WorldWideScience

Sample records for building high performance

  1. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  2. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  3. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  4. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  5. Integrating advanced facades into high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  6. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  7. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  8. High Performance Building Mockup in FLEXLAB

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Eleanor S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-30

    Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL’s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.

  9. High-performance commercial building facades

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to

  10. High Performance Home Building Guide for Habitat for Humanity Affiliates

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  11. 77 FR 24494 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Science.gov (United States)

    2012-04-24

    ... certification system review report High Performance Green Building Demonstration project at Fort Carson, Colorado Updates on other current priority projects of GSA's Office of Federal High-Performance Green... ADMINISTRATION Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

  12. Daylighting Strategies Promote Healthy High Performance Buildings

    Science.gov (United States)

    Gille, Steve

    2010-01-01

    There are many reasons to incorporate daylighting into the building or renovation of K-16 learning facilities. Benefits include increased productivity for students and staff, improved health, a better connection to the outdoors, energy savings and better quality of light. Add the role daylighting can play in LEED certification and it's clear that…

  13. 77 FR 66616 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Science.gov (United States)

    2012-11-06

    .... Business Case for Federal Green Building. 15 minute public comment period for individuals pre- registered... ADMINISTRATION Office of Federal High-Performance Green Buildings; Green Building Advisory Committee... provides the schedule and agenda for the November 27, 2012, meeting of the Green Building Advisory...

  14. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  15. Evaluation of the Energy Performance of Six High-Performance Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P. A.; Pless, S.; Crawley, D. B.

    2005-04-01

    The energy performance of six high-performance buildings around the United States was monitored and evaluated by the NREL. The six buildings include the Visitor Center at Zion National Park, the NREL Thermal Test Facility, the Chesapeake Bay Foundation's Merrill Center, the BigHorn Home Improvement Center, the Cambria Office Building, and the Oberlin College Lewis Center.

  16. Best Practices Guide for High-Performance Indian Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    This document provides best practice guidance and energy- efficiency recommendations for the design, construction, and operation of high-­performance office buildings in India. Through a discussion of learnings from exemplary projects and inputs from experts, it provides recommendations that can potentially help achieve (1) enhanced working environments, (2) economic construction/faster payback, (3) reduced operating costs, and (4) reduced greenhouse gas (GHG) emissions. It also provides ambitious (but achievable) energy performance benchmarks, both as adopted targets during building modeling (design phase) and during measurement and verification (operations phase). These benchmarks have been derived from a set of representative best-in-class office buildings in India. The best practices strategies presented in this guide would ideally help in delivering high-­performance in terms of a triad—of energy efficiency, cost efficiency, and occupant comfort and well-­being. These best practices strategies and metrics should be normalized—that is, corrected to account for building characteristics, diversity of operations, weather, and materials and construction methods.

  17. Realizing High-Performance Buildings; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    High-performance buildings (HPBs) are exceptional examples of both design and practice. Their energy footprints are small, and these are buildings that people want to work in because of their intelligent structure, operations, and coincident comfort. However, the operation of most buildings, even ones that are properly constructed and commissioned at the start, can deviate significantly from the original design intent over time, particularly due to control system overrides and growing plug and data center loads. With early planning for systems such as submetering and occupant engagement tools, operators can identify and remedy the problems. This guide is a primer for owners and owners’ representatives who are pursuing HPBs. It describes processes that have been successful in the planning, procurement, and operation of HPBs with exceptional energy efficiency. Much of the guidance offered results from a series of semi-structured conference calls with a technical advisory group of 15 owners and operators of prominent HPBs in the United States. The guide provides a prescription for planning, achieving, and maintaining an HPB. Although the guide focuses on the operations stage of buildings, many of the operations practices are specified during the planning stage.

  18. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  19. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  20. High Performance Building Facade Solutions - PIER Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  1. High-Performance Green Building: Towards a Conceptual Framework

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn

    2016-10-01

    Full Text Available consumption is building performance design targets (AIA 2005:2). Kibert notes that “a unique vocabulary is emerging to describe concepts related to sustainability” including concepts such as “Factor 4 and Factor 10, ecological footprint, ecological rucksack...

  2. Building America System Research Results. Innovations for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-05-01

    This report provides a summary of key lessons learned from the first 10 years of the Building America program and also included a summary of the future challenges that must be met to reach the program’s long term performance goals.

  3. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.

    2011-01-01

    This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned

  4. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  5. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC

  6. Lessons Learned from Field Evaluation of Six High-Performance Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P.; Deru, M.; Griffith, B.; Long, N.; Pless, S.; Judkoff, R.; Crawley, D. B.

    2004-07-01

    The energy performance of six high-performance buildings around the United States was monitored in detail. The six buildings include the Visitor Center at Zion National Park; the National Renewable Energy Laboratory's Thermal Test Facility; the Chesapeake Bay Foundation's Merrill Center; The BigHorn Home Improvement Center; the Cambria DEP Office Building; and the Oberlin College Lewis Center. This paper discusses the design energy targets and actual performance.

  7. Building a High Performance Computing Infrastructure for Novosibirsk Scientific Center

    Science.gov (United States)

    Adakin, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Sukharev, A.; Zaytsev, A.

    2011-12-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies (ICT), and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of the computing farms involved in its research field, currentiy we've got several computing facilities hosted by NSC institutes, each optimized for the particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. Recendy a dedicated optical network with the initial bandwidth of 10 Gbps connecting these three facilities was built in order to make it possible to share the computing resources among the research communities of participating institutes, thus providing a common platform for building the computing infrastructure for various scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technologies based on XEN and KVM platforms. The solution implemented was tested thoroughly within the computing environment of KEDR detector experiment which is being carried out at BINP, and foreseen to be applied to the use cases of other HEP experiments in the upcoming future.

  8. High-Performance Buildings – Value, Messaging, Financial and Policy Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Molly

    2011-02-22

    At the request of the Pacific Northwest National Laboratory, an in-depth analysis of the rapidly evolving state of real estate investments, high-performance building technology, and interest in efficiency was conducted by HaydenTanner, LLC, for the U.S. Department of Energy (DOE) Building Technologies Program. The analysis objectives were • to evaluate the link between high-performance buildings and their market value • to identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to appropriately value and deploy high-performance strategies and technologies across new and existing buildings • to summarize financial mechanisms that facilitate increased investment in these buildings. To meet these objectives, work consisted of a literature review of relevant writings, examination of existing and emergent financial and policy mechanisms, interviews with industry stakeholders, and an evaluation of the value implications through financial modeling. This report documents the analysis methodology and findings, conclusion and recommendations. Its intent is to support and inform the DOE Building Technologies Program on policy and program planning for the financing of high-performance new buildings and building retrofit projects.

  9. Building-Wide, Adaptive Energy Management Systems for High-Performance Buildings: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Zavala, Victor M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science

    2016-10-27

    Development and field demonstration of the minimum ratio policy for occupancy-driven, predictive control of outdoor air ventilation. Technology transfer of Argonne’s methods for occupancy estimation and forecasting and for M&V to BuildingIQ for their deployment. Selection of CO2 sensing as the currently best-available technology for occupancy-driven controls. Accelerated restart capability for the commercial BuildingIQ system using horizon shifting strategies applied to receding horizon optimal control problems. Empirical-based evidence of 30% chilled water energy savings and 22% total HVAC energy savings achievable with the BuildingIQ system operating in the APS Office Building on-site at Argonne.

  10. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  11. Federal High Performance and Sustainable Buildings: Guiding Principles for the Laboratory Support Building (LSB)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Jason E.

    2014-09-01

    This report documents the federal Guiding Principles conformance effort for LSB at PNNL. The effort is part of continued progress toward a campus building inventory that is 100% compliant with the Guiding Principles. The report documentation provides a narrative of how the LSB complies with each of the Guiding Principles requirements. These narratives draw from the many sources that are explained in the text and rely on extensive data collection. The descriptions point to each of these sources, providing the reader with specific policies, procedures, and data points.

  12. High-rise buildings under multi-hazard environment assessment and design for optimal performance

    CERN Document Server

    Huang, Mingfeng

    2017-01-01

    This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering. This book also provides a state-of-the-art review of numerous methodologies, including computational fluid dynamics (CFD), extreme value analysis, structural optimization, vibration control, pushover analysis, response spectrum analysis, modal parameter identification for the assessment of the wind-resistant and seismic performance of tall buildings in the design stage and actual tall buildings in use. Several new structural optimization methods, including the augmented optimality criteria method, have been developed and employed in the context of performance-based design. This book is a valuable resource for students, researchers and engineers in the field of civil and structural engineering.

  13. Volatile Organic Compounds (VOCs in Conventional and High Performance School Buildings in the U.S.

    Directory of Open Access Journals (Sweden)

    Lexuan Zhong

    2017-01-01

    Full Text Available Exposure to volatile organic compounds (VOCs has been an indoor environmental quality (IEQ concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ by limiting emissions from building-related sources and by increasing ventilation rates.

  14. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    Science.gov (United States)

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-21

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for "green" buildings and the use of "environmentally friendly" products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m³, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates.

  15. Highlighting High Performance Buildings: Adam Joseph Lewis Center for Environmental Studies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-11-01

    Oberlin College's Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.

  16. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    Science.gov (United States)

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  17. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    Science.gov (United States)

    2008-09-30

    indicate a gap between design intent and construction that results in reduced energy performance (Torcellini et al. 2006). Building energy efficiency is...occupant, building, or community needs and preferences. New technologies that maximize building energy efficiency and minimize operational energy use...including low-income home energy assistance program, weatherization assistance, state energy programs, state building energy efficiency codes incentives and

  18. Developing a next-generation community college curriculum forenergy-efficient high-performance building operations

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, Peter; Kyriakopedi, Nick; Mills, Evan; Haves, Philip; Otto, Roland J.; Piette, Mary Ann; Xu, Peng; Diamond, Rick; Frost, Chuck; Deringer, Joe

    2004-05-01

    The challenges of increased technological demands in today's workplace require virtually all workers to develop higher-order cognitive skills including problem solving and systems thinking in order to be productive. Such ''habits of mind'' are viewed as particularly critical for success in the information-based workplace, which values reduced hierarchy, greater worker independence, teamwork, communications skills, non-routine problem solving, and understanding of complex systems. The need is particularly compelling in the buildings arena. To scope the problem, this paper presents the results of interviews and focus groups--conducted by Oakland California's Peralta Community College District and Lawrence Berkeley National Laboratory--in which approximately 50 industry stakeholders discussed contemporary needs for building operator education at the community college level. Numerous gaps were identified between the education today received by building operators and technicians and current workplace needs. The participants concurred that many of the problems seen today in achieving and maintaining energy savings in buildings can be traced to inadequacies in building operation and lack of awareness and knowledge about how existing systems are to be used, monitored, and maintained. Participants and others we interviewed affirmed that while these issues are addressed in various graduate-level and continuing education programs, they are virtually absent at the community college level. Based on that assessment of industry needs, we present a new curriculum and innovative simulation-based learning tool to provide technicians with skills necessary to commission and operate high-performance buildings, with particular emphasis on energy efficiency and indoor environmental quality in the context of HVAC&R equipment and control systems.

  19. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    A. Poerschke, R. Beach, T. Begg

    2017-06-01

    IBACOS investigated the performance of a small-diameter high-velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance.

  20. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  1. Play-Building: Creating a Documentary Theatre Performance in a High School Setting

    Science.gov (United States)

    van Eyck, Philip

    2013-01-01

    This paper describes a high school theatre program's project in which Anna Deavere Smith's documentary theatre work serves as the foundation for play-building for students. Research in theatre arts supports the use of play-building as a way to explore major themes of relevance to students. However, there is little research addressing documentary…

  2. Are Biophilic-Designed Site Office Buildings Linked to Health Benefits and High Performing Occupants?

    Directory of Open Access Journals (Sweden)

    Tonia Gray

    2014-11-01

    Full Text Available This paper discusses the first phase of a longitudinal study underway in Australia to ascertain the broad health benefits of specific types of biophilic design for workers in a building site office. A bespoke site design was formulated to include open plan workspace, natural lighting, ventilation, significant plants, prospect and views, recycled materials and use of non-synthetic materials. Initial data in the first three months was gathered from a series of demographic questions and from interviews and observations of site workers. Preliminary data indicates a strong positive effect from incorporating aspects of biophilic design to boost productivity, ameliorate stress, enhance well-being, foster a collaborative work environment and promote workplace satisfaction, thus contributing towards a high performance workspace. The longitudinal study spanning over two years will track human-plant interactions in a biophilic influenced space, whilst also assessing the concomitant cognitive, social, psychological and physical health benefits for workers.

  3. Building a High Performance Metadata Broker using Clojure, NoSQL and Message Queues

    Science.gov (United States)

    Truslove, I.; Reed, S.

    2013-12-01

    In practice, Earth and Space Science Informatics often relies on getting more done with less: fewer hardware resources, less IT staff, fewer lines of code. As a capacity-building exercise focused on rapid development of high-performance geoinformatics software, the National Snow and Ice Data Center (NSIDC) built a prototype metadata brokering system using a new JVM language, modern database engines and virtualized or cloud computing resources. The metadata brokering system was developed with the overarching goals of (i) demonstrating a technically viable product with as little development effort as possible, (ii) using very new yet very popular tools and technologies in order to get the most value from the least legacy-encumbered code bases, and (iii) being a high-performance system by using scalable subcomponents, and implementation patterns typically used in web architectures. We implemented the system using the Clojure programming language (an interactive, dynamic, Lisp-like JVM language), Redis (a fast in-memory key-value store) as both the data store for original XML metadata content and as the provider for the message queueing service, and ElasticSearch for its search and indexing capabilities to generate search results. On evaluating the results of the prototyping process, we believe that the technical choices did in fact allow us to do more for less, due to the expressive nature of the Clojure programming language and its easy interoperability with Java libraries, and the successful reuse or re-application of high performance products or designs. This presentation will describe the architecture of the metadata brokering system, cover the tools and techniques used, and describe lessons learned, conclusions, and potential next steps.

  4. High rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Horn, M.

    1980-06-01

    The feasibility of developing new energy conservation standards for high rise residential-type buildings including hotels, motels, apartment houses, and lodging houses is discussed. Differences between the high and low rise residential building energy regulations are summarized. The data collection method and results are presented. (MCW)

  5. Energy Performance of Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2007-01-01

    programme (ECCP) was established in June 2000 to help identify the most environmentally cost-effective measures enabling the EU to meet its target under the Kyoto Protocol, namely an 8% reduction in greenhouse gas emissions from 1990 levels by 2012. Energy use in buildings accounts for almost half of all CO......"Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development...... and are central to improving social and economic well- being, and human welfare and raising living standards. Even if energy is essential for development, it is only a means to an end. The end is good health, high living standards, a sustainable economy and a clean environment. The European Climate change...

  6. Building performance modelling for sustainable building design

    Directory of Open Access Journals (Sweden)

    Olufolahan Oduyemi

    2016-12-01

    The output revealed that BPM delivers information needed for enhanced design and building performance. Recommendations such as the establishment of proper mechanisms to monitor the performance of BPM related construction are suggested to allow for its continuous implementation. This research consolidates collective movements towards wider implementation of BPM and forms a base for developing a sound BIM strategy and guidance.

  7. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-09

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore the small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.

  8. Lessons Learned from Case Studies of Six High-Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff, R.

    2006-06-01

    Commercial buildings have a significant impact on energy use and the environment. They account for approximately 18% (17.9 quads) of the total primary energy consumption in the United States (DOE 2005). The energy used by the building sector continues to increase, primarily because new buildings are added to the national building stock faster than old buildings are retired. Energy consumption by commercial buildings will continue to increase until buildings can be designed to produce more energy than they consume. As a result, the U.S. Department of Energy's (DOE) Building Technologies Program has established a goal to create the technology and knowledge base for marketable zero-energy commercial buildings (ZEBs) by 2025.

  9. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  10. Building America Top Innovations 2012: High-Performance Affordable Housing with Habitat for Humanity

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America support of Habitat for Humanity including researchers who wrote Habitat construction guides and teams that have worked with affiliates on numerous field projects.

  11. Building America Top Innovations 2012: Reduced Call-Backs with High-Performance Production Builders

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes ways Building America teams have helped builders cut call-backs. Harvard University study found builders who worked with Building America had a 50% drop in call-backs. One builder reported a 50-fold reduction in the incidence of pipe freezing, a 50% reduction in drywall cracking, and a 60% decline in call-backs.

  12. Wynkoop Building Performance Measurement: Water

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M.; Kora, Angela R.

    2012-08-26

    This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual

  13. SAME4HPC: A Promising Approach in Building a Scalable and Mobile Environment for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Rajasekar [ORNL

    2014-01-01

    In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack with Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.

  14. Performance Evaluation of Three Different High Resolution Satellite Images in Semi-Automatic Urban Illegal Building Detection

    Science.gov (United States)

    Khalilimoghadama, N.; Delavar, M. R.; Hanachi, P.

    2017-09-01

    The problem of overcrowding of mega cities has been bolded in recent years. To meet the need of housing this increased population, which is of great importance in mega cities, a huge number of buildings are constructed annually. With the ever-increasing trend of building constructions, we are faced with the growing trend of building infractions and illegal buildings (IBs). Acquiring multi-temporal satellite images and using change detection techniques is one of the proper methods of IB monitoring. Using the type of satellite images with different spatial and spectral resolutions has always been an issue in efficient detection of the building changes. In this research, three bi-temporal high-resolution satellite images of IRS-P5, GeoEye-1 and QuickBird sensors acquired from the west of metropolitan area of Tehran, capital of Iran, in addition to city maps and municipality property database were used to detect the under construction buildings with improved performance and accuracy. Furthermore, determining the employed bi-temporal satellite images to provide better performance and accuracy in the case of IB detection is the other purpose of this research. The Kappa coefficients of 70 %, 64 %, and 68 % were obtained for producing change image maps using GeoEye-1, IRS-P5, and QuickBird satellite images, respectively. In addition, the overall accuracies of 100 %, 6 %, and 83 % were achieved for IB detection using the satellite images, respectively. These accuracies substantiate the fact that the GeoEye-1 satellite images had the best performance among the employed images in producing change image map and detecting the IBs.

  15. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-09-10

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today\\'s computers. One limitation is silicon\\'s rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec(-1) and on/off ratio of near 10(4) within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of similar to 7% in the visible spectrum.

  16. Can we build a truly high performance computer which is flexible and transparent?

    Science.gov (United States)

    Rojas, Jhonathan P; Torres Sevilla, Galo A; Hussain, Muhammad M

    2013-01-01

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today's computers. One limitation is silicon's rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec(-1) and on/off ratio of near 10(4) within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of ~7% in the visible spectrum.

  17. 75 FR 41892 - Solicitation for a Cooperative Agreement: Guidebook for Building High Performance Correctional...

    Science.gov (United States)

    2010-07-19

    ... visibly demonstrates alignment in values-oriented mission statements, vision, and strategic plans... integrated perspective; establishing a core set of values or guiding principles that agencies can apply to... resource direction, enabling the foundation of a learning culture and a high performance mindset. The...

  18. Building High-Performing and Improving Education Systems. Systems and Structures: Powers, Duties and Funding. Review

    Science.gov (United States)

    Slater, Liz

    2013-01-01

    This Review looks at the way high-performing and improving education systems share out power and responsibility. Resources--in the form of funding, capital investment or payment of salaries and other ongoing costs--are some of the main levers used to make policy happen, but are not a substitute for well thought-through and appropriate policy…

  19. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-06-01

    The sixth volume of the Building America Best Practices Series presents information that is useful throughout the U.S. for enhancing the energy efficiency practices in the specific climate zones that are presented in each of the volumes.

  20. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  1. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  2. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

    2010-09-20

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed

  3. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  4. Interactive Configuration of High Performance Renovation of Apartment Buildings by the use of CSP

    DEFF Research Database (Denmark)

    Vareilles, E.; Thuesen, Christian; Falcon, M.

    2013-01-01

    of mid-rise (up to seven stories) apartment buildings. The renovation is based on external rectangular panels, always comprising insulation and cladding, and sometimes including, in addition, doors, windows or solar modules. The panels can be fixed directly onto the walls or onto a metal structure around...

  5. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    Science.gov (United States)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  6. From Smart-Eco Building to High-Performance Architecture: Optimization of Energy Consumption in Architecture of Developing Countries

    Science.gov (United States)

    Mahdavinejad, M.; Bitaab, N.

    2017-08-01

    Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.

  7. Building A High Performance Parallel File System Using Grid Datafarm and ROOT I/O

    CERN Document Server

    Morita, Y; Watase, Y; Tatebe, Osamu; Sekiguchi, S; Matsuoka, S; Soda, N; Dell'Acqua, A

    2003-01-01

    Sheer amount of petabyte scale data foreseen in the LHC experiments require a careful consideration of the persistency design and the system design in the world-wide distributed computing. Event parallelism of the HENP data analysis enables us to take maximum advantage of the high performance cluster computing and networking when we keep the parallelism both in the data processing phase, in the data management phase, and in the data transfer phase. A modular architecture of FADS/ Goofy, a versatile detector simulation framework for Geant4, enables an easy choice of plug-in facilities for persistency technologies such as Objectivity/DB and ROOT I/O. The framework is designed to work naturally with the parallel file system of Grid Datafarm (Gfarm). FADS/Goofy is proven to generate 10^6 Geant4-simulated Atlas Mockup events using a 512 CPU PC cluster. The data in ROOT I/O files is replicated using Gfarm file system. The histogram information is collected from the distributed ROOT files. During the data replicatio...

  8. Conjugated block copolymers: A building block for high-performance organic photovoltaics

    Science.gov (United States)

    Guo, Changhe

    State-of-the-art organic photovoltaics rely on kinetically trapped, partially phase-separated structures of donor/acceptor mixtures to create a high interfacial area for exciton dissociation and networks of bicontinuous phases for charge transport. Nevertheless, intrinsic structural disorder and weak intermolecular interactions in polymer blends limit the performance and stability of organic electronic devices. We demonstrate a potential strategy to control morphology and donor/acceptor heterojunctions through conjugated block copolymer poly(3-hexylthiophene)- block-poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-b-PFTBT). Block copolymers can self-assemble into well-ordered nanostructures ideal for photovoltaic applications. When utilized as the photovoltaic active layer, P3HT-b-PFTBT block copolymer devices demonstrate thermal stability and photoconversion efficiency of 3% well beyond devices composed of the constituent polymer blends. Resonant soft X-ray scattering (RSOXS) is used to elucidate the structural origin for efficient block copolymer photovoltaics. Energy tuning in soft X-ray ranges gives RSOXS chemical sensitivity to characterize organic thin films with compositionally similar phases or complicated multiphase systems. RSOXS reveals that the remarkable performance of P3HT-b-PFTBT devices is due to self-assembly into nanoscale in-plane lamellar morphology, which not only establishes an equilibrium microstructure amenable for exciton dissociation but also provides pathways for efficient charge transport. Furthermore, we find evidence that covalent control of donor/acceptor interfaces in block copolymers has the potential to promote charge separation and optimize the photoconversion process by limiting charge recombination. To visualize the nanostructure in organic thin films, we introduce low energy-loss energy-filtered transmission electron microscopy (EFTEM) as an important alternative

  9. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... was studied. Thermal heat flux on the inner surface of HPC element, and the increase of heat losses to the outside environment were carefully investigated. Calculations were carried out for different temperatures of the circulating fluid, different spacing between CMT and different thicknesses of the inner...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...

  10. Transforming the existing building stock to high performed energy efficient and experienced architecture

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    The project Sustainable Renovation examines the challenge of the current and future architectural renovation of Danish suburbs which were designed in the period from 1945 to 1973. The research project takes its starting point in the perspectives of energy optimization and the fact that the building...... architectural heritage to energy efficiency and from architectural quality to sustainability. The first, second and third renovations are discussed from financial and sustainable view points. The role of housing related to the public energy supply system and the relation between the levels of renovation...... process over the period changed from craftsmanship to industrialized production of housing. The aim is to present the context in which energy transformation has to be seen as an architectural question. The research field focuses on social housing blocks and expands the discussion of architecture from...

  11. High performance concrete applied to storage system buildings at low temperatures

    Directory of Open Access Journals (Sweden)

    Sandra Maria de Lima

    2008-06-01

    Full Text Available According to some estimates, world's population growth is expected about 50% over the next 50 years. Thus, one of the greatest challenges faced by Engineering is to find effective options to food storage and conservation. Some researchers have investigated how to design durable buildings for storing and conserving food. Nowadays, developing concrete with mechanical resistance for room temperatures is a parameter that can be achieved easily. On the other hand, associating it to low temperature of approximately 35 °C negative requires less empiricism, being necessary a suitable dosage method and a careful selection of the material constituents. This ongoing study involves these parameters. The presented concrete was analyzed through non-destructive tests that examines the material properties periodically and verifies its physical integrity. Concrete with and without incorporated air were studied. The results demonstrated that both are resistant to freezing.

  12. Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Chang Heon Cheong

    2014-10-01

    Full Text Available Cooling load in highly glazed residential building can be excessively large due to uncontrolled solar energy entering the indoor space. This study focuses on the cooling load reduction and changes in the daylighting properties via the application of a double window system (DWS with shading with various surface reflectivities in highly glazed residential buildings. Evaluation of thermal and daylighting performances is carried out using simulation tools. The reductions in cooling load and energy cost through the use of DWS are evaluated through a comparative simulation considering conventional windows: a single window and a double window. Three variables of window types, natural ventilation, and shading reflectivity are reflected in the study. According to our results, implementation of DWS reduced cooling load by 43%–61%. Electricity cost during the cooling period was reduced by a maximum of 24%. However, a shading device setting that prioritizes effective cooling load reduction can greatly decrease the daylighting factor and luminance level of indoor space. A DWS implementing shading device with highly reflective at all surfaces is appropriate option for the more comfortable thermal and visual environment, while a shading device with low reflectivity at rear of the surface can contribute an additional 4% cooling load reduction.

  13. Moisture Accumulation and Its Impact on the Thermal Performance of Pipe Insulation for Chilled Water Pipes in High Performance Buildings

    OpenAIRE

    Cai, Shanshan; Cremaschi, Lorenzo; Ghajar, Afshin J.

    2012-01-01

    Mechanical pipe insulation systems are commonly applied to cold piping surfaces in most industrial and commercial buildings in order to limit the heat losses and prevent water vapor condensation on the pipe exterior surfaces. Due to the fact that the surface temperature of these pipelines is normally below the ambient dew point temperature, water vapor diffuses inside the pipe insulation systems and often condenses when it reaches the pipe exterior surfaces. The water droplets accumulated in ...

  14. Building High-Performing and Improving Education Systems: Quality Assurance and Accountability. Review

    Science.gov (United States)

    Slater, Liz

    2013-01-01

    Monitoring, evaluation, and quality assurance in their various forms are seen as being one of the foundation stones of high-quality education systems. De Grauwe, writing about "school supervision" in four African countries in 2001, linked the decline in the quality of basic education to the cut in resources for supervision and support.…

  15. EU Project “School of the Future”— Refurbishment of School Buildings Toward Zero Emission with High-Performance Indoor Environment

    DEFF Research Database (Denmark)

    Erhorn-Kluttig, Heike; Erhorn, Hans; Kempe, Stephan

    2016-01-01

    systems, and the integration of renewables and building management systems. It is anticipated that the results of the project and the associated research and dissemination efforts will support others dealing with building retrofits, and will thereby have a multiple impact on other schools......The aim of the “School of the Future” project (www.school-of-the-future.eu), which receives funding within the EU’s 7th Framework Program, is to design, demonstrate, evaluate, and communicate shining examples of how to reach the future high-performance building level. School buildings, their owners...... industry and research partners of the project. Highlights of the retrofit technologies applied in the four schools include: strongly improved thermal quality of the opaque building envelope components, triple-glazed windows (also in a listed building, i.e., a historic, heritage protected building...

  16. Utilization of CO2 in High Performance Building and Infrastructure Products

    Energy Technology Data Exchange (ETDEWEB)

    DeCristofaro, Nicholas [Solidia Technologies Inc., Piscataway, NJ (United States)

    2015-11-01

    -core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects

  17. Building America Case Study: Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes: Habitat for Humanity -- The Woods, Tacoma, Washington

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes (c) Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP) research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.

  18. Approaching Sentient Building Performance Simulation Systems

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer; Perkov, Thomas; Heller, Alfred

    2014-01-01

    Sentient BPS systems can combine one or more high precision BPS and provide near instantaneous performance feedback directly in the design tool, thus providing speed and precision of building performance in the early design stages. Sentient BPS systems are essentially combining: 1) design tools, 2...

  19. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    Science.gov (United States)

    2012-02-01

    Screening 3.1.1 Objectives and Background 3.1.1a) Background: Building Energy Efficiency Retrofit Process The key steps (see Figure 3.1.1) in the...current building energy efficiency retrofit, include 1) Facility Audit to collect building information such as: Building type (climate, usage...building. To further benefit the performance of the building, tools were developed for tractable design optimization which trades off building energy efficiency and

  20. Building thermography and energy performance directive of buildings

    Science.gov (United States)

    Kauppinen, Timo; Siikanen, Sami

    2012-06-01

    Energy Performance of Buildings Directive came in to the force in Europe couple of years ago and it had an immediate effect on Building Codes in Europe. Finland have changed its building codes since 2007 - the insulation requirements have been tightened and the requirements have been specified. The biggest change is energy efficient calculations and determination of energy efficiency and energy label for buildings. This has caused a boom of new service providers (thermography services, air-tightness measurements and other services like new calculation tools). Thermography is used in verification in performance of buildings. In this presentation some examples of building thermography in walk-through energy audits combined with the results of energy efficiency calculations are presented - also some special problems in buildings of specific use (e.g. an art museum) and use of thermography to solve them.

  1. Decision-making for UBC High Performance Buildings: Multi-criteria Analysis for Integrated Life Cycle Models

    OpenAIRE

    Storey, S.

    2010-01-01

    The current paradigm of building design is evolving rapidly and building developers are beginning to dopt sustainable building practices across Canada. Attaining a sustainable built environment is challenged by the complexity of decision-making and stakeholders need to examine a large number of sustainability metrics to support a 'good decision'. Each sustainable building development has a design path unique to the values of the building stakeholders.This project outlines a framework that as...

  2. Vacuum insulation - Panel properties and building applications. HiPTI - High Performance Thermal Insulation - IEA/ECBCS Annex 39 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. (ed.)

    2005-12-15

    This paper takes a look at the properties of vacuum insulation panels (VIP) that have already been developed some time ago for use in appliances such as refrigerators and deep-freezers. Their insulation performance is a factor of five to ten times better than that of conventional insulation. The paper discusses the use of such panels in buildings to provide thin, highly-insulating constructions for walls, roofs and floors. The motivation for examining the applicability of high performance thermal insulation in buildings is discussed, including solutions where severe space limitations and other technical and aesthetic considerations exist. The use of nano-structured materials and laminated foils is examined and discussed. The questions arising from the use of such panels in buildings is discussed and the open questions and risks involved are examined. Finally, an outlook on the introduction of VIP technology is presented and quality assurance aspects are examined. This work was done within the framework of the Task 39 'High Performance Thermal Insulation' of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA.

  3. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yixing [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Zhang, Jianshun [Syracuse Univ., NY (United States); Pelken, Michael [Syracuse Univ., NY (United States); Gu, Lixing [Univ. of Central Florida, Orlando, FL (United States); Rice, Danial [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Meng, Zhaozhou [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Semahegn, Shewangizaw [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Feng, Wei [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Ling, Francesca [Syracuse Univ., NY (United States); Shi, Jun [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Henderson, Hugh [CDH Energy, Cazenovia, NY (United States)

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  4. Building America Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes; Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.
    home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  5. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  6. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    Science.gov (United States)

    Liu, Yi; He, Bo; Pun, Andrew

    2016-04-19

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  7. The Cost-Effectiveness of Investments to Meet the Guiding Principles for High-Performance Sustainable Buildings on the PNNL Campus

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Judd, Kathleen S.

    2014-08-29

    As part its campus sustainability efforts, Pacific Northwest National Laboratory (PNNL) has invested in eight new and existing buildings to ensure they meet the U.S. Department of Energy’s requirements for high performance sustainable buildings (HPSB) at DOE sites. These investments are expected to benefit PNNL by reducing the total life-cycle cost of facilities, improving energy efficiency and water conservation, and making buildings safer and healthier for the occupants. This study examines the cost-effectiveness of the implementing measures that meet the criteria for HPSBs in 3 different types of buildings on the PNNL campus: offices, scientific laboratories, and data centers. In each of the three case studies examined the investments made to achieve HPSB status demonstrated a high return on the HPSB investments that have taken place in these varied environments. Simple paybacks for total investments in the three case study buildings ranged from just 2 to 5 years; savings-to-investment ratios all exceeded the desirable threshold of 1; and the net present values associated with these investments were all positive.

  8. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...... the context of performance of resident businesses. We examine both business performance and energy performance and how they relate to one another to conclude that building occupants, who are also employees, hold the key to optimizing both metrics in one of the most cost-efficient ways. Finally, the goal...... of our contribution is twofold: 1) to re-scope the concept of building performance to and show the importance to consider, hand- in-hand, both energy performance and performance of resident businesses, and 2) re-state the importance of the potential that lies in the active involvement of building...

  9. Rack-Scale Storage Fabric: A Practical Way to Build Best-Fit Infrastructure for High-Performance Data Processing

    OpenAIRE

    Ding Ruiquan; Hu Xiao; Chen Guofeng; Xiao Zhiwen; Zhang Jiajun; Liu Chao; Wang Jian; Zhou Huan; Zhang Jun

    2016-01-01

    This paper is to address the resource utilization problem for high-performance data processing applications in a large IDC (Internet Data Center) environment. On one hand, each application calls for a best-fit infrastructure with a specific compute-storage ratio, to achieve the highest resource utilization while meeting its performance requirement. And such a ratio varies among applications. On the other hand, IDCs have always been trying to unify the infrastructures for lower TCO (Total Cost...

  10. A polyhedral metal-organic framework based on the supermolecular building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons.

    Science.gov (United States)

    Wang, Dongmei; Liu, Bing; Yao, Shuo; Wang, Tao; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2015-10-25

    By using the supermolecular building block (SBB) strategy, a polyhedron-based metal-organic framework (PMOF), which features three types of cages with multiple sizes and shapes, has been synthesized. It exhibits high performance for CO2 capture (170 cm(3) g(-1) at 273 K under 1 bar) and selectivity of CO2/CH4 (9.4) and C3H8/CH4 (271.5).

  11. A Thieno[3,2-b][1]benzothiophene Isoindigo Building Block for Additive- and Annealing-Free High-Performance Polymer Solar Cells

    KAUST Repository

    Yue, Wan

    2015-08-20

    A novel photoactive polymer with two different molecular weights is reported, based on a new building block: thieno[3,2-b][1]benzothiophene isoindigo. Due to the improved crystallinity, optimal blend morphology, and higher charge mobility, solar-cell devices of the high-molecular-weight polymer exhibit a superior performance, affording efficiencies of 9.1% without the need for additives, annealing, or additional extraction layers during device fabrication.

  12. Rack-Scale Storage Fabric: A Practical Way to Build Best-Fit Infrastructure for High-Performance Data Processing

    Directory of Open Access Journals (Sweden)

    Ding Ruiquan

    2016-01-01

    Full Text Available This paper is to address the resource utilization problem for high-performance data processing applications in a large IDC (Internet Data Center environment. On one hand, each application calls for a best-fit infrastructure with a specific compute-storage ratio, to achieve the highest resource utilization while meeting its performance requirement. And such a ratio varies among applications. On the other hand, IDCs have always been trying to unify the infrastructures for lower TCO (Total Cost of Ownership. Therefore, it’s getting harder and harder to adapt infrastructures to application needs. This issue results in significant waste of investment in large IDCs. Furthermore, the high-performance data processing applications always require the infrastructure to offer as high compute-storage performance as a DAS (Direct Attached Storage server, which remains as a great challenge when addressing the resource utilization problem. This paper, as part of Baidu-Intel joint research program, first evaluates the state-of-the-art solutions, and then introduces a more practical infrastructure, the core of which is rack-scale storage fabric. This infrastructure disaggregates compute units and storage units by a SAS (Serial Attached SCSI fabric, and allows to compose logical servers with arbitrary computer-storage ratios within a rack. And the experiments in Baidu’s research environment show that the logical servers exhibit the similar throughput/IOPS as DAS servers, and also their compute-storage ratios can best-fit the needs of different Hadoop applications.

  13. Building America Best Practices Series - High-Performance Home Technologies: Guide to Determining Climate Regions by County

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, Theresa L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cole, Pam C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, Marye G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ruiz, Kathi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-01

    This report identifies the climate region of each county in the United States. The report is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building.

  14. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy......Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur...... efficient to operate and valuable for building communities. Herein discussed are two successful examples of low energy prefabricated housing projects built in Copenhagen Denmark, which embraced both the constraints and possibilities offered by prefabrication....

  15. High-Performance Energy-Efficient Cool Metal Roof Assemblies Utilizing Building Integrated Renewable Solar Energy Technologies for New and Retrofit Building Construction

    Science.gov (United States)

    2014-04-01

    while sandwiched by a metal sheet and fiberglass insulation , similar to the actual installation in the test building. The HFMA is used for thermal...The old roof consisted of standing-seam metal panels supported by 8 inch purlins, with R-19 (hr-ft2-°F/Btu) fiberglass insulation installed under the...layer) and fiberglass insulation . EnergyPlus can only output heat flux at the outside face and the inside face, and not at the interface of two layers

  16. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  17. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  18. Super high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Maryon, J.C.

    1987-04-14

    This patent describes a super high-rise building for human occupation having at least 100 vertically spaced, human-occupiable stories comprising: a foundation; and a hollow vertical prism of reinforced concrete, mounted on the foundation and being at least 100 stories high, for transmitting to the foundation substantially all loads above at least the 75th floor of the building in a manner such that automatic lateral rigidity, stability, and strength are attained. The sides of the prism have apertures for such purposes as allowing human movement between the inside end and outside of the prism. The portion of substantially any horizontal circumference of the prism which is occupied by the apertures is less than about 25% of the horizontal circumference.

  19. NEBULAS a high performance data-driven event-building architecture based on an asynchronous self-routing packet-switching network

    CERN Document Server

    Christiansen, J; Letheren, M F; Marchioro, A; Tenhunen, H; Nummela, A; Nurmi, J; Gomes, P; Mandjavidze, I D; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    We propose a new approach to event building in future high rate experiments such as those at the LHC. We use a real-time, hierarchical event filtering paradigm based on pipelined triggering and data buffering at level 1, followed by farms of several hundreds of independent processors operating at level 2 and level 3. In view of the uncertainty in the rates and event sizes expected after the first level trigger in LHC experiments, it is important that data acquisition architectures can be open- endedly scaled to handle higher global bandwidths and accommodate more processors. We propose to apply the principle of self-routing packet-switching networks (currently under industrial development for telecommunications and multi-processor applications) to event building. We plan to implement a conceptually simple, distributed, asynchronous, data-driven, scalable, bottleneck-free architecture. An important feature of the architecture is that it can satisfy the data acquisition system's performance requirements using o...

  20. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors.

    Science.gov (United States)

    Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin

    2017-03-22

    Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m2/g), and good electrochemical performance: high energy (552.3 μWh/cm3), power densities (561.9 mW/cm3), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).

  1. The absolute environmental performance of buildings

    DEFF Research Database (Denmark)

    Brejnrod, Kathrine Nykjær; Kalbar, Pradip; Petersen, Steffen

    2017-01-01

    Our paper presents a novel approach for absolute sustainability assessment of a building's environmental performance. It is demonstrated how the absolute sustainable share of the earth carrying capacity of a specific building type can be estimated using carrying capacity based normalization factors...... sustainability for the standard house were proposed focusing on three measures: minimizing environmental impacts from building construction, minimizing impacts from energy consumption during use phase, and reducing the living area per person. In an intermediate path, absolute sustainability can be obtained...

  2. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy ...... calculated energy use. More buildings should be investigated in the same manner before any sound conclusion can be made regarding whether the implementation of EPBD in a wide context leads to truly energy-efficient buildings.......This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  3. Building thermal performance in Saharan climate

    Energy Technology Data Exchange (ETDEWEB)

    Belgaid, Brahim [Department of architecture, University of Batna, 05000- Batna (Algeria)

    2011-07-01

    The aim of this study is to present an analytical method of the contribution of the building's shape and orientation in the definition of a comfortable microclimate for the inhabitants of the warm regions of Algerian Sahara. Study is made by using the overheating, a concept allowing a fast estimation of the level of internal temperature. Calculations were performed for summer hot period for Biskra (a city of southern Algeria), situated in Sahara and characterized with a hot and dry climate. The influence of the shape and the orientation of the building are examined as a solution to improve the building's thermal performance.

  4. The energy performance of office buildings throughout their building process

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Dewulf, Geert P.M.R.; Wamelink, J.W.F.; Geraedts, R.P.; Volker, L.

    2011-01-01

    Many innovative techniques and policy measures have been introduced to reduce energy consumption. Despite the high ambitions and societal pressures, the adoption rate of energy measures in office buildings is still low. Using adoption theories this paper provides a framework to analyse the adoption

  5. Building Nationally-Focussed, Globally Federated, High Performance Earth Science Platforms to Solve Next Generation Social and Economic Issues.

    Science.gov (United States)

    Wyborn, Lesley; Evans, Ben; Foster, Clinton; Pugh, Timothy; Uhlherr, Alfred

    2015-04-01

    Digital geoscience data and information are integral to informing decisions on the social, economic and environmental management of natural resources. Traditionally, such decisions were focused on regional or national viewpoints only, but it is increasingly being recognised that global perspectives are required to meet new challenges such as predicting impacts of climate change; sustainably exploiting scarce water, mineral and energy resources; and protecting our communities through better prediction of the behaviour of natural hazards. In recent years, technical advances in scientific instruments have resulted in a surge in data volumes, with data now being collected at unprecedented rates and at ever increasing resolutions. The size of many earth science data sets now exceed the computational capacity of many government and academic organisations to locally store and dynamically access the data sets; to internally process and analyse them to high resolutions; and then to deliver them online to clients, partners and stakeholders. Fortunately, at the same time, computational capacities have commensurately increased (both cloud and HPC): these can now provide the capability to effectively access the ever-growing data assets within realistic time frames. However, to achieve this, data and computing need to be co-located: bandwidth limits the capacity to move the large data sets; the data transfers are too slow; and latencies to access them are too high. These scenarios are driving the move towards more centralised High Performance (HP) Infrastructures. The rapidly increasing scale of data, the growing complexity of software and hardware environments, combined with the energy costs of running such infrastructures is creating a compelling economic argument for just having one or two major national (or continental) HP facilities that can be federated internationally to enable earth and environmental issues to be tackled at global scales. But at the same time, if

  6. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    Science.gov (United States)

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  7. Building Enclosure Hygrothermal Performance Study, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2002-08-08

    The moisture performance of three different classes of wall systems has been investigated in the context of the preliminary hygrothermal analysis of walls in Seattle. The results reported in this phase specifically address the moisture performance of walls designed with loads that have some unintentional water penetration. The results have been developed in a manner to present the relative performance of the walls in the same climate with similar water penetration effects. The analysis was performed with the best available input data. Several limitations should be recognized within the context of this study. Results showed that selection of wooden sheathing boards on interior vapor-tight assemblies does not significantly influence the performance of stucco-clad walls. A larger effect was observed when the interior vapor control is made vapor open. When continuous cavity ventilation is employed, the effect of the selection of the type of sheathing board on the hygrothermal performance of the wall was found to be negligible. When comparing oriented strand board sheathing performance against the performance of exterior grade gypsum, the differences are very significant in terms of the amount of moisture content present in the walls. Moisture content alone does not indicate their respective durability as durability is directly related to the combination of relative humidity and temperature, mechanical, chemical, and biological properties of the substrates. This study did not investigate the durability performance of either sheathing. In terms of interior vapor control, inhabitant behavior must be considered during the wall hygrothermal design stage. If interior relative humidity is maintained below 60%, then a latex primer and paint may perform better than the use of PVA or even a polyethylene sheet. When the interior environment is maintained at a higher relative humidity, then stricter vapor control is needed. Multilayered building paper was experimentally shown to

  8. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...

  9. The absolute environmental performance of buildings

    DEFF Research Database (Denmark)

    Brejnrod, Kathrine Nykjær; Kalbar, Pradip; Petersen, Steffen

    2017-01-01

    sustainability for the standard house were proposed focusing on three measures: minimizing environmental impacts from building construction, minimizing impacts from energy consumption during use phase, and reducing the living area per person. In an intermediate path, absolute sustainability can be obtained......Our paper presents a novel approach for absolute sustainability assessment of a building's environmental performance. It is demonstrated how the absolute sustainable share of the earth carrying capacity of a specific building type can be estimated using carrying capacity based normalization factors....... A building is considered absolute sustainable if its annual environmental burden is less than its share of the earth environmental carrying capacity. Two case buildings – a standard house and an upcycled single-family house located in Denmark – were assessed according to this approach and both were found...

  10. Rack-Scale Storage Fabric: A Practical Way to Build Best-Fit Infrastructure for High-Performance Data Processing

    National Research Council Canada - National Science Library

    Ding, Ruiquan; Hu, Xiao; Chen, Guofeng; Xiao, Zhiwen; Zhang, Jiajun; Liu, Chao; Wang, Jian; Zhou, Huan; Zhang, Jun

    2016-01-01

    ... (Internet Data Center) environment. On one hand, each application calls for a best-fit infrastructure with a specific compute-storage ratio, to achieve the highest resource utilization while meeting its performance requirement...

  11. Utilizing Commercial Real Estate Owner and Investor Data to Analyze the Financial Performance of Energy Efficient, High-Performance Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Deborah [JDM Associates, Falls Church, VA (United States); Hosseini, Farshid [JDM Associates, Falls Church, VA (United States); White, Andrew [JDM Associates, Falls Church, VA (United States)

    2017-05-01

    Evidence has shown that owning and operating energy-efficient, high-performance, “green” properties results in multiple benefits including lower utility bills, higher rents, improved occupancy, and greater net operating income. However, it is difficult to isolate and control moderating factors to identify the specific drivers behind improved financial performance and value to investors that results from sustainability in real estate. DOE is interested in facilitating deeper investigation of the correlation between energy efficiency and financial performance, reducing data acquisition and matching challenges, and developing a stronger understanding of how sustainable design and energy efficiency impact value. DOE commissioned this pilot study to test the logistical and empirical procedures required to establish a Commercial Real Estate Data Aggregation & Trends Analysis lab, determine the potential benefits available through the lab, and contribute to the existing body of evidence in this field.

  12. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  13. Danish and Brazilian Modeling of Whole-Building Hygrothermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; Grau, Karl

    2006-01-01

    elements of buildings. In turn, the moisture and humidity conditions have significant impact on how buildings are operated. In hot-humid climates it may be desirable to keep the ventilation rates low in order to avoid too high indoor humidity, while in cold climates ventilation can be used to keep...... the humidity low and thus reduce the risk of moisture damage in the building enclosure. In either case the indoor humidity has a direct or indirect impact on the energy performance of the HVAC system of a building. To analyze this situation, one could benefit from some recent developments in integrated...

  14. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    Energy Technology Data Exchange (ETDEWEB)

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  15. The thermal performance of earth buildings

    Directory of Open Access Journals (Sweden)

    Heathcote, K.

    2011-09-01

    Full Text Available This paper examines the theoretical basis for the thermal performance of earth walls and links it to some test results on buildings constructed by the author, and to their predicted performance using a sophisticated computer modelling program. The analysis shows that for all earth walls the steady state thermal resistance is low but that for walls greater than about 450 mm thick the cyclic thermal resistance is high and increases exponentially. Whilst the steady state resistance of all thickness walls is low and results in higher than normal average temperatures in summer and lower than normal in winter the ability of thick earth walls to even out the swings in temperature is thought to be responsible for the materials reputation. The paper notes that good passive design principles (such as providing internal thermal mass and large areas of glazing for winter performance will greatly improve the performance of earth buildings with thin walls, but it is the author’s opinion that external earth walls should be at least 450 mm thick to gain the full benefit of thermal mass.

    Este artículo examina la base teórica del comportamiento térmico de las paredes de tierra y la relaciona con varios resultados de test realizados sobre edificios construidos por el autor, y con su comportamiento previsto utilizando un sofisticado programa de modelado por ordenador. El análisis muestra que la resistencia térmica constante es baja para todas las paredes de tierra, pero que para muros con un grosor mayor que 450 mm la resistencia térmica cíclica es alta y se incrementa exponencialmente. Mientras que la resistencia térmica constante de las paredes de cualquier grosor es baja y se traduce en temperaturas más altas que la media en verano y más bajas que la media en invierno, la capacidad de las paredes gruesas de tierra para amortiguar las variaciones de temperatura es la responsable de la reputación de los materiales. El artículo señala que los

  16. ENERGY PERFORMANCE OF OFFICE BUILDINGS IN GHANA

    African Journals Online (AJOL)

    User

    GHANA. C. Koranteng. Department of Architecture, KNUST, Kumasi, Ghana ... could help as a decision support tool in testing design alternatives and in the validation of building designs on their performance. Design- ers should make the right decisions from the start and verify .... nally, a parametric study of thermal improve-.

  17. HiPTI - High Performance Thermal Insulation, Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F. [Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Simmler, H.; Brunner, S.; Ghazi, K.; Bundi, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [ZAE Bayern, Wuerzburg (Germany); Cauberg, H.; Tenpierik, M. [Delft University of Technology, Delft (Netherlands); Johannesson, G.; Thorsell, T. [Royal Institute of Technology (KTH), Stockholm (Sweden); Erb, M.; Nussbaumer, B. [Dr. Eicher und Pauli AG, Basel and Bern (Switzerland)

    2005-07-01

    This final report on vacuum insulation panels (VIP) presents and discusses the work done under IEA/Energy Conservation in Buildings and Community Systems (ECBCS) Annex 39, subtask B on the basis of a wide selection of reports from practice. The report shows how the building trade deals with this new material today, the experience gained and the conclusions drawn from this work. As well as presenting recommendations for the practical use of VIP, the report also addresses questions regarding the effective insulation values to be expected with current VIP, whose insulation performance is stated as being a factor of five to eight times better than conventional insulation. The introduction of this novel material in the building trade is discussed. Open questions and risks are examined. The fundamentals of vacuum insulation panels are discussed and the prerequisites, risks and optimal application of these materials in the building trade are examined.

  18. Building America Performance Analysis Procedures: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Anderson, R.; Judkoff, R.; Christensen, C.; Eastment, M.; Norton, P.; Reeves, P.; Hancock, E.

    2004-06-01

    To measure progress toward multi-year Building America research goals, cost and performance trade-offs are evaluated through a series of controlled field and laboratory experiments supported by energy analysis techniques that use test data to''calibrate'' energy simulation models. This report summarizes the guidelines for reporting such analytical results using the Building America Research Benchmark (Version 3.1) in studies that also include consideration of current Regional and Builder Standard Practice. Version 3.1 of the Benchmark is generally consistent with the 1999 Home Energy Rating System (HERS) Reference Home, with additions that allow evaluation of all home energy uses.

  19. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    Science.gov (United States)

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  20. Building America House Performance Analysis Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Farrar-Nagy, S.; Anderson, R.; Judkoff, R.

    2001-10-29

    As the Building America Program has grown to include a large and diverse cross section of the home building industry, accurate and consistent analysis techniques have become more important to help all program partners as they perform design tradeoffs and calculate energy savings for prototype houses built as part of the program. This document illustrates some of the analysis concepts proven effective and reliable for analyzing the transient energy usage of advanced energy systems as well as entire houses. The analysis procedure described here provides a starting point for calculating energy savings of a prototype house relative to two base cases: builder standard practice and regional standard practice. Also provides building simulation analysis to calculate annual energy savings based on side-by-side short-term field testing of a prototype house.

  1. Rating the energy performance of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-12-01

    In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

  2. Duct thermal performance models for large commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach

  3. Criteria Describing High-Rise Buildings

    OpenAIRE

    Ernestas Gaudutis

    2011-01-01

    Although the evolution of high rise buildings according to different literature sources counts the 2nd century, however, until now, no universally accepted criterion to characterize them has been established. Considering standards used in different countries of the world and various sources of literature, this article tries to sign the existing situation and offer a criterion to mark high rise buildings. The analysis of the reasons of the notion describing high rise buildings is carried out a...

  4. Indonesian residential high rise buildings: A life cycle energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Utama, Agya; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2009-11-15

    This study evaluates the effect of building envelopes on the life cycle energy consumption of high rise residential buildings in Jakarta, Indonesia. For high rise residential buildings, the enclosures contribute 10-50% of the total building cost, 14-17% of the total material mass and 20-30% of the total heat gain. The direct as well as indirect influence of the envelope materials plays an important role in the life cycle energy consumption of buildings. The initial embodied energy of typical double wall and single wall envelopes for high residential buildings is 79.5 GJ and 76.3 GJ, respectively. Over an assumed life span of 40 years, double walls have better energy performance than single walls, 283 GJ versus 480 GJ, respectively. Material selection, which depends not only on embodied energy but also thermal properties, should, therefore, play a crucial role during the design of buildings. (author)

  5. FIRE EVACUATION FROM HIGH-RISE BUILDINGS

    OpenAIRE

    Korol'chenko Aleksandr Yakovlevich; Dinh Cong Hung Dinh Cong Hung

    2012-01-01

    The authors argue that no collapse of structures is likely in the event of a fire emergency in multistoried buildings, rather, other fire-related factors may endanger the lives of people inside high-rise buildings exposed to the fire emergency, including open fire, sparks, high ambient temperature, smoke and toxic combustion products, reduced concentration of oxygen, and combined influence of various factors. In case of fire, the temperature inside buildings reaches 1100 °С. It exceeds th...

  6. Performance, Performance System, and High Performance System

    Science.gov (United States)

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  7. Criteria Describing High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Ernestas Gaudutis

    2011-04-01

    Full Text Available Although the evolution of high rise buildings according to different literature sources counts the 2nd century, however, until now, no universally accepted criterion to characterize them has been established. Considering standards used in different countries of the world and various sources of literature, this article tries to sign the existing situation and offer a criterion to mark high rise buildings. The analysis of the reasons of the notion describing high rise buildings is carried out and its relations with high rise construction rudiments found in different cultures are characterized. Article in Lithuanian

  8. A method for optimizing the performance of buildings

    DEFF Research Database (Denmark)

    Pedersen, Frank

    2007-01-01

    This thesis describes a method for optimizing the performance of buildings. Design decisions made in early stages of the building design process have a significant impact on the performance of buildings, for instance, the performance with respect to the energy consumption, economical aspects......, such as its shape, the amount and type of windows used, and the amount of insulation used in the building envelope. The parties who influence design decisions for buildings, such as building owners, building users, architects, consulting engineers, contractors, etc., often have different and to some extent...... by decision-makers for buildings, an optimization problem is formulated, intended for representing a wide range of design decision problems for buildings. The problem formulation involves so-called performance measures, which can be calculated with simulation software for buildings. For instance, the annual...

  9. Energy system simulation in performance-based building design

    NARCIS (Netherlands)

    Wilde, P.J.C.J. de; Augenbroe, G.; Voorden, M. van der

    2002-01-01

    This paper discusses the requirements and possible solutions for the use of building simulation tools as instrument to support performance-based building design decisions. Use of an existing simulation tool to support a specific building design decision (the selection of energy saving building

  10. Social Sustainability of High-Rise Buildings

    OpenAIRE

    Mohammad Javad Mahdavinejad; Ali Sadraie; Golrokh Sadraie

    2014-01-01

    Nowadays, High-rise building is proposed as a dominant form in world’s Major cities which its rapid growth has caused social and cultural concerns of the residents of these buildings. Social capital is remembered as a basis for economic development of any society. Its importance can be seen in the economic development of developing countries. Social capital is the invisible wealth of a country that encompasses institutions, relationships and norms that shape social interactions. In this paper...

  11. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  12. Object-Based Building Extraction from High Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    R. Attarzadeh

    2012-07-01

    Full Text Available Automatic building extraction from high resolution satellite imagery is considered as an important field of research in remote sensing and machine vision. Many algorithms for extraction of buildings from satellite images have been presented so far. These algorithms mainly have considered radiometric, geometric, edge detection and shadow criteria approaches to perform the building extraction. In this paper, we propose a novel object based approach for automatic and robust detection and extraction of building in high spatial resolution images. To achieve this goal, we use stable and variable features together. Stable features are derived from inherent characteristics of building phenomenon and variable features are extracted using SEparability and THresholds analysis tool. The proposed method has been applied on a QuickBird imagery of an urban area in Isfahan city and visual validation demonstrates that the proposed method provides promising results.

  13. Developing an environmental performance standard for the materials in buildings for the Dutch Building Decree

    NARCIS (Netherlands)

    Scholten, N.P.M.; Groot-Van Dam, A. de; Kortman, J.G.M.; Huppes, G.; Ven, B. van der; Schuurmans, A.; Anink, D.

    2001-01-01

    After consulting the building industry the Dutch government decided in February 1998 to implement sustainability requirements in the Dutch Building Decree by the year 2001. Part of these requirements will be the material-based environmental performance of a building, mepb.. An energy performance

  14. Review of Methods for Buildings Energy Performance Modelling

    Science.gov (United States)

    Krstić, Hrvoje; Teni, Mihaela

    2017-10-01

    Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting – replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance

  15. Energy Performance Indicators in the Swedish Building Procurement Process

    Directory of Open Access Journals (Sweden)

    Ingrid Allard

    2017-10-01

    Full Text Available In Sweden, all new buildings need to comply with the National Board of Housing, Building and Planning’s requirement on specific purchased energy (kWh/m2. Accordingly, this indicator is often used to set design criteria in the building procurement process. However, when energy use is measured in finished buildings, the measurements often deviate significantly from the design calculations. The measured specific purchased energy does not necessarily reflect the responsibility of the building contractor, as it is influenced by the building operation, user behavior and climate. Therefore, Swedish building practitioners may prefer other indicators for setting design criteria in the building procurement process. The aim of this study was twofold: (i to understand the Swedish building practitioners’ perspectives and opinions on seven building energy performance indicators (envelope air leakage, U-values for different building parts, average U-value, specific heat loss, heat loss coefficient, specific net energy, and specific purchased energy; and (ii to understand the consequences for the energy performance of multi-family buildings of using the studied indicators to set criteria in the procurement process. The study involved a Delphi approach and simulations of a multi-family case study building. The studied indicators were discussed in terms of how they may meet the needs of the building practitioners when used to set building energy performance criteria in the procurement process.

  16. Development of a building performance laboratory for South Africa

    CSIR Research Space (South Africa)

    Parsons, S

    2009-05-01

    Full Text Available The CSIR Building Science and Technology Competence area is currently in the process of establishing a Building Performance Laboratory (BPL). The BPL is aimed at becoming a centre at which the knowledge generation and technology development...

  17. NEBULAS A High Performance Data-Driven Event-Building Architecture based on an Asynchronous Self-Routing Packet-Switching Network

    CERN Multimedia

    Costa, M; Letheren, M; Djidi, K; Gustafsson, L; Lazraq, T; Minerskjold, M; Tenhunen, H; Manabe, A; Nomachi, M; Watase, Y

    2002-01-01

    RD31 : The project is evaluating a new approach to event building for level-two and level-three processor farms at high rate experiments. It is based on the use of commercial switching fabrics to replace the traditional bus-based architectures used in most previous data acquisition sytems. Switching fabrics permit the construction of parallel, expandable, hardware-driven event builders that can deliver higher aggregate throughput than the bus-based architectures. A standard industrial switching fabric technology is being evaluated. It is based on Asynchronous Transfer Mode (ATM) packet-switching network technology. Commercial, expandable ATM switching fabrics and processor interfaces, now being developed for the future Broadband ISDN infrastructure, could form the basis of an implementation. The goals of the project are to demonstrate the viability of this approach, to evaluate the trade-offs involved in make versus buy options, to study the interfacing of the physics frontend data buffers to such a fabric, a...

  18. Procedure for Measuring and Reporting Commercial Building Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  19. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  20. FIRE EVACUATION FROM HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    Korol'chenko Aleksandr Yakovlevich

    2012-10-01

    Full Text Available The authors argue that no collapse of structures is likely in the event of a fire emergency in multistoried buildings, rather, other fire-related factors may endanger the lives of people inside high-rise buildings exposed to the fire emergency, including open fire, sparks, high ambient temperature, smoke and toxic combustion products, reduced concentration of oxygen, and combined influence of various factors. In case of fire, the temperature inside buildings reaches 1100 °С. It exceeds the temperature of the ambient air acceptable for humans by far (70 °С. The experiments demonstrate that combustion products contain hundreds of toxic chemical compounds. The most hazardous of them include carbon oxide, carbon dioxide, chloride and cyanic hydrogen, aldehydes and acrolein. The author provides the pattern of their influence on the human body. The smoke consists of unburned particles of carbon and aerosols. The size of particles fluctuates within 0.05-50 MMK. Smoke produces a physiological and psychological impact on human beings. It has been proven that dangerous fire factors emerge within the first five to ten minutes of the emergency situation. Evacuation is the principal method of safety assurance. However, the velocity of propagation of smoke and heat is so high that even if the fire prevention system is in operation, people may be blocked both on the floors that are exposed to the fire and those that escape its propagation. New evacuation and rescue methods are recommended by the author. Various ways and methods of use of life-saving facilities are also provided. Safe evacuation is feasible from buildings where the number of stories does not exceed 10- 12. During evacuation, high density human streams are formed inside buildings, therefore, the period of stay in a burning building is increased. The calculations have proven that a two-minute delay of evacuation converts into a safe evacuation of only 13-15% of people. Low reliability of

  1. Application of Energy Performance Indicators for Residential Building Stocks

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper; Diefenbach, Nikolaus

    2016-01-01

    Energy performance indicators of residential building stocks can either describe existing empirical data of a building stock or the input and outcome of building stock modelling. In EPISCOPE both types of quantities are clearly separated by distinguishing monitoring indicators and scenario...... indicators....

  2. Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania

    Directory of Open Access Journals (Sweden)

    Jolanta Šadauskienė

    2014-08-01

    Full Text Available In order to fulfil the European Energy Performance of Buildings Directive (EPBD requirements for the reduction of energy consumption, European national requirements have been created for building envelope thermal properties and calculation methodology to determine if building energy efficiency is created. This is however not true in all methodologies. The necessity of building air tightness appears only for new A class buildings, and there are no requirements for air tightness for other building classes. Therefore, the aim of this work is to improve the methodology for the calculation of energy efficiency of buildings, while taking into account the air tightness of the buildings. In order to achieve this aim, the sum energy consumption of investigated buildings was calculated, energy efficiency classes were determined, air tightness of the buildings was measured, and reasons for insufficient air tightness were analyzed. Investigation results show that the average value of air tightness of A energy efficiency class buildings is 0.6 h−1. The results of other investigated buildings, corresponding to B and C energy efficiency classes, show insufficient air tightness (the average n50 value is 6 h−1; herewith, energy consumption for heating is higher than calculated, according to the energy efficiency methodology. This paper provides an energy performance evaluation scheme, under which performed evaluation of energy performance of buildings ensures high quality construction work, building durability, and the reliability of heat-loss calculations.

  3. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  4. Energy performance certificate of two selected residential buildings

    OpenAIRE

    Intihar, Tadeja

    2015-01-01

    The thesis presents calculated energy performance certificate of two selected residential buildings. The targets of European climate and energy policies for reduction of consumed energy include energy efficiency of buildings. Current buildings fund in Slovenia demands great need for energy. Great reduction of energy demands and its’ more efficient use can be achieved by use of renewable energy sources in buildings. In the thesis I have described European and Slovenian legislation ...

  5. “Team Building: Proven Strategies for Improving Team Performance, 4th Edition”

    OpenAIRE

    Greg Homan; Jason Hedrick

    2008-01-01

    Team Building is an important issue for Youth Development professionals. We utilize team-focused work to achieve our objectives in educating youth. The team building skills we integrate into programming serve to prepare youth for the dynamic, highly interpersonal work environment of today. “Team Building: Proven Strategies for Improving Team Performance, 4th Edition,” by W. Dyer, W.G. Dyer, and J. Dyer (2007), provides a practical theoretical framework for those interested in team building ap...

  6. Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    LIN Xiangguo

    2017-06-01

    Full Text Available Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. In this article, an object-based morphological building index (OBMBI is constructed based on both image segmentation and graph-based top-hat reconstruction, and OBMBI is used for building extraction from high resolution remote sensing images. First, bidirectional mapping relationship between pixels, objects and graph-nodes are constructed. Second, the OBMBI image is built based on both graph-based top-hat reconstruction and the above mapping relationship. Third, a binary thresholding is performed on the OBMBI image, and the binary image is converted into vector format to derive the building polygons. Finally, the post-processing is made to optimize the extracted building polygons. Two images, including an aerial image and a panchromatic satellite image, are used to test both the proposed method and classic PanTex method. The experimental results suggest that our proposed method has a higher accuracy in building extraction than the classic PanTex method. On average, the correctness, the completeness and the quality of our method are respectively 9.49%, 11.26% and 14.11% better than those of the PanTex.

  7. High Triplet Energy Level Achieved by Tuning the Arrangement of Building Blocks in Phosphorescent Polymer Backbones for Furnishing High Electroluminescent Performances in Both Blue and White Organic Light-Emitting Devices.

    Science.gov (United States)

    Liu, Boao; Dang, Feifan; Tian, Zhuanzhuan; Feng, Zhao; Jin, Deyuan; Dang, Wanping; Yang, Xiaolong; Zhou, Guijiang; Wu, Zhaoxin

    2017-05-17

    A high triplet energy level (E T ) of ca. 2.83 eV has been achieved in a novel polymer backbone through tuning the arrangement of two kinds of building blocks, showing enhanced hole injection/transporting capacity. Based on this new polymer backbone with high E T , both blue and white phosphorescent polymers were successfully developed with a trade-off between high E T and enhanced charge-carrier transporting ability. In addition, their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. Benefitting from the advantages associated with the novel polymer backbone, the blue phosphorescent polymers show top-ranking EL performances with a maximum luminance efficiency (η L ) of 15.22 cd A -1 , corresponding to a power efficiency (η P ) of 12.64 lm W -1 , and external quantum efficiency (η ext ) of 6.22% and the stable Commission Internationale de L'Eclairage (CIE) coordinates of (0.19, 0.38). Furthermore, blue-orange (B-O) complementary-colored white phosphorescent polymers based on this novel polymer backbone were also obtained showing encouraging EL efficiencies of 12.34 cd A -1 , 9.59 lm W -1 , and 4.10% in the optimized WOLED together with exceptionally stable CIE coordinates of (Δx = 0.014, Δy = 0.010) in a wide driving voltage range from 4 to 16 V. All of these attractive EL results achieved by these novel phosphorescent polymers show the great potential of this new polymer backbone in developing highly efficient phosphorescent polymers.

  8. Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

    2010-06-01

    2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated

  9. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  10. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal comfort and air quality in a selected area of the building....

  11. Commissioning tools for life-cycle building performance assurance

    Energy Technology Data Exchange (ETDEWEB)

    Piette, M.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-05-01

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  12. The Integration of Community Outreach and Research to Teaching and Daily Practice as a Solution for Building High Performance Cellists at UFRN

    Directory of Open Access Journals (Sweden)

    Fabio Soren Presgrave

    2016-10-01

    Full Text Available Since 2008, students of the cello studio at the Federal University of Rio Grande do Norte (UFRN have focused their efforts on research and community outreach as an integral part of their usual academic studies. These activities have been of fundamental importance for nurturing cellists who have reached relevant academic positions and have been successful in the music scenario in Brazil and abroad. These activities include cello ensembles, master classes with guest artists and professors, introductory courses for cello and activities geared toward research. This paper presents a solution for the challenge of developing high-level performers by integrating daily practice with research and community outreach activities.

  13. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  14. Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation

    Directory of Open Access Journals (Sweden)

    Faustino Patiño-Cambeiro

    2017-07-01

    Full Text Available There is an urgent need for energy efficiency in buildings within the European framework, considering its environmental implications, and Europe’s energy dependence. Furthermore, the need for enhancing and increasing productivity in the building industry turns new technologies and building energy performance simulation environments into extremely interesting solutions towards rigorous analysis and decision making in renovation within acceptable risk levels. The present work describes a multidisciplinary approach for the estimation of the energy performance of an educational building. The research involved data acquisition with advanced geomatic tools, the development of an optimized building information model, and energy assessment in Building Performance Simulation (BPS software. Interoperability issues were observed in the different steps of the process. The inspection and diagnostic phases were conducted in a timely, accurate manner thanks to automated data acquisition and subsequent analysis using Building Information Modeling based tools (BIM-based tools. Energy simulation was performed using Design Builder, and the results obtained were compared with those yielded by the official software tool established by Spanish regulations for energy certification. The discrepancies between the results of both programs have proven that the official software program is conservative in this sense. This may cause the depreciation of the assessed buildings.

  15. THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, William L.

    1979-04-01

    A bibliography of published papers describing models, measurement techniques, apparatus, and data for the thermal performance of whole buildings and building envelope systems has been collected (aggregate energy consumption of whole buildings, performance of HVAC equipment, and solar technologies are not included). Summary descriptions of the content of each citation are provided. Measurements on whole buildings or on systems other than walls are sparse. However, new and recently completed measurement facilities are increasing these capabilities. Measurements under dynamic conditions are difficult to accomplish and few reliable data exist. Some analogs have been explored experimentally and analytically. Citations on analytical models are selective and concentrate on methodology that forms the basis of computer programs for whole-building energy analysis. Interesting future directions include new approaches to dynamic measurements, both in the laboratory and in the field, for envelope systems and for whole buildings.

  16. The effect of team building practices on safety performance

    OpenAIRE

    Sykes, Marshall T.

    1998-01-01

    CIVINS Team Building creates a working atmosphere where characteristics are developed that enable the team to be effective. Construction projects that have successful safety programs have many of the same characteristics of effective teams. This thesis analyzes whether team building use affects safety performance for different sized projects. Comparisons are also made of safety practices based on team building use. The analysis is centered on the data collected in the 1996 and 1997 Benchma...

  17. Wind-induced Dynamic Response of High Rise Buildings

    OpenAIRE

    Bjørnland, Karl Hermann Mathias

    2013-01-01

    This thesis aims to investigate the dynamic response of a high rise concrete structure. Calculations are performed for Lerkendal Hotel, a slender 75 meter high building located in Trondheim. Buffeting response has been the main focus in the calculations, and both displacements, accelerations and cross sectional forces have been obtained.Initially, acceleration demands regarding human comfort in a structure subjected to wind induced vibrations were established using design codes. In addition, ...

  18. Efficient production of high-rise buildings

    OpenAIRE

    Hoseini, Hanif

    2007-01-01

    Production of one family houses has over time developed successfully in Sweden and producers have managed to reduce the production costs and industrialize the production process. The development has however not been that successful when it comes to high-rise buildings. There are many attempts made, but no one has really managed to create a product that can persuade the market. The systems used are not flexible and cannot cope very well with variations in the design. The aim of this work has b...

  19. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Science.gov (United States)

    2011-11-30

    ... Office of Energy Efficiency and Renewable Energy Measured Building Energy Performance Data Taxonomy AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of request..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence...

  20. EU Project “School of the Future”— Refurbishment of School Buildings Toward Zero Emission with High-Performance Indoor Environment

    DEFF Research Database (Denmark)

    Erhorn-Kluttig, Heike; Erhorn, Hans; Kempe, Stephan

    2016-01-01

    and on the residential sector since the students will act as communicators to their families. Training sessions specifically tailored to their needs have improved user behavior and awareness of energy efficiency and indoor environment. The success is measured by how well the retrofits meet the following goals......-term measurements and questionnaires.The work of the local integrated planning teams responsible for retrofitting the demonstration buildings at each city (Stuttgart, Germany; Cesena, Italy; Ballerup, Denmark; and Drammen, Norway) was mirrored by the Design Advice and Evaluation Group, which is comprised of all...

  1. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  2. Building exterior retrofit and its impact on energy performance - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Trovato, Nick [Read Jones Christoffersen Ltd (Canada)

    2011-07-01

    The building envelope plays a vital role in energy performance and the comfort of the building's occupants. The office building of Read Jones Christofferesen Ltd. (RJC) had excessive condensation problems with water and air leakages resulting in high-energy consumption. Hence, it required a building envelope retrofit. This paper presents a description of the existing building, improvements made to the building envelope and the mechanical system and the integration of the two systems and how this impacted the energy performance of the building. The owner had certain requirements for the retrofit, such as optimum climate control, wide window opening space, and maximum lighting. Exterior upgrades included, among others, stopping the air and water leakage, improved thermal resistance and reduced vapor diffusion. The renovation resulted in reduced energy consumption, a more comfortable working environment, better mechanical system control, and around 65% in gas consumption and mechanical cost savings.

  3. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance.

    Science.gov (United States)

    Liu, Yao; Yang, Bingchang; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2017-11-14

    Lithium-ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low-temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li3 V2 (PO4 )3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li+ extraction from Li3 V2 (PO4 )3 is used to prelithiate the hard carbon. Then, the self-formed Li2 V2 (PO4 )3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg-1 , a maximum power density of 8291 W kg-1 and a long life of 2000 cycles. When operated at -40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Building America Performance Analysis Procedures: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-06-01

    To measure progress toward multi-year research goals, cost and performance trade-offs are evaluated through a series of controlled field and laboratory experiments supported by energy analysis techniques using test data to calibrate simulation models.

  5. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  6. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  7. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  8. LED Lighting in a Performing Arts Building

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J.; Kaye, S. M. [Univ. of Florida, Gainesville, FL (United States); Coleman, P. M. [Univ. of Florida, Gainesville, FL (United States); Wilkerson, A. M.; Perrin, T. E.; Sullivan, G. P. [Efficiency Solutions, Inc., Richland, WA (United States)

    2014-07-31

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  9. Building Leadership Talent through Performance Evaluation

    Science.gov (United States)

    Clifford, Matthew

    2015-01-01

    Most states and districts scramble to provide professional development to support principals, but "principal evaluation" is often lost amid competing priorities. Evaluation is an important method for supporting principal growth, communicating performance expectations to principals, and improving leadership practice. It provides leaders…

  10. Performative Microforests : Investigating the potential benefits of integrating spatial vegetation environments into buildings, in regards to the performance of buildings, their occupants + local ecosystems

    NARCIS (Netherlands)

    Mangone, G.

    2015-01-01

    The design of office buildings can substantially improve the building, social, and ecological performance of office building projects. However, existing research on improving the performance of work environments has primarily focused on identifying and evaluating methods to make work environments

  11. A method for optimizing the performance of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Frank

    2006-07-01

    This thesis describes a method for optimizing the performance of buildings. Design decisions made in early stages of the building design process have a significant impact on the performance of buildings, for instance, the performance with respect to the energy consumption, economical aspects, and the indoor environment. The method is intended for supporting design decisions for buildings, by combining methods for calculating the performance of buildings with numerical optimization methods. The method is able to find optimum values of decision variables representing different features of the building, such as its shape, the amount and type of windows used, and the amount of insulation used in the building envelope. The parties who influence design decisions for buildings, such as building owners, building users, architects, consulting engineers, contractors, etc., often have different and to some extent conflicting requirements to buildings. For instance, the building owner may be more concerned about the cost of constructing the building, rather than the quality of the indoor climate, which is more likely to be a concern of the building user. In order to support the different types of requirements made by decision-makers for buildings, an optimization problem is formulated, intended for representing a wide range of design decision problems for buildings. The problem formulation involves so-called performance measures, which can be calculated with simulation software for buildings. For instance, the annual amount of energy required by the building, the cost of constructing the building, and the annual number of hours where overheating occurs, can be used as performance measures. The optimization problem enables the decision-makers to specify many different requirements to the decision variables, as well as to the performance of the building. Performance measures can for instance be required to assume their minimum or maximum value, they can be subjected to upper or

  12. Building Investigation: Material or Structural Performance

    Directory of Open Access Journals (Sweden)

    Yusof M.Z.

    2014-03-01

    Full Text Available Structures such as roof trusses will not suddenly collapse without ample warning such as significant deflection, tilting etc. if the designer manages to avoid the cause of structural failure at the material level and the structural level. This paper outlines some principles and procedures of PDCA circle and QC tools which can show some clues of structural problems in terms of material or structural performance

  13. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar

    2010-01-01

    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  14. Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

    2005-09-29

    This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

  15. High-Performance Networking

    CERN Document Server

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  16. Towards Smart Buildings Performance Testing as a Service

    DEFF Research Database (Denmark)

    Markoska, Elena; Lazarova-Molnar, Sanja

    2018-01-01

    Energy consumption in buildings accounts for ca. 40% of the world’s total energy consumption, yielding a call for attention to their performance and improvement of their behavior. The concept of performance testing has been developed as an approach to control, potentially lower, and bring awareness...... to buildings’ energy consumption. In this paper we propose a methodology for continuous performance testing of smart buildings as a service. We discuss the automatic discovery and instantiation of performance tests, as well as usage of results for discovery of potential faults and ways to improve buldings...

  17. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  18. Strategic Behavior in Certifying Green Buildings: An Inquiry of the Non-building Performance Value.

    Science.gov (United States)

    Chiang Hsieh, Lin-Han; Noonan, Douglas

    2017-08-01

    This study determines the magnitude of the market signaling effect arising from Leadership in Energy and Environmental Design certification for green buildings and explores the mechanisms behind the signaling effect. Previous studies have shown that signaling or marketability plays an important role in the pursuit for Leadership in Energy and Environmental Design and equivalent green-building certification. By analyzing all new construction projects receiving Leadership in Energy and Environmental Design certification from 2000 to 2012 in the US, this study estimates the relative importance of 'green' signaling. This broad perspective using project-level data enables an analysis of some drivers of signaling and the pursuit of marketing benefits. The roles of local competition and market conditions, as well as municipal regulations are examined, especially as they differ between types of building owners (e.g., for-profit firms, governments, nonprofits). The results indicate that the non-building performance value-value captured by Leadership in Energy and Environmental Design signals above and beyond the specific building attributes that Leadership in Energy and Environmental Design certifies-dominates the attainment of Leadership in Energy and Environmental Design scores around certification tier thresholds. Further, strong evidence of spatial clustering of this non-building performance value for some owner types indicates that for-profit owners may be more responsive to local competition than non-profit owners. Local legislative mandates predict greater signaling intensity by government-owned buildings, as expected, but for-profit-owned projects tend to signal less, even after controls for local conditions. The results highlight the importance of local conditions, including peer effects and regulations, in driving non-building performance values across a wide range of green buildings.

  19. Strategic Behavior in Certifying Green Buildings: An Inquiry of the Non-building Performance Value

    Science.gov (United States)

    Chiang Hsieh, Lin-Han; Noonan, Douglas

    2017-08-01

    This study determines the magnitude of the market signaling effect arising from Leadership in Energy and Environmental Design certification for green buildings and explores the mechanisms behind the signaling effect. Previous studies have shown that signaling or marketability plays an important role in the pursuit for Leadership in Energy and Environmental Design and equivalent green-building certification. By analyzing all new construction projects receiving Leadership in Energy and Environmental Design certification from 2000 to 2012 in the US, this study estimates the relative importance of `green' signaling. This broad perspective using project-level data enables an analysis of some drivers of signaling and the pursuit of marketing benefits. The roles of local competition and market conditions, as well as municipal regulations are examined, especially as they differ between types of building owners (e.g., for-profit firms, governments, nonprofits). The results indicate that the non-building performance value—value captured by Leadership in Energy and Environmental Design signals above and beyond the specific building attributes that Leadership in Energy and Environmental Design certifies—dominates the attainment of Leadership in Energy and Environmental Design scores around certification tier thresholds. Further, strong evidence of spatial clustering of this non-building performance value for some owner types indicates that for-profit owners may be more responsive to local competition than non-profit owners. Local legislative mandates predict greater signaling intensity by government-owned buildings, as expected, but for-profit-owned projects tend to signal less, even after controls for local conditions. The results highlight the importance of local conditions, including peer effects and regulations, in driving non-building performance values across a wide range of green buildings.

  20. Key Performance Indicator of Building Maintenance and Its Effect on the Building Life Cycle

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-07-01

    Full Text Available Building maintenance is considered as one of the national agenda. Multitude barriers received by the services providers have undergone various difficulties in satisfying public interest have been progressively resolved as a sign towards becoming a more developed country. In real practice, building maintenance is the thing which we mostly tolerate. If the building is able to weather the elements, we may with delay taking action on it. Most buildings are always treated with ‘ad-hoc’ maintenance. In some instances, the building disrepair will wait until complaints are made before any repair work is done. It shows that the situation is not considered critical as it may. Maintenance is still being practiced in improper procedure by the maintenance managers which subsequently caused bad impacts to the facilities and the services provided. It can be seen that the managers prefer carrying out reactive maintenance works rather than proactive works and at times do not consider the clients satisfaction and also the performance of services. This paper will focus on some important elements of building maintenance and its relation to building performance holistically.

  1. Buildings Energy Performance in a Market Comparison Approach

    Directory of Open Access Journals (Sweden)

    Manuela De Ruggiero

    2017-02-01

    Full Text Available The current regulations on the energy certification of buildings represent for the real estate market and the building sector a real cultural revolution. In recent years, the focus on the energy efficiency of buildings has grown exponentially. It is therefore necessary that the property valuations and methodologies used for this purpose bear in mind the energy quality of buildings. This study aims to determine the contribution of an energy performance feature to the real estate property value. This information can help, on the one hand, to understand the energy savings and the corresponding savings income in the property management and, on the other, to control the air pollution from CO2 emission reduction. The energy performance hedonic price and the CO2 emission price are appraised in the Market Comparison Approach (MCA.

  2. High-performing physician executives.

    Science.gov (United States)

    Brown, M; Larson, S R; McCool, B P

    1988-01-01

    Physician leadership extends beyond traditional clinical disciplines to hospital administration, group practice management, health policy making, management of managed care programs, and many business positions. What kind of person makes a good physician executive? What stands out as the most important motivations, attributes, and interests of high-performing physician executives? How does this compare with non-physician health care executives? Such questions have long been high on the agenda of executives in other industries. This article builds on existing formal assessments of leadership attributes of high-performing business, government, and educational executives and on closer examination of health care executives. Previous studies looked at the need for innovative, entrepreneurial, energetic, community-oriented leaders for positions throughout health care. Traits that distinguish excellence and leadership were described by Brown and McCool.* That study characterized successful leaders in terms of physical strengths (high energy, good health, and propensity for hard work), mental strengths (creativity, intuition, and innovation), and organizational strengths (mission orientation, vision, and entrepreneurial spirit). In this investigation, a subset of health care executives, including physician executives, was examined more closely. It was initially assumed that successful physician executives exhibit many of the same positive traits as do nonphysician executives. This assumption was tested with physician leaders in a range of administrative and managerial positions. We also set out to identify key differences between physician and nonphysician executives. Even with our limited exploration, it seems to us that physician executives probably do differ from nonphysician executives.

  3. Building America Top Innovations 2012: High-R Walls

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research on high-R-value walls showing the difference between rated and whole wall R values and the need for vented cladding to reduce condensation potential with some insulation types.

  4. Sustainable construction building performance simulation and asset and maintenance management

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research works that highlight best practice solutions, case studies and practical advice on the implementation of sustainable construction techniques. It includes a set of new developments in the field of building performance simulation, building sustainability assessment, sustainable management, asset and maintenance management and service-life prediction. Accordingly, the book will appeal to a broad readership of professionals, scientists, students, practitioners, lecturers and other interested parties.

  5. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  6. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house......A heating and cooling system could be divided into three parts: terminal units (emission system), distribution system, and heating and cooling plant (generation system). The choice of terminal unit directly affects the energy performance, and the indoor environment in that space. Therefore......, a holistic system evaluation is necessary to ensure an optimal indoor environment for the occupants and to achieve energy efficiency simultaneously. Low temperature heating and high temperature cooling systems are one of the possible approaches to heat or cool indoor spaces in buildings. In this thesis...

  7. An Examination of the Performance Based Building Code on the Design of a Commercial Building

    Directory of Open Access Journals (Sweden)

    John Greenwood

    2012-11-01

    Full Text Available The Building Code of Australia (BCA is the principal code under which building approvals in Australia are assessed. The BCA adopted performance-based solutions for building approvals in 1996. Performance-based codes are based upon a set of explicit objectives, stated in terms of a hierarchy of requirements beginning with key general objectives. With this in mind, the research presented in this paper aims to analyse the impact of the introduction of the performance-based code within Western Australia to gauge the effect and usefulness of alternative design solutions in commercial construction using a case study project. The research revealed that there are several advantages to the use of alternative designs and that all parties, in general, are in favour of the performance-based building code of Australia. It is suggested that change in the assessment process to streamline the alternative design path is needed for the greater use of the performance-based alternative. With appropriate quality control measures, minor variations to the deemed-to-satisfy provisions could easily be managed by the current and future building surveying profession.

  8. Uncertainty assessment in building energy performance with a simplified model

    Directory of Open Access Journals (Sweden)

    Titikpina Fally

    2015-01-01

    Full Text Available To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared to the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of the dynamic and the static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the Guide to the Expression of Measurement Uncertainty (GUM as well as by Bayesian Statistical Theory (BST. Another choice is the use of numerical methods like Monte Carlo Simulation (MCS. In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST is given. Therefore, an office building has been monitored and multiple temperature sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 m2.

  9. High Performance Liquid Chromatography

    Science.gov (United States)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  10. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  11. Building an infrastructure project performance in the North-West ...

    African Journals Online (AJOL)

    Building and infrastructure projects at the North- West Province Department of Public Works and Roads (NW DPWR) often perform poorly in terms of overrunning both the original approved timeline and the budget. Adding to poor time and cost performances, these projects often do not meet the desired functional ...

  12. Building an infrastructure project performance in the North-West ...

    African Journals Online (AJOL)

    Abstract. Building and infrastructure projects at the North-. West Province Department of Public Works and. Roads (NW DPWR) often perform poorly in terms of overrunning both the original approved timeline and the budget. Adding to poor time and cost performances, these projects often do not meet the desired functional ...

  13. Effect of capacity building on organizational performance of ...

    African Journals Online (AJOL)

    Effect of capacity building on organizational performance of multipurpose cooperative societies in Osun State of Nigeria. ... The finding also revealed that the opinion of the respondents unanimously agreed to the indicators used in measuring the performance of their cooperative, and this was affirmed by the hypothesis two ...

  14. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  15. Natural ventilation in high-rise buildings with double facades, saving or waste of energy

    Energy Technology Data Exchange (ETDEWEB)

    Pasquay, T. [Schmidt Reuter Partner , Engineering Co., Research and Development, Koln (Germany)

    2004-04-01

    Double facades are built to allow natural ventilation in high-rise buildings and buildings with high outside noise levels. To evaluate the energetic performance, three buildings with double facades were monitored for at least a year (Siemens building in Dortmund, Victoria Insurance Company in Dusseldorf and RWE Tower in Essen). In one building all the air conditioning facilities had been removed and the facade replaced by a double facade, one building had cooling equipment without mechanical ventilation (concrete core tempered ceiling) and one building had cooling equipment combined with mechanical ventilation. The results document the indoor climate, the boundary conditions for further planning and the possibilities for high-rise buildings with no or only limited cooling facilities. The research was carried out at the University of Dortmund and founded by the state of Nordrhein-Westfahlen (AG-Solar). (author)

  16. Natural ventilation in high-rise buildings with double facades, saving or waste of energy?

    Energy Technology Data Exchange (ETDEWEB)

    Pasquay, T. [Schmidt Reuter Partner, Engineering Company, Research and Development, Koeln (Germany)

    2004-07-01

    Double facades are built to allow natural ventilation in high-rise buildings and buildings with high outside noise levels. To evaluate the energetic performance, three buildings with double facades were monitored for at least one year (Siemens building in Dortmund, Victoria Insurance Company in Duesseldorf and RWE Tower in Essen, all in Germany). In one building all the air conditioning facilities had been removed and the facade replaced by a double facade, one building had cooling equipment without mechanical ventilation (concrete core tempered ceiling) and one building had cooling equipment combined with mechanical ventilation. The results document the indoor climate, the boundary conditions for further planning and the possibilities for high-rise buildings with no or only limited cooling facilities. The research was carried out at the University of Dortmund and founded by the state of Nordrhein-Westfahlen (AG-Solar). (author)

  17. Performative Microforests: Investigating the potential benefits of integrating spatial vegetation environments into buildings, in regards to the performance of buildings, their occupants + local ecosystems

    Directory of Open Access Journals (Sweden)

    Giancarlo Mangone

    2015-09-01

    buildings?Within the DRM research framework, explorative design case studies, systematic literature reviews, expert interviews, observation case studies, and experimentation research methods were employed, in order to develop design guidelines, high performance space types and case studies, as well as assessments of the hypotheses of several experiments. For instance, as part of the investigation of the first sub research question, a design case study was conducted that evaluated the potential of microforests to reduce the energy consumption rates of office buildings, both in terms of the potential of vegetation to function as a shading device, and in terms of the potential energy savings that can be attained through the provision of semi-outdoor, high quality microforest workspaces. The results of this study, which are discussed in Chapter 4, indicate that vegetation can be as effective, or more effective, than typical shading devices, in terms of shading effectiveness. Moreover, in terms of economic performance, this study found that improving occupant work performance provided substantially greater economic benefits than reducing the energy costs of the mid-size commercial office building. This finding indicates that, in terms of economic performance, design teams should be focused on designing office environments that improve worker performance. Thus, the results of this case study indicate that economic and worker performance are interrelated. In order to investigate the potential effects of microforests on occupant thermal comfort, a quasi-experiment which evaluated the potential psychological and physiological impacts of microforests on occupant thermal comfort, was conducted. This study is discussed in Chapter 5. The results of this study indicate that working within a densely vegetated work environment, such as a microforest, improves occupant thermal comfort, both in normal and more extreme temperatures, throughout the four seasons. Thus, the inhabitation of

  18. Performative Microforests: Investigating the potential benefits of integrating spatial vegetation environments into buildings, in regards to the performance of buildings, their occupants + local ecosystems

    Directory of Open Access Journals (Sweden)

    Giancarlo Mangone

    2015-09-01

    of office buildings? Within the DRM research framework, explorative design case studies, systematic literature reviews, expert interviews, observation case studies, and experimentation research methods were employed, in order to develop design guidelines, high performance space types and case studies, as well as assessments of the hypotheses of several experiments. For instance, as part of the investigation of the first sub research question, a design case study was conducted that evaluated the potential of microforests to reduce the energy consumption rates of office buildings, both in terms of the potential of vegetation to function as a shading device, and in terms of the potential energy savings that can be attained through the provision of semi-outdoor, high quality microforest workspaces. The results of this study, which are discussed in Chapter 4, indicate that vegetation can be as effective, or more effective, than typical shading devices, in terms of shading effectiveness. Moreover, in terms of economic performance, this study found that improving occupant work performance provided substantially greater economic benefits than reducing the energy costs of the mid-size commercial office building. This finding indicates that, in terms of economic performance, design teams should be focused on designing office environments that improve worker performance. Thus, the results of this case study indicate that economic and worker performance are interrelated. In order to investigate the potential effects of microforests on occupant thermal comfort, a quasi-experiment which evaluated the potential psychological and physiological impacts of microforests on occupant thermal comfort, was conducted. This study is discussed in Chapter 5. The results of this study indicate that working within a densely vegetated work environment, such as a microforest, improves occupant thermal comfort, both in normal and more extreme temperatures, throughout the four seasons. Thus, the

  19. Facile Synthesis of a Hydroxyl-Functionalized Tröger’s Base Diamine: A New Building Block for High-Performance Polyimide Gas Separation Membranes

    KAUST Repository

    Ma, Xiaohua

    2017-12-04

    Two intrinsically microporous polyimides (PIM-PIs) were synthesized by the polycondensation reaction of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 3,3,3′,3′-tetramethylspirobisindane-6,7,6′,7′-tetracarboxylic dianhydride (SBI) with a newly designed o-hydroxyl-functionalized Tröger’s base diamine, 1,7-diamino-6H,12H-5,11-methanodibenzo[1,5]diazocine-2,8-diol (HTB). Both amorphous PIM-PIs were soluble in aprotic solvents and showed excellent thermal stability with onset decomposition temperature of ∼380 °C. SBI-HTB displayed a higher CO2 permeability (466 vs 67 barrer) than 6FDA-HTB but a significantly lower selectivity for CO2/CH4 (29 vs 73), H2/CH4 (29 vs 181), O2/N2 (4.6 vs 6.0), and N2/CH4 (1 vs 2.5). 6FDA-HTB displayed the highest gas-pair permselectivity values of all reported OH-functionalized PIM-PIs to date. The high permselectivity of 6FDA-HTB resulted primarily from exceptional diffusion selectivity due to strong size-sieving properties caused by hydrogen bonding between the proton of the hydroxyl group and the nitrogen atoms in the tertiary amine of the Tröger’s base (O–H···N).

  20. Envelope parameters, their effect on high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, M.J.

    1982-04-01

    Makeup of the exterior envelope of a high-rise building - walls, insulation, glass, mass - greatly affects both peak and total structure energy usages. The influence of a well-designed building envelope on energy conservation is considered and the effects of envelope parameters on high-rise building energy use and costs are addressed. A general guideline for the building design team is given. By knowing the ramifications of certain design decisions, a design team can effectively plan a useful and energy-efficient building.

  1. Progressive Collapse of High-Rise Buildings from Fire

    Directory of Open Access Journals (Sweden)

    Pershakov Valerii

    2016-01-01

    Full Text Available Considers ensuring the stability of structures of high-rise buildings against progressive collapse due to fire, proposed measures to ensure the stability of high-rise buildings due to progressive collapse. The analysis of large fires in high-rise buildings with progressive collapse and review of the literature on the issue of progressive collapse. The analysis of the Ukrainian normative documents on progressive collapse resistance.

  2. Environmental performance of green building code and certification systems.

    Science.gov (United States)

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  3. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance. The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems. The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the

  4. Baxter Community—High Performance Green Building

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-16

    This case study describes the Baxter community built by David Weekley Homes, which is reducing their energy demand through a number of techniques including advanced air sealing techniques, the installation of SEER 14 air conditioners, and Low-e windows in conjunction with conventional framing and insulation.

  5. Evaluating building performance in healthcare facilities: an organizational perspective.

    Science.gov (United States)

    Steinke, Claudia; Webster, Lynn; Fontaine, Marie

    2010-01-01

    Using the environment as a strategic tool is one of the most cost-effective and enduring approaches for improving public health; however, it is one that requires multiple perspectives. The purpose of this article is to highlight an innovative methodology that has been developed for conducting comprehensive performance evaluations in public sector health facilities in Canada. The building performance evaluation methodology described in this paper is a government initiative. The project team developed a comprehensive building evaluation process for all new capital health projects that would respond to the aforementioned need for stakeholders to be more accountable and to better integrate the larger organizational strategy of facilities. The Balanced Scorecard, which is a multiparadigmatic, performance-based business framework, serves as the underlying theoretical framework for this initiative. It was applied in the development of the conceptual model entitled the Building Performance Evaluation Scorecard, which provides the following benefits: (1) It illustrates a process to link facilities more effectively to the overall mission and goals of an organization; (2) It is both a measurement and a management system that has the ability to link regional facilities to measures of success and larger business goals; (3) It provides a standardized methodology that ensures consistency in assessing building performance; and (4) It is more comprehensive than traditional building evaluations. The methodology presented in this paper is both a measurement and management system that integrates the principles of evidence-based design with the practices of pre- and post-occupancy evaluation. It promotes accountability and continues throughout the life cycle of a project. The advantage of applying this framework is that it engages health organizations in clarifying a vision and strategy for their facilities and helps translate those strategies into action and measurable performance

  6. Seismic performance evaluation of existing RC buildings designed ...

    Indian Academy of Sciences (India)

    1. Introduction. For earthquake resistant design, evaluation of the seismic performance of buildings, it is ... LS. III. Note: DL: Dead Load; LL: Live Load; EQL: Earthquake Load; LS: Limit State; WS: Working Stress ..... axial load applied with respect to the ultimate one, (iii) ratio between the shear length to the sec- tion height ...

  7. Comfort Indicators for the Assessment of Indoor Environmental Building Performance

    DEFF Research Database (Denmark)

    Brohus, Henrik; Bendtsen, A.; Sørensen, M.

    2006-01-01

    Indoor environmental building performance assessment requires efficient indicators of the indoor comfort. In order to be effective and useful the comfort indicators must be able to include the temporal variation of indoor comfort as well as the degree of discomfort perceived by the occupants...

  8. Voluntary programmes for building retrofits: opportunities, performance and constraints

    NARCIS (Netherlands)

    van der Heijden, J.

    2015-01-01

    Around the globe governments, businesses and citizens are actively involved in voluntary programmes that seek an improved uptake of retrofits of the existing building stock. A fuzzy set qualitative comparative analysis (fsQCA) is used to understand the opportunities, performance and constraints of

  9. Comfort Indicators for the Assessment of Indoor Environmental Building Performance

    DEFF Research Database (Denmark)

    Brohus, Henrik; Bendtsen, A.; Sørensen, M.

    2006-01-01

    Indoor environmental building performance assessment requires efficient indicators of the indoor comfort. In order to be effective and useful the comfort indicators must be able to include the temporal variation of indoor comfort as well as the degree of discomfort perceived by the occupants. Thi...

  10. Predictive performance simulations for a sustainable lecture building complex

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2012-06-01

    Full Text Available during operational hours. The following process was used to model the ventilation performance of this mixed-mode building: 1) An insolation analysis was undertaken to establish the effect of cumulative exposure of the Trombe wall surface to solar...

  11. Do Certified Buildings Enhance Indoor Environmental Quality and Performance of Office Work?

    DEFF Research Database (Denmark)

    Da Silva, Nuno Alexandre Faria; Wargocki, Pawel

    2014-01-01

    With the growth of sustainability consciousness, the awareness of stakeholders for high performance buildings has also increased. The concept of green buildings has appeared. Several voluntary environmental rating schemes for buildings were created. Their focus has been energy conservation...... on humans. Health, comfort and work performance outcomes are more difficult to quantify than the effects on energy. As a result, it may be expected that credits for IEQ in the schemes be traded with other credits. If so, although claimed to have an outstanding IEQ as compared with conventional buildings...... on productivity and that an average employee cost can be >10-100 times higher than the rental operation and maintenance costs (Morrell, 2005; Persramet al., 2007). There is however lack of consistent and systematic data benchmarking benefits of green building, in particular as regards IEQ and the effects...

  12. High Performance Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jesse E [Los Alamos National Laboratory

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  13. R high performance programming

    CERN Document Server

    Lim, Aloysius

    2015-01-01

    This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.

  14. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  15. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan, E-mail: ajgu@suda.edu.cn; Liang, Guozheng, E-mail: lgzheng@suda.edu.cn

    2017-07-31

    Highlights: • A green technology is setup to build unique surface structure on aramid fiber (AF). • The method is layer-by-layer self-assembling SiO{sub 2} and layered double hydroxide. • The surface of AF is adjustable by controlling the self-assembly cycle number. • New AF has excellent surface activity, anti-UV, thermal and mechanical properties. • The origin behind attractive performances of new AFs was intensively studied. - Abstract: Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO{sub 2} and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91–95%, about 29–14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and

  16. ATLAS High Level Trigger Infrastructure, ROI Collection and Event Building

    CERN Document Server

    Kordas, K; Baines, J T M; Beck, H P; Bee, C; Bogaerts, A; Bold, T; Bosman, M; Comune, G; Cranfield, R; Crone, G; Di Mattia, A; Dos Anjos, A; Ellis, Nick; Ertorer, E; Falciano, S; Ferrari, R; Ferrer, M L; Gadomski, S; Gameiro, S; Garitaonandia, H; George, S; Gesualdi-Mello, A; Gorini, B; Green, B; Haeberli, C; Haller, J; Hauser, R; Joos, M; Kieft, G; Klous, S; Kugel, A; Lankford, A; Liu, W; Maeno, T; Masik, J; Meessen, C; Misiejuk, A; Morettini, P; Müller, M; Nagasaka, Y; Negri, A; Padilla, C; Pasqualucci, E; Pauly, T; Perera, V J O; Petersen, J; Portes de Albuquerque, M; Schiavi, C; Schlereth, J L; Segura, E; Seixas, M; Spiwoks, R; Stamen, R; Strong, J; Sushkov, S; Tapprogge, S; Teixeira-Dias, P; Torres, R; Touchard, F; Tremblet, L; Ünel, G; Vandelli, W; Van Wasen, J; Vermeulen, J; Werner, P; Wheeler, S; Wickens, F; Wiedenmann, W; Wu, X; Yasu, Y; Yu, M; Zobernig, H

    2006-01-01

    We describe the base-line design and implementation of the Data Flow and High Level Trigger (HLT) part of the ATLAS Trigger and Data Acquisition (TDAQ) system. We then discuss improvements and generalization of the system design to allow the handling of events in parallel data streams and we present the possibility for event duplication, partial Event Building and data stripping. We then present tests on the deployment and integration of the TDAQ infrastructure and algorithms at the TDAQ â€?pre-series” cluster (~10% of full ATLAS TDAQ). Finally, we tackle two HLT performance issues.

  17. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  18. INNOVATIVE SOLUTIONS FOR BUILDING ENVELOPES OF BIOCLIMATICAL HIGH-RISE BUILDINGS

    OpenAIRE

    Generalova, Elena; Generalov, Victor; Kuznetsova, Anna

    2017-01-01

    The paper examines innovative and promising trends in in the design of high-rise buildings that challenge traditional typologies and are adapted for specific climatic conditions. The purpose of the study is to investigate modern methods of designing building envelopes for bioclimatic skyscrapers taking into account heat impact of climate on the thermal balance of buildings. The research methodology is based on a systematic analysis of advanced world experience in constructing innovative b...

  19. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  20. Data Preparation Process for the Buildings Performance Database

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Travis; Dunn, Laurel; Mercado, Andrea; Brown, Richard E.; Mathew, Paul

    2014-06-30

    The Buildings Performance Database (BPD) includes empirically measured data from a variety of data sources with varying degrees of data quality and data availability. The purpose of the data preparation process is to maintain data quality within the database and to ensure that all database entries have sufficient data for meaningful analysis and for the database API. Data preparation is a systematic process of mapping data into the Building Energy Data Exchange Specification (BEDES), cleansing data using a set of criteria and rules of thumb, and deriving values such as energy totals and dominant asset types. The data preparation process takes the most amount of effort and time therefore most of the cleansing process has been automated. The process also needs to adapt as more data is contributed to the BPD and as building technologies over time. The data preparation process is an essential step between data contributed by providers and data published to the public in the BPD.

  1. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  2. Building identification from very high-resolution satellite images

    Science.gov (United States)

    Lhomme, Stephane

    Urbanisation still remains one of the main problems worldwide. The extent and rapidity of the urban growth induce a number of socio-economic and environmental conflicts everywhere. In order to reduce these problems, urban planners need to integrate spatial information in planning tools. Actually high expectations are made on Very High Spatial Resolution imagery (VHSR). These high-spatial resolution images are available at a reasonable price and due to short revisit periods, they offer a high degree of actuality. However, interpretation methods seem not to be adapted to this new type of images. The aim of our study is to develop a new method for semi-automatic building extraction with VHSR. The different steps performed to achieve our objective are each presented in a chapter. In the first chapter, the general context of our research is described with the definition of our objective. After a short historical review of urbanisation, we focus on urban growth and associated problems. In the following we discuss the possible contributions of geography to reduce these problems. After discussing concepts, theories and methodologies of geographical analysis in urban areas, we present existing general urban planning tools. Finally, we show the special interest of our study that is due to a growing need to integrate spatial information in these decision support tools. In the second chapter we verify the possibility of reaching our objective by analysing the technical characteristics of the images, the noise and the distortions which affect the images. Quality and interpretability of the studied image is analysed in order to show the capacity of these image to represent urban objects as close to reality as possible. The results confirm the potential of VHSR Imagery for urban objects analysis. The third chapter deal with the preliminary steps necessary for the elaboration of our method of building extraction. First, we evaluate the quality of the Sherbrooke Ikonos image

  3. Energy Performance of Verandas in the Building Retrofit Process

    Directory of Open Access Journals (Sweden)

    Rossano Albatici

    2016-05-01

    Full Text Available Passive solar elements for both direct and indirect gains, are systems used to maintain a comfortable living environment while saving energy, especially in the building energy retrofit and adaptation process. Sunspaces, thermal mass and glazing area and orientation have been often used in the past to guarantee adequate indoor conditions when mechanical devices were not available. After a period of neglect, nowadays they are again considered as appropriate systems to help face environmental issues in the building sector, and both international and national legislation takes into consideration the possibility of including them in the building planning tools, also providing economic incentives. Their proper design needs dynamic simulation, often difficult to perform and time consuming. Moreover, results generally suffer from several uncertainties, so quasi steady-state procedures are often used in everyday practice with good results, but some corrections are still needed. In this paper, a comparative analysis of different solutions for the construction of verandas in an existing building is presented, following the procedure provided by the slightly modified and improved Standard EN ISO 13790:2008. Advantages and disadvantages of different configurations considering thermal insulation, windows typology and mechanical ventilation systems are discussed and a general intervention strategy is proposed. The aim is to highlight the possibility of using sunspaces in order to increase the efficiency of the existing building stock, considering ease of construction and economic viability.

  4. Building communities through performance: emerging approaches to interculturality.

    Science.gov (United States)

    Parent, Roger

    2009-08-01

    Changing definitions of culture are modifying approaches to intercultural education and training. This paper outlines the principal features of these emerging models for innovation and capacity building in communities. Semiotics provides a theoretical frame for the interdisciplinary analysis of research on cultural competency, especially regarding recent studies on "cultural intelligence", performance and creativity. Interdisciplinary research on cultural literacy is shifting from cultural knowledge to intercultural know-how. This know-how translates into the individual's capacity to innovate and illustrates the influence of culture on individual and group performance. Research on cultural intelligence, performance and creativity provides promising new models for capacity building in communities. These approaches constitute a synthesis of previous research on cultural competency and provide new avenues for innovative social action through intercultural exchange.

  5. Energy performance of building fabric - Comparing two types of vernacular residential houses

    Science.gov (United States)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  6. Numerical methods for optimizing the performance of buildings

    DEFF Research Database (Denmark)

    Pedersen, Frank

    2008-01-01

    The many different parties that influence design and control decisions for buildings, such as building owners, users, architects, consulting engineers, contractors, etx. may have different and to some extent conradicting requirements to buildings. Furthermore, national building regulations specif...

  7. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  8. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  9. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  10. Python high performance programming

    CERN Document Server

    Lanaro, Gabriele

    2013-01-01

    An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

  11. Investigation of wind behaviour around high-rise buildings

    Science.gov (United States)

    Mat Isa, Norasikin; Fitriah Nasir, Nurul; Sadikin, Azmahani; Ariff Hairul Bahara, Jamil

    2017-09-01

    A study on the investigation of wind behaviour around the high-rise buildings is done through an experiment using a wind tunnel and computational fluid dynamics. High-rise buildings refer to buildings or structures that have more than 12 floors. Wind is invisible to the naked eye; thus, it is hard to see and analyse its flow around and over buildings without the use of proper methods, such as the use of wind tunnel and computational fluid dynamics software.The study was conducted on buildings located in Presint 4, Putrajaya, Malaysia which is the Ministry of Rural and Regional Development, Ministry of Information Communications and Culture, Ministry of Urban Wellbeing, Housing and Local Government and the Ministry of Women, Family, and Community by making scaled models of the buildings. The parameters in which this study is conducted on are, four different wind velocities used based on the seasonal monsoons, and wind direction. ANSYS Fluent workbench software is used to compute the simulations in order to achieve the objectives of this study. The data from the computational fluid dynamics are validated with the experiment done through the wind tunnel. From the results obtained through the use of the computation fluid dynamics, this study can identify the characteristics of wind around buildings, including boundary layer of the buildings, separation flow, wake region and etc. Then analyses is conducted on the occurance resulting from the wind that passes the buildings based on the velocity difference between before and after the wind passes the buildings.

  12. Building automation in high-rise buildings: the Eurotheum; Gebaeudeautomation in Hochhaeusern am Beispiel Eurotheum

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, V. [Canzler Ingenieure GmbH, Muelheim an der Ruhr (Germany)

    2000-03-01

    Flexibility of space division and space use as well as economy are overriding objectives in the technical equipment of multifunctional buildings. Building automation controls all technical systems, establishes links between systems and supports building management. Relevant problem solutions are discussed with reference to the Eurotheum high-rise building in Frankfurt/Main, a building with office, business and sales areas meeting high demands. (orig.) [German] Flexible Raumgestaltung und Raumnutzung sowie Wirtschaftlichkeit sind die vorrangigen Anforderung an die Technische Ausruestung in multifunktionalen Gebaeuden. Die Gebaeudeautomation regelt und steuert alle technischen Anlagen, schafft gewerkeuebergreifende Verbindungen und unterstuetzt das Gebaeudemanagement. Am Beispiel des Hochhauses Eurotheum in Frankfurt/M. mit hochwertigen Wohnungen, Buero-, Handels- und Verkaufsflaechen werden Loesungen dazu erlaeutert. (orig.)

  13. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  14. NGINX high performance

    CERN Document Server

    Sharma, Rahul

    2015-01-01

    System administrators, developers, and engineers looking for ways to achieve maximum performance from NGINX will find this book beneficial. If you are looking for solutions such as how to handle more users from the same system or load your website pages faster, then this is the book for you.

  15. Probabilistic performance-based design for high performance control systems

    Science.gov (United States)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  16. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    Science.gov (United States)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste

  17. Fire Performance-Based Design of Building Structures

    Directory of Open Access Journals (Sweden)

    C. Muñoz Blanc

    2017-10-01

    Full Text Available This Paper presents the advantages of Performance-Based Design regarding safety of structures under fire action. A general vision of this method is provided, and the advantages of its application are shown through a real case study. Although Performance Based Design has a long career in countries such as United Kingdom, United States or Japan, with more than 30 years of development and evolution, in Spain the code has allowed to use this method since just a decade ago. Nevertheless, although Spanish Building Technical Code encourages designers to carry out this work strategy, the information that is included for this purpose is yet scarce.

  18. Floor heating of high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Korff, H.K.

    1979-01-01

    When planning a large housing estate near Aschaffenburg in the years from 1962 to 1965, the decision was made to use electric floor heating fed mainly by off-peak electricity. In order to keep the cost of heating at an acceptable level and for better use of the storage effect, a type of thermal insulation was installed which was far in advance of the methods used at the time. The heat transmission coefficient of the external walls was later on found to be 0.88 W/m/sup 2/K. This value fully meets the requirements as specified in the thermal insulation ordinance which came into force in 1977. A cost analysis has shown that the heating costs are not higher than in similar buildings equipped with conventional heating systems.

  19. SEISMIC Analysis of high-rise buildings with composite metal damper

    Directory of Open Access Journals (Sweden)

    Chen Ruixue

    2015-01-01

    Full Text Available This paper mainly studies on the mechanical characteristics and application effect of composite metal damper in the high-rise buildings via the numerical simulation analysis. The research adopts the elastic and elastic-plastic dynamic approach and the displacement time history response and damper energy dissipation capacity and so on of the high-rise building are compared and analyzed before and after installation. The analysis found that the energy dissipation characteristic of metallic dampers is good. High-rise building story drift significantly is reduced and the extent of damage of the walls and coupling beams is decreased, achieved a good energy dissipation effect. Composite metal damper can effectively and economically improve the seismic performance of high-rise buildings, meet the requirement of the 3-level design for seismic resistance. The result has certain reference significance for the application of metallic damper in the high-rise buildings.

  20. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  1. High performance polymer concrete

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2007-06-01

    Full Text Available This paper studies the performance of concrete whose chief components are natural aggregate and an organic binder —a thermosetting polyester resin— denominated polymer concrete or PC. The material was examined macro- and microscopically and its basic physical and mechanical properties were determined using mercury porosimetry, scanning electron microscopy (SEM-EDAX, X-ray diffraction (XRD and strength tests (modulus of elasticity, stress-strain curves and ultimate strengths. According to the results of these experimental studies, the PC exhibited a low density (4.8%, closed pore system and a concomitantly continuous internal microstructure. This would at least partially explain its mechanical out-performance of traditional concrete, with average compressive and flexural strength values of 100 MPa and over 20 MPa, respectively. In the absence of standard criteria, the bending test was found to be a useful supplement to compressive strength tests for establishing PC strength classes.Este trabajo de investigación aborda el estudio de un hormigón de altas prestaciones, formado por áridos naturales y un aglomerante orgánico constituido por una resina termoestable poliéster, denominado hormigón polimérico HP. Se describe el material a nivel microscópico y macroscópico, presentando sus propiedades físicas y mecánicas fundamentales, mediante diferentes técnicas experimentales, tales como: porosimetría de mercurio, microscopía electrónica (SEM-EDAX, difracción de rayos X (DRX y ensayos mecánicos (módulo de elasticidad, curvas tensión- deformación y resistencias últimas. Como consecuencia del estudio experimental llevado a cabo, se ha podido apreciar cómo el HP está formado por porosidad cerrada del 4,8%, proporcionando una elevada continuidad a su microestructura interna, lo que justifica, en parte, la mejora de propiedades mecánicas respecto al hormigón tradicional, con unos valores medios de resistencia a compresión de 100

  2. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    Science.gov (United States)

    Menicovich, David

    By 2050 an estimated 9 billion people will inhabit planet earth and almost all the growth in the next 40 years will be in urban areas putting tremendous pressure on creating sustainable cities. The rapid increase in population, rise in land value and decrease in plot sizes in cities around the world positions tall or more importantly slender buildings as the best suited building typology to address the increasingly critical demand for space in this pressing urbanization trend. However, the majority of new tall building urban developments have not followed principles of environmental and/or sustainable design and incentives to innovate, both technological and economic, are urgently required. The biggest climatic challenge to the design, construction and performance of tall buildings is wind sensitivity. This challenge is further emphasized seeing two market driven trends: on one hand as urban population grows, land value rises while plot sizes decrease; on the other, more cost effective modular construction techniques are introducing much lighter tall building structures. The combination of the two suggests a potential increase in the slenderness ratio of tall buildings (typically less than 6:1 but stretching to 20:1 in the near future) where not-so-tall but much lighter buildings will be the bulk of new construction in densely populated cities, providing affordable housing in the face of fast urbanization but also introducing wind sensitivity which was previously the problem of a very limited number of super tall buildings to a much larger number of buildings and communities. The proposed research aims to investigate a novel approach to the interaction between tall buildings and their environment. Through this approach the research proposes a new relationship between buildings and the flows around, through and inside them, where buildings could adapt to better control and manage the air flow around them, and consequently produce significant opportunities to reduce

  3. Daylighting in linear atrium buildings at high latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Matusiak, Barbara

    1998-12-31

    This thesis proposes new criteria for visual comfort based on knowledge of visual perception and a method for estimating the modelling ability of light by using inter-reflection calculations. Simplified calculations are presented for the daylight factor in linear building structures, using the projected solid angle principle, for uniform sky and for CIE overcast sky conditions. The calculations are compared with experimental results. Simple diagrams are created based on calculations of the mean daylight factor in rooms adjacent to a narrow street. These diagrams and presented formulas and tables can be used as a simple design tool. Daylighting strategies for linear atrium buildings at high latitudes are developed and examined. These strategies are divided into three groups: (1) the atrium space and facades as light conductor/reflector, (2) the glass roof as a light conductor, and (3) light reflectors on the neighbouring roof. The atrium space and facade strategies are subdivided into passive and active. The strategies connected to the glazed roof includes different configurations of glazing: horizontal, single pitched, double pitched, and the use of laser cut panels and prismatic panels in the glazed roof. The shapes of reflectors on the neighbouring roof are a flat reflector, a parabolic reflector and a parabolic concentrator. Strategies from all three groups are examined on a physical model of scale 1:20 in the artificial sky of mirror box type. Simulations with artificial sun have also been done. The results from model studies are compared with computer simulations. All the active daylighting systems designed for use in the atrium space or on the atrium facades have a huge potential for use in atrium buildings. From the strategies connected with the glazed roof the negatively sloped glass is found to be the best alternative for glazed roofs at high latitudes. Among the roof reflectors, the flat one performs best. 82 refs., 122 figs., 27 tabs.

  4. Archaeomagnetic Study performed on Early Medieval Buildings from western France

    Science.gov (United States)

    Chauvin, A.; Lanos, P.; Dufresne, P.; Blain, S.; Guibert, P.; Oberlin, C.; Sapin, C.

    2009-05-01

    A multiple dating study, involving a collaboration between specialists of dating techniques (thermoluminescence (TL) and radiocarbon), historians of art and archaeologists, has been carried out on several early medieval buildings from western France. The early medieval period is not well known especially in France where there is a lack of visible evidence that identifies pre-Romanesque architecture. The majority of buildings to have survived from this period are religious ones, considered important enough to be made of strong, non-perishable material such as stone or brick, as for example the churches of Notre-Dame-sous- Terre in the Mont-Saint-Michel or St Martin in Angers. Due to their significance in architectural history, it is imperative to position them accurately in the chronology of the history of art. Bricks are often used to build up round-headed arches or to reinforce the frame of a wall with bonding courses in those churches. TL dating and archeomagnetic analysis were performed on cores drilled within bricks while radiocarbon dating were undertaken on coals found within mortars. In order to increase the number of data during the early Middle Ages, archeointensity determinations using the classical Thellier technique with anisotropy of thermal remanence and cooling rate corrections were performed. Archaeomagnetic directions were used to recognize the firing position of bricsk during manufacture. Reliable and precise ages were obtained on the church Notre-Dame-sous-Terre; they indicate two phases of building in 950±50AD and 990±50AD. Mean archeointensities obtained on 17 (21) samples from the first (second) phases appears very closed 69.1±1.2 and 68.3±1.6 microTesla. Ages and archeomagnetic results obtained on 4 other sites will be presented and compared to the available data in western Europe.

  5. [1,2,4]Triazolo[1,5-a]pyridine as Building Blocks for Universal Host Materials for High-Performance Red, Green, Blue and White Phosphorescent Organic Light-Emitting Devices.

    Science.gov (United States)

    Song, Wenxuan; Shi, Lijiang; Gao, Lei; Hu, Peijun; Mu, Haichuan; Xia, Zhenyuan; Huang, Jinhai; Su, Jianhua

    2018-02-14

    The electron-accepting [1,2,4]triazolo[1,5-a]pyridine (TP) moiety was introduced to build bipolar host materials for the first time, and two host materials based on this TP acceptor and carbazole donor, namely, 9,9'-(2-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-CzTP) and 9,9'-(5-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (m-CzTP), were designed and synthesized. These two TP-based host materials possess a high triplet energy (>2.9 eV) and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital levels as well as the bipolar transporting feature, which permits their applicability as universal host materials in multicolor phosphorescent organic light-emitting devices (PhOLEDs). Blue, green, and red PhOLEDs based on o-CzTP and m-CzTP with the same device configuration all show high efficiencies and low efficiency roll-off. The devices hosted by o-CzTP exhibit maximum external quantum efficiencies (η ext ) of 27.1, 25.0, and 15.8% for blue, green, and red light emitting, respectively, which are comparable with the best electroluminescene performance reported for FIrpic-based blue, Ir(ppy) 3 -based green, and Ir(pq) 2 (acac)-based red PhOLEDs equipped with a single-component host. The white PhOLEDs based on the o-CzTP host and three lumophors containing red, green, and blue emitting layers were fabricated with the same device structure, which exhibit a maximum current efficiency and η c of 40.4 cd/A and 17.8%, respectively, with the color rendering index value of 75.

  6. High-performance laboratories and cleanrooms

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  7. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  8. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  9. Performing Geographic Information System Analyses on Building Information Management Models

    OpenAIRE

    Bengtsson, Jonas; Grönkvist, Mikael

    2017-01-01

    As the usage of both BIM (Building Information Modelling) and 3D-GIS (Three-Dimensional Geographic Information Systems) has increased within the field of urban development and construction, so has the interest in connecting these two tools.  One possibility of integration is the potential of visualising BIM models together with other spatial data in 3D. Another is to be able to perform spatial 3D analyses on the models. Both of these can be achieved through use of GIS software. This study exp...

  10. High Performance Computing at NASA

    Science.gov (United States)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  11. High-performance sports medicine

    National Research Council Canada - National Science Library

    Speed, Cathy

    2013-01-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition...

  12. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  13. High Performance Space Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PDT is proposing a High Performance Space Pump based upon an innovative design using several technologies. The design will use a two-stage impeller, high temperature...

  14. High Performance JavaScript

    CERN Document Server

    Zakas, Nicholas

    2010-01-01

    If you're like most developers, you rely heavily on JavaScript to build interactive and quick-responding web applications. The problem is that all of those lines of JavaScript code can slow down your apps. This book reveals techniques and strategies to help you eliminate performance bottlenecks during development. You'll learn how to improve execution time, downloading, interaction with the DOM, page life cycle, and more. Yahoo! frontend engineer Nicholas C. Zakas and five other JavaScript experts -- Ross Harmes, Julien Lecomte, Steven Levithan, Stoyan Stefanov, and Matt Sweeney -- demonstra

  15. Building a High School Math Research Curriculum

    Science.gov (United States)

    Gerver, Robert; Santucci, Lauren; Leventhal, Hanah

    2017-01-01

    For decades, all honors students at North Shore High School in New York were required to write a mathematics paper. In 1991, these papers were eliminated, and a new elective, "Investigations in Math Research," was added to the course catalog. Research is not an innate skill, and now, students of all ability levels who wanted the research…

  16. ASSESSING BUILDING PERFORMANCE: ITS EVOLUTION FROM POST-OCCUPANCY EVALUATION

    Directory of Open Access Journals (Sweden)

    Wolfgang F.E. Preiser

    2008-03-01

    Full Text Available This article chronicles the evolution of the field of postoccupancy evaluation and visual quality (aesthetic programming and evaluation from their origins in the 1960s, and describes their transformation into current developments in systematic building performance and visual quality assessments. Major components of post-occupancy evaluations are highlighted, and examples of outcomes presented. This consumeroriented approach is part of a new democratic paradigm embodying autonomy, self-organization, ecology, sustainability, adaptation, and continuous improvement. Methods range from qualitative selfreports of likes and dislikes to quantitative multivariate analyses, from verbal scales to observations of use, and last but not least, expert judgments. The paper discusses questions about the future of this field, its viability, cost-effectiveness, and benefits for all stakeholders. It concludes with the examination of a recent project, reported in the book Designing for Designers that used distributed technology to systematically evaluate the performance of 17 contemporary architecture school buildings from around the world. The approach is discussed, as well as methods, lessons learned, and ways in which the methodology and findings apply to other kinds of facilities and future developments in the field.

  17. Assuring the Performance of Buildings and Infrastructures: Report of Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Regina L.

    1999-05-28

    How to ensure the appropriate performance of our built environment in the face of normal conditions, natural hazards, and malevolent threats is an issue of emerging national and international importance. As the world population increases, new construction must be increasingly cost effective and at the same time increasingly secure, safe, and durable. As the existing infrastructure ages, materials and techniques for retrofitting must be developed in parallel with improvements in design, engineering, and building codes for new construction. Both new and renovated structures are more often being subjected to the scrutiny of risk analysis. An international conference, "Assuring the Performance of Buildings and Infrastructures," was held in May 1997 to address some of these issues. The conference was co-sponsored by the Architectural Engineering Division of the American Society of Civil Engineers (ASCE), the American Institute of Architects, and Sandia National Laboratories and convened in Albuquerque, NM. Many of the papers presented at the conference are found within this issue of Techno20~. This paper presents some of the major conference themes and summarizes discussions not found in the other papers.

  18. EVALUATION OF WOOD PERFORMANCE IN BUILDING CONSTRUCTION THROUGH SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Ricardo Pedreschi

    2005-09-01

    Full Text Available Building construction is considered to be the leading market for the wood industry, in developed and developingcountries. The greatest amount of wood produced in Brazil is consumed as firewood and energy, followed by production of celluloseand third as machined wood. The use of wood from planted forests can be increased. This would lead to a better use of naturalresources, and consequently to an increased sustainability of forest activity in many regions of the country. The performance of woodcan be observed from many different insights: symbolic performance, technical performance and economical performance, conductedby the method of systems approach to architecture. Usages of wood related to the performances of the material, with the redefinitionof parameters of use, elaborating a new culture linked to new technologies were outlined. This work diagnosed the usage of wood inbuilding construction based in system analysis. Through an opinion research related to the acceptation of the use of wood we observethe possibilities of utilization according to physical and mechanical proprieties, aesthetics and appearance performance and postoccupation.According to the results obtained related to the culture and knowledge about the use of wood from planted forest, it canconclude that there is not enough knowledge in this area, and it is, therefore, necessary to create an information system forprofessionals and for people in general.

  19. Optimization of water distribution systems in high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Loh, Han Tong; Chew, T.C.

    1994-12-31

    The scarcity of land in Singapore has led to a rapid escalation of land prices in recent years. This has resulted in developers building taller and taller buildings in order to maximize their return on building projects. Due to the height involved, the water distribution system in such buildings is a multi-stage one. Hence the problem of deciding the number of stages and the location of each stage arises. In this paper, we will describe the design decisions to be taken in the preliminary design of a multi-stage water distribution system in a high-rise building and pose it as an optimization problem to minimize the overall cost of implementation. The variable costcomponents are the cost of pumps, the floor space cost and the operational cost of the water distribution system. We will describe a study on a 66-story building and highlight the major findings. Interesting results are observed when the cost components are taken one at a time. The strategy for finding the optimum or near optimum for other high-rise buildings will be discussed.

  20. Performance characterization of PCM impregnated gypsum board for building applications

    OpenAIRE

    Shukla, N; Fallahi, A.; Kosny, J.

    2012-01-01

    Previous research studies conducted on building components containing a phase-change material (PCM) have shown a great potential for direct and indirect energy and cost savings in the building envelopes. In particular, PCM impregnated gypsum boards, one of the most popular application of PCMs in buildings, have been reported to reduce building cooling loads by 7-20%. However, in order to best design and optimize the PCM-enhanced building materials, it is critical to accurately characterize th...

  1. Performance tuning for high performance computing systems

    OpenAIRE

    Pahuja, Himanshu

    2017-01-01

    A Distributed System is composed by integration between loosely coupled software components and the underlying hardware resources that can be distributed over the standard internet framework. High Performance Computing used to involve utilization of supercomputers which could churn a lot of computing power to process massively complex computational tasks, but is now evolving across distributed systems, thereby having the ability to utilize geographically distributed computing resources. We...

  2. The support systems of unique high-rise buildings

    Directory of Open Access Journals (Sweden)

    Shumeyko Victor

    2017-01-01

    Full Text Available Tall buildings and skyscrapers perceive significant vertical loads and, moreover, have to resist large lateral effects which form strong gusts of wind and seismic events. In the world for the high-rise buildings with the nuclei of the stiffness are using streamers – outriggers, which connect the external column and the core form the support system and resist lateral loads. High-rise buildings construction grows promptly around the world and causes new problems which shall be solved on the basis of the modern constructive opportunities, by means of exact engineering assessment. Systems of outrigers and belts are very important in the modern engineering, because they provide effective control over side shifts of a building. They play an important role in high-rise unique buildings constructions, being a link between the central kernel and outer columns. The article deals with the design scheme of conventional conveyor of belts and outriggers – bandages, explores their applications, advantages and disadvantages of various options, problems with their design. Presented material enables the design of unique high-rise buildings to choose the most optimal design solution.

  3. Narrowing the Energy Performance Gap in Non-Domestic Buildings with Aspirational Sustainability Targets

    OpenAIRE

    Pritchard, Raymond

    2014-01-01

    The non-domestic building sector has in recent years witnessed a boom in the number of ostensibly ‘green’ buildings certified under the Building Research Establishment Environmental Assessment Methodology (BREEAM) and similar rating schemes. Despite the proliferation of aspirationally sustainable building designs, the actual energy performance of certified buildings is generally little better and sometimes worse than the building stock average. The actual energy consumption of non-domestic bu...

  4. Building the UPPA high capacity tensiometer

    Directory of Open Access Journals (Sweden)

    Mendes Joao

    2016-01-01

    Full Text Available High capacity tensiometers (HCTs are sensors capable of directly measuring tensile pore water pressure (suction in soils. HCTs are typically composed of a casing that encapsulates a high air entry value ceramic filter, a water reservoir and a pressure sensing element. Since the creation of the first HCT by Ridley and Burland in 1993 at Imperial College London, HCTs have been almost exclusively built and used in academic research. The limited use in industrial applications can be explained by a lack of unsaturated soil mechanics knowledge among engineering practitioners but also by the technical difficulties associated to the direct measurement of tensile water pressures beyond the cavitation limit of -100kPa. In this paper, we present the recent design and manufacture of a new HCT at the Université de Pau et des Pays de l’Adour (UPPA in France. Different prototypes were tried by changing the main components of the device including the type of ceramic filter, pressure transducer and geometry of the external casing. In particular, two ceramic filters of distinct porosity, three pressure transducers with distinct materials/geometries and four casing designs were tested.

  5. Identification of coordination factors affecting building projects performance

    Directory of Open Access Journals (Sweden)

    Wesam Salah Alaloul

    2016-09-01

    Full Text Available Construction projects performance requires improvement to fulfil the complexity of the stakeholders’ needs and expectations. Coordination process is proposed as an efficient solution for weak performance of construction projects. Therefore, coordination factors are vital in ensuring a successful implementation of all project phases. This study aimed to identify and prioritise coordination factors that influence the performance of building projects in Malaysian context. A vast body of literature on coordination process was reviewed and resulted in 53 coordination factor. Three rounds of Delphi technique were conducted. The most effective coordination factors were ranked based on the Relative Importance Index (RII such as Scheduling (RII = 0.97, Quality assurance plan (RII = 0.93, and all parties’ participation in plans (RII = 0.89. These coordination factors have fulfilled the research gap and provided better management and higher performance for project parties. The results offer insightful perspectives to define the most effective coordination factors, for addressing the dependency between project tasks and the parties to enhance project performance.

  6. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  7. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  8. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  9. The ORC method. Effective modelling of thermal performance of multilayer building components

    Energy Technology Data Exchange (ETDEWEB)

    Akander, Jan

    2000-02-01

    The ORC Method (Optimised RC-networks) provides a means of modelling one- or multidimensional heat transfer in building components, in this context within building simulation environments. The methodology is shown, primarily applied to heat transfer in multilayer building components. For multilayer building components, the analytical thermal performance is known, given layer thickness and material properties. The aim of the ORC Method is to optimise the values of the thermal resistances and heat capacities of an RC-model such as to give model performance a good agreement with the analytical performance, for a wide range of frequencies. The optimisation procedure is made in the frequency domain, where the over-all deviation between model and analytical frequency response, in terms of admittance and dynamic transmittance, is minimised. It is shown that ORC's are effective in terms of accuracy and computational time in comparison to finite difference models when used in building simulations, in this case with IDA/ICE. An ORC configuration of five mass nodes has been found to model building components in Nordic countries well, within the application of thermal comfort and energy requirement simulations. Simple RC-networks, such as the surface heat capacity and the simple R-C-configuration are not appropriate for detailed building simulation. However, these can be used as basis for defining the effective heat capacity of a building component. An approximate method is suggested on how to determine the effective heat capacity without the use of complex numbers. This entity can be calculated on basis of layer thickness and material properties with the help of two time constants. The approximate method can give inaccuracies corresponding to 20%. In-situ measurements have been carried out in an experimental building with the purpose of establishing the effective heat capacity of external building components that are subjected to normal thermal conditions. The auxiliary

  10. Boosting Event Building Performance using Infiniband FDR for CMS Upgrade

    CERN Document Server

    Bawej, Tomasz Adrian; Branson, James; Chaze, Olivier; Cittolin, Sergio; Darlea, Georgiana Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Forrest, Andrew Kevin; Gigi, Dominique; Glege, Frank; Gomez Ceballos, Guillelmo; Gomez-Reino Garrido, Robert; Hegeman, Jeroen Guido; Holzner, Andre Georg; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; Nunez Barranco Fernandez, Carlos; Vivian O'Dell; Orsini, Luciano; Paus, Christoph Maria Ernst; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Schwick, Christoph; Stieger, Benjamin Bastian; Sumorok, Konstanty; Veverka, Jan; Zejdl, Petr

    2014-01-01

    As part of the CMS upgrade during CERN long shutdown period (LS1), the CMS data acquisition system is incorporating Infiniband FDR technology to boost event building performance for operation from 2015 onwards. Infiniband promises to provide substantial increase in data transmission speeds compared to the older 1GE network used during the 2009-2013 LHC run. Several options exist to end user developers when choosing a foundation for software upgrades, including the uDAPL (DAT Collaborative) and Infiniband verbs libraries (OFED). Due to advances in technology, the CMS data acquisition system will be able to achieve the required throughput of 100 kHz with increased event sizes while downsizing the number of nodes by using a combination of 10GE, 40GE and 56 GB Infiniband FDR. This paper presents the analysis and results of a comparison between GE and Infiniband solutions as well as a look at how they integrate into an event building architecture, while preserving the scalability, efficiency and deterministic late...

  11. High Performance Flexible Thermal Link

    Science.gov (United States)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  12. Social Networks and High Healthcare Utilization: Building Resilience Through Analysis

    Science.gov (United States)

    2016-09-01

    3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE SOCIAL NETWORKS AND HIGH HEALTHCARE UTILIZATION: BUILDING RESILIENCE...28 3. Evaluating Network Type ...........................................................29 4. Density and Path...studied by showing “ galaxies ” of highly connected individuals and their associated lines of flow, or “emotions,” expressed graphically by links and

  13. Improving the Quality of School Facilities through Building Performance Assessment: Educational Reform and School Building Quality in Sao Paulo, Brazil

    Science.gov (United States)

    Ornstein, Sheila Walbe; Moreira, Nanci Saraiva; Ono, Rosaria; Limongi Franca, Ana J. G.; Nogueira, Roselene A. M. F.

    2009-01-01

    Purpose: The paper describes the purpose of and strategies for conducting post-occupancy evaluations (POEs) as a method for assessing school building performance. Set within the larger context of global efforts to develop and apply common indicators of school building quality, the authors describe research conducted within the newest generation of…

  14. Study on rapid evacuation in high-rise buildings

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2017-06-01

    Full Text Available More and more high rising buildings emerged in modern cities, but emergency evacuation of tall buildings has been a worldwide difficult problem. In this paper, a new evacuation device for high rising buildings in fire accident was proposed and studied. This device mainly consisted of special spiral slideway and shunt valve. People in this device could fast slide down to the first floor under gravity without any electric power and physical strength, which is suitable for various emergency evacuation including mobility-impaired persons. The plane simulation test has shown that human being in alternative clockwise and counterclockwise movement will not become dizzy. The evacuated people should wear protection pad, which can prevent slider from being injured by surface friction with the slide, and eliminate the friction coefficient difference caused by different clothes and slide surface. The calculation results show that the evacuation speed of the new device is much faster than traditional staircases. Moreover, such new evacuation device can also be used as a means of vertical transportation in high-rise buildings partly. People can take it from any floor to ground floor directly, which not only save time for waiting for the lifts but also save the power. The new evacuation system is of simple structure, easy to use, and suitable for evacuation and partly used as vertical downwards traffic, which shows light on solving world-wide difficulties on fast evacuation in high-rise buildings.

  15. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  16. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  17. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  18. Structural response of steel high rise buildings to fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    Due to the significant vertical elevation and complexity of the structural system, high rise buildings may suffer from the effects of fire more than other structures. For this reason, in addition to evacuation strategies and active fire protection, a careful consideration of structural response...... to fire is also very important. In this context, it is of interest to investigate the characteristics of the structural system that could possibly reduce local damages or mitigate the progression of failures in case of fire. In this paper, a steel high rise building is taken as case study and the response...

  19. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  20. Effects of high modes on the wind-induced response of super high-rise buildings

    Science.gov (United States)

    Feng, Ruoqiang; Yan, Guirong; Ge, Jinming

    2012-09-01

    For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response.

  1. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  2. The High Performance Computing Initiative

    Science.gov (United States)

    Holcomb, Lee B.; Smith, Paul H.; Macdonald, Michael J.

    1991-01-01

    The paper discusses NASA High Performance Computing Initiative (HPCI), an essential component of the Federal High Performance Computing Program. The HPCI program is designed to provide a thousandfold increase in computing performance, and apply the technologies to NASA 'Grand Challenges'. The Grand Challenges chosen include integrated multidisciplinary simulations and design optimizations of aerospace vehicles throughout the mission profiles; the multidisciplinary modeling and data analysis of the earth and space science physical phenomena; and the spaceborne control of automated systems, handling, and analysis of sensor data and real-time response to sensor stimuli.

  3. Towards the development of performance based guidelines for using Phase Change Materials in lightweight buildings

    Science.gov (United States)

    Poudel, Niraj

    optimal values are extracted. The findings from this research suggest that, there are only a few climate types within the United States where the use of PCM boards in lightweight buildings are viable. While the market potential for PCMs in building energy improvements can be significant, its acceptance is hindered by its extraordinary high cost. Analysis of the performance of PCM boards against six independent variables suggests that the internal load is a crucial factor in determining the optimal performance of PCM. Therefore any guideline on the selection of proper PCM should be formulated predominantly on the basis of internal load and the internal mean air temperature.

  4. Improving building performance using smart building concept: Benefit cost ratio comparison

    Science.gov (United States)

    Berawi, Mohammed Ali; Miraj, Perdana; Sayuti, Mustika Sari; Berawi, Abdur Rohim Boy

    2017-11-01

    Smart building concept is an implementation of technology developed in the construction industry throughout the world. However, the implementation of this concept is still below expectations due to various obstacles such as higher initial cost than a conventional concept and existing regulation siding with the lowest cost in the tender process. This research aims to develop intelligent building concept using value engineering approach to obtain added value regarding quality, efficiency, and innovation. The research combined quantitative and qualitative approach using questionnaire survey and value engineering method to achieve the research objectives. The research output will show additional functions regarding technology innovation that may increase the value of a building. This study shows that smart building concept requires higher initial cost, but produces lower operational and maintenance costs. Furthermore, it also confirms that benefit-cost ratio on the smart building was much higher than a conventional building, that is 1.99 to 0.88.

  5. Building performance simulation in the early design stage: An introduction to integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2015-01-01

    Designing with building performance simulation feedback in the early design stage has existed since the early days of computational modeling. However, as a consequence of a fragmented building industry building performance simulations (BPSs) in the early design stage are closely related to who...

  6. Radon action level for high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.K.C.; Tso, M.Y.W.; Ho, C.W. (Univ. of Hong Kong (Hong Kong). Radioisotope Unit)

    1999-05-01

    Radon and its progeny are the major contributors to the natural radiation dose received by human beings. Many countries and radiological authorities have recommended radon action levels to limit the indoor radon concentrations, and, hence, the annual doses to the general public. Since the sources of indoor radon and the methods for reducing its concentration are different for different types of buildings, social and economic factors have to be considered when setting the action level. But so far no action levels are specifically recommended for cities that have dwellings and offices all housed in high-rise buildings. In this study, an optimization approach was used to determine an action level for high-rise buildings based on data obtained through previous territory-wide radon surveys. A protection cost of HK $0.044 per unit fresh air change rate per unit volume and a detriment cost of HK $120,000 per person-Sv were used, which gave a minimum total cost at an action level of 200 Bq m[sup [minus]3]. The optimization analyses were repeated for different simulated radon distributions and living environment, which resulted in quite significantly different action levels. Finally, an action level of 200 Bq m[sup [minus]3] was recommended for existing buildings and 150 Bq m[sup [minus]3] for newly built buildings.

  7. Radon action level for high-rise buildings.

    Science.gov (United States)

    Leung, J K; Tso, M Y; Ho, C W

    1999-05-01

    Radon and its progeny are the major contributors to the natural radiation dose received by human beings. Many countries and radiological authorities have recommended radon action levels to limit the indoor radon concentrations and, hence, the annual doses to the general public. Since the sources of indoor radon and the methods for reducing its concentration are different for different types of buildings, social and economic factors have to be considered when setting the action level. But so far no action levels are specifically recommended for cities that have dwellings and offices all housed in high-rise buildings. In this study, an optimization approach was used to determine an action level for high-rise buildings based on data obtained through previous territory-wide radon surveys. A protection cost of HK$0.044 per unit fresh air change rate per unit volume and a detriment cost of HK$120,000 per person-Sv were used, which gave a minimum total cost at an action level of 200 Bq m(-3). The optimization analyses were repeated for different simulated radon distributions and living environment, which resulted in quite significantly different action levels. Finally, an action level of 200 Bq m(-3) was recommended for existing buildings and 150 Bq m(-3) for newly built buildings.

  8. Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

    2005-10-01

    This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

  9. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  10. Physical modeling of concentration distributions around twin high-rise buildings with a district heating plant

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, M.; Lawson, R.E.

    1993-01-01

    A wind tunnel experiment was conducted to investigate the effects of three high-rise building configurations on the diffusion of emissions released near the downstream base of the buildings. The building configurations included an isolated high-rise building, two high-rise buildings separated in the streamwise direction, and two high-rise buildings separated in the streamwise direction, but situated atop a terrace-shaped lower level. For each configuration, the emission source location, building height and/or building separation was systematically varied while tracer concentration measurements were obtained both downstream and on the surface of the buildings. When the source was within the downwind wake of the twin building models, the source elevation did not strongly influence the building surface distributions although the maximum concentrations appeared at different elevations. Compared to the effect of an isolated building, the twin buildings resulted in higher concentrations in the near-wake of the downwind building.

  11. Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.; Rauch, Emily M.; Hathaway, John E.; Solana, Amy E.

    2009-03-27

    This protocol was written for the Department of Energy’s Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated many questions on the performance and operational cost of these buildings.

  12. Improving Station Performance by Building Isolation Walls in the Tunnel

    Science.gov (United States)

    Jia, Yan; Horn, Nikolaus; Leohardt, Roman

    2014-05-01

    Conrad Observatory is situated far away from roads and industrial areas on the Trafelberg in Lower Austria. At the end of the seismic tunnel, the main seismic instrument of the Observatory with a station code CONA is located. This station is one of the most important seismic stations in the Austrian Seismic Network (network code OE). The seismic observatory consists of a 145m long gallery and an underground laboratory building with several working areas. About 25 meters away from the station CONA, six temporary seismic stations were implemented for research purposes. Two of them were installed with the same equipment as CONA, while the remaining four stations were set up with digitizers having lower noise and higher resolution (Q330HR) and sensors with the same type (STS-2). In order to prevent possible disturbances by air pressure and temperature fluctuation, three walls were built inside of the tunnel. The first wall is located ca 63 meters from the tunnel entrance, while a set of double walls with a distance of 1.5 meters is placed about 53 meters from the first isolation wall but between the station CONA and the six temporary stations. To assess impact of the isolation walls on noise reduction and detection performance, investigations are conducted in two steps. The first study is carried out by comparing the noise level and detection performance between the station CONA behind the double walls and the stations in front of the double walls for verifying the noise isolation by the double walls. To evaluate the effect of the single wall, station noise level and detection performance were studied by comparing the results before and after the installation of the wall. Results and discussions will be presented. Additional experiment is conducted by filling insulation material inside of the aluminium boxes of the sensors (above and around the sensors). This should help us to determine an optimal insulation of the sensors with respect to pressure and temperature

  13. Behavioral Change and Building Performance: Strategies for Significant, Persistent, and Measurable Institutional Change

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Amy K.; Malone, Elizabeth L.; Heerwagen, Judith H.; Dion, Jerome P.

    2014-04-01

    The people who use Federal buildings — Federal employees, operations and maintenance staff, and the general public — can significantly impact a building’s environmental performance and the consumption of energy, water, and materials. Many factors influence building occupants’ use of resources (use behaviors) including work process requirements, ability to fulfill agency missions, new and possibly unfamiliar high-efficiency/high-performance building technologies; a lack of understanding, education, and training; inaccessible information or ineffective feedback mechanisms; and cultural norms and institutional rules and requirements, among others. While many strategies have been used to introduce new occupant use behaviors that promote sustainability and reduced resource consumption, few have been verified in the scientific literature or have properly documented case study results. This paper documents validated strategies that have been shown to encourage new use behaviors that can result in significant, persistent, and measureable reductions in resource consumption. From the peer-reviewed literature, the paper identifies relevant strategies for Federal facilities and commercial buildings that focus on the individual, groups of individuals (e.g., work groups), and institutions — their policies, requirements, and culture. The paper documents methods with evidence of success in changing use behaviors and enabling occupants to effectively interact with new technologies/designs. It also provides a case study of the strategies used at a Federal facility — Fort Carson, Colorado. The paper documents gaps in the current literature and approaches, and provides topics for future research.

  14. A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings

    Directory of Open Access Journals (Sweden)

    Cristina Brunelli

    2016-11-01

    Full Text Available When dealing with sustainable design concepts in new construction or in retrofitting existing buildings, it is useful to define both economic and environmental performance indicators, in order to select the optimal technical solutions. In most of the cases, the definition of the optimal strategy is not trivial because it is necessary to solve a multi-objective problem with a high number of the variables subjected to nonlinear constraints. In this study, a powerful multi-objective optimization genetic algorithm, NSGAII (Non-dominated Sorting Genetic Algorithm-II, is used to derive the Pareto optimal solutions, which can illustrate the whole trade-off relationship between objectives. A method is then proposed, to introduce uncertainty evaluation in the optimization procedure. A new university building is taken as a case study to demonstrate how each step of the optimization process should be performed. The results achieved turn out to be reliable and show the suitableness of this procedure to define both economic and environmental performance indicators. Similar analysis on a set of buildings representatives of a specific region might be used to assist local/national administrations in the definition of appropriate legal limits that will permit a strategic optimized extension of renewable energy production. Finally, the proposed approach could be applied to similar optimization models for the optimal planning of sustainable buildings, in order to define the best solutions among non-optimal ones.

  15. Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Zhiyong Chen

    2017-07-01

    Full Text Available As global interest in using engineered wood products in tall buildings intensifies due to the “green” credential of wood, it is expected that more tall wood buildings will be designed and constructed in the coming years. This, however, brings new challenges to the designers. One of the major challenges is how to design lateral load-resisting systems (LLRSs with sufficient stiffness, strength, and ductility to resist strong wind and earthquakes. In this study, an LLRS using mass timber panel on a stiff podium was developed for high-rise buildings in accordance with capacity-based design principle. The LLRS comprises eight shear walls with a core in the center of the building, which was constructed with structural composite lumber and connected with dowel-type connections and wood–steel composite system. The main energy dissipating mechanism of the LLRS was detailed to be located at the panel-to-panel interface. This LLRS was implemented in the design of a hypothetical 20-storey building. A finite element (FE model of the building was developed using general-purpose FE software, ABAQUS. The wind-induced and seismic response of the building model was investigated by performing linear static and non-linear dynamic analyses. The analysis results showed that the proposed LLRS using mass timber was suitable for high-rise buildings. This study provided a valuable insight into the structural performance of LLRS constructed with mass timber panels as a viable option to steel and concrete for high-rise buildings.

  16. Energy performance of evacuated glazings in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Beck, F.; arasteh, D.; Selkowitz, S.

    1995-09-01

    This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional. insulating glass unit with a low-E coating and argon gas fill. We used the DOE2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. Our results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, we were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

  17. Energy performance of evacuated glazings in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Beck, F.; Arasteh, D.; Selkowitz, S.

    1996-10-01

    This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional insulating glass unit with a low-E coating and argon gas fill. The authors used the DOE-2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. The results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations. These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, the authors were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

  18. Energy Performance of Hotel Buildings in Lijiang, China

    Directory of Open Access Journals (Sweden)

    Mingfang Tang

    2016-08-01

    Full Text Available The hotel industry in China has experienced rapid growth in the past ten years and made a considerable contribution to the global tourism economy. This paper focuses on the energy performance of hotel buildings in Lijiang, China. Hotel characteristics, daily operational data, and energy use data were collected by carrying out a survey of 24 hotels. The average annual energy use intensity (EUI of four-, three-, two-, and one-star rated hotels was 180.8 kWh/m2, 113.3 kWh/m2, 74.2 kWh/m2, and 70.2 kWh/m2, respectively. Electricity, as the dominant energy source, accounted for 81% of total energy consumption and was used in the operation of air conditioning, lighting, heating, etc. Pearson correlations between EUI showed that hotel star rating, number of guest rooms, room revenue, and number of workers gave a reasonably strong correlation. A regression-based benchmarking model was established to predict EUI, and a standardization process of EUI was illustrated by statistical analysis.

  19. Energy Performance of Three Residential College Buildings in University of Malaya Campus, Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Adi Ainurzaman Jamaludin

    2011-12-01

    Full Text Available Three residential colleges located in Kuala Lumpur, Malaysia, were selected for energy performance analysis in regards to its implementation of bioclimatic design strategies. Specifically, passive design strategies on daylighting and natural ventilation were examined. In Malaysia, the residential college or hostel is a multi-residential building providing accommodation to university students. The three residential colleges in this study, namely C1, C2 and C3, were built in different years with different designs and forms, particularly with regards to enclosure and facade design, solar control devices, passive daylight concepts, and natural ventilation strategies. The building designs were carefully studied and an electric consumption analysis was carried out in each residential college. This study revealed that the wide-scale implementation of bioclimatic design strategies in college C2 help reduced the annual energy consumption. The building bioclimatic design features that are accountable to reduce energy consumption are the internal courtyard and balconies on each unit of floor area, as shown in C3.Results from this study highly recommend internal courtyard and balcony building combination for multi residential building design, especially in tropical urban regions.

  20. THE EFFECT OF BODY BUILD AND BMI ON AEROBIC TEST PERFORMANCE IN SCHOOL CHILDREN (10-15 YEARS

    Directory of Open Access Journals (Sweden)

    Jantine D. Slinger

    2006-12-01

    Full Text Available Body Mass Index (BMI has often questionably been used to define body build. In the present study body build was defined more specifically using fat free mass index (FFMI = fat free mass normalised to the stature and fat mass index (FMI = fat mass normalised to stature. The body build of an individual is 'solid' in individuals with a high FFMI for their FMI and is 'slender' in individuals with a low FFMI relative to their FMI. The aim of the present study was to investigate the association between aerobic test performance and body build defined as solid, average or slender in 10 to 15 year old children. Five-hundred-and-two children (53% boys aged 10 to 15 years of age were included in the study. Aerobic test performance was estimated with an incremental cycle ergometer protocol and a shuttle run test. BMI and percentage fat (by skin folds were determined to calculate FMI and FFMI. After adjustment for differences in age, gender and body mass the solid group achieved a significantly higher maximal power output (W and power output relative to body mass (W/kg during the cycle test (p 0.05 between different body build groups. This study showed that body build is an important determinant of the aerobic test performance. In contrast, there were no differences in aerobic test performance per kilogramme FFM over the body build groups. This suggests that the body build may be determined by genetic predisposition

  1. Objective Building Energy Performance Benchmarking Using Data Envelopment Analysis and Monte Carlo Sampling

    Directory of Open Access Journals (Sweden)

    Seong-Hwan Yoon

    2017-05-01

    Full Text Available An objective measure of building energy performance is crucial for performance assessment and rational decision making on energy retrofits and policies of existing buildings. One of the most popular measures of building energy performance benchmarking is Energy Use Intensity (EUI, kwh/m2. While EUI is simple to understand, it only represents the amount of consumed energy per unit floor area rather than the real performance of a building. In other words, it cannot take into account building services such as operation hours, comfortable environment, etc. EUI is often misinterpreted by assuming that a lower EUI for a building implies better energy performance, which may not actually be the case if many of the building services are not considered. In order to overcome this limitation, this paper presents Data Envelopment Analysis (DEA coupled with Monte Carlo sampling. DEA is a data-driven and non-parametric performance measurement method. DEA can quantify the performance of a given building given multiple inputs and multiple outputs. In this study, two existing office buildings were selected. For energy performance benchmarking, 1000 virtual peer buildings were generated from a Monte Carlo sampling and then simulated using EnergyPlus. Based on a comparison between DEA-based and EUI-based benchmarking, it is shown that DEA is more performance-oriented, objective, and rational since DEA can take into account input (energy used to provide the services used in a building and output (level of services provided by a building. It is shown that DEA can be an objective building energy benchmarking method, and can be used to identify low energy performance buildings.

  2. Probabilistic Seismic Performance Model for Tunnel Form Concrete Building Structures

    Directory of Open Access Journals (Sweden)

    S. Bahram Beheshti Aval

    2016-12-01

    Full Text Available Despite widespread construction of mass-production houses with tunnel form structural system across the world, unfortunately no special seismic code is published for design of this type of construction. Through a literature survey, only a few studies are about the seismic behavior of this type of structural system. Thus based on reasonable numerical results, the seismic performance of structures constructed with this technique considering the effective factors on structural behavior is highly noteworthy in a seismic code development process. In addition, due to newness of this system and observed damages in past earthquakes, and especially random nature of future earthquakes, the importance of probabilistic approach and necessity of developing fragility curves in a next generation Performance Based Earthquake Engineering (PBEE frame work are important. In this study, the seismic behavior of 2, 5 and 10 story tunnel form structures with a regular plan is examined. First, the performance levels of these structures under the design earthquake (return period of 475 years with time history analysis and pushover method are assessed, and then through incremental dynamic analysis, fragility curves are extracted for different levels of damage in walls and spandrels. The results indicated that the case study structures have high capacity and strength and show appropriate seismic performance. Moreover, all three structures subjected were in immediate occupancy performance level.

  3. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  4. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  5. Examination of implementation strategies for the Building Energy Performance Standards

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Lawrence J.

    1980-03-01

    Since the passage of the Energy Conservation Standards for New Buildings Act, research has been concentrated in two distinct areas. The first area of research has involved developing the energy budget standards for different building types and climatic conditions, and refining computer programs which will be needed to evaluate the energy consumption of proposed building designs. The second major area of research has been related to developing plans for implementing these standards once they are developed. The approaches taken in each of these two areas and the problems that were encountered are described and the proposed standards are briefly examined.

  6. The transport performance evaluation system building of logistics enterprises

    Directory of Open Access Journals (Sweden)

    Xueli Wang

    2013-09-01

    Full Text Available Purpose: modern logistics has a significant role in today’s society, logistics cost accounts for 35% to 50% of total logistics costs, so it’s great significance to improve the transport performance of logistics enterprises. Design/methodology/approach: the authors select the transportation performance evaluation index of logistics enterprise, with the aid of the fuzzy theory and analytic hierarchy process (AHP, adopt the combining method of quantitative and qualitative analysis, construct the transport performance evaluation system of logistics enterprises. Findings: the choice of transport performance evaluation indicator system for Logistics enterprise is in a state of "high", which indicates the indicator selection is reasonable. Research limitations/implications: the selected indicators with experts’ subjective factors can not accurately quantify. Practical implications: it has important practical significance to promote the development of modern logistics enterprises and save social cost. Originality/value: current research methods mainly include the PDCA cycle model, key performance indicators (KPI and benchmarking method, principal component analysis method, etc. The authors for the first time with the aid of fuzzy theory and analytic hierarchy process (AHP, adopt the combining method of quantitative and qualitative research on transport performance problems.

  7. Automated moisture monitoring systems to manage the structural and IAQ performance of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Vokey, D. [Detec Systems, Edmonton, AB (Canada); Glassco, M. [Theodor Sterling Associates Ltd., Vancouver, BC (Canada)

    2009-07-01

    Although significant effort has been made to improve the performance of building envelopes, water-related problems continue to exist. New technology such as permanently installed monitoring systems that monitor, detect and locate moisture intrusion during and after building construction can help to resolve these problems. Several important variables must be measured, assessed, and combined to develop a risk exposure level (REL) estimate in assessing the moisture performance of a building envelope. Some of these key parameters include moisture level; duration of moisture event; number of simultaneous events; and surface area involved. This paper presented a case study that examined and estimated the structural integrity REL and mould related indoor air quality exposure levels for a timber-framed monitored building. Damage and mould growth rates were calculated using moisture content measurements. The paper also discussed the modification of mathematical models of wood decay fungi and surface mould growth. In this case study, the high moisture content readings were concentrated primarily in the area around the floor plate and in the sheathing inside the wall cavity. It was concluded that mould growth conditions existed for extended periods in some zones. 10 refs., 8 figs.

  8. Energy Performance of Verandas in the Building Retrofit Process

    National Research Council Canada - National Science Library

    Rossano Albatici; Francesco Passerini; Jens Pfafferott

    2016-01-01

      Passive solar elements for both direct and indirect gains, are systems used to maintain a comfortable living environment while saving energy, especially in the building energy retrofit and adaptation process...

  9. High Performance Tools And Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  10. From adaptive to high-performance structures

    NARCIS (Netherlands)

    Teuffel, P.

    2011-01-01

    Multiple design aspects influence the building performance such as architectural criteria, various environmental impacts and user behaviour. Specific examples are sun, wind, temperatures, function, occupancy, socio-cultural aspects and other contextual aspects and needs. Even though these aspects

  11. High Performance Input/Output Systems for High Performance Computing and Four-Dimensional Data Assimilation

    Science.gov (United States)

    Fox, Geoffrey C.; Ou, Chao-Wei

    1997-01-01

    The approach of this task was to apply leading parallel computing research to a number of existing techniques for assimilation, and extract parameters indicating where and how input/output limits computational performance. The following was used for detailed knowledge of the application problems: 1. Developing a parallel input/output system specifically for this application 2. Extracting the important input/output characteristics of data assimilation problems; and 3. Building these characteristics s parameters into our runtime library (Fortran D/High Performance Fortran) for parallel input/output support.

  12. High-rise Buildings versus Outdoor Thermal Environment in Chongqing.

    Science.gov (United States)

    Lu, Jun; Chen, Jin-Hua; Tang, Ying; Wang, Jin-Sha

    2007-10-11

    This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  13. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    Directory of Open Access Journals (Sweden)

    Jin-sha Wang

    2007-10-01

    Full Text Available This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  14. Evacuation routes performances and fire safety of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Residential buildings, public and business facilities with large number of occupants are particularly exposed to the risk of event with catastrophic consequences, especially in case of fire. Evacuation routes must be separated fire compartments with surfaces made of non-combustible materials. Safe evacuation of building occupants in case of fire is a crucial requirement for the preservation of human life in building. In our engineering practice, calculation model is usually applied in order to determine the time required for evacuation (SRPS TP 21. However, evacuation simulation models are more present in research papers, contributing to better assessment of flow of evacuation in the real time. These models could provide an efficient way of testing the safety of a building in the face of fire and indicate critical points at the evacuation paths. Computer models enable the development and analysis of multiple various scenarios during a fire event, contributing to defining the measures for improving the safety of the building in case of fire. This paper analyses the fulfilment of technical requirements for the safe evacuation and proposes improvement measures based on a comparative analysis of the time required for occupants' evacuation from the building (Department of Civil Engineering and Geodesy in Novi Sad, obtained by calculation model and by using evacuation simulation software.

  15. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2015-01-01

    A continuation of Contemporary High Performance Computing: From Petascale toward Exascale, this second volume continues the discussion of HPC flagship systems, major application workloads, facilities, and sponsors. The book includes of figures and pictures that capture the state of existing systems: pictures of buildings, systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance.

  16. Fire Risk Analysis and Optimization of Fire Prevention Management for Green Building Design and High Rise Buildings: Hong Kong Experience

    Directory of Open Access Journals (Sweden)

    Yau Albert

    2014-12-01

    Full Text Available There are many iconic high rise buildings in Hong Kong, for example, International Commercial Centre, International Financial Centre, etc. Fire safety issue in high rise buildings has been raised by local fire professionals in terms of occupant evacuation, means of fire-fighting by fire fighters, sprinkler systems to automatically put off fires in buildings, etc. Fire risk becomes an important issue in building fire safety because it relates to life safety of building occupants where they live and work in high rise buildings in Hong Kong. The aim of this research is to identify the fire risk for different types of high rise buildings in Hong Kong and to optimise the fire prevention management for those high rise buildings with higher level of fire risk and to validate the model and also to carry out the study of the conflict between the current fire safety building code and the current trend of green building design. Survey via the 7-point scale questionnaire was conducted through 50 participants and their responses were received and analysed via the statistical tool SPSS software computer program. A number of statistical methods of testing for significantly difference in samples were adopted to carry out the analysis of the data received. When the statistical analysis was completed, the results of the data analysis were validated by two Fire Safety Experts in this area of specialisation and also by quantitative fire risk analysis.

  17. An energy harvesting system utilizing wind pressure fluctuations on high-rise building envelope

    Science.gov (United States)

    Park, Jae-Chan; Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo

    2017-04-01

    In this paper, the new energy harvesting system is proposed by using wind pressure fluctuations which are one of existing energy sources that were not taken into consideration around high-rise buildings. The proposed system carries out the role of building envelope also. This research is divided in two parts. At first, Computational Fluid Dynamics (CFD) and wind tunnel experiments are performed for investigating the wind pressure that occur around the high-rise building. Secondly, based on the result of wind pressure analysis, the optimal mechanism is devised and the prototype of the energy harvesting system is designed to verify the possibility of utilization of wind pressure fluctuations through the small wind tunnel experiment, harmonic excitation experiment and numerical analysis. As a result, the performance of proposed energy harvesting system is numerically and experimentally validated.

  18. A novel method to highly versatile monomeric PNA building blocks by multi component reactions

    NARCIS (Netherlands)

    Dömling, Alexander; Chi, Kai-Zu; Barrère, Mathieux

    1999-01-01

    A novel approach to monomeric PNA building blocks by a solution phase Ugi multi component reaction (MCR) is described. The reaction is easily performed in 96 well plates. The products precipitate from the reaction solution and are thus obtained in high yields and purity. Those products are not

  19. High-performance sports medicine.

    Science.gov (United States)

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  20. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Science.gov (United States)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan; Liang, Guozheng

    2017-07-01

    Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO2 and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91-95%, about 29-14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and modified fibers. The excellent comprehensive properties of BL-AFs demonstrate that the green method provided in this study is facile and effective to completely solve the bottlenecks of aramid fibers, and developing higher performance organic fibers.

  1. Performance based building design to ensure building quality: from standardization to LEAN construction

    Directory of Open Access Journals (Sweden)

    Carlo Zanchetta

    2014-10-01

    Full Text Available The discipline of architectural design is influenced by the standardization activities concerning the construction and the development of tools for the coordination in the design process such as Building Information Modeling. The two disciplines contribute reciprocally to the achievement of the overall quality of the building process. To do so, it is strategic to develop researches on the following aspects: - definition of frameworks for the connection of the building system requirements to space and technology unit that defines it; - development of an inventory of interoperable and compliant technical solutions; - implementation of the discipline of model checking for project validation; and methodologies of comparison between intervention models; - implementation of collaborative environments for verification of compatibility between programs and regulations in order to identify the optimal design solution.

  2. Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiufeng; Hong, Tianzhen; Piette, Mary Ann

    2013-06-03

    This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

  3. Mass exchanger for high-rise buildings with aquifer storage

    Energy Technology Data Exchange (ETDEWEB)

    Tolido, H.W.A.; Veltkamp, W.B.; Schaap, A.B. [LEVEL Energy Technology, Son (Netherlands)

    1994-12-31

    Aquifer storage systems are used to withdraw cold in summer and heat in winter. In high-rise buildings the technical installations are preferably placed on the top floor and so water from the aquifer has to be pressurised. Heat is absorbed or released here and the water returns to the aquifer. To recover potential energy from the pressurised water a turbine-pump combination may be used or the high pressure circuit is separated from the low pressure circuit by a heat exchanger. Van Berkel (1991) found that turbine-pump combinations recover only about 25-40 % of the potential energy. Application of a heat exchanger typically shows a thermal efficiency of 80 %. The proposed mass exchanger combines pressure separation with high effective heat transport. The high pressure circuit in the building and the low pressure aquifer circuit, are separated by a rotating element with rotation symmetric distributed chambers. Chunks of water are cut from the high pressure circuit and rotated into the low pressure circuit while at the same time an equal amount of water is transported from the low into the high pressure circuit. In these chambers also separation of warm and cold water is realised, due to the plug flow. Testing a scale model demonstrated the feasibility of the design, indicating a pressure recovery and thermal effectivity of the apparatus of 99 % and of 96 %. (orig.)

  4. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  5. New Concept for Museum Storage Buildings – Evaluation of Building Performance Model for Simulation of Storage

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Knudsen, Lise Ræder; Kollias, Christos Georgios

    2016-01-01

    is close to be CO2 neutral. The analysis shows very good agreement between simulations and measurements, meaning that the proposed methods can be used for designing museum storage buildings. The analysis also shows, that the weather conditions of previous years, affect the indoor environment...

  6. Enhancement of Seismic Performance Using Shear Link Braces in a Building Designed Only for Gravity Loads

    Science.gov (United States)

    Maniyar, S. U.; Paul, D. K.

    2012-02-01

    The present work attempts to study the behaviour of building designed for gravity loads only under the effect of lateral seismic load. Such a building is generally deficient against lateral forces and need to be retrofitted against lateral earthquake forces. A retrofitting scheme by providing aluminium shear link with chevron braces is suggested to improve its performance. Past earthquakes have shown a great deal of damages to the deficient RC frame buildings designed without any consideration to the lateral earthquake forces. Chevron braces with the aluminium shear link can be implemented as an effective retrofit measure. A comparison of the performance of building initially designed for gravity load only with the retrofitted building using chevron braces with the aluminium shear link is presented in this paper. The behaviour of building is worked out by performing nonlinear static pushover analysis and nonlinear time history analyses. A parametric study has also been carried out to study the effect of shear link and braces on the retrofitted building. The performance of RC building designed for gravity loads only as evaluated from the nonlinear static pushover analysis lies in life safety and collapse prevention range for DBE and MCE level of earthquakes respectively. The same building when retrofitted by using chevron braces with aluminium shear link show improved performance. This device is very simple, economic, effective and can be placed in a building very easily. The dissipation of damaging energy/damage is localised in shear link which can be replaced after a major earthquake.

  7. Application of Partial Safety Factorsin Building Energy Performance Assessment

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Hesselholt, A.

    2009-01-01

    is evaluated by sensitivity and uncertainty analysis to develop a significantly reduced set of stochastic input parameters. The safety factor approach provides a means of enforcing the maximum allowed energy consumption in the building code by multiplying the maximum limit by a partial safety factor to obtain...

  8. Experiments and Data for Building Energy Performance Analysis

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik

    This report documents experiments carried out in FlexHouse at Risø DTU during February and March of 2009. FlexHouse is a part of the experimental distributed energy system, Syslab. The building is controlled by one central server, where among other things it is possible to record temperature...

  9. Seismic performance evaluation of existing RC buildings designed ...

    Indian Academy of Sciences (India)

    In this paper, a typical 6-storey reinforced concrete (RC) building frame is designed for four design cases as per the provisions in three revisions of IS: 1893 and IS: 456 and it is analysed using user-defined (UD) nonlinear hinge properties or default-hinge (DF) properties, given in SAP 2000 based on the FEMA-356 and ...

  10. A fuzzy decision making system for building damage map creation using high resolution satellite imagery

    Science.gov (United States)

    Rastiveis, H.; Samadzadegan, F.; Reinartz, P.

    2013-02-01

    Recent studies have shown high resolution satellite imagery to be a powerful data source for post-earthquake damage assessment of buildings. Manual interpretation of these images, while being a reliable method for finding damaged buildings, is a subjective and time-consuming endeavor, rendering it unviable at times of emergency. The present research, proposes a new state-of-the-art method for automatic damage assessment of buildings using high resolution satellite imagery. In this method, at the first step a set of pre-processing algorithms are performed on the images. Then, extracting a candidate building from both pre- and post-event images, the intact roof part after an earthquake is found. Afterwards, by considering the shape and other structural properties of this roof part with its pre-event condition in a fuzzy inference system, the rate of damage for each candidate building is estimated. The results obtained from evaluation of this algorithm using QuickBird images of the December 2003 Bam, Iran, earthquake prove the ability of this method for post-earthquake damage assessment of buildings.

  11. Air ventilation impacts of the "wall effect" resulting from the alignment of high-rise buildings

    Science.gov (United States)

    Yim, S. H. L.; Fung, J. C. H.; Lau, A. K. H.; Kot, S. C.

    The objective of this study is to investigate the air ventilation impacts of the so called "wall effect" caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD - FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio ( VR) and the retention time ( T r) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a "wall" upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.

  12. High Performance Proactive Digital Forensics

    Science.gov (United States)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  13. Benchmarking the energy performance of office buildings: A data envelopment analysis approach

    OpenAIRE

    Molinos-Senante, María; Encinas, Felipe; Ureta, Francisca

    2016-01-01

    The achievement of energy efficiency in buildings is an important challenge facing both developed and developing countries. Very few papers have assessed the energy efficiency of office buildings using real data. To overcome this limitation, this paper proposes an energy efficiency index for buildings having a large window-to-wall ratio, and uses this index to identify the main architectural factors affecting energy performance. This paper assesses, for the first time, the energy performances...

  14. Field investigation of duct system performance in California light commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Delp, W.W.; Matson, N.E.; Tschudy, E. [and others

    1997-12-09

    This paper discusses field measurements of duct system performance in fifteen systems located in eight northern California buildings. Light commercial buildings, one- and two-story with package roof-top HVAC units, make up approximately 50% of the non-residential building stock in the U.S. Despite this fact little is known about the performance of these package roof-top units and their associated ductwork. These simple systems use similar duct materials and construction techniques as residential systems (which are known to be quite leaky). This paper discusses a study to characterize the buildings, quantify the duct leakage, and analyze the performance of the ductwork in these types of buildings. The study tested fifteen systems in eight different buildings located in northern California. All of these buildings had the ducts located in the cavity between the drop ceiling and the roof deck. In 50% of these buildings, this cavity was functionally outside the building`s air and thermal barriers. The effective leakage area of the ducts in this study was approximately 2.6 times that in residential buildings. This paper looks at the thermal analysis of the ducts, from the viewpoint of efficiency and thermal comfort. This includes the length of a cycle, and whether the fan is always on or if it cycles with the cooling equipment. 66% of the systems had frequent on cycles of less than 10 minutes, resulting in non-steady-state operation.

  15. Energy Performance of a Novel System Combining Natural Ventilation with Diffuse Ceiling Inlet and Thermally Activated Building Systems (TABS)

    DEFF Research Database (Denmark)

    Yu, Tao

    As a response to new stringent energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need in both summer and winter. This study proposes a novel system combining natural ventilation with diffuse ceiling inlet...... and thermally activated building systems (TABS) for cooling and ventilation in future Danish office buildings. The new solution would have the special potential of using natural ventilation all year round even in the extremely cold seasons without any draught risk. The main focuses of this study are the energy...... saving potential and the steady-state and dynamic energy performance of this system. The presented work utilizes building simulation method to investigate the energy saving potential of this novel system. Afterwards, an experimental set-up is built in the laboratory to simulate a real office environment...

  16. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential...... this problem. This way, the delta-sigma quantizer's feedback signal is obtained by a multiple-stage quantization, where the loop quantizer (low-resolution and minimum-delay) implements only the last-stage quantization. Hence, high-speed, high-resolutiondelta-sigma quantization is feasible without using complex...... circuitry. An improved version of the MASH topology is also proposed. A delta-sigma quantizer is used to quantize the input signal into an oversampled digital representation of low-to-moderate resolution. The delta-sigma quantizer'struncation error is estimated either directly, or as the first...

  17. Analysis of wind-induced vibrations in high-rise buildings

    DEFF Research Database (Denmark)

    Persson, Peter; Austrell, Per-Erik; Kirkegaard, Poul Henning

    2016-01-01

    . The paper summarises acceptable acceleration levels in high -rise buildings (here referred to as buildings over 200 m in height) stated in different building codes and previous work on the subject. Accelerations of a high-rise building subjected to wind-loads are evaluated using a full numerical model...

  18. Highly insulating glazing in new multi-storey buildings; Hoejisolerende glaspartier i nye etageboliger

    Energy Technology Data Exchange (ETDEWEB)

    Engelund Thomsen, K.; Schmidt, H.; Aggerholm, S.

    2001-07-01

    The purpose of this report is to illustrate how highly insulating types of glazing can be used in multi-storey buildings for housing in new ways. These are energy efficient and provide good indoor climate and also satisfy requirements to high architectural quality. The project has resulted in a number of design proposal demonstrating how new types of glazing can be fitted into multi-storey buildings and how new facade expressions, space and lighting effects can be obtained by using highly insulating glass areas. The project is collaboration between the architects Boje Lundgaard and Lene Tranberg's Tegnestue, KAB Bygge og Boligadministration and Danish Building and Urban Research. Calculations of heat demand suggest that it is possible to meet the targets outlined in the Danish Government's action plan for energy. Energy 21 by using new types of highly insulating glazing in new buildings. Another 33% reduction of the heating demand is targeted in relation to existing requirements in the Danish Building Regulations 1995 (BR 95) and the Danish Building Regulations for Small Dwellings 1998 (BR-S 98). The project builds on experience gained from 'High-insulated Glass House' (Wittchen and Aggerholm, 1999) built on the housing estage Egebjerggaard in Ballerup, a suburb of Copenhagen. Examples of existing multi-storey buildings with glass facades show extensive use of glazing as early as 1830 in Spain. Walls preceding the curtain wall were built from wood and glass and rested on stone corbels at about 1 m from the load-bearing facade. The first multi-storey buildings with facades entirely made from glass date from the 1920s. The architect Le Corbusier was the first to create a building system that facilitated the construction of non-loadbearing facades. Various conditions must be especially considered at the design of facades with highly insulating glass areas, i.a. type of glass and glazing, solar shadings, frame constructions and airtightness

  19. The Building Fabric Thermal Performance of Passivhaus Dwellings—Does It Do What It Says on the Tin?

    Directory of Open Access Journals (Sweden)

    David Johnston

    2016-01-01

    Full Text Available The Passivhaus (or Passive House Standard is one of the world’s most widely known voluntary energy performance standards. For a dwelling to achieve the Standard and be granted Certification, the building fabric requires careful design and detailing, high levels of thermal insulation, building airtightness, close site supervision and careful workmanship. However, achieving Passivhaus Certification is not a guarantee that the thermal performance of the building fabric as designed will actually be achieved in situ. This paper presents the results obtained from measuring the in situ whole building heat loss coefficient (HLC of a small number of Certified Passivhaus case study dwellings. They are located on different sites and constructed using different technologies in the UK. Despite the small and non-random nature of the dwelling sample, the results obtained from the in situ measurements revealed that the thermal performance of the building fabric, for all of the dwellings, performed very close to the design predictions. This suggests that in terms of the thermal performance of the building fabric, Passivhaus does exactly what it says on the tin.

  20. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  1. Rethinking of Critical Regionalism in High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Nima Zahiri

    2016-12-01

    Full Text Available The character of height and density of newly high-rise cities, along with the force of globalization, have jeopardized the character of dwellings once entailing a regional flavor. The critical regionalism which serves as a resistant medium against placelessness and lack of identity in the International Style has focused more on mid-rise or low-rise solutions rather than providing direct high-rise resolutions. Additionally, high-rise endeavors are not compatible with critical regionalism theories. This has happened partly due to critical regionalism theories multi-facet character inherent in its dialectic structure. Thus, to remedy the inadvertency of texts in the discourse of architectural regionalism, the present study seeks rethinking of critical regionalism by focusing on the pathology of high-rise buildings in the issues pertaining to place and identity. Finally, the architectonic articulation to place-making and identity-giving is discussed.

  2. Real estate market and building energy performance: Data for a mass appraisal approach

    Directory of Open Access Journals (Sweden)

    Pietro Bonifaci

    2015-12-01

    Data are related to the analysis performed in Bonifaci and Copiello [1], about the relationship between house prices and building energy performance, that is to say, the willingness to pay in order to benefit from more efficient dwellings.

  3. Architecture and Programming Models for High Performance Intensive Computation

    Science.gov (United States)

    2016-06-29

    AFRL-AFOSR-VA-TR-2016-0230 Architecture and Programming Models for High Performance Intensive Computation XiaoMing Li UNIVERSITY OF DELAWARE Final...TITLE AND SUBTITLE Architecture and Programming Models for High Performance Intensive Computation 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0213...developing an efficient system architecture and software tools for building and running Dynamic Data Driven Application Systems (DDDAS). The foremost

  4. Accelerating R with high performance linear algebra libraries

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2015-09-01

    Full Text Available Linear algebra routines are basic building blocks for the statistical software. In this paper we analyzed how can we improve R performance for matrix computations. We benchmarked few matrix operations using the standard linear algebra libraries included in the R distribution and high performance libraries like OpenBLAS, GotoBLAS and MKL. Our tests showed the best results are obtained with the MKL library, the other two libraries having similar performances, but lower than MKL.

  5. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade

    Directory of Open Access Journals (Sweden)

    Anđelković Bojan V.

    2012-01-01

    Full Text Available Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia.

  6. High-Rise Building: Function, Construction, Visual Image

    OpenAIRE

    Ozola, S

    2016-01-01

    Nowadays building achievements are characterized by engineering-technically complex buildings. Construction of tower buildings was already familiar during the antiquity and also in the territory of Latvia, where towers on the Baltic tribes’ hillforts guarded fortified wooden construction complexes. German knights started to build freestanding stone tower-castles in the conquered lands which were gradually included in the fortress building. The medieval city was surrounded by a defensive wall ...

  7. Construction Performance Optimization toward Green Building Premium Cost Based on Greenship Rating Tools Assessment with Value Engineering Method

    Science.gov (United States)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat

    2017-07-01

    Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.

  8. High Performance Perovskite Solar Cells

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  9. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  10. Listening to school buildings. The performance of school buildings; Luisteren naar schoolgebouwen. Hoe presteren schoolgebouwen?

    Energy Technology Data Exchange (ETDEWEB)

    Grosfeld, G. [BNA Onderzoek, Amsterdam (Netherlands); Juricic, S.; Van Dijken, F.; Boerstra, A. [BBA Binnenmilieu, Rotterdam (Netherlands); Krist, R. [ICS adviseurs, Zwolle (Netherlands); Broekhuizen, D.; Verstegen, T.

    2011-06-15

    The aim of the multi-disciplinary research was to analyze user experiences for ten school buildings in the Netherlands: five in secondary education and five in primary education, all in use three to five years. An analysis was made of the indoor climate as well as of user experiences and costs for the period June 2010 - April 2011 [Dutch] Het doel van het multidisciplinaire onderzoek was om gebruikerservaringen te analyseren voor 10 schoolgebouwen in Nederland: vijf in het voortgezet onderwijs en vijf in het basisonderwijs, die 3-5 jaar in gebruik zijn. Er is een analyse gemaakt van het binnenmilieu, gebruikerservaringen en kosten in de periode juni 2010 - april 2011.

  11. Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara earthquakes in Turkey

    Directory of Open Access Journals (Sweden)

    S. Adanur

    2010-12-01

    Full Text Available This paper evaluates the performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara earthquakes. Bala is a township located 50 km southeast from Ankara city in Turkey. The majority of the buildings in the affected region are built in masonry. Most of masonry buildings were formed with random or coursed stone and mud brick walls without any reinforcement. Many of these buildings were damaged or had collapsed. The cracking and failure patterns of the buildings are examined and interpreted according to current provisions for earthquake resistance of masonry structures. The damages are due to several reasons such as poor construction quality and poor workmanship of the buildings. In addition to these reasons, the two earthquakes hit the buildings within seven days, causing progressive damage.

  12. Distribution trend of high-rise buildings worldwide and factor exploration

    Science.gov (United States)

    Yu, Shao-Qiao

    2017-08-01

    This paper elaborates the development phenomenon of high-rise buildings nowadays. The development trend of super high-rise buildings worldwide is analyzed based on data from the Council on Tall Buildings and Urban Habitat, taking the top 100 high-rise buildings in different continents and with the time development and building type as the objects. Through analysis, the trend of flourishing of UAE super high-rise buildings and stable development of European and American high-rise buildings is obtained. The reasons for different development degrees of the regions are demonstrated from the aspects of social development, economy, culture and consciousness. This paper also presents unavoidable issues of super high-rise buildings and calls for rational treatment to these buildings.

  13. Driving forces and barriers to improved energy performance of buildings: an analysis of energy performance of Swedish buildings, 2000-2006

    Energy Technology Data Exchange (ETDEWEB)

    Fuglseth, Bente Beckstroem

    2008-06-15

    The building sector is responsible for a substantial part of energy use and green house gas emissions in Europe. This report explores driving forces and barriers to improved energy performance of buildings, using the Swedish building sector as a case. The development of energy performance of buildings in Sweden from 2000 until 2006 is explored by applying a threefold understanding of energy performance of buildings: substitution from fossil fuels to renewable energy, conversion from electrical heating to thermal energy and reduction in energy demand. Three explanatory approaches are used to analyse driving forces and barriers to improved energy performance: the techno-economic approach stresses the physical aspects of infrastructure and technologies, the institutional approach emphasizes the role of institutional factors, while the regulative approach focuses on formal rules and laws. The study concludes that all factors have promoted substitution of fossil fuels with renewable energy, while they have prevented conversion from electrical heating to thermal energy and reduction in energy demand. (author). 95 refs

  14. Magnetic field management of substations in high rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Farag, A.S.; Al-Shehri, A.M. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Cheng, T.C.; Du, Y.; Hu, L.; Penn, D. [Univ. of Southern California, LADWP, Los Angeles, CA (United States)

    1995-12-01

    The electric and magnetic field issue has become an area of increasing public concern. Utilities have been carrying out extensive projects to characterize and manage the magnetic fields around their substations in an effort to answer public concerns over the possible health hazard caused by these fields. This paper describes various techniques available for managing magnetic field strength levels in substations. The design guideline aids in the planning, design, construction of substation facilities. Low-frequency magnetic field is directly associated with current-carrying sources and its magnitude is proportional to the distance from the sources. Distribution substations in high-rise buildings are very close to public areas and the magnetic fields imposed by these substations might be relatively higher than that imposed by outdoor substations. Options to manage these substations fields are considered in this paper. Techniques to manage magnetic fields in substations such as: source relocation, compaction, rephasing, return-current control, passive and active shielding are discussed. Several techniques were applied to reduce the magnetic fields in the conference room located in the main floor above a substation located in the basement of the main office high-rise building of LADWP. 10 refs, 14 figs, 3 tabs

  15. A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building

    Directory of Open Access Journals (Sweden)

    Taesub Lim

    2017-12-01

    Full Text Available Building insulation materials has a significant impact on building energy consumptions. However, conventional materials are easily flammable and can cause fire disasters in buildings. Therefore, it is important to select appropriate insulation materials for building energy efficiency and safety and Vacuum Insulation Panels (VIPs are increasingly applied to building insulation. Considering this, the present study investigates energy performance of VIPs with design alternatives, such as window systems, infiltration rates, etc., by using energy simulation. Among various VIPs, fumes silica VIPs were chosen. In addition, eight combinations were compared to find the best energy efficient design conditions. The results of the present study showed that building energy performance can be improved with an appropriate combination of design options including fumed silica VIPs.

  16. The challenge of innovation and the high-performance team.

    Science.gov (United States)

    Tam, David A; Chessum, Thomas; Leopold, Jay

    2012-01-01

    This paper describes the use of a high-performance team model in the leadership of a healthcare construction project with a vision of fostering innovation in the design and building process. This model facilitated the effective implementation of = Lean principles and a joint governance model combining stakeholders under a shared vision. The healthcare facility discussed is a California healthcare district in San Diego. Because of state seismic safety legislation, the district elected to build a replacement hospital for its tertiary care trauma facility. The organization's leadership decided to pursue a course that demanded innovation in both the design and construction process. The owner, architects, construction manager, and trade contractors adopted a high-performance team model to meet this challenge. The governance and leadership of a construction project should reflect the design and ultimate intent of the facility. The vision of building the most innovative hospital under constrained resources required the implementation of an innovative approach to leading the construction process.

  17. The Case for High-Performance, Healthy Green Schools

    Science.gov (United States)

    Carter, Leesa

    2011-01-01

    When trying to reach their sustainability goals, schools and school districts often run into obstacles, including financing, training, and implementation tools. Last fall, the U.S. Green Building Council-Georgia (USGBC-Georgia) launched its High Performance, Healthy Schools (HPHS) Program to help Georgia schools overcome those obstacles. By…

  18. Maintaining High-Performance Schools after Construction or Renovation

    Science.gov (United States)

    Luepke, Gary; Ronsivalli, Louis J., Jr.

    2009-01-01

    With taxpayers' considerable investment in schools, it is critical for school districts to preserve their community's assets with new construction or renovation and effective facility maintenance programs. "High-performance" school buildings are designed to link the physical environment to positive student achievement while providing such benefits…

  19. Characterization of the environmental performance of the insulating materials in the enveloping of the building.

    OpenAIRE

    Carabaño Rodriguez, Rocio; Bedoya Frutos, Cesar

    2012-01-01

    Insulating materials in buildings are one of the main factors that should be taken into account when talking about sustainability since with a correct application it could imply important savings for the citizens. In the course of its life, a building requires a series of supplies to perform the duties it has been built for, generating an impact on the environment. The selection of one material or another will establish partly the global environmental impact of the building. Choosing the righ...

  20. Performative building envelope design correlated to solar radiation and cooling energy consumption

    Science.gov (United States)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  1. Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

    2006-08-01

    The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

  2. Modeling Methodology of Progressive Collapse by the Example of Real High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Mariya Barabash

    2014-12-01

    Full Text Available The purpose of the research was to find out several ways to design real buildings with protective measures against progressive collapse. There are no uniform guidelines for choosing the type of finite element able to provide the necessary accuracy of the calculation model taking into account all the main factors affecting the strength and stability of the building. Therefore it is required to develop numerical methods for calculation on progressive collapse of buildings bearing structural elements in case of emergency. In addition, our task was to present a methodology that allows checking the stability of the building agains progressive collapse. By the technique nonlinear analysis on special (emergency regulations combination of loads and impacts is performed, including permanent and long-term regulatory burden and the impact of hypothetical local fractures bearing structures. This study was carried out on the high rise apartment complex with underground parking. In the empirical part of the study the main concern was to find out the reasons of progressive collapse of structures, taking into account stepwise assembly, building inspection performed rollover. Also the existing building retail and office complex “Gulliver” with public facilities and parking is considered, where computation was made on the progressive collapse of the upper slab technical floor. The calculation was carried out on plates or emergency landing helicopter crash on the floor slab. Analysis of the results leads to the following conclusions. To assess the real vitality of the building in an emergency situation, and resistance to progressive collapse it is recommended to count design taking into account physical and geometric nonlinearity and process modeling lifecycle.

  3. Performance Assessment of Maintenance Practices in Government Office Buildings: Case Study of Parcel E, Putrajaya

    Directory of Open Access Journals (Sweden)

    Awg Husaini A.I.

    2014-03-01

    Full Text Available Building maintenance practices must be taken into consideration by building facility managers or building owners. They involve daily operations to ensure that end users can work or live comfortably and safely. Through effective maintenance practices, the functions of the existing building facilities can be maintained and meet the needs of the building users. Maintenance practices must be effective in aspects such as planning, organization and supervision in order to maintain the building at a satisfactory level of performance all the time. A study was conducted on a Federal government office building in Parcel E, Putrajaya to determine the maintenance aspects of the management of the facility. To achieve the objectives of this study a questionnaire survey was used to obtain the required data. The outcomes indicate that the aspects of building maintenance practice and the effectiveness of the maintenance management in government office buildings can influence the satisfaction of the end user. However, some aspects of the current building maintenance practices seem to need improvements in order to enhance the building maintenance management. The recommendations of this study will help in the effective management of the facility and maintenance management practices.

  4. Nearly Zero Energy Standard for Non-Residential Buildings with high Energy Demands—An Empirical Case Study Using the State-Related Properties of BAVARIA

    Directory of Open Access Journals (Sweden)

    Michael Keltsch

    2017-03-01

    Full Text Available The Energy Performance of Buildings Directive (EPBD 2010 calls for the Nearly Zero Energy Building (nZEB Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or by the energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types, this goal is still far away. The potential of these buildings to meet a nZEB Standard was investigated by analyzing ten case studies, representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research, and laboratory buildings. The large primary energy demand of these types of buildings cannot be compensated by building- and property-related energy generation, including off-site renewables. If the future nZEB Standard were to be defined with lower requirements because of this, the state-related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be more useful to individualize the legal energy verification process for new buildings, to distinguish critical building types such as laboratories and hospitals from the other building types.

  5. VERTICAL LINEAR PROJECT SCHEDULING FOR HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    İlker ÖZDEMİR

    1999-02-01

    Full Text Available In this paper, an application to high-rise buildings of VPM (Vertical Production Method and an example will be given which is composition of two distinct and preferable methods are CPM (Critical Path Method that is prefering against traditional Bar-Charts or schedules especially in big and costly investments and LOB (Line of Balance technique that is suitable for using in linear project planning. Thus, it could be expected that to show the way of the method to designer and manufacturer about subjects which are activity, priority and sequencing of high-rise project, speeds of activity and construction, completion times, to add or take out some terms to schedule at the state of project changing.

  6. Development of a Mobile Application for Building Energy Prediction Using Performance Prediction Model

    Directory of Open Access Journals (Sweden)

    Yu-Ri Kim

    2016-03-01

    Full Text Available Recently, the Korean government has enforced disclosure of building energy performance, so that such information can help owners and prospective buyers to make suitable investment plans. Such a building energy performance policy of the government makes it mandatory for the building owners to obtain engineering audits and thereby evaluate the energy performance levels of their buildings. However, to calculate energy performance levels (i.e., asset rating methodology, a qualified expert needs to have access to at least the full project documentation and/or conduct an on-site inspection of the buildings. Energy performance certification costs a lot of time and money. Moreover, the database of certified buildings is still actually quite small. A need, therefore, is increasing for a simplified and user-friendly energy performance prediction tool for non-specialists. Also, a database which allows building owners and users to compare best practices is required. In this regard, the current study developed a simplified performance prediction model through experimental design, energy simulations and ANOVA (analysis of variance. Furthermore, using the new prediction model, a related mobile application was also developed.

  7. Quality Assurance Strategy for Existing Homes. Final Quality Management Primer for High Performing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, M. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Taggart, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Sikora, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wood, A. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    This guide is designed to help Building America (BA) teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  8. Quality Assurance Strategy for Existing Homes: Final Quality Management Primer for High Performing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, M.; Taggart, J.; Sikora, J.; Wood, A.

    2012-12-01

    This guide is designed to help Building America (BA) Teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  9. Thermal performance of vertical greening system on the building façade: A review

    Science.gov (United States)

    Sari, Astri Anindya

    2017-09-01

    Over the last decade, research on the application of vertical greening system on the building façade has gained much attention. Those studies proved that installing a vertical greening system on the building facade has many advantages not only for the building but also for the city. Acting as a shading as well as thermal insulation in the building, reducing greenhouse gas emission, and improving the microclimate are some of the advantages of vertical greening system that already being proved. This study aims to review some studies related to the thermal performance of vertical greening system on the building façade. The review will provide comprehensive knowledge about the thermal performance of vertical greening system over different variations including climates, orientations, plant types, and the design of vertical greening system. Furthermore, this review is expected to be a reference in designing such vertical greening system which suitable for certain climate area that able to produce the best thermal performance.

  10. Teaching Model Building to High School Students: Theory and Reality.

    Science.gov (United States)

    Roberts, Nancy; Barclay, Tim

    1988-01-01

    Builds on a National Science Foundation (NSF) microcomputer based laboratory project to introduce system dynamics into the precollege setting. Focuses on providing students with powerful and investigatory theory building tools. Discusses developed hardware, software, and curriculum materials used to introduce model building and simulations into…

  11. A review of the regulatory energy performance gap and its underlying causes in non-domestic buildings

    Directory of Open Access Journals (Sweden)

    Chris van Dronkelaar

    2016-01-01

    Full Text Available This paper reviews the discrepancy between predicted and measured energy use in non-domestic buildings in a UK context with outlook to global studies. It explains differences between energy performance quantification and classifies this energy performance gap as a difference between compliance or performance modelling with measured energy use. Literary sources are reviewed in order to signify the magnitude between predicted and measured energy use, which is found to deviate by +34% with a standard deviation of 55% based on 62 buildings. It proceeds in describing the underlying causes for the performance gap, existent in all stages of the building life cycle, and identifies the dominant factors to be related to specification uncertainty in modelling, occupant behaviour and poor operational practices having an estimated effect of 20-60%, 10-80% and 15-80% on energy use respectively. Other factors that have a high impact are related to establishing the energy performance target, impact of early design decisions, heuristic uncertainty in modelling and occupant behaviour. Finally action measures and feedback processes in order to reduce the performance gap are discussed, indicating the need for energy in-use legislation, insight into design stage models, accessible energy data and expansion of research efforts towards building performance in-use in relation to predicted performance

  12. Methodology for estimating human perception to tremors in high-rise buildings

    Science.gov (United States)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2017-07-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  13. Thermo Active Building Systems(TABS) - Performance in practice and possibilities for optimization

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    The project “Thermo Active Building Systems (TABS) – Performance in practice and possibilities for optimization” was carried out at DTU Byg in the period form 1.9.2012 until 31.12.2014. The aim of the project was to conduct field measurements in modern office buildings equipped with TABS systems ....... The project was financed by Bjarne Saxhof foundation....

  14. Satisfaction and self-estimated performance in relation to indoor environmental parameters and building features

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Frontczak, Monika; Schiavon, Stefano

    2012-01-01

    The paper examines how satisfaction with indoor environmental parameters and building features affects satisfaction and self-estimated job performance. The analyses used subjective responses from around 50, 000 occupants collected mainly in US office buildings using a web-based survey administere...

  15. A Tool for Optimizing the Build Performance of Large Software Code Bases

    NARCIS (Netherlands)

    Telea, Alexandru; Voinea, Lucian; Kontogiannis, K; Tjortjis, C; Winter, A

    2008-01-01

    We present Build Analyzer, a tool that helps developers optimize the build performance of huge systems written in C Due to complex C header dependencies, even small code changes can cause extremely long rebuilds, which are problematic when code is shared and modified by teams of hundreds of

  16. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  17. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance.

    Science.gov (United States)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-21

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (∼10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol(-1) and 71 kJ mol(-1), respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with

  18. Attaining Performance with Building Information Modelling : A systematic literature review of product and process modelling in AEC

    NARCIS (Netherlands)

    Papadonikolaki, E.; Koutamanis, A.; Wamelink, J.W.F.

    2013-01-01

    The paper presents the findings of a systematic literature review of approximately 200 scientific sources. It is designed with the aim to identify the current benefits and factors of high performance in Architecture, Engineering, Construction (AEC) since the introduction of Building Information

  19. Green Schools as High Performance Learning Facilities

    Science.gov (United States)

    Gordon, Douglas E.

    2010-01-01

    In practice, a green school is the physical result of a consensus process of planning, design, and construction that takes into account a building's performance over its entire 50- to 60-year life cycle. The main focus of the process is to reinforce optimal learning, a goal very much in keeping with the parallel goals of resource efficiency and…

  20. Mastering JavaScript high performance

    CERN Document Server

    Adams, Chad R

    2015-01-01

    If you are a JavaScript developer with some experience in development and want to increase the performance of JavaScript projects by building faster web apps, then this book is for you. You should know the basic concepts of JavaScript.

  1. Analytical Hierarchy Process for Developing a Building Performance-Risk Rating Tool

    Directory of Open Access Journals (Sweden)

    Khalil Natasha

    2016-01-01

    Full Text Available The need to optimize the performance of buildings has increased consequently due to the expansive supply of facilities in higher education building (HEB. Proper performance assessment as a proactive measure may help university building in achieving performance optimization. However, the current maintenance programs or performance evaluation in the HEB is a systemic and cyclic process where maintenance is considered as an operational issue and not as opposed to a strategic issue. Hence, this paper proposed a Building Performance Risk Rating Tool (BPRT as an improved measure for building performance evaluation by addressing the users' risk in health and safety aspects. The BPRT is developed from the result of a rating index using the Analytical Hierarchy Process (AHP method. 12 facilities management (FM experts and practitioners were involved in the rating process. The subjective weightings are analysed using the AHP computer software, the Expert Choice 11. The establishment of the BPRT was introduced as an aid of improvement towards the current performance assessment of HEB by emerging the concept of building performance and risk into a numerical strategic approach

  2. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  3. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  4. Scalable resource management in high performance computers.

    Energy Technology Data Exchange (ETDEWEB)

    Frachtenberg, E. (Eitan); Petrini, F. (Fabrizio); Fernandez Peinador, J. (Juan); Coll, S. (Salvador)

    2002-01-01

    Clusters of workstations have emerged as an important platform for building cost-effective, scalable and highly-available computers. Although many hardware solutions are available today, the largest challenge in making large-scale clusters usable lies in the system software. In this paper we present STORM, a resource management tool designed to provide scalability, low overhead and the flexibility necessary to efficiently support and analyze a wide range of job scheduling algorithms. STORM achieves these feats by closely integrating the management daemons with the low-level features that are common in state-of-the-art high-performance system area networks. The architecture of STORM is based on three main technical innovations. First, a sizable part of the scheduler runs in the thread processor located on the network interface. Second, we use hardware collectives that are highly scalable both for implementing control heartbeats and to distribute the binary of a parallel job in near-constant time, irrespective of job and machine sizes. Third, we use an I/O bypass protocol that allows fast data movements from the file system to the communication buffers in the network interface and vice versa. The experimental results show that STORM can launch a job with a binary of 12MB on a 64 processor/32 node cluster in less than 0.25 sec on an empty network, in less than 0.45 sec when all the processors are busy computing other jobs, and in less than 0.65 sec when the network is flooded with a background traffic. This paper provides experimental and analytical evidence that these results scale to a much larger number of nodes. To the best of our knowledge, STORM is at least two orders of magnitude faster than existing production schedulers in launching jobs, performing resource management tasks and gang scheduling.

  5. Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton

    2014-06-30

    Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, we built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of

  6. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  7. The dynamics of shared leadership: building trust and enhancing performance.

    Science.gov (United States)

    Drescher, Marcus A; Korsgaard, M Audrey; Welpe, Isabell M; Picot, Arnold; Wigand, Rolf T

    2014-09-01

    In this study, we examined how the dynamics of shared leadership are related to group performance. We propose that, over time, the expansion of shared leadership within groups is related to growth in group trust. In turn, growth in group trust is related to performance improvement. Longitudinal data from 142 groups engaged in a strategic simulation game over a 4-month period provide support for positive changes in trust mediating the relationship between positive changes in shared leadership and positive changes in performance. Our findings contribute to the literature on shared leadership and group dynamics by demonstrating how the growth in shared leadership contributes to the emergence of trust and a positive performance trend over time. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Impacts of orientation on daylighting in high-rise office buildings in Malaysia

    Directory of Open Access Journals (Sweden)

    AbdolHamid Mahdavi

    2015-12-01

    Full Text Available Orientation is one of the important factors in building design to use daylight and ‎conserve energy. Well-orientated buildings maximise daylight reception through ‎building facades and reduce the need for artificial lighting. Reasonable daylighting usage in office buildings is an important part of an architect’s designing process, which leads to lesser electricity consumption as well as providing a visual and thermal comfort for the occupants. Orientation is an important factor in passive design strategies. This paper focuses on the orientation effect on daylighting into office rooms. The research method of this study was simulation which is performed on a hypothetical model on a 25 storey high-rise office building in Malaysia. All simulations were carried out in the IES-VE software that uses RADIANCE program for illuminance calculations. To evaluate the daylight in various conditions, a new index SAZ was introduced which assesses daylight factor (DF and absolute Lux. Results showed similar SAZ in CIE overcast sky in various orientations; whereas, in sunny sky due to sun path in Malaysia, different results showed northern and southern rooms have the best illuminance distribution. However, the similar window form and size in four orientations lead to more energy consumption for artificial lighting and cooling loads.

  9. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, Alea [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  10. Makwayela: choral performance and nation building in Mozambique

    Directory of Open Access Journals (Sweden)

    João Soeiro de Carvalho

    1999-10-01

    Full Text Available This in an ethnomusicological study of choral performance in Maputo, the capital city of Mozambique. It includes a historical perspective over the last thirty years, and it analyzes the changes which took place in performance along with the political changes in this African country. The author studies the use of music for the purpose of creating a national identity. Makwayela, a characteristic kind of male choral performance which developed in Southern Mozambique, is used as a study case. Makwayela is described and framed within the range of expressive modes in Maputo. Its origins are discussed in the background of mining culture in Southern Africa, and its development is associated with recent social history in Mozambique, and particularly in Maputo.

  11. Building quality into performance and safety assessment software

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowski, L.C. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Quality assurance is integrated throughout the development lifecycle for performance and safety assessment software. The software used in the performance and safety assessment of a Canadian deep geological repository (DGR) follows the CSA quality assurance standard CSA-N286.7 [1], Quality Assurance of Analytical, Scientific and Design Computer Programs for Nuclear Power Plants. Quality assurance activities in this standard include tasks such as verification and inspection; however, much more is involved in producing a quality software computer program. The types of errors found with different verification methods are described. The integrated quality process ensures that defects are found and corrected as early as possible. (author)

  12. Energy performance regulations and methodologies of energy saving in office buildings in Southern Europe

    OpenAIRE

    Tsave, Anna A

    2009-01-01

    This thesis was submitted for the degree of Master of Philosophy and awarded by Brunel University. The Directive 2002/91/EC of the European Parliament and Council on energy performance of buildings entered into force on 4th January 2003, setting the minimum requirements of energy performance. All Member States had to incorporate the requirements of the new directive in national legislation by January 2006 and build up relevant systems and measures to transpose and implement these requireme...

  13. Design and Optimization of Slot Aluminum Alloy Connectors of Photovoltaics Applied to High-rise Building Facades

    Science.gov (United States)

    Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua

    2016-05-01

    Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.

  14. Effects of acoustic ceiling units on the cooling performance of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Niels; Kazanci, Ongun Berk

    2017-01-01

    Europe, with a building stock responsible for about 40% of the total energy use, needs to reduce the primary energy use in buildings in order to meet the 2020 energy targets of the European Union. High temperature cooling and low temperature heating systems, and as an example, Thermally Activated...

  15. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation

    Directory of Open Access Journals (Sweden)

    M. Palme

    2017-10-01

    Full Text Available This data article presents files supporting calculation for urban heat island (UHI inclusion in building performance simulation (BPS. Methodology is used in the research article “From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect” (Palme et al., 2017 [1]. In this research, a Geographical Information System (GIS study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso. Then, a Principal Component Analysis (PCA is done to obtain reference Urban Tissues Categories (UTC to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG software (version 4.1 beta. Finally, BPS is run out with the Transient System Simulation (TRNSYS software (version 17. In this data paper, four sets of data are presented: 1 PCA data (excel to explain how to group different urban samples in representative UTC; 2 UWG data (text to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso; 3 weather data (text with the resulting rural and urban weather; 4 BPS models (text data containing the TRNSYS models (four building models.

  16. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.

    Science.gov (United States)

    Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C

    2017-10-01

    This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).

  17. Class separation of buildings with high and low prevalence of SBS by principal component analysis

    DEFF Research Database (Denmark)

    Pommer, L.; Fick, J.; Andersson, B.

    2002-01-01

    frequent occurrence of a higher concentration of terpenoid compounds and ketones in the high prevalence buildings. Relative air humidity in supply and room air, and TVOC in outdoor and supply air and 10 building variables also contributed to the separation of low and high prevalence buildings....

  18. Performance gaps in energy consumption : household groups and building characteristics

    NARCIS (Netherlands)

    van den Brom, P.I.; Meijer, A.; Visscher, H.J.

    2017-01-01

    The difference between actual and calculated energy is called the ‘energy-performance gap’. Possible explanations for this gap are construction mistakes, improper adjusting of equipment, excessive simplification in simulation models and occupant behaviour. Many researchers and governmental

  19. Performance-based Design of RC Frame Buildings with Metallic and Friction Dampers

    Science.gov (United States)

    Chaudhury, Deepsikha; Singh, Yogendra

    2014-12-01

    Supplemental energy dissipation is a technique of earthquake resistant design and for improving the seismic performance of existing buildings. In the present study, a comprehensive design methodology for performance based design of frame buildings with metallic and friction dampers has been proposed. In this study, the target performance level is aimed to achieve both in terms of inter-storey drift and plastic hinge rotation. A non-iterative step-by-step design procedure is proposed to achieve the target performance level. The methodology provides the design yield forces in case of metallic dampers, and slip forces in case of friction dampers. A satisfactory distribution of both types of dampers along the height of the building is also provided in the methodology. The efficiency of the proposed design methodology is validated by applying to a ten storey building and performing nonlinear time history analysis. The building, with and without dampers, is subjected to five spectrum compatible time histories with peak ground acceleration of 0.24 g and the relative performance of the building with the two types of dampers is studied.

  20. Airtightness and ventilation system performance of apartments in new multi-unit residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, G. [Air Solutions Inc., Toronto, ON (Canada); Kokko, J.; Greene, T. [Enermodal Engineering Ltd., Kitchener, ON (Canada)

    2005-07-01

    There are growing concerns that conventional air handling systems in apartment buildings cannot ventilate individual apartments, are expensive in terms of initial cost and maintenance, have little impact on indoor air quality, and negatively impact the integrity of fire and smoke control separations. This paper discusses the strategy of compartmentalizing individual apartments to eliminate uncontrolled air movement as well as providing efficient and effective ventilation in each suite. The findings of recent air leakage testing and ventilation system performance testing in several recently constructed high-rise buildings were documented in this paper. Results indicated that compartmentalization was a viable strategy. However, ventilation strategies for both common corridors and apartments required adjustments. Air leakage testing showed that individual apartments were relatively airtight. However, concerns were raised that continuous negative pressure could induce water leakage through the building envelope. Testing also discovered that airflow capacities of in-suite exhaust equipment was less than manufacturer's specifications. Duct lengths, diameters, fittings, elbows and termination details had an impact on airflow performance. Testing also confirmed that the corridor ventilation systems were not energy efficient as a significant amount of outdoor air was required to pressurize leaks in the corridors and to ensure sufficient air was available to make-up air requirements in each apartment in response to intermittent exhaust fan operation. It was also determined that a very small positive pressure was required to accomplish the task of pressurizing corridors to minimize odour transmission. The provision of weather-stripping on corridor to apartment doors would reduce the quantity of airflow required for pressurization, helping to prevent shifts in pressure due to opening doors, elevators and wind and stack pressures acting in varying ways. 8 refs., 4 tabs., 2

  1. Research on the classification result and accuracy of building windows in high resolution satellite images: take the typical rural buildings in Guangxi, China, as an example

    Science.gov (United States)

    Li, Baishou; Gao, Yujiu

    2015-12-01

    The information extracted from the high spatial resolution remote sensing images has become one of the important data sources of the GIS large scale spatial database updating. The realization of the building information monitoring using the high resolution remote sensing, building small scale information extracting and its quality analyzing has become an important precondition for the applying of the high-resolution satellite image information, because of the large amount of regional high spatial resolution satellite image data. In this paper, a clustering segmentation classification evaluation method for the high resolution satellite images of the typical rural buildings is proposed based on the traditional KMeans clustering algorithm. The factors of separability and building density were used for describing image classification characteristics of clustering window. The sensitivity of the factors influenced the clustering result was studied from the perspective of the separability between high image itself target and background spectrum. This study showed that the number of the sample contents is the important influencing factor to the clustering accuracy and performance, the pixel ratio of the objects in images and the separation factor can be used to determine the specific impact of cluster-window subsets on the clustering accuracy, and the count of window target pixels (Nw) does not alone affect clustering accuracy. The result can provide effective research reference for the quality assessment of the segmentation and classification of high spatial resolution remote sensing images.

  2. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach

    Science.gov (United States)

    Kneifel, Joshua; Webb, David

    2016-01-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  3. High Performance Torso Cooling Garment

    Science.gov (United States)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  4. Building scale in community impact investing through nonfinancial performance measurement

    OpenAIRE

    Thornley, Ben; Dailey, Colby

    2010-01-01

    The measurement of nonfinancial performance is becoming increasingly important in the community impact investing industry, where individuals and institutions actively deploy capital in low-income domestic markets for both financial and social returns. Quality data ensure that the creation of jobs, construction of community facilities, financing of affordable housing, and other benefits that characterize the sector are delivered cost-effectively and transparently. This paper discusses the limi...

  5. The effect of simplifying the building description on the numerical modeling of its thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Stetiu, Corina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1993-07-01

    A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

  6. A regression-based approach to estimating retrofit savings using the Building Performance Database

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Travis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Univ. of California, Berkeley, CA (United States). Civil and Environmental Engineering Dept.; Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division

    2016-07-25

    Retrofitting building systems is known to provide cost-effective energy savings. This article addresses how the Building Performance Database is used to help identify potential savings. Currently, prioritizing retrofits and computing their expected energy savings and cost/benefits can be a complicated, costly, and an uncertain effort. Prioritizing retrofits for a portfolio of buildings can be even more difficult if the owner must determine different investment strategies for each of the buildings. Meanwhile, we are seeing greater availability of data on building energy use, characteristics, and equipment. These data provide opportunities for the development of algorithms that link building characteristics and retrofits empirically. In this paper we explore the potential of using such data for predicting the expected energy savings from equipment retrofits for a large number of buildings. We show that building data with statistical algorithms can provide savings estimates when detailed energy audits and physics-based simulations are not cost- or time-feasible. We develop a multivariate linear regression model with numerical predictors (e.g., operating hours, occupant density) and categorical indicator variables (e.g., climate zone, heating system type) to predict energy use intensity. The model quantifies the contribution of building characteristics and systems to energy use, and we use it to infer the expected savings when modifying particular equipment. We verify the model using residual analysis and cross-validation. We demonstrate the retrofit analysis by providing a probabilistic estimate of energy savings for several hypothetical building retrofits. We discuss the ways understanding the risk associated with retrofit investments can inform decision making. The contributions of this work are the development of a statistical model for estimating energy savings, its application to a large empirical building dataset, and a discussion of its use in informing

  7. Learning Apache Solr high performance

    CERN Document Server

    Mohan, Surendra

    2014-01-01

    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  8. Suite Ventilation Characteristics of Current Canadian Mid-andHigh-Rise Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.

    2000-01-01

    This paper characterizes ventilation in residential suiteslocated in ll buildings were between six and thirty-two stories tall andwere built between 1990 and 1995. The key findings from field performancetests of these buildings were: 1. Corridor supply airflows usually didnot meet design flows.2. Makeup air paths for suite exhaust were notproperly designed.3. Suite access door leakage was highly variable andusually did not meet smoke control requirements.4. Airflow from thecorridor through the suite access door leakage appeared to be the primaryventilation air supply for suites.5. Suites were usually well-ventilated,but some were marginally- or under-ventilated.6. Poor pressure controloften allowed transfer air from one suite to another. Inter-suitetransfer air fractions ranged from 0 to 45 percent, with an average of 19percent. In summary, this work showed suite ventilation can be highlyinfluenced by corridor supply flows, by the treatment of corridor accessdoors, and by transfer airflows. As a result, suite ventilation at anygiven time in current mid- and high-rise residential buildings is verydifficult to predict. To ensure suite ventilation performs as intendedunder all operating conditions, the building industry needs to addressthe identified problems through improved ventilation design, operation,and maintenance practices.

  9. Toward High-Performance Organizations.

    Science.gov (United States)

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  10. High-Performance Composite Chocolate

    Science.gov (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  11. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    17 5.2 BASELINE CHARACTERIZATION ........................................................................ 17 5.3 DESIGN AND LAYOUT OF SYSTEM...of sodium chloride). The refrigerant tubes of the WFHMX come in contact with the LD and so must be corrosion resistant. Copper/ nickel tubes...within Building 407 in no way limited access to the building. Furthermore, there was no chemistry or biology laboratory work that required

  12. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    Energy Technology Data Exchange (ETDEWEB)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  13. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    Science.gov (United States)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  14. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  15. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  16. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...... at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT...

  17. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  18. Challenges in Getting Building Performance Monitoring Tools for Everyday Use: User Experiences with A New Tool

    Directory of Open Access Journals (Sweden)

    Heikki Ihasalo

    2014-05-01

    Full Text Available There is a need for building performance monitoring because it is common that buildings do not perform as intended. A number of advanced tools for the purpose have been developed within the last tens of years. However, these tools have not been widely adopted in real use. A new tool presented here utilizes building automation data and transforms the data into a set of performance metrics, and is capable of visualizing building performance from energy, indoor conditions, and HVAC (heating, ventilation and air conditioning system perspectives. The purpose of this paper is to study the users’ perceptions of the use of tool. The research method was semi-structured interviews. Although the users were satisfied with the solution in general, it was not taken into operative use. The main challenges with the use of the solution were related to accessibility, trust, and management practices. The interviewees were struggling to manage with numerous information systems and therefore had problems in finding the solution and authenticating to it. All the interviewees did not fully trust the solution, since they did not entirely understand what the performance metrics meant or because the solution had limitations in assessing building performance. Management practices are needed to support the performance measurement philosophy.

  19. High-Performance Heat Pipe

    Science.gov (United States)

    Alario, J. P.; Kosson, R.; Haslett, R.

    1985-01-01

    Single vapor channel and single liquid channel joined by axial slot. New design, permits high heat-transport capacity without excessively reducing heat-transfer efficiency. Contains two large axial channels, one for vapor and one for liquid, permitting axial transport and radial heat-transfer requirements met independently. Heat pipe has capacity of approximately 10 to sixth power watt-inches (2.5 X 10 to sixth power watt-cm) orders of magnitude greater than heat capacity of existing heat pipes. Design has high radial-heat-transfer efficiency, structurally simple, and has large liquid and vapor areas.

  20. Introduction to Building Systems Performance: Houses That Work II; Period of Performance: January 2003--December 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  1. High-performance solar collector

    Science.gov (United States)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  2. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  3. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carbary, Lawrence D. [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  4. Building a practice. Budget forecasts and performance monitoring.

    Science.gov (United States)

    Gripper, J

    1989-01-14

    In order to run a small business effectively you must be in financial control and this means that you have to be aware how the business is performing. If you wait until your accountant has got out the annual accounts valuable time has been wasted in making necessary decisions and corrections to poor trends in your business so monthly/quarterly records are required. Decisions as to whether you can afford to take another assistant, set up a branch surgery, the level of your fee increases, whether to buy or lease your cars; are all dependent on having available up to date financial knowledge of your business. If you have a microcomputer in the practice you can use spreadsheets which will allow the accurate prediction of cash flow or profitability. You can also ask the question 'what happens if...?' and get the answer in seconds. But even without a computer, financial control can be easily maintained if you are prepared to spend a couple of hours each month with your practice figures.

  5. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    Science.gov (United States)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  6. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    Directory of Open Access Journals (Sweden)

    Hery Tiana Rakotondramiarana

    2015-05-01

    Full Text Available Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. For the case of Antananarivo, the amplitude of the temperature fluctuations at the top face of the support is reduced by 28 °C when using green roof. The impact of the green roof on indoor air temperature and energy demand is investigated. The vegetation decreases the maximum indoor air temperature and improves the building thermal comfort during summer days. It has no effect on the minimum indoor air temperature, but additional soil thickness can increase it. In addition, a global sensitivity analysis, which is carried out on the proposed model without considering any specific weather data, allows us to identify the most influential parameters on the energy demand. It has been found that green roofs have almost insignificant thermal impact in insulated buildings; however, their potential prevails over the building envelope and weather characteristics in the case of non-insulated building.

  7. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J.-M.

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  8. Harm A. Weber academic center, post-occupancy building performance and comfort perceptions

    Directory of Open Access Journals (Sweden)

    Keelan P. Kaiser

    2012-10-01

    Full Text Available The Weber Center at Judson University, a mixed mode, naturally ventilated building in a continental climate, has been in operation for just over a year, with initial occupancy in August 2007. This paper compares the design objectives and building performance expectations against the first yearof actual energy consumption in a first of a series of post-occupancy evaluations. The paper contrasts the building performance with general user satisfaction and perceptions of comfort through a post occupancy evaluation of user surveys and interviews. The innovations involved in this building, particularly mechanical strategies atypical in contemporary practice within this climate and region, have introduced some interesting problems that have been documented in the post-occupancy evaluation process, while confirming many of the original intentions of the design.

  9. Validation of the Software Used in Determining the Energy Performance of Buildings

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2010-07-01

    Full Text Available Romania currently undergoes a development of the software used in assessing Buildings Energy Performance. In order to grant the free movement of the products and services in the European space, the Buildings Energy Performance software cannot be subjected to a certain design algorithm based on a regularized mathematical model. Therefore it is necessary to develop a pattern which should provide the possibility of testing the commercial software using different design and structuring algorithms. A maximum level of the necessary input data is settled as well as a minimum level of the data resulted from calculations. The assessment of the software is based on a synthetic report including the input data and the values provided by calculations, for a variable number of testing sheets. The software used in assessing the similar commercial products must be based on experimentally validated calculation methods. The dynamic calculation mathematical models included in the structure of the Validation software do not mark the difference between the seasons (hot-cold and may be adapted to any initial conditions operating as input data. According to the validation procedure, the mathematical models substantiating the calculation methods specific to the Standard Validation / Attesting Software (PCVE are experimentally validated by long-term measurements performed on full-scale models, in a controlled microclimate. The development of the patterns of validating the calculation methods and the software offers a new approach of the Buildings Energy Performance Calculation Methodology focusing the regulated contents on the EPB quantification methodological principles, phenomenologically substantiated as well as on providing the calculation support by software attested by the procedure of inter-validation in terms of the Standard Validation Software, experimentally validated. The new approach may represent a determining step forward in harmonizing the EPB calculation

  10. High-performance hierarchical fracturing

    Science.gov (United States)

    Cobb, Nicolas B.; Zhang, Weidong

    2002-07-01

    We describe in more detail a mask data preparation (MDP) flow previously proposed. The focus on this paper is a performance comparison of hierarchical fracturing techniques compared to standard fracturing. Our flow uses GDSII data as input, including a GDSII-based job deck description. The output is maximally compacted, trapezoidal mask writer (MW) formatted data. Our flow takes advantage of hierarchy explicit in the GDSII file(s). This allows optimal determination of 'cover cells', which are repeatable groups of patterns within the data. The use of cover cells allows a reduction of fracturing runtime. In one case, a 21 GB MEBES file was fractured in 30 hours using the standard technique and 53 minutes using the hierarchical cover cell technique.

  11. Experimental and numerical modelling of thermal performance of a residential building in Belgrade

    Directory of Open Access Journals (Sweden)

    Vučićević Biljana

    2009-01-01

    Full Text Available The main objective of this paper is to evaluate simulation of thermal performance of a residential 4 floors high building placed in the suburb of Belgrade (ground and 3 upper floors with it's total surface area of 1410 m2. It's supplied with liquid petroleum gas storage tank as a fuel reservoir since there is automatic gas boiler in each apartment. Measurements have been carried out in first floor apartment (68 m2 heating area in heating season period. Measured parameters are: inside and outside air temperature and U-value of apartment envelope. Weather data is obtained by using METEONORM, the software package for climatic data calculation based on last 10 years measurements. TRNSYS 16 has been used as the simulation tool. The behavior of the building in terms of heating loads for climate on a daily and monthly basis in heating season is investigated. The calculations show possibility for saving energy by optimization inside temperature during different gas boiler working regimes.

  12. Is the sky the limit? High-rise buildings and office rents

    NARCIS (Netherlands)

    Koster, H.R.A.; van Ommeren, J.N.; Rietveld, P.

    2014-01-01

    Modern central business districts are characterized by high-rise office buildings, but their presence cannot be explained by standard urban economic models only. We aim to explore the impact of other forces that explain the presence of tall buildings, by examining the existence of a building height

  13. Highlighting High Performance: Clearview Elementary School, Hanover, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    2002-08-01

    Case study on high performance building features of Clearview Elementary School in Hanover, Pennsylvania. Clearview Elementary School in Hanover, Pennsylvania, is filled with natural light, not only in classrooms but also in unexpected, and traditionally dark, places like stairwells and hallways. The result is enhanced learning. Recent scientific studies conducted by the California Board for Energy Efficiency, involving 21,000 students, show test scores were 15% to 26% higher in classrooms with daylighting. Clearview's ventilation system also helps students and teachers stay healthy, alert, and focused on learning. The school's superior learning environment comes with annual average energy savings of about 40% over a conventional school. For example, with so much daylight, the school requires about a third less energy for electric lighting than a typical school. The school's innovative geothermal heating and cooling system uses the constant temperature of the Earth to cool and heat the building. The building and landscape designs work together to enhance solar heating in the winter, summer cooling, and daylighting all year long. Students and teachers have the opportunity to learn about high-performance design by studying their own school. At Clearview, the Hanover Public School District has shown that designing a school to save energy is affordable. Even with its many innovative features, the school's $6.35 million price tag is just $150,000 higher than average for elementary schools in Pennsylvania. Projected annual energy cost savings of approximately $18,000 mean a payback in 9 years. Reasonable construction costs demonstrate that other school districts can build schools that conserve energy, protect natural resources, and provide the educational and health benefits that come with high-performance buildings.

  14. Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance

    Directory of Open Access Journals (Sweden)

    Agnese Attanasio

    2018-02-01

    Full Text Available There is a growing interest in the construction sector in the use of sustainable binders as an alternative to ordinary Portland cement, the production of which is highly impacting on the environment, due to high carbon dioxide emissions and energy consumption. Alkali-activated binders, especially those resulting from low-cost industrial by-products, such as coal fly ash or metallurgical slag, represent a sustainable option for cement replacement, though their use is more challenging, due to some technological issues related to workability or curing conditions. This paper presents sustainable alkali-activated mortars cured in room conditions and based on metakaolin, fly ash, and furnace slag (both by-products resulting from local sources and relevant blends, aiming at their real scale application in the building sector. The effect of binder composition—gradually adjusted taking into consideration technical and environmental aspects (use of industrial by-products in place of natural materials in the view of resources saving—on the performance (workability, compressive strength of different mortar formulations, is discussed in detail. Some guidelines for the design of cement-free binders are given, taking into consideration the effect of each investigated alumino-silicate component. The technical feasibility to produce the mortars with standard procedures and equipment, the curing in room conditions, the promising results achieved in terms of workability and mechanical performance (from 20.0 MPa up to 52.0 MPa, confirm the potential of such materials for practical applications (masonry mortars of class M20 and Md. The cement-free binders resulting from this study can be used as reference for the development of mortars and concrete formulations for sustainable building materials production.

  15. Building In Accountability Mechanisms for Democracies & Bureaucracies: From Governmental & Educational Special Interest Operations to High-Quality Performance Systems. An Added Perspective to "What Price Democracy? Politics, Markets and America's Schools" by Dr. Terry Moe and Dr. John Chubb.

    Science.gov (United States)

    Packard, Richard D.

    To assure accountability to educational policy developed by elected and appointed leaders, agencies and organizations must adopt high quality evaluation designs tailored to meet three basic tenets: (1) different processes for policy formation and demonstration of accountability; (2) clear accountability expectations built into policies; (3)…

  16. Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions

    DEFF Research Database (Denmark)

    Toftum, Jørn; Andersen, Rune Vinther; Jensen, Kasper Lynge

    2009-01-01

    configurations, especially in the tropical climate, the estimated performance differed only modestly between configurations. However, energy consumption was always lower in buildings without mechanical cooling, particularly so in the tropical climate. The findings indicate that determining acceptable indoor......Based on building energy and indoor environment simulations, this study uses a recently developed method relying on Bayesian Network theory to estimate and compare the consequences for occupant performance and energy consumption of applying temperature criteria set according to the adaptive model...... thermal environments with the adaptive comfort model may result in significant energy savings and at the same time will not have large consequences for the mental performance of occupants....

  17. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    to more than double the dehumidification provided by the air conditioner. At AHRI A rating conditions, the LDDX prototypes that were tested at...building. Furthermore, there was no chemistry or biology laboratory work that required exceptionally tight control of the indoor environment with...limited access to the building. Furthermore, there was no chemistry or biology laboratory work that required exceptionally tight control of the indoor

  18. Check the comfort of occupants in high rise building using CFD

    OpenAIRE

    Mohamed I. Farouk

    2016-01-01

    The influence of wind on structures is a complex subject. Bending moments, normal forces, torsion moments, stresses on cladding, comfort of the pedestrians around new building, the impact of new building on existing buildings, internal pressures and vibrations are the main effects of the wind on the structures. Vibration of the structures is one of the major effects of wind especially on bridges and high rise buildings. It could lead to major displacements, accelerations and resulting forces....

  19. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  20. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  1. Improving the energy performance of historic buildings with architectural and cultural values

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    2017-01-01

    The thermal performance of solid walls of historic buildings can be improved by external or internal insulation. External insulation is preferred from a technical perspective, but is often disregarded as many such buildings have architectural or cultural values leaving internal insulation as the ......, instead of replacing them with new energy-efficient buildings, because of the architectural and cultural values that they possess. The underlying basis for this study is a 5-year research project, RIBuild, funded by the European Commission, running from 2015 to 2019.......The thermal performance of solid walls of historic buildings can be improved by external or internal insulation. External insulation is preferred from a technical perspective, but is often disregarded as many such buildings have architectural or cultural values leaving internal insulation...... as the only possible solution. As internal insulation is considered a risky way of improving the thermal performance from a moisture perspective, technically feasible solutions are needed. Further, other arguments than energy saving could convince a building owner to carry out internal insulation, e...

  2. GRFPU- High Performance IEEE-754 Floating-Point Unit

    Science.gov (United States)

    Catovic, Edvin

    2004-06-01

    To improve floating- point performance of LEON-based systems, a new FPU called GRFPU has been developed at Gaisler Research. With a peak performance of 250 MFLOPS on a typical 0.13 um process GRFPU offers a significant performance improvement over the existing solutions. Although primarily developed for LEON processor GRFPUcan be used as a building block in a custom compute engine or a DSP. GRFPU is easily interfaced to LEON processor through GRFPU Control unit (GRFPC).GRFPU and GRFPC are written in high- level synthesizable VHDL code and are suitable for both ASIC and FPGA development. GRFPU and GRFPC are fully SEU protected using TMR and EDAC protection.

  3. The comparison of the energy performance of hotel buildings using PROMETHEE decision-making method

    Directory of Open Access Journals (Sweden)

    Vujosevic Milica L.

    2016-01-01

    Full Text Available Annual energy performance of the atrium type hotel buildings in Belgrade climate conditions are analysed in this paper. The objective is to examine the impact of the atrium on the hotel building’s energy needs for space heating and cooling, thus establishing the best design among four proposed alternatives of the hotels with atrium. The energy performance results are obtained using EnergyPlus simulation engine, taking into account Belgrade climate data and thermal comfort parameters. The selected results are compared and the hotels are ranked according to certain criteria. Decision-making process that resulted in the ranking of the proposed alternatives is conducted using PROMETHEE method and Borda model. The methodological approach in this research includes the creation of a hypothetical model of an atrium type hotel building, numerical simulation of energy performances of four design alternatives of the hotel building with an atrium, comparative analysis of the obtained results and ranking of the proposed alternatives from the building’s energy performance perspective. The main task of the analysis is to examine the influence of the atrium, with both its shape and position, on the energy performance of the hotel building. Based on the results of the research it can be to determine the most energy efficient model of the hotel building with atrium for Belgrade climate condition areas. [Projekat Ministarstva nauke Republike Srbije: Spatial, Environmental, Energy and Social aspects of the Developing Settlements and Climate Change - Mutual Impacts

  4. The integration of daylighting with artificial lighting to enhance building energy performance

    Science.gov (United States)

    Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi

    2017-10-01

    In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.

  5. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  6. Human Factors in Green Office Building Design: The Impact of Workplace Green Features on Health Perceptions in High-Rise High-Density Asian Cities

    Directory of Open Access Journals (Sweden)

    Fei Xue

    2016-10-01

    Full Text Available There is a growing concern about human factors in green building, which is imperative in high-rise high-density urban environments. This paper describes our attempts to explore the influence of workplace green features (such as green certification, ventilation mode, and building morphology on health perceptions (personal sensation, sensorial assumptions, healing performance based on a survey in Hong Kong and Singapore. The results validated the relationship between green features and health perceptions in the workplace environment. Remarkably, participants from the air-conditioned offices revealed significant higher concerns about health issues than those participants from the mixed-ventilated offices. The mixed-ventilation design performs as a bridge to connect the indoor environment and outdoor space, which enables people to have contact with nature. Additionally, the preferred building morphology of the workplace is the pattern of a building complex instead of a single building. The complex form integrates the configuration of courtyards, podium gardens, green terrace, public plaza, and other types of open spaces with the building clusters, which contributes to better health perceptions. This research contributes to the rationalization and optimization of passive climate-adaptive design strategies for green buildings in high-density tropical or subtropical cities.

  7. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  8. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  9. RESIDENTIAL BUILDING DESIGN CONSIDERING THE BRAZILIAN PERFORMANCE STANDARD: ANALYSES TO WALL PARTITION

    Directory of Open Access Journals (Sweden)

    Luciana Alves Oliveira

    2012-06-01

    Full Text Available In many countries, the design begins by the performance definition of the building parts. The data are then used as a reference to select the viable construction technologies. In Brazil, this practice is still uncommon, mostly in residential projects, because, first, it is defined the architectural characteristics, technological solutions and cost for after consider the technical performance requirements. However, this scenario tends to change due to the publication of the Brazilian performance standard ABNT NBR 15575 (2008 that establishes requirements and quantitative parameters to the five main residential building subsystems (structure, floors, wall partition, envelope and covering, and hydraulic installations, besides to the general requirements for all building. The current version contains requirements for structural performance, fire safety, watertightness, thermal and acoustic performances, functionality, accessibility, environmental impact, durability and maintenance. This standard also considers the concepts of Service Life, Design Life and guaranties periods. The aim of this paper is to present some considerations which must be included to the design process of wall partition for the accomplishment of the performance requirements of ABNT NBR 15575-4 (2008. The considerations are designed to wall partitions, but they can be used as an example to the others building subsystems. This paper was developed based on the bibliographical research and on four case studies, which illustrate how the design process of the wall partition needs to change and what needs to be worked on in order to attend the performance concept and requirements of NBR 15575 (2008.

  10. Performance analysis of air source heat pump system for office building

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  11. An Associate Degree in High Performance Manufacturing.

    Science.gov (United States)

    Packer, Arnold

    In order for more individuals to enter higher paying jobs, employers must create a sufficient number of high-performance positions (the demand side), and workers must acquire the skills needed to perform in these restructured workplaces (the supply side). Creating an associate degree in High Performance Manufacturing (HPM) will help address four…

  12. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational

  13. Building Energy and Cost Performance: An Analysis of Thirty Melbourne Case Studies

    Directory of Open Access Journals (Sweden)

    Yu Lay Langston

    2012-11-01

    Full Text Available This study investigates the energy and cost performance of thirty recent buildings in Melbourne, Australia. Commonly, building design decisions are based on issues pertaining to construction cost, and consideration of energy performance is made only within the context of the initial project budget. Even where energy is elevated to more importance, operating energy is seen as the focus and embodied energy is nearly always ignored. For the first time, a large sample of buildings has been assembled and analyzed to improve the understanding of both energy and cost performance over their full life cycle, which formed the basis of a wider doctoral study into the inherent relationship between energy and cost. The aim of this paper is to report on typical values for embodied energy, operating energy, capital cost and operating cost per square metre for a range of building functional types investigated in this research. The conclusion is that energy and cost have quite different profiles across projects, and yet the mean GJ/m2 or cost/m2 have relatively low coefficients of variation and therefore may be useful as benchmarks of typical building performance.  

  14. The first indications of the effects of the new legislation concerning the energy performance of buildings on renewable energy applications in buildings in Greece

    Directory of Open Access Journals (Sweden)

    Nikos Papamanolis

    2015-12-01

    Full Text Available Greece is a country rich in renewable energy sources yet also a country in which the building sector is relatively energy-intensive. In October 2010 the EU Directive on the Energy Performance of Buildings was incorporated into Greek law. At the same time other legislative and administrative measures, as well as financial incentives, were implemented to improve the energy performance of buildings in Greece. Some of these measures were intended to increase the number of renewable energy applications in buildings and to improve the ways in which the country’s favourable climatic conditions are exploited. This package of measures and regulations has had a catalytic effect on the whole of the country’s building production and management system. Based on the first indications of the effects of the implementation of the new legislation, this study attempts to evaluate the impact that the latter has had on the progress of renewable energy applications in buildings in Greece.

  15. Performance analysis of WAVE communication under high-speed driving

    Directory of Open Access Journals (Sweden)

    Bo-young Kang

    2017-12-01

    Full Text Available Although WAVE (Wireless Access in Vehicular Environments is a technology designed for the high-speed mobile environments, WAVE communication performance in a real road environment is highly dependent on the surrounding environments such as moving vehicles, road shape, and topography. In particular, when a vehicle moves at high speed, the location of the vehicle and its proximity to the road-side device are rapidly changed and thus affect communication performance. Accordingly, we build a performance evaluation system based on the WAVE-LTE network cooperative operation. We also analyzed the performance differences based on external environmental factors, such as information volume and velocity, from the data acquired through actual vehicle tests.

  16. ANALYSIS OF AMINO ACIDS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    Qurat E Noor Baig

    2016-06-01

    Full Text Available Amino acids are the building blocks of proteins and are considered as the key precursors for the formation of hormones and low molecular weight nitrogenous substances with biological importance. Since the analysis of amino acids has been carried out for both qualitative and quantitative purposes with an aim to study their levels in the plasma concentration, the quantitative determination, in particular, also helps in the diagnosis of different diseases associated with their deficiency. This review article deals with the determination of amino acids by chromatographic methods which include ion-exchange chromatography (IEC, high performance liquid chromatography (HPLC, reverse phase-high performance liquid chromatography (RP-HPLC and ultra-performance liquid chromatography (UPLC. The review will also give an idea for the preparation of samples, derivatization methods for the analysis of amino acids (direct and indirect methods and separation of amino acids by high performance liquid chromatographic technique.

  17. Benchmarking the energy performance of office buildings: A data envelopment analysis approach

    Directory of Open Access Journals (Sweden)

    Molinos-Senante, María

    2016-12-01

    Full Text Available The achievement of energy efficiency in buildings is an important challenge facing both developed and developing countries. Very few papers have assessed the energy efficiency of office buildings using real data. To overcome this limitation, this paper proposes an energy efficiency index for buildings having a large window-to-wall ratio, and uses this index to identify the main architectural factors affecting energy performance. This paper assesses, for the first time, the energy performances of 34 office buildings in Santiago, Chile, by using data envelopment analysis. Overall energy efficiency is decomposed into two indices: the architectural energy efficiency index, and the management energy efficiency index. This decomposition is an essential step in identifying the main drivers of energy inefficiency and designing measures for improvement. Office buildings examined here have significant room for improving their energy efficiencies, saving operational costs and reducing greenhouse gas emissions. The methodology and results of this study will be of great interest to building managers and policymakers seeking to increase the sustainability of cities.

  18. Driving Building Performance for Successful Participation in the Federal Green Challenge: Strategies for Energy/Water Conservation and Waste Diversion

    Science.gov (United States)

    Tom Burke, GSA Sustainability Program Manager for Region 2, will discuss program efforts to improve building performance at over 60 major facilities. Topics include implementing Guiding Principles for Sustainable Federal Buildings (EO 13693) and Re-TRAC.

  19. Thermoelectric generator experimental performance testing for wireless sensor network application in smart buildings

    Directory of Open Access Journals (Sweden)

    Al Musleh Mohamed

    2017-01-01

    Full Text Available In order to make a conventional building more efficient or smarter, systems feedbacks are essential. Such feedbacks can include real-time or logged data from various systems, such as temperature, humidity, lighting and CO2 levels. This is only possible by the use of a network of sensors which report to the building management system. Conventional sensors are limited due to wiring and infrastructure requirements. Wireless Sensor Networks (WSN however, eliminates the wiring limitations but still in certain cases require periodical battery changes and maintenance. A suitable solution for WSN limitations is to use different types of ambient energy harvesters to power battery-less sensors or alternatively to charge existing batteries so as to reduce their changing requirements. Such systems are already in place using various energy harvesting techniques. Thermoelectric Generators (TEG are one of them where the temperature gradient is used to generate electricity which is conditioned and used for WSN powering applications. Researchers in this field often face difficulty in estimating the TEG output at the low-temperature difference as manufacturers’ datasheets and performance data are not following the same standards and in most cases cover the high-temperature difference (more than 200C°. This is sufficient for industrial applications but not for WSN systems in the built environment where the temperature difference is much smaller (1-20C° is covered in this study. This paper presents a TEG experimental test setup using a temperature controlled hotplate in order to provide accurate TEG performance data at the low-temperature difference range.

  20. [Research on the performance comparing and building of affective computing database based on physiological parameters].

    Science.gov (United States)

    Li, Xin; Du, Xiaojuan; Zhang, Yunpeng; Ying, Lijuan; Li, Changwuz

    2014-08-01

    The validity and reasonableness of emotional data are the key issues in the cognitive affective computing research. Effects of the emotion recognition are decided by the quality of selected data directly. Therefore, it is an important part of affective computing research to build affective computing database with good performance, so that it is the hot spot of research in this field. In this paper, the performance of two classical cognitive affective computing databases, the Massachusetts Institute of Technology (MIT) cognitive affective computing database and Germany Augsburg University emotion recognition database were compared, their data structure and data types were compared respectively, and emotional recognition effect based on the data were studied comparatively. The results indicated that the analysis based on the physical parameters could get the effective emotional recognition, and would be a feasible method of pressure emotional evaluation. Because of the lack of stress emotional evaluation data based on the physiological parameters domestically, there is not a public stress emotional database. We hereby built a dataset for the stress evaluation towards the high stress group in colleges, candidates of postgraduates of Ph. D and master as the subjects. We then acquired their physiological parameters, and performed the pressure analysis based on this database. The results indicated that this dataset had a certain reference value for the stress evaluation, and we hope this research can provide a reference and support for emotion evaluation and analysis.

  1. Parameter study on performance of building cooling by night-time ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2008-01-01

    of different parameters such as building construction, heat gains, air change rates, heat transfer coefficients and climatic conditions including annual variations on the number of overheating degree hours (operative room temperature >26 °C) was evaluated. Climatic conditions and air flow rate during night......Especially for commercial buildings in moderate climates, night-time ventilation seems to be a simple and energy-efficient approach to improve thermal comfort in summer. However, due to uncertainties in the prediction of thermal comfort in buildings with night-time ventilation, architects...... and engineers are still hesitant to apply this technique. In order to reduce the uncertainties, the most important parameters affecting night ventilation performance need to be identified. A typical office room was therefore modelled using a building energy simulation programme (HELIOS), and the effect...

  2. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  3. Experimental validation of the buildings energy performance (PEC assessment methods with reference to occupied spaces heating

    Directory of Open Access Journals (Sweden)

    Cristian PETCU

    2010-01-01

    Full Text Available This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC in view of their correction of completing. The entire research activity aims to experimentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009, on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type. The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006. The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009. The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values

  4. Comparison of measured and calculated energy performance certificate for the buildings of company Krka, d.d., Novo mesto

    OpenAIRE

    Tisov, Ana

    2014-01-01

    The thesis presents the production of the measured and the calculated energy performance certificate, which is as of late mandatory when selling or renting buildings, as well as with building as a part of the project of Works executed. The performance certificate has been executed for the two buildings which were built as parts of the development control centre of the company Krka, d. d., Novo mesto. The buildings show similarities in design and purpose. The first part of the thesis presents ...

  5. Heat transfer performance uniformity factor for the basement floor made of brick vaults in historic buildings

    Directory of Open Access Journals (Sweden)

    Murgul Vera

    2017-01-01

    Full Text Available The paper exposes the calculation of Heat transfer performance uniformity factor for the basement floor made of brick vaults in residential historic buildings. It was determined that the temperature pattern on the floor surface of the premise could be characterized as uniform one. Heat transfer performance uniformity factor for the considered basement floor design can be ignored during the thermotechnical calculations. Thermal resistance calculation is performed for the overlap structure with the smallest thickness.

  6. Evaluation and specification of high build and special use waterborne pavement markings.

    Science.gov (United States)

    2014-01-01

    High build waterborne traffic paints and highly retro-reflective elements were applied at various locations to evaluate their : practicality for use by NYSDOT Maintenance forces. In addition, highly reflective elements were applied within grooved in ...

  7. High performance computing and communications program

    Science.gov (United States)

    Holcomb, Lee

    1992-01-01

    A review of the High Performance Computing and Communications (HPCC) program is provided in vugraph format. The goals and objectives of this federal program are as follows: extend U.S. leadership in high performance computing and computer communications; disseminate the technologies to speed innovation and to serve national goals; and spur gains in industrial competitiveness by making high performance computing integral to design and production.

  8. Investigation of fire-induced collapse scenarios for a steel high-rise building

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2011-01-01

    The paper deals with the problem of understanding and evaluating the structural response of steel buildings to fire and outlines a general framework for the structural fire safety design of high-rise building. Among all building typology, the fire design of high-rise buildings is particularly...... (architectural design choices and active measures) and won’t be investigated in detail in this paper; the paper focus instead on structural design aspects, with specific reference to the iii) enhanced susceptibility of high-rise buildings to disproportionate collapse, due to the significant vertical elevation...... still a relatively low temperature at the time of failure: in this respect, the example of a high rise building is presented in the paper, where, depending on the fire scenarios considered and as different beam-column stiffness ratio, fire damages can remain localized to the heated zone or involve other...

  9. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    Energy Technology Data Exchange (ETDEWEB)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  10. Study on Solar Radiation Models in South Korea for Improving Office Building Energy Performance Analysis

    Directory of Open Access Journals (Sweden)

    Kee Han Kim

    2016-06-01

    Full Text Available Hourly global solar radiation in a weather file is one of the significant parameters for improving building energy performance analyses using simulation programs. However, most weather stations worldwide are not equipped with solar radiation sensors because they tend to be difficult to manage. In South Korea, only twenty-two out of ninety-two weather stations are equipped with sensors, and there are large areas not equipped with any sensors. Thus, solar radiation must often be calculated by reliable solar models. Hence, it is important to find a reliable model that can be applied in the wide variety of weather conditions seen in South Korea. In this study, solar radiation in the southeastern part of South Korea was calculated using three solar models: cloud-cover radiation model (CRM, Zhang and Huang model (ZHM, and meteorological radiation model (MRM. These values were then compared to measured solar radiation data. After that, the calculated solar radiation data from the three solar models were used in a building energy simulation for an office building with various window characteristics conditions, in order to identify how solar radiation differences affect building energy performance. It was found that a seasonal solar model for the area should be developed to improve building energy performance analysis.

  11. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  12. Performance Evaluation and Improvement of a Newly-Renovated Danish School Building (Retro-commissioning)

    DEFF Research Database (Denmark)

    Liu, Li; Georgieva, Viktoriya Vasileva; Zabusova, Diana

    2017-01-01

    In this study, we analyse and evaluate the energy performance of a Danish school building 4 years after its renovation. The structure of the following paper follows four phases, which include Planning, Investigation, Implementation and Hand-off. In the Planning phase, the objectives of the retro ...... solutions and their impact on the energy consumption and indoor environmental quality in the building. Description of the final solution for optimization is included in the conclusion (Hand-off phase) of this paper....... commissioning are set based on the Owner’s Project Requirements. The Investigation phase aims to analyze how the building and its systems are performing in terms of energy use and indoor environmental quality. The Implementation phase includes dynamic building simulations, which target to analyze different......In this study, we analyse and evaluate the energy performance of a Danish school building 4 years after its renovation. The structure of the following paper follows four phases, which include Planning, Investigation, Implementation and Hand-off. In the Planning phase, the objectives of the retro...

  13. High Performance Spaceflight Computing (HPSC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In 2012, the NASA Game Changing Development Program (GCDP), residing in the NASA Space Technology Mission Directorate (STMD), commissioned a High Performance...

  14. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  15. Activity of radon daughters in high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fremlin, J.H. (University of Petroleum and Minerals, Dhahran, Saudi Arabia)

    1982-07-01

    The gamma-radiation dose-rate was measured inside comparable rooms on different floors of multi-storey Halls of Residence in Birmingham. In particular, the concentrations of Polonium 218 and Po 214 were monitored. There was no significant decline in activity with increasing height from the ground. Any variations are probably due to the specific characteristics of the buildings studied.

  16. Highlighting High Performance: Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-11-01

    Oberlin College’s Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials

  17. The handbook of high-performance virtual teams: a toolkit for collaborating across boundaries

    National Research Council Canada - National Science Library

    Nemiro, Jill E; Beyerlein, Michael Martin; Bradley, Lori; Beyerlein, Susan T

    2008-01-01

    ... Sensemaking to Create High-Performing Virtual Teams 131 Gina Hinrichs, Jane Seiling, Jackie Stavros SIX Trust Building Online: Virtual Collaboration and the Development of Trust 153 Chris Francov...

  18. Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea

    OpenAIRE

    Seung-Chul Kim; Jong-Ho Yoon; Ru-Da Lee

    2017-01-01

    (1) Background: The application of high insulation to a building envelope helps reduce the heating load, but increases the cooling load. Evaluating the installation of high insulation glazing to buildings in climate zones with four distinct seasons, as in the case of South Korea, is very important; (2) Methods: This study compared the heating energy performance of four types of glazing, inside vacuum double glazing, outside vacuum double glazing, single vacuum glazing, and low-e double glazin...

  19. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  20. Study on prevention of spread of vertical fire along finishing materials for external wall of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Yoo Yong Ho

    2013-11-01

    Full Text Available Although there are laws in the Korea Building Act relating to exterior finishing materials, fireproof structures and fire-stop of curtain wall structures, the standards relating to and test methods on securing detailed fire safety functions for exterior materials of all buildings including high-rise buildings have not been prepared. This is due to the fact that test methods and standards to quantitatively evaluate the vertical fire spread of the exterior material of buildings do not exist. In addition, while semi non-combustible materials or non-combustible materials are required to be used to prevent fire spread in buildings which exceed 30-stories, it is necessary to review the standards and regulations in cases where fire blocking systems, capable of preventing the vertical fire spread within the curtain wall, are installed to consider permitting the utilization of fire retardant material following an assessment of the construction characteristics of high-rise buildings. The functional evaluation standards and test methods on the vertical fire spread introduced in this study will be a more effective method for performing evaluations to prevent fire spread compared to the currently utilized method of performing small scale tests.

  1. Quantifying environmental performance of Jali screen facades for contemporary buildings in Lahore, Pakistan

    Science.gov (United States)

    Batool, Ayesha

    Jali screens are traditional window treatments in vernacular buildings throughout South Asia and the Middle East. Contemporary builders are starting to incorporate Jali screens as decorative facade elements; however, architects and scholars have largely ignored the impact of Jali screens on overall building energy and day-lighting performance. This research evaluates the effect of Jali screens, across a range of perforation ratios, on energy utilization and day-lighting quality in contemporary office buildings. The data collection and analysis is through fieldwork in Lahore, Pakistan, as well as through computational energy modeling. Results demonstrate that Jali screens have a promising positive impact on cooling loads and may improve visual comfort. The findings suggest a holistic perspective combining traditional architecture and performance enhancement by architects and designers.

  2. A Study on Problems Arises in Practicing Fire Drill in High Rise Building in Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Zahari N.F.

    2014-01-01

    Full Text Available Fire drill is one of the steps taken to mitigate the risk trapped in a building during outbreak of fire. Hence, it is very important for every building to practice fire drill, especially high-rise building. Referring to Fire and Rescue Department of Malaysia(BOMBA, high-rise building had a higher risk compared to other type of buildings. However, there might be problems arise to practice fire drill especially in high-rise building. This research intends to study on fire drill procedure and identify any possible common problems arises when practicing fire drill in high-rise building in Kuala Lumpur. Information was gained through regulations and guidelines associated with fire drill procedure and also parties involved in the practice. Besides, a survey is done for awareness of occupants in high-rise building on fire drill practice. For the case study, three high-rise building are selected in Kuala Lumpur based on specific criteria. Analysis for this research comprises of comparative and descriptive approach as well as statistical analysis which are documented based on case studies and questionnaire survey. The findings indicates that there is no standardized procedure in fire drill, while the most common problems that can be seen in practicing fire drill are lack of commitment among occupants, lack of information on fire drill and output on weaknesses after fire drill been practiced.

  3. Engine Of Innovation: Building the High Performance Catalog

    Directory of Open Access Journals (Sweden)

    Will Owen

    2015-06-01

    Full Text Available Numerous studies have indicated the sophisticated web-based search engines have eclipsed the primary importance of the library catalog as the premier tool for researchers in Higher education.  We submit that the catalog remains central to the research process.  Through a series of strategic enhancements, the University of North Carolina at Chapel Hill, in partnership with the other members of the Triangle Research Libraries Network, has made the catalog a carrier of services in addition to bibliographic data, facilitating not simply discovery but also delivery of the information researchers seek.

  4. Building High-Performing and Improving Education Systems: Leadership. Review

    Science.gov (United States)

    Slater, Liz

    2013-01-01

    Many of the policy documents and much of the recent literature talk about "leadership" when discussing the role of headteachers and principals of schools. The word is also used when writing about other senior and middle managers. It is a way of showing the difference between what used to be expected of headteachers and what is expected…

  5. High Performance School Buildings in Portugal: A Life Cycle Perspective

    Science.gov (United States)

    Jorge, Graca Fonseca; da Costa, Marta Marques

    2011-01-01

    In 2007 the Portuguese government launched a major school modernisation programme, and has taken steps to ensure the long-term sustainability of facilities. A specially created state-owned company, Parque Escolar (PE) has already completed 104 schools; 70 are work-in-progress and an additional 39 are under design or tender. Parque Escolar is…

  6. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  7. Quality Assurance Roadmap for High Performance Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-10-05

    This report outlines the approach to quality assurance in the construction process for new residential construction, including seven process steps from the assessment of current construction practice, through design and documentation changes, to training and quality control for on-site personnel.

  8. National Best Practices Manual for Building High Performance Schools (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2007-10-01

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written specifically for architects and engineers, The Best Practices Manual is designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

  9. National Best Practices Manual for Building High Performance Schools

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-10-01

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

  10. Monte Carlo Frameworks Building Customisable High-performance C++ Applications

    CERN Document Server

    Duffy, Daniel J

    2011-01-01

    This is one of the first books that describe all the steps that are needed in order to analyze, design and implement Monte Carlo applications. It discusses the financial theory as well as the mathematical and numerical background that is needed to write flexible and efficient C++ code using state-of-the art design and system patterns, object-oriented and generic programming models in combination with standard libraries and tools.   Includes a CD containing the source code for all examples. It is strongly advised that you experiment with the code by compiling it and extending it to suit your ne

  11. Parametric study on the performance of green residential buildings in China

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2015-03-01

    Full Text Available The parametric study of the indoor environment of green buildings focuses on the quantitative and qualitative improvement of residential building construction in China and the achievement of indoor thermal comfort at a low level of energy use. This study examines the effect of the adaptive thermal comfort of indoor environment control in hot summer and cold winter (HSCW zones. This work is based on a field study of the regional thermal assessment of two typical cases, the results of which are compared with simulated results of various scenarios of “energy efficiency” strategy and “healthy housing” environmental control. First, the simulated results show that the adaptive thermal comfort of indoor environment control is actually balanced in terms of occupancy, comfort, and energy efficiency. Second, adaptive thermal comfort control can save more energy for heating or cooling than other current healthy housing environmental controls in China׳s HSCW zone. Moreover, a large proportion of energy use is based on the subjective thermal comfort demand of occupants in any building type. Third, the building shape coefficient cannot dominate energy savings. The ratio of the superficial area of a building to the actual indoor floor area has a significant positive correlation with and affects the efficiency of building thermal performance.

  12. Turning High-Poverty Schools into High-Performing Schools

    Science.gov (United States)

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  13. Highlighting High Performance: Michael E. Capuano Early Childhood Center; Somerville, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    This brochure describes the key high-performance building features of the Michael E. Capuano Early Childhood Center. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  14. buildings

    Directory of Open Access Journals (Sweden)

    Wang Hui

    2016-01-01

    Full Text Available In the formation of the blasting seismic wave transmission is a complex mechanical process. Blasting seismic wave in different geological structure formation of the interface, diffraction, reflection, projection as the incident Angle is different, all kinds of waveform transformation, formation of different types, different amplitude, frequency and phase of various wave superimposition of random composite wave. Blasting seismic wave propagation distance (horizontal distance and height difference, and the performance of the explosive, explosive charge, charge structure, priming method, congestion state what international airport, the plane and direction, topography and geological conditions will affect the blasting vibration effect. In engineering by empirical formula to estimate main parameters of blasting seismic wave and the structure of the empirical formula is the result of the use of theoretical analysis, by blasting of similar rate to determine the parameters in the formula is made up of many engineering measured data from statistical analysis, or directly by the measured parameters of the blasting seismic wave is given. In this paper, through various points were set in the prison line large speed is the most value, using the mathematical statistics regression analysis method, attenuation coefficient is obtained, and then back to the formula of single ring allows maximum dose safety distance calculated.

  15. Wind interference between two high-rise building models: On the influence of shielding, channeling and buffeting on peak pressures

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Geurts, C.P.W.; Bentum, C.A. van; Blocken, B.

    2014-01-01

    The influence of interference between two high-rise building models on the minimum peak pressures was investigated in an atmospheric boundary layer wind tunnel. Pressure measur€ments were performed on a square model with an aspect ratio of 1 to 4. The influence of an interfering model with the same

  16. A comparison of peak pressure interference factors interference factors for high-rise buildings determined in two ABL wind tunnels

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Uffelen, M. van; Geurts, C.P.W.; Aanen, L.; Bentum, C.A. van

    2013-01-01

    Pressure measurements were performed on various configurations of two high-rise building models in two atmospheric boundary layer wind tunnels in the Netherlands. A comparison was made of the interference factors of the minimum and maximum peak pressures over all pressure taps at 0 degree angle of

  17. Use of building typologies for energy performance assessment of national building stocks. Existent experiences in European Countries and common approach. First TABULA synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Loga, Tobias; Diefenbach, Nikolaus (eds.)

    2010-06-15

    The present study examines the experiences with building typologies in the European countries. The objective is to learn how to structure the variety of energy-related features of existing build-ings. As a result of the enquiry it can be stated that there are a lot of different activities which are based on typological criteria. Some of them are concentrating on providing information material and conducting energy advice. On the other hand, building types are used for a better understand-ing of the energy performance of building portfolios on different levels: from the strategic planning of housing companies up to the evaluation of national policies and measures in the building sector. On the basis of these experiences a common approach for building typologies has been devel-oped. The core elements of this harmonised approach are a classification systematic, a structure for building and supply system data and a coherent energy balance method. Furthermore a uni-form classification of statistical data enables a concerted approach for designing national building stock models. Finally, a concise itinerary is described which allows experts to develop step by step a national or regional building typology which are compatible with the common TABULA approach. (orig.)

  18. Examining the Role of the Principal: Case Study of a High-Poverty, High-Performing Rural Elementary School

    Science.gov (United States)

    Coleman, Howard D.

    2013-01-01

    Since the inception of high-stakes standardized testing, schools have been labeled as either succeeding or failing based on student standardized assessment performance. If students perform adequately, the building principal receives acknowledgement for being an effective instructional leader. Conversely, if students perform poorly, the principal…

  19. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

    2010-05-14

    California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

  20. The Impact of Local Microclimate Boundary Conditions on Building Energy Performance

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-07-01

    Full Text Available Local environmental boundaries play an important role in determining microclimate conditions affecting thermal-energy behavior of buildings. In this scenario, the purpose of the present work is to investigate how residential buildings are affected by different local microclimate conditions. To this aim, the continuous microclimate monitoring of (i a rural area; (ii a suburban area; and (iii an urban area is carried out, and the comparative analysis of the different boundary conditions is performed. In particular, the effect of the presence of a large lake in the rural area on building energy demand for heating and cooling is evaluated, both in winter and summer. Coupled degree hour method and numerical analysis are performed in order to predict the energy requirement of buildings subject to local microclimate boundary conditions. The main results show higher air temperature and relative humidity values for the rural area. No significant mitigation effect due to the lake presence is found in urban and suburban areas because of the peculiar wind regime of the region. Additionally, the dynamic thermal-energy simulation shows a decrease of 14% and 25% in the heating consumption and an increase of 58% and 194% in cooling requirements of buildings situated in the rural area around the lake compared to the urban and suburban areas, respectively.