, Ashmita; SenGupta, Soumitra
2016-01-01
In the context of higher dimensional braneworld scenario, the stabilisation of extra dimensional modulus is an essential requirement for resolving the gauge hierarchy problem in the context of Standard Model of elementary particle Physics. For Randall-Sundrum (RS) warped extra dimensional model, Goldberger and Wise (GW) proposed a much useful mechanism to achieve this using a scalar field in the bulk spacetime ignoring the effects of backreaction of the scalar field on the background metric. In this article we examine the influence of the backreaction of the stabilising field on the stabilisation condition as well as that on the Physics of the extra dimensional modulus namely radion. In particular we obtain the modifications of the mass and the coupling of the radion with the Standard Model (SM) matter fields on the TeV brane due to backreaction effect. Our calculation also brings out an important equivalence between the treatments followed by Csaki et.al. in \\cite{kribs} and Goldberger-Wise in \\cite{GW1,GW_r...
Bending modulus of bidisperse particle rafts: Local and collective contributions
Petit, Pauline; Biance, Anne-Laure; Lorenceau, Elise; Planchette, Carole
2016-04-01
The bending modulus of air-water interfaces covered by a monolayer of bidisperse particles is probed experimentally under quasistatic conditions via the compression of the monolayer, and under dynamical conditions studying capillary-wave propagation. Simple averaging of the modulus obtained solely with small or large particles fails to describe our data. Indeed, as observed in other configurations for monodisperse systems, bidisperse rafts have both a granular and an elastic character: chain forces and collective effects must be taken into account to fully understand our results.
Modulus of families of loops with applications in network analysis
Shakeri, Heman; Albin, Nathan; Scoglio, Caterina
2016-01-01
We study the structure of loops in networks using the notion of modulus of loop families. We introduce a new measure of network clustering by quantifying the richness of families of simple loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link-usage optimally. We propose weighting networks using these expected link-usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization, on standard benchmarks.
Temperature, Frequency and Young’s Modulus of a Wineglass
Directory of Open Access Journals (Sweden)
Amitta Miller
2015-01-01
Full Text Available A crystal soda-lime wineglass, heated to temperatures ranging from 25 °C to 150 °C, was tapped and the frequency recorded. It was shown that the relative change in the frequency at different temperatures can be used to determine the effect of temperature on Young’s Modulus of the glass. This simple method of tapping a wineglass is proposed as an effective way of determining the relative effect of temperature on Young’ Modulus of glass.
Determination of Young's modulus of silica aerogels using holographic interferometry
Chikode, Prashant P.; Sabale, Sandip R.; Vhatkar, Rajiv S.
2016-05-01
Digital holographic interferometry technique is used to determine elastic modulus of silica aerogels. Tetramethoxysilane precursor based Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The alcogels were prepared by keeping the molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1:0.6:4 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 12 to 18. Holograms of translucent aerogel samples have been successfully recorded using the digital holographic interferometry technique. Stimulated digital interferograms gives localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and Young's modulus (Y) of the aerogels.
Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy
Raub, CB; Putnam, AJ; Tromberg, BJ; George, SC
2010-01-01
Cellularized collagen gels are a common model in tissue engineering, but the relationship between the microstructure and bulk mechanical properties is only partially understood. Multiphoton microscopy (MPM) is an ideal non-invasive tool to examine collagen microstructure, cellularity and crosslink content in these gels. In order to identify robust image parameters that characterize microstructural determinants of the bulk elastic modulus, we performed serial MPM and mechanical tests on acellu...
Modulus of smoothness and theorems concerning approximation on compact groups
Directory of Open Access Journals (Sweden)
H. Vaezi
2003-01-01
Full Text Available We consider the generalized shift operator defined by (Shuf(g=∫Gf(tut−1gdt on a compact group G, and by using this operator, we define spherical modulus of smoothness. So, we prove Stechkin and Jackson-type theorems.
Device to measure elastic modulus of superconducting windings
1979-01-01
This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.
Device for measuring elastic modulus of superconducting coils (See 7903169)
1979-01-01
This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903169, 7901386.
High elastic modulus nanopowder reinforced resin composites for dental applications
Wang, Yijun
2007-12-01
Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the
Haveren, van J.; Scott, E.L.; Sanders, J.P.M.
2008-01-01
Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a
Properties of Bulk Sintered Silver As a Function of Porosity
Energy Technology Data Exchange (ETDEWEB)
Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL
2012-06-01
This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity
Directory of Open Access Journals (Sweden)
Savatier Vincent
2016-01-01
Limit pressure and Ménard pressuremeter modulus variation with respect to drought in silty clay situated in water-table fluctuation area. Finally, we will try to show the consequences of these stress paths for performing and interpreting pressuremeter test in unsaturated and collapsible soils.
Bulk materials handling review
Energy Technology Data Exchange (ETDEWEB)
NONE
2007-02-15
The paper provides details of some of the most important coal handling projects and technologies worldwide. It describes development by Aubema Crushing Technology GmbH, Bedeschi, Cimbria Moduflex, DBT, Dynamic Air Conveying Systems, E & F Services, InBulk Technologies, Nord-Sen Metal Industries Ltd., Pebco Inc, Primasonics International Ltd., R.J.S. Silo Clean (International) Ltd., Takraf GmbH, and The ACT Group. 17 photos.
A Methodology for Determination of Resilient Modulus of Asphaltic Concrete
Directory of Open Access Journals (Sweden)
A. Patel
2011-01-01
Full Text Available Resilient modulus, , is an important parameter for designing pavements. However, its determination by resorting to cyclic triaxial tests is tedious and time consuming. Moreover, empirical relationships, correlating to various other material properties (namely, California Bearing Ratio, CBR; Limerock Bearing Ratio, LBR; R-value and the Soil Support Value, SSV, give vast variation in the estimated results. With this in view, an electronic circuitry, which employs bender and extender elements (i.e., piezo-ceramic elements, was developed. Details of the circuitry and the testing methodology adopted for this purpose are presented in this paper. This methodology helps in determining the resilient modulus of the material quite precisely. Further, it is believed that this methodology would be quite useful to engineers and technologists for conducting quality check of the pavements, quite rapidly and easily.
Steganography based on wavelet transform and modulus function
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In order to provide larger capacity of the hidden secret data while maintaining a good visual quality of stego-image,in accordance with the visual property that human eyes are less sensitive to strong texture,a novel steganographic method based on wavelet and modulus function is presented.First,an image is divided into blocks of prescribed size,and every block is decomposed into one-level wavelet.Then,the capacity of the hidden secret data is decided with the number of wavelet coefficients of larger magnitude.Finall,secret information is embedded by steganography based on modulus function. From the experimental results,the proposed method hides much more information and maintains a good visual quality of stego-image.Besides,the embedded data can be extracted from the stego-image without referencing the original image.
Concreting method that produce high modulus of elasticity
Directory of Open Access Journals (Sweden)
Abdelgader H.S.
2014-04-01
Full Text Available During the last decades, the concrete industry has been widely developing in many ways such as the methods of pouring concrete in order to achieve high quality concrete and low cost. Two-stage concrete is characterised by a higher proportion of coarse aggregate therefore the variation in aggregate content influences significantly its mechanical properties. The mechanical characteristics of the two-stage concrete (TSC in failure conditions are dissimilar from the ordinary ones. Behaviour of TSC in compression has been well documented, but there are little published data on its behaviour in tension and modulus of elasticity. This paper presents the results of experimental testing of one type of coarse aggregate and three different mix proportions of grout. It was found that the modulus of elasticity and splitting tensile strength of two-stage concrete is equivalent or higher than that of conventional concrete at the same compressive strength.
Ultrasonic Measurement of Elastic Modulus of Kelvin Foam
Directory of Open Access Journals (Sweden)
Oh Sukwon
2016-01-01
Full Text Available Elastic modulus of 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam of 3 mm unit cell is designed and printed layer upon layer to fablicate a Kelvin foam plate of 14mm thickness by 3D CAD/printer using ABS plastic. The Kelvin foam plate is filled completely with paraffin wax for impedance matching, so that acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF method to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity.
Study on the Compressive Modulus of Nylon-11/Silica Nanocomposites
Directory of Open Access Journals (Sweden)
Haseung Chung
2012-01-01
Full Text Available This paper investigates the unusual characteristics regarding the mechanical properties of Nylon-11 filled with different volume fractions of silica nanoparticles by selective laser sintering (SLS from numerical simulation. The compressive modulus was predicted by two different numerical models and compared with the experimentally measured one. While the two-phase model has a limited capability in explaining the unusual behavior shown in the compressive modulus obtained by experiments with 2% volume fraction of nanoparticles, the effective interface model can simulate the unexpected characteristic of nanocomposites according to the volume fraction of nanoparticles. We can conclude that the effective interface model should be employed to predict the mechanical properties of nanocomposites for efficiency and accuracy.
Young's Modulus of Single-Crystal Fullerene C Nanotubes
Directory of Open Access Journals (Sweden)
Tokushi Kizuka
2012-01-01
Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.
Mechanical Researches on Young's Modulus of SCS Nanostructures
Directory of Open Access Journals (Sweden)
Qinhua Jin
2009-01-01
Full Text Available Nanostructures of SingleCrystalSilicon (SCS with superior electrical, mechanical, thermal, and optical properties are emerging in the development of novel nanodevices. Mechanical properties especially Young's modulus are essential in developing and utilizing such nanodevices. In this paper, experimental researches including bending tests, resonance tests, and tensile tests on Young' s modulus of nanoscaled SCS are reviewed, and their results are compared. It was found that the values of E measured by different testing methods cannot match to each other. As the differences cannot be explained as experimental errors, it should be understood by taking surface effect into account. With a simplified model, we qualitatively explained the difference in E value measured by tensile test and by resonance test for Si nanobeams.
CALCULATION OF THE YOUNG'S MODULUS OF AN ADSORBED POLYMER LAYER
Institute of Scientific and Technical Information of China (English)
Rüdiger Stark; Michael Kappl; Hans-Jürgen Butt
2007-01-01
Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer, we used the Hertz model to calculate the Young's modulus of the polymer layer in the confinement of AFM experiments with silicon nitride tip with a radius of curvature of R ≈ 50 nm and a glass sphere attached to the cantilever R = 5 μm. Since there is no visible indentation of the layer in the AFM experiments, the layer is either penetrated very easily, or the indentation is too small to be seen in a force curve. The latter would be the case for a polymer layer with a Young's modulus above 4×108 Pa in case of an experiment with a silicon nitride tip and 4×105 Pa in case of a glass sphere.
Alternative Method for Determining the Elastic Modulus of Concrete
Directory of Open Access Journals (Sweden)
A. H. A. Santos
2015-09-01
Full Text Available This paper presents the use of the technique of digital image correlation for obtaining the elasticity modulus of concrete. The proposed system uses a USB microscope that captures images at a rate of five frames per second. The stored data are correlated with the applied loads, and a stress-strain curve is generated to determine the concrete compressive modulus of elasticity. Two different concretes were produced and tested using the proposed system. The results were compared with the results obtained using a traditional strain gauge. It was observed a difference in the range of 4% between the two methods, wherein this difference depends of a lot of parameter in the case of the DIC results, as focal length and a video capture resolution, indicating that DIC technique can be used to obtain mechanical properties of concrete.
Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete
Directory of Open Access Journals (Sweden)
Alireza Mohammadi Bayazidi
2014-01-01
Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.
Bending Modulus Measurement of Single High Performance Fiber
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of the fiber. We have measured this property by the axial compression bending method where single fiber with suitable slenderness is compressed in the fiber axial direction to obtain the peak point of the force-displacement curve. Then the bending modulus and the flexural rigidity can be calculated by measuring the protruding length and diameter of fiber needles and the critical force, Pcr. The measured data show that the bending characteristics of all kinds of high performance fiber are dissimilar evidently.
Low-modulus PMMA bone cement modified with castor oil
López, Alejandro; Hoess, Andreas; Thersleff, Thomas; Ott, Marjam; Engqvist, Håkan; Persson, Cecilia
2011-01-01
Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young’s moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young’s modulus, yield strength, maximum polymerization temper...
Young's modulus and hardness of shark tooth biomaterials.
Whitenack, Lisa B; Simkins, Daniel C; Motta, Philip J; Hirai, Makoto; Kumar, Ashok
2010-03-01
To date, the majority of studies on feeding mechanics in sharks have focused on the movement of cranial components and muscle function, with little attention to tooth properties or function. Attributes related to mechanical properties, such as structural strength, may also be subjected to natural selection. Additionally it is necessary to characterize these properties in order to construct biomechanical models of tooth function. The goal of this study was to determine hardness and elastic modulus for the shark tooth materials enameloid, osteodentine, and orthodentine. Five teeth each from one carcharhiniform species, the bonnethead Sphyrna tiburo, and one lamniform, the sand tiger shark Carcharias taurus, were utilized for nanoindentation testing. Each tooth was sectioned transversely, air-dried, and polished. Both enameloid and dentine were tested on each tooth via a Berkovich diamond tip, with nine 2 microm deep indentations per material. t-Tests were used to determine if there were differences in hardness and Young's modulus between the tooth materials of the two species. There was no significant difference between the two species for the material properties of enameloid, however both hardness and Young's modulus were higher for osteodentine than for orthodentine. This may be due to differences in microanatomy and chemical composition, however this needs to be studied in greater detail.
Compressive elastic modulus of natural fiber based binary composites
Widayani, Susanah, Y.; Utami, L. S.; Khotimah, S. N.; Viridi, S.
2012-06-01
The composites made of bamboo apus fiber - epoxy resin and charcoal - tapioca starch with several compositions have been synthesized. Bamboo fiber powder as the rest of cutting process was refined and filtered by mesh 40 before used. Epoxy resin 1021A and hardener 1021B has been used as resin. The synthesis of epoxy resin-based composites was carried out via simple mixing method by adding adequate 70% ethanol solution before drying. The 100 mesh-filtered dry charcoal was mixed with tapioca mixture before it was pressed and dried to produce briquette composites. To study the compressive elastic modulus of the composites, pressure tests using Mark 10 Pressure Test Machine have been carried out. It was found that all the composites show maximum compressive elastic modulus at certain component compositions. The maximum elastic modulus for bamboo fiber-epoxy resin, charcoal - epoxy resin and charcoal-tapioca starch were observed at 52.9%, 56.3%, and 25.0% of mass fraction of bamboo fiber, charcoal and tapioca starch, respectively.
Duarte, N.; Xiong, Qihua; Srinivas, Tadigadapa; Eklund, Peter
2006-03-01
In this approach, a nanowire beam is fixed at two ends and an AFM is used to apply a force F(x) where x locates the position along the beam and the beam deflection δz(x) is measured simultaneously. This situation is realized by placing a nanobeam over a trench fabricated on a Silicon substrate via photolithography followed by metal evaporation, lift-off and XeF2 etching. The AFM tip force-distance curve is first obtained from experiments on the rigid substrate. The slope of the AFM force-distance obtained when the tip contacts the beam is then measured and the Young's modulus Y is obtained from the change in slope using the Euler-Bernoulli (E-B) equation. The beam dimensions are also required: the beam height and length via AFM and the beam width and length by SEM. We believe this method can be used in any other nano-beam systems to measure the Young's modulus. Results for rectangular ZnS beams (˜100nm x 100 nm x 5μm long) will be presented that demonstrate the potential for this method. Values for Y lower than reported for the bulk are obtained (i.e. Y(nano) ˜ 70% Y(bulk)). This work was supported, in part, by NSF-NIRT DMR-0304178
A New Method To Estimate Modulus Of Elasticity And Modulus Of Rupture Of Glulam I-Joist
Bahtiar, Effendi Tri; Nugroho, Naresworo; Massijaya, Muh. Yusram; Roliandi, Han; Augusti N., Rentry; Satriawan, Adi
2010-12-01
Glulam consists of laminaes and each laminae influences glulam's strength. Transformed cross section (TCS) method is a well known method to calculate the modulus of elasticity (E) and modulus of rupture (SR) of glulam. However, the TCS does not follow the principles due to its assumption that the material properties depend on its shape and size. Therefore, a new calculation method is required. This paper discusses the formulation of a new method to determine E and SR of glulam. It was found that E and SR calculated by the TCS and new methods are the same. The new method confirms the independencies of E and SR which could not be fulfilled by the TCS one. Therefore, the TCS method could be replaced by the new method.
Institute of Scientific and Technical Information of China (English)
LIANG Shan-qing; FU feng
2007-01-01
The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep.the ultrasonic wave modulus of elasticity, Em, the stress wave modulus of elasticity and Ef, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Ef were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.
International Nuclear Information System (INIS)
Rare earth hexaborides have unusual combination of properties with metallic conductivity and low work function as well as low volatility at temperatures providing technologically useful thermionic electron current density, micro-beam applications. Hexaborides of the rare-earth elements are considered for applications as wear- and corrosion-resistant hard coatings for decoration of consumer products such as eye-glass frames and wristwatch casings
Experiment Study and Interpretation on Relation between Modulus of Rock and Strain Amplitude
Institute of Scientific and Technical Information of China (English)
Bao Xueyang; Shi Xingjue; Wen Dan; Li Chengbo; Wang Xingzhou
2006-01-01
Nonlinear elasticity of the earth medium produces a numerical difference between the dynamic and the static modulus of rock. The dynamic modulus is calculated with the ultrasonic velocity measurement, the small-cycle modulus is calculated with small cycles in the load-unload experiment, the static modulus is calculated from the slope of the stress-strain curve in the large cycle, the Young' s modulus is obtained from the ratio of stress to strain in the measured point.The relationship between the modulus and the strain amplitudes is studied by changing the strain amplitude in the small cycles. The moduli obtained from different measuring methods are thus compared. The result shows that the dynamic modulus is the largest, the small-cycle modulus takes the second place, the static modulus of bigger-cycle is the third, and finally the Young's modulus is the smallest. Nonlinear modulus of rock is a function of the strain level and strain amplitude. The modulus decreases exponentially with the ascending of the strain amplitude, while increases with the ascending of the strain level. Finally, the basic concept of the P-M model is briefly introduced and the relationship between the modulus and strain amplitude is explained by the rock having different distribution densities and the different open-and-close stresses of the micro-cracks.
Alternative method of determining resilient modulus of subbase soils using a static triaxial test
Energy Technology Data Exchange (ETDEWEB)
Kim, D.-S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Kweon, G.-C. [Dongeui Univ., Pusan (Korea, Republic of); Rhee, S. [Kyunghee Univ., Kyonggi-Do (Korea, Republic of)
2001-02-01
The resilient modulus (M{sub R}) is used in pavement design to determine the deformational characteristics of pavement materials. M{sub R} testing has often been complicated by problems associated with testing equipment and workmanship. These problems have prevented the cyclic M{sub R} test from being routinely used. This paper presented an alternative M{sub R} testing method for subbase soils using a static triaxial compression (TX) test. Seven representative subbase soils were collected from pavement sites in Korea to examine in detail the effects of particle size on M{sub R}. This was done using standard M{sub R} tests with various maximum particle sizes and specimen diameters. It was shown that the resilient moduli were almost identical from various specimen sizes with the same particle-size distribution, but the value of the slope parameter (k{sub 2}) in the bulk stress model was constant, while the value of k{sub 1} increased with a decreased in maximum particle size. This study examined the effects of mean effective stress, loading frequency and number of loading cycles on the resilient modulus of subbase soils using torsional shear, triaxial and M{sub R} tests. In a companion paper, the author also proposed an alternative M{sub R} testing method for subgrade soils using conventional triaxial tests. The results were similar. The newly proposed method was found to be reliable for subbase soils. Moduli obtained from the standard M{sub R} tests were found to be in good agreement with M{sub R} values derived from the proposed alternative M{sub R} test. The 95 per cent confidence interval of the proposed method was {+-}3.59 per cent. It was concluded that this proposed method can be successfully used in pavement design. 15 refs., 3 tabs., 8 figs.
Nanowear of a Zr Based Bulk Metallic Glass／Nanocrystalline Alloy
Institute of Scientific and Technical Information of China (English)
LIANGSong; HEJian-ying; CHUWu-yang; LIJin-xu; SUNDong-bai; QIAOLi-jie
2004-01-01
The hardness, elastic modulus, nano-scratch resistance and wear depth for a bulk metallic glass of Zr57NbsCu15.4 Ni12.6Al10 and its partial crystallization alloys have been measured by using nanoindentation method. The results showed that partial crystallization did not influence the reduced elastic modulus but increased the hardness, and then increased the scratch coefficient. The scratch coefficient increased linearly with increasing the hardness H but decreases when H>6.2GPa. Partial crystallization decreased evidently the wear depth, and when the load was large the wear depth decreased with increasing the hardness.
Wormholes in Bulk Viscous Cosmology
Jamil, Mubasher
2008-01-01
We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Morris-Thorne wormhole. We have found that if the bulk viscosity is large then the mass of wormhole increases rapidly as compared to small or zero bulk viscosity.
Low modulus Ti–Nb–Hf alloy for biomedical applications
Energy Technology Data Exchange (ETDEWEB)
González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)
2014-09-01
β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.
Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials
Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)
2015-01-01
A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.
Elastic modulus of tree frog adhesive toe pads
Barnes, W. Jon. P.; Goodwyn, Pablo J. Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N.
2011-01-01
Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5–15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softes...
Connecting Jacobi elliptic functions with different modulus parameters
Indian Academy of Sciences (India)
Avinash Khare; Uday Sukhatme
2004-11-01
The simplest formulas connecting Jacobi elliptic functions with different modulus parameters were first obtained over two hundred years ago by John Landen. His approach was to change integration variables in elliptic integrals. We show that Landen’s formulas and their subsequent generalizations can also be obtained from a different approach, using which we also obtain several new Landen transformations. Our new method is based on recently obtained periodic solutions of physically interesting non-linear differential equations and remarkable new cyclic identities involving Jacobi elliptic functions.
Young modulus and internal friction in YFe11Ti
International Nuclear Information System (INIS)
Temperature dependences of Young modulus and internal friction of YFe11Ti polycrystals were studied in approximately 80-380 K range, using the method of bend oscillations of sample slender column - at sonis range frequencies approximately 2 kHz. Experimental data on internal friction were analyzed in the framework of relaxation model of inelastic solid behaviour. Characteristic parameters of relaxation maximums of internal friction, observed at 130-140 and 240-250 K, were determined. 9 refs.; 1 fig.; 3 tabs
Information-Theoretic Secure Verifiable Secret Sharing over RSA Modulus
Institute of Scientific and Technical Information of China (English)
QIU Gang; WANG Hong; WEI Shimin; XIAO Guozhen
2006-01-01
The well-known non-interactive and information-theoretic secure verifiable secret sharing scheme presented by Pedersen is over a large prime. In this paper, we construct a novel non-interactive and information-theoretic verifiable secret sharing over RSA (Rivest,Shamir,Adleman) modulus and give the rigorous security proof. It is shown how to distribute a secret among a group such that any set of k parties get no information about the secret. The presented scheme is generally applied to constructions of secure distributed multiplication and threshold or forward-secure signature protocols.
Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro
2014-01-01
Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...
Creating bulk nanocrystalline metal.
Energy Technology Data Exchange (ETDEWEB)
Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin
2008-10-01
Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.
DEFF Research Database (Denmark)
Schulz, Alexander
2015-01-01
the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar......Assimilates synthesized in the mesophyll of mature leaves move along the pre-phloem transport pathway to the bundle sheath of the minor veins from which they are loaded into the phloem. The present review discusses the most probable driving force(s) for the pre-phloem pathway, diffusion down...
DEFF Research Database (Denmark)
Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;
2015-01-01
the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...
Fabrication of ternary Ca-Mg-Zn bulk metallic glasses
Directory of Open Access Journals (Sweden)
R. Nowosielski
2013-02-01
Full Text Available Purpose: The paper describes the preparation, structure and thermal properties of ternary Ca-Mg-Zn bulk metallic glass in form of as-cast rods.Design/methodology/approach: The investigations on the ternary Ca-Mg-Zn glassy rods were conducted by using X-ray diffraction (XRD, scanning electron microscopy (SEM which energy dispersive X-ray analysis (EDS.Findings: The X-ray diffraction investigations have revealed that the studied as-cast rod was amorphous. The fractures of studied alloy could be classified as mixed fracture with indicated “river” and “smooth” fractures. Both type of the fracture surfaces consist of weakly formed “river” and “shell” patterns and “smooth” regions. The “river” patterns are characteristic for metallic glassy alloys.Practical implications: The studied Ca-based bulk metallic glasses is a relatively new group of material. Ca-based bulk metallic glasses are applied for many applications in different elements. Ca-based bulk metallic glasses have many unique properties such as low density (~2.0 g/cm3, low Youn g’s modulus ( ~20 to 30 GPa. The elastic modulus of Ca-b ased BMGs is comparable to that of hum an bone s, and Ca, Mg, and Zn are biocompatible. These features make the Ca-Mg-Zn–based alloys attractive for use in biomedical applications.Originality/value: Fabrication of amorphous alloy in the form of rod ternary Ca-Mg-Zn alloy by pressure die casting method.
KOVALEV OLEG; KUZKIN VITALY
2011-01-01
In the present paper simple analytical expressions connecting bulk moduli for fullerenes C20 and C60 with stiffness of interatomic bond and geometrical characteristics of the fullerenes are derived. Ambiguities related to definition of the bulk modulus are discussed. Nonlinear volumetrical deformation of the fullerenes is considered. Pressure-volume dependence for the fullerenes under volumetrical compression are derived. Simple analytical model for volumetrical vibrations of the fullerenes i...
Low-modulus PMMA bone cement modified with castor oil.
López, Alejandro; Hoess, Andreas; Thersleff, Thomas; Ott, Marjam; Engqvist, Håkan; Persson, Cecilia
2011-01-01
Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young's moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young's modulus, yield strength, maximum polymerization temperature, doughing time, setting time and the complex viscosity curves during curing, were determined. The cytotoxicity of the materials extracts was assessed on cells of an osteoblast-like cell line. The addition of up to 12 wt% castor oil decreased yield strength from 88 to 15 MPa, Young's modulus from 1500 to 446 MPa and maximum polymerization temperature from 41.3 to 25.6°C, without affecting the setting time. However, castor oil seemed to interfere with the polymerization reaction, giving a negative effect on cell viability in a worst-case scenario.
Shear modulus of the hadron-quark mixed phase
Johnson-McDaniel, Nathan K
2012-01-01
Robust arguments predict that a hadron-quark mixed phase may exist in the cores of some "neutron" stars. Such a phase forms a crystalline lattice with a shear modulus higher than that of the crust due to the high density and charge separation, even allowing for the effects of charge screening. This may lead to strong continuous gravitational-wave emission from rapidly rotating neutron stars and gravitational-wave bursts associated with magnetar flares and pulsar glitches. We present the first detailed calculation of the shear modulus of the mixed phase. We describe the quark phase using the bag model plus first-order quantum chromodynamics corrections and the hadronic phase using relativistic mean-field models with parameters allowed by the most massive pulsar. Most of the calculation involves treating the "pasta phases" of the lattice via dimensional continuation, and we give a general method for computing dimensionally continued lattice sums including the Debye model of charge screening. We compute all the ...
Modulus reconstruction from prostate ultrasound images using finite element modeling
Yan, Zhennan; Zhang, Shaoting; Alam, S. Kaisar; Metaxas, Dimitris N.; Garra, Brian S.; Feleppa, Ernest J.
2012-03-01
In medical diagnosis, use of elastography is becoming increasingly more useful. However, treatments usually assume a planar compression applied to tissue surfaces and measure the deformation. The stress distribution is relatively uniform close to the surface when using a large, flat compressor but it diverges gradually along tissue depth. Generally in prostate elastography, the transrectal probes used for scanning and compression are cylindrical side-fire or rounded end-fire probes, and the force is applied through the rectal wall. These make it very difficult to detect cancer in prostate, since the rounded contact surfaces exaggerate the non-uniformity of the applied stress, especially for the distal, anterior prostate. We have developed a preliminary 2D Finite Element Model (FEM) to simulate prostate deformation in elastography. The model includes a homogeneous prostate with a stiffer tumor in the proximal, posterior region of the gland. A force is applied to the rectal wall to deform the prostate, strain and stress distributions can be computed from the resultant displacements. Then, we assume the displacements as boundary condition and reconstruct the modulus distribution (inverse problem) using linear perturbation method. FEM simulation shows that strain and strain contrast (of the lesion) decrease very rapidly with increasing depth and lateral distance. Therefore, lesions would not be clearly visible if located far away from the probe. However, the reconstructed modulus image can better depict relatively stiff lesion wherever the lesion is located.
ECG Analysis based on Wavelet Transform and Modulus Maxima
Directory of Open Access Journals (Sweden)
Mourad Talbi
2012-01-01
Full Text Available In this paper, we have developed a new technique of P, Q, R, S and T Peaks detection using Wavelet Transform (WT and Modulus maxima. One of the commonest problems in electrocardiogram (ECG signal processing, is baseline wander removal suppression. Therefore we have removed the baseline wander in order to make easier the detection of the peaks P and T. Those peaks are detected after the QRS detection. The proposed method is based on the application of the discritized continuous wavelet transform (Mycwt used for the Bionic wavelet transform, to the ECG signal in order to detect R-peaks in the first stage and in the second stage, the Q and S peaks are detected using the R-peaks localization. Finally the Modulus maxima are used in the undecimated wavelet transform (UDWT domain in order to detect the others peaks (P, T. This detection is performed by using a varying-length window that is moving along the whole signal. For evaluating the proposed method, we have compared it to others techniques based on wavelets. In this evaluation, we have used many ECG signals taken from MIT-BIH database. The obtained results show that the proposed method outperforms a number of conventional techniques used for our evaluation.
Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C.
2014-03-01
Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32-2.97 MPa, ultimate tensile strength of 3.51-7.65 MPa, compressive modulus of 117.8-186.9 MPa and ultimate compressive strength of 28.4-51.7 GPa in a range up to 40% strain and hardness of 44-54 ShA.
Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region
DEFF Research Database (Denmark)
Nishiyama, N.; Inoue, A.; Jiang, Jianzhong
2001-01-01
In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus......, and Lame parameter), together with Debye temperature, gradually decrease with increasing temperature through the glass transition temperature as the Poisson's ratio increases. The behavior of the velocity of transverse wave vs. temperature in the supercooled liquid region could be explained by viscosity...... flow, rather than the two different crystallization processes in the region, suggested in the literature. No decomposition was detected at a temperature only 5 K below the crystallization temperature....
Bacon, J. F.
1971-01-01
Emphasis on the consideration of glass formation on a kinetic process made it possible to think of glass compositions different from those normally employed in the manufacture of glass fibers. Approximately 450 new glass compositions were prepared and three dozen of these compositions have values for Young's modulus measured on bulk specimens greater than nineteen million pounds per square inch. Of the new glasses about a hundred could be drawn into fibers by mechanical methods at high speeds. The fiber which has a Young's modulus measured on the fiber of 18.6 million pounds per square inch and has been prepared in quantity as a monofilament (to date more than 150 million lineal feet of 0.2 to 0.4 mil fiber have been produced). This fiber has also been successfully incorporated both in epoxy and polyimide matrices. The epoxy resin composite has shown a modulus forty percent better than that achievable using the most common grade of competitive glass fiber, and twenty percent better than that obtainable with the best available grade of competitive glass fiber. Other glass fibers of even higher modulus have been developed.
Size dependent elastic modulus and mechanical resilience of dental enamel.
O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan
2014-03-21
Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained.
Young’s modulus of [111] germanium nanowires
Energy Technology Data Exchange (ETDEWEB)
Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2015-11-01
This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.
Young’s modulus of [111] germanium nanowires
Directory of Open Access Journals (Sweden)
M. Maksud
2015-11-01
Full Text Available This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs. When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.
Separation of attractors in 1-modulus quantum corrected special geometry
Bellucci, S; Marrani, A; Shcherbakov, A
2008-01-01
We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...
Young's modulus surface and Poisson's ratio curve for tetragonal crystals
Institute of Scientific and Technical Information of China (English)
Zhang Jian-Min; Zhang Yan; Xu Ke-Wei; Ji Vincent
2008-01-01
This paper gives the general expressions for the compliance s'ijkl,Young's modulus E(hkl) and Poisson's ratio v(hkl,θ) along arbitrary loading direction [hkl] for tetragonal crystals.The representation surface for which the length of the radius vector in the [hkl] direction equals E(hkl) and representation curve for which the length of the radius vector with angle θ deviated from the reference directions [001],[100],[001],[101] and [112] equals v(100,θ),v(001,θ),v(110,θ),v(101,θ) and v(111,θ) respectively,are constructed for nine tetragonal crystals (ammonium dihydrogen arsenate,ammonium dihydrogen phosphate,barium titanate,indium,nickel sulfate,potassium dihydrogen arsenate,potassium dihydrogen phosphate,tin and zircon).The characteristics of them are analysed in detail.
Measurement of corneal tangent modulus using ultrasound indentation.
Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping
2016-09-01
Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo. PMID:27262352
Size effects of effective Young's modulus for periodic cellular materials
Institute of Scientific and Technical Information of China (English)
DAI GaoMing; ZHANG WeiHong
2009-01-01
With the wide demands of cellular materials applications in aerospace and civil engineering, research effort sacrificed for this type of materials attains nowadays a higher level than ever before. This paper is focused on the prediction methods of effective Young's modulus for periodical cellular materials. Based on comprehensive studies of the existing homogenization method (HM), the G-A meso-me-chanice method (G-A MMM) and the stretching energy method (SEM) that are unable to reflect the size effect, we propose the bending energy method (BEM) for the first time, and a comparative study of these four methods is further made to show the generality and the capability of capturing the size effect of the BEM method. Meanwhile, the underlying characteristics of each method and their relations are clarified. To do this, the detailed finite element computing and existing experimental results of hex-agonal honeycombs from the literature are adopted as the standard of comparison for the above four methods. Stretch and bending models of periodical cellular materials are taken into account, respec-tively for the comparison of stretch and flexural displacements resulting from the above methods. We conclude that the BEM has the strong ability of both predicting the effective Young's modulus and re- vealing the size effect. Such a method is also able to predict well the variations of structural displace-ments in terms of the cell size under stretching and bending loads including the non-monotonous variations for the hexagonal cell. On the contrary, other three methods can only predict the limited re- sults whenever the cell size tends to be infinitely small.
DEFF Research Database (Denmark)
Hecksher, Tina; Olsen, Niels Boye; Nelson, Keith Adam;
2013-01-01
We present dynamic shear and bulk modulus measurements of supercooled tetraphenyl-tetramethyl-trisiloxane (DC704) and 5-phenyl-4-ether over a range of temperatures close to their glass transition. The data are analyzed and compared in terms of time-temperature superposition (TTS), the relaxation...... time, and the spectral shape parameters. We conclude that TTS is obeyed to a good approximation for both the bulk and shear moduli. The loss-peak shapes are nearly identical, while the shear modulus relaxes faster than the bulk modulus. The temperature dependence of this decoupling of time scales...... is constant over the temperature range explored here. In addition, we demonstrate how one can measure reliably the DC shear viscosity over ten orders of magnitude by using the two measuring techniques in combination....
Pengaruh Modulus Cor Riser Terhadap Cacat Penyusutan Pada Produk Paduan Al-Si
Directory of Open Access Journals (Sweden)
Soejono Tjitro
2002-01-01
Full Text Available Shrinkage defect can be eliminated or reduced by controlling the casting modulus of riser. Casting modulus is ratio volume to surface area of castings. The higher casting modulus of riser, the longer solidification time of melted metal. Therefore the temperature gradient of melted metal become lower. However, the temperature gradient is also influenced by the composition of aluminum-silicon alloys. This research investigates 7% Al-Si alloy and 12.5% Al-Si alloy using two type of risers with different casting modulus. The casting process is sand casting. The research result shows that casting modulus of riser and alloys composition influence shrinkage defect. However, for the same Al-Si alloys, grain size isn't influenced by casting modulus of riser. Abstract in Bahasa Indonesia : Cacat penyusutan dapat dieliminir atau dikurangi dengan mengontrol modulus cor riser. Modulus cor merupakan perbandingan antara volume terhadap luas permukaan coran. Modulus cor besar berarti waktu pembekuan cairan logam lebih lama. Akibatnya gradien temperatur cair logam rendah. Namun demikian, gradien temperatur cair logam juga dipengaruhi oleh komposisi paduan aluminium-silikon. Penelitian ini menggunakan paduan Al-Si 7% dan Al-Si 12,5% . Riser yang digunakan dua jenis yang memiliki modulus cor yang berbeda. Proses pengecoran yang digunakan adalah pengecoran dengan cetakan pasir. Hasil penelitian menunjukkan bahwa modulus cor riser dan komposisi paduan berpengaruh terhadap terjadinya cacat penyusutan. Besar butir tidak dipengaruhi oleh modulus cor riser untuk paduan Al-Si yang sama. Kata kunci: modulus cor, cacat penyusutan, paduan Al-Si.
Blaise, A.; André, S.; Delobelle, P.; Meshaka, Y.; Cunat, C.
2016-04-01
Exact measurements of the rheological parameters of time-dependent materials are crucial to improve our understanding of their intimate relation to the internal bulk microstructure. Concerning solid polymers and the apparently simple determination of Young's modulus in tensile tests, international standards rely on basic protocols that are known to lead to erroneous values. This paper describes an approach allowing a correct measurement of the instantaneous elastic modulus of polymers by a tensile test. It is based on the use of an appropriate reduced model to describe the behavior of the material up to great strains, together with well-established principles of parameter estimation in engineering science. These principles are objective tools that are used to determine which parameters of a model can be correctly identified according to the informational content of a given data set. The assessment of the methodology and of the measurements is accomplished by comparing the results with those obtained from two other physical experiments, probing the material response at small temporal and length scales, namely, ultrasound measurements with excitation at 5 MHz and modulated nanoindentation tests over a few nanometers of amplitude.
International Nuclear Information System (INIS)
High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated
Directory of Open Access Journals (Sweden)
Peida Hao
2014-01-01
Full Text Available In situ nanoindentation was employed to probe the mechanical properties of individual polycrystalline titania (TiO2 microspheres. The force-displacement curves captured by a hybrid scanning electron microscope/scanning probe microscope (SEM/SPM system were analyzed based on Hertz’s theory of contact mechanics. However, the deformation mechanisms of the nano/microspheres in the nanoindentation tests are not very clear. Finite element simulation was employed to investigate the deformation of spheres at the nanoscale under the pressure of an AFM tip. Then a revised method for the calculation of Young’s modulus of the microspheres was presented based on the deformation mechanisms of the spheres and Hertz’s theory. Meanwhile, a new force-displacement curve was reproduced by finite element simulation with the new calculation, and it was compared with the curve obtained by the nanoindentation experiment. The results of the comparison show that utilization of this revised model produces more accurate results. The calculated results showed that Young’s modulus of a polycrystalline TiO2 microsphere was approximately 30% larger than that of the bulk counterpart.
The critical behavior of shear modulus in solid-liquid mixing phase
Institute of Scientific and Technical Information of China (English)
RAN; XianWen
2007-01-01
The behavior of shear modulus in solid-liquid mixing phase has been discussed and analyzed. The result was concluded that shear modulus went to zero as the melting mass ratio attained a critical value. The percolation theory model we proposed showed that this value was about 0.68742. The melting-induced destabilizing factor of material proposed by us can represent phenomenologically the change of shear modulus in melting process.……
The critical behavior of shear modulus in solid-liquid mixing phase
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
@@ The behavior of shear modulus in solid-liquid mixing phase has been discussed and analyzed. The result was concluded that shear modulus went to zero as the melting mass ratio attained a critical value. The percolation theory model we proposed showed that this value was about 0.68742. The melting-induced destabilizing factor of material proposed by us can represent phenomenologically the change of shear modulus in melting process.
A Prediction Method of Tensile Young's Modulus of Concrete at Early Age
Isamu Yoshitake; Farshad Rajabipour; Yoichi Mimura; Andrew Scanlon
2012-01-01
Knowledge of the tensile Young's modulus of concrete at early ages is important for estimating the risk of cracking due to restrained shrinkage and thermal contraction. However, most often, the tensile modulus is considered equal to the compressive modulus and is estimated empirically based on the measurements of compressive strength. To evaluate the validity of this approach, the tensile Young's moduli of 6 concrete and mortar mixtures are measured using a direct tension test. The results sh...
Goldilocks models of higher-dimensional inflation (including modulus stabilization)
Burgess, C. P.; Enns, Jared J. H.; Hayman, Peter; Patil, Subodh P.
2016-08-01
We explore the mechanics of inflation within simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like inasmuch as they are just complicated enough to include a mechanism to stabilize the extra-dimensional size (or modulus), yet simple enough to solve explicitly the full extra-dimensional field equations using only simple tools. The solutions are not restricted to the effective 4D regime with H ll mKK (the latter referring to the characteristic mass splitting of the Kaluza-Klein excitations) because the full extra-dimensional Einstein equations are solved. This allows an exploration of inflationary physics in a controlled calculational regime away from the usual four-dimensional lamp-post. The inclusion of modulus stabilization is important because experience with string models teaches that this is usually what makes models fail: stabilization energies easily dominate the shallow potentials required by slow roll and so open up directions to evolve that are steeper than those of the putative inflationary direction. We explore (numerically and analytically) three representative kinds of inflationary scenarios within this simple setup. In one the radion is trapped in an inflaton-dependent local minimum whose non-zero energy drives inflation. Inflation ends as this energy relaxes to zero when the inflaton finds its own minimum. The other two involve power-law scaling solutions during inflation. One of these is a dynamical attractor whose features are relatively insensitive to initial conditions but whose slow-roll parameters cannot be arbitrarily small; the other is not an attractor but can roll much more slowly, until eventually transitioning to the attractor. The scaling solutions can satisfy H > mKK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict η simeq 0 and so r simeq 0.11 when ns simeq 0.96 and so
Bulk Density Adjustment of Resin-Based Equivalent Material for Geomechanical Model Test
Directory of Open Access Journals (Sweden)
Pengxian Fan
2015-01-01
Full Text Available An equivalent material is of significance to the simulation of prototype rock in geomechanical model test. Researchers attempt to ensure that the bulk density of equivalent material is equal to that of prototype rock. In this work, barite sand was used to increase the bulk density of a resin-based equivalent material. The variation law of the bulk density was revealed in the simulation of a prototype rock of a different bulk density. Over 300 specimens were made for uniaxial compression test. Test results indicated that the substitution of quartz sand by barite sand had no apparent influence on the uniaxial compressive strength and elastic modulus of the specimens but can increase the bulk density, according to the proportional coarse aggregate content. An ideal linearity was found in the relationship between the barite sand substitution ratio and the bulk density. The relationship between the bulk density and the usage of coarse aggregate and barite sand was also presented. The test results provided an insight into the bulk density adjustment of resin-based equivalent materials.
Mining the bulk positron lifetime
Energy Technology Data Exchange (ETDEWEB)
Aourag, H.; Guittom, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger Gare - Algiers (Algeria)
2009-02-15
We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Mining the bulk positron lifetime
International Nuclear Information System (INIS)
We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Advances in bulk port development
Energy Technology Data Exchange (ETDEWEB)
Soros, P. (Soros Associates Consulting Engineers, New York, NY (USA))
1991-03-01
The article features several recently developed bulk ports which illustrate aspects of new technology or concepts in maritime transport. Low handling capacity bulk terminals at Ponta da Madeira, Brazil and Kooragang Island, Australia and the low-cost bulk port at Port of Corpus Christi, Texas are described. Operations at the ports of Pecket and Tocopilla in Chile, which had special technical problems, are mentioned. Coal terminals at Port Kembla, Australia and St. Johns River in Florid Jacksonville, Florida are featured as examples of terminals which had to be designed to meet high environmental standards. 13 refs., 2 figs., 14 photos.
Low elastic modulus titanium–nickel scaffolds for bone implants
Energy Technology Data Exchange (ETDEWEB)
Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming, E-mail: jianming@csu.edu.cn
2014-01-01
The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property.
Origin of negative density and modulus in acoustic metamaterials
Lee, Sam H.; Wright, Oliver B.
2016-01-01
This paper provides a review and fundamental physical interpretation for the effective densities and moduli of acoustic metamaterials. We introduce the terminology of hidden force and hidden source of volume: the effective density or modulus is negative when the hidden force or source of volume is larger than, and operates in antiphase to, respectively, the force or volume change that would be obtained in their absence. We demonstrate this ansatz for some established acoustic metamaterials with elements based on membranes, Helmholtz resonators, springs, and masses. The hidden force for membrane-based acoustic metamaterials, for instance, is the force from the membrane tension. The hidden source for a Helmholtz-resonator-based metamaterial is the extra air volume injected from the resonator cavity. We also explain the analogous concepts for pure mass-and-spring systems, in which case, hidden forces can arise from masses and springs fixed inside other masses, whereas hidden sources—more aptly termed hidden expanders of displacement in this case—can arise from light rigid trusses coupled to extra degrees of freedom for mechanical motion such as the case of coupling to masses that move at right angles to the wave-propagation direction. This overall picture provides a powerful tool for conceptual understanding and design of new acoustic metamaterials, and avoids common pitfalls involved in determining the effective parameters of such materials.
Dentinogenesis imperfecta - hardness and Young's modulus of teeth.
Wieczorek, Aneta; Loster, Jolanta; Ryniewicz, Wojciech; Ryniewicz, Anna M
2013-01-01
Dentinogenesis imperfecta type II (DI-II) is the most common dental genetic disease with reported incidence 1 in 8000. Elasticity and hardness of the enamel of teeth are important values which are connected with their resistance to attrition. It is hypothesized that values of physical properties for healthy teeth and teeth with DI-II are different. The aim of the study was to investigate some physical properties of teeth extracted from patients with DI-II in comparison with normal teeth. The material of the study was six teeth: three lower molars, with clinical signs of DI-II, which were extracted due to complications of pulp inflammation and three other lower molars which were extracted for orthodontic reasons - well formed, without any signs of pathology. The surfaces of DI-II and normal teeth were tested on the CSM Instruments Scratch Tester machine (producer CSEM Switzerland) by Oliver and Pharr method. The indenter used was Vicker's VG-73 diamond indenter. Additionally, the Scanning Electron Microscopy (SEM) analysis of the surface of the teeth with DI-II was made. Vickers hardness of the teeth with dental pathology (DI-II) was seven times smaller, and Young's modulus six times smaller than those of healthy teeth. The parameters of hardness and elasticity of enamel of teeth with clinical diagnosis of DI-II were very much smaller than in normal teeth and because of that can be responsible for attrition.
Polymerization Shrinkage and Flexural Modulus of Flowable Dental Composites
Directory of Open Access Journals (Sweden)
Janaína Cavalcanti Xavier
2010-09-01
Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of low-viscosity resin composites (Admira Flow™, Grandio Flow™/VOCO; Filtek Z350 Flow™/3M ESPE; Tetric Flow™/Ivoclar-Vivadent was evaluated using a well-established conventional micro-hybrid composite as a standard (Filtek Z250™/3M ESPE. For the measurement of LPS, composites were applied to a cylindrical metallic mould and polymerized (n = 8. The gap formed at the resin/mould interface was observed using SEM (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. The conventional resin presented significantly lower LPS associated with high FS and ME, but only the ME values of the conventional resin differed significantly from the low-viscosity composites. The relationship between ME and LPS of low-viscosity resin composites when used as restorative material is a critical factor in contraction stress relief and marginal leakage.
Tensile Modulus Measurements of Carbon Nanotube Incorporated Electrospun Polymer Fibers
Ozturk, Yavuz; Kim, Jaemin; Shin, Kwanwoo
2006-03-01
Electrospinning has become a popular method for producing continuous polymer fibers with diameters in sub-micron scale. By this technique uniaxially aligned fibers can also be obtained, by using two separate parallel strips as conductive collectors. Uniaxial alignment of polymer fibers gives us the chance to well-characterize their structural properties via tensile modulus measurements. Here we report a simple and new technique for tensile testing of polymer fibers which employs a computerized spring-balance/step-motor setup. The key point in our technique is the production of fibers directly on the tensile tester by using two vertical strips as collectors. By this way, even fibers of very brittle nature can be tested without handling them. Calculation of total cross-sectional areas - which is crucial for determining stress values - was done by using scanning electron and optical microscope images for each sample. In this study we have investigated mechanical properties of Polystyrene (PS), Polymethylmethacrylate (PMMA) and PS/PMMA blend fibers; as well as Carbon Nanotube (CNT) incorporated PS, PMMA and PS/PMMA blend fibers. It is expected that the extraordinary mechanical properties of CNTs can be transferred into polymer matrix, by their incorporation into confined space within electrospun fibers. Here we analyzed the influence of CNT on polymer fibers as function of CNT amounts.
Impedance and modulus spectroscopic study of nano hydroxyapatite
Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.
2016-05-01
Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.
Short Exon Detection via Wavelet Transform Modulus Maxima.
Zhang, Xiaolei; Shen, Zhiwei; Zhang, Guishan; Shen, Yuanyu; Chen, Miaomiao; Zhao, Jiaxiang; Wu, Renhua
2016-01-01
The detection of short exons is a challenging open problem in the field of bioinformatics. Due to the fact that the weakness of existing model-independent methods lies in their inability to reliably detect small exons, a model-independent method based on the singularity detection with wavelet transform modulus maxima has been developed for detecting short coding sequences (exons) in eukaryotic DNA sequences. In the analysis of our method, the local maxima can capture and characterize singularities of short exons, which helps to yield significant patterns that are rarely observed with the traditional methods. In order to get some information about singularities on the differences between the exon signal and the background noise, the noise level is estimated by filtering the genomic sequence through a notch filter. Meanwhile, a fast method based on a piecewise cubic Hermite interpolating polynomial is applied to reconstruct the wavelet coefficients for improving the computational efficiency. In addition, the output measure of a paired-numerical representation calculated in both forward and reverse directions is used to incorporate a useful DNA structural property. The performances of our approach and other techniques are evaluated on two benchmark data sets. Experimental results demonstrate that the proposed method outperforms all assessed model-independent methods for detecting short exons in terms of evaluation metrics. PMID:27635656
Bulk Nuclear Properties from Reactions
Danielewicz, P.
2002-01-01
Extraction of bulk nuclear properties by comparing reaction observables to results from semiclassical transport-model simulations is discussed. Specific properties include the nuclear viscosity, incompressibility and constraints on the nuclear pressure at supranormal densities.
Institute of Scientific and Technical Information of China (English)
杨欢; 邢玲玲; 张穗萌; 吴兴举; 袁好
2015-01-01
Based on the interaction potential among particles and the isothermal bulk modulus ,we had discussed the rule of pres‐sure dependence of the isothermal bulk modulus with Born‐Mie potential and Born‐Mayer potential and Harrison potential .The conclusions shows that calculated results with Harrison potential were in good agreement with the available experimental data .%从体积弹性模量与原子相互作用势的关系出发，分别利用Born‐Mie势、Born‐Mayer势和 Harrison交叉排斥势函数来讨论弹性模量随压强变化的规律，结果表明，用Harrison交叉排斥势函数得到的理论预测值与实验结果吻合得很好。
Experimentally-based relaxation modulus of polyurea and its composites
Jia, Zhanzhan; Amirkhizi, Alireza V.; Nantasetphong, Wiroj; Nemat-Nasser, Sia
2016-06-01
Polyurea is a block copolymer that has been widely used in the coating industry as an abrasion-resistant and energy-dissipative material. Its mechanical properties can be tuned by choosing different variations of diamines and diisocyanates as well as by adding various nano- and micro-inclusions to create polyurea-based composites. Our aim here is to provide the necessary experimentally-based viscoelastic constitutive relations for polyurea and its composites in a format convenient to support computational studies. The polyurea used in this research is synthesized by the reaction of Versalink P-1000 (Air Products) and Isonate 143L (Dow Chemicals). Samples of pure polyurea and polyurea composites are fabricated and then characterized using dynamic mechanical analysis (DMA). Based on the DMA data, master curves of storage and loss moduli are developed using time-temperature superposition. The quality of the master curves is carefully assessed by comparing with the ultrasonic wave measurements and by Kramers-Kronig relations. Based on the master curves, continuous relaxation spectra are calculated, then the time-domain relaxation moduli are approximated from the relaxation spectra. Prony series of desired number of terms for the frequency ranges of interest are extracted from the relaxation modulus. This method for developing cost efficient Prony series has been proven to be effective and efficient for numerous DMA test results of many polyurea/polyurea-based material systems, including pure polyurea with various stoichiometric ratios, polyurea with milled glass inclusions, polyurea with hybrid nano-particles and polyurea with phenolic microbubbles. The resulting viscoelastic models are customized for the frequency ranges of interest, reference temperature and desired number of Prony terms, achieving both computational accuracy and low cost. The method is not limited to polyurea-based systems. It can be applied to other similar polymers systems.
Measurement of the dynamic shear modulus of surface layers I. Theory
Waterman, Herman A.
1984-01-01
In measuring the dynamic surface-shear modulus of a surface layer on a liquid, conditions may occur—low-shear modulus and/or high frequencies—which promote wave-propagation effects to play a predominant role. A theory is presented with the help of which the (complex) wave number of the wave in the l
A^I-statistical convergence with respect to a sequence of modulus functions
Yamancı, Ulaş; GÜRDAL, MEHMET; Saltan, Suna
2012-01-01
In this paper, we introduce the notion of A^{I}-[V,λ]-summability and A^{I}-λ-statistical convergence with respect to a sequence of modulus functions. We basically study some connections between A^{I}-λ-statistical convergence and A^{I}-statistical convergence with respect to a sequence of modulus functions.
Determination of young's modulus of PZT-influence of cantilever orientation
Nazeer, H.; Woldering, L.A.; Abelmann, L.; Elwenspoek, M.C.
2010-01-01
Calculation of the resonance frequency of cantilevers fabricated from an elastically anisotropic material requires the use of an effective Young’s modulus. In this paper a technique to determine the appropriate effective Young’s modulus for arbitrary cantilever geometries is introduced. This techniq
Some multiordered difference sequence spaces of fuzzy real numbers defined by modulus function
Manmohan Das; Bipul Sarma
2016-01-01
In this article we introduce some new multi ordered difference operator on sequence spaces of fuzzy real numbers by using modulus function and study their some algebraic and topological properties. Also we study some statistical convergent sequence space of fuzzy real numbers defined by modulus function.
Estimation of the Young’s modulus of cellulose Iß by MM3 and quantum mechanics
Young’s modulus provides a measure of the resistance to deformation of an elastic material. In this study, modulus estimations for models of cellulose Iß relied on calculations performed with molecular mechanics (MM) and quantum mechanics (QM) programs. MM computations used the second generation emp...
A Prediction Method of Tensile Young's Modulus of Concrete at Early Age
Directory of Open Access Journals (Sweden)
Isamu Yoshitake
2012-01-01
Full Text Available Knowledge of the tensile Young's modulus of concrete at early ages is important for estimating the risk of cracking due to restrained shrinkage and thermal contraction. However, most often, the tensile modulus is considered equal to the compressive modulus and is estimated empirically based on the measurements of compressive strength. To evaluate the validity of this approach, the tensile Young's moduli of 6 concrete and mortar mixtures are measured using a direct tension test. The results show that the tensile moduli are approximately 1.0–1.3-times larger than the compressive moduli within the material's first week of age. To enable a direct estimation of the tensile modulus of concrete, a simple three-phase composite model is developed based on random distributions of coarse aggregate, mortar, and air void phases. The model predictions show good agreement with experimental measurements of tensile modulus at early age.
Experimental and Theoretical Study of Young Modulus in Micromachined Polysilicon Films
Institute of Scientific and Technical Information of China (English)
丁建宁; 孟永钢; 温诗铸
2002-01-01
The elastic modulus is a very important mechanical property in micromachined structures. Several design issues such as resonant frequencies and stiffness in the micromachined structures are related to the elastic modulus. In addition, the accuracy of results from finite element models is highly dependent upon the elastic modulus. In this study, the Young modulus of micromachined thin polysilicon films has been investigated with a new tensile test machine using a magnetic-solenoid force actuator with linear response, low hysteresis, no friction and direct electrical control. The tensile test results show that the measured average value of Young modulus for a typical sample, (164±1.2) GPa, falls within the theoretical bounds of the texture model. These results will provide more reliable design of polysilicon microelectromechanical systems (MEMS).
DEFF Research Database (Denmark)
Ding, Ming
2004-01-01
and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified...... matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes...... in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage. Udgivelsesdato: 2004 May...
Chakoumakos, B. C.; Oliver, W. C.; Lumpkin, G. R.; Ewing, R. C.
1991-12-01
For a natural single crystal of zircon, ZrSiO4, from Sri Lanka, exhibiting zonation in U and Th contents, the hardness and elastic modulus have been determined as a function of α-decay dose using a mechanical properties microprobe (MPM). The zones vary in thickness from one to hundreds of micrometers, and have uranium and thorium concentrations such that the α-decay dose varies between 2 ? 1015 and 1 ? 1016 α-decay events/mg (0.15 to 0.65 dpa, displacement per atom). The transition from the crystalline to the aperiodic metamict state occurs over this dose range. For a traverse of 75 indent pairs across layers sampling a large portion of the crystalline-to-metamict transition (3.7 ? 1015 to 9.7 ? 1015 α-decay events/mg) both the hardness and elastic modulus decrease linearly with increasing α-decay dose. The radiation-induced softening follows a behavior similar to other radiation-induced changes, that is with the expansion of the unit cell parameters there is a decrease in density, birefringence, hardness and bulk modulus.
Maldacena, Juan; Zhiboedov, Alexander
2015-01-01
We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.
Bulk Viscosity of Interacting Hadrons
Wiranata, A.; M. Prakash
2009-01-01
We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature ari...
Bulk Viscosity of Interacting Hadrons
Wiranata, A
2009-01-01
We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.
Room-temperature dynamic quasi-elastic mechanical behavior of a Zr-Cu-Fe-Al bulk metallic glass
Energy Technology Data Exchange (ETDEWEB)
Zadorozhnyy, V.Yu.; Zadorozhnyy, M.Yu.; Shuryumov, A.Yu.; Golovin, I.S. [National University of Science and Technology ' ' MISiS' ' , 119049, Moscow (Russian Federation); Ketov, S.V.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577 (Japan)
2016-02-15
The paper represents storage modulus and internal friction modulation upon cyclic loading of Zr{sub 61}Cu{sub 27}Fe{sub 2}Al{sub 10} bulk metallic glassy samples within quasi-reversible deformation regime. The structure of the samples was studied by X-ray diffraction and transmission electron microscopy including high-resolution imaging and selected-area electron diffraction. It is found that kinetically frozen anelastic deformation accumulates on mechanical cycling at room temperature and causes an increase in the storage modulus and even nanocrystallization of a metallic glassy phase after a certain number of cycles. The study has shown that even a minor cyclic deformation in an elastic region can lead to the changes the atomic structure and in turn affect the elastic modulus. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Numerical study of pile-up in bulk metallic glass during spherical indentation
Institute of Scientific and Technical Information of China (English)
Al Ke; DAI LanHong
2008-01-01
Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness, Young's modulus, stress-strain response, etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model, the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up, and the results agree well with the data generated by numerical simulation.
Numerical study of pile-up in bulk metallic glass during spherical indentation
Institute of Scientific and Technical Information of China (English)
2008-01-01
Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness,Young’s modulus,stress-strain response,etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model,the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up,and the results agree well with the data generated by numerical simulation.
Quasistatic vs. Dynamic Modulus Measurements Of Plasma-Sprayed Thermal Barrier Coatings
Eldridge, J. I.; Morscher, G. N.; Choi, S. R.
2002-01-01
Plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) have been demonstrated to exhibit nonlinear hysteretic elastic behavior by quasistatic cyclic compression and cylindrical punch indentation measurements. In particular, the instantaneous (tangential) elastic modulus increases with applied stress and exhibits significant hysteresis during cycling. Sound velocity (dynamic) measurements also show an increase in TBC modulus with applied compressive stress, but in contrast show no significant hysteresis for the modulus during cycling. The nonlinear elastic behavior of the TBCs evidenced by these tests is attributed to coating compaction and internal sliding. The differences between the quasistatic and dynamic measurements are explained by the relative absence of the effect of internal sliding in the dynamic modulus measurements. By incorporating short load reversals into the larger loading cycle and measuring the instantaneous modulus at the start of each load reversal, the effects of internal sliding can be substantially reduced in the quasistatic measurements, and the resulting modulus values show good agreement with the modulus values determined by dynamic sound velocity measurements.
Effect of Elastic Modulus on Biomechanical Properties of Lumbar Interbody Fusion Cage
Institute of Scientific and Technical Information of China (English)
Yue Zhu; Fusheng Li; Shujun Li; Yulin Hao; Rui Yang
2009-01-01
This work focuses on the influence of elastic modulus on biomechanical properties of lumbar interbody fusion cages by selecting two titanium alloys with different elastic modulus.They were made by a new β type alloy with chemical composition of Ti-24Nb-4Zr-7.6Sn having low Young's modulus ～50 GPa and by a conventional biomedical alloy Ti-6Al-4V having Young's modulus ～110 GPa.The results showed that the designed cages with low modulus (LMC) and high modulus (HMC) can keep identical compression load ～9.8 kN and endure fatigue cycles higher than 5× 106 without functional or mechanical failure under 2.0 kN axial compression.The anti-subsidence ability of both group cages were examined by axial compression of thoracic spine specimens (T9～T10) dissected freshly from the calf with averaged age of 6 months.The results showed that the LMC has better anti-subsidence ability than the HMC (p<0.05).The above results suggest that the cage with low elastic modulus has great potential for clinical applications.
Development of a multivariate empirical model for predicting weak rock mass modulus
Institute of Scientific and Technical Information of China (English)
Kallu Raj R.; Keffeler Evan R.; Watters Robert J.; Agharazi Alireza
2015-01-01
Estimating weak rock mass modulus has historically proven difficult although this mechanical property is an important input to many types of geotechnical analyses. An empirical database of weak rock mass modulus with associated detailed geotechnical parameters was assembled from plate loading tests per-formed at underground mines in Nevada, the Bakhtiary Dam project, and Portugues Dam project. The database was used to assess the accuracy of published single-variate models and to develop a multivari-ate model for predicting in-situ weak rock mass modulus when limited geotechnical data are available. Only two of the published models were adequate for predicting modulus of weak rock masses over lim-ited ranges of alteration intensities, and none of the models provided good estimates of modulus over a range of geotechnical properties. In light of this shortcoming, a multivariate model was developed from the weak rock mass modulus dataset, and the new model is exponential in form and has the following independent variables:(1) average block size or joint spacing, (2) field estimated rock strength, (3) dis-continuity roughness, and (4) discontinuity infilling hardness. The multivariate model provided better estimates of modulus for both hard-blocky rock masses and intensely-altered rock masses.
Bulk viscosity and deflationary universes
Lima, J A S; Waga, I
2007-01-01
We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.
Longitudinal bulk acoustic mass sensor
DEFF Research Database (Denmark)
Hales, Jan Harry; Teva, Jordi; Boisen, Anja;
2009-01-01
A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...
The Experiment and Simulation Method to Calibrate the Shear Modulus of Individual ZnO Nanorod.
Yu, Guangbin; Jiang, Chengming; Dai, Bing; Song, Jinhui
2016-04-01
A general method is presented to directly measure the shear modulus of an individual nanorod using atomic force microscope (AFM). To obtain shear modulus with less experiment error, finite element simulation is employed to simulate the twisting process of a ZnO nanorod. Based on the experimental measurements, the shear modulus of ZnO nanorod with 4 µm in length and 166 nm in radius is characterized to be 9.1 ± 0.2 GPa, which is obviously more accurate than the simple averaged experimental result. PMID:27451763
Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope
Zhou, Zhoulong
2012-04-01
The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.
Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells
Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.
2013-09-01
The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.
The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass
Energy Technology Data Exchange (ETDEWEB)
Huang, Yongjiang, E-mail: yjhuang@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Zhou, Binjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chiu, YuLung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Fan, Hongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Dongjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Sun, Jianfei; Shen, Jun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)
2014-09-01
Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory.
Institute of Scientific and Technical Information of China (English)
姚文娟; 叶志明
2004-01-01
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus
DEFF Research Database (Denmark)
Madsen, Bo; Joffe, Roberts; Peltola, Heidi;
2011-01-01
This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... fraction is used as the basic independent variable. The values of the input model parameters are derived from experimental studies of the configuration of the composites (volumetric composition, dimensions, and orientation of fibers), as well as the properties of the constituent fiber and matrix phases...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....
Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus
National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...
Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus
National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...
Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand
Directory of Open Access Journals (Sweden)
Qingchun XIANG
2004-08-01
Full Text Available Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate viscoelastic properties of molding sand.
Experimental Study of Estimating the Subgrade Reaction Modulus on Jointed Rock Foundations
Lee, Jaehwan; Jeong, Sangseom
2016-06-01
The subgrade reaction modulus for rock foundations under axial loading is investigated by model footing tests. This study focuses on quantifying a new subgrade reaction modulus by considering rock discontinuities. A series of model-scale footing tests are performed to investigate the effects of the unconfined compressive strength, discontinuity spacing and inclination of the rock joint. Based on the experimental results, it is observed that the subgrade reaction modulus of the rock with discontinuities decreases by up to approximately 60 % of intact rock. In addition, it is found that the modulus of subgrade reaction is proportional to the discontinuity spacing, and it decreases gradually within the range of 0°-30° and tends to increase within the range of 30°-90°.
Elastic Modulus and Hardness of Cr-Nb Nano-Multilayers
Institute of Scientific and Technical Information of China (English)
YANG Meng-Jin; LAI Wen-Sheng; PAN Feng
2007-01-01
Cr-Nb nano-multilayered films with various modulation wavelengths ∧ are prepared by e-gun evaporation and their mechanical properties are investigated. Cr and Nb both have bcc structures with large differences in lattice constants and Young's modulus, which are supposed to favour modulus enhancement. Nevertheless,nano-indention measurements show no enhancement for the modulus and a slight decrease for the hardness with decreasing ∧ down to 6 nm. This is mainly due to counter-contribution to modulus from adjacent layers subjected to reverse strains, in agreement with recent theoretical study, while the decrease of hardness arises from grain boundary sliding. Interestingly, at ∧ = 3 nm, the hardness of the film has an increase of 44% relative to the value of a rule of mixture, owing to the emergence of a new phase for reconciling the structure difference at the interfaces.
The dimensional stability and elastic modulus of cemented simulant Winfrith reactor (SGHWR) sludge
International Nuclear Information System (INIS)
Dimensional changes and elastic modulus have been monitored on cemented simulant sludge stored in various environments. Specimens prepared using a blended cement show no serious detrimental effects during sealed storage, underwater storage or freeze/thaw cycling. (author)
Institute of Scientific and Technical Information of China (English)
WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min
2006-01-01
In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law,the model can predict the engineering elastic constant of a composite effectively.
Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus
National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...
Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation
Institute of Scientific and Technical Information of China (English)
WANG X J; CHEN X B; HODGSON P D; WEN C E
2006-01-01
The elastic modulus and hardness of several microstructure components of dry bovine vertebrae and tibia have been investigated in the longitude and transverse directions using nanoindentation. The elastic modulus for the osteons and the interstitial lamellae in the longitude direction were found to be (24.7±2.5) GPa and (30.1±2.4) GPa. As it's difficult to distinguish osteons from interstitial lamellae in the transverse direction,the average elastic modulus for cortical bovine bone in the transverse direction was (19.8±1.6) GPa. The elastic modulus for trabecular bone in the longitude and transverse direction were (20±2) GPa and (14.7±1.9) GPa respectively. The hardness also varied among the microstructure components in the range of 0.41-0.89 GPa. Analyses of variance show that the values are significantly different.
Evaluation of Young's Modulus and Residual Stress of NiFe Film by Microbridge Testing
Institute of Scientific and Technical Information of China (English)
Zhimin ZHOU; Yong ZHOU; Mingjun WANG; Chunsheng YANG; Ji'an CHEN; Wen DING; Xiaoyu GAO; Taihua ZHANG
2006-01-01
Microbridge testing was used to measure the Young's modulus and residual stress of metallic films. Samples of freestanding NiFe film microbridge were fabricated by microelectromechanical systems. Special ceramic shaft structure was designed to solve the problem of getting the load-deflection curve of NiFe film microbridge by the Nanoindenter XP system with normal Berkovich probe. Theoretical analysis of load-deflection curves of the microbridges was proposed to evaluate the Young's modulus and residual stress of the films simultaneously. The calculated results based on experimental measurements show that the average Young's modulus and residual stress for the electroplated NiFe films are 203.2 GPa and 333.0 MPa, respectively, while the Young's modulus measured by the Nano-hardness method is 209.6±11.8 GPa for the thick NiFe film with silicon substrate.
Institute of Scientific and Technical Information of China (English)
Y. Zhou; C.S Yang; J.A. Chen; G.F. Ding; L. Wang; M.J. Wang; Y.M. Zhang; T.H. Zhang
2004-01-01
Microbridge testing is used to measure the Young's modulus and residual stresses of metallic films. Nickel film microbridges with widths of several hundred microns are fabricated by Microelectromechanical Systems. In order to measure the mechanical properties of nickel film microbridges, special shaft structure is designed to solve the problem of getting the load-deflection curves of metal film microbridge by Nanoindenter XP system with normal Berkovich probe. Theoretical analysis of the microbridge load-deflection curve is proposed to evaluate the Young's modulus and residual stress of the films simultaneously. The calculated results based on the experimental measurements show that the average Young's modulus and residual stress are around 190GPa and 175MPa respectively, while the Young's modulus measured by Nanohardness method on nickel film with silicon substrate is 186.8±7.34GPa.
Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate the viscoelastic properties of molding sand.
A NOTE ON OSCILLATION MODULUS OF PL-PROCESS AND ITS APPLICATIONS UNDER RANDOM CENSORSHIP
Institute of Scientific and Technical Information of China (English)
周勇
2003-01-01
The strong limit results of oscillation modulus of PL-process are established inthis paper when the density function is not continuous function for censored data. The ratesof convergence of oscillation modulus of PL-process are sharp under week condition. Theseresults can be used to derive laws of the iterated logarithm of random bandwidth kernelestimator and nearest neighborhood estimator of density under continuous conditions ofdensity function being not assumed.
A Jafari Malekabadi; M Khojastehpour; B Emadi; M. R Golzarian
2016-01-01
Introduction: Poisson ratio and modulus of elasticity are two fundamental properties of elastic and viscoelastic solids that use in solving all contact problems, including the calculation of stress, the contact surfaces and elastic deformation (Mohsenin, 1986; Gentle and Halsall, 1982). There are many published literature on Poisson ratio and elasticity modulus of fruit and vegetables. Shitanda et al. (2002) calculated Poisson ratio of rice by considering Boussinesq’s theory. They showed ...
Quadratic Inverse Function Tsallis Entropy Multi-modulus Blind Equalization Algorithm
Guo Yecai; Gong Xiuli; Chen Qu; Gong Xi
2013-01-01
In underwater acoustic communication systems, inter-symbol interference (ISI) caused by communication channel distortion is the main factor affecting the quality of communication. Aiming at the shortcomings of computational complexity, slow convergence rate, and poor stability of Multi-Modulus Algorithm (MMA), a quadratic inverse function Tsallis entropy of Cascade Multi-Modulus blind equalization Algorithm (TCMMA) was proposed. In the proposed algorithm, quadratic inverse function Tsallis en...
Institute of Scientific and Technical Information of China (English)
袁应龙; 卢子兴
2004-01-01
The elastic properties of syntactic foams with coated hollow spherical inclusions have been studied by means of Mori and Tanaka' s concept of average stress in the matrix and Eshelby' s equivalent inclusion theories. Some formulae to predict the effective modulus of this material have been derived theoretically. Based on these formulae, the influences of coating parameters such as the thickness and Poisson' s ratio on the modulus of the syntactic foams have been discussed at the same time.
Wickstrom, S. N.; Wolfenden, A.
1990-01-01
The piezoelectric ultrasonic composite oscillator technique (PUCOT) was used at frequencies in the range 40 to 150 kHz to measure dynamic Young's modulus for short-length single crystals of copper at temperatures in the range 25 to 650 C and for polycrystalline copper at room temperature. Corrections to the modulus for variations in length/diameter resulted in no loss of precision due to wave velocity dispersion.
Tunable elastic modulus in Mn-based antiferromagnetic shape memory alloys
Cui, S. S.; Shi, S.; Zhao, Z. M.; Cui, Y. G.; Liu, C.; Yuan, F.; Hou, J. W.; Wan, J. F.; Zhang, J. H.; Rong, Y. H.
2016-07-01
Compared with the normal relation between temperature (T) and elastic modulus (E) in most materials, martensitic transformation (MT) and magnetic transition could result in the softening of elastic modulus (dE/dT > 0) within a narrow range of T (specific triangle zone in which dE/dT > 0. The present results may enrich approaches to designing new functional materials, e.g. the elastic and Elinvar alloys.
Indian Academy of Sciences (India)
M El Hamma; R Daher
2014-05-01
Using a generalized spherical mean operator, we define generalized modulus of smoothness in the space $L^2_k(\\mathbb{R}^d)$. Based on the Dunkl operator we define Sobolev-type space and -functionals. The main result of the paper is the proof of the equivalence theorem for a -functional and a modulus of smoothness for the Dunkl transform on $\\mathbb{R}^d$.
Coulombic Fluids Bulk and Interfaces
Freyland, Werner
2011-01-01
Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.
Characterization of Various Plant-Produced Asphalt Concrete Mixtures Using Dynamic Modulus Test
Directory of Open Access Journals (Sweden)
Muhammad Irfan
2016-01-01
Full Text Available This research characterizes the performance of various plant-produced asphalt concrete mixtures by dynamic modulus |E∗| test using asphalt mixture performance tester (AMPT. Marshall designed specimens of seven different mixtures were prepared using the Superpave gyratory compactor and subjected to sinusoidal compressive loading at various temperatures (4.4 to 54.4°C and loading frequencies (0.1 to 25 Hz. A catalog of default dynamic modulus values for typical asphalt concrete mixtures of Pakistan was established by developing stress-dependent master curves separately, for wearing and base course mixtures. The sensitivity of temperature and loading frequency on determination of dynamic modulus value was observed by typical isothermal and isochronal curves, respectively. Also, the effects of various variables on dynamic modulus were investigated using statistical technique of two-level factorial design of experiment. Furthermore, two dynamic modulus prediction models, namely, Witczak and Hirsch, were evaluated for their regional applicability. Results indicated that both the Witczak and Hirsch models mostly underpredict the value of dynamic modulus for the selected conditions/mixtures. The findings of this study are envisaged to facilitate the implementation of relatively new performance based mechanistic-empirical structural design and analysis approach.
Modular correction method of bending elastic modulus based on sliding behavior of contact point
International Nuclear Information System (INIS)
During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)
Geometrical modulus of a casting and its influence on solidification process
Directory of Open Access Journals (Sweden)
F. Havlicek
2011-10-01
Full Text Available Object: The work analyses the importance of the known criterion for evaluating the controlled solidification of castings, so called geometrical modulus defined by N. Chvorinov as the first one. Geometrical modulus influences the solidification process. The modulus has such specificity that during the process of casting formation it is not a constant but its initial value decreases with the solidification progress because the remaining melt volume can decrease faster than its cooling surface.Methodology: The modulus is determined by a simple calculation from the ratio of the casting volume after pouring the metal in the mould to the cooled mould surface. The solidified metal volume and the cooled surface too are changed during solidification. That calculation is much more complicated. Results were checked up experimentally by measuring the temperatures in the cross-section of heavy steel castings during cooling them.Results: The given experimental results have completed the original theoretical calculations by Chvorinov and recent researches done with use of numerical calculations. The contribution explains how the geometrical modulus together with the thermal process in the casting causes the higher solidification rate in the axial part of the casting cross-section and shortening of solidification time. Practical implications: Change of the geometrical modulus negatively affects the casting internal quality. Melt feeding by capillary filtration in the dendritic network in the casting central part decreases and in such a way the shrinkage porosity volume increases. State of stress character in the casting is changed too and it increases.
Bulk Superconductors in Mobile Application
Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.
We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.
Influence of Si on glass forming ability and properties of the bulk amorphous alloy Mg60Cu30Y10
International Nuclear Information System (INIS)
Research highlights: → The partial substitution of Cu by the right amount of Si increases the glass forming ability of the bulk amorphous alloy Mg60Cu30Y10. → The serrations size of Mg60Cu30-xY10Six is dependent on the content of Si. → The creep displacement of Mg60Cu30-xY10Six alloys decrease with increasing Si content. → The elastic modulus and nano-hardness of Mg60Cu30-xY10Six are dependent on the Si content. - Abstract: We studied the influence of partially replacing Cu by Si in the bulk amorphous alloy Mg30Cu30Y10. Glass forming ability (GFA), examined using X-ray diffraction and a differential scanning calorimeter, was increased at 1% Si, but decreased for larger Si concentrations. Nano-indentation measured nano-hardness, elastic modulus and load-displacement curves. The elastic modulus and nano-hardness increased with increasing Si content to a maximum at 2.5%. The load-displacement curves during nano-indentation revealed displacement serrations. These increased with decreasing loading rates, decreased with increasing Si content. The load-displacement curves also indicated that these bulk amorphous alloys exhibited primary creep at room temperature just like other high strength alloys. The creep displacement decreased with increasing Si content.
Change and anisotropy of elastic modulus in sheet metals due to plastic deformation
Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru
2015-03-01
In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.
Iron - based bulk amorphous alloys
Directory of Open Access Journals (Sweden)
R. Babilas
2010-07-01
Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative
Elastic modulus in rigid Al{sub 2}O{sub 3}/ZrO{sub 2} ceramic laminates
Energy Technology Data Exchange (ETDEWEB)
Moya, J.S.; Sanchez-Herencia, J.A.; Bartolome, J.F. [CSIC, Madrid (Spain). Inst. de Ciencia de Materiales; Tanimoto, T. [Shonan Inst. of Tech., Fujisawa, Kanagawa (Japan)
1997-10-01
In previous works it has been shown that by making a three-layer composite in which the central region contains the matrix oxide and stabilized zirconia and the surface layers contain the matrix oxide and unstabilized zirconia, strength can be substantially enhanced relative to the monolithic materials containing the oxide matrix and either stabilized or unstabilized zirconia. The magnitude of the surface compressive stresses can be varied controlling the thickness of the outer layers and by proper thermal treatment in which the relative amounts of the monoclinic and tetragonal phases in the outer layers are controlled or by varying the volume fraction of total zirconia in the component. Often, the residual stresses are tailored to obtain high surface compression and a moderate bulk tension. In the present investigation, the authors have studied the effects of macroscopic residual stresses on stress intensities in the different layers of the Al{sub 2}O{sub 3}/ZrO{sub 2} laminates and the influence of the layered design on the elastic modulus of these materials.
The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head.
Brown, T D; Vrahas, M S
1984-01-01
An experiment was undertaken to obtain approximate values for the intrinsic elastic modulus of subchondral bone. Shallow spherical caps, with uniform and incrementally controlled thickness, were machined from subchondral bone in the weight-bearing regions of 11 fresh-frozen normal femoral head autopsy specimens. Under application of polar point loads, the measured deflections were compared with a corresponding analytical shell solution, thus allowing back-calculation of the apparent modulus. Analogous tests were performed on similarly shaped specimens of stock Plexiglas of known modulus in order to estimate the precision of the testing method. The aggregate results for subchondral bone showed that its intrinsic stiffness correlated inversely with nominal shell thickness, but even the thinnest (1.0 mm thick) of these shells had an apparent modulus (mean = 1.372 GN/m2, SD = 414 MN/m2) well below that generally accepted for "pure" cortical bone (about 14 GN/m2). This stiffness deficit was very likely due to the presence of histologically evident marrow spaces. However, the low apparent modulus values measured in this study may not be fully representative of complex in vivo behavior, because in the testing of excised shells there is no radial compressive stress transfer to underlying cancellous bone.
Institute of Scientific and Technical Information of China (English)
Yuan Xiaoming; Sun Jing; Sun Rui
2006-01-01
An error analysis of the dynamic shear modulus of stiff specimens from tests performed by a new resonant column device developed by the Institute of Engineering Mechanics, China was conducted. A modified approach for calculating the dynamic shear modulus of the stiff specimens is presented. The error formula of the tests was deduced and parameters that impact the accuracy of the test were identified. Using six steel specimens with known standard stiffness as a base, a revised dynamic shear modulus calculation for stiff specimens was formulated by comparing three of the models.The maximum error between the test results and the calculated results shown by curves from both the free-vibration and the resonant-vibration tests is less than 6%. The free-vibration and resonant-vibration tests for three types of stiff samples with a known modulus indicate that the maximum deviation between the actual and the tested value using the modified approach were less than 10%. As a result, the modified approach presented here is shown to be reliable and the new device can be used for testing dynamic shear modulus of any stiff materials at low shear strain levels
Variation of shear and compressional wave modulus upon saturation for pure pre-compacted sands
Bhuiyan, M. H.; Holt, R. M.
2016-07-01
Gassmann's fluid substitution theory is commonly used to predict seismic velocity change upon change in saturation, and is hence essential for 4-D seismic and AVO studies. This paper addresses the basics assumptions of the Gassmann theory, in order to see how well they are fulfilled in controlled laboratory experiments. Our focus is to investigate the sensitivity of shear modulus to fluid saturation, and the predictability of Gassmann's fluid substitution theory for P-wave modulus. Ultrasonic P- and S-wave velocities in dry and saturated (3.5 wt per cent NaCl) unconsolidated clean sands (Ottawa and Columbia) were measured in an oedometer test system (uniaxial strain conditions) over a range of 0.5-10 MPa external vertical stress. This study shows shear modulus hardening upon brine saturation, which is consistent with previous data found in the literature. Analysis of the data shows that most of the hardening of the ultrasonic shear modulus may be explained by Biot dispersion. Isotropic Gassmann's fluid substitution is found to underestimate the P-wave modulus upon fluid saturation. However, adding the Biot dispersion effect improves the prediction. More work is required to obtain good measurements of parameters influencing dispersion, such as tortuosity, which is very ambiguous and challenging to measure accurately.
Regulating the modulus of a chiral liquid crystal polymer network by light.
Kumar, Kamlesh; Schenning, Albertus P H J; Broer, Dirk J; Liu, Danqing
2016-04-01
We report a novel way to modulate the elastic modulus of azobenzene containing liquid crystal networks (LCNs) by exposure to light. The elastic modulus can cycle between different levels by controlling the illumination conditions. Exposing the polymer network to UV light near the trans absorption band of azobenzene gives a small reduction of the glass transition temperature thereby lowering the modulus. The addition of blue light addressing the cis absorption band surprisingly amplifies this effect. The continuous oscillatory effects of the trans-to-cis isomerization of the azobenzene overrule the overall net cis conversion. The influence on the chain dynamics of the network is demonstrated by dynamic mechanical thermal analysis which shows a large shift of the glass transition temperature and a modulus decrease by more than two orders of magnitude. The initial high modulus and the glassy state are recovered within a minute in the dark by switching off the light sources, despite the observation that azobenzene is still predominantly in its cis state. Based on these new findings, we are able to create a shape memory polymer LCN film at room temperature using light.
ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS
Institute of Scientific and Technical Information of China (English)
姚文娟; 叶志明
2004-01-01
A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.
A new mechanism for low and temperature-independent elastic modulus.
Zhang, Liangxiang; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi
2015-01-01
The first Elinvar alloy, FeNiCr, which has invariant elastic modulus over a wide temperature range, was discovered almost 100 years ago by Guillaume. The physical origin of such an anomaly has been attributed to the magnetic phase transition taking place in the system. However, the recent discovery of non-magnetic Elinvar such as multi-functional β-type Ti alloys has imposed a new challenge to the existing theories. In this study we show that random field from stress-carrying defects could suppress the sharp first-order martensitic transformation into a continuous strain glass transition, leading to continued formation and confined growth of nano-domains of martensite in a broad temperature range. Accompanying such a unique transition, there is a gradual softening of the elastic modulus over a wide temperature range, which compensates the normal modulus hardening due to anharmonic atomic vibration, resulting in a low and temperature-independent elastic modulus. The abundance of austenite/martensite interfaces are found responsible for the low elastic modulus. PMID:26108371
The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head.
Brown, T D; Vrahas, M S
1984-01-01
An experiment was undertaken to obtain approximate values for the intrinsic elastic modulus of subchondral bone. Shallow spherical caps, with uniform and incrementally controlled thickness, were machined from subchondral bone in the weight-bearing regions of 11 fresh-frozen normal femoral head autopsy specimens. Under application of polar point loads, the measured deflections were compared with a corresponding analytical shell solution, thus allowing back-calculation of the apparent modulus. Analogous tests were performed on similarly shaped specimens of stock Plexiglas of known modulus in order to estimate the precision of the testing method. The aggregate results for subchondral bone showed that its intrinsic stiffness correlated inversely with nominal shell thickness, but even the thinnest (1.0 mm thick) of these shells had an apparent modulus (mean = 1.372 GN/m2, SD = 414 MN/m2) well below that generally accepted for "pure" cortical bone (about 14 GN/m2). This stiffness deficit was very likely due to the presence of histologically evident marrow spaces. However, the low apparent modulus values measured in this study may not be fully representative of complex in vivo behavior, because in the testing of excised shells there is no radial compressive stress transfer to underlying cancellous bone. PMID:6491796
In-situ measurement of elastic modulus for ceramic top-coat at high temperature
Institute of Scientific and Technical Information of China (English)
齐红宇; 周立柱; 马海全; 杨晓光; 李旭
2008-01-01
The ceramic thermal barrier coatings (TBCs) play an increasingly important in advanced gas turbine engines because of their ability to further increase the engine operating temperature and reduce the cooling, thus help achieve future engine low emission, high efficiency and improve the reliability goals. Currently, there are two different processes such as the plasma spraying (PS) and the electron beam-physical vapor deposition (EB-PVD) techniques. The PS coating was selected to test the elastic modulus. Using the nanoindentation and resonant frequency method, the mechanical properties of ceramic top-coat were measured in-situ. According to the theory of the resonant frequency and composite beam, the testing system was set up including the hardware and software. The results show that the accurate characterization of the elastic properties of TBCs is important for stress-strain analysis and failure prediction. The TBCs systems are multi-layer material system. It is difficult to measure the elastic modulus of top-coat by tensile method. The testing data is scatter by nanoindentation method because of the microstructure of the ceramic top-coat. The elastic modulus of the top-coat between 20?1 150 ℃ is obtained. The elastic modulus is from 2 to 70 GPa at room temperature. The elastic modulus changes from 62.5 GPa to 18.6 GPa when the temperature increases from 20 ℃ to 1 150 ℃.
A new mechanism for low and temperature-independent elastic modulus.
Zhang, Liangxiang; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi
2015-06-25
The first Elinvar alloy, FeNiCr, which has invariant elastic modulus over a wide temperature range, was discovered almost 100 years ago by Guillaume. The physical origin of such an anomaly has been attributed to the magnetic phase transition taking place in the system. However, the recent discovery of non-magnetic Elinvar such as multi-functional β-type Ti alloys has imposed a new challenge to the existing theories. In this study we show that random field from stress-carrying defects could suppress the sharp first-order martensitic transformation into a continuous strain glass transition, leading to continued formation and confined growth of nano-domains of martensite in a broad temperature range. Accompanying such a unique transition, there is a gradual softening of the elastic modulus over a wide temperature range, which compensates the normal modulus hardening due to anharmonic atomic vibration, resulting in a low and temperature-independent elastic modulus. The abundance of austenite/martensite interfaces are found responsible for the low elastic modulus.
Directory of Open Access Journals (Sweden)
Suélio da Silva Araújo
2013-01-01
Full Text Available This paper presents a comparative analysis of the results obtained in static modulus of elasticity tests of plain concrete cylindrical specimens. The purpose of this study is to identify and evaluate the influence of several factors involved in modulus of elasticity tests such as the strain measurement device used (dial indicators, electrical surface bonded strain gages, externally fixed strain gages and linear variation displacement transducer - LVDT, the type of concrete (Class C30 and Class C60 and cylindrical specimen size (100 mm x 200 mm and 150 mm x 300 mm. The modulus tests were done in two different laboratories in the Goiânia, GO region and were performed according to code ABNT NBR 8522:2008, which describes the initial tangent modulus test, characterized by strains measured at tension values of 0.5 MPa and 30% of the ultimate load. One hundred and sixty specimens were tested with statistically satisfactory results. It was concluded that the type of strain measurement device greatly influenced the modulus of elasticity results. Tests in specimens 100 mm x 200 mm showed highest statistical variation.
Institute of Scientific and Technical Information of China (English)
Xiaojuan LU; Ping XIAO; Haiyan LI
2012-01-01
Nano-indentation of a porous ceramic coating leads to crushing and densification of the coating under the indenter.In this work,finite element simulations of indentation on the porous coating have been carried out to study the effect of the size and distribution of densification on Young's modulus measured by nano-indentation.Two totally different distribution patterns have been simulated in this work.In the case of gradient densification,the Young's modulus increased by 8.6％ when the densification has occurred in the maximum influenced area.While the Young's modulus increased by 2％ with a uniformed densification.Examinations of the cross-section of the coatings have suggested that the densification after the indentation is close to the second model.The measured Young's modulus could have differed by 2％.The effect of densification on the Young's modulus measured by using nano-indentation is strongly dependent on the densification patterns of the porous coating.
The influence of defects on the effective Young's modulus of a defective solid
Institute of Scientific and Technical Information of China (English)
Shen Wei; Fan Qun-Bo; Wang Fu-Chi; Ma Zhuang
2013-01-01
It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects.In the present research,the effects of pores and cracks on the Young's modulus of a defective solid are studied.Based on the law of the conservation of energy,mathematical formulations are proposed to indicate how the shape,size,and distribution of defects affect the effective Young's modulus.In this approach,detailed equations are illustrated to represent the shape and size of defects on the effective Young's modulus.Different from the results obtained from the traditional empirical analyses,mixture law or statistical method,for the first time,our results from the finite element method (FEM) and strict analytical calculation show that the influence of pore radius and crack length on the effective Young's modulus can be quantified.It is found that the longest crack in a typical microstructure of ceramic coating dominates the contribution of the effective Young's modulus in the vertical direction of the crack.
The effective modulus of super carbon nanotubes predicted by molecular structure mechanics.
Li, Ying; Qiu, Xinming; Yang, Fan; Wang, Xi-Shu; Yin, Yajun
2008-06-01
A super carbon nanotube (ST) is a kind of hierarchical structure constructed from carbon nanotubes (named as CNT arm tubes). With the detailed construction of a Y-junction considered, the effective mechanical properties of ST structures are studied by the molecular structure mechanics (MSM) method. The Young's modulus and shear modulus of STs are found to depend mainly on the aspect ratio of CNT arm tubes instead of the chirality of the ST. A scale law is adopted to express the relation between the effective modulus (Young's modulus or shear modulus) and the aspect ratio of the CNT arm tubes. The Poisson's ratio of the ST is affected by both the aspect ratio of the CNT arm tubes and the chirality of the ST. The deformation of the ST comes from both the bending and the stretching of the CNT arm tubes. The Y-junction acts as an reinforcement phase to make the bending and stretching couple together and induce large linearity in ST structures. PMID:21825768
Mechanical properties of concrete with SAP. Part II: Modulus of elasticity
DEFF Research Database (Denmark)
Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede
2010-01-01
In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...
Research on a Novel Low Modulus OFBG Strain Sensor for Pavement Monitoring
Directory of Open Access Journals (Sweden)
Qiyu Lu
2012-07-01
Full Text Available Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.
Directory of Open Access Journals (Sweden)
Ming Liang
2016-07-01
Full Text Available High modulus bitumens modified by polystyrene-block-polybutadiene-block-polystyrene (SBS with different molecular structure were investigated on dynamic shear rheometer and fluorescence microscopy to evaluate viscoelastic properties and morphology of binders. The results shows that storage modulus (G’ is obviously less than loss modulus (G”, which means viscous behaviour of bitumen is dominant, and anti-rutting factor (G* ⁄ sin δ is markedly enhanced by star SBS than by linear SBS. The morphology indicated that star SBS improved the softening point more obviously, tending to form a cross-linked network in bitumen. As for linear SBS, it is dispersed in bitumen in the form of globules and enhances the ductility of binder.
Simplified prediction model for elastic modulus of particulate reinforced metal matrix composites
Institute of Scientific and Technical Information of China (English)
WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min
2006-01-01
Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite.
Institute of Scientific and Technical Information of China (English)
XIAO Fengfei; SHI Lianghe; XU Mao
1991-01-01
The dynamic mechanical modulus at 25℃ for blends of segmented polyurethanes with PVC was studied by using suitable mechanics models of multi-component systems. The analysis indicates that the blend morphology was mainly determined by soft segment structure of polyurethanes. The PPO-PU/PVC blends show typical two-phase morphology and their modulus-composition relations may be described by Halpin-Tsai model for domain-matrix two-phase systems.While the PCL-PU/PVC,PTMA-PU/PVC and PTMO-PU/PVC blends fit the Kerner's packed grain composite model.These results may imply that the modulus-composition relationship is sensitive to the interactions between the components and the mixture morphology of the blends.
Elastic modulus of SiCw/6061Al alloy composites as-squeeze-cast
Institute of Scientific and Technical Information of China (English)
姜传海; 吴建生; 王德尊
2001-01-01
By using the system of image analyzer connected with scanning electron microscope, the whisker orientation in the SiCw/6061Al alloy composite as-squeeze-cast was measured. According to the shear lag model and the actual distribution function of whisker in composite, the inhomogeneity of elastic modulus in composite was analyzed. With the method of ultrasonic velocity, the elastic modulus of composite was measured. The results showed that, the whiskers of composite are preferred in an orientation normal to the direction of squeeze cast. The higher the volume fraction of whisker, the more extent of preferred orientation of it, and the inhomogeneity of elastic modulus is mainly due to the differences of whisker distribution in composite.
Institute of Scientific and Technical Information of China (English)
Mohammad Rezaei; Mostafa Asadizadeh; Abbas Majdi; Mohammad Farouq Hossaini
2015-01-01
Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc-tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weathering and overburden height, respectively.
Calibration-free portable Young's-modulus tester with isolated langasite oscillator.
Ogi, Hirotsugu; Sakamoto, Yuto; Hirao, Masahiko
2014-09-01
A ballpoint-pen-type portable ultrasonic oscillator is developed for quantitative measurement of Young's modulus on a solid. It consists of an electrodeless rod-shaped langasite oscillator with a tungsten-carbide spherical-shaped tip at the end, permanent magnets for making a constant force at the contact interface, and antennas for exciting and detecting the longitudinal vibration contactlessly. The resonance frequency of the oscillator is changed by contact with the specimen, reflecting Young's modulus of the specimen at the contact area. The langasite oscillator is supported at the nodal points so that its acoustical contact occurs only at the specimen, making a calibration-free measurement realistic. Young's moduli of various specimens were evaluated within 15% error just by touching the specimens with the probe. The error becomes smaller than 10% for lower Young-modulus materials (<∼150 GPa).
RELATION BETWEEN DYNAMIC LOSS MODULUS AND DIFFUSION COEFFICIENT IN A MODIFIED PET FIBER
Institute of Scientific and Technical Information of China (English)
YU Jianming
1994-01-01
The mobility of polymer chain segments is shown to play a major role in the diffusion of disperse dyes in a copolymerization modified PET system, monoepoxy compound CH3(CH2)3OCH2CH-CH2/O modified PET.The rate of dye diffusion (diffusion coefficient D) has been related to the time-dependent mechanical property, dynamic loss modulus E", which is controlled by the mobility of chain segments. In this modified copolyester system, the variance of amount of modifier in the copolyester fibers causes the change in disperse dye diffusion coefficient to fiber, and in the dynamic loss modulus of the fibers ,but the relationship between the diffusion and the dynamic loss modulus is in agreement with the theoretical relation derived by Bell and Dumbleton. The relation obtained in this paper is:Ln D =- 2.28Ln E"+26.81
Directory of Open Access Journals (Sweden)
Abdellatif Selmi
2014-01-01
Full Text Available Results in the literature demonstrate that substantial improvements in the mechanical behavior of concrete have been attained through the addition of steel fibers as a reinforcing phase. We have developed a model combining finite element results and micromechanical methods to determine the effective reinforcing modu-lus of hook-ended steel fibers. This effective reinforcing modulus is then used within a multiphase micro-mechanics model to predict the effective modulus of concrete reinforced with a distribution of fibers. We found that fiber curvature effect is negligible when compared to straight fibers. Then mechanical properties of concrete reinforced with crimped steel fibers are predicted using Weng and Huang schemes. The predic-tions are in excellent agreement with experimental results.
EFFECT OF THE SCREW TORQUE LEVEL ON THE INTERFRAGMENTARY STRAIN AND THE INTERFRAGMENTARY MODULUS
Directory of Open Access Journals (Sweden)
Boonthum Wongchai
2013-01-01
Full Text Available The screw torque is applied at the screw head to fix the plate and the bone. It generates the compressive force between the plate and the bone to stabilize them. The interfragmentary strain is the main factor for healing the bone fractured. The screw torque level affects the interfragmentary strain and the stability of the fixation between the plates an the bone. The interfragmentary modulus is the new factor of the plate fixation stability and it is affected by the torque level. This research is proposed to study the effect of the screw torque level on the interfragmentary strain and the interfragmentary modulus. The interfragmentary strain and the interfragmentary modulus decrease by increasing the screw torque level.
Institute of Scientific and Technical Information of China (English)
董满生; 高仰明; 李凌林; 王利娜; 孙志彬
2016-01-01
A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface functionalization is necessary to realize the full potential of aggregates reinforcement.
Fracture toughness/Young's modulus correlation for low-density fibrous silica bodies
Green, D. J.
1983-01-01
Fracture toughness and static Young's modulus were measured for the low-density silic fiber materials used as tiles in the thermal protection system of the Space Shuttle. The fracture behavior was found to be in excellent agreement with a previously formulated micromechanical model and allowed both (density) classes of tile material to be correlated to a single function. A similar correlation was also found between strength and Young's modulus, which is the basis of a nondestructive evaluation test for these materials. It was shown that the value of Young's modulus determined from a dynamic test can be substantially greater than that determined in a static mechanical test. This effect must be taken into account in the correlation. Finally, it was also determined that these materials have significant variations in Kc, both within and between production units, so that the strength variability in these materials is dependent on both fracture toughness and flaw-size variations.
Accurate Young's modulus measurement based on Rayleigh wave velocity and empirical Poisson's ratio
Li, Mingxia; Feng, Zhihua
2016-07-01
This paper presents a method for Young's modulus measurement based on Rayleigh wave speed. The error in Poisson's ratio has weak influence on the measurement of Young's modulus based on Rayleigh wave speed, and Poisson's ratio minimally varies in a certain material; thus, we can accurately estimate Young's modulus with surface wave speed and a rough Poisson's ratio. We numerically analysed three methods using Rayleigh, longitudinal, and transversal wave speed, respectively, and the error in Poisson's ratio shows the least influence on the result in the method involving Rayleigh wave speed. An experiment was performed and has proved the feasibility of this method. Device for speed measuring could be small, and no sample pretreatment is needed. Hence, developing a portable instrument based on this method is possible. This method makes a good compromise between usability and precision.
Young's modulus and thermal expansion of ceramic samples made from kaolin and zeolite
Sunitrová, Ivana; Trník, Anton
2016-07-01
In this study we investigate the dependence of Young's modulus, mass change, and thermal expansion of ceramic samples made from a varying amount of kaolin (100 - 50 %) and zeolite (0 - 50 %) on the firing temperature. The samples are fired in a furnace at different temperatures from room temperature up to 1100 °C with a heating rate of 5°C.min-1 and 5 min soaking time at the highest temperature. Afterwards, the samples are freely cooled down and their mass, dimensions and resonant frequency are measured at room temperature. The resonant frequency (from which Young's modulus is calculated) is measured using an apparatus based on the impulse excitation technique (IET). Young's modulus of green samples is the highest for the sample containing 10 mass% of zeolite (3.2 GPa). After sintering the sample with 50 mass% of zeolite has the highest value (11.3 GPa).
A Model of Temperature-Dependent Young's Modulus for Ultrahigh Temperature Ceramics
Directory of Open Access Journals (Sweden)
Weiguo Li
2011-01-01
Full Text Available Based on the different sensitivities of material properties to temperature between ultrahigh temperature ceramics (UHTCs and traditional ceramics, the original empirical formula of temperature-dependent Young's modulus of ceramic materials is unable to describe the temperature dependence of Young's modulus of UHTCs which are used as thermal protection materials. In this paper, a characterization applied to Young's modulus of UHTC materials under high temperature which is revised from the original empirical formula is established. The applicable temperature range of the characterization extends to the higher temperature zone. This study will provide a basis for the characterization for strength and fracture toughness of UHTC materials and provide theoretical bases and technical reserves for the UHTC materials' design and application in the field of spacecraft.
Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius
2016-06-01
The influence of discontinuities is important for a correct determination of static and dynamic elastic characteristics of the material. In this paper we presented differences arising between the elastic modulus static and dynamic, laminated composite materials reinforced with carbon fiber, aramid and carbon-aramid, depending on the non-uniformity coefficient. For the study were determined static elastic modulus by carrying out traction tests and dynamic elastic modulus by determining the vibration frequency, on specimens of each type of material with and without discontinuities [1]. The elastic properties of composite materials resistance and can be influenced by various defects that arise from technological manufacturing process. This is important for the production of large series of parts of fiber-reinforced composite material, the fibers in the matrix distribution is not uniform. Studies on the mechanical behavior of composites with random distribution of fabrics are made in [2].
The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers
International Nuclear Information System (INIS)
Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose
The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers
Energy Technology Data Exchange (ETDEWEB)
Li, Bin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Feng, Yi, E-mail: fyhfut@163.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Qian, Gang; Zhang, Jingcheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhuang, Zhong; Wang, Xianping [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2013-11-15
Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose.
ELASTIC MODULUS REDUCTION METHOD FOR LIMIT LOAD EVALUATION OF FRAME STRUCTURES
Institute of Scientific and Technical Information of China (English)
Lufeng Yang; Bo Yu; Yongping Qiao
2009-01-01
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR), and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion, and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility, accuracy and efficiency of the proposed method.
Handling of bulk solids theory and practice
Shamlou, P A
1990-01-01
Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater
Thermal stability and mechanical properties of Gd-Co-Al bulk glass alloys
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The glass forming ability of Gd-Co-Al ternary alloy systems with a composition ranging from 50% to 70% (molar fraction)for Gd and from 5% to 40% (molar fraction) for Al were investigated by copper mold casting and Gd60Co25Al15 bulk glass alloy cylinders with the maximum diameter of 5 mm were obtained. The reduced glass transformation temperature (Tg/Tm) and the distance of supercooling region △Tx are 0.616 and 45 K, respectively for this Gd-Co-Al alloy. The compressive fracture strength (σf) and elastic modulus (E) of Gd-Co-Al glassy alloys are 1 170-1 380 MPa and 59-70 GPa, respectively. The Gd-Al-Co bulk glassy alloys with high glass forming ability and good mechanical properties are promising for the future development as a new type function materials.
Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
Grant, Caroline A; Wilson, Lance J; Langton, Christian; Epari, Devakar
2014-07-01
Finite element models of bones can be created by deriving geometry from an X-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticity versus density relationship. Many elasticity-density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions - longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each direction were determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined. A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.
Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films
International Nuclear Information System (INIS)
We determined the Young's modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show that the Young's modulus of PZT thin films deposited on silicon is dependent on the in-plane orientation, by using cantilevers oriented along the (1 1 0) and (1 0 0) silicon directions. Deposition of thin films on cantilevers affects their flexural rigidity and increases their mass, which results in a change in the resonance frequency. An analytical relation was developed to determine the effective Young's modulus of the PZT thin films from the shift in the resonance frequency of the cantilevers, measured both before and after the deposition. In addition, the appropriate effective Young's modulus valid for our cantilevers' dimensions was used in the calculations that were determined by a combined analytical and finite-element (FE) simulations approach. We took extra care to eliminate the errors in the determination of the effective Young's modulus of the PZT thin film, by accurately determining the dimensions of the cantilevers and by measuring many cantilevers of different lengths. Over-etching during the release of cantilevers from the handle wafer caused an undercut. Since this undercut cannot be avoided, the effective length was determined and used in the calculations. The Young's modulus of PZT, deposited by pulsed laser deposition, was determined to be 103.0 GPa with a standard error of ± 1.4 GPa for the (1 1 0) crystal direction of silicon. For the (1 0 0) silicon direction, we measured 95.2 GPa with a standard error of ± 2.0 GPa
Institute of Scientific and Technical Information of China (English)
董城; 冷伍明; 李志勇; 曹新文
2013-01-01
利用动三轴试验,研究了水泥改良高液限黏土动态回弹模量的影响因素及其变化规律.研究表明,动态回弹模量随围压、压实度和水泥含量的提高而增大,随循环偏应力和含水率的增大而减小.为分析动态回弹模量的应力依赖性,研究采用了双因素方差分析.分析表明,偏应力与围压均对动态回弹模量有显著性影响,但偏应力的影响更为显著.鉴于动态回弹模量是偏应力和体应力的函数,在分析现有动态回弹模量本构模型适应性的基础上,采用偏应力和体应力为变量的3参数复合模型对试验数据进行回归分析,结果表明,所选模型具有较高的决定系数,证明所选模型具有较高的合理性与可靠性.研究获得了不同含水率、压实度和水泥剂量下水泥改良高液限黏土的动态回弹模量预估模型,为基于动力学的路面结构设计提供了参数.%In order to investigate the factors which affect the cement improved high liquid limit clay dynamic resilient modulus and their variation laws, a series of dynamic resilient modulus tests were carried out by conducting dynamic-triaxial tests. The study demonstrated that dynamic resilient modulus values rise with the increase of confining stress, compaction degree and cement content, decrease with the increase of circular deviator stress and moisture content. To accomplish the purpose of analysis the relationships between deviator stress, bulk stress and dynamic resilient modulus, the dual-factor analysis of variance was utilized. The analysis demonstrated that both the deviator stress and bulk stress have significant effects on the dynamic resilient modulus. However, the deviator stress has more significant effects. Considering that dynamic resilient modulus is a function of deviator stress and bulk stress, with a brief analysis of adaptability of the present dynamic resilient modulus constitutive models, the three-parameters compound
Energy Technology Data Exchange (ETDEWEB)
Xie, Kelvin Y. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wang, Yanbo, E-mail: yanbo.wang@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Zhao, Yonghao [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, Xiaozhou, E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marksa 12, Ufa 450000 (Russian Federation); Sarrafpour, Babak; Zoellner, Hans [The Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)
2013-08-01
High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated.
de Brito, K P S
2016-01-01
Spinor fields on 5-dimensional Lorentzian manifolds are classified, according to the geometric Fierz identities that involve their bilinear covariants. Based upon this classification that generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are, hence, found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density, through the truncated exterior bundle. In order to accomplish a realisation of these new spinors, a Killing vector field is constructed on the horizon of 5-dimensional Kerr black holes. This Killing vector field is shown to reach the time-like Killing vector field at the spatial infinity, through a current 1-form density, constructed with the derived new spinor fields. The current density is, moreover, expressed as the f\\"unfbein components, assuming a condensed for...
Ordered bulk degradation via autophagy
DEFF Research Database (Denmark)
Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S
2008-01-01
During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... setup, that autophagy specifically can remove certain subcellular components. We used an unbiased quantitative proteomics approach relying on stable isotope labeling by amino acids in cell culture (SILAC) to study global protein dynamics during amino acid starvation-induced autophagy. Looking...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...
Microwave disinfestation of bulk timber.
Plaza, Pedro Jose; Zona, Angela Tatiana; Sanchís, Raul; Balbastre, Juan Vicente; Martínez, Antonio; Muñoz, Eva Maria; Gordillo, Javier; de los Reyes, Elías
2007-01-01
In this paper a complete microwave system for bulk timber disinfestation is developed and tested. A commercial FEM simulator has been used to design the applicator, looking for structures providing uniform field distributions, which is a factor of capital relevance for a successful treatment. Special attention has also been given to the reduction of electromagnetic energy leakage. A dual polarized cylindrical applicator with a corrugated flange has been designed. The applicator has also been numerically tested emulating some real-life operating conditions. A prototype has been built using two low-cost magnetrons of 900 W and high power coaxial cables and it has been tested inside a shielded semianechoic chamber. The tests have been carried out in three stages: validation of the applicator design, determination of the lethal dosage as a function of the insect position and the maximum wood temperature allowed and statement of safe operation procedures. PMID:18351001
Isotopic signatures by bulk analyses
International Nuclear Information System (INIS)
Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally
Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming
Directory of Open Access Journals (Sweden)
Umit Atici
2016-01-01
Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.
Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys
Energy Technology Data Exchange (ETDEWEB)
Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-10-01
Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.
Measurement of the dynamic shear modulus of surface layers I. Theory
Waterman, Herman A.
1984-01-01
In measuring the dynamic surface-shear modulus of a surface layer on a liquid, conditions may occur—low-shear modulus and/or high frequencies—which promote wave-propagation effects to play a predominant role. A theory is presented with the help of which the (complex) wave number of the wave in the layer can be expressed in the densities and shear moduli of both the surface layer and the liquid. The theory can also be applied to an interfacial layer between two liquids. It predicts that in pra...
Graviton Kaluza-Klein modes in nonflat branes with stabilized modulus
Paul, Tanmoy; SenGupta, Soumitra
2016-04-01
We consider a generalized two brane Randall-Sundrum model where the branes are endowed with nonzero cosmological constant. In this scenario, we re-examine the modulus stabilization mechanism and the nature of Kaluza-Klein (KK) graviton modes. Our result reveals that while the KK mode graviton masses may change significantly with the brane cosmological constant, the Goldberger-Wise stabilization mechanism, which assumes a negligible backreaction on the background metric, continues to hold even when the branes have a large cosmological constant. The possibility of having a global minimum for the modulus is also discussed. Our results also include an analysis for the radion mass in this nonflat brane scenario.
Blind equalization of underwater acoustic channel using a combined constant modulus algorithm
Institute of Scientific and Technical Information of China (English)
WANG Feng; ZHAO Junwei; LI Hongsheng
2003-01-01
A kind of Combined Constant Modulus Algorithm (CCMA) is presented to com-pensate the defects of the Constant Modulus Algorithm (CMA) and the Sign Error CMA(SECMA). And CCMA is applied to the equalization of the underwater acoustic channel(UWAC). Based on the decision of the equalizer's output, its iteration process switches betweenCMA and SECMA automatically. It is more robust than SECMA, and more computationallyefficient than CMA. Therefore, it is very suitable for the recovery of the underwater data trans-mission. The performance of CCMA is proven by computer simulation for the equalization ofthe UWAC.
Characterization of dose-dependent Young's modulus for a radiation-sensitive polymer gel
International Nuclear Information System (INIS)
Radiation-sensitive polymer gels for clinical dosimetry have been intensively investigated with magnetic resonance imaging (MRI) because the transversal magnetic relaxation time is dependent on irradiation dose. MRI is expensive and not easily available in most clinics. For this reason, low-cost, quick and easy-to-use potential alternatives such as optical computed tomography (CT), x-ray CT or ultrasound attenuation CT have also been studied by others. Here, we instead evaluate the dose dependence of the elastic material property, Young's modulus and the dose response of the viscous relaxation of radiation-sensitive gels to discuss their potential for dose imaging. Three batches of a radiation-sensitive polymer gel (MAGIC gel) samples were homogeneously irradiated to doses from 0 Gy to 45.5 Gy. Young's modulus was computed from the measured stress on the sample surface and the strain applied to the sample when compressing it axially, and the viscous relaxation was determined from the stress decay under sustained compression. The viscous relaxation was found not to change significantly with dose. However, Young's modulus was dose dependent; it approximately doubled in the gels between 0 Gy and 20 Gy. By fitting a second-order polynomial to the Young's modulus-versus-dose data, 99.4% of the variance in Young's modulus was shown to be associated with the change in dose. The precision of the gel production, irradiation and Young's modulus measurement combined was found to be 4% at 2 Gy and 3% at 20 Gy. Potential sources of measurement error, such as those associated with the boundary conditions in the compression measurement, inhomogeneous polymerization, temperature (up to 1% error) and the evaporation of water from the sample (up to 1% error), were estimated and discussed. It was concluded that Young's modulus could be used for dose determination. Imaging techniques such as elastography may help to achieve this if they can provide a local measurement of Young
Analytical Solution for Wave-Induced Response of Seabed with Variable Shear Modulus
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus. By employing integral transform and Frobenius methods, the transient and steady solutions for the wave-induced pore water pressure, effective stresses and displacements are analytically derived in detail. Verification is available through the reduction to the simple case of homogeneous seabed. The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.
Directory of Open Access Journals (Sweden)
Akinkurolere Olufunke Olanike
2016-07-01
Full Text Available - In this experimental investigation, an attempt is made to report the comparative analysis of the modulus of rupture and the splitting tensile strength of recycled aggregate concrete. The two properties are usually used to estimate the tensile strength of concrete; however, they don’t usually yield the same results hence need to investigate each of the properties. Taguchi optimization technique was employed to reduce the number of trials needed to get the results. The results showed that the splitting tensile strength ranges between 60-80% of the modulus of rupture which is also known as the flexural strength.
Estimating Young’s Modulus of Materials by a New Three-Point Bending Method
Directory of Open Access Journals (Sweden)
Xiaohu Zeng
2014-01-01
Full Text Available A new test method based on the three-point bending test is put forward to measure Young’s modulus of materials. The simplified mechanical model is established to make theoretical derivation. This method has not only the advantages of simple specimen preparation and convenient loading device, but also higher precision than the traditional three-point bending method. The method is adopted to obtain Young’s modulus of the aluminum alloy 2024. The feasibility of the method has been demonstrated by comparisons with the corresponding results obtained from the finite element method and experiment method. And the influence of contact friction on the test accuracy is analyzed.
Latorre-Ossa, Heldmuth; Gennisson, Jean-Luc; De Brosses, Emilie; Tanter, Mickaël
2012-04-01
The study of new tissue mechanical properties such as shear nonlinearity could lead to better tissue characterization and clinical diagnosis. This work proposes a method combining static elastography and shear wave elastography to derive the nonlinear shear modulus by applying the acoustoelasticity theory in quasi-incompressible soft solids. Results demonstrate that by applying a moderate static stress at the surface of the investigated medium, and by following the quantitative evolution of its shear modulus, it is possible to accurately and quantitatively recover the local Landau (A) coefficient characterizing the shear nonlinearity of soft tissues.
A comparison of three popular test methods for determining the shear modulus of composite materials
Ho, Henjen; Tsai, Ming-Yi; Morton, John; Farley, Gary L.
1991-01-01
Three popular shear tests (the 10 degree off-axis, the plus or minus 45 degree tensile, and the Iosipescu specimen tested in the modified Wyoming fixture) for shear modulus measurement are evaluated for a graphite-epoxy composite material system. A comparison of the shear stress-strain response for each test method is made using conventional strain gage instrumentation and moire interferometry. The uniformity and purity of the strain fields in the test sections of the specimens are discussed, and the shear responses obtained from each test technique are presented and compared. For accurate measurement of shear modulus, the 90 degree Iosipescu specimen is recommended.
A comparison of three popular test methods for determining the shear modulus of composite materials
Ho, H.; Tsai, M. Y.; Morton, J.; Farley, G. L.
1993-01-01
Three popular shear tests - the 10 deg off-axis, the +/- 45 deg tensile and the Iosipescu specimen tested in the modified Wyoming fixture - for shear modulus measurement are evaluated for a graphite-epoxy composite material system. A comparison of the shear stress-strain response for each test method is made using conventional strain gage instrumentation and moire interferometry. The uniformity and purity of the strain fields in the test sections of the specimens are discussed, and the shear responses obtained from each test technique are presented and compared. For accurate measurement of the shear modulus, the 90 deg Iosipescu specimen is recommended.
Analysis of Road Base Uniformity via the Deviation of Modulus of Asphalt Mixtures
Institute of Scientific and Technical Information of China (English)
ZHI Yufeng; ZHANG Xiaoning
2007-01-01
The modulus deviation of base material calculated from the data of falling weight deflectometer (FWD) was used to evaluate the uniformity of road base so as to reflect the construction quality. Four parameters,the repeatability standard deviation of the data in the same driveway, the reproducibility standard deviation of the data in the different driveway, the consistency statistics value of the data in the different driveway, and the consistency statistics value of the data in the same driveway, were introduced for the construction uniformity analysis. The experimental result shows that the materials modulus calculated from FWD has a highly correlative relationship with the uniformity of road base.
AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material
Abd El-Rahman, K. F.; Darwish, A. A. A.; Qashou, Saleem I.; Hanafy, T. A.
2016-07-01
The Sb2S3 bulk material was used for next-generation anode for lithium-ion batteries. Alternative current (AC) conductivity, dielectric properties and electric modulus of Sb2S3 have been investigated. The measurements were carried out in the frequency range from 40 Hz to 5 MHz and temperature range from 293 K to 453 K. The direct current (DC) conductivity, σ DC, shows an activated behavior and the calculated activation energy is 0.50 eV. The AC conductivity, σ AC, was found to increase with the increase of temperature and frequency. The conduction mechanism of σ AC was controlled by the correlated barrier hopping model. The behavior of the dielectric constant, ɛ', and dielectric loss index, ɛ'', reveal that the polarization process of Sb2S3 is dipolar in nature. The behavior of both ɛ' and ɛ'' reveals that bulk Sb2S3 has no ferroelectric or piezoelectric phase transition. The dielectric modulus, M, gives a simple method for evaluating the activation energy of the dielectric relaxation. The calculated activation energy from M is 0.045 eV.
Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic
G. Siavikis; M. Behr; J.M. van der Zel; A.J. Feilzer; M. Rosentritt
2011-01-01
Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of
Microhardness and Young's modulus of high burn-up UO2 fuel
Cappia, F.; Pizzocri, D.; Marchetti, M.; Schubert, A.; Van Uffelen, P.; Luzzi, L.; Papaioannou, D.; Macián-Juan, R.; Rondinella, V. V.
2016-10-01
Vickers microhardness (HV0.1) and Young's modulus (E) measurements of LWR UO2 fuel at burn-up ≥60 GWd/tHM are presented. Their ratio HV0.1/E was found constant in the range 60-110 GWd/tHM. From the ratio and the microhardness values vs porosity, the Young's modulus dependence on porosity was derived and extended to the full radial profile, including the high burn-up structure (HBS). The dependence is well represented by a linear correlation. The data were compared to fuel performance codes correlations. A burn-up dependent factor was introduced in the Young's modulus expression. The modifications extend the experimental validation range of the TRANSURANUS correlation from un-irradiated to irradiated UO2 and up to 20% porosity. First simulations of LWR fuel rod irradiations were performed in order to illustrate the impact on fuel performance. In the specific cases selected, the simulations suggest a limited effect of the Young's modulus decrease due to burn-up on integral fuel performance.
Elastic modulus affects the growth and differentiation of neural stem cells
Directory of Open Access Journals (Sweden)
Xian-feng Jiang
2015-01-01
Full Text Available It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes.
Measuring Young's Modulus the Easy Way, and Tracing the Effects of Measurement Uncertainties
Nunn, John
2015-01-01
The speed of sound in a solid is determined by the density and elasticity of the material. Young's modulus can therefore be calculated once the density and the speed of sound in the solid are measured. The density can be measured relatively easily, and the speed of sound through a rod can be measured very inexpensively by setting up a longitudinal…
Relations between the modulus of elasticity of binary alloys and their structure
Koster, Werner; Rauscher, Walter
1951-01-01
A comprehensive survey of the elastic modulus of binary alloys as a function of the concentration is presented. Alloys that form continuous solid solutions, limited solid solutions, eutectic alloys, and alloys with intermetallic phases are investigated. Systems having the most important structures have been examined to obtain criteria for the relation between lattice structure, type of binding, and elastic behavior.
Rayón, Emilio; Bonache, V.; Salvador, M. D.; Roa Rovira, Joan Josep; E. Sánchez
2011-01-01
► The mechanical properties of WC–12Co coatings were analyzed by nanoindentation. ► The nanohardness and Young's modulus were identified for each phase. ► Statistical analysis correlated macroscopic with nanomechanical behavior. ► The binder phase reduces the hardening effect due to decarburisation process.
Measurement of Young's modulus and Poisson's ratio of human hair using optical techniques
Hu, Zhenxing; Li, Gaosheng; Xie, Huimin; Hua, Tao; Chen, Pengwan; Huang, Fenglei
2010-03-01
Human hair is a complex nanocomposite fiber whose physical appearance and mechanical strength are governed by a variety of factors like ethnicity, cleaning, grooming, chemical treatments and environment. Characterization of mechanical properties of hair is essential to develop better cosmetic products and advance biological and cosmetic science. Hence the behavior of hair under tension is of interest to beauty care science. Human hair fibers experience tensile forces as they are groomed and styled. Previous researches about tensile testing of human hair were seemingly focused on the longitudinal direction, such as elastic modulus, yield strength, breaking strength and strain at break after different treatment. In this research, experiment of evaluating the mechanical properties of human hair, such as Young's modulus and Poisson's ratio, was designed and conducted. The principle of the experimental instrument was presented. The system of testing instrument to evaluate the Young's modulus and Poisson's ratio was introduced. The range of Poisson's ratio of the hair from the identical person was evaluated. Experiments were conducted for testing the mechanical properties after acid, aqueous alkali and neutral solution treatment of human hair. Explanation of Young's modulus and Poisson's ratio was conducted base on these results of experiments. These results can be useful to hair treatment and cosmetic product.
Ji, Richard; Siddiki, Nayyarzia; Nantung, Tommy; Kim, Daehyeon
2014-01-01
In order to implement MEPDG hierarchical inputs for unbound and subgrade soil, a database containing subgrade M R , index properties, standard proctor, and laboratory M R for 140 undisturbed roadbed soil samples from six different districts in Indiana was created. The M R data were categorized in accordance with the AASHTO soil classifications and divided into several groups. Based on each group, this study develops statistical analysis and evaluation datasets to validate these models. Stress-based regression models were evaluated using a statistical tool (analysis of variance (ANOVA)) and Z-test, and pertinent material constants (k 1, k 2 and k 3) were determined for different soil types. The reasonably good correlations of material constants along with M R with routine soil properties were established. Furthermore, FWD tests were conducted on several Indiana highways in different seasons, and laboratory resilient modulus tests were performed on the subgrade soils that were collected from the falling weight deflectometer (FWD) test sites. A comparison was made of the resilient moduli obtained from the laboratory resilient modulus tests with those from the FWD tests. Correlations between the laboratory resilient modulus and the FWD modulus were developed and are discussed in this paper. PMID:24701162
Directory of Open Access Journals (Sweden)
Richard Ji
2014-01-01
Full Text Available In order to implement MEPDG hierarchical inputs for unbound and subgrade soil, a database containing subgrade MR, index properties, standard proctor, and laboratory MR for 140 undisturbed roadbed soil samples from six different districts in Indiana was created. The MR data were categorized in accordance with the AASHTO soil classifications and divided into several groups. Based on each group, this study develops statistical analysis and evaluation datasets to validate these models. Stress-based regression models were evaluated using a statistical tool (analysis of variance (ANOVA and Z-test, and pertinent material constants (k1, k2 and k3 were determined for different soil types. The reasonably good correlations of material constants along with MR with routine soil properties were established. Furthermore, FWD tests were conducted on several Indiana highways in different seasons, and laboratory resilient modulus tests were performed on the subgrade soils that were collected from the falling weight deflectometer (FWD test sites. A comparison was made of the resilient moduli obtained from the laboratory resilient modulus tests with those from the FWD tests. Correlations between the laboratory resilient modulus and the FWD modulus were developed and are discussed in this paper.
Evaluation the Effects of Some Relevant Parameters on Elastic Modulus of Pumpkin Seed and Its Kernel
Directory of Open Access Journals (Sweden)
Mohammad Hossein Abbaspour-Fard
2012-01-01
Full Text Available The elastic modulus of two varieties of Iranian pumpkin seed and its kernel (namely, Zaria and Gaboor were evaluated as a function of size (large, medium, and small, loading rate (2, 5, 8, and 10 mm/min, and moisture content (4, 7.8, 14, and 20% d.b under quasistatic compression loading. The results showed that elastic modulus of pumpkin seed and its kernel decreased with increasing moisture content and also increasing loading rate, for the varieties under study. The average modulus of elasticity of pumpkin seed from 68.86 to 46.65 Mpa and from 97.14 to 74.93 Mpa was obtained for moisture levels ranging from 4 to 20%, for Zaria and Gaboor varieties, respectively. The elastic modulus of pumpkin seed decreased from 73.55 to 43.04 Mpa and from 101.83 to 71.32 Mpa with increasing loading rate from 2 to 10 mm/min for Zaria and Gaboor varieties, respectively.
Evaluation the Effects of Some Relevant Parameters on Elastic Modulus of Pumpkin Seed and Its Kernel
Abbaspour-Fard, Mohammad Hossein; Khodabakhshian, Rasool; Emadi, Bagher; Sadrnia, Hasan
2012-01-01
The elastic modulus of two varieties of Iranian pumpkin seed and its kernel (namely, Zaria and Gaboor) were evaluated as a function of size (large, medium, and small), loading rate (2, 5, 8, and 10 mm/min), and moisture content (4, 7.8, 14, and 20% d.b) under quasistatic compression loading. The results showed that elastic modulus of pumpkin seed and its kernel decreased with increasing moisture content and also increasing loading rate, for the varieties under study. The average modulus of elasticity of pumpkin seed from 68.86 to 46.65 Mpa and from 97.14 to 74.93 Mpa was obtained for moisture levels ranging from 4 to 20%, for Zaria and Gaboor varieties, respectively. The elastic modulus of pumpkin seed decreased from 73.55 to 43.04 Mpa and from 101.83 to 71.32 Mpa with increasing loading rate from 2 to 10 mm/min for Zaria and Gaboor varieties, respectively. PMID:22481937
International Nuclear Information System (INIS)
Dynamic modulus is a performance indicator for asphalt concrete and is used to qualify asphalt mixtures based on stress-strain characteristics under repeated loading. Moreover, the low temperature cracking of asphalt concrete mixes are measured in terms of fracture strength and fracture temperature. Dynamic modulus test was selected as one of the simple performance tests in the AASHTO 2002 guidelines to rate mixtures according to permanent deformation performance. However, AASHTO 2002 guidelines is silent in relating dynamic modulus values to low temperature cracking, probably because of weak correlations reported between these two properties. The present study investigates the relation between these two properties under the influence of aggregate type and mix gradation. Mixtures were prepared with two types of aggregate and gradations, while maintaining the binder type and air voids constant. The mixtures were later tested for dynamic modulus and fracture strength using thermal stress restrained specimen test (TSRST). Results indicate that there exists a fair correlation between the thermal fracture strength and stiffness at a selected test temperature and frequency level. These correlations are highly dependent upon the type of aggregate and mix gradation. (author)
International Nuclear Information System (INIS)
A high modulus, sulfonated ionomer synthesized from 4,6-bis(4-hydroxyphenyl)-N,N-diphenyl-1,3,5-triazin-2-amine and 4,4′-biphenol with bis(4-fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and consequently generates a high intrinsic strain response, which is >1.1% under 1.6 V while maintaining a high elastic modulus (i.e. 600 MPa for 65 vol% IL uptake). Moreover, such a high modulus of the active ionomer, originating from the highly aromatic backbone and side-chain-free structure, allows for the fabrication of free-standing thin film micro-actuators (down to 5 µm thickness) via the solution cast method and focused-ion-beam milling, which exhibits a much higher bending actuation, i.e. 43 µm tip displacement and 180 kPa blocking stress for a 200 µm long and 5 µm thick cantilever actuator, compared with the ionic actuators based on traditional ionomers such as Nafion, which has a much lower elastic modulus (50 MPa) and actuation strain. (paper)
Elastic modulus affects the growth and differentiation of neural stem cells
Institute of Scientific and Technical Information of China (English)
Xian-feng Jiang; Kai Yang; Xiao-qing Yang; Ying-fu Liu; Yuan-chi Cheng; Xu-yi Chen; Yue Tu
2015-01-01
It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron speciifc enolase, glial ifbrillary acidic protein, and myelin basic protein expression was detected by immunolfuorescence. Moreover, lfow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These ifndings con-ifrm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re-sults in a more obvious trend of cell differentiation into astrocytes.
Ng, Iok-Tong; Yuen, Ka-Veng; Lao, Ngai-Kuan
2016-09-01
Evaluation of the cyclic shear modulus of soils is a crucial but challenging task for many geotechnical earthquake engineering and soil dynamic issues. Improper determination of this property unnecessarily drives up design and maintenance costs or even leads to the construction of unsafe structures. Due to the complexities involved in the direct measurement, empirical curves for estimating the cyclic shear modulus have been commonly adopted in practice for simplicity and economical considerations. However, a systematic and robust approach for formulating a reliable model and empirical curve for cyclic shear modulus prediction for clayey soils is still lacking. In this study, the Bayesian model class selection approach is utilized to identify the most significant soil parameters affecting the normalized cyclic shear modulus and a reliable predictive model for normally to moderately over-consolidated clays is proposed. Results show that the predictability and reliability of the proposed model out performs the well-known empirical models. Finally, a new design chart is established for practical usage.
Directory of Open Access Journals (Sweden)
A Jafari Malekabadi
2016-04-01
Full Text Available Introduction: Poisson ratio and modulus of elasticity are two fundamental properties of elastic and viscoelastic solids that use in solving all contact problems, including the calculation of stress, the contact surfaces and elastic deformation (Mohsenin, 1986; Gentle and Halsall, 1982. There are many published literature on Poisson ratio and elasticity modulus of fruit and vegetables. Shitanda et al. (2002 calculated Poisson ratio of rice by considering Boussinesq’s theory. They showed that the Poisson ratio is greater for shorter varieties. In another study, researchers used the instrumented bending beam to measure the lateral expansion of red beans. They were considered Poisson ratio as the ratio of transverse strain to the longitudinal strain (regardless of the geometry of the sample and were calculated modulus of elasticity with Hertz theory for convex bodies (Kiani Deh Kiani et al., 2009. Cakir et al. (2002 was determined the Poisson ratio and elastic modulus of some onion varieties. They used a simple formula to determine the transverse strain that developed by Sitkei (1986 for prism-shaped rod, regardless of the geometry of the product. Reviewed scientific literature shows that these parameters have not been studied according to the geometric shape of onions and was not used by a more accurate method, such as image processing to determine these parameters. The objective of this study was to evaluate the mechanical properties of two varieties of onions. Poisson ratio was determined with image processing. Considering shape of the onions and deformation value, and using Hertz’s theory with Poisson ratio, modulus of elasticity was calculated. The effects of loading directions (polar or equatorial, deformation value (5, 10 and 15 mm, loading speed (15 or 25 mm min-1 and onion varieties (Red and Yellow on the modulus of elasticity and apparent Poisson’s ratio were examined. Materials and Methods: The onions harvested in autumn, 20 days
Measurement of Young’s modulus and damping of fibers at cryogenic temperatures
Rice, Brian; Quinzi, Joseph; Lund, Lance; Ulreich, Jeffrey; Shoup, Milton
2014-09-01
High-yield inertial confinement fusion targets are at cryogenic temperatures and must remain stable to within 10 μm during the implosion. Young’s modulus and damping properties of fibers used to mount cryogenic targets are needed to design stable targets, but these property values do not exist in literature. A novel experimental method that tracks how target vibrations respond to an impulse is used to quantitatively measure these properties from 295 to 20 K. Young’s modulus and the critical damping ratio are measured for NicalonTM ceramic grade [silicon carbide (SiC)], Zylon®HM {poly[p-phenlyne-2,6-benzobisoxazole] (PBO)}, M5 {dimidazo-pyridinylene [dihydroxy] phenylene (PIPD)}, and polyimide fibers. This method allows one to accurately measure the properties of interest for fiber diameters as small as 12 μm at ∼20 K. Significant changes are seen in Young’s modulus for the three polymeric fibers with respect to temperature; while Young’s modulus is relatively invariant to temperature for the ceramic fiber.
Contact modelling of human skin: what value to use for the modulus of elasticity?
Kuilenburg, van J.; Masen, M.A.; Heide, van der E.
2012-01-01
In modelling and understanding the contact and friction behaviour of human skin, the elastic modulus of the skin is an important input parameter. For the development of design rules for the engineering of surfaces in contact with the skin an expression that describes the relation between the elastic
MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE
Directory of Open Access Journals (Sweden)
Yanhui Huang,
2012-05-01
Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.
The influence of resin flexural modulus on the magnitude of ceramic strengthening.
LENUS (Irish Health Repository)
Fleming, Garry J P
2012-07-01
The aim was to determine the magnitude of ceramic resin-strengthening with resin-based materials with varying flexural moduli using a regression technique to assess the theoretical strengthening at a \\'zero\\' resin-coating thickness. The hypothesis tested was that experimentally, increasing resin flexural modulus results in increased resin-strengthening observed at a theoretical \\'zero\\' resin-coating thickness.
Directory of Open Access Journals (Sweden)
Rachelle N Palchesko
Full Text Available Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line and C2C12 (muscle cell line were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.
Palchesko, Rachelle N; Zhang, Ling; Sun, Yan; Feinberg, Adam W
2012-01-01
Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.
Directory of Open Access Journals (Sweden)
Chris L. de Korte
2013-03-01
Full Text Available Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.
Digilov, Rafael M.
2008-01-01
We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…
Sadeghian, H.; Yang, C.K.; Goosen, J.F.L.; Van der Drift, E.; Bossche, A.; French, P.J.; Van Keulen, F.
2009-01-01
This letter presents the application of electrostatic pull-in instability to study the size-dependent effective Young’s Modulus Ẽ ( ~170–70 GPa) of [110] silicon nanocantilevers (thickness ~1019–40 nm). The presented approach shows substantial advantages over the previous methods used for characteri
Detail of photo 7903109 stack of superconducting cables in the modulus measuring device
1979-01-01
The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.
Osteonectin-derived peptide increases the modulus of a bone-mimetic nanocomposite.
Sarvestani, Alireza S; He, Xuezhong; Jabbari, Esmaiel
2008-02-01
Many factors contribute to the toughness of bone including the presence of nano-size apatite crystals, a dense network of collagen fibers, and acidic proteins with the ability to link the mineral phase to the gelatinous collagen phase. We investigated the effect of a glutamic acid (negatively charged) peptide (Glu6), which mimics the terminal region of the osteonectin glycoprotein of bone, on the shear modulus of a synthetic hydrogel/apatite nanocomposite. One end of the synthesized peptide was functionalized with an acrylate group (Ac-Glu6) to covalently attach the peptide to the hydrogel phase of the composite matrix. When microapatite crystals (5 microm diameter) were used, addition of Ac-Glu6 peptide did not affect the modulus of the microcomposite. However, when nanoapatite crystals (100 nm diameter) were used, addition of Ac-Glu6 resulted in significant reinforcement of the shear modulus of the nanocomposite ( approximately 100% in elastic shear modulus). Furthermore, addition of Ac-Gly6 (a neutral glycine sequence) or Ac-Lys6 (a positively charged sequence) did not reinforce the nanocomposite. These results demonstrate that the reinforcement effect of the Glu6 peptide, a sequence in the terminal region of osteonectin, is modulated by the size of the apatite crystals. The findings of this work can be used to develop advanced biomimetic composites for skeletal tissue regeneration. PMID:17609937
Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers
DEFF Research Database (Denmark)
Colombi, Paolo; Bergese, Paolo; Bontempi, Elza;
2013-01-01
) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films...
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda
2016-09-01
An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda
2016-06-01
An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous two-dimensional finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in
Engbretson, Andrew Craig
Cancellous, or spongy, bone accounts for nearly 80% of the human skeleton's internal surface area, despite comprising only 20% of its mass. It is made up of a network of struts and plates that provide lightweight internal support to mammalian bones. In addition, it often serves as the main interface between the skeletal system and implanted devices such as artificial hips, knees, and fracture fixation devices. However, hip arthroplasties can succumb to loosening of the implant due to bone resorption, which is thought to be caused by a mismatch in both apparent and real stiffness between the device and the surrounding bone. Many studies have attempted to determine the Young's modulus of cancellous bone tissue, but the results are far from being in agreement. Reported values range from less than 1 to nearly 20 GPa. In addition, the small size of trabeculae has made dissection and testing a challenge. In this thesis, whole individual trabeculae from a bovine lumbar spine were tested in three-point bending to determine their Young's modulus using custom-made equipment to fit a miniature single-axis testing device. The device itself was validated by testing materials with moduli ranging from 1 to 200 GPa. The structure of the cancellous bone and the morphology of the individual struts were determined using micro x-ray computed tomography (muXCT). Individual struts were manually isolated from slices made using a low-speed saw under constant lubrication and measured under a stereomicroscope. Samples exhibiting no machined surfaces (and thus deemed to be whole, or "uncut" were compared to struts that had been cut by the saw during sectioning. Validation showed that the system was capable of determining the modulus of materials that were approximately five times stiffer than the expected cancellous modulus (copper, at 115 GPa) to within 10% of published values. This gave confidence in the results for bone. The modulus of the "uncut" specimens was found to be 15.28 2.26 GPa
Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics
Directory of Open Access Journals (Sweden)
W. X. Niu
2013-01-01
Full Text Available Finite element analysis (FEA is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes in the computational simulation. A precise 3-dimensional finite element model was constructed based on an in-vitro specimen of human foot and ankle. Young’s moduli were assigned as four levels of 7.3, 14.6, 21.9 and 29.2 GPa respectively. The proximal tibia and fibula were completely limited to six degrees of freedom, and the ankle was loaded to inversion 10° and 20° through the calcaneus. Six cadaveric foot-ankle specimens were loaded as same as the finite element model, and strain was measured at two positions of the distal fibula. The bone stress was less affected by assignment of Young’s modulus. With increasing of Young’s modulus, the bone strain decreased linearly. Young’s modulus of 29.2 GPa was advisable to get the satisfactory surface strain results. In the future study, more ideal model should be constructed to represent the nonlinearity, anisotropy and inhomogeneity, as the same time to provide reasonable outputs of the interested parameters.
Relative entropy equals bulk relative entropy
Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine
2015-01-01
We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.
Coupling brane fields to bulk supergravity
Energy Technology Data Exchange (ETDEWEB)
Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-12-15
In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)
Coupling brane fields to bulk supergravity
International Nuclear Information System (INIS)
In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)
Diagnosis of Dry Bulk Shipping Market
Institute of Scientific and Technical Information of China (English)
Wendy Wu
2009-01-01
@@ A sudden severe winter for dry bulk shipping market Since the second half of last year,dry bulk shipping market experienced a sudden and dramatical change which caught everyone off guard in just a few months'time.As the wind vane of dry bulk shipping market,BDI index(Baltic index)has been climbing higher and higher from the middle of 2005.It began to nearly shoot up into the 2007.
Bulk scalar field in DGP braneworld cosmology
Ansari, Rizwan ul Haq
2007-01-01
We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .
Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis
Ligterink, D.J.
1975-01-01
The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear
Guterl, Clare Canal; Hung, Clark T.; Ateshian, Gerard A.
2010-01-01
This study presents direct experimental evidence for assessing the electrostatic and nonelectrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. Immature and mature bovine cartilage samples were tested in unconfined compression and their depth-dependent equilibrium compressive modulus was determined using strain measurements with digital image correlation analysis. The electrostatic contribution was assessed by testing samples in isoto...
27 CFR 20.191 - Bulk articles.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...
Magnetic effect on Young's modulus measurement of CP-Ti at 4 K (result of round robin test)
Shibata, K.; Nyilas, A.; Shindo, Y.; Ogata, T.
2002-05-01
From a practical viewpoint, it is convenient if Young's modulus can be determined without any special technique or device. There are standards to determine Young's modulus. However, the research about magnetic effects on the measurement of Young's modulus is not enough and the standard in a magnetic field has not been established especially at cryogenic temperatures. In the present research, four institutes measured Young's modulus of specimens machined from a unique commercial purity titanium plate with and without an application of magnetic fields up to 13 Tesla at liquid helium temperature, and the obtained values are compared. All participants used two or three extensometers and the slopes of the stress-strain curves obtained with them were averaged. The magnetic effect on the value of Young's modulus was not observed. But some deviation in the value was observed among participants. To use the averaging method and longer gage length is recommended.
Analysis of modulus hardening in an artificial aged Al–Cu–Mg alloy by atom probe tomography
International Nuclear Information System (INIS)
The individual contribution of different Cu–Mg co-clusters by modulus hardening to age-hardening response of an Al–Cu–Mg alloy at 170 °C is evaluated based on Vickers hardness measurements and quantitative atom probe tomography analysis. The present results show that it is order hardening of large Cu-Mg co-clusters or GPB zones rather than modulus hardening significantly contributes to the second stage of hardening. Despite prolonged aging from 5 min to 8 h leads to a noticeable change in the number density and the volume fraction of different Cu-Mg co-clusters, interestingly, the total critical shear stress of Cu-Mg co-clusters by modulus hardening fluctuates slightly, indicating the modulus hardening effect almost keeps unchanged at the hardness plateau. Besides, the shear modulus of Cu-Mg co-clusters is found to remain constant as aging prolongs at 170 °C
International Nuclear Information System (INIS)
Understanding the short term elastic properties, (i.e. the instantaneous modulus) of Kapton is essential in determining the loss of prestress during storage and operation of SSC dipole magnets. The magnet prestress contributes directly to the coil response to the Lorentz forces during ramping. The instantaneous modulus is important in extrapolating short term stress relaxation data to longer times. Most theoretical fits assume a time independent component and a time dependent component. The former may be represented by the Kapton modulus near zero K where all relaxation processes have been ''frozen'' out. Modulus measurements at 77K and 4.2K may point to a correct value for the near zero K modulus. Three companion papers presented at this conference will be: ''Stress Relaxation in SSC 50 mm Dipole Coils'' ''Temperature Dependence of the Viscoelastic Properties of SSC Coil Insulation (Kapton)'' ''Theoretical Methods for Creep and Stress Relaxation Studies of SSC Coil.''
Bulk equations of motion from CFT correlators
Kabat, Daniel
2015-01-01
To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.
Energy Technology Data Exchange (ETDEWEB)
Katsika-Tsigourakou, Vassiliki, E-mail: vkatsik@phys.uoa.g [Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimiopolis, 157 84 Zografos (Greece)
2009-11-01
The ac electrical measurements have been just reported for alkali halide mixed crystals that were melt grown from NaCl, KCl and KBr starting materials. They showed a nonlinear variation of all the electrical parameters with the bulk composition. In this short paper, we show that these mixed systems, depending on their major constituent, are classified into three categories in each of which, the activation energy for the ac conductivity increases linearly with BOMEGA, where B is the isothermal bulk modulus and OMEGA the mean volume per atom. In addition, the resulting three straight lines are formed to have almost the same slope.
Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si
Energy Technology Data Exchange (ETDEWEB)
Charitidis, C.A., E-mail: charitidis@chemeng.ntua.gr [National Technical University of Athens, School of Chemical Engineering 9 Heroon Polytechniou St., 15780 Zographos, Athens (Greece); Skarmoutsou, A. [National Technical University of Athens, School of Chemical Engineering 9 Heroon Polytechniou St., 15780 Zographos, Athens (Greece); Nassiopoulou, A.G.; Dragoneas, A. [IMEL/NCSR Demokritos, P.O. Box 60228, 153 10 Aghia Paraskevi Attikis, Athens (Greece)
2011-11-15
Highlights: {yields} The nanomechanical properties of bulk crystalline Si. {yields} The nanomechanical properties of porous Si. {yields} The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.
Radar Constant-Modulus Waveform Design with Prior Information of the Extended Target and Clutter.
Yue, Wenzhen; Zhang, Yan; Liu, Yimin; Xie, Jingwen
2016-06-17
Radar waveform design is of great importance for radar system performances and has drawn considerable attention recently. Constant modulus is an important waveform design consideration, both from the point of view of hardware realization and to allow for full utilization of the transmitter's power. In this paper, we consider the problem of constant-modulus waveform design for extended target detection with prior information about the extended target and clutter. At first, we propose an arbitrary-phase unimodular waveform design method via joint transmitter-receiver optimization. We exploit a semi-definite relaxation technique to transform an intractable non-convex problem into a convex problem, which can then be efficiently solved. Furthermore, quadrature phase shift keying waveform is designed, which is easier to implement than arbitrary-phase waveforms. Numerical results demonstrate the effectiveness of the proposed methods.
On Young’s modulus of multi-walled carbon nanotubes
Indian Academy of Sciences (India)
K T Kashyap; R G Patil
2008-04-01
Carbon nanotubes (CNTs) were discovered by Iijima in 1991 as the fourth form of carbon. Carbon nanotubes are the ultimate carbon fibres because of their high Young’s modulus of ≈ 1 TPa which is very useful for load transfer in nanocomposites. In the present work, CNT/Al nanocomposites were fabricated by the powder metallurgy technique and after extrusion of the nanocomposites bright field transmission electron microscopic (TEM) studies were carried out. From the TEM images so obtained, a novel method of ascertaining the Young’s modulus of multi-walled carbon nanotubes is worked out in the present paper which turns out to be 0.9 TPa which is consistent with the experimental results.
Low-k Material Characterization with High Spatial Resolution: k Value and E Modulus
Zschech, Ehrenfried; Potapov, Pavel; Chumakov, Dmytro; Engelmann, Hans-Juergen; Geisler, Holm; Sukharev, Valeriy
2007-10-01
Plasma processes for resist stripping, via etching and post-etch cleaning remove C and H containing molecular groups from the near-surface layer of organosilicate glass (OSG). Particularly, composition and chemical bonding of low-k materials are changed. In this paper, the effect of chemical bonding on permittivity and elastic modulus is studied. Compositional analysis and chemical bonding characterization of structured ILD films with nanometer resolution is done with electron energy loss spectroscopy (EELS). The fine structure near the C-K electron energy loss edge allows to differentiate between C-H, C-C, and C-O bonds, and consequently, between individual low-k materials and their modifications. Dielectric permittivity changes are studied based on VEELS (valence EELS) measurements and subsequent Kramers-Kronig analysis. The elastic modulus is determined with atomic force microscopy (AFM) in force modulation (FM) mode. Nanoindentation was applied as a complementary technique to obtain reference data.
Determination of silicone coating Young's modulus using atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Thome, T. [PSA Peugeot Citroen, Centre Technique de Velizy, DTI/DITV/PMXP/TAC/PSM, Route de Gisy, 78943 Velizy-Villacoublay (France)], E-mail: tristan.thome@mpsa.com; Fouchez, S.; Delalande, S. [PSA Peugeot Citroen, Centre Technique de Velizy, DTI/DITV/PMXP/TAC/PSM, Route de Gisy, 78943 Velizy-Villacoublay (France)
2009-01-15
The polymerisation degree of thin polymer coatings was checked by following the variation of their local mechanical properties. Atomic force microscope (AFM) was used in an indentation mode to investigate the mechanical characteristics of silicone coatings on polycarbonate substrates. The evolution of Young's modulus of the silicone coatings was determined as a function of the polymer annealing time. We have used a relative method to measure Young's moduli, which involves a calibration step with a set of reference polymers. No variation was observed for the modulus of silicone coatings annealed during more than 40 min at 130 deg. C. This result indicates that over-heating does not modify the mechanical properties of the coating.
Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films.
Won, Yoonjin; Gao, Yuan; Panzer, Matthew A; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W; Cai, Wei; Goodson, Kenneth E
2013-12-17
Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies--from thermal solar to automotive waste heat recovery systems--whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties.
Method for measuring static Young's modulus of tungsten to 1900 K
Harrigill, W. T., Jr.; Krsek, A., Jr.
1972-01-01
An instrument system was developed and tested to measure static Young's modulus of elasticity of refractory metals in tension at temperatures to 1900 K. The extensometer uses capacitance displacement sensors for measuring total elongation of a specimen and incorporates a unique high-resolution remote zero-adjusting mechanism. Details of a method for calibrating capacitance displacement sensors at temperatures to 800 K are included. The system was built to adapt to a vacuum furnace on a tensile machine and was tested on unalloyed tungsten rod specimens. The test results show that the system can measure the modulus of tungsten to 1900 K to within a precision of + or - 5 percent. The uncertainty of the measurement is estimated to be of the same order as the precision.
Poisson's ratio and Young's modulus of lipid bilayers in different phases
Directory of Open Access Journals (Sweden)
Tayebeh eJadidi
2014-04-01
Full Text Available A general computational method is introduced to estimate the Poisson's ratio for membranes with small thickness.In this method, the Poisson's ratio is calculated by utilizing a rescaling of inter-particle distancesin one lateral direction under periodic boundary conditions. As an example for the coarse grained lipid model introduced by Lenz and Schmid, we calculate the Poisson's ratio in the gel, fluid, and interdigitated phases. Having the Poisson's ratio, enable us to obtain the Young's modulus for the membranes in different phases. The approach may be applied to other membranes such as graphene and tethered membranes in orderto predict the temperature dependence of its Poisson's ratio and Young's modulus.
Printing Three-Dimensional Heterogeneities in the Elastic Modulus of an Elastomeric Matrix.
Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K
2016-05-01
We present a rapid and controllable method to create microscale heterogeneities in the 3D stiffness of a soft material by printing patterns with a ferrofluid ink. An ink droplet moved through a liquid polydimethylsiloxane (PDMS) volume using an externally applied magnetic field sheds clusters of magnetic nanoparticles (MNPs) in its wake. By varying the field spatiotemporally, a well-defined three-dimensional curvilinear feature is printed that contains MNP clusters. Subsequent cross-linking of the PDMS preserves the feature in place after the magnetic field is removed. Since the ferrofluid ink interferes with the cross-linking of PDMS, a 3D print containing ink density variations leads to corresponding spatial deviations in the elastic modulus of the matrix. The modulus is mapped in the experiments with atomic force microscopy. This rapid method to print 3D heterogeneities in soft matter promises the ability to mimic mechanical variations that occur in natural biomaterials. PMID:27088326
Institute of Scientific and Technical Information of China (English)
Wang Teng; Wang Kuihua; Xie Kanghe
2001-01-01
The vibration problem of a pile of arbitrary segments with variable modulus under exciting force is established, in which the influence of the soil under pile toe and the surroundings is taken into account. With Laplace transforms, the transmit functions for velocity and displacement of pile are derived. Furthermore, in terms of the convolution theorem and inversed Laplace transform, an analytical solution for the time domain response of a pile subjected to a semi-sine impulse is developed,which is the theoretical basis of the sonic method in pile integrity testing. Based on the solution, the vibration properties of pile with sharp or continuous modulus are studied. The validity of this approach is verified through fidd dynamic tests on some engineering piles. It shows that the theoretical prediction and the response of the pile are in good agreement.
Effect of pH and Ibuprofen on Phopholipid Bilayer Bending Modulus
Boggara, Mohan; Faraone, Antonio; Krishnamoorti, Ramanan
2010-03-01
Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, are known to cause gastrointestinal (GI) toxicity with chronic usage. However, NSAIDs pre-associated with phospholipids has been experimentally shown to reduce the GI toxicity and increase the therapeutic efficacy. In this study, using neutron spin-echo the effect of ibuprofen on the phospholipid membrane bending modulus is studied as a function of pH and temperature. Ibuprofen was found to lower the bending modulus at all pH values. We further present molecular insights into the observed effect on membrane dynamics based on structural studies using molecular dynamics simulations and small angle neutron scattering data as well as changes in zwitterionic headgroup electrostatics due to pH and addition of ibuprofen. This study is expected to help towards effective design of drug delivery nanoparticles based on variety of soft condensed matter such as lipids or polymers.
Experimental measurement of Young’s modulus from a single crystalline cementite
International Nuclear Information System (INIS)
Pure Fe–C pearlite was heat-treated and selectively etched to extract [0 0 1]- and [1 0 0]-oriented single crystalline cementite sheets. The elastic properties of the shaped cementite were measured in a simple, in situ bending test system set up inside the scanning electron microscope using a micronewton-range force sensor. The Young’s modulus experimentally measured from a single crystal sheet was lower than the value obtained from theoretical calculation
A vibrational approach to determine the elastic modulus of individual thin films in multilayers
Energy Technology Data Exchange (ETDEWEB)
López-Puerto, A. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 # 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán (Mexico); Universidad Autónoma de Yucatán, Facultad de Ingeniería, Av. Industrias no contaminantes por Periférico Norte, Cordemex, 97310 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 # 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán (Mexico); Gamboa, F.; Oliva, A.I. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico)
2014-08-28
A vibrational approach is presented to determine the elastic modulus of individual thin films deposited over a thicker substrate in multilayered systems. The approach requires measurement of the fundamental frequency of the multilayer and a laminated beam model for data reduction. A one-dimensional model based on classical laminated beam theory is introduced to provide a simple analytical approximation of the natural frequency of thin multilayered materials deposited over a significantly thicker substrate in cantilever beam configuration. The model has the advantage of providing an easy-to-use analytical expression for the natural frequency of a multilayered beam in terms of the elastic moduli of each layer, which can be inverted to calculate the elastic modulus of any individual layer if the elastic modulus of the remaining layers is known, and the natural frequency of the multilayered beam is measured. The limits of applicability of the proposed model are investigated by comparing its predictions of the fundamental frequency to those of an existent analytical model for bilayers and finite element analysis of materials comprising two and three dissimilar layers. The proposed model is applied to obtain the elastic modulus of Al and Au thin films in an Al/Au/Kapton multilayer. - Highlights: • A vibrational approach is proposed to measure elastic moduli of thin multilayers. • A vibratory model based on laminated theory is developed. • The model predictions of frequency are in agreement with finite element analysis. • The elastic moduli of Au and Al in an Al/Au/Kapton multilayer are measured.
Effects of grain size distribution on the initial strain shear modulus of calcareous sand
Pham, Huu Ha Giang; Van Impe, PO; Van Impe, William; Mengé, P; Haegeman, Wim
2015-01-01
The soil’s small strain shear modulus, Gmax or G0, is applied in dynamic behavior analyses and is correlated to other soil properties (density and void ratio) for predicting soil dynamic behavior under seismic loadings such as earthquakes, machinery or traffic vibrations. However, for calcareous sands, selecting representative samples for the field conditions is difficult; therefore, almost all measured soil parameters (post-seismic properties) do not reflect exactly the soil state before sei...
Khalilian, Morteza; Navidbakhsh, Mahdi; Valojerdi, Mojtaba Rezazadeh; Chizari, Mahmoud; Yazdi, Poopak Eftekhari
2009-01-01
The zona pellucida (ZP) is the spherical layer that surrounds the mammalian oocyte. The physical hardness of this layer plays a crucial role in fertilization and is largely unknown because of the lack of appropriate measuring and modelling methods. The aim of this study is to measure the biomechanical properties of the ZP of human/mouse ovum and to test the hypothesis that Young's modulus of the ZP varies with fertilization. Young's moduli of ZP are determined before and after fertilization b...
Determination of the elastic modulus of native collagen fibrils via radial indentation
Heim, August J.; Matthews, William G.; Koob, Thomas J.
2006-10-01
The authors studied the elastic response of single, native collagen fibrils extracted from tissues of the inner dermis of the sea cucumber, Cucumaria frondosa, via local nanoscale indentation with an atomic force microscope (AFM). AFM imaging of fibrils under ambient conditions are presented, demonstrating a peak-to-peak periodicity, the d band, of dehydrated, unfixed fibrils to be ˜64.5nm. Radial indentation experiments were performed, and the measured value for the reduced modulus is 1-2GPa.
The return to problem of stability for different-modulus material of beam
Directory of Open Access Journals (Sweden)
L.A. Movsisyan
2007-12-01
Full Text Available The stability of beam made from different-modulus material when two concentrated force act on equal distance from it ends is investigated. Two cases are investigated when forces are directed one to another and vice versa. In dependence from property of material and from points of application of force there are obtained rather different stresses states and therefore different statements of problem of stability.
Hussain, Sadakat
Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.
Institute of Scientific and Technical Information of China (English)
XU Dong-xuan; CHENG Xiang-rong; ZHANG Yu-feng; WANG Jun; CHENG Han-ting
2003-01-01
Denture base made from acrylic resin (polymethyl methacrylate,PMMA) was reinforced by different contents of ultrahigh-modulus polyethylene fiber (UHMPEF).The flexural strength of the denture base was tested,the failure modes and microstructures were investigated with a scanning electron microscope(SEM).The results indicate that 3.5wt%UHMPEF increased the ultimate flexural strength of the denture base.
Determination of Rock Mass Modulus Using the Plate Loading Method at Yucca Mountain, Nevada
Energy Technology Data Exchange (ETDEWEB)
Finley, R.E.; George, J.T.; Riggins, M.
1999-08-02
A suite of plate loading tests has recently been conducted by Sandia National Laboratories at the Exploratory Studies Facility at Yucca Mountain, Nevada. Fielding of these in situ tests as well as other approaches undertaken for the determination of rock mass modulus are described. The various methodologies are evaluated and their data compared. Calculation by existing empirical methods and numerical modeling are compared to each other as well as to field data.
Relative modulus-relative density relationships in low density polymer-clay nanocomposite foams
ISTRATE, OANA-MIHAELA
2011-01-01
Polymer-clay nanocomposite (PCN) foams represent an important class of new materials in structural engineering, biomedical fields and packaging. This paper reports the relative modulus-relative density relationship, a crucial correlation in cellular solids, for low-density PCN foams. Polyurethane (PU)-natural clay nanocomposite foams with a porosity of 97% were used for studies of such relationship. The foam structures were characterised by Scanning Electron Microscopy and X-ray Micro-Compute...
Rational Mix Design Approach for High Strength Concrete Using Sand with very High Fineness Modulus
Kwan W. Hoe; Mahyuddin Ramli
2010-01-01
Problem statement: Production of concrete is always deal with inconsistency. Sources of variation like materials from different geographical basis, mix design method, fineness of aggregates and so on will attribute to different level of achievement of the concrete. Even though researcher had verified that higher fineness modulus of sand would yield better performance for the concrete, but so far there have been scarce amount of paper reported on the mix design method adopt...
Temperature, Frequency, and Young’s Modulus of an Aluminum Tuning Fork
Directory of Open Access Journals (Sweden)
Zachery L. Greer
2011-01-01
Full Text Available The frequency produced by a standard C (523.3 Hz aluminum alloy tuning fork when struck at temperatures ranging from 29 ̊C to 300 ̊C was studied. It was found that frequency decreased with increasing temperature with an inverse exponential relationship. The frequency was used to calculate Young’s Modulus for aluminum, with the results being in close agreement with published values.
On a New Geometric Constant Related to the Modulus of Smoothness of a Banach Space
Institute of Scientific and Technical Information of China (English)
Yasuji TAKAHASHI; Mikio KATO
2014-01-01
We shall introduce a new geometric constant A(X) of a Banach space X, which is closely related to the modulus of smoothnessρX(τ), and investigate it in relation with the constant A2(X) by Baronti et al., the von Neumann-Jordan constant CN J (X ) and the James constant J (X ). A sequence of recent results on these constants as well as some other geometric constants will be strengthened and improved.
Elastic modulus of TiN film investigated with Kroner model and X-ray diffraction
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The four-point bending method was applied to measure X-ray elastic constants(XEC) of (422) and (331) planes of TiN coating. Elastic Modulus and XECs of all the crystal planes were calculated by Kroner method. The results from the calculation and the experiment were compared. It is concluded that the XECs values of same film prepared by different techniques scatter a little because of the effects of stoichiometric proportion and microstructure of films.
Effects of Modulus and Modifying Agent on Aging of Water Glass
Directory of Open Access Journals (Sweden)
Xu Hailan
2016-01-01
Full Text Available This paper studied the content of water glass before and after adding modifying agent by TMS-GC method, it was found that different modulus of water glass led to decrease of silicate content at different levels after a period of storage, and the modifying agent could retard the aging of water glass. It has remarkable significance on the theory and practical application of water glass chemistry.
Kim, Jongsoo; Chisholm, Bret J; Bahr, James
2007-01-01
Interactions between coating thickness, modulus and shear rate on pseudobarnacle adhesion to a platinum-cured silicone coating were studied using a statistical experimental design. A combined design method was used for two mixture components and two process variables. The two mixture components, vinyl end-terminated polydimethylsiloxanes (V21: MW=6 kg mole(-1) and V35: MW=4 9.5 kg mole(-1), Gelest Inc.) were mixed at five different levels to vary the modulus. The dry coating thickness was varied from 160 - 740 microm and shear tests were performed at four different shear rates (2, 7, 12, and 22 microm s(-1)). The results of the statistical analysis showed that the mixture components were significant factors on shear stress, showing an interaction with the process variable. For the soft silicone coating based on the high molecular weight polydimethylsiloxane (E=0.08 MPa), shear stress significantly increased as coating thickness decreased, while shear rate slightly impacted shear force especially at 160 microm coating thickness. As the modulus was increased (E=1.3 MPa), more force was required to detach the pseudobarnacle from the coatings, but thickness and rate dependence on shear stress became less important. PMID:17453735
Microstructure, Elastic Modulus and Tensile Properties of Ti-Nb-O Alloy System
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In the present study Ti-Nb binary alloy system was chosen because it has excellent biocompatibility as well as reasonable mechanical properties, aiming at understanding oxygen content on microstructural formation,elastic modulus and tensile properties in Ti-Nb alloy system. Small alloy buttons of 50 mm in diameter were prepared by arc melting on a water-cooled copper hearth under an argon gas atmosphere with a non-consumable tungsten electrode. The button ingots were then heat treated in a vacuum atmosphere at 1273 K for 0.5 h followed by water quenching in a specially designed heat treatment furnace. Microstructure, elastic modulus and tensile properties were investigated in order to understand the effect of oxygen content in quenched TiNb alloy system. The orthorhombic structured α″ martensite was changed to bcc structured β-phase with increasing Nb content. Interestingly, it was found that oxygen makes β-phase stable in quenched Ti-Nb alloy system. Elastic modulus values were sensitive to phase stability of constituent phases. Yield strength increased with increasing oxygen content. Details will be explained by phase formation and stability behavior.
An improved fully integrated, high-speed, dual-modulus divider
Zheng, Sun; Yong, Xu; Guangyan, Ma; Hui, Shi; Fei, Zhao; Ying, Lin
2014-11-01
A fully integrated 2n/2n+1 dual-modulus divider in GHz frequency range is presented. The improved structure can make all separated logic gates embed into correlative D flip—flops completely. In this way, the complex logic functions can be performed with a minimum number of devices and with maximum speed, so that lower power consumption and faster speed are obtained. In addition, the low-voltage bandgap reference needed by the frequency divider is specifically designed to provide a 1.0 V output. According to the design demand, the circuit is fabricated in 0.18 μm standard CMOS process, and the measured results show that its operating frequency range is 1.1-2.5 GHz. The dual-modulus divider dissipates 1.1 mA from a 1.8 V power supply. The temperature coefficient of the reference voltage circuit is 8.3 ppm/°C when the temperature varies from -40 to +125 °C. By comparison, the dual-modulus divide designed in this paper can possess better performance and flexibility.
Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study
Energy Technology Data Exchange (ETDEWEB)
Passeri, D., E-mail: daniele.passeri@uniroma1.it [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A. [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Tamburri, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Lucci, M.; Davoli, I. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Berezina, S. [Department of Physics, University of Zilina, 01026, Univerzitna 1 Zilina (Slovakia)
2009-11-15
We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.
Elastic Modulus and Stress Analysis of Porous Titanium Parts Fabricated by Selective Laser Melting
Institute of Scientific and Technical Information of China (English)
Junchao Li∗,Yanyan Zang; Wei Wang
2016-01-01
The mismatch of elasticity modulus has limited the application of titanium alloys in medical implants, and porous structures have been proved effective to deal with this problem. However, the manufacturing of porous structures has been restricted from conventional technologies. In this study, selective laser melting ( SLM) technology was employed to produce a set of Ti⁃6Al⁃4V porous samples based on cubic lattices with varying size of strut width from 200 μm to 600 μm. Then the compression tests were conducted to analyze the influence of the strut width on the elasticity modulus and the ultimate strength. The result shows both of them increases linearly with the growth of strut width or with the decrease of porosity, and the elasticity modulus of porous parts is largely reduced and actually meets the requirement of clinical application. Additionally, a finite element model was established to verify the un⁃uniform stress distribution of porous parts. It reveals that fractures always initially occur at the vertical struts along the force direction which suffer from the main deformation.
Determination of Young’s modulus using optical fiber long-period gratings
International Nuclear Information System (INIS)
Curvature sensitive CO2-laser induced long-period fiber gratings (LPGs) were employed to measure the Young’s moduli of materials. Two techniques, ‘bar resonance’ and ‘through transmission’, were used. In the first case, flexural vibrations of bars made of various industrial materials arranged in a cantilever configuration were probed by the LPG. The measured response allowed us to obtain the bar’s vertical movement as a function of time, its frequency components and the bar material’s Young’s modulus. In the second case, the optical response of LPGs was used to determine the propagation velocities of perturbations along a bar, which allowed the straightforward calculation of the Young’s modulus. The values obtained show good agreement with the ones reported in the literature. The results obtained in this paper demonstrate the feasibility of using LPGs to dynamically characterize a material’s elastic properties. To the best of our knowledge, this is the first demonstration of the use of long-period fiber gratings for dynamically determining Young’s modulus values. (paper)
Xu, Jinsheng; Ju, Yutao; Han, Bo; Zhou, Changsheng; Zheng, Jian
2013-11-01
The main goal of this work is to obtain relaxation curves of Hydroxyl-Terminated Polybutadiene (HTPB) propellant under unsteady temperature states. A series of relaxation tests of HTPB were carried out, with the strain level ɛ 0 of the tests being applied with a ramp time of strain rate . A method is proposed to compensate for stress relaxation during the period of strain rate loading. The proposed method is compared to a numerical method and a general method in terms of accuracy of determination of relaxation modulus. The results show that the relaxation moduli obtained by the proposed method and the numerical method are more accurate than those from the general method; in addition, the proposed method is more convenient in data processing. The relaxation modulus values under unsteady temperature states were obtained from a series of relaxation curves under constant temperature, and at different temperatures according to Time-Temperature Superposition Principle (TTSP). In this work, reduced time is defined as a function of time-temperature shift factor a T and a variable ψ( T) called `zero time' which depends on temperature. A comparison of test results showed that the values of relaxation modulus that take `zero time' into account are more accurate than those without `zero time'.
Contraction stress, elastic modulus, and degree of conversion of three flowable composites.
Cadenaro, Milena; Codan, Barbara; Navarra, Chiara O; Marchesi, Giulio; Turco, Gianluca; Di Lenarda, Roberto; Breschi, Lorenzo
2011-06-01
The aim of this study was to measure the contraction stress of three flowable resin composites and to correlate the stress with the elastic modulus and the degree of conversion. One low-shrinkage (Venus Diamond Flow) and two conventional (Tetric EvoFlow and X-Flow) flowable composites were polymerized for 40s with a light-emitting diode (LED) curing unit. Contraction force was continuously recorded for 300s using a stress-analyser, and stress values were calculated at 40s and at 300s. The maximum stress rate was also calculated for each specimen. The elastic modulus of each composite was assayed using a biaxial flexural test, and degree of conversion was analysed with Raman spectroscopy. X-Flow exhibited higher stress values than the other tested materials. Venus Diamond Flow showed the lowest stress values at 40s and at 300s, and the lowest maximum stress rate. Stress values were correlated with elastic modulus but not with degree of conversion, which was comparable among all tested materials.
Study of the Effect of Temperature Changes on the Elastic Modulus of Flexible Pavement Layers
Directory of Open Access Journals (Sweden)
Mohd Raihan Taha
2013-02-01
Full Text Available In general, the stiffness of flexible pavement is influenced by environmental changes, whereby temperature and rainfall affect the asphalt layer and non-asphalt layer, such as the subgrade, respectively. Normally, the effect of temperature on flexible pavement can be measured using two methods. The first is a destructive test whereby core samples are tested in a laboratory using a Universal Testing Machine (UTM. The second is a non-destructive in situ test using equipment such as a Falling Weight Deflectometer (FWD and Spectral Analysis of Surface Waves (SASW. This study was conducted to investigate the effect of temperature at different tensile levels on the Soekarno-Hatta and Purwakarta Cikampek roads in Bandung, West Java, Indonesia. It is observed that different tensile levels and testing methods result in various elastic modulus values of flexible pavement. The higher the temperature applied to the flexible pavement layer, the more the elastic modulus values decrease. In contrast, the lower the temperature imposed on the flexible pavement layer, the more the elastic modulus values increase. Different testing methods (FWD, UTM and SASW on the flexible pavement layer are also affected by temperature changes.
Alternative method of determining resilient modulus of subgrade soils using a static triaxial test
Energy Technology Data Exchange (ETDEWEB)
Kim, D.-S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Kweon, G.-C. [Dongeui Univ., Pusan (Korea, Republic of); Lee, K.-H. [Korea Highway Corp., Kyonggi-Do (Korea, Republic of)
2001-02-01
The resilient modulus (M{sub R}) is used in pavement design to determine the deformational characteristics of pavement materials. For small strains in particular, it is very important to carefully evaluate the resilient modulus. The results are often affected by compliance problems associated with testing equipment and workmanship. These problems have prevented the cyclic M{sub R} test from being routinely used. This paper presented an alternative M{sub R} testing method for subgrade soils using a static triaxial compression (TX) test. In this comparative evaluation, both the cyclic M{sub R} and static TX tests were conducted on synthetic specimens of various known rigidities to determine their deformational characteristics. Seven representative subgrade soils were collected from pavement sites in Korea to examine in detail the effects of strain amplitude, loading frequency, mean effective stress and number of loading cycles on the resilient modulus of subgrade soils. The newly proposed method was found to be reliable. Moduli obtained from the standard M{sub R} tests were found to be in good agreement with M{sub R} values derived from the proposed alternative M{sub R} test. The 95 per cent confidence interval of the proposed method was {+-}3.59 per cent. It was concluded that this proposed method can be successfully used in pavement design. Results of the alternative M{sub R} testing on subbase materials were also presented in a companion paper published by the same author. 19 refs., 3 tabs., 13 figs.
A novel method to determine the elastic modulus of extremely soft materials.
Stirling, Tamás; Zrínyi, Miklós
2015-06-01
Determination of the elastic moduli of extremely soft materials that may deform under their own weight is a rather difficult experimental task. A new method has been elaborated by means of which the elastic modulus of such materials can be determined. This method is generally applicable to all soft materials with purely neo-Hookean elastic deformation behaviour with elastic moduli lower than 1 kPa. Our novel method utilises the self-deformation of pendent gel cylinders under gravity. When suspended, the material at the very top bears the weight of the entire gel cylinder, but that at the bottom carries no load at all. Due to the non-uniform stress distribution along the gel sample both the stress and the resulting strain show position dependence. The cross-sectional area of the material is lowest at the top of the sample and gradually increases towards its bottom. The equilibrium geometry of the pendant gel is used to evaluate the elastic modulus. Experimental data obtained by the proposed new method were compared to the results obtained from underwater measurements. The parameters affecting the measurement uncertainty were studied by a Pareto analysis of a series of adaptive Monte Carlo simulations. It has been shown that our method provides an easily achievable method to provide an accurate determination of the elastic modulus of extremely soft matter typically applicable for moduli below 1 kPa. PMID:25873419
Directory of Open Access Journals (Sweden)
Akaninyene Afangide Umoh
2012-12-01
Full Text Available The study examined the effect of periwinkle shell ash as supplementary cementitious material on the compressive strength and static modulus of elasticity of concrete with a view to comparing it’s established relation with an existing model. The shells were calcined at a temperature of 800oC. Specimens were prepared from a mix of designed strength 25N/mm2. The replacement of cement with periwinkle shell ash (PSA was at five levels of 0, 10, 20, 30 and 40% by volume. A total of 90 cubical and cylindrical specimens each were cast and tested at 7, 14, 28, 90, 120 and 180 days. The results revealed that the PSA met the minimum chemical and physical requirements for class C Pozzolans. The compressive strength of the PSA blended cement concrete increased with increase in curing age up to 180 days but decreased as the PSA content increased. The design strength was attained with 10%PSA content at the standard age of 28 days. The static modulus of elasticity of PSA blended cement concrete was observed to increase with increased in curing age and decreases with PSA content. In all the curing ages 0%PSA content recorded higher value than the blended cement concrete. The statistical analysis indicated that the percentage PSA replacement and the curing age have significant effect on the properties of the concrete at 95% confidence level. The relation between compressive strength and static modulus of elasticity fitted into existing model for normal-weight concrete.
In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement
Directory of Open Access Journals (Sweden)
Elin Carlsson
2015-01-01
Full Text Available The high stiffness of acrylic bone cements has been hypothesized to contribute to the increased number of fractures encountered after vertebroplasty, which has led to the development of low-modulus cements. However, there is no data available on the in vivo biocompatibility of any low-modulus cement. In this study, the in vitro cytotoxicity and in vivo biocompatibility of two types of low-modulus acrylic cements, one modified with castor oil and one with linoleic acid, were evaluated using human osteoblast-like cells and a rodent model, respectively. While the in vitro cytotoxicity appeared somewhat affected by the castor oil and linoleic acid additions, no difference could be found in the in vivo response to these cements in comparison to the base, commercially available cement, in terms of histology and flow cytometry analysis of the presence of immune cells. Furthermore, the in vivo radiopacity of the cements appeared unaltered. While these results are promising, the mechanical behavior of these cements in vivo remains to be investigated.
Effect of yttrium addition on lattice parameter, Young's modulus and vacancy of magnesium
Energy Technology Data Exchange (ETDEWEB)
Peng Qiuming, E-mail: pengqiuming@gmail.com [MagIC - Magnesium Innovation Centre, GKSS-Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, Geesthacht 21502 (Germany); Meng Jian [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Li Yangde [E-Ande Scientific Limited Company 523662 (China); Huang Yuangding; Hort, Norbert [MagIC - Magnesium Innovation Centre, GKSS-Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, Geesthacht 21502 (Germany)
2011-02-25
Research highlights: {yields} The effect of Y on lattice parameter of Mg is investigated by calculation and XRD measurement. {yields} The effects of Y on the modulus of Mg (T4 and T6 states) are investigated by calculation and tensile test. {yields} The effect of RE on the vacancy of Mg alloys is investigated by calculation and density measurement. - Abstract: The effect of yttrium addition on fundamental characters of magnesium has been investigated by calculated and experimental methods. It was found that the lattice parameter increased and the axial ratio c/a decreased with the increment of yttrium in solid solution. The approximately linear relationship between Young's modulus and the content of yttrium in solid solution was observed in the single phase solid solution Mg-Y alloys (T4 state). However, Young's modulus was closely relevant to the fraction of second precipitate except the content of saturated yttrium in matrix for the aged Mg-Y alloys (T6 state). The concentration of vacancy increased with the increased content of yttrium in solid solution, which was mainly caused by the atomic size misfit and the difference of valence electrons between yttrium and magnesium.
Ptak, Arkadiusz; Takeda, Seiji; Nakamura, Chikashi; Miyake, Jun; Kageshima, Masami; Jarvis, Suzanne P.; Tokumoto, Hiroshi
2001-09-01
A modified atomic force microscopy (AFM) system, based on a force modulation technique, has been used to find an approximate value for the elastic modulus of a single peptide molecule directly from a mechanical test. For this purpose a self-assembled monolayer built from two kinds of peptides, reactive (able to anchor to the AFM tip) and nonreactive, was synthesized. In a typical experiment a single C3K30C (C=cysteine, K=lysine) peptide molecule was stretched between a Au(111) substrate and the gold-coated tip of an AFM cantilever to which it was attached via gold-sulfur bonds. The amplitude of the cantilever oscillations, due to an external force applied via a magnetic particle to the cantilever, was recorded by a lock-in amplifier and recalculated into stiffness of the stretched molecule. A longitudinal Young's modulus for the α-helix of a single peptide molecule and for the elongated state of this molecule has been estimated. The obtained values; 1.2±0.3 and 50±15 GPa, for the peptide α-helix and elongated peptide backbone, respectively, seem to be reasonable comparing them to the Young's modulus of protein crystals and linear organic polymers. We believe this research opens up a means by which scientists can perform quantitative studies of the elastic properties of single molecule, especially of biologically important polymers like peptides or DNA.
Enhancement and prediction of modulus of elasticity of palm kernel shell concrete
International Nuclear Information System (INIS)
Research highlights: → Micro-pores of size 16-24 μm were found on the outer surface of palm kernel shell. → Infilling of pores by mineral admixtures was evident. → Sand content influenced both modulus of elasticity and compressive strength. → Proposed equation predicts modulus of elasticity within ±1.5 kN/mm2 of test results. -- Abstract: This paper presents results of an investigation conducted to enhance and predict the modulus of elasticity (MOE) of palm kernel shell concrete (PKSC). Scanning electron microscopic (SEM) analysis on palm kernel shell (PKS) was conducted. Further, the effect of varying sand and PKS contents and mineral admixtures (silica fume and fly ash) on compressive strength and MOE was investigated. The variables include water-to-binder (w/b) and sand-to-cement (s/c) ratios. Nine concrete mixes were prepared, and tests on static and dynamic moduli of elasticity and compressive strength were conducted. The SEM result showed presence of large number of micro-pores on PKS. The mineral admixtures uniformly filled the micro-pores on the outer surface of PKS. Further, the increase in sand content coupled with reduction in PKS content enhanced the compressive strength and static MOE: The highest MOE recorded in this investigation, 11 kN/mm2, was twice that previously published. Moreover, the proposed equation based on CEB/FIP code formula appears to predict the MOE close to the experimental values.
Adaptive Multiscale Stereo Images Matching Based on Wavelet Transform Modulus Maxima
Directory of Open Access Journals (Sweden)
Abdelhak EZZINE
2012-10-01
Full Text Available In this paper we propose a multiscale stereo correspondence matching method based on wavelets transform modulus maxima. Exploitation of maxima modulus chains has given us the opportunity to refine the search for corresponding. Based on the wavelet transform we construct maps of modules and phases for different scales, then extracted the maxima and then we build chains of maxima. Points constituents maxima modulus chains will be considered as points of interest in matching processes. The availability of all its multiscale information, allows searching under geometric constraints, for each point of interest in the left image corresponding one of the best points of constituent chains of the right image. The experiment results demonstrate that the number of corresponding has a very clear decrease when the scale increases. In several tests we obtained the uniqueness of the corresponding by browsing through the fine to coarse scales and calculations remain very reasonable. Abdelhak EZZINE aezzine@uae.ac.ma 39 imm serghiniya Rue liban ENSAT/ SIC/LABTIC Abdelmalek ESSAADI University Tangier, 99000, Morocco
Analysis and modeling of 3D complex modulus tests on hot and warm bituminous mixtures
Pham, Nguyen Hoang; Sauzéat, Cédric; Di Benedetto, Hervé; González-León, Juan A.; Barreto, Gilles; Nicolaï, Aurélia; Jakubowski, Marc
2015-05-01
This paper presents the results of laboratory testing of hot and warm bituminous mixtures containing Reclaimed Asphalt Pavement (RAP). Complex modulus measurements, using the tension-compression test on cylindrical specimens, were conducted to determine linear viscoelastic (LVE) behavior. Sinusoidal cyclic loadings, with strain amplitude of approximately 50ṡ10-6, were applied at several temperatures (from -25 to +45 °C) and frequencies (from 0.03 Hz to 10 Hz). In addition to axial stresses and strains, radial strains were also measured. The complex modulus E ∗ and complex Poisson's ratios ν ∗ were then obtained in two perpendicular directions. Measured values in these two directions do not indicate anisotropy on Poisson's ratio. The time-temperature superposition principle (TTSP) was verified with good approximation in one-dimensional (1D) and three-dimensional (3D) conditions for the same values of shift factor. Experimental results were modeled using the 2S2P1D model previously developed at the University of Lyon/ENTPE. In addition, specific analysis showed that eventual damage created during complex modulus test is very small and is equivalent to the effect of an increase of temperature of about 0.25 °C.
Directory of Open Access Journals (Sweden)
Tomasz Topoliński
2012-01-01
Full Text Available Trabecular bone cores were collected from the femoral head at the time of surgery (hip arthroplasty. Investigated were 42 specimens, from patients with osteoporosis and coxarthrosis. The cores were scanned used computer microtomography (microCT system at an isotropic spatial resolution of 36 microns. Image stacks were converted to finite element models via a bone voxel-to-element algorithm. The apparent modulus was calculated based on the assumptions that for the elastic properties, E=10 MPa and ν=0.3. The compressive deformation as calculated by finite elements (FE analysis was 0.8%. The models were coarsened to effectively change the resolution or voxel size (from 72 microns to 288 microns or from 72 microns to 1080 microns. The aim of our study is to determine how an increase in the distance between scans changes the elastic properties as calculated by FE models. We tried to find a border value voxel size at which the module values were possible to calculate. As the voxel size increased, the mean voxel volume increased and the FEA-derived apparent modulus decreased. The slope of voxel size versus modulus relationship correlated with several architectural indices of trabecular bone.
NANOINDENTATION OF THIN-FILM-SUBSTRATE SYSTEM:DETERMINATION OF FILM HARDNESS AND YOUNG'S MODULUS
Institute of Scientific and Technical Information of China (English)
CHEN Shaohua; LIU Lei; WANG Tzuchiang
2004-01-01
In the present paper, the hardness and Young's modulus of fllm-substrate systems are determined by means of nanoindentation experiments and modified models. Aluminum film and two kinds of substrates, i.e. glass and silicon, are studied. Nanoindentation XP Ⅱ and continuous stiffness mode are used during the experiments. In order to avoid the influence of the Oliver and Pharr method used in the experiments, the experiment data are analyzed with the constant Young's modulus assumption and the equal hardness assumption. The volume fraction model (CZ model) proposed by Fabes et al. (1992) is used and modified to analyze the measured hardness. The method proposed by Doerner and Nix (DN formula) (1986) is modified to analyze the measured Young's modulus. Two kinds of modified empirical formula are used to predict the present experiment results and those in the literature, which include the results of two kinds of systems, i.e., a soft film on a hard substrate and a hard film on a soft substrate. In the modified CZ model, the indentation influence angle, ψ,is considered as a relevant physical parameter, which embodies the effects of the indenter tip radius,pile-up or sink-in phenomena and deformation of film and substrate.
A Comparative Study of Solutions Concerning Thick Elastic Plates on Bi-modulus Foundation
Directory of Open Access Journals (Sweden)
Ioana Vlad
2004-01-01
Full Text Available The classical bending theory of elastic plates is based upon the assumption that the internal moments are proportional to the curvatures of the median deformed surface. This theory does not include the effects of shear and normal pressure in the plate. The model of a bi-modulus foundation is a realistic generalization of the Winkler’s classical one and is widely used to represent the subgrade of railroad systems, airport lanes [1], [2]. The derived equation of elastic thick plates on bi-modulus foundation considers shear and normal stress as linear variable across the plate thickness. This paper presents numerical solutions for thick plate resting on bi-modulus subgrade. These solutions take into account the shear distortion, and they are compared to the solution obtained by Finite Element Analysis and with the Winkler’s model. Particular solutions for the rectangular plate of clamped boundary, for the hinged rectangular plate and for a semi-elliptical plate, are discussed. The numerical solutions consist of double power series and they were obtained based on the minimum of the total strain energy [1]. Parametric studies have been performed in order to emphasize the effects of the chosen foundation and that of the geometry.
A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii.
Akagi, Ryota; Shikiba, Tomofumi; Tanaka, Jun; Takahashi, Hideyuki
2016-08-01
We investigated the effect of a 6-week resistance training program on the shear modulus of the triceps brachii (TB). Twenty-three young men were randomly assigned to either the training (n = 13) or control group (n = 10). Before and after conducting the resistance training program, the shear modulus of the long head of the TB was measured at the point 70% along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus using shear wave ultrasound elastography. Muscle thickness of the long head of the TB was also determined at the same site by ultrasonography used during both tests. A resistance exercise was performed 3 days a week for 6 weeks using a dumbbell mass-adjusted to 80% of the 1-repetition maximum (1RM). The training effect on the muscle thickness and 1RM was significant. Nevertheless, the muscle shear modulus was not significantly changed after the training program. From the perspective of muscle mechanical properties, the present results indicate that significant adaptation must occur to make the TB more resistant to subsequent damaging bouts during the 6-week training program to target the TB.
A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material
Directory of Open Access Journals (Sweden)
Ju Min Kyung
2015-01-01
Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.
Micromechanical analysis on tensile modulus of structured magneto-rheological elastomer
Chen, S. W.; Li, R.; Zhang, Z.; Wang, X. J.
2016-03-01
This paper proposed a micromechanical model to investigate the tensile modulus of structured magnetorheological elastomers (MRE) to understand its anisotropic properties. A three parameter representative volume element (RVE) model was presented to describe the microscopic structure, where particles could be organized in layer-like or chain-like structure. And the tensile modulus is defined as a ratio of stress to strain in the stretched direction. We then applied effective medium theory to derive a theoretical model for the modulus of MRE in the absence of magnetic field, considering the influence of particles configuration and volume fraction. In addition, the effect of magnetic field on magneto-induced stress inside MRE is evaluated to further establish a multi-scale model which explains the magneto-rheological effect of structured MRE. The proposed model was then compared with finite element analysis and ‘free energy’ model. It demonstrated that the proposed model match better with the finite element solutions than that of ‘free energy’ method. The advantage of the proposed model is that it couples the magnetic field and displacement field, and considers the influence of both particles spatial energy and the relative position on magneto-rheological effect. The stiffer or softer of MREs induced by an applied magnetic field under tensile stress is predicted that is conformed to previous studies.
Mendapatkan Young’s Modulus Fasa Cu6Sn5 dengan Teknik Ultrasonik dan Teori Komposit
Directory of Open Access Journals (Sweden)
Ellyza Herda
2015-09-01
Full Text Available The purpose of this study is to obtain the Young’s Modulus (elastic property of Cu6Sn5 phase by using ultrasonic technique and composite theory. Alloy with the following composition (weight percent = wt%: 15.00 % Cu and 85 % Sn was fabricated by casting method. Phases identification were determined by using X-ray Diffraction (XRD, Differential Scanning Calorimeter (DSC, and Scanning Electron Microscope (SEM + EDAX (Energy Dispersive X-ray Analysis. A non destructive technique is preferable evaluation method for evaluation the elastic property of material, that is by utilizing longitudinal and transversal waves velocity employed by ultrasonic pulse-echo method. X-ray diffraction, DSC, and SEM+EDAX analysis indicate that the fabricated Cu-85%Sn alloy produce a composite in situ material which consist of Sn as a matrix (0.67 volume fraction and Cu6Sn5 phase as a reinforcing material (0.33 volume fraction. The Young’s Modulus value of Cu-85%Sn is 67.7 GPa. This value is base on the calculating result on the longitudinal and transversal waves velocity. In order to obtain the Young’s Modulus of reinforcement (Cu6Sn5 phase the composite theory was applied to this material (Cu-85%Sn, and the resulted value is 103.8 GPa.
Holographic representation of local bulk operators
Hamilton, A; Lifschytz, G; Lowe, D A; Hamilton, Alex; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2006-01-01
The Lorentzian AdS/CFT correspondence implies a map between local operators in supergravity and non-local operators in the CFT. By explicit computation we construct CFT operators which are dual to local bulk fields in the semiclassical limit. The computation is done for general dimension in global, Poincare and Rindler coordinates. We find that the CFT operators can be taken to have compact support in a region of the complexified boundary whose size is set by the bulk radial position. We show that at finite N the number of independent commuting operators localized within a bulk volume saturates the holographic bound.
Bulk viscosity in holographic Lifshitz hydrodynamics
Carlos Hoyos; Bom Soo Kim; Yaron Oz
2014-01-01
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical ...
Bulk viscosity in holographic Lifshitz hydrodynamics
International Nuclear Information System (INIS)
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent
Bulk viscosity of hot and dense hadrons
International Nuclear Information System (INIS)
The bulk viscosity of hot and dense hadrons has been estimated within the framework of hadronic resonance gas model. We observe that the bulk viscosity to entropy ratio increases faster with temperature for higher μB. The magnitude of ζ is more at high μB. This results will have crucial importance for fire-ball produced at low energy nuclear collisions (FAIR, NICA). We note that the bulk to shear viscosity ratio remains above the bound set by AdS/CFT
Li, Guang-Rong; Lv, Bo-Wen; Yang, Guan-Jun; Zhang, Wei-Xu; Li, Cheng-Xin; Li, Chang-Jiu
2015-12-01
The elastic modulus of plasma-sprayed top coating plays an important role in thermal cyclic lifetime of thermally sprayed thermal barrier coatings (TBCs), since the thermal stress is determined by the substrate/coating thermal mismatch and the elastic modulus of top coating. Consequently, much attention had been paid to understanding the relationship between elastic modulus and lamellar structure of top coating. However, neglecting the intra-splat cracks connected with inter-splat pores often leads to poor prediction in in-plane modulus. In this study, a modified model taking account of intra-splat cracks and other main structural characteristics of plasma-sprayed yttria-stabilized zirconia coating was proposed. Based on establishing the relationship between elastic modulus and structural parameters of basic unit, effects of structural parameters on the elastic modulus of coatings were discussed. The predicted results are well consistent with experimental data on coating elastic modulus in both out-plane direction and in-plane direction. This study would benefit the further comprehensive understanding of failure mechanism of TBCs in thermal cyclic condition.
Friction Stir Welding of Zr_(55)Al_(10)Ni_5Cu_(30) Bulk Metallic Glass to Crystalline Aluminum
Institute of Scientific and Technical Information of China (English)
Zuoxiang Qin; Cuihong Li; Haifeng Zhang; Zhongguang Wang; Zhuangqi Hu; Zhiqiang Liu
2009-01-01
The Zr_(55)Al_(10)Ni_5Cu_(30) bulk metallic glass plate were successfully welded to crystalline aluminum plates by using a friction stir welding (FSW) method. The welded zone was examined. No defects, cracks or pores were observed and no other crystalline phases except for aluminum were found in the welded joint. The strength of the joint is higher than that of aluminum. The glassy phase in the stir zone keeps the amorphous state, showing a successful welding. The storage modulus softens over the glass transition. And the weldability was discussed according to this phenomena.
International Nuclear Information System (INIS)
Experimental data on matrix porosity, grain density, thermal expansion, compressive strength, Young's modulus, Poisson's ratio, and axial strain at failure for samples from the Topopah Spring Member of the Paintbrush Tuff are compiled. Heat capacity and emissivity also are discussed. Data have been analyzed for spatial variability; slight variability is observed for matrix porosity, grain density, and thermal expansion coefficient. Estimates of in situ values for some properties, such as bulk density and heat capacity, are presented. Vertical in situ stress as a function of horizontal and vertical location has been calculated. 96 refs., 37 figs., 27 tabs
Effect of Contact Resistance on Bulk Resistivity of Dry Coke Beds
Eidem, P. A.; Runde, M.; Tangstad, M.; Bakken, J. A.; Zhou, Z. Y.; Yu, A. B.
2009-06-01
Measurements show that bulk resistivity of dry coke beds decreases with increasing particle size. A further development of a coke bed model is proposed to explain this correlation. By image analysis, it has been determined that the total porosity increases with increasing particle size. An increased total porosity of the particles decreases the mechanical strength of the particles. In the modeling work, the strength of the coke particles is introduced through Young’s modulus. By the use of discrete element method (DEM) modeling of a dry coke bed, the particle-to-particle contact area variation with varying particle size and particle strength has been introduced into a model of the dry coke bed. This was done by the introduction of the concept of the Holm’s radius, known from metal contact theory for describing how the contact resistance is affected by the material resistivity and the contact area. By assuming a decrease in the particle strength due to increased porosity of the coke particles with increasing particle size, the calculated bulk resistivity for 7.3-mm particles with a Young’s modulus of 1.0 GPa is 5.24·10-3 Ωm and 3.44·10-3 Ωm for the 20-mm particles with a Young’s modulus of 0.1 GPa. By comparison, the measured bulk resistivity of the Corus coke is 4.67 ± 0.30·10-3 Ωm for the 5- to 10-mm fraction and 3.71 ± 0.45·10-3 Ωm for the 15- to 20-mm fraction. The measured contact resistance of Swedish Steel AB (SSAB) coke decreases with increasing contact area size from a contact diameter of 5 mm to a contact diameter of 30 mm. This is probably due to an increasing number of electrical contact spots. When two spheres are in contact, the measured contact resistance is lower compared to the 5-mm-diameter contact, which indicates that the increased contact pressure has lowered the contact resistance. This supports the modeling results.
The bulk radio expansion of Cassiopeia A
International Nuclear Information System (INIS)
Comparison, in the visibility plane, or radio observations of Cassiopeia A made at 151 MHz over a 2.3 yr interval indicates that the bulk of the radio emitting material has not been decelerated strongly
α′Type Ti-Nb-Zr alloys with ultra-low Young's modulus and high strength
Institute of Scientific and Technical Information of China (English)
Qing Liu; Qingkun Meng; Shun Guo; Xinqing Zhao
2013-01-01
α′phase based Ti-Nb-Zr alloys with low Young's modulus and high strength were prepared, and their microstructure and mechanical properties were characterized. It was revealed that the lattice expansion by Nb and Zr addition as well as the presence of a few ofα″martensite might be responsible for the low modulus achieved. Ti-15Nb-9Zr alloy, with ultralow modulus of 39 GPa and high strength of 850 MPa, could be a potential candidate for biomedical applications.
PHONON ECHOES IN BULK AND POWDERED MATERIALS
Kajimura, K.
1981-01-01
Experimental and theoretical studies of phonon echoes in bulk and powdered materials are reviewed. Phonon echoes have been observed in many materials such as bulk piezoelectric crystals, paramagnets, glasses, doped semiconductors, and piezoelectric, magnetic, and metallic powders, etc. The echoes arise from a time reversal of the phase, like spin echoes, of a primary pulsed acoustic excitation due to a second acoustic or rf pulse. The phase reversal occurs through the nonlinear interactions o...
An intrinsic mobility ceiling of Si bulk
Garcia-Castello, Nuria; Prades, Joan Daniel; Cirera, Albert
2011-01-01
We compute by Density Functional Theory-Non Equilibrium Green Functions Formalism (DFT-NEGFF) the conductance of bulk Si along different crystallographic directions. We find a ceiling value for the intrinsic mobility of bulk silicon of $8.4\\cdot10^6 cm^2/V\\cdot s$. We suggest that this result is related to the lowest effective mass of the $$ direction.
An Approach to Calculate Mineralś Bulk Moduli KS from Chemical Composition and Density ρ
Breuer, S.; Schilling, F. R.; Mueller, B.; Drüppel, K.
2015-12-01
The elastic properties of minerals are fundamental parameters for technical and geotechnical applications and an important research topic towards a better understanding of the Eart&hacute;s interior. Published elastic properties, chemical composition, and density data of 86 minerals (total of 258 data including properties of minerals at various p, T conditions) were collected into a database. It was used to test different hypotheses about relationships between these properties (e.g. water content in minerals and their Poisson's ratio). Furthermore, a scheme to model the average elastic properties, i.e. the bulk modulus KS, based on mineral density and composition was developed. Birc&hacute;s law, a linearity between density ρ and wave velocity (e.g. vp.), is frequently used in seismic and seismology to derive density of the Eart&hacute;s interior from seismic velocities. Applying the compiled mineral data contradicts the use of a simple velocity-density relation (e.g. Gardneŕs relation, 1974). The presented model-approach to estimate the mineralś bulk moduli Ks (as Voigt-Reuss-Hill average) is based on the idea of pressure-temperature (p-T) dependent ionś bulk moduli. Using a multi-exponential regression to ascertain the ionś bulk moduli and by applying an exponential scaling with density ρ, their bulk moduli could be modelled. As a result, > 88 % of the 258 bulk moduli data are predicted with an uncertainty of < 20 % compared to published values. Compared to other models (e.g. Anderson et al. 1970 and Anderson & Nafe 1965), the here presented approach to model the bulk moduli only requires the density ρ and chemical composition of the mineral and is not limited to a specific group of minerals, composition, or structure. In addition to this, by using the pressure and temperature dependent density ρ(p, T), it is possible to predict bulk moduli for varying p-T conditions. References:Gardner, G.H.F, Gardner, L.W. and Gregory, A.R. (1974). Geophysics, 39, No. 6
Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation
Energy Technology Data Exchange (ETDEWEB)
Varam, Sreedevi; Rajulapati, Koteswararao V., E-mail: kvrse@uohyd.ernet.in; Bhanu Sankara Rao, K.
2014-02-05
Nanocrystalline aluminium powder synthesized using high energy ball milling process was characterized by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The studies indicated the powder having an average grain size of ∼42 nm. The consolidation of the powder was carried out by high-pressure compaction using a uni-axial press at room temperature by applying a pressure of 1.5 GPa. The cold compacted bulk sample having a density of ∼98% was subjected to nanoindentation which showed an average hardness and elastic modulus values of 1.67 ± 0.09 GPa and 83 ± 8 GPa respectively at a peak force of 8000 μN and a strain rate of 10{sup −2} s{sup −1}. Achieving good strength along with good ductility is challenging in nanocrystalline metals. When enough sample sizes are not available to measure ductility and other mechanical properties as per ASTM standards, as is the case with nanocrystalline materials, nanoindentation is a very promising technique to evaluate strain rate sensitivity. Strain rate sensitivity is a good measure of ductility and in the present work it is measured by performing indentation at various loads with varying loading rates. Strain rate sensitivity values of 0.024–0.054 are obtained for nanocrystalline Al which are high over conventional coarse grained Al. In addition, Scanning Probe Microscopy (SPM) image of the indent shows that there is some plastically flown region around the indent suggesting that this nanocrystalline aluminium is ductile.
Said, Ghada; Vray, Didier; Liebgott, Herve; Brusseau, Elisabeth; Basset, Olivier
2005-04-01
Strain imaging is useful for visualizing information related to tissue stiffness. However, strain is a parameter that depends on the boundary conditions, tissue connectivity and geometry. As a result, tissue hardness cannot be quantitatively evaluated from the strain distribution. Therefore, reconstruction of the elastic modulus (Young's Modulus) distribution has been investigated for quantitative evaluation of tissue hardness. A method has been recently proposed [NITT 00] to calculate locally the Young's modulus of tissues from the estimations of 3D displacement field within the medium. This approach requires a specific annular ultrasonic probe. The aim of our work, based on Nitta's approach, is to build a Young modulus mapping using clinical ultrasonic equipment. Results from finite-element simulations and a physical phantom are presented.
Kuttich, Björn; Grefe, Ann-Kathrin; Stühn, Bernd
2016-08-14
The bending modulus κ is known to be a crucial parameter for the stability of the droplet phase in microemulsion systems. For AOT based water in oil microemulsions the bending modulus of the surfactant has values close to kBT but can be influenced by the presence of polymers. In this work we focus on the water soluble polymer polyethylene glycol and how it influences the bending modulus. An increase by a factor of three is found. For the correct evaluation of the bending modulus via percolation temperatures and droplet radii, thus by dielectric spectroscopy and small angle X-ray scattering, the determination of the radii right at the percolation temperature is crucial as we will show, although it is often neglected. In order to precisely determine the droplet radii we will present a global fitting model which provides reliable results with a minimum number of free fitting parameters. PMID:27416768
Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus
National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
@@ 1 Scope This standard specifies a method for the determination of the modulus of rupture of dense and insulating shaped refractory products at ambient temperature, under conditions of a constant rate of increase of stress.
Institute of Scientific and Technical Information of China (English)
Osman SAHIN
2007-01-01
Depth sensing indentation (DSI) tests at the range of 200-1800 mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver-Pharr method. It is found that Young's modulus ET, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf/hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the Bnal unloading depth, indicate that our sample shows the work hardening behaviour.
International Nuclear Information System (INIS)
A novel approach combining the atomic force microscopy probing of nacre biopolymer strand and the inverse finite element analysis has been used to directly measure the elastic modulus of nacre biopolymer matrix. An elastic modulus of 11 ± 3 GPa was determined for the first time from the direct measurement of the nacre biopolymer matrix. This property is essential for a fundamental understanding of the roles that the biopolymer matrix plays in nacre's strengthening and toughening, and provides guidelines in selecting engineering polymers for biomimetic materials design and fabrication. Such coupled experimental and modeling techniques should find more applications in studying the mechanical behavior of biological materials. Highlights: → Modulus of nacre biopolymer was directly measured using AFM and inverse FEM. → An elastic modulus of 10.57 ± 2.56 GPa was determined for nacre biopolymer matrix. → New approach developed in this study is useful for testing of biological materials.
DEFF Research Database (Denmark)
Ni, De Wei; Charlas, Benoit; Kwok, Kawai;
2016-01-01
for both the unreduced and reduced Ni(O)-YSZ anode supports. With increasing temperature, the strength and elastic modulus of the reduced Ni-YSZ specimens drop almost linearly. In contrast, the strength and elastic modulus of the unreduced NiO-YSZ remain almost constant over the investigated temperature...... need to be characterized to ensure reliable operation. In this study, the effect of reduction temperature on microstructural stability, high temperature strength and elastic modulus of Ni-YSZ anode supports were investigated. The statistical distribution of strength was determined from a large number...... of samples (∼30) at each condition to ensure high statistical validity. It is revealed that the microstructure and mechanical properties of the Ni-YSZ strongly depend on the reduction temperature. Further studies were conducted to investigate the temperature dependence of the strength and elastic modulus...
Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
Aernouts, Jef; Dirckx, Joris J J
2012-07-01
An accurate estimation of tympanic membrane stiffness is important for realistic modelling of middle ear mechanics. Tympanic membrane stiffness has been investigated extensively under either quasi-static or dynamic loading conditions. It is known that biological tissues are sensitive to strain rate. Therefore, in this work, the mechanical behaviour of the tympanic membrane was studied under both quasi-static and dynamic loading conditions. Experiments were performed on the pars tensa of four gerbil tympanic membranes. A custom-built indentation apparatus was used to perform in situ tissue indentations and testing was done applying both quasi-static and dynamic sinusoidal indentations up to 8.2 Hz. The unloaded shape of the tympanic membrane was measured and used to create specimen-specific finite element models to simulate the experiments. The frequency dependent Young's modulus of each specimen was then estimated by an inverse analysis in which the error between experimental and simulated indentation data was optimised for each indentation frequency separately. Using an 8 μm central region thickness, we found Young's moduli between 71 and 106 MPa (n = 4) at 0.2 Hz indentation frequency. A standard linear viscoelastic model and a viscoelastic model with a continuous relaxation spectrum were used to derive a complex modulus in the frequency domain. Due to experimental limitations, the indentation frequency upper limit was 8.2 Hz. The average relative modulus increase in this domain was 14% and the increase was the strongest below 6 Hz.
Calculating tissue shear modulus and pressure by 2D log-elastographic methods
International Nuclear Information System (INIS)
Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ . u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms
Rational Mix Design Approach for High Strength Concrete Using Sand with very High Fineness Modulus
Directory of Open Access Journals (Sweden)
Kwan W. Hoe
2010-01-01
Full Text Available Problem statement: Production of concrete is always deal with inconsistency. Sources of variation like materials from different geographical basis, mix design method, fineness of aggregates and so on will attribute to different level of achievement of the concrete. Even though researcher had verified that higher fineness modulus of sand would yield better performance for the concrete, but so far there have been scarce amount of paper reported on the mix design method adopting high fineness modulus of sand. Approach: This study discussed the revolution of design mix proportion towards achieving high strength with considerably cement content using local availably constituent materials. A total of 15 mixes was casted till to the high strength at more than 65 MPa was achieved. The compressive strength and workability of each mixes were presented. The method of mixture proportioning was begun with British Department Of Environment (DOE method. Then, rational design method of achieving high strength concrete was developed. Results: At the end of experimental program, it was found that DOE method was not suitable to apply in designing high strength concrete. 12% was the optimum level of replacement of the total binder content by silica fume. Further increase of total binder content without adjustment to the amount of aggregate content has decreased the strength achievement of the concrete. Very coarse fine aggregate with fineness modulus 3.98 increased the compressive strength of the concrete in large extent. The increased of superplasticiser from 2.0% to 2.5% has decreased the compressive strength of the concrete. Conclusion: The rational mix design approach was developed. A Grade 70 concrete can be produced with moderate level of cement content by this approach.
Mechanical properties of low modulus beta titanium alloys designed from the electronic approach.
Laheurte, P; Prima, F; Eberhardt, A; Gloriant, T; Wary, M; Patoor, E
2010-11-01
Titanium alloys dedicated to biomedical applications may display both clinical and mechanical biocompatibility. Based on nontoxic elements such as Ti, Zr, Nb, Ta, they should combine high mechanical resistance with a low elastic modulus close to the bone elasticity (E=20 GPa) to significantly improve bone remodelling and osseointegration processes. These elastic properties can be reached using both lowering of the intrinsic modulus by specific chemical alloying and superelasticity effects associated with a stress-induced phase transformation from the BCC metastable beta phase to the orthorhombic alpha(″) martensite. It is shown that the stability of the beta phase can be triggered using a chemical formulation strategy based on the electronic design method initially developed by Morinaga. This method is based on the calculation of two electronic parameters respectively called the bond order (B(o)) and the d orbital level (M(d)) for each alloy. By this method, two titanium alloys with various tantalum contents, Ti-29Nb-11Ta-5Zr and Ti-29Nb-6Ta-5Zr (wt%) were prepared. In this paper, the effect of the tantalum content on the elastic modulus/yield strength balance has been investigated and discussed regarding the deformation modes. The martensitic transformation beta-->alpha(″) has been observed on Ti-29Nb-6Ta-5Zr in contrast to Ti-29Nb-11Ta-5Zr highlighting the chemical influence of the Ta element on the initial beta phase stability. A formulation strategy is discussed regarding the as-mentioned electronic parameters. Respective influence of cold rolling and flash thermal treatments (in the isothermal omega phase precipitation domain) on the tensile properties has been investigated.
BLIND EQUALIZATION OF MIMO SYSTEMS BASED ON ORTHOGONAL CONSTANT MODULUS ALGORITHM
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper investigates adaptive blind source separation and equalization for Multiple Input Mul-tiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI)and suppress Inter-User Interference (IUI), the array input is first transformed into the signal subspace, thenwith the derived orthogonality between weight vectors of different input signals, a new orthogonal ConstantModulus Algorithm (CMA) is proposed. Computer simulation results illustrate the promising performance ofthe proposed method. Without channel identification, the proposed method can recover all the system inputssimultaneously and can be adaptive to channel changes without prior knowledge about signals.
JUAN LIZARAZO-MARRIAGA; LUCIO GUILLERMO LÓPEZ YÉPEZ
2012-01-01
Taking into account the increasing use of high-strength concrete as a structural material in Colombia, this paper shows the results of research carried out to investigate the effect of different types of coarse aggregate on the static elastic modulus, the compressive strength, the concrete density, and the pulse velocity. To do this, concrete mixes were cast using three different water binder ratios (w/c) (0.36, 0.32, and 0.28). Ordinary Portland cement and pulverized silica fume (SF) were us...
Cai, Jianjun; Shen, Xueju; Lin, Chao
2016-01-01
We propose a security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition by combining full phase encryption technique with our previous cryptosystem. In the encryption process, the original image is phase encoded rather than bonded with a RPM. In the decryption process, two phase-contrast filters (PCFs) are employed to obtain the plaintext. As a consequence, the new cryptosystem guarantees high-level security to the attack based on iterative Fourier transform and maintains the good performance of our previous cryptosystem, especially conveniences. Some numerical simulations are presented to verify the validity and the performance of the modified cryptosystem.
Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density
Wu, Ying
2011-09-02
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.
Measurement of elastic modulus and ultrasonic wave velocity by piezoelectric resonator
Erhart, Jiří
2015-01-01
A piezoelectric ceramic resonator is used for the ‘electrical’ measurement of elastic properties, i.e. Young’s modulus and ultrasonic wave velocity in metallic materials. Piezoelectric response is precisely calculated for the piezoelectric ceramic ring fixed at the end of a metallic rod. The piezoelectric ring serves as both an actuator as well as a sensor. The experimental setup and method of measurement using higher overtones is explained in detail and practically demonstrated for a set of different metallic materials. Young’s moduli and ultrasonic wave velocities are measured within 3% relative error. The presented method is suitable for an advanced engineering class or physics laboratory training.
J. Szymszal; J. Piątkowski; J. Przondziono
2007-01-01
The first part of the study describes the methods used to determine Weibull modulus and the related reliability index of hypereutectic silumins containing about 17% Si, assigned for manufacture of high-duty castings to be used in automotive applications and aviation. The second part of the study discusses the importance of chemical composition, including the additions of 3% Cu, 1,5% Ni and 1,5% Mg, while in the third part attention was focussed on the effect of process history, including moul...
Effective Young's modulus of the artificial muscle twisted by fishing lines: Analysis and experiment
Yue, Donghua; Zhang, Xingyi; Zhou, Jun; Zhou, You-He
2015-09-01
Artificial muscles transformed by fishing lines or sewing thread, have distinguished advantages, e. g., fast, scalable, nonhysteretic, and long-life, which have been proposed by Haines et al. [Science 343, 868 (2014)]. In this paper, we present a geometrical model to predict the effective Young's modulus of the basic structure that is twisted by three fishing lines with the same diameter. Moreover, series of experiments are carried out to verify the present model, and it is found the theoretical calculations take good agreements with the experimental results.
A summary of the strength and modulus of ice samples from multi-year pressure ridges
Energy Technology Data Exchange (ETDEWEB)
Cox, G.F.N.; Mellor, M.; Richter, J.A.; Weeks, W.F.
1985-03-01
Over two hundred unconfined compression tests were performed on vertical ice samples obtained from 10 multi-yr pressure ridges in the Beaufort Sea. The tests were performed on a closed-loop electrohydraulic testing machine at two strain rates (10/sup -5/ and 10/sup -3/ s/sup -1/) and two temperatures (-20/sup 0/ and -5/sup 0/C). This paper summarizes the sample preparation and testing techniques used in the investigation and presents data on the compressive strength and initial tangent modulus of the ice.
Methods for calculating phase angle from measured whole body bioimpedance modulus
Nordbotten, Bernt J.; Martinsen, Ørjan G.; Grimnes, Sverre
2010-04-01
Assuming the Cole equation we have developed a method to calculate the Cole parameters (R0, R∞, α, τZ) and the phase angle from four frequency measurements of impedance modulus values. The values obtained compare well with impedance measurements obtained using the Solatron 1294/1260 as obtained when making whole body measurements on five persons. We have also performed calculations using an algorithm based on the Kramers-Kronig approach. The results which are presented show that it is possible to obtain complete body impedance data combining relatively simple measurements with advanced calculation using a laptop. This extends the potential of portable equipment, since the measurements will require less instrumentation.
Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants
Energy Technology Data Exchange (ETDEWEB)
Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.; Bauman, Nathan N.; Guzman, Anthony D.; Arduino, P.; Keller, P. J.
2010-09-30
This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.
Schmogrow, R; Nebendahl, B; Josten, A; Schindler, P C; Koos, C; Freude, W; Leuthold, J
2014-04-21
Efficient algorithms for timing, carrier frequency and phase recovery of Nyquist and OFDM signals are introduced and experimentally verified. The algorithms exploit the statistical properties of the received signals to efficiently derive the optimum sampling time, the carrier frequency offset, and the carrier phase. Among the proposed methods, the mean modulus algorithm (MMA) shows a very robust performance at reduced computational complexity. This is especially important for optical communications where data rates can exceed 100 Gbit/s per wavelength. All proposed algorithms are verified by simulations and by experiments using optical M-ary QAM Nyquist and OFDM signals with data rates up to 84 Gbit/s.
Modeling and Optimization of the Rigidity Modulus of Latertic Concrete using Scheffe’s Theory
Onuamah, P. N.
2015-01-01
This investigation is on the modeling and optimization of the rigidity modulus of Lateritic Concrete. The laterite is the reddish soil layer often belying the top soil in many locations and further deeper in some areas, collected from the Vocational Education Building Site of the University of Nigeria, Nsukka. Scheffe’s optimization approach was applied to obtain a mathematical model of the form f(xi1,xi2,xi3), where xi are proportions of the concrete components, viz: cement, laterite and wat...
Method for in-situ nondestructive measurement of Young's modulus of plate structures
Huang, Jerry Qixin (Inventor); Perez, Robert J. (Inventor); DeLangis, Leo M. (Inventor)
2003-01-01
A method for determining stiffness of a composite laminate plate entails disposing a device for generating an acoustical pulse against a surface of the plate and disposing a detecting device against the same surface spaced a known distance from the pulse-generating device, and using the pulse-generating device to emit a pulse so as to create an extensional wave in the plate. The detecting device is used to determine a time of flight of the wave over the known distance, and the wave velocity is calculated. A Young's modulus of the plate is determined based on the wave velocity. Methods for both anisotropic and quasi-isotropic laminates are disclosed.
Institute of Scientific and Technical Information of China (English)
周勇[1; 孙六全[2; Paul; S.F.YIP[3
1999-01-01
The local behavior of oscillation modulus of the product-limit (PL) process and the cumulative hazard process is investigated when the data are subjected to random censoring. Laws of the iterated logarithm of local oscillation modulus for the PL-process and the cumulative hazard process are established. Some of these results are applied to obtain the almost sure best rates of convergence for various types of density estimators as well as the Bahadur-Kiefer type process.
Dobric, Vladimir; Marano, Lisa
2014-01-01
The L\\'evy-Ciesielski Construction of Brownian motion is used to determine non-asymptotic estimates for the maximal deviation of increments of a Brownian motion process $(W_{t})_{t\\in \\left[ 0,T\\right] }$ normalized by the global modulus function, for all positive $\\varepsilon $ and $\\delta $. Additionally, uniform results over $\\delta $ are obtained. Using the same method, non-asymptotic estimates for the distribution function for the standard Brownian motion normalized by its local modulus ...
Klemm, A.; Theisen, S.
1993-01-01
We consider Calabi-Yau compactifications with one K\\"ahler modulus. Following the method of Candelas et al. we use the mirror hypothesis to solve the quantum theory exactly in dependence of this modulus by performing the calculation for the corresponding complex structure deformation on the mirror manifold. Here the information is accessible by techniques of classical geometry. It is encoded in the Picard-Fuchs differential equation which has to be supplemented by requirements on the global p...
Poly(acrylic acid surface grafted polypropylene films: Near surface and bulk mechanical response
Directory of Open Access Journals (Sweden)
2008-11-01
Full Text Available Radical photo-grafting polymerization constitutes a promising technique for introducing functional groups onto surfaces of polypropylene films. According to their final use, surface grafting should be done without affecting overall mechanical properties. In this work the tensile drawing, fracture and biaxial impact response of biaxially oriented polypropylene commercial films grafted with poly(acrylic acid (PAA were investigated in terms of film orientation and surface modification. The variations of surface roughness, elastic modulus, hardness and resistance to permanent deformation induced by the chemical treatment were assessed by depth sensing indentation. As a consequence of chemical modification the optical, transport and wettability properties of the films were successfully varied. The introduced chains generated a PAA-grafted layer, which is stiffer and harder than the neat polypropylene surface. Regardless of the surface changes, it was proven that this kind of grafting procedure does not detriment bulk mechanical properties of the PP film.
Guo, Shun; Meng, Qingkun; Zhao, Xinqing; Wei, Qiuming; Xu, Huibin
2015-10-01
Titanium and its alloys have become the most attractive implant materials due to their high corrosion resistance, excellent biocompatibility and relatively low elastic modulus. However, the current Ti materials used for implant applications exhibit much higher Young’s modulus (50 ~ 120 GPa) than human bone (~30 GPa). This large mismatch in the elastic modulus between implant and human bone can lead to so-called “stress shielding effect” and eventual implant failure. Therefore, the development of β-type Ti alloys with modulus comparable to that of human bone has become an ever more pressing subject in the area of advanced biomedical materials. In this study, an attempt was made to produce a bone-compatible metastable β-type Ti alloy. By alloying and thermo-mechanical treatment, a metastable β-type Ti-33Nb-4Sn (wt. %) alloy with ultralow Young’s modulus (36 GPa, versus ~30 GPa for human bone) and high ultimate strength (853 MPa) was fabricated. We believe that this method can be applied to developing advanced metastable β-type titanium alloys for implant applications. Also, this approach can shed light on design and development of novel β-type titanium alloys with large elastic limit due to their high strength and low elastic modulus.
Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando
2015-07-01
We present a new computational approach to quantify the area per lipid and the area compressibility modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139, 094902 (2013)], which provides excellent estimates of the bending modulus of model membranes. Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermodynamically consistent. This new area definition makes it possible to accurately estimate the area of the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospholipid protrusions. We find that the area per phospholipid and the area compressibility modulus features a negligible dependence with system size, making possible their computation using truly small bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis of the CU area fluctuations is fully consistent with the Hooke's law route. Unlike existing methods, our approach relies on a single simulation, and no a priori knowledge of the bending modulus is required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility modulus obtained with our method and the MARTINI forcefield are consistent with previous studies of these bilayers.
Energy Technology Data Exchange (ETDEWEB)
Chacón, Enrique, E-mail: echacon@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Tarazona, Pedro, E-mail: pedro.tarazona@uam.es [Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Bresme, Fernando, E-mail: f.bresme@imperial.ac.uk [Department of Chemistry, Imperial College London, SW7 2AZ London (United Kingdom)
2015-07-21
We present a new computational approach to quantify the area per lipid and the area compressibility modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139, 094902 (2013)], which provides excellent estimates of the bending modulus of model membranes. Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermodynamically consistent. This new area definition makes it possible to accurately estimate the area of the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospholipid protrusions. We find that the area per phospholipid and the area compressibility modulus features a negligible dependence with system size, making possible their computation using truly small bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis of the CU area fluctuations is fully consistent with the Hooke’s law route. Unlike existing methods, our approach relies on a single simulation, and no a priori knowledge of the bending modulus is required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility modulus obtained with our method and the MARTINI forcefield are consistent with previous studies of these bilayers.
Development of superconductor bulk for superconductor bearing
Energy Technology Data Exchange (ETDEWEB)
Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)
2008-08-15
Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.
Into the Bulk: A Covariant Approach
Engelhardt, Netta
2016-01-01
I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "lightcone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic RG flow, this new definition of bulk depth makes contact with coarse-graining over both large distances ...
Analysis of the multistage cyclic loading test on resilient modulus value64
Directory of Open Access Journals (Sweden)
Sas Wojciech
2016-03-01
Full Text Available Analysis of the multistage cyclic loading test on resilient modulus value. Upon cyclic excitation of soil mass, two types of strain can be recognized, namely elastic and plastic one. Proper analysis of these two types of deformations can help engineers in designing more reliable structures. In this study, a multistage uniaxial cyclic loading in unconfined conditions was performed. Tests were performed in order to characterize strain response to repeated excitation. Soil sample under cyclic loading was recognized as exhibiting the symptoms of a plastic strain growth during the cyclic loading process with exponential manner, when compared to number of cycles. Soil in this study was reconstituted and compacted by using the Proctor method to simulate conditions similar to those affecting the road subbase. The soil was recognized as sandy clay. Results were analysed and a proposition of empirical formula for plastic strain calculation with the use of characteristic stress values was presented. The resilient modulus values were also calculated. The Mr value was within range from 45 to 105 MPa. The conclusions concerning the cyclically loaded soil in uniaxial conditions were presented.
Zhang, Zuhua; Wang, Hao
2016-08-01
The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.
Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network
Ocak, Ibrahim; Seker, Sadi Evren
2012-11-01
The modulus of elasticity of intact rock ( E i) is an important rock property that is used as an input parameter in the design stage of engineering projects such as dams, slopes, foundations, tunnel constructions and mining excavations. However, it is sometimes difficult to determine the modulus of elasticity in laboratory tests because high-quality cores are required. For this reason, various methods for predicting E i have been popular research topics in recently published literature. In this study, the relationships between the uniaxial compressive strength, unit weight ( γ) and E i for different types of rocks were analyzed, employing an artificial neural network and 195 data obtained from laboratory tests carried out on cores obtained from drilling holes within the area of three metro lines in Istanbul, Turkey. Software was developed in Java language using Weka class libraries for the study. To determine the prediction capacity of the proposed technique, the root-mean-square error and the root relative squared error indices were calculated as 0.191 and 92.587, respectively. Both coefficients indicate that the prediction capacity of the study is high for practical use.
Effect of fibre aspect ratio onto the modulus of palm-based medium-density fibreboard
Azman, Azlin Mohmad; Badri, Khairiah Haji; Baharum, Azizah
2015-09-01
Polyurethane prepolymer (pPU) was used as a binder in the production of palm-based medium-density fibreboard (MDF). Untreated empty fruit bunch fibre (EFB) with three different fibre sizes was used and their effects on the mechanical and thermal properties of the MDF were studied. Palm kernel oil-based monoester polyol (PKO-p), 4,4-diphenylmethane diisocyanate (MDI) and polyethylene glycol 200 (PEG 200) were used to prepare the resin. Acetone was added into the resin as a solvent. Three different fibre sizes were used; 250 µm to 500 µm (MDF S1), 500 µm to 1000 µm (MDF S2) and 1000 µm to 2000 µm (MDF S3). Three points bending test showed that the flexural strength and modulus increased as the EFB fibres size decreased with optimum flexural strength at 46.7 MPa and optimum flexural modulus of 1923 MPa. The results were supported by the morphological study that showed better matrix encapsulation occurred in MDF S1, followed by MDF S2. The scenario was rather different in MDF S3 whereby uneven matrix distribution can be seen obviously with some matrix rich spots were found clearly. Bomb calorimetry analysis had also supported the results showing a decreasing trend in heat of combustion, led by MDF S1, followed by MDF S2 and finally MDF S3.
Shear modulus and damping ratio of sand-granulated rubber mixtures
Institute of Scientific and Technical Information of China (English)
M Ehsani; N Shariatmadari; S M Mirhosseini
2015-01-01
Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids (D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10−4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease inD50,r/D50,scauses the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.
Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals
Energy Technology Data Exchange (ETDEWEB)
Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)
2011-10-21
Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.
The thermal conductivity of high modulus Zylon fibers between 400 mK and 4 K
Wikus, Patrick; Figueroa-Feliciano, Enectalí; Hertel, Scott A.; Leman, Steven W.; McCarthy, Kevin A.; Rutherford, John M.
2008-11-01
Zylon is a synthetic polyurethane polymer fiber featuring very high mechanical strength. Measurements of the thermal conductivity λZ(T) of high modulus Zylon fibers at temperatures between 400 mK and 4 K were performed to assess if they can be successfully employed in the design of high performance suspension systems for cold stages of adiabatic demagnetization refrigerators. The linear mass density of the yarn used in these measurements amounts to 3270 dtex, which is also a measure for the yarn's cross section. The experimental data for the thermal conductivity was fitted to a function of the form λZ=(1010±30)·TpWmmdtexK. This result was normalized to the breaking strength of the fibers and compared with Kevlar. It shows that Kevlar outperforms Zylon in the investigated temperature range. At 1.5 K, the thermal conductivity integral of Zylon yarn is twice as high as the thermal conductivity integral of Kevlar yarn with the same breaking strength. A linear mass density of 1 tex is equivalent to a yarn mass of 1 g/km. High modulus Zylon has a density of 1.56 g/cm 3.
Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.
2011-01-01
A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.
Superior hardness and Young's modulus of low temperature nanocrystalline diamond coatings
Energy Technology Data Exchange (ETDEWEB)
Cicala, G., E-mail: grazia.cicala@ba.imip.cnr.it [CNR-IMIP Bari, Via G. Amendola 122/D, 70126 Bari (Italy); Magaletti, V. [ALTA S.p.A., via Gherardesca 5, 56121 Ospedaletto (Pisa) (Italy); Senesi, G.S. [CNR-IMIP Bari, Via G. Amendola 122/D, 70126 Bari (Italy); Carbone, G. [DIMeG-Politecnico di Bari Viale Japigia 182, 70126 Bari (Italy); Altamura, D.; Giannini, C. [CNR-IC Bari, Via G. Amendola 122/D, 70126 Bari (Italy); Bartali, R. [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento) (Italy)
2014-04-01
Nanocrystalline diamond (NCD) coatings with thickness of about 3 μm were grown on silicon substrates at four deposition temperatures ranging from 653 to 884 °C in CH{sub 4}/H{sub 2}/Ar microwave plasmas. The morphology, structure, chemical composition and mechanical and surface properties were studied by means of Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD), Raman spectroscopy, nanoindentation and Water Contact Angle (WCA) techniques. The different deposition temperatures used enabled to modulate the chemical, structural and mechanical NCD properties, in particular the grain size and the shape. The characterization measurements revealed a relatively smooth surface morphology with a variable grain size, which affected the incorporated hydrogen amount and the sp{sup 2} carbon content, and, as a consequence, the mechanical properties. Specifically, the hydrogen content decreased by increasing the grain size, whereas the sp{sup 2} carbon content increased. The highest values of hardness (121 ± 25 GPa) and elastic modulus (1036 ± 163 GPa) were achieved in NCD film grown at the lowest value of deposition temperature, which favored the formation of elongated nanocrystallites characterized by improved hydrophobic surface properties. - Highlights: • We produce the hardest NCD coating at the lowest deposition temperature. • We modify the deposition temperature to tailor the grain size and shape of the NCD coatings. • We assess the mechanical properties (hardness and elastic modulus) of superhard NCD coating on a soft silicon substrate.
International Nuclear Information System (INIS)
This paper addresses the problem of calculating the bioimpedance phase angle from measurements of impedance modulus. A complete impedance measurement was performed on altogether 20 healthy persons using a Solatron 1260/1294 system. The obtained impedance modulus (absolute impedance value) values were used to calculate the Cole parameters and from them the phase angles. In addition, the phase angles were also calculated using a Kramers–Kronig approach. A correlation analysis for all subjects at each frequency (5, 50, 100 and 200 kHz) for both methods gave R2 values ranging from 0.7 to 0.96 for the Cole approach and from 0.83 to 0.96 for the Kramers–Kronig approach; thus, both methods gave good results compared with the complete measurement results. From further statistical significance testing of the absolute value of the difference between measured and calculated phase angles, it was found that the Cole equation method gave significantly better agreement for the 50 and 100 kHz frequencies. In addition, the Cole equation method gives the four Cole parameters (R0, R∞, τz and α) using measurements at frequencies up to 200 kHz while the Kramers–Kronig method used frequencies up to 500 kHz to reduce the effect of truncation on the calculated results. Both methods gave results that can be used for further bioimpedance calculations, thus improving the application potential of bioimpedance measurement results obtained using relatively inexpensive and portable measurement equipment
The Evaluation of the Initial Shear Modulus of Selected Cohesive Soils
Directory of Open Access Journals (Sweden)
Gabryś Katarzyna
2015-06-01
Full Text Available The paper concerns the evaluation of the initial stiffness of selected cohesive soils based on laboratory tests. The research materials used in this study were clayey soils taken from the area of the road embankment No. WD-18, on the 464th km of the S2 express-way, Konotopa-Airport route, Warsaw. The initial stiffness is represented here by the shear modulus (Gmax determined during resonant column tests. In the article, a number of literature empirical formulas for defining initial value of the shear modulus of soils being examined were adopted from the literature in order to analyze the data set. However, a large discrepancy between laboratory test results and the values of Gmax calculated from empirical relationships resulted in the rejection of these proposals. They are inaccurate and do not allow for an exact evaluation of soil stiffness for selected cohesive soils. Hence, the authors proposed their own empirical formula that enables the evaluation of the test soils’ Gmax in an easy and uncomplicated way. This unique formula describes mathematically the effect of certain soil parameters, namely mean effective stress ( p′ and void ratio (e, on the initial soil stiffness.
Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals
Scalise, Lorenzo; Rinaldi, Daniele; Davì, Fabrizio; Paone, Nicola
2011-10-01
Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu 2(1- x) Y 2 xSiO 5:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ( σUTS) and the Young elastic modulus ( E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. σUTS along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO 4 (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus ( E), along the same direction, is E=1.80×10 11 (±2.15×10 10) N/m 2, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.
Influence of wood moisture content on the modulus of elasticity in compression parallel to the grain
Directory of Open Access Journals (Sweden)
Diogo Aparecido Lopes Silva
2012-04-01
Full Text Available Brazilian Standard ABNT NBR7190:1997 for timber structures design, adopts a first degree equation to describe the influence of wood moisture content. Periodically, when necessary, the referred standard is revised in order to analyze inconsistencies and to adopt considerations according new realities verified. So, the present paper aims to examine the adequacy of its equation which corrects to 12% of moisture the values of rigidity properties obtained on experimental tests. To quantify the moisture influence on modulus of elasticity, it was applied tests of compression parallel to the grain for six specimens of different strength classes, considering nominal moisture of 12; 20; 25; 30%. As results, modulus of elasticity in the moisture range 25-30% showed statistically equivalents, and was obtained a first degree equation to correlate the studied variables which leads to statically equivalent estimations when compared with results by ABNT NBR7190:1997 equation. However, it was indicated to maintain the current expression for the next text of the referred document review, without prejudice to statistical significance of the estimates.
Measuring Young’s modulus the easy way, and tracing the effects of measurement uncertainties
Nunn, John
2015-09-01
The speed of sound in a solid is determined by the density and elasticity of the material. Young’s modulus can therefore be calculated once the density and the speed of sound in the solid are measured. The density can be measured relatively easily, and the speed of sound through a rod can be measured very inexpensively by setting up a longitudinal standing wave and using a microphone to record its frequency. This is a simplified version of a technique called ‘impulse excitation’. It is a good educational technique for school pupils. This paper includes the description and the free provision of custom software to calculate the frequency spectrum of a recorded sound so that the resonant peaks can be readily identified. Discussion on the effect of measurement uncertainties is included to help the more thorough experimental student improve the accuracy of his method. The technique is sensitive enough to be able to detect changes in the elasticity modulus with a temperature change of just a few degrees.
Dimas, Leon S.; Veneziano, Daniele; Buehler, Markus J.
2016-07-01
We obtain analytical approximations to the probability distribution of the fracture strengths of notched one-dimensional rods and two-dimensional plates in which the stiffness (Young's modulus) and strength (failure strain) of the material vary as jointly lognormal random fields. The fracture strength of the specimen is measured by the elongation, load, and toughness at two critical stages: when fracture initiates at the notch tip and, in the 2D case, when fracture propagates through the entire specimen. This is an extension of a previous study on the elastic and fracture properties of systems with random Young's modulus and deterministic material strength (Dimas et al., 2015a). For 1D rods our approach is analytical and builds upon the ANOVA decomposition technique of (Dimas et al., 2015b). In 2D we use a semi-analytical model to derive the fracture initiation strengths and regressions fitted to simulation data for the effect of crack arrest during fracture propagation. Results are validated through Monte Carlo simulation. Randomness of the material strength affects in various ways the mean and median values of the initial strengths, their log-variances, and log-correlations. Under low spatial correlation, material strength variability can significantly increase the effect of crack arrest, causing ultimate failure to be a more predictable and less brittle failure mode than fracture initiation. These insights could be used to guide design of more fracture resistant composites, and add to the design features that enhance material performance.
Chen, Linfei; Gao, Xiong; Chen, Xudong; He, Bingyu; Liu, Jingyu; Li, Dan
2016-04-01
In this paper, a new optical image cryptosystem is proposed based on two-beam coherent superposition and unequal modulus decomposition. Different from the equal modulus decomposition or unit vector decomposition, the proposed method applies common vector decomposition to accomplish encryption process. In the proposed method, the original image is firstly Fourier transformed and the complex function in spectrum domain will be obtained. The complex distribution is decomposed into two vector components with unequal amplitude and phase by the common vector decomposition method. Subsequently, the two components are modulated by two random phases and transformed from spectrum domain to spatial domain, and amplitude parts are extracted as encryption results and phase parts are extracted as private keys. The advantages of the proposed cryptosystem are: four different phase and amplitude information created by the method of common vector decomposition strengthens the security of the cryptosystem, and it fully solves the silhouette problem. Simulation results are presented to show the feasibility and the security of the proposed cryptosystem.
Measuring the Elastic Modulus of Thin Polymer Sheets by Elastocapillary Bending.
Bae, Jinhye; Ouchi, Tetsu; Hayward, Ryan C
2015-07-15
We describe bending by liquid/liquid or liquid/air interfaces as a simple and broadly applicable technique for measuring the elastic modulus of thin elastic sheets. The balance between bending and surface energies allows for the characterization of a wide range of materials with moduli ranging from kilopascals to gigapascals in both vapor and liquid environments, as demonstrated here by measurements of both soft hydrogel layers and stiff glassy polymer films. Compared to existing approaches, this method is especially useful for characterizing soft materials (thin sheets with sub-millimeter in-plane dimensions, and samples immersed in a variety of liquid media. The measurement is independent of the three-phase (liquid/solid/medium) contact angle for appropriately chosen wetting conditions, therefore requiring only knowledge of the liquid/medium surface tension and the sheet thickness to characterize sheets with specified shapes. Using the method, we characterize photo-cross-linkable polyelectrolyte hydrogel sheets swelled to equilibrium in an aqueous medium and demonstrate good agreement with predicted scalings of the modulus and swelling ratio with cross-link density. PMID:26135700
Directory of Open Access Journals (Sweden)
Hassan S. OTUOZE
2015-12-01
Full Text Available Traditional asphalt tests like Hveem and Marshall tests are at best mere characterization than effective test of pavement field performance because of complex viscoelastic behavior of asphalt. Mechanical properties otherwise called simple performance tests (SPT are performance criteria of asphalt. Dynamic modulus among other SPT’s like permanent deformation, fatigue cracking, thermal cracking, moisture susceptibility, shear and friction properties; determines stress-strain to time-temperature relationships that imparts on strength, service life and durability. The test followed the recommendations of NCHRP 1-37a (2004 and mixes were prepared using 0, 0.5, 1.0 and 1.5% HDPP contents. The parameters tested for dynamic modulus, /E*/, are stiffness, recoverable strain (ε, and phase angle (ξ. Time – temperature superposition (TTS called master curve was fitted using sigmoidal curve to interpolate the parameters beyond measured data set so as to observe the viscoelastic behavior outside the physical properties. The performance of 0.5% HDPP asphalt is better enhanced than the conventional asphalt to improve upon strength, service and durability.
Settlement of composite foundation with discrete material pile considering modulus change
Institute of Scientific and Technical Information of China (English)
曹文贵; 刘海涛; 李翔; 张永杰
2008-01-01
Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two parts, an expanding part and an un-expanding part. Then, in view of the differences of deformation properties between the expanding part and the un-expanding part, the relationships between the pile modulus and the applied load in these two parts were respectively developed. Thirdly, by introducing the above relationships into settlement analysis, a new method to calculate displacement of composite foundation with discrete material pile was proposed by using the multi-stage loading theory and the layer-wise summation approach. This method is effective not only for accounting for the effect of variations of pores on deformation modulus of the pile body in different depths, but also for describing the characteristics of different deformation mechanisms of the pile body with varying depth. Finally, the proposed method was used to a practical composite foundation problem, whose theoretical results were presented and compared to those of other methods. The rationality and feasibility of this method are identified through comparative analysis.
Orchestrating Bulk Data Movement in Grid Environments
Energy Technology Data Exchange (ETDEWEB)
Vazhkudai, SS
2005-01-25
Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.
A diphoton resonance from bulk RS
Csáki, Csaba; Randall, Lisa
2016-07-01
Recent LHC data hinted at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to any other Standard Model particles would be too low to be detected so far. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from but close to the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.
Bulk fields from the boundary OPE
Guica, Monica
2016-01-01
Previous work has established an equality between the geodesic integral of a free bulk field in AdS and the contribution of the conformal descendants of its dual CFT primary operator to the OPE of two other operators inserted at the endpoints of the geodesic. Working in the context of AdS$_3$/CFT$_2$, we extend this relation to include all $1/N$ corrections to the bulk field obtained by dressing it with i) a $U(1)$ current and ii) the CFT stress tensor, and argue it equals the contribution of the Ka\\v{c}-Moody/the Virasoro block to the respective boundary OPE. This equality holds for a particular framing of the bulk field to the boundary that involves a split Wilson line.
A Diphoton Resonance from Bulk RS
Csaki, Csaba
2016-01-01
Recent LHC data hints at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to Higges and to any other Standard Model particles are so far too low to be detected. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. We argue that if the state is a scalar, some form of sequestering is likely to be necessary to naturally explain the suppressed scalar-Higgs interactions. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.
Bulk Comptonization by Turbulence in Accretion Disks
Kaufman, J
2016-01-01
Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...
Radiation-hardened bulk CMOS technology
International Nuclear Information System (INIS)
The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made
Remedial investigations for quarry bulk wastes
International Nuclear Information System (INIS)
The US Department of Energy proposes, as a separate operable unit of the Weldon Spring Site Remedial Action Project, to remove contaminated bulk wastes from the Weldon Spring quarry and transport them approximately four miles to the chemical plant portion of the raffinate pits and chemical plant area. The wastes will be held in temporary storage prior to the record of decision for the overall remedial action. The decision on the ultimate disposal of these bulk wastes will be included as part of the decision for management of the waste materials resulting from remedial action activities at the raffinate pits and chemical plant area. 86 refs., 71 figs., 83 tabs
Bulk Entropy in Loop Quantum Gravity
Livine, Etera R; Terno, Daniel R.
2007-01-01
In the framework of loop quantum gravity (LQG), having quantum black holes in mind, we generalize the previous boundary state counting (gr-qc/0508085) to a full bulk state counting. After a suitable gauge fixing we are able to compute the bulk entropy of a bounded region (the "black hole") with fixed boundary. This allows us to study the relationship between the entropy and the boundary area in details and we identify a holographic regime of LQG where the leading order of the entropy scales w...
Bulk Entropy in Loop Quantum Gravity
Livine, Etera R
2007-01-01
In the framework of loop quantum gravity (LQG), having quantum black holes in mind, we generalize the previous boundary state counting (gr-qc/0508085) to a full bulk state counting. After a suitable gauge fixing we are able to compute the bulk entropy of a bounded region (the "black hole") with fixed boundary. This allows us to study the relationship between the entropy and the boundary area in details and we identify a holographic regime of LQG where the leading order of the entropy scales with the area. We show that in this regime we can fine tune the factor between entropy and area without changing the Immirzi parameter.
Thermal relics in cosmology with bulk viscosity
International Nuclear Information System (INIS)
In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, which cannot be explained by conventional cosmology and particle physics. (orig.)
Synthesis of Bulk Superconducting Magnesium Diboride
Directory of Open Access Journals (Sweden)
Margie Olbinado
2002-06-01
Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.
饱和混凝土有效模量及有效抗拉强度研究%Research on the effective modulus and tensile strength of saturated concrete
Institute of Scientific and Technical Information of China (English)
杜修力; 金浏
2012-01-01
The existence of pore water has great influence on the mechanical properties of concrete, such as effective elastic modulus and strength, et al. Based on the three-phase sphere model, the quantitative relationship between the bulk modulus of saturated concrete and porosity was derived. The effective elastic modulus and Poisson＇s ratio of saturated wet concrete were deduced without considering the shear capacity of the pore water. According to the maximum tensile stress failure criterion, the quantitative relationship be- tween porosity and effective tensile strength and tensile peak-strain of saturated concrete were presented in this paper. Theoretical analysis results agree well with Yaman＇s experimental results, which demonstrate that the present method could be used to predict the elastic modulus of saturated concrete. Besides, it is found from the analysis results that the presence of pore water make the effective elastic modulus and ten- sile strength of saturated concrete improved compared with dry concrete.%孔隙水的存在对混凝土的有效弹性模量及强度等力学性能产生很大的影响。采用三相球模型理论分析得到了饱和混凝土的有效体积模量与孔隙率之间的定量关系；不考虑孔隙水的抗剪能力，获得了饱和混凝土的有效弹性模量、泊松比与孔隙率的定量关系。基于最大拉应力准则，推导得到了饱和混凝土的有效抗拉强度及其峰值应变与孔隙率之间的关系。理论分析结果与Yaman等的试验结果吻合良好，表明本文方法能够用来预测饱和混凝土的有效弹性模量；与干燥混凝土相比，孔隙水的存在使得饱和混凝土弹性模量和有效抗拉强度均有所提高。
Directory of Open Access Journals (Sweden)
Ahmadian Khoshemehr Leila
2009-09-01
Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.
THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS
Directory of Open Access Journals (Sweden)
VINEREANU Adam
2014-05-01
Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.
A Stereoscopic Look into the Bulk
Czech, Bartlomiej; McCandlish, Samuel; Mosk, Benjamin; Sully, James
2016-01-01
We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space--the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow ...
Bulk metamaterials: Design, fabrication and characterization
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Alabastri, Alessandro;
2009-01-01
Bulk metamaterials claim a lot of attention worldwide. We report about our activity and advances in design, fabrication and characterization of metal-dielectric composites with three-dimensional lattices. The nomenclature of designs exhibiting negative index behaviour in the near infrared includes...
Realistic anomaly mediation with bulk gauge fields
International Nuclear Information System (INIS)
We present a simple general framework for realistic models of supersymmetry breaking driven by anomaly mediation. We consider a 5-dimensional 'brane universe' where the visible and hidden sectors are localized on different branes, and the standard model gauge bosons propagate in the bulk. In this framework there can be charged scalar messengers that have contact interactions with the hidden sector, either localized in the hidden sector or in the bulk. These scalars obtain soft masses that feed into visible sector scalar masses at two loop order via bulk gauge interactions. This contribution is automatically flavor-blind, and can be naturally positive. If the messengers are in the bulk this contribution is automatically the same order of magnitude as the anomaly mediated contribution, independent of the brane spacing. If the messengers are localized to a brane the two effects are of the same order for relatively small brane spacings. The gaugino masses and A terms are determined completely by anomaly mediation. In order for anomaly mediation to dominate over radion mediation the radion must be is stabilized in a manner that preserves supersymmetry, with supergravity effects included. We show that this occurs in simple models. We also show that the mu problem can be solved by the vacuum expectation value of a singlet in this framework. (author)
Longitudinal bulk a coustic mass sensor
DEFF Research Database (Denmark)
Hales, Jan Harry; Teva, Jordi; Boisen, Anja;
2009-01-01
Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization...
Measuring permeability, Young's modulus, and stress relaxation by the beam-bending technique
Vichit-Vadakan, Wilasa
Recent interest in the permeability of cement paste, mortars, and concrete lies in the need to gain further understanding of mechanisms affecting the durability of these materials. Conventional techniques for measuring permeability are cumbersome and often take days to complete just one measurement. This thesis proposes a new technique for measuring the permeability. The advantage of this technique is that the results are obtained in a few minutes to a few hours; moreover, there is no problem with leaks or need for high pressures. The method is particularly well suited for examining the changes in permeability and viscoelastic properties of young cement paste samples. When a saturated rod of a porous material is instantaneously deflected under three-point bending, two types of relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body to restore ambient pressure, and viscoelastic relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability and Young's modulus from the hydrodynamic relaxation function, in addition to the stress relaxation function of the sample. The exact viscoelastic solution is developed and the total relaxation is shown to be very closely approximated as the product of the hydrodynamic and stress relaxation functions. The analytical results are verified on porous VycorRTM glass saturated in various solvents, including normal alcohols, water, and glycerol. The results show excellent agreement with the theory. Consistent with observations of previous workers, the permeability is found to be influenced by the size of the solvent molecule; by assuming that the pore surfaces are covered with a monolayer of immobile solvent, the observed variation can be explained. The evolution of the permeability, Young's modulus, and stress relaxation function are reported for Type III Portland cement paste with
Integration of bulk piezoelectric materials into microsystems
Aktakka, Ethem Erkan
Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.
Bulk sulfur (S) deposition in China
Liu, Lei; Zhang, Xiuying; Wang, Shanqian; Zhang, Wuting; Lu, Xuehe
2016-06-01
A systematic dataset of an observation network on a national scale has been organized to investigate the spatial distribution of bulk sulfur (S) deposition (Sdep) throughout China during 2000-2013, representing by far the most detailed data set to track the bulk sulfur deposition throughout China since 2000. Such a dataset is needed for ecosystem studies and for developing emission control policies. Bulk Sdep values showed great variations, ranging from 2.17 to 70.55 kg ha-1 y-1, with an average of 22.99 kg ha-1 y-1. The average rate of bulk Sdep located in East Coastal region (35.97 kg ha-1 y-1), Middle Yangtze region (57.90 kg ha-1 y-1), Middle Yellow River region (23.42 kg ha-1 y-1), North Coastal region (42.19 kg ha-1 y-1), Northeast region (34.28 kg ha-1 y-1), South Coastal region (36.97 kg S ha-1 y-1), Southwest region (33.85 kg ha-1 y-1) was 4.50, 7.24, 2.93, 5.28, 4.29, 4.63 and 4.24 times than that in Northwest region (7.99 kg ha-1 y-1). Bulk Sdep over China was mainly from fossil fuel combustion (76.96%), biomass burning (7.64%), crust (6.22%), aged sea salt (5.48%) and agriculture (3.68%). A systematic observation network on a national scale should be established to conduct a long-term monitoring atmospheric Sdep (including wet and dry deposition), based on exiting ecological stations administrated by different departments in China.
Directory of Open Access Journals (Sweden)
Kazım TÜRK
2010-03-01
Full Text Available In this study, relationship between strength (compressive strength, tensile strength and elastic modulus of self-consolidating concrete (SCC that included different types and dosages of mineral admixtures (fly ash (FA and silica fume (SF as replacement of Portland cement was investigated. In order to evaluate the workability of the mixtures, slump-flow, t500, L-box and sieve segregation tests were carried out. In the following day of casting, the specimens were de-moulded and located in 20±2 ºC water and cured for 28 days. Compressive strength, splitting tensile strength and elastic modulus tests were performed using a total of 3 specimens for each concrete property. Compressive strength–tensile strength and compressive strength-elastic modulus formulas obtained from regression analysis using a numerous data were compared with the equations obtained in the previous studies. Consequently, it was found that compressive strength–tensile strength and compressive strength-elastic modulus formulas obtained from this study can be used correctly to estimate the tensile strength and the elastic modulus of self-consolidating concrete.
Directory of Open Access Journals (Sweden)
Nilson Tadeu Mascia
2008-06-01
Full Text Available The study of the stiffness of laterally loaded semi-rigid connections in plywood-timber beams is justified by the influence that the deformation of the connection has on the overall displacements of the structure. Semi-rigid connections are characterized by the occurrence of a slip between the connected pieces. The characterization of a connection is usually based on an isolated single connector behavior, which is described by its load-slip relationship expressed by the slip modulus, and so it is extended to the group of connectors. Although the method of analysis is well established, the concept of equivalent slip modulus, defined as the slip modulus per unit length of a connection, has not been totally explored. In this study, we focus on the experimental determination of the equivalent slip modulus for mechanically analyzing plywood-timber beams with continuous connections. The results demonstrated that the test is suitable for obtaining experimental values of the equivalent slip modulus.
Berzins, A; Shah, B; Weinans, H; Sumner, D R
1997-03-01
Push-out and pull-out tests are used for destructive evaluation of implant-bone interface strength. Because nondestructive mechanical tests would allow maintenance of an intact interface for subsequent morphological study, we developed such a test to determine the shear modulus of the interface by measuring the shear deformation of a thin layer adjacent to the implant. A polyurethane foam model was used to test the experimental setup on a group of nine cylindrical implants with three different lengths (15-48 mm) and three different diameters (5-9.7 mm). The shear modulus of the interface, as calculated from the pull-out test, was validated against the shear modulus of the foam derived from tensile tests. The two values of shear modulus were well correlated (R2 = 0.8, p tests of implant-bone interface mechanics. In addition, we also examined the effects of implant length and diameter. The length of the implants had a significant influence on the interface shear modulus (p < 0.05), indicating that comparisons of the variable should only be made of implants with the same length. The length and diameter of the implants were not critical parameters for the ultimate fixation strength. PMID:9086403
Predicting Concrete Compressive Strength and Modulus of Rupture Using Different NDT Techniques
Directory of Open Access Journals (Sweden)
Wilfrido Martínez-Molina
2014-01-01
Full Text Available Quality tests applied to hydraulic concrete such as compressive, tension, and bending strength are used to guarantee proper characteristics of materials. All these assessments are performed by destructive tests (DTs. The trend is to carry out quality analysis using nondestructive tests (NDTs as has been widely used for decades. This paper proposes a framework for predicting concrete compressive strength and modulus of rupture by combining data from four NDTs: electrical resistivity, ultrasonic pulse velocity, resonant frequency, and hammer test rebound with DTs data. The model, determined from the multiple linear regression technique, produces accurate indicators predictions and categorizes the importance of each NDT estimate. However, the model is identified from all the possible linear combinations of the available NDT, and it was selected using a cross-validation technique. Furthermore, the generality of the model was assessed by comparing results from additional specimens fabricated afterwards.
Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study
DEFF Research Database (Denmark)
Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E.;
2013-01-01
Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity...... is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine...... heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load...
Study on modal characteristics of perforated shell using effective Young's modulus
Energy Technology Data Exchange (ETDEWEB)
Jhung, Myung Jo, E-mail: mjj@kins.re.kr [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Yu, Seon Oh [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)
2011-06-15
Research highlights: > The effective Young's modulus of perforated shell is proposed for modal analysis. > The penetration pattern is almost negligible for effective elastic constants. > The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.
Tjirkallis, A.; Kyprianou, A.
2016-01-01
Over the last three decades, there have been increasing demands to develop and deploy Structural Health Monitoring (SHM) systems for engineering structures in service. Since these structures are subjected to varying environmental and operational conditions, reliable SHM methodologies must be capable of not misattributing to damage changes due to environmental conditions. This paper presents a novel damage detection methodology based on the similarity between maxima decay lines of the continuous wavelet transform scalogram of the structural responses obtained under different operational and environmental conditions. The normalized cross correlation (NCC) is used as a measure of this similarity. In addition, the pointwise summation of similar Wavelet Transform Modulus Maxima (WTMM) decay lines is used to identify changes due to the presence of damage from different force realizations and/or varying environmental conditions. The effectiveness of the proposed methodology is demonstrated using a simulated 3DOF system and an experimental cantilever beam.
International Nuclear Information System (INIS)
A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.)
Directory of Open Access Journals (Sweden)
J. Szymszal
2007-07-01
Full Text Available The first part of the study describes the methods used to determine Weibull modulus and the related reliability index of hypereutectic silumins containing about 17% Si, assigned for manufacture of high-duty castings to be used in automotive applications and aviation. The second part of the study discusses the importance of chemical composition, including the additions of 3% Cu, 1,5% Ni and 1,5% Mg, while in the third part attention was focussed on the effect of process history, including mould type (sand or metal as well as the inoculation process and heat treatment (solutioning and ageing applied to the cast AlSi17Cu3Mg1,5Ni1,5 alloy, on the run of Weibull distribution function and reliability index calculated for the tensile strength Rm of the investigated alloys.
Objectification of Modulus Elasticity of Foam Concrete Poroflow 17-5 on the Subbase Layer
Directory of Open Access Journals (Sweden)
Hájek Matej
2016-05-01
Full Text Available Principles of sustainable development create the need to develop new building materials. Foam concrete is a type of lightweight concrete that has many advantages compared to conventional building materials, for example low density and thermal insulation characteristics. With current development level, any negatively influencing material features are constantly eliminated as well. This paper is dealing with substitution of hydraulically bound mixtures by cement foam concrete Poroflow 17-5. The executed assessment is according to the methodology of assessing the existing asphalt pavements in Slovak Republic. The ex post calculation was used to estimate modulus range for Poroflow 17-5 based on the results of static load tests conducted using the Testing Experiment Equipment.
Axion-dilaton-modulus gravity theory of Brans-Dicke-type and conformal symmetry
Quirós, I
2000-01-01
Conformal symmetry is investigated within the context of axion-dilaton-modulus theory of gravity of Brans-Dicke-type. A distinction is made between general conformal symmetry and invariance under transformations of the physical units. The conformal degree of symmetry of the theory is studied when quantum fermion (lepton) modes with electromagnetic interaction are considered. Based on the requirement of invariance of the physical laws under general transformations of the units of measure, arguments are given that point at a matter action with non-minimal coupling of the dilaton to the matter fields as the most viable description of the world within the context of the model studied. The geometrical implications of the results obtained are discussed.
Wavelet Transform Modulus Maxima-Based Robust Digital Image Watermarking in Wavelet Domain
Institute of Scientific and Technical Information of China (English)
LUO Ting; HONG Fan
2009-01-01
A new robust watermarking approach was proposed in 2D continuous wavelet domain (CWT).The watermark is embedded into the large coefficients in the middle band of wavelet transform modulus maxima (WTMM) of the host image.After possible attacks,the watermark is then detected and extracted by correlation analysis.Compared with other wavelet domain watermarking approaches,the WTMM approach can endow the image with both rotation and shift invariant properties.On the other hand,scale invariance is achieved with the geometric normalization during watermark detection.Case studies involve various attacks such as shifting,lossy compression,scaling,rotation and median filtering on the watermarked image,and the result shows that the approach is robust to these attacks.
Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites
International Nuclear Information System (INIS)
The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites
Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites
Energy Technology Data Exchange (ETDEWEB)
Suhn, Jonghwan [Sungkyunkwan Univ., Seoul (Korea, Republic of)
2014-01-15
The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.
Zhuravleva, K; Chivu, A; Teresiak, A; Scudino, S; Calin, M; Schultz, L; Eckert, J; Gebert, A
2013-05-01
Porous ß-type non-toxic Ti40Nb alloy was prepared by compaction of mechanically alloyed powder mixed with NaCl or Mg particles as space-holder material. The compacts with porosity of 36-80% demonstrated a very low Young's modulus of ~1.5-3 GPa and compression strength of ~10-35 MPa, which is suitable for potential implant material application. Porous samples were electrochemically covered with hydroxyapatite. The influence of the deposition time and of the electrolyte concentrations on the morphology of the hydroxyapatite coating was studied. It is demonstrated that a homogenous coating of hydroxyapatite crystals with different shape and size can be obtained on the surface of the porous samples. PMID:23498259
A method to determine Young's modulus of soft gels for cell adhesion
Institute of Scientific and Technical Information of China (English)
Xiaoling Peng; Jianyong Huang; Lei Qin; Chunyang Xiong; Jing Fang
2009-01-01
A convenient technique is reported in this note for measuring elastic modulus of extremely soft material for cellular adhesion. Specimens of bending cylinder under gravity are used to avoid contact problem between testing device and sample, and a beam model is presented for evaluating the curvatures of gel beams with large elastic deformation. A self-adaptive algorithm is also proposed to search for the best estimation of gels' elastic moduli by comparing the experimental bending curvatures with those computed from the beam model with preestimated moduli. Application to the measurement of the property of polyacrylamide gels indicates that the material compliance varies with the concentrations of bis-acrylamide, and the gels become softer after being immersed in a culture medium for a period of time, no matter to what extent they are polymerized.
A Blind Video Watermarking Technique Using Luminance Masking and DC Modulus Algorithm
Energy Technology Data Exchange (ETDEWEB)
Jang, Y.W. [Enpia Systems Co., Ltd., (Korea); Kim, I.T.; Han, S.S. [Myungji University, Seoul (Korea)
2002-07-01
Digital watermarking is the technique, which embeds an invisible signal including owner identification and copy control information into multimedia data such as audio, video, and images for copyright protection. A new MPEG watermark embedding algorithm using complex block effect based on the Human Visual System(HVS) is introduced in this paper. In this algorithm, 8X8 dark blocks are selected, and the watermark is embedded in the DC component of the discrete cosine transform(DCT) by using quantization and modulus calculation. This algorithm uses a blind watermark retrieval technique, which defects the embedded watermark without using the original image. The experimental results show that the proposed watermark technique is robust against MPEG coding, bitrate changes, and various GOP(Group of Picture) changes. (author). 15 refs., 9 figs., 1 tab.
Optical image encryption using equal modulus decomposition and multiple diffractive imaging
Fatima, Areeba; Mehra, Isha; Nishchal, Naveen K.
2016-08-01
The equal modulus decomposition (EMD) is a novel asymmetric cryptosystem based on coherent superposition which was proposed to resist the specific attack. In a subsequent work, the scheme was shown to be vulnerable to specific attack. In this paper, we counter the vulnerability through an encoding technique which uses multiple diffraction intensity pattern recordings as the input to the EMD setup in the gyrator domain. This allows suppression of the random phase mask in the EMD path. As a result, the proposed scheme achieves resistance to specific attack. The simulation results and the security analysis demonstrate that EMD based on multiple intensity pattern recording is an effective optical asymmetric cryptosystem suitable for securing data and images.
Interpreting measurements of small strain elastic shear modulus under unsaturated conditions
Directory of Open Access Journals (Sweden)
Hasan Ahmed
2016-01-01
Full Text Available Bender element testing of unsaturated isotropically compacted speswhite kaolin samples was used to investigate the variation of small strain elastic shear modulus G under unsaturated conditions. Testing was performed in a suction-controlled triaxial cell and involved combinations of isotropic loading and unloading stages and wetting and drying stages. Analysis of the experimental results indicated that the variation of G could be represented by a simple expression involving only mean Bishop’s stress p* and specific volume v, with the only significant mismatches between measured and predicted values of G occuring at the end of final unloading. No significant improvement of fit was achieved by incorporating additional dependency on degree of saturation Sr or a bonding parameter ζ. The proposed expression for G reverts to a well-established form for saturated soils as Sr tends to 1.
Gain assisted nanocomposite multilayers with near zero permittivity modulus at visible frequencies
Rizza, Carlo; Ciattoni, Alessandro
2011-01-01
We have fabricated a layered nano-composite by alternating metal and gain medium layers, the gain dielectric consisting of a polymer incorporating optically pumped dye molecules. Exploiting an improved version of the effective medium theory, we have chosen the layers thicknesses for achieving a very small value of the real part of the permittivity epsilon_\\| (parallel to the layers plane) at a prescribed visible wavelength. From standard reflection-transmission experiments on the optically pumped sample we show that, at a visible wavelength, both the real and the imaginary parts of the permittivity epsilon_\\ attain very small values and we measure | \\epsilon_\\| | = 0.04 at lambda = 604 nm, amounting to a 21.5-percent decrease of the minimum | \\epsilon_\\| | in the absence of optical pumping. Our investigation thus proves that a medium with a dielectric permittivity with very small modulus, a key condition which should provide efficient subwavelength optical steering, can be actually synthesized.
New Attacks on RSA with Modulus N = p2q Using Continued Fractions
Asbullah, M. A.; Ariffin, M. R. K.
2015-06-01
In this paper, we propose two new attacks on RSA with modulus N = p2q using continued fractions. Our first attack is based on the RSA key equation ed - ϕ(N)k = 1 where ϕ(N) = p(p - 1)(q - 1). Assuming that and , we show that can be recovered among the convergents of the continued fraction expansion of . Our second attack is based on the equation eX - (N - (ap2 + bq2)) Y = Z where a,b are positive integers satisfying gcd(a,b) = 1, |ap2 - bq2| < N1/2 and ap2 + bq2 = N2/3+α with 0 < α < 1/3. Given the conditions , we show that one can factor N = p2q in polynomial time.
Additive maps preserving the reduced minimum modulus of Banach space operators
Bourhim, Abdellatif
2009-01-01
Let ${\\mathcal B}(X)$ be the algebra of all bounded linear operators on an infinite dimensional complex Banach space $X$. We prove that an additive surjective map $\\phi$ on ${\\mathcal B}(X)$ preserves the reduced minimum modulus if and only if either there are bijective isometries $U:X\\to X$ and $V:X\\to X$ both linear or both conjugate linear such that $\\phi(T)=UTV$ for all $T\\in{\\mathcal B}(X)$, or $X$ is reflexive and there are bijective isometries $U:X^*\\to X$ and $V:X\\to X^*$ both linear or both conjugate linear such that $\\phi(T)=UT^*V$ for all $T\\in{\\mathcal B}(X)$. As immediate consequences of the ingredients used in the proof of this result, we get the complete description of surjective additive maps preserving the minimum, the surjectivity and the maximum moduli of Banach space operators.
ADAPTIVE STEP-SIZE CONSTANT MODULUS ALGORITHM FOR BLIND MULTIUSER DETECTION IN DS-CDMA SYSTEMS
Institute of Scientific and Technical Information of China (English)
Sun Liping; Hu Guangrui
2004-01-01
Blind Adaptive Step-size Constant Modulus Algorithm (AS-CMA) for multiuser detection in DS-CDMA systems is presented. It combines the CMA and the concept of variable step-size, uses a second LMS algorithm for the step size. It adjusts the step-size according to the minimum output-energy principle within a specified range, thus overcomes the problems of bad effect of fixed step-size LMS algorithm. Compared with Adaptive Step-size LMS (AS-LMS) algorithm, through simulations, this algorithm can adapt the changes of the environment, suppress multiple access interference in the dynamic environment and the stability of Signal to Interference Ratio (SIR) is superior to that of AS-LMS.
The Young Modulus of Black Strings and the Fine Structure of Blackfolds
Armas, Jay; Harmark, Troels; Obers, Niels A
2011-01-01
We explore corrections in the blackfold approach, which is a worldvolume theory capturing the dynamics of thin black branes. The corrections probe the fine structure of the branes, going beyond the approximation in which they are infinitely thin, and account for the dipole moment of worldvolume stress-energy as well as the internal spin degrees of freedom. We show that the dipole correction is induced elastically by bending a black brane. We argue that the long-wavelength transport coefficient capturing this response is a relativistic generalization of the Young modulus of elastic materials and we compute it analytically. Using this we draw predictions for black rings in dimensions greater than six. Furthermore, we employ our corrected blackfold equations to various multi-spinning black hole configurations in the blackfold limit, finding perfect agreement with known analytic solutions.