WorldWideScience

Sample records for building envelope air

  1. Specifics of Building Envelope Air Leakage Problems and Airtightness Measurements

    Directory of Open Access Journals (Sweden)

    Borodinecs Anatolijs

    2016-01-01

    Full Text Available In addition to transmission heat loses the infiltration of outdoor air can cause significant heat losses. The external building envelope should be airtight in order to prevent uncontrolled cold air infiltration. The article analysis modern building materials and structures influence on airtightness. The practical measurements of renovated buildings’ airtightness are presented and compared to non-renovated buildings. In addition paper presents data on airtightness measurements of whole multi apartment building and single apartment in analyzed building taking inco accout properties of building materials. The airtightness of single apartment was evaluated with support pressure in neighbor apartments. The results show that the airtightness measurements of multi apartment building can be evaluated by measuring single apartment on last floor with support pressure in neighbor apartments. The practical measurement of renovated buildings had shown the air leakage rate q50 of typical Latvian construction after renovation is between 2.5 and 2.9 m3/(m2·h. Since the building envelope has to minimize the heat loses (transmission and infiltration and ventilation system either mechanical or natural has to provide necessary air exchange, the building envelope airtightness shouldn’t be dependent on type of ventilation systems.

  2. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available This chapter describes the way building envelopes can contribute to developing green buildings and sets out some objectives that could be aimed for. It also proposes a number of approaches that can be used to help design green building envelopes...

  3. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    phenomena that occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: (1) Air flow in a ventilated......Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...... cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  4. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2009-01-01

    phenomena which occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: 1. Air flow in ventilated...... and moisture impact of these air flows which represent either (1) a part of the building envelope which has hitherto not been offered much focus in building simulation, or (2) a transport form which in most cases should be kept minimal but which has immense importance on the overall heat and moisture flows......Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...

  5. THE USE OF AIR LAYERS IN BUILDING ENVELOPES FOR ENERGY SAVING DURING AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available Since there are no large natural energy resources in Belarus, energy savings ought to be a point of the special attention. With this regard it is important to develop modern ways of savings during the process of air conditioning inside new buildings with an air layer in the enclosure, especially in translucent ones. The system of ventilation of air layers in the enclosure of a building has been introduced in which air movement is caused by the gravitational and aerodynamic forces. It makes it possible to arrange further ventilation – a natural, forced or a hybrid one. With the purpose of increasing and streamlining natural draught the partitions are used separating the different parts of air layers. For natural ventilation with the use of gravitational forces the holes in the upper and lower parts of the partitions between adjacent air layers are applied. Natural ventilation in the holes of the partitions is regulated by movable shutters, blinds or other adjusting devices. For combined or forced air exchange between adjacent zones of air layers fans are used pumping air from the air layer zones with a higher temperature to zones of air layers with lower temperature and vice versa. When air exchange is forced, in order to intensify the infiltration of air into zones of air layers jets are laid on a hard surface. In order to cool a multi-layered enclosure of a building, where the movement of air between the air layers (that have been formed by internal partitions is being fulfilled by a natural, forced or combined mode, a part of the air or the total air processed inside the building (i.e. conditioned or non-conditioned air cooler as compared with the outside one is being sent to these strata. Combined or forced flow of the air processed inside the building into the air layers is done through the ducts associated with the output channels of the air conditioners. The internal partitions are equipped with the air valve hole.

  6. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...

  7. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  8. Optimum Insulation of Building Envelopes

    DEFF Research Database (Denmark)

    Svendsen, Sv Aa Højgaard

    1997-01-01

    The problem of optimising building envelopes with respect to the overall aim of stimulating a sustainable development is described.A proposal is given for performing an optmization based on the priciple of making the same effort of saving energy in the building as supplying the building with ener...

  9. Ozone Reductions Using Residential Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  10. Building Construction Elements, Building Envelope and Method for Constructing a Building Envelope

    DEFF Research Database (Denmark)

    2009-01-01

    High-strength concrete building system and method of assembly for construction a buiding envelope.......High-strength concrete building system and method of assembly for construction a buiding envelope....

  11. Mauritius green building handbook, vol 1: Building envelope

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available The building envelope plays a significant role in the performance of a building, especially with regard to the green building components. This chapter will focus on the external building envelope only, i.e., sub-structure, super structure, and roof...

  12. Shape Control of Responsive Building Envelopes

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning; Christensen, Jesper Thøger

    2010-01-01

    alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock-up concept of a secondary...

  13. Analysis of Building Envelope Construction in 2003 CBECS

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

    2007-06-01

    The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .

  14. Building Envelope for New Buildings and Energy Renovation of Old Buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    1997-01-01

    The Building Envelope Project at Technical University of Denmark should, in coorporation with associated trade organizations, strengthen the development on the building envelope area with focus on heat, moisture and economy...

  15. Development of Building Envelope Constructions

    DEFF Research Database (Denmark)

    Tommerup, Henrik Monefeldt; Munch-Andersen, Jørgen; Esbensen, Peter Kjær

    2000-01-01

    from solid materials as masonry and concrete and framed walls have been dealt with. Three types of foundation and five types of wall have been studied in detail, one of which is just the traditional cavity wall with increased insulation. Cost analysis has proved that the suggested wall types......It is expected that the heat insulation demands in the Danish Building Regulations will be further increased around 2005, in order to reduce the heating demand and the CO2-emission. A simple increase of the insulation thickness of common wall types seems not to be attractive due to the increased...... effect of the 2-dimensional heat loss, the large wall thickness, and the costs of the wide foundation. Therefore, new types of walls have been developed. It is sought to minimise the total heat loss as well as the material consumption. The target was to come up with new walls for which the construction...

  16. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-07-01

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.

  17. Building envelope innovation: smart facades for non residential buildings

    Directory of Open Access Journals (Sweden)

    Marco Sala

    2011-11-01

    Full Text Available The research analyzes the evolution of smart façade systems in the area of design and industrial production, in order to investigate the technological, functional and qualitative standards of dynamic façade and evaluate the energy performance of the building envelope as a dynamic system that interacts between indoor and outdoor environment. The study focused on dynamic envelopes for office building analyzing the evolution of façade systems in terms of: building construction, innovative systems, smart materials, dynamic system. Aiming to improve building energy performances. The research, developed during the PhD thesis “Smart Envelope - dynamic and innovative technologies for energy saving” and the research “Abitare Mediterraneo”, aims to identify and define the energy performances of smart envelopes trough the analysis of the state of art, related to dynamic building envelope of double skin façade, and the development of a new dynamic façade system.

  18. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J. N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trinity College Dublin, Dublin (Ireland); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  19. ANALYSES AND INFLUENCES OF GLAZED BUILDING ENVELOPES

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2011-01-01

    Full Text Available The article presents the results of an analytical study of the functioning of glazing at two different yet interacting levels: at the level of the building as a whole, and at that of glazing as a building element. At the building level, analyses were performed on a sample of high-rise business buildings in Slovenia, where the glazing"s share of the building envelope was calculated, and estimates of the proportion of shade provided by external blinds were made. It is shown that, especially in the case of modern buildings with large proportions of glazing and buildings with no shading devices, careful glazing design is needed, together with a sound knowledge of energy performance. In the second part of the article, the energy balance values relating to selected types of glazing are presented, including solar control glazing. The paper demonstrates the need for a holistic energy approach to glazing problems, as well as how different types of glazing can be methodically compared, thus improving the design of sustainability-orientated buildings.

  20. Envelope design guidelines for Federal office buildings: Thermal integrity and airtightness

    Energy Technology Data Exchange (ETDEWEB)

    Persily, A.K.

    1993-03-01

    Office building envelopes are generally successful in meeting a range of structural, aesthetic and thermal requirements. However, poor thermal envelope performance does occur due to the existence of defects in the envelope insulation, air barrier and vapor retarder systems. These defects result from designs that do not adequately account for heat, air and moisture transmission, with many being associated with inappropriate or inadequate detailing of the connections of envelope components. Other defects result from designs that appear adequate but can not be constructed in the field or will not maintain adequate performance over time. Despite the existence of these thermal envelope performance problems, information is available to design and construct envelopes that do perform well. In order to bridge the gap between available knowledge and current practice, NIST has developed thermal envelope design guidelines for federal office buildings for the General Services Administration. The goal of this project is to transfer the knowledge on thermal envelope design and performance from the building research, design and construction communities into a form that will be used by building design professionals. These guidelines are organized by envelope construction system and contain practical information on the avoidance of thermal performance problems such as thermal bridging, insulation system defects, moisture migration, and envelope air leakage.

  1. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...... project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building’s façades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1...... place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of façades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part...

  2. Tightness of the thermal envelope of office and educational buildings; Klimaskaermens taethed i kontor- og undervisningsbygninger

    Energy Technology Data Exchange (ETDEWEB)

    Bergsoee, N.C. (SBi, Aalborg (Denmark)); Radisch, N.H.; Nickel, J.; Treldal, J. (Ramboell Danmark A/S, Koebenhavn (Denmark)); Bundesen, E.W.; Nielsen, Carsten (DanEjendomme, Hellerup (Denmark))

    2011-07-01

    In 2006 tightening of the energy regulations in the Danish Building Regulations were introduced including requirements regarding the tightness of the building envelope. The requirements are, with minor changes, continued in the current Building Regulations, BR10. During the past few years experience has been gained regarding both the actual execution of air tightness measurements and solutions that will lead to more air tight building envelopes. Experiences, however, are primarily related to single family houses. The report presents results of measurements in large buildings and discusses reasons for lack of knowledge and experience on the tightness of the building envelope in large buildings. Apparently, there is a need for dissemination of knowledge on the importance of a tight building envelope both in terms of energy consumption and indoor climate and in terms of the difficulties and costs associated with repairing leaks in a completed envelope. Air tightness must be brought into focus at an early stage in the planning process, and during the construction phase air tightness measurements should be performed, e.g. on facade sections or in parts of the building. The project team has attended a number of measurements in large buildings and further gained access to results of a large number of measurements. In summary, the results show that it is possible to achieve the required tightness, and in most buildings the results are better than the requirement of a maximum of 1.5 l/s per m{sub 2}. (Author)

  3. Envelope parameters, their effect on high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, M.J.

    1982-04-01

    Makeup of the exterior envelope of a high-rise building - walls, insulation, glass, mass - greatly affects both peak and total structure energy usages. The influence of a well-designed building envelope on energy conservation is considered and the effects of envelope parameters on high-rise building energy use and costs are addressed. A general guideline for the building design team is given. By knowing the ramifications of certain design decisions, a design team can effectively plan a useful and energy-efficient building.

  4. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  5. 10 CFR 434.402 - Building envelope assemblies and materials.

    Science.gov (United States)

    2010-01-01

    ... design condition. For shell buildings, the permitted skylight area shall be based on a light level of 30... 10 Energy 3 2010-01-01 2010-01-01 false Building envelope assemblies and materials. 434.402... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment...

  6. Performative building envelope design correlated to solar radiation and cooling energy consumption

    Science.gov (United States)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  7. Intelligent building envelopes. Architectural concept and applications for daylighting quality

    Energy Technology Data Exchange (ETDEWEB)

    Wyckmans, Annemie

    2005-11-15

    How does an intelligent building envelope manage the variable and sometimes conflictive occupant requirements that arise in a day lit indoor environment. This is the research question that provides the basis for this Ph.D. work. As it touches upon several fields of application, the research question is untangled into four steps, each of which corresponds to a chapter of the thesis. 1) What characterises intelligent behaviour for a building envelope. 2) What characterises indoor day lighting quality. 3) Which functions can an intelligent building envelope be expected to perform in the context of day lighting quality. 4) How are the materials, components and composition of an intelligent building envelope designed to influence this performance. The emphasis is on design, environmental aspects, energy conservation, functional analysis and physical applications.

  8. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  9. Building envelope for New Buildings and Energy Renovation of Existing Buildings. Project results

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Rose, Jørgen; Esbensen, Peter Kjær

    1999-01-01

    , a group of scientists at the Department of Buildings and Energy, Technical University of Denmark, have started a research project to develop better solutions for new building and energy renovation.The publication report the status after the first 3 year of the Building Envelope Project with emphasis...... on the following subjects:Scientific basis for calculation programs, Development of calculationsmethods for heat transfer, Development of new building envelope components, Roofing system based on wooden roof elements, Roofing system with drying properties, Moisture uptake and drying from brick constructions...

  10. A Phase-Change Composite for Use in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Ron S. [LMES/ORNL; Stovall, T. K. [LMES/ORNL; Weaver, K. E. [LMES/ORNL; Wilkes, K. E. [LMES/ORNL; Roy, S. [PhD Research Group, Inc.

    1992-06-15

    The objective of this project is to develop composite thermal insulations containing phase-change materials for use in the building envelope. The use of a phase-change insulation composite in the building envelope could result in a significant increase in energy efficiency. PhD Research provided candidate phase-change composites, and ORNL performed analytical and experimental evaluations of their thermal performance. The thermal resistance of the prototype panels was somewhat less than that of commercial products, although their thermal capacity was greater. Using these results, PhD Research has been working to modify the design and to produce practical building elements that incorporate phase-change material.

  11. Solar envelope concepts: moderate density building applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, R.L.; Berry, R.D.

    1980-04-01

    Solar energy utilization in urban areas requires public guarantees that all property owners have direct access to the sun. The study examines the implications of this premise in relation to the need for cities to also encourage or accommodate rebuilding and future development. The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided. The results of development simulation studies on all test sites are tabulated to show building bulk, density, land-coverage and open space characteristics obtainable under the hypothesized envelopes.

  12. Towards a fourth skin? sustainability and double-envelope buildings

    Energy Technology Data Exchange (ETDEWEB)

    Diprose, P.R.; Robertson, G. [Auckland Univ. (New Zealand)

    1996-05-01

    In several well publicised designs for `green` office buildings, the zone of meditation between inside and outside has been increased by the addition of a second building envelope. When interpreted as exemplars of sustainable architecture, the addition of a second wall in these buildings is questionable both biophysically and psycho-culturally. More constructive design strategies acknowledge the wider biophysical contexts of the human ecosystem, the prudent use of material and energy resources throughout a building`s life, make realistic use of climate, and promote psycho-cultural needs arising out of ecologism. (author)

  13. Genetic-algorithm based approach to optimize building envelope design for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Tuhus-Dubrow, Daniel; Krarti, Moncef [Civil, Environmental, and Architectural Engineering Department, University of Colorado, Boulder, CO 80309 (United States)

    2010-07-15

    A simulation-optimization tool is developed and applied to optimize building shape and building envelope features. The simulation-optimization tool couples a genetic algorithm to a building energy simulation engine to select optimal values of a comprehensive list of parameters associated with the envelope to minimize energy use for residential buildings. Different building shapes were investigated as part of the envelope optimization, including rectangle, L, T, cross, U, H, and trapezoid. Moreover, building envelope features were considered in the optimization analysis including wall and roof constructions, foundation types, insulation levels, and window types and areas. The results of the optimization indicate rectangular and trapezoidal shaped buildings consistently have the best performance (lowest life-cycle cost) across five different climates. It was also found that rectangle and trapezoid exhibit the least variability from best to worst within the shape. (author)

  14. Biomimetic Architecture in Building Envelope Maintenance (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim N.A.

    2014-01-01

    Full Text Available The study of biomimetic architecture on building envelope is the main structure of this research. The concept is believed more sustainable and efficient for energy saving, operating cost consumption, waste recycle and design renewal in the future. The inspiration from the nature developed the intention on this study to explore on what and how this concept to overcome the problems through design. Biomimicry does catch the attention of human to study more on the system and function of its nature course. The designers are not exception influenced by this concept when the form, shape, texture and colour inspired them in their design. The domination of building form will affect the building envelope as the skin of the structure. A clear impact on building failure is begun with building envelope appearance without a proper maintenance. The faults in building design place a heavy burden on the building for the rest of its operational life and there is no compensation for it. In such situations, the responsibility falls on the shoulders of the designer.

  15. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Science.gov (United States)

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  16. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  17. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  18. Building envelope design for renewal of air by natural ventilation in moderate climates. Proposition of a designing methodology; Conception des enveloppes de batiments pour le renouvellement d'air par ventilation naturelle en climats temperes. Proposition d'une methodologie de conception

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, Y.

    2003-12-01

    The subject of this research is to produce methods and methodological tools for the architects to support the integration of natural ventilation systems in the building envelope design. Our research is situated to the interface between the architectural practice and the physical research on natural ventilation. We are interested in phenomena that can influence or force the strategy of ventilation. A morphological analysis of naturally ventilated buildings concerning the integration modes of natural ventilation systems is done permitting US to propose a typology and a topology of ventilation systems. We define criteria in relation to the thermal comfort, to the quality of air and the economy of energy to assess air renewal techniques. In complement of the sizing tool, we elaborate a methodology of conception for the integration of passives ventilation systems. Design guidelines permit US to conclude on an effective natural ventilation system which is well adapted to collective habitat. (author)

  19. CISBAT 2007 - Design and renovation of building envelopes (bioclimatic architecture)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This is the second part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of sustainable building envelopes the following oral contributions are summarised: 'Flexible photovoltaics integrated in transparent membrane and pneumatic foil constructions', 'Development of a numerical thermal model for double skin facades', 'Thermal performance analysis for an electrochromic vacuum glazing with low emittance coatings', 'Challenging the public building sector: optimization of energy performance by sustainable strategies', 'Simulation of the thermal performance of a climate adaptive skin', 'Possibilities for upgrading prefabricated concrete building envelopes', 'Experimental study of airflow and heat transfer in a double skin facade with blinds', 'Energy efficiency of a glazing system - Case study: a dynamic glazing and double skin facades - the use of venetian blinds and night ventilation for saving energy on mediterranean climate'. Poster-sessions on the subject include 'Adaptive building envelopes design ', 'GRC facade panels in Brazil', 'Solar absorptance of building opaque surfaces', 'Evaluating the thermal behavior of exterior walls (in residential buildings of hot-dry climate of Yazd)', 'Energy performance of buildings and local energy policy: the case of new residential buildings in Greve in Chianti (Firenze)', 'Space heating and domestic hot water energy demand in high-level-insulation multi-storey buildings in Tuscany (Italy)', 'Is 2000 W society possible, affordable, and socially acceptable for the Vaud existing school building?', 'Development of simplified method for measuring solar shading performance of windows', 'Studies of ecological architecture in China's Loess Plateau region', 'Contemporary mud

  20. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup

    Directory of Open Access Journals (Sweden)

    Francesco Bianchi

    2014-10-01

    Full Text Available Thermal infrared imaging is a valuable tool to perform non-destructive qualitative tests and to investigate buildings envelope thermal-energy behavior. The assessment of envelope thermal insulation, ventilation, air leakages, and HVAC performance can be implemented through the analysis of each thermogram corresponding to an object surface temperature. Thermography also allows the identification of thermal bridges in buildings’ envelope that, together with windows and doors, constitute one of the weakest component increasing thermal losses. A quantitative methodology was proposed in previous researches by the authors in order to evaluate the effect of such weak point on the energy balance of the whole building. In the present work, in-field experimental measurements were carried out with the purpose of evaluating the energy losses through the envelope of a test room experimental field. In-situ thermal transmittance of walls, ceiling and roof were continuously monitored and each element was characterized by its own thermal insulation capability. Infrared thermography and the proposed quantitative methodology were applied to assess the energy losses due to thermal bridges. The main results show that the procedure confirms to be a reliable tool to quantify the incidence of thermal bridges in the envelope thermal losses.

  1. Adaptive building envelopes, component development as well as implementation strategies

    Directory of Open Access Journals (Sweden)

    Tillmann Klein

    2015-11-01

    Full Text Available The papers in this issue of JFDE discuss the potential of adaptive building envelopes, component development as well as implementation strategies. The applied practice paper demonstrates decision strategies behind the adaptive sun shading system of the Al-Bahr Towers. Additivity in building envelopes is not only a strategy to fulfil the growing demands for energy efficient buildings and comfort but has great architectural implications as well. In general it asks for more complex components as well as control strategies. But complexity also means costs and risks, and we need to discuss the means and effects. This discussion in particular is very interesting because here science and practice meet. The Journal of Facade Design and Engineering JFDE will actively follow and stimulate by providing high quality contributions. Four of the paper contributions have their origins in the Conference ‘Facades 2014’, held in November 2014 in Lucerne. The contributions have been carefully selected and have been subjected to the regular double blind review process of the journal. We want to thank Prof. Dr. Andres Luible for the help in making this issue happen. We are proud that JFDE is the scientific partner for a number of conferences such as ‘The Future Envelope’ Conference on Building Envelopes held yearly in Delft (NL or Bath (UK, the ICAE International Congress on Architectural Envelopes in San Sebastian (ES and the above mentioned conference ‘Facades’ in Lucerne (CH and Detmold (D. Our latest partner is the ICBEST 2017 - International Conference on Building Envelope Systems and Technologies in Istanbul. The growing number of partners indicates the relevance of JFDE for our growing discipline and will assure the continuity of the journal. Facade Design and Engineering is a peer reviewed, open access journal, funded by The Netherlands Organisation for Scientific Research NWO (www.nwo.nl. We see ‘open access’ as the future publishing model

  2. Assessing the service life of building envelope constructions

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    1999-01-01

    During the last 10 years, national standards have been developed in order to assess the expected service life of building materials and constructions and work is still progressing on the international level. Besides the current and upcoming standards, several methodologies have been developed...... construction or for assessing the performance over time of building constructions in the building envelope. A review is provided that contrast the less practical against the more useful aspects of national and international standards. The second gives suggestions as to those methodologies that potentially can...... or suggested at the national, international or individual level. The overview provided in this paper focuses on two two items: The first describes the current methods or standards established at a national level for either assessing and implementing service life requirements in the design stage of a building...

  3. Innovative Danish Building Envelope Components for Passive Houses

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    tighter energy performance requirements in 2006 and a new classification system, where buildings can be classi¬fied as being a “Low energy building class 1 or 2”. These new requirements are based on the EU-directive on Energy Performance of Buildings, EPBD (2002/91/EC). The new classification system....... The perhaps most important basic passive house concept requirement in a relatively cold Danish climate is envelope constructions with superior thermal insulation without thermal bridges. Some Danish producers of building components have during the last couple of years, developed new highly insulated...... materials. To illustrate the thermal efficiency of the new components in a realistic context, the paper will show results from detailed calculations of the space heating demand and peak heating load for a newly built single-family house....

  4. Development and Evaluation of a Responsive Building Envelope

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Foged, Isak Worre

    2011-01-01

    . The general scopes of this paper are to present the development and evaluation of a new adaptive kinetic architectural structure. This reconfigurable structure can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...... different shape alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock-up concept...

  5. THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, William L.

    1979-04-01

    A bibliography of published papers describing models, measurement techniques, apparatus, and data for the thermal performance of whole buildings and building envelope systems has been collected (aggregate energy consumption of whole buildings, performance of HVAC equipment, and solar technologies are not included). Summary descriptions of the content of each citation are provided. Measurements on whole buildings or on systems other than walls are sparse. However, new and recently completed measurement facilities are increasing these capabilities. Measurements under dynamic conditions are difficult to accomplish and few reliable data exist. Some analogs have been explored experimentally and analytically. Citations on analytical models are selective and concentrate on methodology that forms the basis of computer programs for whole-building energy analysis. Interesting future directions include new approaches to dynamic measurements, both in the laboratory and in the field, for envelope systems and for whole buildings.

  6. INNOVATIVE SOLUTIONS FOR BUILDING ENVELOPES OF BIOCLIMATICAL HIGH-RISE BUILDINGS

    OpenAIRE

    Generalova, Elena; Generalov, Victor; Kuznetsova, Anna

    2017-01-01

    The paper examines innovative and promising trends in in the design of high-rise buildings that challenge traditional typologies and are adapted for specific climatic conditions. The purpose of the study is to investigate modern methods of designing building envelopes for bioclimatic skyscrapers taking into account heat impact of climate on the thermal balance of buildings. The research methodology is based on a systematic analysis of advanced world experience in constructing innovative b...

  7. Low-Cost Phase Change Material for Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin [Renewable Energy Group

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  8. Analyzing screen heat insulation and its effect on energy consumption while heating building envelopes in conditions of intermittent heating

    Directory of Open Access Journals (Sweden)

    Vytchikov Yuri

    2016-01-01

    Full Text Available The paper is devoted to screen heat insulation and its effect on energy consumption while heating building envelopes in conditions of intermittent heating. It also describes the non-stationary process of heat transfer through heat insulated outer walls. The authors introduce calculation results of specific energy consumption for heating insulated and non-insulted outer walls. The paper proves that energy consumption for heating insulated outer walls depends on the thickness of non-aerated air-space insulation The research shows positive effects of using thermal protection systems with screen thermal insulation in outer building envelopes in conditions of intermitten heating.

  9. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    With this research the current architectural knowledge base has been advanced in terms of complex geometry thin-walled GFRC for building envelopes. The identified solutions should allow building with complex geometries to be realised using thin-walled GFRC as the envelope cladding.

  10. Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.

    2006-11-01

    This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

  11. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  12. Investigation of the Energy Performance of a Novel Modular Solar Building Envelope

    Directory of Open Access Journals (Sweden)

    Gang Ren

    2017-06-01

    Full Text Available The major challenges for the integration of solar collecting devices into a building envelope are related to the poor aesthetic view of the appearance of buildings in addition to the low efficiency in collection, transportation, and utilization of the solar thermal and electrical energy. To tackle these challenges, a novel design for the integration of solar collecting elements into the building envelope was proposed and discussed. This involves the dedicated modular and multiple-layer combination of the building shielding, insulation, and solar collecting elements. On the basis of the proposed modular structure, the energy performance of the solar envelope was investigated by using the Energy-Plus software. It was found that the solar thermal efficiency of the modular envelope is in the range of 41.78–59.47%, while its electrical efficiency is around 3.51% higher than the envelopes having photovoltaic (PV alone. The modular solar envelope can increase thermal efficiency by around 8.49% and the electrical efficiency by around 0.31%, compared to the traditional solar photovoltaic/thermal (PV/T envelopes. Thus, we have created a new envelope solution with enhanced solar efficiency and an improved aesthetic view of the entire building.

  13. Methods for designing building envelope components prepared for repair and maintenance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    2000-01-01

    of issues which are specified below:Further development of methods for designing building envelope components prepared for repair and maintenance, and ways of tracking and predicting performance through time once the components have been designed, implemented in a building design and built...... in a different way for each component.Further development of building envelope components that through their design are prepared for repair and maintenance so that expensive repair and replacement may be avoided. Examples of components in need of such a design process could be internal insulation systems where......The dissertation consist of five parts:The purpose of the first part is to give the reader an introduction to the subjects of deterioration mechanisms, loss of function for building envelope components and prediction of service life for building envelope components.The purpose of the second part...

  14. SOLAR AIR CONDITIONING OF BUILDING

    Directory of Open Access Journals (Sweden)

    Debrayan Bravo Hidalgo

    2015-04-01

    Full Text Available Air Conditioning with renewable energy is a key issue in the region's energy policy. The high temperatures usually attributed to climate change and the increase of the standard of living in society continues increasing energy demand in order to establish the conditions for thermal comfort in buildings. Solar air conditioning, although it contains a mature technology, its level of market introduction and acceptance by designers of buildings is exhaustive. This paper discusses the feasibility of these projects, identifies non-technological type barriers that hinders such use and implementation of solar energy for air conditioning systems, and finally, it approaches some criteria and recommendations to overcome these obstacles.

  15. Control room envelope unfiltered air inleakage test protocols

    Energy Technology Data Exchange (ETDEWEB)

    Lagus, P.L. [Lagus Applied Technology, San Diego, CA (United States); Grot, R.A. [Lagus Applied Technology, Olney, MD (United States)

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  16. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    Science.gov (United States)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  17. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  18. Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2014-08-01

    Full Text Available Marble is a natural material, used in the construction field since antiquity. It has always been used to communicate monumentality and solidity. Nowadays new technologies permit marble to express new languages: particularly, translucent marble technology overturns the concept of solidity. The main issue to address is the lack of thermal-energy performance of such a thin stone layer as the only facade component. Conversely, Bianco Carrara and Statuario marbles, for instance, have intrinsic benefits as natural cool materials, due to their high solar reflectance and thermal emissivity. Thus, this paper analyzes the thermal-energy and environmental behavior of marble facade for a new designed building in New York City. An integrated analysis of the energy performance of the marble skin is performed through a preliminary experimental characterization, carried out for two different types of naturally white marble, for comparative purposes. Then, a dynamic simulation model of the building is developed to evaluate year-round benefits and drawbacks of the translucent marble envelope in terms of indoor thermal comfort and air-conditioning requirement. The analysis showed how the proposed marble facade is able to decrease the energy requirement for cooling up to 6%, demonstrating possible relevant perspectives for marble-based facades, even in energy-efficient buildings.

  19. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    NARCIS (Netherlands)

    Henriksen, T.N.

    2017-01-01

    Thin-walled glass fibre reinforced concrete (GFRC) panels are being used as the primary cladding material on many landmark buildings especially in the last decade. GFRC is an ideal material for building envelopes because it is durable, it can resist fire and the environmental impact is low compared

  20. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    Science.gov (United States)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  1. Using Technology and Innovative Designs to Build Complex Architectural Envelopes

    Directory of Open Access Journals (Sweden)

    Emily Carr

    2011-11-01

    Full Text Available Permasteelisa Group is a manufacturer of curtain walls specialized worldwide in the creation of personalized architectural envelopes. The Group’s mission is to use innovative design methods and advanced technologies to construct architecturally significant façades. In order to meet project budget and timing requirements 3D modelling, personalized applications and automated production processes have been implemented company-wide. Together with the new technologies, the new design methods developed within the company, such as cold-formed units of curtain walls and toleran- ce compensation units, have given designers the ability to break classic design rules.

  2. Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) Analysis

    OpenAIRE

    Ilaria Vigna; Lorenza Bianco; Francesco Goia; Valentina Serra

    2018-01-01

    Building envelopes can play a crucial role in building improvement efficiency, and the adoption of Phase Change Materials (PCMs), coupled with transparent elements, may: (i) allow a better control of the heat flows from/to the outdoor environment, (ii) increase the exploitation of solar energy at a building scale and (iii) modulate light transmission in order to prevent glare effects. Starting from a literature review, focused on experimental works, this research identifies the main possible ...

  3. Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT Analysis

    Directory of Open Access Journals (Sweden)

    Ilaria Vigna

    2018-01-01

    Full Text Available Building envelopes can play a crucial role in building improvement efficiency, and the adoption of Phase Change Materials (PCMs, coupled with transparent elements, may: (i allow a better control of the heat flows from/to the outdoor environment, (ii increase the exploitation of solar energy at a building scale and (iii modulate light transmission in order to prevent glare effects. Starting from a literature review, focused on experimental works, this research identifies the main possible integrations of PCMs in transparent/translucent building envelope components (in glazing, in shutters and in multilayer façade system in order to draw a global picture of the potential and limitations of these technologies. Transparent envelopes with PCMs have been classified from the simplest “zero” technology, which integrates the PCM in a double glass unit (DGU, to more complex solutions—with a different number of glass cavities (triple glazed unit TGU, different positions of the PCM layer (internal/external shutter, and in combination with other materials (TIM, aerogel, prismatic solar reflector, PCM curtain controlled by an electric pump. The results of the analysis have been summarised in a Strengths, Weakness, Opportunities and Threats (SWOT analysis table to underline the strengths and weaknesses of transparent building envelope components with PCMs, and to indicate opportunities and threats for future research and building applications.

  4. Energy efficiency in historic buildings : new materials for traditional envelopes

    OpenAIRE

    Hoffman, Monika

    2017-01-01

    ABSTRACT: The energy consumed by historical buildings is much higher comparing to the modern constructions. The law is mostly related with the newly built constructions, stating requirements and guidelines for the energy demand. However, regulating the law concerning historical buildings is very difficult because of the need for preserving the historical and cultural value they represent. Moreover, recently discovered technologies can support the transformation process providing the most effi...

  5. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    Full Text Available Thin-walled glass fibre reinforced concrete (GFRC panels are being used as the primary cladding material on many landmark buildings especially in the last decade. GFRC is an ideal material for building envelopes because it is durable, it can resist fire and the environmental impact is low compared to other materials, because the base materials used in the production of GFRC are widely available throughout the world. Thin-walled GFRC was initially developed as a cladding material in the 1970s and 1980s where the majority of the available research lies. The introduction of 3D CAD software has enabled the design of buildings with complex shapes that, in the past, would have been rationalised to meet budget and time constraints. However, when GFRC has been proposed for buildings with a complex free-form geometry it has been replaced with alternative materials such as glass reinforced plastic (GFRP due to the high cost and time required to fabricate suitable GFRC panels using conventional manufacturing methods. The literature showed that empirical performance characterization of GFRC had not been researched in detail regarding the limits of functionality or any systematic approach to understanding their use in complex geometry building envelopes.As a first step the key architectural demands, the main barriers and limitations in the manufacture of complex geometry thin-walled GFRC were identified by interviewing and visiting manufacturers, designers and key buildings. This identified the key barrier to be the process of producing the mould for casting the complex geometry GFRC panels. Solutions to resolve them were tested over several stages for each of the main production methods most suited for the manufacture of thin-walled GFRC, namely; the automated premixed method, the premixed method and the sprayed method. The results from the laboratory testing over all the stages, and the prototype structure manufactured with the identified solution from

  6. Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings

    Directory of Open Access Journals (Sweden)

    Marco Perino

    2015-11-01

    Full Text Available The key role of the building envelope in attaining building energy efficiency and satisfactory indoor comfort has long been established. Nevertheless, until recent times, all efforts and attention have mainly been focused on increasing and optimizing the thermal insulation of the envelope components. This strategy was a winning approach for a long time, but its limitations became obvious when users and designers started to consider the overall energy demand of a building and started to aim for Zero Energy Building (ZEB or nearly ZEB goals. New and more revolutionary concepts and technologies needed to be developed to satisfy such challenging requirements. The potential benefits of this technological development are relevant since the building envelope plays a key role in controlling the energy and mass flows from outdoors to indoors (and vice versa and, moreover, the facades offer a significant opportunity for solar energy exploitation. Several researches have demonstrated that the limitation of the existing facades could be overcome only by switching from ‘static’ to ‘responsive’ and ‘dynamic’ systems, such as Multifunctional Facade Modules (MFMs and Responsive Building Elements (RBE. These components are able to continuously and pro-actively react to outdoor and indoor environment conditions and facilitate and enhance the exploitation of renewable and low exergy sources. In order to reduce the energy demand, to maximize the indoor comfort conditions and to produce energy at the site, these almost ‘self-sufficient’, or even ‘positive energy’ building skins frequently incorporate different technologies and are functionally connected to other building services and installations. An overview of the technological evolution of the building envelope that has taken place, ranging from traditional components to the innovative skins, will be given in this paper, while focusing on the different approaches that have characterized this

  7. Procedures when calculating economy for building envelopes in Denmark

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    Until a few years ago, economy in public funded buildings during construction or retrofitting was focused on investment cost and not very much on the cost for maintenance and energy use. Lately there has been a change in the rules and laws from the Ministry of Housing, resulting in the possibility...... of using total-economy. Total-economy incorporates all present and future investments (e.g. operational and maintenance costs) into one number making it possible to invest more money when constructing a building and save the money later on due to lower cost for maintenance and energy consumption.This paper...

  8. Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [Fraunhofer CSE, Cambridge, MA (United States); Shukla, Nitin [Fraunhofer CSE, Cambridge, MA (United States); Fallahi, Ali [Fraunhofer CSE, Cambridge, MA (United States)

    2013-01-01

    Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

  9. 10 CFR 434.516 - Building exterior envelope.

    Science.gov (United States)

    2010-01-01

    ... Buildings for calculating the Energy Cost Budget. In calculating the Design Energy Consumption of the... assumptions for calculating the Energy Cost Budget and default assumptions for the Design Energy Consumption... without operable windows shall be assumed to be 0.038 cfm/ft2 of gross exterior wall. Hotels/motels and...

  10. Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Gireesh; Gustavsson, Leif; Mahapatra, Krushna [Ecotechnology, Mid Sweden University, SE-83125 Oestersund (Sweden)

    2010-07-15

    The paper focuses on Swedish homeowners' need for and perceptions about adopting building envelop energy efficiency measures. The paper is based on a questionnaire survey of 3059 homeowners (response rate of 36%) selected by stratified random sampling during the summer of 2008. The results showed that 70-90% of the respondents had no intention of adopting such a measure over the next 10 years. The main reasons for non-adoption were that homeowners were satisfied with the physical condition, thermal performance, and aesthetics of their existing building envelope components. A greater proportion of respondents perceived that improved attic insulation has more advantages than energy efficient windows and improved wall insulation, but windows were more likely to be installed than improved attic insulation. Respondents gave high priority to economic factors in deciding on an energy efficiency measure. Interpersonal sources, construction companies, installers, and energy advisers were important sources of information for homeowners as they planned to adopt building envelope energy efficiency measures. Policy measures to facilitate the rate of adoption of energy efficient building envelope measures are discussed. (author)

  11. Multi-objective and multidisciplinary design optimization of large sports building envelopes : A case study

    NARCIS (Netherlands)

    Yang, D.; Sun, Y.; Turrin, M.; von Buelow, P.; Paul, J.C.

    2015-01-01

    Currently, in the conceptual envelope design of sports facilities, multiple engineering performance feedbacks (e.g. daylight, energy and structural performance) are expected to assist architectural design decision-making. In general, it is known as Building Performance Optimization in the conceptual

  12. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  13. Windows and Building Envelope Research and Development: A Roadmap for Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met. Methods for improving technology performance and specific strategies for reducing installed costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption, are identified. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  14. Gas-Filled Panels: An update on applications in the building thermal envelope

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.T.; Arasteh, D.; Tuerler, D.

    1995-10-01

    This paper discusses the application of Gas-Filled Panels to the building thermal envelope. Gas-Filled Panels, or GFPs, are thermal insulating devices that retain a high concentration of a low- conductivity gas, at atmospheric pressure, within a multilayer infrared reflective baffle. The thermal performance of the panel depends on the type of gas fill and the baffle configuration. Heat- flow meter apparatus measurements have shown effective apparent thermal conductivities of 0.194 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with air as the gas fill, 0.138 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with argon, and 0.081 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with krypton. Calorimetric measurements have also shown total resistance levels of about R-12.6 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 1.0-inch thick krypton panel, R-25.7 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 2.0-inch krypton panel, and R-18.4 f{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 10-inch xenon panel. GFPs are flexible, self-supporting and can be made in a variety of shapes and sizes to thoroughly fill most types of cavities in building walls and roofs, although the modular nature of the panels can lead to complications in installing them, especially for irregularly shaped cavities. We present computer simulation results showing the improvement in thermal resistance resulting from using an argon-GFP in place of glass fiber batt insulation in wood-frame construction. This report also presents estimates of the quantity and cost of material components needed to manufacture GFPs using current prototype designs.

  15. Air pollutant penetration through airflow leaks into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, De-Ling [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 μm are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 μm) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending significantly on its

  16. Kinetic Super-Resolution Long-Wave Infrared (KSR LWIR) Thermography Diagnostic for Building Envelopes: Camp Lejeune, NC

    Science.gov (United States)

    2015-08-18

    thermal imagery and provides a custom report for each building that recommends cost-effective measures to improve comfort , save energy and lower utility...and prioritizing op- portunities to improve the thermal performance of building envelopes. Many installations have used infrared thermography as a...demonstrated a capability to quickly diagnose the condition and thermal performance of building envelopes using Kinetic Super- Resolution Long-Wave

  17. Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania

    Directory of Open Access Journals (Sweden)

    Jolanta Šadauskienė

    2014-08-01

    Full Text Available In order to fulfil the European Energy Performance of Buildings Directive (EPBD requirements for the reduction of energy consumption, European national requirements have been created for building envelope thermal properties and calculation methodology to determine if building energy efficiency is created. This is however not true in all methodologies. The necessity of building air tightness appears only for new A class buildings, and there are no requirements for air tightness for other building classes. Therefore, the aim of this work is to improve the methodology for the calculation of energy efficiency of buildings, while taking into account the air tightness of the buildings. In order to achieve this aim, the sum energy consumption of investigated buildings was calculated, energy efficiency classes were determined, air tightness of the buildings was measured, and reasons for insufficient air tightness were analyzed. Investigation results show that the average value of air tightness of A energy efficiency class buildings is 0.6 h−1. The results of other investigated buildings, corresponding to B and C energy efficiency classes, show insufficient air tightness (the average n50 value is 6 h−1; herewith, energy consumption for heating is higher than calculated, according to the energy efficiency methodology. This paper provides an energy performance evaluation scheme, under which performed evaluation of energy performance of buildings ensures high quality construction work, building durability, and the reliability of heat-loss calculations.

  18. A Model for Air Flow in Ventilated Cavities Implemented in a Tool for Whole-Building Hygrothermal Analysis

    DEFF Research Database (Denmark)

    Grau, Karl; Rode, Carsten

    2006-01-01

    A model for calculating air flows in ventilated cavities has been implemented in the whole-building hygrothermal simulation tool BSim. The tool is able to predict indoor humidity conditions using a transient model for the moisture conditions in the building envelope.......A model for calculating air flows in ventilated cavities has been implemented in the whole-building hygrothermal simulation tool BSim. The tool is able to predict indoor humidity conditions using a transient model for the moisture conditions in the building envelope....

  19. Healthy Buildings and Air Distribution in Rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Healthy buildings are to a great extent a question of indoor air quality. The processes involved in air quality can be looked upon as a number of links in a chain. Typical links will be emission from building materials, convection and diffusion in the room, local airflow around a person, personal...

  20. Concentrated Solar Air Conditioning for Buildings Project

    Science.gov (United States)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  1. Objective Building Energy Performance Benchmarking Using Data Envelopment Analysis and Monte Carlo Sampling

    Directory of Open Access Journals (Sweden)

    Seong-Hwan Yoon

    2017-05-01

    Full Text Available An objective measure of building energy performance is crucial for performance assessment and rational decision making on energy retrofits and policies of existing buildings. One of the most popular measures of building energy performance benchmarking is Energy Use Intensity (EUI, kwh/m2. While EUI is simple to understand, it only represents the amount of consumed energy per unit floor area rather than the real performance of a building. In other words, it cannot take into account building services such as operation hours, comfortable environment, etc. EUI is often misinterpreted by assuming that a lower EUI for a building implies better energy performance, which may not actually be the case if many of the building services are not considered. In order to overcome this limitation, this paper presents Data Envelopment Analysis (DEA coupled with Monte Carlo sampling. DEA is a data-driven and non-parametric performance measurement method. DEA can quantify the performance of a given building given multiple inputs and multiple outputs. In this study, two existing office buildings were selected. For energy performance benchmarking, 1000 virtual peer buildings were generated from a Monte Carlo sampling and then simulated using EnergyPlus. Based on a comparison between DEA-based and EUI-based benchmarking, it is shown that DEA is more performance-oriented, objective, and rational since DEA can take into account input (energy used to provide the services used in a building and output (level of services provided by a building. It is shown that DEA can be an objective building energy benchmarking method, and can be used to identify low energy performance buildings.

  2. Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings

    Directory of Open Access Journals (Sweden)

    Kyung-Il Chin

    2013-08-01

    Full Text Available This study proposes an artificial neural network (ANN-based thermal control method for buildings with double skin envelopes that has rational relationships between the ANN model input and output. The relationship between the indoor air temperature and surrounding environmental factors was investigated based on field measurement data from an actual building. The results imply that the indoor temperature was not significantly influenced by vertical solar irradiance, but by the outdoor and cavity temperature. Accordingly, a new ANN model developed in this study excluded solar irradiance as an input variable for predicting the future indoor temperature. The structure and learning method of this new ANN model was optimized, followed by the performance tests of a variety of internal and external envelope opening strategies for the heating and cooling seasons. The performance tests revealed that the optimized ANN-based logic yielded better temperature conditions than the non-ANN based logic. This ANN-based logic increased overall comfortable periods and decreased the frequency of overshoots and undershoots out of the thermal comfort range. The ANN model proved that it has the potential to be successfully applied in the temperature control logic for double skin-enveloped buildings. The ANN model, which was proposed in this study, effectively predicted future indoor temperatures for the diverse opening strategies. The ANN-based logic optimally determined the operation of heating and cooling systems as well as opening conditions for the double skin envelopes.

  3. Study of an experimental methodology for thermal properties diagnostic of building envelop

    Science.gov (United States)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The

  4. An energy harvesting system utilizing wind pressure fluctuations on high-rise building envelope

    Science.gov (United States)

    Park, Jae-Chan; Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo

    2017-04-01

    In this paper, the new energy harvesting system is proposed by using wind pressure fluctuations which are one of existing energy sources that were not taken into consideration around high-rise buildings. The proposed system carries out the role of building envelope also. This research is divided in two parts. At first, Computational Fluid Dynamics (CFD) and wind tunnel experiments are performed for investigating the wind pressure that occur around the high-rise building. Secondly, based on the result of wind pressure analysis, the optimal mechanism is devised and the prototype of the energy harvesting system is designed to verify the possibility of utilization of wind pressure fluctuations through the small wind tunnel experiment, harmonic excitation experiment and numerical analysis. As a result, the performance of proposed energy harvesting system is numerically and experimentally validated.

  5. Benchmarking the energy performance of office buildings: A data envelopment analysis approach

    Directory of Open Access Journals (Sweden)

    Molinos-Senante, María

    2016-12-01

    Full Text Available The achievement of energy efficiency in buildings is an important challenge facing both developed and developing countries. Very few papers have assessed the energy efficiency of office buildings using real data. To overcome this limitation, this paper proposes an energy efficiency index for buildings having a large window-to-wall ratio, and uses this index to identify the main architectural factors affecting energy performance. This paper assesses, for the first time, the energy performances of 34 office buildings in Santiago, Chile, by using data envelopment analysis. Overall energy efficiency is decomposed into two indices: the architectural energy efficiency index, and the management energy efficiency index. This decomposition is an essential step in identifying the main drivers of energy inefficiency and designing measures for improvement. Office buildings examined here have significant room for improving their energy efficiencies, saving operational costs and reducing greenhouse gas emissions. The methodology and results of this study will be of great interest to building managers and policymakers seeking to increase the sustainability of cities.

  6. Indoor Air Quality Building Education and Assessment Model Forms

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  7. Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  8. Permeable and Hygroscopic Building Envelopes: Hygrothermal Simulations of “Det Naturlige Hus”

    DEFF Research Database (Denmark)

    Bastien, Diane; Winther-Gaasvig, Martin

    2017-01-01

    Unlike most conventional building materials currently used nowadays, natural building materials tend to be hygroscopic and permeable to water vapour. These two characteristics have the potential to improve the longevity and indoor air quality of buildings. For instance, the use of hygroscopic mat...... rain, the maximum mold index reached a value of 0,2. With a recommended threshold of 3, it seems that the wall design investigated here could perform satisfactorily provided that great care is taken to minimize the wall exposure to driving rain....

  9. Selecting Energy Efficient Building Envelope Retrofits to Existing Department of Defense Building Using Value Focused Thinking

    Science.gov (United States)

    2006-03-01

    low sloped, pitched, shingle, modified bitumen , single or multiple ply, and metal. A typical Air Force facility has a low slope built-up roof (BUR...ICFs in that they provide a uniform R-value across the entire wall. SIPs usually are comprised of a four to eight inch thick foam insulation core...2.12: Cross section of a typical structural insulated panel wall (SIP Association, 2005). A foam core is sandwiched between two pieces of sheathing

  10. Plotting the Flight Envelope of an Unmanned Aircraft System Air Vehicle

    Directory of Open Access Journals (Sweden)

    Glīzde Nikolajs

    2017-08-01

    Full Text Available The research is focused on the development of an Unmanned Aircraft System. One of the design process steps in the preliminary design phase is the calculation of the flight envelope for the Unmanned Aircraft System air vehicle. The results obtained will be used in the further design process. A flight envelope determines the minimum requirements for the object in Certification Specifications. The present situation does not impose any Certification Specification requirements for the class of the Unmanned Aircraft System under the development of the general European Union trend defined in the road map for the implementation of the Unmanned Aircraft System. However, operation in common European Aerospace imposes the necessity for regulations for micro class systems as well.

  11. Achieving environmentally friendly building envelope for Western Australia’s housing sector: A life cycle assessment approach

    Directory of Open Access Journals (Sweden)

    Krishna Kumar Lawania

    2016-12-01

    Full Text Available The rapid growth of Western Australia’s population and economy will affect the sustainability of its building sector. The energy consumption of all processes during mining to material production, transportation, construction plant and tools, and operation (heating, cooling, lighting, hot water and home appliances stages causes high greenhouse gas (GHG emissions and embodied energy (EE consumption. The literature review to date have confirmed that the building envelope consisting of exterior walls, windows, external doors, roof, and floor could significantly affect the energy consumption during operation stage. Australian construction industry could thus enhance the energy efficiency of the building envelope in order to achieve its GHG emissions reduction targets. This paper has assessed the GHG emissions and EE consumption associated with the construction and use of a typical house in Perth for sixty building envelope options using a life cycle assessment (LCA approach. The results show that the building envelope consisting of cast in situ sandwich wall with polyethylene terephthalate (PET foam core, double glazed windows, and concrete roof tiles has the lowest life cycle GHG emissions and embodied energy consumption.

  12. Integration of a hygrothermal transfer model for envelope in a building energy simulation model: experimental validation of a HAM-BES co-simulation approach

    Science.gov (United States)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.

    2017-06-01

    The present paper focuses on studying a new methodology to predict the overall behavior of buildings, which combines two simulation tools: COMSOL Multiphysicsand TRNSYS. The first software is used for the modeling of heat, air and moisture transfer in multilayer porous walls (HAM model—Heat, Air and Moisture transfer), and the second is used to simulate the hygrothermal behavior of the building (BES model—Building Energy Simulation). The combined software applications dynamically solve the mass and energy conservation equations of the two physical models. In this context, a coupled heat, air and mass transfer model is proposed. This model incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of building walls. The experimental procedure consists to follow the temperature and relative humidity evolutions within the envelope thickness, submitted to controlled and fixed boundary conditions. Finally, using the developed experimental device, comparison between experimental data and numerical solution of the HAM-BES co-simulation platform was undertaken. Results showed good agreement with acceptable errors margins.

  13. A multi-criteria model for the comparison of building envelope energy retrofits

    Science.gov (United States)

    Donnarumma, Giuseppe; Fiore, Pierfrancesco

    2017-02-01

    In light of the current EU guidelines in the energy field, improving building envelope performance cannot be separated from the context of satisfying the environmental sustainability requirements, reducing the costs associated with the life cycle of the building as well as economic and financial feasibility. Therefore, identifying the "optimal" energy retrofit solutions requires the simultaneous assessment of several factors and thus becomes a problem of choice between several possible alternatives. To facilitate the work of the decision-makers, public or private, adequate decision support tools are of great importance. Starting from this need, a model based on the multi-criteria analysis "AHP" technique is proposed, along with the definition of three synthetic indices associated with the three requirements of "Energy Performance", "Sustainability Performance" and "Cost". From the weighted aggregation of the three indices, a global index of preference is obtained that allows to "quantify" the satisfaction level of the i-th alternative from the point of view of a particular group of decision-makers. The model is then applied, by way of example, to the case-study of the energetic redevelopment of a former factory, assuming its functional conversion. Twenty possible alternative interventions on the opaque vertical closures, resulting from the combination of three thermal insulators families (synthetic, natural and mineral) with four energy retrofitting techniques are compared and the results obtained critically discussed by considering the point of view of the three different groups of decision-makers.

  14. Climate Change Adopted Building Envelope as A Protector of Human Health in the Urban Environment

    Science.gov (United States)

    Januszkiewicz, Krystyna

    2017-10-01

    Recently, an expanded understanding of building performance acknowledges that all forces acting on buildings (climate, energies, information, and human agents) are not static and fixed, but rather mutable and transient. With the use of parametric and multi-criteria optimization digital tools, buildings’ envelopes can be designed to respond to various requirements. This paper explores the possibilities of architectural design to benefit human conditions, which encompasses mental well-being, environmental quality of life during the Climate Change era. The first part of the paper defines the main factors (such as: lack of green nature and sunlight, noise and pollution) which are influencing the formation of psychological disorder in big cities. The negative impact of these factors is constantly increasing in the time of Climate Change progressing. The second part presents results of the research program undertaken at West Pomeranian University of Technology in Szczecin by author. The program goes on to attempt to solve the problem through architectural design. This study highlights a social problem, such as mental well-being, resulting from urbanization or effects of the climate change, and serves as a useful background for further research on the possibilities of redefining sustainable and human friendly design.

  15. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  16. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  17. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    Science.gov (United States)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Greenbelt Homes Pilot Program: Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Del Bianco, M. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2015-05-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. It presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements.

  19. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  20. Building Air Quality Guide: A Guide for Building Owners and Facility Managers

    Science.gov (United States)

    The Building Air Quality, developed by the EPA and the National Institute for Occupational Safety and Health, provides practical suggestions on preventing, identifying, and resolving indoor air quality (IAQ) problems in public and commercial buildings.

  1. The Future of Air Conditioning for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    W. Goetzler, M. Guernsey, J. Young, J. Fuhrman, O. Abdelaziz, PhD

    2016-07-01

    BTO works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.

  2. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Otis, Casey [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Maxwell, Sean [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  3. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  4. Sensory evaluation of the air in 14 office buildings

    DEFF Research Database (Denmark)

    Pejtersen, Jan; Schwab, R.; Mayer, E.

    1999-01-01

    The perceived air quality was assessed in eight mechanically and six naturally ventilated office buildings. On average, 44 offices were investigated in each building. A panel of 11 trained subjects assessed the perceived air quality in the spaces directly in the sensory unit decipol. The average...... perceived air quality in the 14 office buildings ranged from 3.4 to 7.8 decipol. The perceived air quality averaged 4.1 decipol in the mechanically ventilated buildings and 6.0 decipol in the naturally ventilated buildings. Within the buildings there was a large variation in perceived air quality between...... the offices. The results indicate that the occupants' behaviour is important for the pollution load and the air quality in offices....

  5. Comparative thermal performance of static sunshade and brick cavity wall for energy efficient building envelope in composite climate

    Directory of Open Access Journals (Sweden)

    Charde Meghana

    2014-01-01

    Full Text Available Energy efficient building technologies can reduce energy consumption in buildings. In present paper effect of designed static sunshade, brick cavity wall with brick projections and their combined effect on indoor air temperature has been analyzed by constructing three test rooms each of habitable dimensions (3.0 m × 4.0 m × 3.0 m and studying hourly temperatures on typical days for one month in summer and winter each. The three rooms have also been simulated using a software and the results have been compared with the experimental results. Designed static sunshade increased indoor air temperature in winter while proposed brick cavity wall with brick projections lowered it in summer. Combined effect of building elements lowered indoor air temperature in summer and increased it in winter as compared to outdoor air temperature. It is thus useful for energy conservation in buildings in composite climate.

  6. OTTV (SNI 03-6389-2011 and ETTV (BCA 2008 Calculation for Various Building’s Shapes, Orientations, Envelope Building Materials: Comparison and Analysis

    Directory of Open Access Journals (Sweden)

    Loekita S.

    2015-09-01

    Full Text Available The Indonesian National Standard SNI 03-6389-2000 adapted the 1983 Singapore’s Handbook on Energy Conservation and limited the Overall Thermal Transfer Value (OTTV of the building envelope to 45 Watt/m2. In 2008, the Singapore’s Building and Construction Authority (BCA shifted to Envelope Thermal Transfer Value (ETTV value of 50 Watt/m2, while SNI 03-6389-2011 continues to use OTTV. This paper reviewed the new SNI 03-6389-2011 and compared it with BCA by calculating OTTV and ETTV of prismatic buildings with eight different shapes and building orientations, 11 Window to Wall Ratio, and 27 building envelope materials. This study also tested those variables to find the best building shape and orientation for an energy saver building. The result shows that ETTV (BCA is stricter than OTTV (SNI 03-6389-2011 except the OTTV with black building envelope, while parallelogram shape building with North-South orientation is the best combination of energy saver building.

  7. Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year

    Science.gov (United States)

    Parat, Sylvie; Perdrix, Alain; Fricker-Hidalgo, Hélène; Saude, Isabelle; Grillot, Renee; Baconnier, Pierre

    Heating, ventilation and air-conditioning (HVAC) may be responsible for the production and spread of airborne microorganisms in office buildings. In order to compare airborne microbiological flora in an air-conditioned building with that in a naturally ventilated building, eight sets of measurements were made over a 1-year period. Concurrently with other environmental measurements, air samples were collected in each building, from three offices and from the outdoor air, using the Andersen single-stage sampler. Three different media were used to culture fungi, staphylococci and mesophilic bacteria. Multivariate analysis revealed a group of offices more contaminated than others, and a marked seasonal variation in fungal concentrations. A comparison of mean levels of microorganisms measured in the two buildings showed that the air microbial content was significantly higher and more variable in the naturally ventilated building than in the air-conditioned building. Moreover, in the naturally ventilated building, the interior fungal content was strongly dependent on the outdoor content, while in the air-conditioned building fungal concentrations remained constant despite significant variations measured outside. This was confirmed by a statistical comparison of the correlation coefficients between indoor and outdoor concentrations. No difference was observed regarding gaseous pollutants and temperature, but relative humidity was significantly higher in the air-conditioned building. The effect of HVAC was to prevent the intake of outdoor particles and to dilute the indoor concentrations. These results are consistent with the presence of high-efficiency filters and a steam humidifier in the HVAC system under study.

  8. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D.M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  9. Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

    2010-04-12

    This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

  10. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    OpenAIRE

    Alexandre Hugo; Radu Zmeureanu

    2012-01-01

    The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS softwar...

  11. Heat- and moisture transfer at the exterior of the building envelope

    DEFF Research Database (Denmark)

    Kragh, Mikkel Kristian

    1996-01-01

    Introductory lecture note relating the theory of convective heat and moisture transfer to applications in building physics.......Introductory lecture note relating the theory of convective heat and moisture transfer to applications in building physics....

  12. Computer Prediction of Air Quality in Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Bjerg, Bjarne

    In modem livestock buildings the design of ventilation systems is important in order to obtain good air quality. The use of Computational Fluid Dynamics for predicting the air distribution makes it possible to include the effect of room geometry and heat sources in the design process. This paper...... presents numerical prediction of air flow in a livestock building compared with laboratory measurements. An example of the calculation of contaminant distribution is given, and the future possibilities of the method are discussed....

  13. Relationships between air-tightness and its influencing factors of post-2006 new-build dwellings in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [School of Architecture, Design and Environment, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom)

    2010-11-15

    Addressing air leakage of dwellings is important to improving energy efficiency and thermal comfort. This paper reports on the air permeability test results of 287 post-2006 new-build dwellings in the UK. The paper explores the relationships between air-tightness and its influencing factors including build method, dwelling type, management context, design target, season, number of significant penetrations, and envelope and floor area. One-way ANOVA analysis was utilised to compare means of air permeability in relation to the individual factors, and two- and three-way ANOVA analyses were applied for examining the interactions between them. The air-tightness of the dwellings averaged 5.97 m{sup 3}/(h m{sup 2}) at 50 Pa, which has improved from UK historic data. Dwellings built using precast concrete panels were significantly air-tighter than those built using timber frame, whilst those masonry and reinforced concrete frame dwellings were most leaky. Greater extent of innovative practice and 'self-build' procurement led to achieving superior air-tightness. Interaction was observed between 'build method' and 'dwelling type' and between 'dwelling type' and 'management context'. A modest positive correlation was noticed between air permeability and design target, which became weak in relation to the number of significant penetrations and envelope area. Applying the linear regression technique a predictive model is developed for estimating air permeability of dwellings. This model integrates the influencing factors and their significant interactions. The findings should contribute to future research in predicting impacts of controlling the influencing factors on achieving air-tightness of dwellings more consistently. (author)

  14. Benchmarking the energy performance of office buildings: A data envelopment analysis approach

    OpenAIRE

    Molinos-Senante, María; Encinas, Felipe; Ureta, Francisca

    2016-01-01

    The achievement of energy efficiency in buildings is an important challenge facing both developed and developing countries. Very few papers have assessed the energy efficiency of office buildings using real data. To overcome this limitation, this paper proposes an energy efficiency index for buildings having a large window-to-wall ratio, and uses this index to identify the main architectural factors affecting energy performance. This paper assesses, for the first time, the energy performances...

  15. Characterization of the environmental performance of the insulating materials in the enveloping of the building.

    OpenAIRE

    Carabaño Rodriguez, Rocio; Bedoya Frutos, Cesar

    2012-01-01

    Insulating materials in buildings are one of the main factors that should be taken into account when talking about sustainability since with a correct application it could imply important savings for the citizens. In the course of its life, a building requires a series of supplies to perform the duties it has been built for, generating an impact on the environment. The selection of one material or another will establish partly the global environmental impact of the building. Choosing the righ...

  16. Evaluation of building envelopes from the viewpoint of capability of controlling thermal environment; Onnetsu kankyo chosei noryoku ni yoru kenchiku gaihi no hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K.; Ono, S. [Taisei Corp., Tokyo (Japan); Shukuya, M. [Musashi Institute of Technology, Tokyo (Japan)

    1996-10-27

    The ability that architectural space improves the thermal environment in comparison with outdoor environment is called the `capability of controlling thermal environment.` As the value becomes higher, the indoor thermal environment is more improved. In this paper, the controlling capability of six building envelopes with different window systems was compared. The heat transfer in the wall and window system is approximated using a lumped mass model of heat capacity to obtain a heat balance equation and combined with the heat balance equation in indoor air for backward difference. The wall surface temperature and indoor air temperature in a calculation model are then calculated. A radiation absorption coefficient is used for mutual radiation on each wall. In the model, the adjoining room or first- and second-floor rooms were made the same in conditions as the model on the assumption that the one-side lighted office in an RC reference floor is in the non-illumination and non-airconditioning state. In summer, the controlling capability remarkably varies depending on the window system. For the window facing the south, the annual capability is more advanced than in other directions and the indoor thermal environment is improved on the average. 7 refs., 12 figs., 1 tab.

  17. Building Envelope Thermal Performance Assessment Using Visual Programming and BIM, based on ETTV requirement of Green Mark and GreenRE

    Directory of Open Access Journals (Sweden)

    Taki Eddine Seghier

    2017-09-01

    Full Text Available Accomplishment of green building design requirements and the achievement of the targeted credit points under a specific green rating system are known to be a task that is very challenging. Building Information Modeling (BIM design process and tools have already made considerable advancements in green building design and performance analysis. However, Green building design process is still lack of tools and workflows that can provide real-time feedback of building sustainability and rating during the design stage. In this paper, a new workflow of green building design assessment and rating is proposed based on the integration of Visual Programing Language (VPL and BIM. Thus, the aim of this study is to develop a BIM-VPL based tool for building envelope design and assessment support. The focus performance metric in this research is building Envelope Thermal Transfer Value (ETTV which is an Energy Efficiency (EE prerequisite requirement (up to 15 credits in both Green Mark and GreenRE rating systems. The development of the tool begins first by creating a generic integration framework between BIM-VPL functionalities and ETTV requirements. Then, data is extracted from the BIM 3D model and managed using Revit, Excel and Dynamo for visual scripting. A sample project consisting of a hypothetical residential building is run and its envelope ETTV performance and rating score are obtained for the validation of the tool. This tool will support project team in building envelope design and assessment by allowing them to select the most appropriate façade configuration according to its performance efficiency and the green rating. Furthermore, this tool serves as proof of concept that building sustainability rating and compliance checking can be automatically processed through customized workflows developed based on BIM and VPL technologies.

  18. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  19. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  20. Combating the 'Sick Building Syndrome' by Improving Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Pongchai Nimcharoenwon

    2012-11-01

    Full Text Available Research indicates that many of symptoms attributed to the Sick Building Syndrome in air-conditioned office buildings are a result of considerably reduced negative ions in the internal atmosphere and that replacing the depleted negative ions can improve indoor air quality. This paper describes a method used to develop a formula (DOF-NIL formula for calculating the amount of negative ions to be added to air-conditioned buildings, to improve air quality. The formula enables estimates to be made based on how negative ions in the air are reduced by three main factors namely, Video Display Terminals (VDT; heating, ventilation and air conditioning (HVAC and Building Contents (BC. Calculations for a typical air-conditioned office, are compared with an Air Ion Counter instrument. The results show that the formula, when applied to a typical air-conditioned office, provides an accurate estimate for design purposes. The typical rate of additional negative-ions (ion-generating for a negative ion condition is found to be approximately 12.0 billion ions/hr for at least 4 hour ion-generating.

  1. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  2. Green, Clean, & Mean: Pushing the Energy Envelope in Tech Industry Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Rengie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diamond, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haves, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordman, Bruce [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-01

    When it comes to innovation in energy and building performance, one can expect leading-edge activity from the technology sector. As front-line innovators in design, materials science, and information management, developing and operating high-performance buildings is a natural extension of their core business. The energy choices made by technology companies have broad importance given their influence on society at large as well as the extent of their own energy footprint. Microsoft, for example, has approximately 250 facilities around the world (30 million square feet of floor area), with significant aggregate energy use of approximately 4 million kilowatt-hours per day (Figure 1).

  3. Potential for innovative massive building envelope systems – Scenario development towards integrated active systems

    Directory of Open Access Journals (Sweden)

    Ulrich Knaack

    2015-06-01

    Full Text Available In order to generate possible scenarios about future developments of massive constructions, this paper explains the developmental paths on the basis of individual materials of clay/brick as well as concrete/lightweight concrete/aerated concrete and sand-lime brick. These construction types are organised qua development level on a roadmap, structured by a timeline and the division in massive and skeleton construction. By this development, lines of constructions appear, structured by the order of additional functionalities integrated in each development step. Following this path, possible scenarios for future developments of integrated active systems are sketched, following the line of additional functionalities being integrated in the construction. Drawbacks such as the limitation of recycling of integrated constructions and the conflict of insulation versus load bearing capacities are named. As a result two strategies are expressed: the light massive envelope construction with integral layers and the massive oriented solution with possible exchangeable components are developed and illustrated by five general construction principles.  

  4. Strategy for good perceived air quality in sustainable buildings

    DEFF Research Database (Denmark)

    Knudsen, Henrik N; Wargocki, Pawel

    2010-01-01

    Source control has been shown to be an effective strategy for improving air quality. The objective of the present study was to investigate and compare the potential for achieving an improved perceived indoor air quality by selecting less-polluting building materials or by increasing the ventilati...

  5. Cool products for building envelope - Part I: Development and lab scale testing

    NARCIS (Netherlands)

    Revel, G.M.; Martarelli, M.; Emiliani, M.; Gozalbo, A.; Orts, M.J.; Bengochea, M.T.; Guaita Delgado, L.; Gaki, A.; Katsiapi, A.; Taxiarchou, M.; Arabatzis, I.; Fasaki, I.; Hermanns, S.

    2014-01-01

    The paper describes the methodology followed for the development of new cool products in order to widen the range of existing solutions both including coloured (even dark) materials and extending the application also to building vertical components. Cool coloured ceramic tiles and acrylic paints for

  6. Problem Definition Study of Requirements for Vapor Retarders in the Building Envelope.

    Science.gov (United States)

    1982-11-01

    shakes). Rockwool batts 1 % inches thick with asphalt-impregnated kraft paper vapor retarder on the warm side was placed in the stud space next to the...on plaster board and on the outside with plywood sheathing, asphalt-impregnated building paper and plywood, brick, or wood siding. Rockwool lb-in

  7. Solar coolfacades : Framework for the integration of solar cooling technologies in the building envelope

    NARCIS (Netherlands)

    Prieto Hoces, A.I.; Knaack, U.; Auer, Thomas; Klein, T.

    2017-01-01

    Solar cooling systems have gained increased attention these last years, for its potential to lower indoor temperatures using renewable energy. However, architectural integration of these systems in buildings has not been fully explored. Current developments such as small scale solar driven heat

  8. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Science.gov (United States)

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  9. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  10. Service life assessment of historical building envelopes constructed using different types of sandstone: a computational analysis based on experimental input data.

    Science.gov (United States)

    Kočí, Václav; Maděra, Jiří; Fořt, Jan; Žumár, Jaromír; Pavlíková, Milena; Pavlík, Zbyšek; Černý, Robert

    2014-01-01

    Service life assessment of three historical building envelopes constructed using different types of sandstone is presented. At first, experimental measurements of material parameters of sandstones are performed to provide the necessary input data for a subsequent computational analysis. In the second step, the moisture and temperature fields across the studied envelopes are calculated for a representative period of time. The computations are performed using dynamic climatic data as the boundary conditions on the exterior side of building envelope. The climatic data for three characteristic localities are experimentally determined by the Czech Hydrometeorological Institute and contain hourly values of temperature, relative humidity, rainfalls, wind velocity and direction, and sun radiation. Using the measured durability properties of the analyzed sandstones and the calculated numbers of freeze/thaw cycles under different climatic conditions, the service life of the investigated building envelopes is assessed. The obtained results show that the climatic conditions can play a very significant role in the service life assessment of historical buildings, even in the conditions of such a small country as the Czech Republic. In addition, the investigations reveal the importance of the material characteristics of sandstones, in particular the hygric properties, on their service life in a structure.

  11. Intention, Principle, Outputs and Aims of the Experimental Pavilion Research of Building Envelopes Including Windows for Wooden Buildings

    Science.gov (United States)

    Štaffenová, Daniela; Rybárik, Ján; Jakubčík, Miroslav

    2017-06-01

    The aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.

  12. Performance Evaluation of Modern Building Thermal Envelope Designs in the Semi-Arid Continental Climate of Tehran

    Directory of Open Access Journals (Sweden)

    Shaghayegh Mohammad

    2013-10-01

    Full Text Available In this paper we evaluate the thermal performance of a range of modern wall constructions used in the residential buildings of Tehran in order to find the most appropriate alternative to the traditional un-fired clay and brick materials, which are increasingly being replaced in favor of more slender wall constructions employing hollow clay, autoclaved aerated concrete or light expanded clay aggregate blocks. The importance of improving the building envelope through estimating the potential for energy saving due to the application of the most energy-efficient wall type is presented and the wall constructions currently erected in Tehran are introduced along with their dynamic and steady-state thermal properties. The application of a dynamic simulation tool is explained and the output of the thermal simulation model is compared with the dynamic thermal properties of the wall constructions to assess their performance in summer and in winter. Finally, the best and worst wall type in terms of their cyclic thermal performance and their ability to moderate outdoor conditions is identified through comparison of the predicted indoor temperature and a target comfort temperature.

  13. Thermal mass vs. insulation building envelope design in six climatic regions of South Africa

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-02-01

    Full Text Available and interior spaces, but they are also different with respect to other characteristics. High density materials such as concrete, brick, tiles, earth and water require a significant amount of heat to increase their temperature. They also lose heat slowly... the beneficial effects of insulation are destroyed. Tracer gas tests were used to measure the infiltration rate for a light steel frame (LSF) house which was built on the CSIR building performance laboratory test site. Carbon dioxide was injected...

  14. Energy Retrofit Strategies for Residential Building Envelopes: An Italian Case Study of an Early-50s Building

    Directory of Open Access Journals (Sweden)

    Luca Evangelisti

    2015-08-01

    Full Text Available During the last few years, the issues of energy efficiency and energy saving have dominated the buildings research field. New constructions are based on efficient design and, because of this, the real challenge is to retrofit existing buildings. Italian standards impose thermal transmittance limits for opaque and transparent surfaces, according to the climatic area. In order to understand buildings’ energy behavior, an accurate analysis, carried out by employing advanced calculation codes and instrumental diagnosis—provided by the use of heat flow meter, surface temperature probes and thermal imaging camera—is needed. In this paper, a structure built in the 50 s has been analyzed, by means of a measurement campaign, to investigate the building’s characteristics and its vulnerability. Finally, some retrofit hypotheses have been evaluated by means of a well-known dynamic code. All investments have to be analyzed under a financial point of view, considering materials and installation costs. For this reason, the payback time has been calculated in order to understand how quickly the energy upgrading can be repaid.

  15. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  16. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Home Innovation Research Labs, Marlboro, MD (United States); Del Bianco, M. [Home Innovation Research Labs, Marlboro, MD (United States); Mallay, D. [Home Innovation Research Labs, Marlboro, MD (United States)

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  17. Links Related to the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  18. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  19. Preserving Envelope Efficiency in Performance Based Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A. [Thornton Energy Consulting (United States); Sullivan, Greg P. [Efficiency Solutions (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  20. Indoor air quality measurements in 38 Pacific Northwest commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Turk, B.H.; Brown, J.T.; Geisling-Sobotka, K.; Froehlich, D.A.; Grimsrud, D.T.; Harrison, J.; Revzan, K.L.

    1986-06-01

    A Bonneville Power Administration-funded study monitored ventilation rates and a variety of indoor air pollutants in 38 Pacific Northwest commercial buildings. The buildings ranged in age from 6 months to 90 years, in size from 864 to 34,280 m/sup 2/, and occupancy from 25 to 2500 people. Building average formaldehyde (HCHO) concentrations were below the 20 ppB detection limit in 48% of the buildings. Nitrogen dioxide (NO/sub 2/) concentration averages ranged from 5 ppB to 43 ppB and were lower than outdoor concentrations in 8 of 13 buildings. At only one site, an elementary school classroom, did carbon dioxide (CO/sub 2/) exceed 1000 ppM. Radon (Rn) levels were elevated in one building with an average concentration of 7.4 pCiL/sup -1/. Respirable particles (RSP) concentrations in smoking areas in 32 buildings had a geometric mean of 44 ..mu..g m/sup -3/ and ranged up to 308 ..mu..g m/sup -3/ at one site. In non-smoking areas the geometric mean RSP was 15 ..mu..g m/sup -3/. Outside air ventilation rates did not appear to be the single dominant parameter in determining indoor pollutant concentrations. Measured pollutant concentrations in 2 ''complaint'' buildings were below accepted guidelines. The cause of the complaints was not identified.

  1. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    to more than double the dehumidification provided by the air conditioner. At AHRI A rating conditions, the LDDX prototypes that were tested at...building. Furthermore, there was no chemistry or biology laboratory work that required exceptionally tight control of the indoor environment with...limited access to the building. Furthermore, there was no chemistry or biology laboratory work that required exceptionally tight control of the indoor

  2. Indoor Air Quality Assessment of the San Francisco Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  3. Indoor air quality in energy efficient buildings. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Berge, Magnar

    2012-07-01

    There is currently a major focus on measures to reduce global warming. Several international studies show that the energy efficiency of buildings is the easiest and most cost-effective climate action. Passive houses are characterized of that the buildings are more airtight, have more insulation and has balanced mechanical ventilation with heat recovery. This report discusses about this one-sided focus on energy conservation, and if {sup c}hange{sup }in building methods can have a negative impact on indoor air quality and people's health. (Author)

  4. Optimization of sustainable buildings envelopes for extensive sheep farming through the use of dynamic energy simulation

    Directory of Open Access Journals (Sweden)

    Maria Elena Menconi

    2013-09-01

    Full Text Available Extensive sheep farming can be seen as a marginal market, compared to other livestock and agricultural activities, taking into account only the economic absolute values. But for many rural marginal areas within the European Community member states, in particular for those located in the Mediterranean area on hills or mountains with high landscape value, extensive sheep farming is not only the longest practiced animal farming activity, but also the most interesting considering its adaptability to the territorial morphology and the restrictions that have been established over the years in terms of sustainable rural development practices. At the moment, most of the structures used in this type of farming are built using low cost and sometimes recycled, but often unsuitable, materials. Few specific studies have been carried out on this particular issue assuming, presumably, that the very low profit margins of these activities made impossible any restructuring. Taken this into account, the new Rural Development Plans that will be issued in 2014 will surely contain some measure dedicated to innovations in farming structures and technology towards facilitating the application of the principles of energy optimization. This is the framework in which the present research has developed. The software that has been applied to perform the energy optimization analysis is the dynamic energy simulation engine Energy Plus. A case study farm has been identified in the small village of Ceseggi (PG, situated in Central Italy. For the case study optimum thermo hygrometric conditions have been identified to ensure the welfare of animals and operators and it has been hypothesized the insertion of an ideal HVAC system to achieve them. Afterwards were evaluated the different energy requirements of the building while varying the insulation material used on the vertical surfaces. The greater goal is to verify which could be the best insulation material for vertical

  5. Cold air distribution in office buildings: Technology assessment for California

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, F.S.; LaBege, P. (California Univ., Berkeley, CA (United States). Center for Environmental Design Research); Borgers, T. (Humboldt State Univ., Arcata, CA (United States). Dept. of Chemistry); Gadgil, A.J. (Lawrence Berkeley Lab., CA (United States))

    1992-06-01

    This paper presents the results of a study to assess the current state of practice, and energy and operating cost implications of cold air distribution in California, and to identify the key research needs for the continued development of this technology in new commercial buildings in the state. Whole-building energy simulations were made to compare the energy performance of a prototypical office building in three California climates using conventional and cold air distribution, with and without ice storage, to show the impacts of load shifting, energy use, and utility costs for three typical utility rate structures. The merits of economizers and fan-powered mixing boxes were also studied when used in conjunction with cold air delivery. A survey was conducted to assess the perceived strengths and limitations of this technology, perceived barriers to its widespread use, and user experience. The survey was based on interviews with consulting engineers, equipment manufacturers, researchers, utility representatives, and other users of cold air distribution technology. Selected findings from the industry survey are also discussed. Cold air distribution (CoAD) is found to always reduce fan energy use in comparison to conventional 55[degrees]F (13[degrees]C) air distribution systems, when conditioned air is delivered directly to the space (no fan-powered mixing boxes). Total building energy use for ice storage/CoAD systems was always higher than a well-designed conventional system, but significantly lower than a commonly-installed packaged system. When a favorable utility rate structure was applied, the load-shifting benefits of ice storage/CoAD systems produced the lowest annual operating costs of all system-plant configurations studied.

  6. Cold Air Distribution in Office Buildings: Technology Assessment for California

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, F.S.; Borgers, T.; LaBerge, P.; Gadgil, A.J.

    1992-06-01

    This paper presents the results of a study to assess the current state of practice, and energy and operating cost implications of cold air distribution in California, and to identify the key research needs for the continued development of this technology in new commercial buildings in the state. Whole-building energy simulations were made to compare the energy performance of a prototypical office building in three California climates using conventional and cold air distribution, with and without ice storage, to show the impacts of load shifting, energy use, and utility costs for three typical utility rate structures. The merits of economizers and fan-powered mixing boxes were also studied when used in conjunction with cold air delivery. A survey was conducted to assess the perceived strengths and limitations of this technology, perceived barriers to its widespread use, and user experience. The survey was based on interviews with consulting engineers, equipment manufacturers, researchers, utility representatives, and other users of cold air distribution technology. Selected findings from the industry survey are also discussed. Cold air distribution (CoAD) is found to always reduce fan energy use in comparison to conventional 55 F (13 C) air distribution systems, when conditioned air is delivered directly to the space (no fan-powered mixing boxes). Total building energy use for ice storage/CoAD systems was always higher than a well-designed conventional system, but significantly lower than a commonly-installed packaged system. When a favorable utility rate structure was applied, the load-shifting benefits of ice storage/CoAD systems produced the lowest annual operating costs of all system-plant configurations studied.

  7. Air Dispersion Modeling for Building 3026C/D Demolition

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Richard C [ORNL; Sjoreen, Andrea L [ORNL; Eckerman, Keith F [ORNL

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7

  8. [Air pollution in internal environments and sick building syndrome].

    Science.gov (United States)

    Schirmer, Waldir Nagel; Pian, Lucas Bischof; Szymanski, Mariani Sílvia Ester; Gauer, Mayara Ananda

    2011-08-01

    Indoor Air Quality (IAQ) emerged as a science from the 1970s onwards with the energy crisis and the subsequent construction of sealed buildings (without natural ventilation). This mainly occurred in developed countries and it soon came to public attention that lower levels of air exchange in these environments was the main culprit for the increase in concentration of indoor air pollutants. It is common knowledge that ventilation is one of the principal factors that interfere with air quality in indoor environments and that the occupants contribute to the pollution of these environments with their activities. Furthermore, poor indoor air quality is associated with some diseases (cough, rhinitis, allergy, etc.) and with Sick Building Syndrome (SBS). For sampling of the indoor contaminants there are several methodologies, available including passive monitoring systems, active and automatic systems. To ensure a healthy indoor environment, the application of specific legislation needs to be reconciled with research and fostering awareness among the occupants of such buildings. This survey seeks to identify the different contaminants found in internal environments, their effects on human health and the methodologies available for sampling them.

  9. Biocompuestos para perfiles avanzados adaptados a la edificación = Biocomposites for Advanced Profiles Adapted to Building Envelope

    Directory of Open Access Journals (Sweden)

    I. Roig

    2016-04-01

    Full Text Available Compuestos alternativos en el sector de la envolvente se obtienen por extrusión de estirado de secciones y perfiles de panel de enclavamiento estrechas. Estos elementos estructurales, resistentes al impacto, tienen la ventaja de una instalación más rápida y segura, y su diseño modular les hace idóneos para muchos edificios y otras aplicaciones. Un desarrollo adicional en esta área puede ser la obtención de una alternativa sostenible a los perfiles compuestos actuales. Estudios anteriores han demostrado que los compuestos fabricados a partir de materiales naturales tales como fibras y polímeros bio-derivados, ofrecen una alternativa sostenible a los polímeros y materiales compuestos tradicionales. El objetivo de este desarrollo es reemplazar el típico perfil de acero ligero. Los perfiles de acabado también se pueden utilizar para terminar tabiques de mampostería existentes, revestimiento de ejes mecánicos y de extracción y revestimiento de la columna. Los perfiles se han diseñado utilizando bio-polímeros, reforzados con fibras naturales. Se han establecido los parámetros de procesamiento y las formulaciones apropiadas de bioresina y fibras naturales. También se ha evaluado la adaptación de las técnicas de procesamiento de pultrusión existentes a las características concretas de los nuevos biomateriales y fibras naturales. Como resultado, los perfiles de pultrusión adaptados a la construcción se han desarrollado con la incorporación de nuevos materiales y biomateriales basados en resina. Abstract An alternative composites answer in the envelope sector is the fabrication by pultrusion of narrow interlocking panel sections and profiles. These impact-resistant structural elements have the advantage of quicker, safer installation and their modular design equally answers many identical building and other applications¡Error! No se encuentra el origen de la referencia.. An additional development in this area can be the

  10. Association of Sick Building Syndrome with Indoor Air Parameters.

    Science.gov (United States)

    Jafari, Mohammad Javad; Khajevandi, Ali Asghar; Mousavi Najarkola, Seyed Ali; Yekaninejad, Mir Saeed; Pourhoseingholi, Mohammad Amin; Omidi, Leila; Kalantary, Saba

    2015-01-01

    Energy crisis in 1973 led to smaller residential and office buildings with lower air changes. This resulted in development of Sick Building Syndrome (SBS). The objective of this study was to assess the association of SBS with individual factors and indoor air pollutants among employees in two office buildings of Petroleum Industry Health Organization in Tehran city. The association between personal and environmental factors and SBS symptoms was examined by a reliable and valid combined questionnaire. Environmental parameters were measured using calibrated instruments. The results suggested that SBS symptoms were more common in women than men. Malaise and headache were the most common symptoms in women and men. Throat dryness, cough, sputum, and wheezing were less prevalent among employees in both offices. Light-intensity was significantly associated with some symptoms such as skin dryness (P = 0.049), eye pain (P = 0.026), and malaise (P = 0.043). There were no significant differences in prevalence of SBS symptoms between female workers of the two offices (P>0.05). The main causes of SBS among the employees were recycling of air in rooms using fan coils, traffic noise, poor lighting, and buildings located in a polluted metropolitan area.

  11. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  12. Guidelines for indoor air hygiene in school buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moriske, Heinz-Joern; Szewzyk, Regine (eds.)

    2008-08-15

    The new guidelines for indoor air hygiene in school buildings are intended as a response to current requirements in school practice. The recommendations aim to help to avoid mistakes in modernising school buildings and to provide hygiene-specific support in planning of new school buildings. The guidelines are laid out as follows: (a) In the general section the targets of the guidelines and the target groups are addressed. The current indoor hygiene situation in German schools is described, followed by the parameters with regard to peripheral issues which will not be dealt with further; (b) Part A deals with the hygiene requirements in the practical running of schools. Besides general requirements for maintenance and operation the important issues of cleaning and ventilation are considered, as well as minor building works; (c) Part B provides an overview of important chemical and biological contaminants in schools; (d) Part C looks at building and air conditioning requirements. The important issues of acoustic requirements is also addressed; (e) Part D shows how to deal practically with problem cases and list case studies with 'typical' procedures; (f) Part E provides a brief overview of existing renovation guidelines.

  13. CISBAT 2005 proceedings. Renewables in a changing climate - Innovation in building envelopes and environmental systems; CISBAT 2005 proceedings. Energies renouvelables et climat - Enveloppes et systemes environnementaux innovatifs

    Energy Technology Data Exchange (ETDEWEB)

    Scartezzini, J. L. (ed.)

    2005-07-01

    These proceedings include the contributions presented at the 2005 CISBAT conference, held in Lausanne, Switzerland. Hosted by the Swiss Federal Institute of Technology (EPFL) in Lausanne and jointly organised by the Solar Energy and Buildings Physics Laboratory at the EPFL, Cambridge University and the Massachusetts Institute of Technology (MIT), this international conference looked at 'Innovation in building envelopes and environmental systems'. Along with three keynote presentations on climate change, the use of renewables in the European Union and Swiss policies on solar energy, these 632-page conference proceedings include the conference's 106 presentations grouped in 10 sections. These cover the following topics: Design and renovation of building envelopes (33 contributions); solar collectors (16 contributions); active and passive cooling (9 contributions); indoor environment quality and health (10 contributions); optimisation of daylighting and electric lighting (5 contributions); advanced building control systems (2 contributions); environmental impacts of construction (4 contributions); networks and decentralised energy production (1 contribution); sustainable urban development (12 contributions) and software and new information technologies (14 contributions). Organised each second year, the two-day CISBAT international conference 2005 attracted more than 200 participants from all over the world.

  14. Measuring Outdoor Air Intake Rates into Existing Building

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  15. Multifamily Envelope Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Faakye, Omari [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Griffiths, Dianne [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  16. Assessment on bamboo scrimber as a substitute for timber in building envelope in tropical and humid subtropical climate zones - part 1 hygrothermal properties test

    Science.gov (United States)

    Huang, Zujian; Sun, Yimin; Musso, Florian

    2017-11-01

    Bamboo scrimber was bamboo fiber based panel developed in 2000s that was potential to be an ideal substitute for timber in bamboo growing areas. For obtaining material parameters and evaluating the performance in building envelope, bamboo scrimber was systematically tested for hygrothermal properties, based on the building envelope heat and moisture process model. Static test items included density calculation and vacuum saturation test for basic properties; sorption test for moisture storage properties; capillary absorption test, water vapour transmission test and drying test for moisture transport properties; thermal analysis for heat storage properties; thermal conductivity test, surface light and thermal properties test for heat transport properties. The test results, by comparison with reference timbers showed that bamboo scrimber had higher heat storage and heat transport properties and lower moisture storage and transport properties. The dynamic test in wind tunnel with outdoor weather condition showed that bamboo scrimber had lower moisture absorption and desorption rate than reference hardwood. The significant magnitude difference between the static and dynamic test results showed the necessity of a comprehensive evaluation approach that could take more practical conditions into consideration.

  17. 241-U-701 new compressor building and instrument air piping analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.H.

    1994-08-25

    Building anchorage analysis is performed to qualify the design of the new compressor building foundation given in the ECN ``241-U-701 New Compressor Building.`` Recommendations for some changes in the ECN are made accordingly. Calculations show that the 6-in.-slab is capable of supporting the pipe supports, and that the building foundation, air compressor and dryer anchorage, and electric rack are adequate structurally. Analysis also shows that the instrument air piping and pipe supports for the compressed air system meet the applicable code requirements and are acceptable. The building is for the U-Farm instrument air systems.

  18. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings

    DEFF Research Database (Denmark)

    Woloszyn, Monika; Rode, Carsten

    2008-01-01

    Humidity of indoor air is an important factor influencing the air quality and energy consumption of buildings as well as durability of building components. Indoor humidity depends on several factors, such as moisture sources, air change, sorption in materials and possible condensation. Since all...

  19. Air conditioning in high rise buildings; conditionnement d'air dans les immeubles de grande hauteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This book brings together the 103 presentations given at the 2. conference of the international institute of refrigeration (IIF/IIR) about air conditioning in high rise office buildings. The main themes are: design of air conditioning equipment for high buildings; air quality and thermal comfort inside these buildings; constraints and possible improvements of the refrigeration equipment used; energy conservation; fire protection and smokes detection. All themes are presented both on the technical and economical points of view and concern more particularly the buildings of Chinese cities. This publication is available both on the book and CD-Rom forms. (J.S.)

  20. A Methodology to Support Decision-Making Towards an Energy-Efficiency Conscious Design of Residential Building Envelope Retrofitting

    NARCIS (Netherlands)

    Konstantinou, T.

    2015-01-01

    Over the next decade investment in building energy savings needs to increase, together with the rate and depth of renovations, to achieve the required reduction in buildingrelated CO2 emissions. Although the need to improve residential buildings has been identified, guidelines come as general

  1. The Future of Air Conditioning for Buildings - Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Young, J. [Navigant Consulting Inc., Burlington, MA (United States); Fuhrman, J. [Navigant Consulting Inc., Burlington, MA (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements. Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.

  2. Sick building syndrome by indoor air pollution in Dalian, China.

    Science.gov (United States)

    Guo, Peng; Yokoyama, Kazuhito; Piao, Fengyuan; Sakai, Kiyoshi; Khalequzzaman, Md; Kamijima, Michihiro; Nakajima, Tamie; Kitamura, Fumihiko

    2013-04-11

    This study assessed subjective symptoms related to indoor concentrations of chemicals among residents in a housing estate in Dalian, China, where indoor air pollution by interior decoration materials has recently become a major health problem. Fifty-nine males and 50 females were surveyed for their symptoms related to sick building syndrome. Formaldehyde (HCHO), NO2, and volatile organic compounds (VOCs) in their dwellings were collected using a diffusion sampler and measured by GC/MS. For residents with one or more symptoms in the past, HCHO, butanol or 1,2-dichloroethane concentrations were significantly greater in their bedrooms or kitchens compared with those of subjects without previous symptoms. For residents with one or more symptoms at the time of the study, 1,1,1-trichloroethane, xylene, butanol, methyl isobutyl ketone, and styrene concentrations in their bedrooms or kitchens were significantly greater compared with those of residents without symptoms. HCHO, NO2, and VOCs were detected in all rooms, but their levels were lower than the guideline values except for HCHO in two rooms. Chemical substances from interior decoration materials at indoor air levels lower than their guideline values might have affected the health status of residents.

  3. Sick Building Syndrome by Indoor Air Pollution in Dalian, China

    Directory of Open Access Journals (Sweden)

    Fumihiko Kitamura

    2013-04-01

    Full Text Available This study assessed subjective symptoms related to indoor concentrations of chemicals among residents in a housing estate in Dalian, China, where indoor air pollution by interior decoration materials has recently become a major health problem. Fifty-nine males and 50 females were surveyed for their symptoms related to sick building syndrome. Formaldehyde (HCHO, NO2, and volatile organic compounds (VOCs in their dwellings were collected using a diffusion sampler and measured by GC/MS. For residents with one or more symptoms in the past, HCHO, butanol or 1,2-dichloroethane concentrations were significantly greater in their bedrooms or kitchens compared with those of subjects without previous symptoms. For residents with one or more symptoms at the time of the study, 1,1,1-trichloroethane, xylene, butanol, methyl isobutyl ketone, and styrene concentrations in their bedrooms or kitchens were significantly greater compared with those of residents without symptoms. HCHO, NO2, and VOCs were detected in all rooms, but their levels were lower than the guideline values except for HCHO in two rooms. Chemical substances from interior decoration materials at indoor air levels lower than their guideline values might have affected the health status of residents.

  4. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  5. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  6. Perceived air quality and sensory pollution loads in six Danish office buildings

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Krupicz, P.; Szczecinski, A.

    2002-01-01

    Perceived air quality and sensory pollution loads were measured in 6 office buildings with mechanical ventilation without recirculation, in each buildings in 6 representative non-smoking medium-sized and small offices with mixing ventilation. An untrained panel of 43 subjects assessed the air...... particles were measured. The percentage of persons dissatisfied with air quality ranged from 3 to 30%, decreasing with increasing outdoor air supply rate from 1 to 4 L/(sxm2floor). Total sensory pollution loads ranged from 0.08 to 0.37 olf/m2floor in occupied buildings and from 0.04 to 0.27 olf/m2floor...... quality on a normal weekday when the building was occupied, and on a weekend without occupants in the building. On both occasions the ventilation system was in operation as on a normal working day. Outdoor air supply rate, air temperature, relative humidity, concentration of carbon dioxide and ultrafine...

  7. Indoor environmental and air quality characteristics, building-related health symptoms, and worker productivity in a federal government building complex.

    Science.gov (United States)

    Lukcso, David; Guidotti, Tee Lamont; Franklin, Donald E; Burt, Allan

    2016-01-01

    Building Health Sciences, Inc. (BHS), investigated environmental conditions by many modalities in 71 discreet areas of 12 buildings in a government building complex that had experienced persistent occupant complaints despite correction of deficiencies following a prior survey. An online health survey was completed by 7,637 building occupants (49% response rate), a subset of whom voluntarily wore personal sampling apparatus and underwent medical evaluation. Building environmental measures were within current standards and guidelines, with few outliers. Four environmental factors were consistently associated with group-level building-related health complaints: physical comfort/discomfort, odor, job stress, and glare. Several other factors were frequently commented on by participants, including cleanliness, renovation and construction activities, and noise. Low relative humidity was significantly associated with lower respiratory and "sick building syndrome"-type symptoms. No other environmental conditions (including formaldehyde, PM10 [particulate matter with an aerodynamic diameter buildings without unusual hazards and with environmental and air quality indicators within the range of acceptable indoor air quality standards, there is an identifiable population of occupants with a high prevalence of asthma and allergic disease who disproportionately report discomfort and lost productivity due to symptoms and that in "normal" buildings these outcome indicators are more closely associated with host factors than with environmental conditions. We concluded from the experience of this study that building-related health complaints should be investigated at the work-area level and not at a building-wide level. An occupant-centric medical evaluation should guide environmental investigations, especially when screening results of building indoor environmental and air quality measurements show that the building and its work areas are within regulatory standards and industry

  8. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  9. First and second law analysis applied to building envelope: A theoretical approach on the potentiality of Bejan’s theory

    Directory of Open Access Journals (Sweden)

    Cesare Biserni

    2015-11-01

    Full Text Available Especially in the last decade, efforts have been made in developing the sustainable building assessment tools, which are usually performed based on fundamentals of the First Law of Thermodynamics. However, this approach does not provide a faithful thermodynamic evaluation of the overall energy conversion processes that occur in buildings, and a more robust approach should be followed. The relevance of Second Law analysis has been here highlighted: in addition to the calculation of energy balances, the concept of exergy is used to evaluate the quality of energy sources, resulting in a higher flexibility of strategies to optimize a building design. Reviews of the progress being made with the constructal law show that diverse phenomena can be considered manifestations of the tendency towards optimization captured by the constructal law. The studies based on First and Second Principle of Thermodynamics results to be affected by the extreme generality of the two laws, which is consequent of the fact that in thermodynamics the “any system” is a black box with no information about design, organization and evolution. In this context, an exploratory analysis on the potentiality of constructal theory, that can be considered a law of thermodynamics, has been finally outlined in order to assess the energy performance in building design.

  10. RADON CONCENTRATION IN THE AIR OF NEWLY BUILT AND OPERATING BUILDINGS IN THE ROSTOV REGION

    Directory of Open Access Journals (Sweden)

    M. Yu Soloviev

    2010-01-01

    Full Text Available The article presents issues of radon accumulation in the air of dwellings and public buildings in the Rostov region. It is shown that radon concentration in the air of commissioned buildings does not depend on the season when the investigation was carried out, while equivalent equilibrium volumetric activity of radon in the operating buildings is approximately twice higher during the cold period, then during the hot period of a year.

  11. Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants.

    Science.gov (United States)

    Azuma, Kenichi; Ikeda, Koichi; Kagi, Naoki; Yanagi, U; Osawa, Haruki

    2018-03-01

    We conducted a cross-sectional epidemiological study to examine the correlation between indoor air quality (IAQ) and building-related symptoms (BRSs) of office workers in air-conditioned office buildings. We investigated 11 offices during winter and 13 offices during summer in 17 buildings with air-conditioning systems in Tokyo, Osaka, and Fukuoka, and we included 107 office workers during winter and 207 office workers during summer. We conducted environmental sampling for evaluating IAQ and concurrently administered self-reported questionnaires to collect information regarding work-related symptoms. Multivariate analyses revealed that upper respiratory symptoms showed a significant correlation with increased indoor temperature [odds ratio (OR), 1.55; 95% confidence interval (CI), 1.11-2.18] and increased indoor concentration of suspended particles released from the ambient air pollution via air-conditioning systems (OR, 1.31; 95% CI, 1.08-1.59) during winter. In particular, smaller particles (particle size>0.3μm), which possibly penetrated through the filter media in air-conditioning systems from ambient air, were correlated with upper respiratory symptoms. The use of high-efficiency particulate air filters in air-conditioning systems and their adequate maintenance may be an urgent solution for reducing the indoor air concentration of submicron particles. Several irritating volatile organic compounds (VOCs) (e.g., formaldehyde, acetaldehyde, ethylbenzene, toluene, and xylenes) that were positively correlated with the indoor air concentration among their VOCs, were associated with upper respiratory symptoms, although their indoor air concentrations were lower than those specified by the indoor air quality guideline. A new approach and strategy for decreasing the potential combined health risks (i.e., additive effect of risks) associated with multiple low-level indoor pollutants that have similar hazardous properties are required. Copyright © 2017 Elsevier B

  12. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  13. Simulation Tests in Whole Building Heat and Moisture Transfer

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika

    2006-01-01

    An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...

  14. AUTOMATED SYSTEM OF OPERATIONAL CONTROL HEATING AND AIR CONDITIONING OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    PETRENKO A. O.

    2016-08-01

    Full Text Available Statement of the problem. Health and human performance largely determined by the conditions of climate and air quality in residential, administrative and residential and public buildings. At that, in turn, is influenced by the external environment and the climate, and the geometric dimensions of the room, and thermal performance building envelopes, and the location of the premises (Orientation, and many other factors. The result is the formation of complex systems, which control decision-making in conditions of multifactor [1]. In hygienic purposes it is necessary to strive to create the best indoor microclimate conditions, regardless of changes in the factors that affect the climate in residential, administrative and residential and public buildings. Develop systems to ensure the necessary microclimate parameters – it is a complex and important task, which will depend entirely comfortable and cozy environment for the person. The problem of the present time, there is a steady increase in the energy consumption of these systems, due to the rise in price of non-renewable energy sources, and our job is, to simulate the work of software systems necessary microclimate for the changes in the factors that affect it and to minimize the use of non-renewable energy sources. Analysis of recent research and publications. Domestic and foreign hygienists [2, 3, 4] to establish a connection between the climate in the room and in the workplace and the state of human health. Formation of the indoor climate of residential, administrative and residential and public buildings is influenced by many factors that have already noted earlier [5, 6]. Study of the processes of influence of various factors on human health is of great complexity. If we consider each process separately, and in this case they are not currently amenable to theoretical description clearer. To simulate the effect of these factors studies were conducted, which showed that, with sufficient

  15. Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials

    OpenAIRE

    , Mohamad Sleiman

    2014-01-01

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and ...

  16. Ten questions concerning green buildings and indoor air quality

    DEFF Research Database (Denmark)

    Steinemann, Anne; Wargocki, Pawel; Rismanchi, Behzad

    2017-01-01

    as opportunities to improve IAQ within green buildings and their programs. Our focus is on IAQ, while recognizing that many factors influence human health and the healthfulness of a building. We begin with an overview of green buildings, IAQ, and whether and how green building certifications address IAQ. Next, we...... of organizations, and efforts to improve IAQ can improve health, well-being, productivity, and profitability....

  17. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    The annual costs of energy and maintenance in running a heating, ventilation and air-conditioning (HVAC) system and life-cycle costs (LCC) of investments for improving air quality in an office building were compared with the resulting revenues from increased office productivity as a consequence....... The air quality was improved by increasing the outdoor air supply rate and by reducing the pollution loads. These upgrades involved increased energy and HVAC maintenance costs, first costs of a HVAC system and building construction costs. But the additional investments were highly cost...... of improved worker performance; benefits from reduced health costs and sickness absence were not included. The building was simulated in a cold, a moderate and a hot climate. It was ventilated by a constant air volume (CAV) system with heat recovery and by a variable air volume (VAV) system with an economizer...

  18. School buildings and indoor air quality: diagnostic procedures and criteria for intervention

    Directory of Open Access Journals (Sweden)

    Maria Teresa Lucarelli

    2015-04-01

    Full Text Available The research - referred in this report - comes from a doctoral thesis entitled Indoor air quality control. Intervention criteria for environmental and technological restoration of school buildings; research that has shown the actual relationship between the degradation of school buildings, the levels of indoor air pollution and the effects on the health of the occupants. This study path is subsequently directed to the analysis of unavoidable dependencies that exist between the aspects of the healthiness of the indoor air and the energy performance of buildings in order to provide, through the use of a diagnostic protocol, useful information for the definition of redevelopment interventions.

  19. Indoor Air Quality in Multi-Apartment Buildings before and after Renovation

    Directory of Open Access Journals (Sweden)

    Dimdina Ilze

    2014-12-01

    Full Text Available The article summarizes the IAQ parameters of multi-apartment buildings before and after renovation in Latvia. In a building with natural ventilation system air exchange is significantly dependent on the position of the apartment within the building. If CO2 as an indicator of indoor air quality is analyzed, the results show that inhabitants’ behavior has a considerable impact on IAQ. The planning of adequate investment in buildings to improve energy efficiency and choosing the modern, adequate and effective engineering solutions, it is possible to raise the comfort level of living space and to reduce heat and thermal energy consumption.

  20. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, Rebecca E.; Evans, Meredydd

    2010-05-01

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  1. Cost-benefit analysis of improved air quality in an office building

    DEFF Research Database (Denmark)

    Djukanovic, R.; Wargocki, Pawel; Fanger, Povl Ole

    2002-01-01

    A cost-benefit analysis of measures to improve air quality in an existing air-conditoned office building (11581 m2, 864 employees) was carried out for hot, temperate and cold climates and for two operating modes: Variable Air Volume (VAV) with economizer; and Constant Air Volume (CAV) with heat...... productivity for every 10% reduction in the proportion of occupants entering a space who are dissatisfied with the air quality. With this assumption, the annual benefit due to improved air quality was always at least 10 times higher than the increase in annual energy and maintenance costs. The payback time...

  2. Prevention for cold air flows in industrial buildings; Kylmien ilmavirtausten torjunta teollisuushalleissa. Suunnitteluohje

    Energy Technology Data Exchange (ETDEWEB)

    Valkeapaeae, A.; Hejazi-Hashemi, S.; Siren, K.

    1998-12-31

    Cold outdoor air inside industrial buildings cause draught problems and increase energy consumption of the building. Also cold outdoor air has a harmful effect on the processes and the ventilation system and the floor area near the door opening can not be used in productive activity. Furthermore cold outdoor air is warmed up slowly and causes a long duration temperature stratification, which is difficult to remove. Prevention of cold air flows depends on many contemporaneous factors as climate conditions, the building layout and height, the near terrain, the places of door openings, the number of door openings and the building structures. The most important thing in the prevention of cold air flows is to recognize these factors and to understand the interaction between the climate conditions, the near terrain and the building itself. If the building structure disadvantages are not solved by heating and ventilation means, HVAC-engineers have to interface in these structure disadvantages. The aim of this new planning rule for the prevention of cold air flow is to instruct HVAC-engineer to find the decisions for the preventing cold air flows in the large openings and on the cover of industrial buildings. The planning rule can be used also in the negotiations with customers. Because of that the planning rule includes many photos and pictures of preventing solutions. The planning rule is developed together with the experts of industrial ventilation and the manufacturers. The planning rule includes the form of risk index, three main decision trees and some auxiliary decision trees. Preventing solutions include, among other things, air curtains, the shelter structures of loading socks and the service entrances. The simulation programme CAFCAM is complementary to the planning rule and with this programme the air flows through door openings, the pressure distribution of industrial building and the position of neutral pressure level can be calculated 19 refs.

  3. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  4. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    17 5.2 BASELINE CHARACTERIZATION ........................................................................ 17 5.3 DESIGN AND LAYOUT OF SYSTEM...of sodium chloride). The refrigerant tubes of the WFHMX come in contact with the LD and so must be corrosion resistant. Copper/ nickel tubes...within Building 407 in no way limited access to the building. Furthermore, there was no chemistry or biology laboratory work that required

  5. INTERNAL ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  6. A method for integrating occupational indoor air quality with building information modeling for scheduling construction activities

    National Research Council Canada - National Science Library

    Altaf, Mohammed Sadiq; Hashisho, Zaher; Hussein, Mohamed Al

    2014-01-01

    ...’ health as construction activities frequently generate airborne pollutants. This paper presents a methodology to predict the concentration of air pollutants during construction activities using building information modeling (BIM...

  7. Power Efficiency of Systems Applied for Heating Building and Structure External Walls with Ventilated Air Spaces

    OpenAIRE

    I. F. Fialko; A. S. Statsenko

    2009-01-01

    The paper considers power-efficient systems applied for heating building and structure external walls with ventilated air spaces and prescribes directions and problems pertaining to power-efficiency improvement of such systems.

  8. Use of VOC sensors for air quality control of building ventilation systems

    National Research Council Canada - National Science Library

    M Großklos

    2015-01-01

    .... An air quality control was developed and tested in four single-family passive house dwellings to control the building ventilation system via VOC sensors and a special adaptation algorithm to handle...

  9. Indoor air quality in a multifamily apartment building before and after energy renovation

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Földváry, Veronika; Langer, Sarka

    2016-01-01

    efficiency of these buildings and reduce their energy consumption. Since the impact of these measures on the indoor air quality is rarely considered, they often compromise indoor air quality due to decreased ventilation and infiltration rate. We compared the indoor air quality in a multifamily apartment......Buildings are responsible for a substantial portion of global energy consumption. Most of the multifamily residential buildings in central Europe built in the 20th century do not satisfy the current requirements on energy efficiency. Nationwide remedial measures are taken to improve the energy...... building in Slovakia before and after energy renovation, during two subsequent winters. Measurements of temperature, relative humidity, concentrations of CO2, formaldehyde, NO2, and volatile organic compounds were performed during one week in January 2015 in 20 apartments in one multifamily building...

  10. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  11. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    Science.gov (United States)

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  12. Building Better Leaders: Developing Air Force Squadron Leadership for the Next Century

    Science.gov (United States)

    2003-01-01

    Building Better Leaders : Developing Air Force Squadron Leadership for the Next Century Lt Col Timothy M. Zadalis, USAF Lt Col...Better Leaders : Developing Air Force Squadron Leadership for the Next Century 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...iv Building Better Leaders Squadron Commanders for the Next Century Illustrations Page Figure 1-1 Leadership Development/Command

  13. Rational use of supply air in residential buildings

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Svendsen, Svend

    2009-01-01

    The ventilation rate influences the air quality by determining the intensity of pollution sources. This paper compared the intensity of the sensory pollution during occupied hours in an apartment ventilated by a constant air volume system and demand controlled ventilation systems controlled...

  14. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia

    DEFF Research Database (Denmark)

    Földváry, Veronika; Bekö, Gabriel; Langer, Sarka

    2017-01-01

    Buildings are responsible for a substantial portion of the global energy consumption. Most of the multifamily residential buildings built in the 20th century in Central and Eastern Europe do not satisfy the current requirements on energy efficiency. Nationwide measures taken to improve the energy...... efficiency of these buildings rarely consider their impact on the indoor air quality (IAQ). The objective of the present study was to evaluate the impact of simple energy renovation on IAQ, air exchange rates (AER) and occupant satisfaction in Slovak residential buildings. Three pairs of identical naturally...... ventilated multifamily residential buildings were examined. One building in each pair was newly renovated, the other was in its original condition. Temperature, relative humidity (RH) and the concentration of carbon dioxide (CO2) were measured in 94 apartments (57%) during one week in the winter...

  15. Assessment of codes, by-laws and regulations relating to air wells in building design

    Science.gov (United States)

    Fadzil, Sharifah Fairuz Syed; Karamazaman, Nazli

    2017-10-01

    Codes and by-laws concerning air well design (for buildings and lavatories) in Malaysia has been established in the Malaysian Uniform Building By-Laws UBBL number 40 (1) and (2) since the 1980s. Wells are there to fulfill the ventilation and daylighting requirements. The minimum well area according to building storey height are compared between UBBL and the Singapore's well requirements from the Building Construction Authority BCA. A visual and graphical representation (with schematics building and well diagrams drawn to scale) of the minimum well sizes and dimensions is given. It can be seen that if the minimum requirement of well size is used for buildings above 8 storeys high, a thin well resulted which is not proportionate to the building height. A proposed dimension is graphed and given to be used in the UBBL which translated to graphics (3 dimensional buildings drawn to scale) created a much better well proportion.

  16. Contributions of Open Air Museums in preserving heritage buildings: study of open-air museums in South East England

    Directory of Open Access Journals (Sweden)

    Zuraini Md Ali

    2010-12-01

    Full Text Available Most open air museums were established to preserve and present a threatened aspect of regional or national culture and to help forge a sense of identity and achievement. Britain's open air museums have aroused controversy among both museum professionals and building conservationists. They have been praised for spearheading innovative and vivacious approaches towards heritage interpretation and saving neglected buildings, while some have criticised them for inconsistent standards of conservation especially for taking buildings out of their original settings. Such architectural issues were strongly debated in the 1970s, while recent debates focus on popular approaches towards attracting the public to the past. This paper describes the evolution of open air museums in Britain, their contribution in conserving unloved buildings and how they have become an increasingly competitive tourist attraction. Observations and lessons learned from interviews and visit to two open air museums in South East England provides some insight about the importance of such museums. Operated as registered charity organisations, they have played significant roles not only in saving various buildings and structures from demolition but also in helping visitors to appreciate the rich heritage of these regions.

  17. Air movement preferences observed in naturally ventilated buildings in humid subtropical climate zone in China.

    Science.gov (United States)

    Yang, Wei; Zhang, Guoqiang

    2009-11-01

    Occupants' preferences for air movement in naturally ventilated buildings have been extracted from a database of three thermal comfort surveys conducted in the humid subtropical climate zone in China, during winter, spring, and summer seasons. The distribution of draft sensation shows that only 25.7, 38.5, and 28.7% of the subjects in winter, spring, and summer, respectively, felt that the available air movement was just right, suggesting that indoor air velocity may be a big problem in naturally ventilated buildings in humid subtropical China. Air movement preferences show that 15.8, 61.3, and 80.6% of subjects in winter, spring, and summer, respectively, wanted more air movement. Only a handful of subjects wanted less air movement than they were actually experiencing in any season, suggesting that draft was not much of an issue for thermal comfort. Occupants' preference for air movement is strongly related to thermal sensation, showing that people want to control air movement as a means of improving their comfort. The demand for less air movement under cool sensation is much smaller than the overwhelming demand for more air movement when the sensation was warm. The above results indicate that air movement might have a significant influence over the respondents' comfort sensation and that people required a high level of air movement in order to be comfortable during the summer season. Thus, one efficient way to improve the thermal environment in summer in humid subtropical China could be to provide occupants with effective natural ventilation and allow personal control of the air movement. Our findings are also applicable to other buildings, to encourage designers to provide air movement as a low energy cooling strategy and to ensure that sufficient levels of air movement are available.

  18. Bacterial and fungal indoor air characterization in two new bio climatic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Munoz, M.; Cobas Pupo, G.; Diaz Portuondo, E. E.; Gonzalez, A.; Amils Pibernat, R.; Sanchez Cabrero, B.

    2009-07-01

    Nowadays, people spend most of their inside building where the air quality might not be good enough due to the high concentration of pollutants like Volatile Organic compounds (VOCs), bacteria or fungi. These factors could be the cause of allergies, asthma or a group of symptoms called Sick Building Syndrome (SBS). Most of the new saving energy buildings have a poor natural ventilation of their rooms that provokes an increase in pollutants and causes a discomfort feeling to the people exposed. (Author)

  19. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zedan

    2016-06-01

    Full Text Available Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which broadly include ventilation, transmission, solar and internal loads, are considered with schedules based on local lifestyles. The thermal bridging effect of mortar joints is simulated by reducing wall thermal resistance by a percentage that depends on the bridges to wall area ratio (TB area ratio or Amj/Atot and the nominal thermal insulation thickness (Lins. These percentage reductions are obtained from a correlation developed by using a rigorous 2D dynamic model of heat transmission through walls with mortar joints. The reduction in thermal resistance is achieved through minor reductions in insulation thickness, thereby keeping the thermal mass of the wall essentially unchanged. Results indicate that yearly and monthly cooling loads increase almost linearly with the thermal bridge to wall area ratio. The increase in the villa’s yearly loads varies from about 3% for Amj/Atot = 0.02 to about 11% for Amj/Atot = 0.08. The monthly increase is not uniform over the year and reaches a maximum in August, where it ranges from 5% for Amj/Atot = 0.02 to 15% for Amj/Atot = 0.08. In winter, results show that yearly heating loads are generally very small compared to cooling loads and that heating is only needed in December, January and February, starting from late night to late morning. Monthly heating loads increase with the thermal bridge area ratio; however, the variation is not as linear as observed in cooling loads. The present results highlight the importance of

  20. [Sanitary and epidemiological evaluation of the ventilation and air-conditioning systems of public buildings].

    Science.gov (United States)

    Dvorianov, V V

    2012-01-01

    The microbial contamination of ventilation and air conditioning systems was examined in the administrative buildings. The author proposes a set of indicators, methods for determining the scope of investigations, as well as sampling tactics and criteria for evaluating the microbial contamination of the ventilation and air-conditioning systems. The content of yeasts and molds in the delivered air has been found to be of importance for evaluating the sanitary-and epidemiological state of ventilation systems.

  1. Use of VOC sensors for air quality control of building ventilation systems

    OpenAIRE

    Großklos, M.

    2015-01-01

    Air quality control with VOC (volatile organic compound) sensors in residential buildings could increase user comfort by adapting to the actual contaminant level. Preliminary tests assessed the dynamics of VOC levels in single-family passive houses with a ventilation system. At normal and exceptional usages, sufficient signal variations were measured for air quality control. An air quality control was developed and tested in four single-family passive house dwellings to cont...

  2. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  3. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  4. Investigation of the Indoor Environment in a Passive House Apartment Building Heated by Ventilation Air

    DEFF Research Database (Denmark)

    Lysholt Hansen, MathiasYoung Bok; Koulani, Chrysanthi Sofia; Peuhkuri, Ruut Hannele

    2014-01-01

    comfort and the performance of the air heating system and solar shading. Thermal comfort category B according to ISO 7730 was obtained in the building during field measurements, indicating that the air heating system was able to maintain comfort conditions in winter, when the outdoor temperature had been...... building project finished medio 2012. The design challenge was met with a concept of air heating that is individually controlled in every room. It also applies external solar shading. This study used indoor climate measurements and dynamic simulations in one of these apartment buildings to evaluate thermal...... unusual low for a longer period. The dynamic simulations also indicated that air heating during winter can provide a comfortable thermal environment. Dynamic simulations also demonstrated that during summer, apartments with automatic external solar screens had no serious overheating, whereas in apartments...

  5. Influence of air tightness of the building on its energy-efficiency in single-family buildings in Poland

    Directory of Open Access Journals (Sweden)

    Miszczuk Artur

    2017-01-01

    Full Text Available This publication focuses on assessing the impact of the tightness of single-family houses with a higher energy standard on their energy demand for heating. To formulate conclusions quantitative and qualitative research, including tightness test (blower door has been conducted in energy-efficient and passive houses. In the next step, energy demand for heating has been estimated. Based on the observation and results, the simulation of the impact of reducing the flow of infiltrated air through leaks in the buildings for energy demand for heating is calculated. The simulation results confirm the dependence between the tightness of the building and energy demand.

  6. Experimental Air-Tightness Analysis in Mediterranean Buildings after Windows Retrofit

    Directory of Open Access Journals (Sweden)

    Francesca Romana d’Ambrosio Alfano

    2016-09-01

    Full Text Available Energy saving and Indoor Air Quality (IAQ in buildings are strongly affected by air leakages. Several studies reveal that the energy loss owing to leaky windows can account for up to 40% of the total building energy demand. Furthermore, at the design stage, the possible infiltration of outdoor air through windows is not taken into account when determining the nominal outdoor airflow rate of the ventilation system. This practice may result in an oversizing of the ventilation system and consequent energy waste. Thus, the air-tightness class of a wall assembly should be assessed for each window component considering the type of material, the presence of the seal, the type of closure, the sealing and the maintenance condition. In this paper, the authors present the experimental results of air-tightness measurements carried out using the fan pressurization method in three residential buildings located in the Mediterranean region before and after a window retrofit. Two different window retrofits were investigated: the application of rubber seals on window frames and the substitution of existing windows with new certified high performance windows. The effectiveness of such retrofits was estimated also in terms of energy saving. Test results demonstrated a high variability of the building air tightness after window retrofits, despite the fact that air tight–certified windows were used.

  7. DETERMINATION OF AIR EXCHANGE IN PUBLIC BUILDING PREMISES HAVING LARGE AREA OF TRANSLUCENT STRUCTURES

    Directory of Open Access Journals (Sweden)

    L. V. Borukhava

    2017-01-01

    Full Text Available The paper considers reasons of internal air parameter mismatch in warm season of the year for public building premises having large area of translucent structures. The main reason of uncomfortable air environment is an underestimated value of air supply volume due to air exchange calculation according to multiplicity factor or air exchange rate per one person which are determinative values only for cold period and transient conditions. In other words multiplicity factor and air exchange rate do not take into account equipment abundance in modern offices and heat input of the office equipment is rather significant value. The paper contains an analysis and comparison of the existing air exchange rates for the Republic of Belarus, Russian Federation, European countries and USA. Calculation of heat input and air exchange for public building premises during warm season of the year for assimilation of evident heat excess has been made at various orientations of curtain walls. The paper provides structure of heat input into premises. The required rate of air supply volume per one person has been determined on the basis of air exchange and it has been compared with the existing air exchange rate. The required rate averagely exceeds the standard one by 12-fold. But this does not mean that there is necessity to increase the rate in such a way because it entails an increase in capital and operational costs. In this connection the paper reviews variants for improvement of micro-climate in the building premises with large area of translucent structures: automatic regulation of heat transfer in heating appliances during cold period of the year; usage of air conditioning and increase in temperature difference of input and output air during warm period.

  8. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68......, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy performance whilst providing...... the hygrothermal parameters, the chemical conditions, ventilation and the wellbeing of occupants. The project is divided into the five subtasks: 1. Defining the metrics. 2. Pollutant loads in residential buildings. 3. Modeling. 4. Strategies for design and control of buildings. 5. Field measurements and case...

  9. Air quality in low-ventilated museum storage buildings

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten; Aasbjerg Jensen, Lars; Klenz Larsen, Poul

    2014-01-01

    internally-generated pollutants accumulate, were measured by passive sampling of ozone, nitrogen dioxide, and organic acids. The air exchange rates and the interchange of air between storage rooms were measured by the per-fluorocarbon tracer gas method. Ambient pollutants were reduced in concentration...... to a few ppb indoors. The presence of internally-generated pollutants depended on the amount of off-gassing materials inside the store, but more importantly, on the temperature. Enclosing objects in corrugated cardboard boxes did not cause any significant accumulation of pollutants. However, the box......-board did provide a certain degree of protection against ambient pollutants, especially ozone....

  10. The influence of surface treatment on mass transfer between air and building material

    DEFF Research Database (Denmark)

    Kwiatkowski, Jerzy; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    The processes of mass transfer between air and building structure and in the material influence not only the conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs water vapour can be used to moderate the amplitude of indoor relative humidity...... and therefore to participate in the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange between indoor air and building material. The aim of this work is to present the change of mass transfer under different climatic and material conditions. The measurements...... for the experiments: gypsum board and calcium silicate. The wallpaper and paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: coating, temperature and air movement. The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake...

  11. Numerical Prediction of Buoyant Air Flow in Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld

    not include the effect of room geometry, obstacles or heat sources. This paper describes the use of Computational Fluid Dynamics to predict air flow patterns and temperature distribution in a ventilated space. Good agreement is found when results of numerical predictions are compared with experimental data....

  12. [Biological contamination in office buildings related to ventilation/air conditioning system].

    Science.gov (United States)

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  13. SAFEGUARDS ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Duc Cao; Richard Metcalf

    2010-07-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z-testing. A brief analysis of the impact of the safeguards optimization on the rest of plant efficiency, criticality concerns, and overall requirements is presented.

  14. Building America Case Study: Field Trial of an Aerosol-Based Enclosure Sealing Technology, Clovis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automatically verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology. However, this technology is capable of bringing the air leakage of a building that was built with standard construction techniques and HERS-verified sealing down to levels that would meet DOE Zero Energy Ready Homes program requirements. When a developer is striving to meet a tighter envelope leakage specification, this technology could greatly reduce the cost to achieve that goal by providing a simple and relatively low cost method for reducing the air leakage of a building envelope with little to no change in their common building practices.

  15. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  16. 76 FR 64904 - Building Energy Standards Program: Final Determination Regarding Energy Efficiency Improvements...

    Science.gov (United States)

    2011-10-19

    ... future determinations. EEI's final comment suggests that DOE use a more realistic electricity ratio for... spaces that exception to and Air require specific dehumidification Conditioning. humidity levels to... and Acronyms; for metal buildings. requirements for 5. Building metal buildings). Envelope. 8 H 6...

  17. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... HAM conditions. The paper focuses on the influence of the interior surface heat and moisture transfer coefficients, and investigates its effect on the hygrothermal performance. The parameter study showed that the magnitude of the convective surface transfer coefficients have a relatively large...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  18. Building exterior retrofit and its impact on energy performance - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Trovato, Nick [Read Jones Christoffersen Ltd (Canada)

    2011-07-01

    The building envelope plays a vital role in energy performance and the comfort of the building's occupants. The office building of Read Jones Christofferesen Ltd. (RJC) had excessive condensation problems with water and air leakages resulting in high-energy consumption. Hence, it required a building envelope retrofit. This paper presents a description of the existing building, improvements made to the building envelope and the mechanical system and the integration of the two systems and how this impacted the energy performance of the building. The owner had certain requirements for the retrofit, such as optimum climate control, wide window opening space, and maximum lighting. Exterior upgrades included, among others, stopping the air and water leakage, improved thermal resistance and reduced vapor diffusion. The renovation resulted in reduced energy consumption, a more comfortable working environment, better mechanical system control, and around 65% in gas consumption and mechanical cost savings.

  19. Air ventilation impacts of the "wall effect" resulting from the alignment of high-rise buildings

    Science.gov (United States)

    Yim, S. H. L.; Fung, J. C. H.; Lau, A. K. H.; Kot, S. C.

    The objective of this study is to investigate the air ventilation impacts of the so called "wall effect" caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD - FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio ( VR) and the retention time ( T r) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a "wall" upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.

  20. [Indoor air pollution by volatile organic compounds in large buildings: pollution levels and remaining issues after revision of the Act on Maintenance of Sanitation in Buildings in 2002].

    Science.gov (United States)

    Sakai, Kiyoshi; Kamijima, Michihiro; Shibata, Eiji; Ohno, Hiroyuki; Nakajima, Tamie

    2010-09-01

    This study aimed to clarify indoor air pollution levels of volatile organic compounds (VOCs), especially 2-ethyl-1-hexanol (2E1H) in large buildings after revising of the Act on Maintenance of Sanitation in Buildings in 2002. We measured indoor air VOC concentrations in 57 (97%) out of a total of 61 large buildings completed within one year in half of the area of Nagoya, Japan, from 2003 through 2007. Airborne concentrations of 13 carbonyl compounds were determined with diffusion samplers and high-performance liquid chromatography, and of the other 32 VOCs with diffusion samplers and gas chromatography with a mass spectrometer. Formaldehyde was detected in all samples of indoor air but the concentrations were lower than the indoor air quality standard value set in Japan (100 microg/m3). Geometric mean concentrations of the other major VOCs, namely toluene, xylene, ethylbenzene, styrene, p-dichlorobenzene and acetaldehyde were also low. 2E1H was found to be one of the predominating VOCs in indoor air of large buildings. A few rooms in a small number of buildings surveyed showed high concentrations of 2E1H, while low concentrations were observed in most rooms of those buildings as well as in other buildings. It was estimated that about 310 buildings had high indoor air pollution levels of 2E1H, with increase during the 5 years from 2003 in Japan. Indoor air pollution levels of VOCs in new large buildings are generally good, although a few rooms in a small number of buildings showed high concentrations in 2E1H, a possible causative chemical in sick building symptoms. Therefore, 2E1H needs particular attention as an important indoor air pollutant.

  1. Energy Consumption and Air-Conditioning Usage in Residential Buildings of Malaysia

    OpenAIRE

    Kubota, Tetsu; Jeong, Sangwoo; Toe, Doris Hooi Chyee; Ossen, Dilshan Remaz

    2011-01-01

    This study provides the detailed information on household energy consumption in residential buildings of Malaysia. A survey was conducted in Johor Bahru in 2009 to analyze electricity consumption due to airconditioning. The results showed that the air-conditioner ownership was 65% and its daily usage time was 6 hours on average. The yearly electricity consumption caused by air-conditioning recorded the largest amount among household appliances. Another survey was carried out in 2004 to reveal...

  2. Passive pre-cooling potential for reducing building air-conditioning loads in hot climates

    OpenAIRE

    Chaudhry, H.N.; Hughes, B.R.; Ghani, S.A.

    2014-01-01

    A major source of energy consumption in the building sector is the extensive use of Heating, Ventilation and Air-Conditioning (HVAC) systems to meet the rising demands for indoor comfort. Advancements in reducing cooling loads will have a direct impact on energy consumption in the built environment. The present study investigated the thermal performance of a heat pipe heat exchanger in transferring sensible heat from high-temperature natural air streams. In order to ensure the system's sustai...

  3. Effect of using low-polluting building materials and increasing ventilation on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Zuczek, P. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The potential of improving perceived air quality indoors was quantified when low-polluting materials are used and when building ventilation is increased. This was done by studying the relationships between ventilation rate and the perceived indoor air quality. A sensory panel assessed the air quality in test rooms ventilated with realistic outdoor air supply rates, where combinations of high- and low-polluting wall, floor and ceiling materials were set up. These materials were ranked as high- and low-polluting using sensory assessments of air quality in small-scale glass chambers, where they were tested individually. Substituting materials ranked as high-polluting with materials ranked as lower-polluting improved the perceived air quality in the test rooms. This improvement was greater than what was achieved by a realistic increase of the ventilation rate in the test rooms. Thus reducing pollution emitted from building materials that affects the perceived air quality has a considerable potential of limiting the energy for ventilation without compromising indoor air quality. (au)

  4. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  5. Air conditioning in high rise buildings; Conditionnement d'air dans les immeubles de grande hauteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This two-tomes book brings together the 108 presentations given at the first conference of the international institute of refrigeration (IIF/IIR) about air conditioning in high rise office buildings. The main themes are: general design and control systems, including split systems, radiant panels, fluctuating and gravity ventilation etc..; energy consumption, optimization and heat recovery; cold storage for peak shaving, including ice slurry circulation; indoor air quality; fire and smokes protection, protection against chimney effects and lighting spots; use of fuzzy logic and of neural networks. It includes also a description of the high rise building situation and works in progress in China, Japan and in some other countries. (J.S.)

  6. Analysis of Numerical Models for Dispersion of Chemical/Biological Agents in Complex Building Environments

    Science.gov (United States)

    2004-11-01

    variation in ventilation rates over time and the distribution of ventilation air within a building, and to estimate the impact of envelope air...bio) contaminants. This CH2M HILL research: (1) analyzed existing filtration technologies for building heating, ventilating , and air-conditioning...009XGG, “ERASP (Environmental Response and Secu- rity Protection)/HVAC (Heating, Ventilating and Air Conditioning).” The technical monitor was Dr

  7. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    Science.gov (United States)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  8. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  9. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  10. Common Exercises in Whole Building HAM Modelling

    DEFF Research Database (Denmark)

    2008-01-01

    Subtask 1 of the IEA Annex 41 project had the purpose to advance the development in modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling comprises all relevant elements of buildings: The indoor air, the building envelope, the inside...... constructions, furnishing, systems and users. The building elements interact with each other and with the outside climate. The Annex 41 project and its Subtask 1 has not aimed to produce one state-of–the-art hygrothermal simulation model for whole buildings but rather to stimulate the participants’ own...

  11. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...

  12. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  13. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  14. Task-Oriented and Relationship-Building Communications between Air Traffic Controllers and Pilots

    Directory of Open Access Journals (Sweden)

    Inwon Kang

    2017-09-01

    Full Text Available By questioning the lopsided attention on task-oriented factors in air traffic controller-pilot communication, the current study places an equal weighting on both task-oriented and relationship-building communications, and investigates how each type of communication influences sustainable performance in airline operation team. Results show that both task-oriented and relationship-building communications in terms of sustainability of team process predicted greater communication satisfaction at work. Also, both task interdependence and shared leadership influenced both types of air traffic controller-pilot communication. However, only relationship-building communication had a direct influence on perceived work performance whereas task-oriented communication had not. Along with task-oriented factors, this study raises the relationship-oriented factors as important resources for the sustainable team performance in airline industry.

  15. Indoor air quality investigation according to age of the school buildings in Korea.

    Science.gov (United States)

    Sohn, Jongryeul; Yang, Wonho; Kim, Jihwan; Son, Busoon; Park, Jinchul

    2009-01-01

    Since the majority of schools are housed in buildings dating from the 1960s and 1970s, a comprehensive construction and renovation program of school buildings has been carried out to improve the educational conditions in Korea. However, classrooms and computer rooms, with pressed wood desks, chairs and furnishings, as well as construction materials, might have negative effects on the indoor air quality. Furthermore, most schools have naturally ventilated classrooms. The purpose of this study was to characterize the concentrations of different indoor air pollutants within Korean schools and to compare their indoor levels within schools according to the age of school buildings. Indoor and outdoor air samples of carbon monoxide (CO), carbon dioxide (CO(2)), particulate matter (PM(10)), total microbial count (TBC), total volatile organic compounds (TVOCs) and formaldehyde (HCHO) were obtained during summer, autumn and winter from three sites; a classroom, a laboratory and a computer classroom at 55 different schools. The selection of the schools was based on the number of years since the schools had been constructed. The problems causing indoor air pollution at the schools were chemicals emitted by building materials or furnishings, and insufficient ventilation rates. The I/O ratio for HCHO was 6.32 during the autumn, and the indoor HCHO concentrations (mean = 0.16 ppm) in schools constructed within 1 year were significantly higher than the Korean Indoor Air Standard, indicating that schools have indoor sources of HCHO. Therefore, increasing the ventilation rate by means of a mechanical system and the use of low-emission furnishings can play key roles in improving the indoor air quality within schools.

  16. Air tightness measurements in older Danish single-family houses

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Bergsøe, Niels Christian

    2017-01-01

    of the building envelope of older buildings despite the fact that the air tightness has a major influence on the energy use. In connection with renovation of the Danish building stock, the coming years will see increased focus on the air tightness of the building envelope like in other countries. This paper...... supply ranging from 0.09 to 0.28 l/(s·m²) per heated floor area, which is below the requirement stipulated in the Danish Building Regulations of 0.3 l/(s·m²). Typically, leaks are observed in connection with penetrations of the envelope, e.g. for electrical installations, exhaust ducts and chimneys...

  17. Air flows in big cavity, building aeraulics; ecoulements de l`air en grande cavite, aeraulique des batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop day was jointly organized by the French society of thermal engineers (SFT) and the university group of thermal engineers (GUT). This compilation of proceedings comprises 10 papers dealing with: the use of zonal models for the prediction of the temperature field inside buildings; prediction of the natural ventilation air renewing inside a cavity with a single big aperture using a finite-difference code; experimental validation of the EOL-3D code in industrial ventilating; precise numerical modeling of flows inside ventilated or not-ventilated cavities with pollutant species using a finite difference field code; building aeraulics at Electricite de France (EdF): from the basic research to field applications; experimental study of a heavy vertical jet, influence on the thermal comfort inside a air-conditioned room; study of non-isothermal 3-D free jets: comparison of measurement results with field code modeling; natural air-conditioning of accommodations in humid tropical climate; natural ventilating in humid tropical climate, proposition for a method of evaluation of the velocity coefficients; comparison between measurements and calculations concerning the atmosphere of occupied rooms. (J.S.)

  18. Air leakage analysis of research reactor HANARO building in typhoon condition for the nuclear emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Goany Up; Lee, Hae Cho; Kim, Bong Seok; Kim, Jong Soo; Choi, Pyung Kyu [Dept. of Emergency Preparedness, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. It was found that the leak rate is 0.1%·day{sup -1} of air, 0.004%·day{sup -1} of noble gas and 3.7×10{sup -5}%·day{sup -1} of aerosol during typhoon passing. The air leak rate of 0.1%·day can be converted into 1.36 m{sup 3}·hr{sup -1} , but the design leak rate in HANARO safety analysis report was considered as 600 m3·hr{sup -1} under the condition of 20 m·sec{sup -1} wind speed outside of the building by typhoon. Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.

  19. Performance analysis of air source heat pump system for office building

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  20. Evaluation of Heating, Ventilation, and Air conditioning (HVAC System Performance in an Administrative Building in Tehran (Iran

    Directory of Open Access Journals (Sweden)

    H. Mari Oriyad

    2014-09-01

    Full Text Available Introduction: One of the factors influencing on indoor air quality of the buildings is performance of HVAC (heating, ventilation, and air conditioning systems. These systems supply clean and odorless air, with temperature, humidity, and air velocity within comfort ranges for the residents. The aim of this study was to evaluate performance HVAC system in an administrative building in Tehran. .Material and Method: A questionnaire, developed in their research was used to assess the building occupants’ perception about the performance of HVAC system. To evaluate the performance of HVAC systems, air velocities were measured in the diffusers using a thermal anemometer. Moreover, CO2 concentration, air temperature and relative humidity were measured in the whole floors of the building. Air distribution inside the building was evaluated using smoke test. .Results: Most of the studied people complained about the direction of airflow, thermal conditions and cigarette odor. The highest level of carbon dioxide was measured at 930 ppm inside the restaurant. The maximum and minimum air temperatures and relative humidity were measured 28.3-13.8° C and 28.4-23% respectively. Smoke test showed that the air distribution/direction wasn’t suitable in one third of air diffusers. .Conclusion: Improper air distribution / direction was the main problem with the studied HVAC system which could be corrected by adjusting and balancing of the system.

  1. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    Science.gov (United States)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  2. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  3. Indoor Air Quality and Sick Building Syndrome Study at Two Selected Libraries in Johor Bahru, Malaysia

    Directory of Open Access Journals (Sweden)

    Z. Sulaiman

    2011-01-01

    Full Text Available This study was carried out to investigate the association between sick building syndrome (SBS and indoor air pollutants in two libraries. 101 workers in both libraries responded to the questionnaire, which was based on Malaysian Industry Code of Practice on Indoor Air Quality 2010 (MCPIAQ for the measurement of SBS occurrences. Measurements of indoor air quality were also performed according to the MCPIAQ methods. Higher prevalence of SBS recorded in Perpustakaan Sultanah Zanariah (PSZ, Universiti Teknologi Malaysia, compared to Perpustakaan Sultan Ismail (PSI (X2 = 38.81, p = 0.000, Johor Bahru City. Significantly higher levels of indoor air pollutants were detected in PSZ compare to PSI for CO, CO2, temperature, bacteria, fungi and Total Volatile Organic Compounds (TVOC, while PSI indicated higher level of relative humidity (RH. The levels of CO2, temperature, humidity, TVOC and bacteria counts were the possible major factors contributing to SBS complaints among the workers of both libraries.

  4. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  5. Air movement, gender and risk of sick building headache among employees in a Jakarta office

    Directory of Open Access Journals (Sweden)

    Margaretha Winarti

    2003-09-01

    Full Text Available Even though office buildings are usually equipped with ventilation system or air conditioning to create a comfortable working environment, yet there is still found a number of sick building syndrome (SBS symptoms. One of the symptoms of SBS is SBS headache. Therefore, it is crucial to identify risk factors related to SBS headache. Cases were subjects who have suffered SBS headache, and controls were subjects who did not suffered headache for the last one month. Cases and controls were selected through a survey on all of employees in the said office during the period of May to August 2002. Total respondents were 240 employees including 36 people suffered SBS headache (15%. Compared to the normal air movement, faster air movement decreased the risk of SBS headache by 57% [adjusted odds ratio (OR = 0.43; 95% confidence intervals (CI: 0.19-0.95]. Female employees, compared to the males ones, had a higher risk of getting SBS headache by almost three times (adjusted OR = 2.96: 95% CI: 1.29-6.75. Employees who had breakfast irregularly, had a lower risk to SBS headache than those who have breakfast regularly (adjusted OR=0.31; 95% CI: 0.09-0.84. Temperature, humidity and smoking habits were not noted correlated to SBS headache. Female workers had greater risk of suffering SBS headache. In addition slower air movement increased the risk of SBS headache. Therefore, it is recommended to improve the progress of air in order to reduce the risk of SBS headache, especially for female workplace. (Med J Indones 2003; 12: 171-7Keywords: sick building syndrome headache, gender, air movement

  6. Adaptive Architectural Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning

    2010-01-01

    . The general scopes of this paper are to develop a new adaptive kinetic architectural structure, particularly a reconfigurable architectural structure which can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two......Recent years have seen an increasing variety of applications of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability...... different shape alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock- up concept...

  7. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2006-05-01

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  8. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  9. Alternative for Summer Use of Solar Air Heaters in Existing Buildings

    Directory of Open Access Journals (Sweden)

    Sergio L. González-González

    2017-07-01

    Full Text Available Among solar thermal technologies for indoor heating, solar air heaters (SAH are appealing for implementation on existing buildings due to their simplicity, fewer risks related to the working fluid, and possible independence from the building structure. However, existing research work mainly focuses on winter use and still fails in providing effective solutions for yearly operation, which would enhance their interest. With the aim of analysing an alternative summer use, this work firstly characterises a double channel-single pass solar air collector through experimentation. From the obtained results, modelling and simulation tasks have been conducted to evaluate the possibilities of using hot air, provided by the SAH, while operating under summer conditions within a closed loop, to feed an air-to-water heat exchanger for domestic hot water (DHW production. The system is studied through simulation under two different configurations for a case study in Valladolid (Spain, during the period from May to September for different airflows in the closed loop. Results show that daily savings can vary from 27% to 85% among the different operating conditions; a configuration where make-up water is fed to the heat exchanger being preferable, with a dedicated water tank for the solar heated water storage of the minimum possible volume. The more favourable results for the harshest months highlight the interest of extending the use of the solar air heaters to the summer period.

  10. Energy performance and Indoor Air Quality in Modern Buildings in Greenland

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten

    2012-01-01

    A new dormitory for engineering students “Apisseq” was built in the town of Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students. Thanks to its complex monitoring system it enables researchers to evaluate the building’s energy performance and indoor air quality...... heat consumption is the fact that the ventilation system was over-dimensioned, and although it is running on the lowest fan power it maintains 1.1 ACH in the building. Reduction of the air flows and better frost protection of the heat exchangers are important issues to be dealt with in order...

  11. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  12. Energy efficient PCM-based variable air volume air conditioning system for modern buildings

    Energy Technology Data Exchange (ETDEWEB)

    Parameshwaran, R.; Harikrishnan, S. [Department of Mechanical Engineering, Anna University Chennai, Chennai (India); Kalaiselvam, S. [Centre for Nanoscience and Technology, Anna University Chennai, Chennai (India)

    2010-08-15

    This work aims at achieving enhanced energy conservation for space conditioning with the application of a new combined variable air volume (VAV)-based chilled water air conditioning (A/C) system and thermal energy storage (TES) system. The phase change material (PCM) used in this system exhibited good charging and discharging characteristics that directly helped in conserving the overall energy spent on cooling and ventilation. The present system was experimentally investigated for summer and winter climatic conditions under demand controlled ventilation (DCV) and DCV combined with the economizer cycle ventilation (ECV) to substantiate its energy savings capability. Based on the results, in the DCV and combined DCV-ECV modes, this system achieved 28% and 47% of per day average energy conservative potential, respectively, while compared to the conventional chilled water-based A/C system. Similarly, the VAV-TES system yielded an on-peak total energy savings of 38% and 42%, respectively, for the same operating conditions. (author)

  13. Energy performance and indoor air quality in modern buildings in Greenland

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    2015-01-01

    A new dormitory for engineering students "Apisseq" was built in Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students, but thanks to its complex monitoring system, it enables researchers to evaluate the building's energy performance and indoor air quality. Some...... of the installed technologies are not commonly used in the current Greenlandic building stock. Therefore, evaluation of their performance under local conditions is essential for further use and development. The first year of operation has disclosed some errors made during the design process and construction phase......, which have negative effects on the energy performance and indoor air quality. The heat demand in 2011 was 26.5% higher than expected. One of the main causes of the extra heat demand is the fact that the ventilation system was over-dimensioned, and although it is running on the lowest fan power...

  14. Air exchanges and indoor carbon dioxide concentration in Australian pig buildings: Effect of housing and management factors

    DEFF Research Database (Denmark)

    Banhazi, T. M.; Stott, P.; Rutley, D.

    2011-01-01

    There has been a growing interest in improving air quality within livestock buildings. However, the influence of housing and management factors on air exchange rates and indoor gas concentrations is not well understood. The aim of this study was to determine the effects of housing and management...... factors on the concentrations of carbon dioxide (CO(2)) and air exchange rates in 160 representative Australian pig buildings. CO(2) concentrations were measured, air changes per hour (ACH) were estimated using a CO(2) balance method, and structural and management parameters were recorded. The mean CO(2......) concentration measured was 858 ppm and a mean air exchange rate of 22.8 ACH was estimated. The analysis showed that CO(2) concentrations were affected by the type of building, season, control of the wall and ridge vents, ceiling height, size of the wall vents and height of the ridge vents. Weaner buildings had...

  15. Vulnerability to air pollution: a building block in assessing vulnerability to multiple stressors

    CSIR Research Space (South Africa)

    Matooane, M

    2010-08-30

    Full Text Available stream_source_info Matooane_2010.pdf.txt stream_content_type text/plain stream_size 7198 Content-Encoding UTF-8 stream_name Matooane_2010.pdf.txt Content-Type text/plain; charset=UTF-8 Mamopeli Matooane, MSc. Juanette... John, MSc. Riëtha Oosthuizen, MSc. Vulnerability to air pollution: a building block in assessing vulnerability to multiple stressors 30 August 2010 Overview • Vulnerability • Vulnerability assessment - Scope - Approach - Assessing...

  16. The Effects of Air Permeability, Background Ventilation and Lifestyle on Energy Performance, Indoor Air Quality and Risk of Condensation in Domestic Buildings

    Directory of Open Access Journals (Sweden)

    Arman Hashemi

    2015-04-01

    Full Text Available Effective and efficient ventilation is essential when improving energy performance and Indoor Air Quality (IAQ of buildings. Reducing air permeability can considerably improve the energy performance of buildings; however, making the buildings more airtight may result in lower rates of natural ventilation which may in turn increase the risks of condensation and unacceptable IAQ. This study evaluates the effects of different air permeability rates, background ventilation and occupants’ lifestyles on the energy performance as well as the risk of condensation and CO2 concentration in domestic buildings. Dynamic computer simulations were conducted in EnergyPlus. Results indicated direct relations between the ventilation rates, energy performance and IAQ. Higher air permeability along with background ventilation resulted in considerably better IAQ while energy consumption increased by up to four times. Occupants’ lifestyles were identified as a major contributor to the risk of condensation.

  17. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building

    Energy Technology Data Exchange (ETDEWEB)

    Ni Honggang; Cao Shanping; Chang Wenjing [Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Zeng Hui, E-mail: huizeng0608@gmail.com [Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2011-07-15

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM{sub 2.5} (Particulate Matter up to 2.5 {mu}m in size) bounded {Sigma}{sub 15}PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM{sub 10} (Particulate Matter up to 10 {mu}m in size) bounded {Sigma}{sub 15}PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of {Sigma}{sub 15}PBDEs via dust inhalation and ingestion for adults reached {approx}141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. - Highlights: > Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than that in the old ones. > PBDE emissions from indoor sources can be expected to continue for a long time as the PBDE-containing products in offices were to be kept many years. > The household consumer products, especially computers, are the main sources of PBDEs in central air conditioner filter dust. > Further studies are needed to fully understand the emission mechanism of PBDE from indoor consumer products. - PBDEs in central air conditioner filter dust from a new building were investigated

  18. Fuzzy logic control of air-conditioning system in residential buildings

    Directory of Open Access Journals (Sweden)

    Abdel-Hamid Attia

    2015-09-01

    Full Text Available There has been a rising concern in reducing the energy consumption in building. Heating ventilation and air condition system is the biggest consumer of energy in building. In this study, fuzzy logic control of the air conditioning system of building for efficient energy operation and comfortable environment is investigated. A theoretical model of the fan coil unit (FCU and the heat transfer between air and coolant fluid is derived. The controlled variables are the room temperature and relative humidity and control consequents are the percentage of chilled and hot water flow rates at summer and the percentage of hot water and steam injected flow rates at winter. A computer simulation has been conducted and fuzzy control results are compared with that of conventional Proportional-Integral-Derivative control. It was found that the proposed control strategy satisfies the space load and at the same time to achieve the comfort zone, as defined by the ASHRAE code. Meanwhile PID control fails to adjust the room temperature at part-load operations. It has been demonstrated that fuzzy controller operation is more efficient and consumes less energy than PID control.

  19. Aesthetic and energy consequences of air conditioning systems in building design integration

    Directory of Open Access Journals (Sweden)

    Pucar Mila

    2009-01-01

    Full Text Available Buildings are among the top of energy consumers. It is estimated that over 50% of the overall produced energy is consumed in buildings, mainly on heating and cooling. Application of air conditioning systems saw an important expansion in the past decade. These systems are used, not only for cooling but for heating, or supplemental heating, as well (as heat pumps. While there is virtually no alternative to their usage as cooling systems, heating applications should be reconsidered in a more subtle manner to maintain the principles of energy efficiency. Mass consumption of air conditioners has as an effect a significant rise in consumption of energy, mainly during the summer. Aesthetic consequences are another important problem. Since the placement of these appliances is not regulated by law, and left to the citizens they are commonly self-initiated and misaligned which undermines aesthetic values. Additional problem is placement of air conditioning systems on protected objects (religious institutions, object under protection which undermines not only aesthetic, but historical value as well. On the other hand, many new buildings represent a positive example, since this problem is adhered from the very start of conceptual design, and these appliances are covered with adequate architectural solutions. This paper will try to cover positive and negative examples of Serbia, Montenegro, and some other Balkan and Western Europe's countries. It will also give recommendations in solving the negative energy and aesthetic consequences of these problems. Non-controlled application of air conditioning systems is becoming a health problem. Large differences between the interior and exterior temperature leads to an array of health problems registered by many medical reports. Improper maintenance of air conditioning systems could lead to bacterial propagation which could seriously damage health.

  20. Natural air conditioning and design of building openings in residential building construction in Mexico. Natuerliche Klimatisierung und Gebaeudeoeffnungen im Wohnungsbau Mexikos

    Energy Technology Data Exchange (ETDEWEB)

    Torres Alpuche, M.E.

    1989-01-01

    In this work, recognition about constructional measures are gained, representing a contribution to natural air conditioning in tropical areas, by means of selected examples of traditional residential building in Mexico. With this, it is important to ensure a thermal well-being that fulfills present comfort requirements. Three different climatic zones are investigated. The constructional measures are classified according to the following groups considering the conception of the building opening suitable for the climate: Environment and building openings, position and dimension of the building opening, protecting devices on building offices. Furthermore, it is proven by means of an example of modern single-family houses in Mexico, that the recognition gained in a side range can be also usefully applied in present building construction. This results in recommendations for conceptions of building openings in the sense of a construction that is suitable for the climate and energy saving. (orig./KW).

  1. Air filter materials, outdoor ozone and building-related symptoms in the BASE study.

    Science.gov (United States)

    Buchanan, I S H; Mendell, M J; Mirer, A G; Apte, M G

    2008-04-01

    Used ventilation air filters have been shown to reduce indoor environmental quality and worker performance and increase symptoms, with effects stronger after reaction of filters with ozone. We analyzed data from the US EPA Building Assessment Survey and Evaluation (BASE) study to determine if ozone and specific filter media have interactive effects on building-related symptoms (BRS). We analyzed a subset of 34 buildings from the BASE study of 100 US office buildings to determine the separate and joint associations of filter medium [polyester/synthetic (PS) or fiberglass (FG)] and outdoor ozone concentration (above/below the median, 67.6 microg/m(3)) with BRS. Using logistic regression models and general estimating equations, we estimated odds ratios (ORs) and 95% confidence intervals for the association of filter medium, ozone, and filter medium x ozone with BRS. Relative to FG + low ozone, PS alone or high ozone alone, were each significantly (P risk proportion (ARP) estimates indicate that removing both risk factors might, given certain assumptions, reduce BRS by 26-62%. These findings suggest possible adverse health consequences from chemical interactions between outdoor ozone and PS filters in buildings. Results need confirmation before recommending changes in building operation. However, if additional research confirms causal relationships, ARP estimates indicate that appropriate filter selection may substantially reduce BRS in buildings, especially in high-ozone areas. The results indicate that a better understanding of how filters interact with their environment is needed. While the mechanism is unknown and these findings need to be replicated, they indicate that the joint risk of BRS from polyester/synthetic filters and outdoor ozone above 67.6 microg/m(3) is much greater than the risk from each alone. These findings suggest potential reductions in BRS from appropriate selection of ventilation filter media or implementing strategies to reduce ozone

  2. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...... parameters are estimated using a maximum likelihood technique. Based on the maximum likelihood value, the different models are statistically compared to each other using Wilk's likelihood ratio test. The model showing the best performance is finally verified in both the time domain and the frequency domain...... using the auto-correlation function and cumulated periodogram. The proposed model which includes air-infiltration shows a significant improvement compared to previously proposed linear models. The model has subsequently been used in applications for provision of power system services, e.g. by providing...

  3. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    Science.gov (United States)

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.

  4. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  5. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China.

    Science.gov (United States)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3 degrees C and 27.7 degrees C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0-31.6 degrees C) was wider than that in air-conditioned buildings (25.1-30.3 degrees C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9 degrees C and 27.3 degrees C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4 degrees C cooler than neutral temperatures. This result suggests that people of hot climates may use words like "slightly cool" to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants' comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26 degrees C or even higher in air-conditioned buildings was confirmed as making

  6. Fungal aerocontamination exposure risk for patients in 3 successive locations of a pediatric hematology unit department: Influence of air equipment and building structure on air quality.

    Science.gov (United States)

    Bellanger, Anne-Pauline; Reboux, Gabriel; Demonmerot, Florent; Gbaguidi-Haore, Houssein; Millon, Laurence

    2017-10-01

    Invasive fungal infections (IFIs) play an important role in the mortality of immunocompromised patients. The pediatric hematology department (PHD) at Besançon University Hospital has relocated 3 times: (1) from a building without an air filtration system (B1), (2) to a renovated building with low air pressure (B2), and (3) to a new building with high air pressure and high-efficiency particulate air filters (B3). This study aimed to investigate how these relocations influenced the fungal exposure risk for the PHD's patients. Air samples were taken monthly in patient rooms and weekly in corridors. The detection of opportunistic fungi species was used to assess IFI risk. Data were analyzed using univariate and multivariate random-effects negative binomial regression. A total of 1,074 samples from 29 rooms over a 10-year period showed that renovation of an old building with a basic ventilation system did not lead to a significant improvement of air quality (P = .004, multivariate analysis). Among factors linked to higher risk of patient rooms mold contamination was fungal contamination of the corridors (P air flow, achieved adequate air quality. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. New office building uses 40% less gas, electricity

    Energy Technology Data Exchange (ETDEWEB)

    Watson, F.

    1984-05-16

    A new Saskatchewan office building with energy conservation features included in the design stage uses between 40 and 80% less energy than buildings of comparable size. Attention to conservation also lowered building costs 7 to 14%. Pre-planning enabled the designers to reduce the scale of building systems and to use proven technology. Among the building's features are the recovery of condenser waste heat, economizers connecting fan rooms with outside air with a system of modulating dampers, a hard-wired energy managemet system, and a building envelope.

  8. Summarized Data of Test Space Heating, Ventilation and Air Conditioning Inspections from the Building Assessment Survey and Evaluation Study

    Science.gov (United States)

    Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues

  9. Making the Business Case for Energy Savings Plus Health: Indoor Air Quality Guidelines for School Building Upgrades

    Science.gov (United States)

    The Energy Savings Plus Health Guide equips school districts to integrate indoor air quality protections into school energy efficiency retrofits and other building upgrade projects. This page describes the business case for energy savings in schools.

  10. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood.

    Science.gov (United States)

    Aristodemou, Elsa; Boganegra, Luz Maria; Mottet, Laetitia; Pavlidis, Dimitrios; Constantinou, Achilleas; Pain, Christopher; Robins, Alan; ApSimon, Helen

    2018-02-01

    The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings ("skyscrapers") with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of "dead-zones" and high-concentration "hotspots" in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Impact of the air filtration on indoor particle concentration by using combination filters in offices building

    Science.gov (United States)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.

  12. Energy conservative building air conditioning system controlled and optimized using fuzzy-genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Parameshwaran, R. [Department of Mechanical Engineering, Anna University Chennai, Chennai (India); Karunakaran, R. [Department of Mechanical Engineering, Anna University Tiruchirappalli-Thirukkuvalai Campus (India); Kumar, C. Vinu Raja [Department of Electrical and Electronics Engineering, Anna University Chennai, Chennai (India); Iniyan, S. [Institute for Energy Studies, Department of Mechanical Engineering, Anna University Chennai, Chennai (India)

    2010-05-15

    In this work, the combined effect of the energy conservative variable refrigerant volume (VRV) system and the variable air volume (VAV) system was experimentally investigated using genetic fuzzy optimization method that yielded better thermal comfort, indoor air quality (IAQ) requirements without compromising on the energy savings potential. The proposed system was tested using the demand controlled ventilation (DCV) combined with the economizer cycle ventilation (ECV) techniques and examined for a year-round building air conditioning (A/C) application. The supply air temperature (SAT) set points were varied under three distinct strategies and the optimal solutions obtained for the fuzzy systems designed resulted in an enhanced energy conservative potential. The test results of the proposed system were compared with the conventional fan coil A/C system. Based on the three strategies of the supply air temperature, the proposed system yielded an improved per day energy savings potential of 54% in summer and 61% in winter design conditions. Furthermore, for the strategies considered the proposed system achieved an annual energy conservative potential of 36% and exhibited more possible ways to achieve thermal comfort, IAQ and energy conservation. (author)

  13. Assessment of Interventions to Improve Air Quality in a Livestock Building.

    Science.gov (United States)

    Anthony, T Renée; Yang, Anthony Y; Peters, Thomas M

    2017-11-20

    This study examined the effectiveness of engineering controls to reduce contaminant concentrations in a swine farrowing room during winter in the U.S. Midwest. Over two winters, changes in air quality were evaluated following installation of a 1700 m3 h-1 (1000 cfm) recirculating ventilation system to provide 5.4 air exchanges per hour. This system incorporated one of two readily available dust control systems, one based on filtration and the other on cyclonic treatment. A second treatment evaluated reductions in carbon dioxide (CO2) associated with replacement of standard, unvented gas-fired heaters with new vented heaters, installed between the two winter test periods. The concentrations of carbon monoxide and hydrogen sulfide were negligible in the test room. Although concentrations of ammonia increased over each winter test period, the increase was unrelated to increased air movement from the new recirculating ventilation system. The dust concentrations were significantly reduced by the ventilation system for both inhalable dust (23% to 44% with filtration, 33% with cyclone) and respirable dust (32% with filtration, 20% with cyclone), significant (p 0.024) for all except respirable dust using the cyclone (p = 0.141). The filtration unit is recommended to improve livestock building air quality because it was more effective than the cyclone unit at reducing respirable dust. Carbon dioxide concentrations were significantly lower with vented heaters (mean = 1400 ppm, SD = 330 ppm) compared to unvented heaters (mean = 2480 ppm, SD = 160 ppm). A 940 ppm reduction in CO2 was attributed to the use of the vented heater, after accounting for differences in outdoor temperatures and animal housing over both test periods. The benefits of readily available technology to significantly reduce concentrations of dust and CO2 demonstrates useful control options to improve air quality in swine buildings. Copyright© by the American Society of Agricultural Engineers.

  14. Modeled effects of an improved building insulation scenario in Europe on air pollution, health and societal costs

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Holst, Gitte Juel; Sigsgaard, Torben

    2015-01-01

    Background: In Europe a substantial share of the energy supply is used for domestic heating and cooling. The quality of building insulation thus significantly impacts air pollution. Objectives: To model the effects of an improved building insulation scenario in Europe on air pollution levels...... and the resulting effects on health and economy. Methods: Projected energy savings between 2005 and 2020 were calculated for an improved building insulation scenario and a business as usual scenario. The resulting changes in emissions (e.g. from power plants) were used in the Comprehensive Air-Quality Model...... with extensions. Mean annual changes in the main air pollutants were derived for each country. World Health Organization (WHO) and European Union (EU) data on populations and on impacts of pollutants were used to derive health effects and costs. Effects on indoor air quality were not assessed. Results: Projected...

  15. Manipulation of operating configuration of cool air supply in buildings for reduction of cooling energy

    Science.gov (United States)

    Sulaiman, Shaharin A.; Rashid, Mohd Syazwan Ab; Hassan, Ahmad Hadi

    2012-06-01

    The cooling energy in different rooms can be different particularly if there are rooms that are very seldom occupied. With uncertainties in the cost and availability of local and global energy nowadays, it is imperative that a study on the actual cooling load of a building system be performed to reduce the energy consumption. In this paper, the effect of manipulation of the operating configuration of the cool air supply system is studied experimentally and also by computer simulation on selected occupied air-conditioned areas. The study is mainly conducted by re-configuring the damper opening and mode of control depending on the trend of occupancy throughout a typical working day for a selected zone within a campus building. The potential savings in energy as a result of the proposed strategy are estimated based on computer simulation. The results are compared with those of the experiment. The study reveals that there are significant potentials for savings in the cooling energy of the buildings.

  16. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements

  17. Contamination of the air with mineral fibers following the explosive destruction of buildings and fire.

    Science.gov (United States)

    Hoskins, J A; Brown, R C

    1994-01-01

    Mineral fibers, including asbestos, are ubiquitous contaminants of the environment. Asbestos fibers are generally present at levels below 1 fiber/L in air though 10 fibers/L may be found in cities; these levels do not appear to be high enough to present a hazard to health. These fibers come mostly from the use of fibrous materials as thermal and acoustic insulation in buildings, and their use as friction materials. Historically, occupational air levels were often very high and as a result there was a high incidence of fibrosis and also cancer in exposed workers, mostly among those in the industries concerned with the winning or processing of asbestos fiber. Levels high enough to produce disease have also occurred paraoccupationally in the families of asbestos workers. The effect of fire and explosion in a building is to disrupt its structure and vastly increase the level of airborne fiber for a considerable distance (kilometers) around it. Air levels of fiber can remain high for months, and as a result the earliest occupational experiences are likely to be repeated. The greatest danger is from exposure to blue and brown asbestos, and it is known that even a single high exposure can be responsible for the development of a tumor decades later.

  18. Case study of odor and indoor air quality assessment in the dewatering building at the Stickney Water Reclamation Plant.

    Science.gov (United States)

    Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna

    2012-01-01

    Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops.

  19. Human Perception, SBS Sympsoms and Performance of Office Work during Exposure to Air Polluted by Building Materials and Personal Computers

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt

    The present thesis deals with the impact of polluted air from building materials and personal computers on human perception, Sick Building Syndrome (SBS) symptoms and performance of office work. These effects have been studies in a series of experiments that are described in two different chapters...

  20. A flexible and low cost experimental stand for air source heat pump for Smart Buildings

    DEFF Research Database (Denmark)

    Crăciun, Vasile S.; Bojesen, Carsten; Blarke, Morten

    2012-01-01

    Energy systems are faced with the challenges of reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. At the same time, the efficient consumption of energy is vital for avoiding the impacts from increasing fuel...... prices. A significant part of this challenge may be dealt with in the way space heating, space cooling, and domestic hot water production which is provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies for providing building thermal energy...... the evaporator is operated. In order to cover various climate conditions, performance and behavior must be tested for temperatures ranging from -30°C to 40°C and for various humidity levels. This paper presents a stateof-art experimental stand, named controlled lab environment (CLE or climatic box), for testing...

  1. Solar active envelope module with an adjustable transmittance/absorptance

    Directory of Open Access Journals (Sweden)

    C. Villasante Villasante

    2015-06-01

    Full Text Available A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three glazed chambers with advanced coatings and frames to assure a minimum thermal transmittance while allowing transparency. A fluid containing heat-absorbing nanoparticles flows inside the central chamber and is heated up due to the impinging solar energy. Unlike other systems proposed in the past, which included transparency control systems based on complex filters and chemical processes, the absorption of the module is controlled by the variation of the thickness of the central chamber with a mechanical device. That is, varying the thickness of the central chamber, it allows controlling the absorptance of the whole system and, as a result, indoor day-lighting and thermal loads. Therefore, a new system is proposed that enables to:  

  2. Comparison among Detailed and Simplified Calculation Methods for Thermal and Energy Assessment of the Building Envelope and the Shadings of a New Wooden nZEB House

    Directory of Open Access Journals (Sweden)

    Cristina Carletti

    2018-02-01

    Full Text Available This paper deals with research carried out by the University of Florence on the thermal and energy performances of a recently built nZEB in Mediterranean Italian area. Heterogeneous component and thermal bridges performances have been analysed and critically evaluated with different calculation methods, and the results in terms of energy consumptions for heating and cooling have been compared. Some solar shading devices have been evaluated to reduce the building energy need for cooling. Main results of the research are presented for the components and thermal bridges properties and for the energy balance of the building implemented with different solar shadings.

  3. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...... period of thermal adaption was obtained with the proposed method. The result revealed that the subjects needed to take 4.25 days to fully adapt to a step-change in outdoor air temperature. The time period of thermal adaption for the occupants in five European countries was also calculated and compared...... with the value of the subjects in this study. The comparison shows that the occupants in China had a shorter time period of thermal adaption than European occupants, which means that Chinese occupants can adapt to a new outdoor climate condition faster....

  4. Indoor air quality in the Swedish housing stock and its dependence on building characteristics

    DEFF Research Database (Denmark)

    Langer, Sarka; Bekö, Gabriel

    2013-01-01

    Data from a recent Swedish survey on the status of the housing stock and indoor air quality were placed in the public domain by the Swedish National Board of Housing, Building and Planning in 2011. The available parameters included the year of construction, dwelling location, type of ventilation...... exchange rate was a significant predictor of the concentrations of all three indoor pollutants. While ventilation seemed to be a source of NO2, increased ventilation rate appeared to decrease the indoor concentrations of formaldehyde and TVOC. © 2013 Elsevier Ltd....... system, temperature, relative humidity, air exchange rate (AER), and concentrations of nitrogen dioxide (NO2), formaldehyde and Total Volatile Organic Compounds (TVOC) from 157 single-family houses and 148 apartments. The median AER was lower in the single-family houses than in apartments (0.33h-1 vs. 0...

  5. Potential Damage to Modern Building Materials from 21st Century Air Pollution

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2010-01-01

    Full Text Available The evolution of damage to building materials has been estimated for the 21st century, with a particular focus on aluminum, zinc, copper, plastic, paint, and rubber in urban areas. We set idealized air pollution and climates to represent London and Prague across the period 1950–2100. Environmental parameters were used to estimate future recession, corrosion, and loss of properties through published damage or dose-response functions. The 21st century seems to provide a less aggressive environment for stone and metals than recent times. Improvements in air quality are the most relevant drivers for this amelioration. Changes in climate predicted for the 21st century do not alter this picture. On the other hand, polymeric materials, plastic, paint, and rubber might show slightly increased rates of degradation, to some extent the result of enhanced oxidant concentrations, but also the possibility of contributions from more solar radiation.

  6. Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barrios, Marcella [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parthasarathy, Srinandini [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sidheswaran, Meera [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Katerina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    California's building efficiency standards (Title 24) mandate minimum prescribed ventilation rates (VRs) for commercial buildings. Title 24 standards currently include a prescriptive procedure similar to ASHRAE’s prescriptive “ventilation rate procedure”, but does not include an alternative procedure, akin to ASHRAE’s non-prescriptive “indoor air quality procedure” (IAQP). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ). The first primary goal of this study was to determine, in a set of California retail stores, the adequacy of Title 24 VRs and observed current measured VRs in providing the level of IAQ specified through an IAQP process, The second primary goal was to evaluate whether several VRs implemented experimentally in a big box store would achieve adequate IAQ, assessed objectively and subjectively. For the first goal, a list of contaminants of concern (CoCs) and reference exposure levels (RELs) were selected for evaluating IAQ. Ventilation rates and indoor and outdoor CoC concentrations were measured in 13 stores, including one “big box” store. Mass balance models were employed to calculate indoor contaminant source strengths for CoCs in each store. Using these source strengths and typical outdoor air contaminant concentrations, mass balance models were again used to calculate for each store the “IAQP” VR that would maintain indoor CoC concentrations below selected RELs. These IAQP VRs were compared to the observed VRs and to the Title 24- prescribed VRs. For the second goal, a VR intervention study was performed in the big box store to determine how objectively assessed indoor contaminant levels and subjectively assessed IAQ varied with VR. The three intervention study VRs included an approximation of the store’s current VR [0.24 air changes per hour (ACH)], the Title 24-prescribed VR [0.69 ACH], and the calculated IAQPbased VR [1.51 ACH]). Calculations of IAQP-based VRs

  7. OpenAIRE - Building a collaborative Open Access infrastructure for European researchers

    Directory of Open Access Journals (Sweden)

    Najla Rettberg

    2012-11-01

    Full Text Available This paper outlines the efforts of the OpenAIRE networking team to establish a Europe-wide open access initiative. OpenAIRE is an effort to realize the open access policies of the European Commission, and has built an infrastructure to support the widest possible dissemination of project results within a certain funding area, FP7. The purpose of the paper is to highlight how such a service can be established through the work of a successful network of European open access contacts and by effective communication with a range of stakeholders. The paper also outlines the flexible technical infrastructure and research activities within the project. Not without its challenges, the approach to tackling existing barriers, such as building repository interoperability, are explored. The paper also introduces the aims and initial activities of the continuation project, OpenAIREplus.

  8. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  9. Exergy analysis of air cooling systems in buildings in hot humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Alpuche, M.G. [UNAM, Temixco, Morelos (Mexico). Posgrado en Ingenieria; Heard, C. [Instituto Mexicano del Petroleo, Mexico DF (Mexico); Best, R.; Rojas, J. [UNAM, Temixco, Morelos (Mexico). Centro de Investigacion en Energia

    2005-03-01

    The purpose of this study is to analyze the influence of using air cooling desiccant systems on reaching thermal comfort conditions in the interior of a building, supposing this to be an open system. Exergy analysis has been carried out for the different design temperatures and relative humidity conditions within those established for ASHRAE summer thermal comfort conditions. The climatic conditions of a hot humid climate such as Villahermosa, Tabasco, Mexico, are used as an example. A novel reference state has been used for the exergy analysis, since this varies according to the fluctuation of the ambient temperature and humidity. (author)

  10. Wind-induced single-sided natural ventilation in buildings near a long street canyon: CFD evaluation of street configuration and envelope design

    DEFF Research Database (Denmark)

    Ai, Z.T.; Mak, C.M.

    2018-01-01

    an urban context, this study investigates the wind-induced single-sided natural ventilation in buildings near a long street canyon under a perpendicular wind direction using CFD method. Four aspect ratios (AR) of the street canyon, from 1.0, 2.0, 4.0 to 6.0, are investigated to examine the influence...

  11. Effects on perceived air quality and symptoms of exposure to microbially produced metabolites and compounds emitted from damp building materials.

    Science.gov (United States)

    Claeson, A-S; Nordin, S; Sunesson, A-L

    2009-04-01

    This work investigated perceived air quality and health effects from exposure to low to high levels of volatile organic compounds (VOCs) emitted from damp building materials and a mixture of molds growing on the materials. A mixture of Wallemia sebi, Fusarium culmorum, Penicillium chrysogenum, Ulocladium botrytis, and Aspergillus versicolor was inoculated on pine wood and particle board. In Study 1, each of 27 participants took part in two exposure conditions, one with air from molds growing on building materials (low levels of emissions from the building materials and the mold mixture) and one with blank air, both conditions during 60 min. In Study 2, each of 24 participants was exposed (10 min) four times in a 2 x 2 design randomly to air from moldy building materials (high levels) and blank, with and without nose-clip. The participants rated air quality and symptoms before, during, and after each exposure. Self-reported tear-film break-up time and attention and processing speed (Study 1) was also measured. Exposure to high VOC levels increased the reports of perceived poor air quality, and in the condition without nose-clip enhanced skin symptoms were also noted. No such outcome was observed when exposing the participants to low VOC levels. Emissions from building materials caused by dampness and microbial growth may be involved in indoor air health problems. This study showed that exposure to high levels of VOC emitted from damp building materials and a mixture of mold may cause perceived poor air quality. It also indicated that stimulation of chemical warning systems (the nasal chemosensory part of the trigeminal system and the olfactory system) may enhance skin symptoms.

  12. Regulatory standards related to building energy conservation and indoor-air-quality during rapid urbanization in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Bai, Z.; Yu, H.; Zhu, T. [Nankai Univ., Tianjin (China). College of Environmental Sciences and Engineering; Zhang, J. [University of Medicine and Dentistry of New Jersey and Rutgers Univ., Piscataway, NJ (United States)

    2004-12-01

    The number of airtight buildings equipped with air-conditioning units along with levels of energy consumption from residential and commercial buildings has both increased markedly in China since 1990 due to rapid economic growth and urbanization. During this same period, home refurbishment/decoration/remodeling activities in newly constructed or existing apartments have become very popular and brought attention to a wide range of health concerns. This paper reviews building energy-saving and indoor-air-quality (IAQ) related standards in China. In summary, the two systems of building energy-saving and IAQ-related standards have been already established separately, although Chinese IAQ standards contain some indices related to building ventilation and energy (e.g. fresh air volume, relative humidity, and temperature). Building energy-saving systems are applicable to buildings existing in a wide range of climatic conditions. Formaldehyde was selected as a pollution index in ''Chinese Evaluation Handbook of Ecological Residence Technology'' (promulgated in 2001) for buildings mainly contaminated with harmful compounds emitted from interior decorating materials. As part of its IAQ control strategy, China promulgated a series of IAQ-related standards and compulsory national standards for limits of harmful substances contained in interior decorative materials (LHSCIDM), which placed strong emphasis on source control. When enacting the IAQ-related standards, China adopted some of the standards used in developed countries and related international standards for reference. (author)

  13. Regulatory standards related to building energy conservation and indoor-air-quality during rapid urbanisation in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Bai, Z.; Yu, H.; Zhu, T. [College of Environmental Sciences and Engineering, Nankai University, Tianjin (China); Zhang, J. [Environmental and Occupational Health Sciences Institute, and University of Medicine and Dentistry of New Jersey, and Rutgers University, Piscataway, NJ (United States)

    2004-07-01

    The number of airtight buildings equipped with air-conditioning units along with levels of energy consumption from residential and commercial buildings has both increased markedly in China since 1990 due to rapid economic growth and urbanization. During this same period, home refurbishment/decoration/remodeling activities in newly constructed or existing apartments have become very popular and brought attention to a wide range of health concerns. This paper reviews building energy-saving and indoor-air-quality (IAQ) related standards in China. In summary, the two systems of building energy-saving and IAQ-related standards have been already established separately, although Chinese IAQ standards contain some indices related to building ventilation and energy (e.g. fresh air volume, relative humidity, and temperature). Building energy-saving systems are applicable to buildings existing in a wide range of climatic conditions. Formaldehyde was selected as a pollution index in 'Chinese Evaluation Handbook of Ecological Residence Technology' (promulgated in 2001) for buildings mainly contaminated with harmful compounds emitted from interior decorating materials. As part of its IAQ control strategy, China promulgated a series of IAQ-related standards and compulsory national standards for limits of harmful substances contained in interior decorative materials (LHSCIDM), which placed strong emphasis on source control. When enacting the IAQ-related standards, China adopted some of the standards used in developed countries and related international standards for reference. (author)

  14. Non-linear model predictive supervisory controller for building, air handling unit with recuperator and refrigeration system with heat waste recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2016-01-01

    In this paper we examine a supermarket system. In order to grasp the most important dynamics we present a model that includes the single zone building thermal envelope with its heating, cooling and ventilation. Moreover we include heat waste recovery from the refrigeration high pressure side...

  15. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    Science.gov (United States)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  16. Numerical analysis of heat, air, and moisture transfers in a wooden building material

    Directory of Open Access Journals (Sweden)

    Mnasri Faiza

    2017-01-01

    Full Text Available The present paper aims to predict the hygrothermal behavior of massive wood panel considered as bio-based building material. In this context, we developed a macroscopic model coupled no linear heat, air, and moisture transfers that incorporates simultaneously the effect of thermal diffusion and infiltration phenomenon on the building material. The model inputs parameters were evaluated experimentally according to the recognized standards of material’s characterization. Therefore, numerous series of hygrothermal calculation were carried out on the 1-D and 2-D configuration in order to assess the dimensionless effect on such wooden material. Two types of boundary conditions were considered and examined. The first are at the material scale of wood drying process. The second type of conditions is at the wall scale, where the conditions of the building ambiance are considered. Moreover, the model sensitivity to the driving potentials coupling and to the parameters variability was considered and examined. It has been found that the coupling in the model had a remarkable impact on both kinetics of temperature and moisture content.

  17. Influences of the Indoor Environment on Heat, Air and Moisture Conditions in The Building Component: Boundary Conditions Modeling

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Rode, Carsten; Janssen, Hans

    2008-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the surface transfer coefficients. Such models cannot accurately predict the HAM...... conditions in the component and on the surface of the component with non-uniform air temperature or relative humidity distributions in an indoor space. Moreover, the heat and moisture surface transfer coefficients strongly depend on the local air velocity, local temperature, water-material interactions...... and water content at the material surface and surface texture of the material. The objective of the present paper is to analyze the influence of the non-uniform local air velocity near the surface of a building component on the HAM conditions in the component. A case study and sensitivity study have been...

  18. Lightweight envelopes for old buildings. Textile membranes offer new opportunities for the energy-based refurbishment of existing buildings; Leichte Huellen fuer alte Gebaeude. Textile Membranen bieten neue Moeglichkeiten fuer die energetische Sanierung von Bestandsbauten

    Energy Technology Data Exchange (ETDEWEB)

    Muenter, Micaela

    2012-11-01

    Lightweight and transparent membrane structures enable large spaces, such as courtyards in old building complexes, to be roofed over. Supplemental to the additional space created, this also achieves savings in terms of the heating and lighting. Artificial light is not necessary and the heat losses from the adjacent buildings can be reduced. However, an intelligent building management system is essential in order to create a pleasant indoor environment. To ensure that this is achieved, scientists have developed new concepts and components for the use of film and membranes in old buildings. (orig.)

  19. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  20. Development of a knowledge base used by an expert system to access the air quality in high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Miresco, E.; Windisch, H.; Gruia-Gray, J.

    1992-09-01

    The problem of poor air quality in buildings has developed relatively recently, due tp a large extent to the improved insulation and sealing of buildings for energy conservation. Research was conducted on an expert system as an aid to identify possible indoor air quality problems in highrise residential buildings, to identify the source of the problems, to aid in defining their nature and severity, and to produce a set of solutions to mitigate those problems. The knowledge base for the expert system was gathered primarily from literature on indoor air quality tests and field investigations. The resulting expert system is called EXPAIR and its features and operation are described. To assess the air quality in a highrise building, the user must supply information on the locations of the air quality problem, the physical findings that indicate the problem, and any symptoms reported by inhabitants of the building. By using EXPAIR's components of networks, variables, and dialogs, solutions are outlined at various levels of specificity. 2 figs., 4 tabs.

  1. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Design reference year for development of photovoltaic envelope systems

    Science.gov (United States)

    Mihalka, Peter; Matiasovsky, Peter

    2017-07-01

    An application of photovoltaic cells on external surfaces of building envelope represents a development of new construction element. A mutual coupling between thermal behaviour of photovoltaic layer and the other layers of the structure, with special properties, requires a specific selection of the characteristic outdoor thermal boundary conditions, necessary for optimum design of the envelope from the aspect of structure, material composition and geometry. The main design criteria are the effectiveness and elimination of overheating of photovoltaic module and the optimisation of heat distribution in the envelope structure during particular year seasons. The paper contains the results of the analysis of time courses of climatic elements during a real year as the boundary conditions for simulation of photovoltaic integrated building envelope systems, used in simulations of thermal behaviour of photovoltaics integrated with building envelope systems.

  3. Effect of Air Cleaning Technologies in Conjunction With the Use of Rotary Heat Exchangers in Residential Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Bergsøe, Niels Christian; Ekberg, Lars

    2013-01-01

    This study is part of a research project concerning the possibilities of applying efficient air cleaning technologies using rotary heat exchanger in residential buildings. The purpose of this project was to identify and adapt new air-cleaning technologies for implementation in HVAC systems...... with rotary air-to-air heat exchangers. For this purpose, a mechanical filter with low pressure drop and a 4 cm thick activated carbon filter were selected for testing in a laboratory environment. The measurements included testing of the filters, separately and combined, in a ductwork to study the efficiency...

  4. Application of a solar refrigeration system by absorption for the air conditioning of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Machielsen, Cees H. M [Delft University of Technology, Mekelweg (Netherlands); Hagendijk, Andre E [Consultancy and Research (Netherlands)

    2000-07-01

    This paper describes the Sofri project, a cooperation between Ceeran Ltd and The Delft University of Technology. The main objective of this project is to develop the necessary knowledge and experience to commercialize solar-assisted air conditioning and dehumidification systems in the Dutch Caribbean. The project is motivated by the present needs of the Dutch Caribbean for renewable energy sources and the fact that the Caribbean has a high and uniform insolation throughout the year. Furthermore, hotels and offices in this area use more than 40% of their energy for air-conditioning purposes. Therefore solar-assisted air conditioning systems are a logic approach in reducing the energy demand and to lower the peak electricity reducing the energy demands for the local power station. Ceeran Ltd has the objective to reach full commercialization of the proposed technologies in the Dutch Caribbean. The research is concentrated on liquid absorption machines and solar collection systems such as flat plates with selective surfaces, heat pipe evacuated tubes flat plate collectors, and Compound Parabolic Concentrators. The first demonstration unit is planned to be installed in an office building in Curacao. The installation consists of a 35 kW LiBr/H{sub 2}O absorption machine driven by 100 m{sup 2} flat pate collectors with a gas backup system. The system will provide comfort air-conditioning for this these type of office buildings during daytime. [Spanish] Este documento describe el proyecto SOFRI, una cooperacion entre Ceeran, Ltd, y la Universidad Tecnologica del Delft. El principal objetivo de este proyecto es el de desarrollar el conocimiento necesario y la experiencia para comercializar los sistemas de aire acondicionado y deshumidificacion ayudados por la energia solar en el Caribe Holandes. Este proyecto ha sido motivado por las actuales necesidades del Caribe Holandes de fuentes de energia renovable y por el hecho de que el Caribe tiene una alta y uniforme insolacion

  5. [Effectiveness of the maintenance operations on the air conditioning systems of a university building in relation to the microbiological quality of the air indoor].

    Science.gov (United States)

    De Filippis, Patrizia; Spinaci, Anna; Coia, Maura; Maggi, Oriana; Panà, Augusto

    2003-01-01

    The microbiological quality of the air indoor is influenced from various factors and one of the most important is represented from the maintenance of the conditioning systems. In this study it has been estimated the effectiveness of an intervention of cleaning and maintenance on the systems of conditioning of an university building executing sampling before and after such intervention. The two results were confronted and it is observed as the maintenance of the air conditioners has influenced on the quality of the air indoor.

  6. Global Envelope Tests for Spatial Processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    2017-01-01

    distance r only, whereas the functions are inspected on an interval of distances I. In this study, we propose two approaches related to Barnard’s Monte Carlo test for building global envelope tests on I: (1) ordering the empirical and simulated functions based on their r-wise ranks among each other, and (2...

  7. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage....... The performance of the envelope is simulated and put through an optimization process. The impact of a design system on the architectural potential of Performance -based design was investigated.......A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  8. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    Science.gov (United States)

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  9. Assessment of NH3 Reduction and N2O Production during Treatment of Exhausted Air from Fattening Pigs Building by a Commercial Scrubber

    OpenAIRE

    Loyon, L.; Dupard, P.; Saint Cast, P.; Guiziou, F.

    2016-01-01

    International audience; The use of air scrubbers to reduce ammonia (NH3) emissions from buildings on pig farms is one of the most promising techniques in the Göteborg protocol and other European regulations including the Industrial Emission Directive. In France, some air scrubbers are currently used on pig farms, mainly to reduce odours from livestock buildings. However, recent research revealed the production of N2O resulting from the treatment of air from pig buildings. In this context, a t...

  10. Indoor air quality in green buildings: A case-study in a residential high-rise building in the northeastern United States.

    Science.gov (United States)

    Xiong, Youyou; Krogmann, Uta; Mainelis, Gediminas; Rodenburg, Lisa A; Andrews, Clinton J

    2015-01-01

    Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g., New York State Green Building Tax Credit (GBTC)) and certification programs (e.g., Leadership in Energy & Environmental Design (LEED)) require indoor air quality measures and compliance with allowable maximum concentrations of common indoor air pollutants. It is not yet entirely clear whether compliance with these programs results in improved IAQ and ultimately human health. As a case in point, annual indoor air quality measurements were conducted in a residential green high-rise building for five consecutive years by an industrial hygiene contractor to comply with the building's GBTC requirements. The implementation of green design measures resulted in better IAQ compared to data in references of conventional homes for some parameters, but could not be confirmed for others. Relative humidity and carbon dioxide were satisfactory according to existing standards. Formaldehyde levels during four out of five years were below the most recent proposed exposure limits found in the literature. To some degree, particulate matter (PM) levels were lower than that in studies from conventional residential buildings. Concentrations of Volatile Organic Compounds (VOCs) with known permissible exposure limits were below levels known to cause chronic health effects, but their concentrations were inconclusive regarding cancer health effects due to relatively high detection limits. Although measured indoor air parameters met all IAQ maximum allowable concentrations in GBTC and applicable LEED requirements at the time of sampling, we argue that these measurements were not sufficient to assess IAQ comprehensively because more sensitive sampling/analytical methods for PM and VOCs are needed; in addition, there is a need for a formal process to ensure rigor and adequacy of sampling and analysis methods. Also, we suggest that a comprehensive IAQ assessment should

  11. Effect of ventilation on perceived quality of air polluted by building materials. A summary of reported data

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Vondruskova, J. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-02-15

    This paper summarizes existing data on how varying ventilation rates affect the perceived quality of air polluted by building materials. This is done by reviewing literature dealing with exposure-response relationships, i.e. the log-linear relationships between the concentration of pollutants (exposure) and the perceived air quality (response). The reviewed data originate from studies with single building materials performed in small-scale ventilated chambers and from studies carried out in a full-scale setting resembling normal offices. Perceived air quality expressed in terms of acceptability as assessed by untrained panels was included. The results show that the exposure-response relationships vary for different building materials as regards the impact of changing ventilation rate on perceived air quality and the level of perceived air quality at a constant ventilation rate. This applies both for the data collected in small-scale and in full-scale experiments. The differences may be caused by the experimental conditions, psychological factors, physiological factors, and chemical/physical factors. A well controlled study taking these factors into account with several different building materials, is thus recommended to further study whether the observed results have practical significance. These experiments should be carried out under realistic fullscale conditions. (au)

  12. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate.

    Science.gov (United States)

    Lu, Shilei; Pang, Bo; Qi, Yunfang; Fang, Kun

    2018-01-01

    The unique geographical location of Hainan makes its climate characteristics different from inland areas in China. The thermal comfort of Hainan also owes its uniqueness to its tropical island climate. In the past decades, there have been very few studies on thermal comfort of the residents in tropical island areas in China. A thermal environment test for different types of buildings in Hainan and a thermal comfort field investigation of 1944 subjects were conducted over a period of about two months. The results of the survey data show that a high humidity environment did not have a significant impact on human comfort. The neutral temperature for the residents in tropical island areas was 26.1 °C, and the acceptable temperature range of thermal comfort was from 23.1 °C to 29.1 °C. Residents living in tropical island areas showed higher heat resistance capacity, but lower cold tolerance than predicted. The neutral temperature for females (26.3 °C) was higher than for males (25.8 °C). Additionally, females were more sensitive to air temperature than males. The research conclusions can play a guiding role in the thermal environment design of green buildings in Hainan Province. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hydrodynamic Performances of Air-Water Flows in Gullies with and without Swirl Generation Vanes for Drainage Systems of Buildings

    OpenAIRE

    Der-Chang Lo; Jin-Shuen Liou; Shyy Woei Chang

    2015-01-01

    As an attempt to improve the performances of multi-entry gullies with applications to drainage system of a building, the hydrodynamic characteristics of air-water flows through the gullies with and without swirl generation vanes (SGV) are experimentally and numerically examined. With the aid of present Charge Coupled Device (CCD) image and optical systems for experimental study, the mechanism of air entrainment by vortex, the temporal variations of airflow pressure, the trajectories of drifti...

  14. Air Leakage Rates in Typical Air Barrier Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Childs, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    Estimates for 2010 indicate that infiltration in residential buildings was responsible for 2.85 quads of energy (DOE 2014), which is about 3% of the total energy consumed in the US. One of the mechanisms being implemented to reduce this energy penalty is the use of air barriers as part of the building envelope. These technologies decrease airflow through major leakage sites such as oriented strand board (OSB) joints, and gaps around penetrations (e.g., windows, doors, pipes, electrical outlets) as indicated by Hun et al. (2014). However, most air barrier materials do not properly address leakage spots such as wall-to-roof joints and wall-to-foundation joints because these are difficult to seal, and because air barrier manufacturers usually do not provide adequate instructions for these locations. The present study focuses on characterizing typical air leakage sites in wall assemblies with air barrier materials.

  15. Capture efficiency of portable high efficiency air filtration devices used during building construction activities.

    Science.gov (United States)

    Newcomer, Derek A; LaPuma, Peter; Brandys, Robert; Northcross, Amanda

    2017-12-29

    The portable high efficiency air filtration (PHEAF) device is used to control particulate matter (PM) generated from construction-type activities occurring within the built environment. Examples of activities where PHEAF devices are mobilized include building renovation, asbestos abatement, remediation of microbial contamination and lead-based paint projects. Designed for use on short-term, temporary projects the PHEAF device captures airborne PM using a high efficiency particulate air (HEPA) filter. This study sought to evaluate the capture efficiency of the PHEAF device in a field setting. An aerosol generator and photometer were used to measure particle penetration through 85 PHEAF devices. Average overall capture efficiency ranged from 41.78% to ≥99.97% with more than 88% of the tests failing to achieve 99.97% capture efficiency. Approximately 73% of the PHEAF device sample population failed to demonstrated HEPA performance criteria during any test round. Higher occurrence of PM concentrations measured around the perimeter of the filter suggested the presence of bypass leakage. While PHEAF devices were effective in capturing a significant quantity of aerosol test agent, these findings suggest that routine testing of the PHEAF device should be conducted to validate performance.

  16. Evaluation of Potential Indoor Air Impact of TCE in Groundwater on Building 864, Air Force Plant 44, Arizona

    National Research Council Canada - National Science Library

    Long, G

    1997-01-01

    .... The evaluation uses the Farmer model, as described in EPA guidance EPA-451/R-92-002, 'Assessing Potential Indoor Air Impacts for Superfund Sites', to predict potential indoor air concentration...

  17. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  18. Hydrodynamic Performances of Air-Water Flows in Gullies with and without Swirl Generation Vanes for Drainage Systems of Buildings

    Directory of Open Access Journals (Sweden)

    Der-Chang Lo

    2015-02-01

    Full Text Available As an attempt to improve the performances of multi-entry gullies with applications to drainage system of a building, the hydrodynamic characteristics of air-water flows through the gullies with and without swirl generation vanes (SGV are experimentally and numerically examined. With the aid of present Charge Coupled Device (CCD image and optical systems for experimental study, the mechanism of air entrainment by vortex, the temporal variations of airflow pressure, the trajectories of drifting air bubbles and the self-depuration process for the gullies with and without SGV are disclosed. The numerical simulations adopt Flow-3D commercial code to attack the unsteady two-phase bubbly flows for resolving the transient fields of fluid velocity, vorticity and pressure in the gullies with and without SGV. In the twin-entry gully without SGV, air bubbles entrained by the entry vortex interact chaotically in the agitating bubbly flow region. With SGV to trip near-wall flows that stratify the drifting trajectories of the air bubbles, the air-bubble interactions are stabilized with the discharge rate increasing more than 7%. The reduction of the self-depuration period by increasing discharge rate is observed for the test gullies without and with SGV. Based on the experimental and numerical results, the characteristic hydrodynamic properties of the air-water flows through the test gullies with and without SGV are disclosed to assist the design applications of a modern drainage system in a building.

  19. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  20. Whole-Building Hygrothermal Modeling in IEA Annex 41

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2007-01-01

    Annex 41 of the International Energy Agency’s (IEA) Energy Conservation in Buildings and Community Systems program (ECBCS) is a cooperative project on “Whole-Building Heat, Air, and Moisture Response” (MOIST-ENG). Subtask 1 of that project set out to advance development in modeling the ntegral heat....... The IEA Annex 41 project runs from 2004–2007, coming to conclusion just before the Thermal Performance of the Exterior Envelopes of Whole Buildings X conference. The Annex 41 project and its Subtask 1 do not aim to produce one state-of-the-art hygrothermal simulation model for whole buildings, but rather...

  1. Towards the definition of indicators for assessment of indoor air quality and energy performance in low-energy residential buildings

    DEFF Research Database (Denmark)

    Cony Renaud Salis, Louis; Abadie, Marc; Wargocki, Pawel

    2017-01-01

    A major obstacle for integrating energy and indoor air quality (IAQ) strategies in the design and optimization of buildings is the non-existence of an agreed measure, which can quantitatively describes the IAQ and will allow the assessment of measures to improve energy performance. A complication...... such an index as well as on how they should be integrated into one index. IEA EBC Annex 68 was formed with the objective to discuss Indoor Air Quality Design and Control in Low Energy Residential Buildings. The objective of Subtask 1 of this Annex described in this paper was to review, discuss and propose...... was proposed as the IAQ index for the short term effects so that the existing exposure limits could be referred to and to avoid problems associated with the aggregation of many air quality indices. The same approach was proposed for the IAQ index for the long-term effects together with the calculation...

  2. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    ambient air enthalpies and lower for high ambient air enthalpies. The cooling demand can be reduced up to 50% and the energy demand of the refrigeration plant is also affected positively. When using Binary Ice the annual operating costs, including depreciation of the investment, are ultimately lower...

  3. Discrete optimization in architecture building envelope

    CERN Document Server

    Zawidzki, Machi

    2017-01-01

    This book explores the extremely modular systems that meet two criteria: they allow the creation of structurally sound free-form structures, and they are comprised of as few types of modules as possible. Divided into two parts, it presents Pipe-Z (PZ) and Truss-Z (TZ) systems. PZ is more fundamental and forms spatial mathematical knots by assembling one type of unit (PZM). The shape of PZ is controlled by relative twists of a sequence of congruent PZMs. TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. TZ structures are composed of four variations of a single basic unit subjected to affine transformations (mirror reflection, rotation and combination of both). .

  4. Folded Plate Structures as Building Envelopes

    DEFF Research Database (Denmark)

    Falk, Andreas; Buelow, Peter von; Kirkegaard, Poul Henning

    2012-01-01

    This paper treats applications of cross-laminated timber (CLT) in structural systems for folded façade solutions. Previous work on CLT-based systems for folded roofs has shown a widening range of structural possibilities to develop timber-based shells. Geometric and material properties play......, however, an important role also for the enclosure, and climate and conceptual design procedures have been utilised to include these issues in early design phases. A current architectural trend proposes increasing complexity of the façades and in this context the paper proposes the application of folded...

  5. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  6. Indoor Air Quality (IAQ) : Using Temporal Data and GIS to Visualize IAQ in Campus Buildings

    OpenAIRE

    N Li, Na

    2013-01-01

    There is no doubt that indoor air quality (IAQ) is essential for human health because of the long exposure time human has inside. But the legislation and relevant policy about indoor air are far behind outdoors. Recently indoor air quality has been paid attention, some relevant epidemiological studies were carried and WHO published indoor air quality guidelines ac-cordingly as the reference of policy-making. The demand and requirement of good indoor air quality is booming from legislation enf...

  7. Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  8. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  9. Designing and testing an air-PCM heat exchanger for building ventilation application coupled to energy storage

    OpenAIRE

    Dechesne, Bertrand; Gendebien, Samuel; Martens, Jonathan; Gilbert, Jacques; Lemort, Vincent

    2014-01-01

    This paper studies a PCM heat exchanger coupled to a building ventilation system. This PCM module can either store heat during the day (e.g. by cooling solar PV panels) and restore it to the building during the night for space heating purposes or store coolness during the night and give it back during the day and thus act as a free cooling system. This project aims to develop a performing air-PCM heat exchanger providing latent energy storage of 0.5 kWh, this energy is deliver...

  10. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  11. SICK BUILDING SYNDROME: POSSIBLE ASSOCIATIONS WITH EXPOSURE TO MYCOTOXINS FROM INDOOR AIR FUNGI.

    Science.gov (United States)

    Introduction. Chronic human illness associated with residential or occupational buildings, commonly referred to as sick building syndrome (SBS), may be a multifactorial condition, involving in some cases volatile organic compounds, CO or CO2, pesticides, biologic agents, temperat...

  12. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    Science.gov (United States)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased

  13. HIV-1 envelope glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  14. Jacketed lamp bulb envelope

    Science.gov (United States)

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  15. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    search procedure, the combination of materials and their bonding temperature is found in relation to the envelope effect on a thermal environment inside a defined space. This allows the designer to articulate dynamic composites with time-based thermal functionality, related to the material dynamics...

  16. Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

    Directory of Open Access Journals (Sweden)

    Sargsyan Samvel Volodyaevich

    2014-09-01

    Full Text Available Fire-resistance testing laboratory for building products and constructions is a production room with a substantial excess heat (over 23 W/m . Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces. The laboratory room is considered as an object consisting of two control volumes (CV, in each of which there may be air intake and air removal, pollutant absorption or emission. In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room. General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory. Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area. In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work area. Exhaust air containing pollutants (combustion products, is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research process in a ventilated room more accurately and finding the air exchange in the lab room during the tests on a more reasonable basis, allowing to provide safe working conditions for the staff without

  17. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... the cooling need of the radiant wall compared to the active chilled beam. These conclusions are valid for multi-storey and/or highly insulated buildings (R > 5 m2.K/W). In case of single-storey building with a low level of insulation, the effectiveness of radiant terminals is lower due to the larger back...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...

  18. Indoor air quality in mechanically ventilated residential dwellings/low-rise buildings: A review of existing information

    DEFF Research Database (Denmark)

    Aganovic, Amar; Hamon, Mathieu; Kolarik, Jakub

    Mechanical ventilation has become a mandatory requirement in multiple European standards addressing indoor air quality (IAQ) and ventilation in residential dwellings (single family houses and low-rise apartment buildings). This article presents the state of the art study through a review of the e......Mechanical ventilation has become a mandatory requirement in multiple European standards addressing indoor air quality (IAQ) and ventilation in residential dwellings (single family houses and low-rise apartment buildings). This article presents the state of the art study through a review...... concentrations. The authors additionally noted that the literature frequently reported the role of improper maintenance and use on deterioration of IAQ in residential dwellings. The summarized data and comments may provide useful information for future guidelines related to ventilation strategies designed...

  19. The occurrence of fungi in the air of the monumental buildings in the city of Kraków

    Directory of Open Access Journals (Sweden)

    Ewa Mędela-Kuder

    2014-08-01

    Full Text Available Mycological examinations have been carried out in several rooms of the seven monumental architectural complexes situated in the old city of Kraków. The results of examinations have shown considerable pollution in the investigated rooms. Species, such as: Penicillium, Aspergillus and Aureobasidium, have been represented in the most numerous way. In general about thirty species of fungi have been isolated from the air and from the building dividing walls.

  20. Building-integrated agriculture: a first assessment of aerobiological air quality in rooftop greenhouses (i-RTGs)

    OpenAIRE

    Ercilla-Montserrat, Mireia

    2017-01-01

    Building-integrated rooftop greenhouse (i-RTG) agriculture has intensified in recent years, due to the growing interest in the development of new agricultural spaces and in the promotion of food self-sufficiency in urban areas. This paper provides a first assessment of the indoor dynamics of bioaerosols in an i-RTG, with the aim of evaluating biological air quality in a tomato greenhouse near Barcelona. It evaluates the greenhouse workers' exposure to airborne pollen and fungal spores in orde...

  1. Application of Absorption Systems Powered by Solar Ponds in Warm Climates for the Air Conditioning in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2016-10-01

    Full Text Available The increasing importance of a significant reduction of CO2 emissions in the atmosphere asks the scientific community to find other solutions than fossil fuels with respect to the air conditioning of indoor environments. Nowadays, a priority is represented by the energy expenses reduction, in which residential buildings report one of the highest energy consumption levels among developed countries. The application of alternative energies in residential buildings is an issue debated in the European Commission for the reduction of greenhouse gas emissions with the objective to obtain 20% of the demand from renewable sources. This paper suggests the application of the solar energy stored in solar ponds to air-condition small residential buildings, through the use of absorption machines. A feasibility analysis was carried out in some places characterized by climates that are suitable to make the solution here suggested sustainable from an energetic point of view. Buildings characterized by different boundary surface/volume ratios were examined and the energy saving, the amount of CO2 that was not emitted in the environment and the return of investments with respect to a more traditional solution were evaluated.

  2. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  3. Formaldehyde emission behavior of building materials: on-site measurements and modeling approach to predict indoor air pollution.

    Science.gov (United States)

    Bourdin, Delphine; Mocho, Pierre; Desauziers, Valérie; Plaisance, Hervé

    2014-09-15

    The purpose of this paper was to investigate formaldehyde emission behavior of building materials from on-site measurements of air phase concentration at material surface used as input data of a box model to estimate the indoor air pollution of a newly built classroom. The relevance of this approach was explored using CFD modeling. In this box model, the contribution of building materials to indoor air pollution was estimated with two parameters: the convective mass transfer coefficient in the material/air boundary layer and the on-site measurements of gas phase concentration at material surfaces. An experimental method based on an emission test chamber was developed to quantify this convective mass transfer coefficient. The on-site measurement of gas phase concentration at material surface was measured by coupling a home-made sampler to SPME. First results had shown an accurate estimation of indoor formaldehyde concentration in this classroom by using a simple box model. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Pre-paid envelopes commemorating the 2013 Open Days

    CERN Multimedia

    2013-01-01

    The post office on CERN's Prévessin site is still selling pre-paid envelopes commemorating the 2013 Open Days. Hurry while stocks last!   The special envelopes, which are valid in France for non-priority letters weighing up to 20 grams, are ideal for your Christmas and New Year correspondence. A set of ten envelopes, each featuring a different image, costs € 8.70 or 10 CHF. The post office is located in Building 866 on the Prévessin site and is open Mondays to Thursdays from 9.30 a.m. to 12.30 p.m.

  5. Final Environmental Assessment: Base-Wide Building Demolition Arnold Air Force Base, Tennessee

    Science.gov (United States)

    2006-02-01

    Building • Engine Test Facility (ETF)-B Exhauster • ETF-A Airside • ETF-A Exhauster • ETF-A Reefer • CE Facility • Rocket Storage • Von Karman Gas...Airside • ETF-A Exhauster • ETF-A Reefer • CE Facility • Rocket Storage • Von Kármán Gas Dynamics Facility (VKF) Tunnel M Control Building • VKF...A Airside, the ETF-A Exhauster, the ETF-A Reefer , the VKF Tunnel M Control Building, the PWT Test Fuel Building , and the CE Facility as they may

  6. Internal mail envelopes

    CERN Multimedia

    2003-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unusual stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  7. URGENT - Internal Mail Envelopes

    CERN Multimedia

    2007-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  8. URGENT - Internal Mail Envelopes

    CERN Multimedia

    Mail Office

    2004-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  9. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2002-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  10. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2002-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  11. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  12. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2002-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.   Mail Office

  13. INTERNAL CIRCULATION ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or a piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  14. Differences in wedge factor determination in air using a PMMA mini-phantom or a brass build-up cap.

    Science.gov (United States)

    Heukelom, S; Lanson, J H; Mijnheer, B J

    1997-12-01

    The head scatter dose contribution to the output of a treatment machine has been determined for an open and wedged 60Co gamma-ray beam and for open and wedged x-ray beams of 4, 8, and 16 MV. From those data wedge factor values "in air" have been deduced, expressed as the ratio of the dose to water, measured in air, for the situation with and without wedge, for the same number of monitor units (or treatment time for 60Co). The measurements have been performed using a polymethyl-metacrylate (PMMA) and a graphite-walled ionization chamber inserted in a brass build-up cap and in a PMMA mini-phantom, respectively. Absolute wedge factor values deduced with both detector systems and based on the ratio of ionization chamber readings, differ for the investigated photon beams, up to 3.5% for the 4 MV x-ray beam. The deviations results from the difference in composition between the detector materials and water and can be taken into account by conversion of the ionization chamber readings for both the open and wedged photon beams to the absorbed dose to water. For the brass build-up cap detector system the ratio of the conversion factors for the wedged and open beam changes the ratio of the ionization chamber readings up to about 3.6% for the 4 MV x-ray beam. For the mini-phantom the conversion factors for the wedged and open beam are almost equal for all photon beams. Consequently, for that system wedge factors based on ionization chamber readings or dose values are the same. With respect to the wedge factor variation with field size a somewhat larger increase has been determined for the 60Co and 4 MV photon beam using the brass build-up cap: about 1% for field sizes varying between 5 cm x 5 cm and 15 cm x 15 cm. This effect has to be related to an apparent more pronounced variation of the head scatter dose contribution with field size for the wedged photon beams if the brass build-up cap detection system is used. It can be concluded that determination of wedge factors "in

  15. Building physics--heat, air and moisture: fundamentals and engineering methods with examples and exercises

    National Research Council Canada - National Science Library

    Hens, Hugo S. L. C

    2007-01-01

    ... heating system. The energy crises of the seventies, persisting moisture problems, complaints about sick buildings, thermal, visual and olfactory discomfort, the move towards more sustainability, changed it all. The societal pressure to diminish energy consumptions in buildings without degrading usability acted as a trigger that activated the ...

  16. Energy reduction of building air-conditioner with phase change material in Thailand

    OpenAIRE

    Chaiyat, Nattaporn; Kiatsiriroat, Tanongkiat

    2014-01-01

    In this study, a concept of using phase change material (PCM) for improving cooling efficiency of an air-conditioner had been presented under Thai climate. Paraffin waxes melting point at around 20 °C was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. Moreover, the mathematical model of the air-conditioner with the PCM storage was developed and verified wi...

  17. Analysis Of A Neuro-Fuzzy Approach Of Air Pollution: Building A Case Study

    Directory of Open Access Journals (Sweden)

    Ciprian-Daniel NEAGU

    2001-12-01

    Full Text Available This work illustrates the necessity of an Artificial Intelligence (AI-based approach of air quality in urban and industrial areas. Some related results of Artificial Neural Networks (ANNs and Fuzzy Logic (FL for environmental data are considered: ANNs are proposed to the problem of short-term predicting of air pollutant concentrations in urban/industrial areas, with a special focus in the south-eastern Romania. The problems of designing a database about air quality in an urban/industrial area are discussed. First results confirm ANNs as an improvement of classical models and show the utility of ANNs in a well built air monitoring center.

  18. Common Exercises in Whole Building HAM Modelling

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2009-01-01

    Subtask 1 of the IEA ECBCS Annex 41 (IEA 2007) project had the purpose to advance development in modelling of integral Heat, Air and Moisture (HAM) transfer processes that take place in “whole buildings”. Such modelling considers all relevant elements of buildings: The indoor air, building envelope......, inside constructions, furnishing, systems and users. The building elements interact with each other and with the outside climate. Subtask 1 dealt with modelling principles and the arrangement and execution of so-called common exercises with the purpose to gauge how well it was possible to succeed...... in such modelling. The paper gives an overview of the Common Exercises which have been carried out in the Subtask....

  19. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  20. Using Microsoft Excel as a pre-processor for CODE V optimization of air spaces when building camera lenses

    Science.gov (United States)

    Stephenson, Dave

    2013-09-01

    When building high-performance camera lenses, it is often preferable to tailor element-to-element air spaces instead of tightening the fabrication tolerances sufficiently so that random assembly is possible. A tailored air space solution is usually unique for each serial number camera lens and results in nearly nominal performance. When these air spaces are computed based on measured radii, thickness, and refractive indices, this can put a strain on the design engineering department to deal with all the data in a timely fashion. Excel† may be used by the assembly technician as a preprocessor tool to facilitate data entry and organization, and to perform the optimization using CODE V‡ (or equivalent) without any training or experience in using lens design software. This makes it unnecessary to involve design engineering for each lens serial number, sometimes waiting in their work queue. In addition, Excel can be programmed to run CODE V in such a way that discrete shim thicknesses result. This makes it possible for each tailored air space solution to be achieved using a finite number of shims that differ in thickness by a reasonable amount. It is generally not necessary to tailor the air spaces in each lens to the micron level to achieve nearly nominal performance.

  1. A garage-building programme for the city of Vienna and resulting air quality. Related health aspects

    Energy Technology Data Exchange (ETDEWEB)

    Tvrdy, C.; Walter, R. [Inst. of Environmental Medicine of the City Council of Vienna (Austria)

    1995-12-31

    Urban traffic influences air quality in cities considerably. This is particularly true for the medieval parts of the big European cities, which have not been designed for today s heavy traffic. A problem closely associated with city traffic, is the lack of parking lots, particularly for residents. In Vienna, the parking problem is tackled by the building of underground car parks. In the next years more than 50 large garages (>100 sites) are being planned. The main goal is the clearing of the beautiful old places and streets of Vienna from the bulk of parking vehicles and supplying the citizens with parking spaces in the neighbourhood. According to a recent decision of the City Council of Vienna the construction of `large garages` (>100 parking spaces) requires an official approval by various local authorities. Among them are those responsible for town design and architecture, for fire precaution and fire fighting, for city traffic, for planning and building and for environmental health. In this context the Institute of Environmental Medicine of the City Council of Vienna faced the task of establishing criteria for a health risk assessment linked with `large garages`. Health-risks may be caused by air pollution and noise. This presentation deals with the air pollution problem. Air pollution problems may occur due to traffic in and out of the garage, by insufficient ventilation systems and by construction failures. In the garage programme the health officers have to bring evidence that residents of the houses with underground car parks and residents in the close neighbourhood are not exposed to any health risk due to air pollution

  2. Effects of diffuser airflow minima on occupant comfort, air mixing, and building energy use (RP-1515)

    DEFF Research Database (Denmark)

    Arens, Edward; Zhang, Hui; Hoyt, Tyler

    2015-01-01

    There is great energy-saving potential in reducing variable air volume box minimum airflow set-points to about 10% of maximum. Typical savings are on the order of 10%-30% of total HVAC energy, remarkable for an inexpensive controls set-point change that properly maintains outside air ventilation...

  3. Performance of envelope: an innovative energy system

    Directory of Open Access Journals (Sweden)

    Rossella Franchino

    2014-05-01

    Full Text Available In the field of applied research in construction, the constant request from the production's sector and the persisting both European (Directive 2010/31/EU and 2012/27/UE and national (Legislative Decree 63/13, LD 115/ 09, LD 28/11 normative indications require testing of technology solutions for envelope ever more efficient in terms of energy and the environment. The conversion of locally generated energy from renewable sources assumes a particularly important role in the energy balance of the building-plant system. In this respect, the paper illustrates the results of technological experimentation conducted within the SEEM (Solar Eco - efficient Envelope Model Project, funded in 2011 by the Ministry of Environment. The project involved the study of a combined system of solar and wind chimney, architecturally integrated into an envelope systems of the tertiary sector, in order to produce electricity and heat from renewable sources. The study proposes the performance analysis of the SEEM system's components, with particular attention to the thermo-physical relationship between the building and the integrated plant system.

  4. Performance of a prototype micro wind turbine in the manmade wind field from air conditioner of buildings

    Directory of Open Access Journals (Sweden)

    K. H. Goh

    2012-03-01

    Full Text Available Harnessing waste energy from the manmade air fields of buildings presents a new area of renewable energy to explore. Due to the unpredictability of the natural wind, this study is to evaluate the practicality for harnessing waste energy from the air conditioner exhaust units which are a more constant and predictable source available in the buildings. A prototype of the micro wind turbine has been designed to minimize the negative effect of the exhaust sources. After the micro wind turbine was manufactured, the performance of the turbine was tested in the selected air conditioner exhaust unit. Increasing the rotor solidity and decreasing the resistance of the generator contribute to improved starting torque and decreased generator break in torque respectively in the design. The power generation of the micro wind turbine increases with an increase of the rotor speed. The 24-hour operation of the prototype presents an observation for both exhaust performance and power generation prediction when the prototype is mounted on the exhaust unit.

  5. Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.; Napier, Bruce A.; Rishel, Jeremy P.; Bloom, Richard W.

    2011-06-22

    The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

  6. A building complex with a microclimate envelope and a photovoltaic power plant on the roof. The energy management concept of the Mont-Cenis academy at Herne-Sodingen; Mikroklimahuelle mit Solarkraftwerk. Energiekonzept fuer die Fortbildungsakademie Mont-Cenis in Herne-Sodingen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.F.O.; Pasquay, T. [Dortmund Univ. (Germany). Lehrstuhl Klimagerechte Architektur

    1999-11-01

    The article explains in depth the specific aspects of a civil engineering project of the Land North Rhine-Westfalia, which is an outstanding example of solar architecture and solar systems engineering. The new academy buildings are arranged within a glass envelope maintaining a microclimate. The roof of the envelope carries the largest photovoltaic power plant of the world ever installed on a building, with a peak output of 1 MW. The building complex exhibits a large variety of innovative engineering examples, as well as examples of energy efficiency optimization and energy conservation potentials. The computerized simulation work of the planning phase is also explained. (orig./CB) [German] Auf der ehemaligen Zeche Mont-Cenis wurde kuerzlich die neue Fortbildungsakademie des Landes Nordrhein-Westfalen eingeweiht. Zentraler Bestandteil des Komplexes ist eine glaeserne Mikroklimahuelle, in die verschiedene Gebaeude eingestellt sind. Auf dem Hallendach befindet sich das weltweit groesste dachintegrierte Solarkraftwerk mit einer Spitzenleistung von 1 MW. Um Energiebedarf und Energieproduktion des in mehrfacher Hinsicht innovativen Gebaeudes zu optimieren, wurde der Entwurfs- und Planungsprozess von Beginn an durch umfangreiche Simulationsrechnungen begleitet. (orig.)

  7. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    Science.gov (United States)

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  8. Uncertain data envelopment analysis

    CERN Document Server

    Wen, Meilin

    2014-01-01

    This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4

  9. Indoor air quality and occupant satisfaction in five mechanically and four naturally ventilated open-plan office buildings

    DEFF Research Database (Denmark)

    Hummelgarrd, John; Juhl, Peter; Sæbjörnsson, Kristian

    2005-01-01

    The indoor air quality and occupant satisfaction was studied in five mechanically ventilated and four naturally ventilated open-plan office buildings in Copenhagen, using a simplified assessment procedure. Temperature and the concentration of CO2 were monitored in 2-10 locations per office...... on the same day within that week. The study indicated that occupants in naturally ventilated offices have a lower prevalence of symptoms than those in mechanically ventilated offices. Although the room air temperature varied more and the concentration of CO2 was higher in the naturally ventilated offices...... the results showed that the occupants' satisfaction with the indoor environment was higher in naturally ventilated than in mechanically ventilated offices....

  10. Energy-efficiency impacts of an air-quality feedback device in residential buildings : an agent-based modeling assessment

    OpenAIRE

    Jensen, Thorben; Holtz, Georg; Baedeker, Carolin; Chappin, Emile

    2016-01-01

    A key factor to energy-efficiency of heating in buildings is the behavior of households, in particular how they ventilate rooms. Energy demand can be reduced by behavioral change; devices can support this by giving feedback to consumers on their behavior. One such feedback device, called the "CO2 meter", shows indoor air-quality in the colors of a traffic light to motivate so called "shock ventilation", which is energy-efficient ventilation behavior. The following effects of the "CO2 meter" a...

  11. Energy Performance Indicators in the Swedish Building Procurement Process

    Directory of Open Access Journals (Sweden)

    Ingrid Allard

    2017-10-01

    Full Text Available In Sweden, all new buildings need to comply with the National Board of Housing, Building and Planning’s requirement on specific purchased energy (kWh/m2. Accordingly, this indicator is often used to set design criteria in the building procurement process. However, when energy use is measured in finished buildings, the measurements often deviate significantly from the design calculations. The measured specific purchased energy does not necessarily reflect the responsibility of the building contractor, as it is influenced by the building operation, user behavior and climate. Therefore, Swedish building practitioners may prefer other indicators for setting design criteria in the building procurement process. The aim of this study was twofold: (i to understand the Swedish building practitioners’ perspectives and opinions on seven building energy performance indicators (envelope air leakage, U-values for different building parts, average U-value, specific heat loss, heat loss coefficient, specific net energy, and specific purchased energy; and (ii to understand the consequences for the energy performance of multi-family buildings of using the studied indicators to set criteria in the procurement process. The study involved a Delphi approach and simulations of a multi-family case study building. The studied indicators were discussed in terms of how they may meet the needs of the building practitioners when used to set building energy performance criteria in the procurement process.

  12. Cooling load calculations of radiant and all-air systems for commercial buildings

    OpenAIRE

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano; Raftery, Paul; Olesen, Bjarne W.

    2017-01-01

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are sized based on different levels of the maximum cooling demand. The authors concluded that for high thermal mass radiant system nocturnal operation was adequate for providing an acceptable thermal env...

  13. Oxidative stress associated with indoor air pollution and sick building syndrome-related symptoms among office workers in Taiwan.

    Science.gov (United States)

    Lu, Chung-Yen; Ma, Yee-Chung; Lin, Jia-Min; Li, Chung-Yi; Lin, Reuy S; Sung, Fung-Chang

    2007-01-01

    This study investigated whether sick building syndrome (SBS) complaints and indoor air pollution for office workers are associated with oxidative stress indicated by urinary 8-hydroxydeoxyguanosine (8-OHdG). With informed consent, 389 employees in 87 government offices of 8 high-rise buildings in Taipei city completed self-reported questionnaires on SBS complaints at work in the past month. Urinary 8-OHdG was determined for each study participant and on-site air pollutants were measured for each office in both indoor and outdoor air. The results showed that urinary 8-OHdG had significant associations with volatile organic compounds and carbon dioxide levels in offices, and with urinary cotinine levels. The mean urinary 8-OHdG level was also significantly higher in participants with SBS symptoms than in those without such complaints (6.16 vs. 5.45 mug/g creatinine, p = .047). The mean 8-OHdG increased as the number of SBS symptoms increased. The multivariate logistic regression analyses showed that the adjusted odds ratios (OR) in relation to micrograms per gram creatinine increase in 8-OHdG were statistically significant for eye dryness (1.12), upper respiratory syndrome (1.17) with particularly nose itching (1.25), sneezing (1.51), dry throat (1.21), skin dryness (1.31), and dizziness (1.19). This study indicates that the 8-OHdG level was significantly associated with SBS complaints after controlling for air pollution and smoking. Whether the 8-OHdG can be used as an effective predictor for SBS symptoms deserves further study.

  14. Building-integrated agriculture: A first assessment of aerobiological air quality in rooftop greenhouses (i-RTGs).

    Science.gov (United States)

    Ercilla-Montserrat, Mireia; Izquierdo, Rebeca; Belmonte, Jordina; Montero, Juan Ignacio; Muñoz, Pere; De Linares, Concepción; Rieradevall, Joan

    2017-11-15

    Building-integrated rooftop greenhouse (i-RTG) agriculture has intensified in recent years, due to the growing interest in the development of new agricultural spaces and in the promotion of food self-sufficiency in urban areas. This paper provides a first assessment of the indoor dynamics of bioaerosols in an i-RTG, with the aim of evaluating biological air quality in a tomato greenhouse near Barcelona. It evaluates the greenhouse workers' exposure to airborne pollen and fungal spores in order to prevent allergy problems associated with occupational tasks. Moreover, it evaluates whether the quality of the hot air accumulated in the i-RTG is adequate for recirculation to heat the building. Daily airborne pollen and fungal spore concentrations were measured simultaneously in the indoor and outdoor environments during the warm season. A total of 4,924pollengrains/m3 were observed in the i-RTG, with a peak of 334pollengrains/m3day, and a total of 295,038 fungal spores were observed, reaching a maximum concentration of 26,185spores/m3day. In general, the results showed that the most important source of pollen grains and fungal spores observed indoors was the outdoor environment. However, Solanaceae pollen and several fungal spore taxa, such as the allergenic Aspergillus/Penicillium, largely originated inside the greenhouses or were able to colonize the indoor environment under favourable growing conditions. Specific meteorological conditions and agricultural management tasks are related to the highest observed indoor concentrations of pollen grains and fungal spores. Therefore, preventive measures have been suggested in order to reduce or control the levels of bioaerosols indoors (to install a system to interrupt the recirculation of air to the building during critical periods or to implement appropriate air filters in ventilation air ducts). This first evaluation could help in making decisions to prevent the development of fungal diseases, specifically those due to

  15. Methods for air cleaning and protection of building occupants from airborne pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Bolashikov, Z.D.; Melikov, A.K. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Alle, building 402, 2800 Lyngby (Denmark)

    2009-07-15

    This article aims to draw the attention of the scientific community towards the elevated risks of airborne transmission of diseases and the associated risks of epidemics or pandemics. The complexity of the problem and the need for multidisciplinary research is highlighted. The airborne route of transmission, i.e. the generation of pathogen laden droplets originating in the respiratory tract of an infected individual, the survivability of the pathogens, their dispersal indoors and their transfer to a healthy person are reviewed. The advantages and the drawbacks of air dilution, filtration, ultraviolet germicidal irradiation (UVGI), photocatalytic oxidation (PCO), plasmacluster ions and other technologies for air disinfection and purification from pathogens are analyzed with respect to currently used air distribution principles. The importance of indoor air characteristics, such as temperature, relative humidity and velocity for the efficiency of each method is analyzed, taking into consideration the nature of the pathogens themselves. The applicability of the cleaning methods to the different types of total volume air distribution used at present indoors, i.e. mixing, displacement and underfloor ventilation, as well as advanced air distribution techniques (such as personalized ventilation) is discussed. (author)

  16. IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled. However, this must be done such that it has no have adverse effects...... the hygrothermal parameters, the chemical conditions, ventilation and the wellbeing of occupants. A flagship outcome of the project is anticipated to be a guidebook on design and operation of ventilation in residential buildings to achieve high IAQ with smallest possible energy consumption.......Both new and renovated existing buildings will in the future need to be optimized in such a way that can achieve to have nearly no energy use while still providing impeccable indoor climates. Since such buildings can already be assumed to be very well insulated, airtight, and to be equipped...

  17. An Innovative Reactor Technology to Improve Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC., Lexington, MA (United States)

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  18. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole

    Science.gov (United States)

    Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred

    2017-06-01

    Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.

  19. Energy reduction of building air-conditioner with phase change material in Thailand

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, a concept of using phase change material (PCM for improving cooling efficiency of an air-conditioner had been presented under Thai climate. Paraffin waxes melting point at around 20 °C was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. Moreover, the mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that the simulated data agreed quite well with the experimental result at the discrepant around 2–4%. Finally, the model was used to analyze the economic result which was found that the electrical consumption of the modified air-conditioner could be decreased 3.09 kW h/d. The electrical power consumption of the modified unit was 36.27 kW h/d at the operating time 15 h/d compared with 39.36 kW h/d of the normal unit at the operating time 12 h/d. The saving cost of the PCM bed could be 9.10% or 170.03 USD and the payback period was 4.15 y.

  20. Cooling load calculations of radiant and all-air systems for commercial buildings

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are......The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when...... they are sized based on different levels of the maximum cooling demand. The authors concluded that for high thermal mass radiant system nocturnal operation was adequate for providing an acceptable thermal environment even when the radiant system was sized based on the 50% of the maximum cooling demand. The 50......% all-air system alone was able to provide comfort if night cooling was implemented. On the other hand, radiant cooling panels (low thermal mass) should be operating during the occupancy period. When sizing a high thermal mass radiant cooling system, the effect of thermal inertia and the response time...

  1. Effects from the Reduction of Air Leakage on Energy and Durability

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Childs, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    Buildings are responsible for approximately 40% of the energy used in the US. Codes have been increasing building envelope requirements, and in particular those related to improving airtightness, in order to reduce energy consumption. The main goal of this research was to evaluate the effects from reductions in air leakage on energy loads and material durability. To this end, we focused on the airtightness and thermal resistance criteria set by the 2012 International Energy Conservation Code (IECC).

  2. Air

    Science.gov (United States)

    ... and your health: Green living Sun Water Air Health effects of air pollution How to protect yourself from air pollution Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  3. Using air-conditioning waste water and stormwater as supply management in a commercial building, case study

    Directory of Open Access Journals (Sweden)

    Celso Silva Bastos

    2013-12-01

    Full Text Available The concept of rational use as applied to water conservation consists in managing water supply and demand by trying to meet lesser quality water demands with alternative or reused water supply. This project attempts to demonstrate the application of a system that uses water drained from air conditioning system evaporators and rainwater as alternative sources. Given that each evaporator produces 4.80 liters of water per hour and considering the average use of an air conditioning system to be approximately 10 hours per day, the daily total of a single evaporator would be 48 liters. This would implicate a daily volume of 4,298 liters for the whole 137 units spread throughout the building, which in time would represent 77.72% of the daily demand of wastewater (5,53 liter/day. For the rainwater collection system, the total accumulated volume corresponds to 10% of the site area multiplied by a factor of 0.05, for a retention time of 1 hour, which will produce a total volume 14.8m³ of water. This system´s primary objective is to significantly reduce the consumption of potable water, which nowadays is used for every single activity, thus contributing to a more sustainable building and minimizing the environmental impact caused by the construction.

  4. Linear concentrating collector as an air heater in the heating system of building in Polish climatic conditions

    Directory of Open Access Journals (Sweden)

    Nemś Magdalena

    2016-01-01

    Full Text Available The article presents the analysis of the performance of a concentrating collector in the heating system of a residential building. Air was used as the working fluid. The heating requirements of the building were determined for each day of the year. The amount of direct irradiation reaching the absorber’s surface on all the days of the year was determined with the use of hourly meteorological data for Wroclaw, shared by the Ministry of Infrastructure and Growth. It was assumed that the collector is equipped with a tracking system working in one axis. Calculations and comparisons were made for the amount of solar irradiation for three values of the receiver’s inclination angle: β1=60°, β2=90° and β3=30°. Statistical method was used in order to determine the optimum inclination of the mirror and the amount of flowing air. This method involves creating a plan of experiment with three levels of changeability for two input factors. In the last stage, the amount of heat obtained from the installation during all the days of the year was analysed. The gains were juxtaposed on the diagram with the building’s heat demand. The analysis has shown that the heat requirements can be met only partially.

  5. OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    LLOYD, E.R.

    2006-11-02

    The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

  6. Operational Limitations for Demolition of a Highly Alpha-Contaminated Building – Modeled Versus Measured Air and Surface Activity Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.; Napier, Bruce A.; Lloyd, Earl R.; Mantooth, Daniel S.; Minette, Michael J.; Mattlin, Ellen M.

    2007-03-08

    The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha-emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha-contaminated building, 232-Z, included a pre-demolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Post-demolition modeling was also conducted based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of the 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimation of emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

  7. Induced Air Movement for Wide-Span Schools in Humid Asia. Educational Building Digest 9.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    Schools in the hot and humid zones of the Asian region are narrow to ensure good ventilation. The purpose of this report is to show that it is possible, through appropriate design, to obtain sufficient breeze for thermal comfort in buildings as wide as 15 meters. Some of the conclusions of a study of the subject are summarized. The summary is…

  8. Analysis of indoor air pollutants checklist using environmetric technique for health risk assessment of sick building complaint in nonindustrial workplace.

    Science.gov (United States)

    Syazwan, Ai; Rafee, B Mohd; Juahir, Hafizan; Azman, Azf; Nizar, Am; Izwyn, Z; Syahidatussyakirah, K; Muhaimin, Aa; Yunos, Ma Syafiq; Anita, Ar; Hanafiah, J Muhamad; Shaharuddin, Ms; Ibthisham, A Mohd; Hasmadi, I Mohd; Azhar, Mn Mohamad; Azizan, Hs; Zulfadhli, I; Othman, J; Rozalini, M; Kamarul, Ft

    2012-01-01

    To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial workplace setting. A cross-sectional study based on a participatory occupational health program conducted by the National Institute of Occupational Safety and Health (Malaysia) and Universiti Putra Malaysia. A modified version of the indoor environmental checklist published by the Department of Occupational Health and Safety, based on the literature and discussion with occupational health and safety professionals, was used in the evaluation process. Summated scores were given according to the cluster analysis and principal component analysis in the characterization of risk. Environmetric techniques was used to classify the risk of variables in the checklist. Identification of the possible source of item pollutants was also evaluated from a semiquantitative approach. Hierarchical agglomerative cluster analysis resulted in the grouping of factorial components into three clusters (high complaint, moderate-high complaint, moderate complaint), which were further analyzed by discriminant analysis. From this, 15 major variables that influence indoor air quality were determined. Principal component analysis of each cluster revealed that the main factors influencing the high complaint group were fungal-related problems, chemical indoor dispersion, detergent, renovation, thermal comfort, and location of fresh air intake. The moderate-high complaint group showed significant high loading on ventilation, air filters, and smoking-related activities. The moderate complaint group showed high loading on dampness, odor, and thermal comfort. This semiquantitative assessment, which graded risk from low to high based on the intensity of the problem, shows promising and reliable results. It should be used as an important tool in the preliminary assessment of indoor air quality and as a categorizing method for further IAQ

  9. Final Environmental Assessment For Proposed Family Campground Expansion Maxwell Air Force Base, Montgomery County, Alabama

    Science.gov (United States)

    2013-03-27

    Leadership in Energy and Environmental Design ( LEED ) Energy and Atmosphere (EA-1), and other current policies and directives on energy and water conservation...the continuous air barrier design and construction and guidelines on sealing air leakage pathways in buildings undergoing renovation are provided...Thermograph tests. Remediation guidance is listed at Tab 14. 4.7.3. Garrisons will ensure contract specifications address proper envelope sealing and that

  10. Danish building typologies

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    The objective of TABULA is to develop a harmonised building typology for European countries. Each national building typology will consist of a set of residential model buildings with characteristic energy-related properties (element areas of the thermal building envelope, U-values, supply system...... efficiencies). The model buildings will each represent a specific construction period of the country in question and a specific building size. Furthermore the number of buildings, flats and the overall floor areas will be given, which are represented by the different building types of the national typologies....

  11. Thermal Responsive Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    alterations, their respective durability and copper’s architectural (visual and transformative) aesthetic qualities. Through the use of an evolutionary solver, the composite structure of the elements are organised to find the bending behaviour specified by and for the thermal environments. The entire model......The paper presents an architectural computational method and model, which, through additive and subtractive processes, create composite elements with bending behaviour based on thermal variations in the surrounding climatic environment. The present effort is focused on the manipulation of assembly...... composite layers and their relative layer lengths thereby embedding the merged material effect to create a responsive behavioural architectural envelope. Copper and polypropylene are used as base materials for the composite structure due to their high differences in thermal expansion, surface emissivity...

  12. Methods for air cleaning and protection of building occupants from airborne pathogens

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor

    2009-01-01

    of transmission, i.e. the generation of pathogen laden droplets originating in the respiratory tract of an infected individual, the survivability of the pathogens, their dispersal indoors and their transfer to a healthy person are reviewed. The advantages and the drawbacks of air dilution, filtration, ultraviolet...

  13. Building Combat Strength through Logistics: Translating the New Air Force Logistics Concept of Operations into Action

    Science.gov (United States)

    1988-03-31

    Monica, California, in May 87 to define an Air Force game plan for implementing CLOUT. (11:9-15) This effort was later superceded by the AFLOGCON...LOGISTS - - P/60 SYSTEM ADtMINLOGISflCS /Go.. READINESS I ADAM III If CENTER L ---- - - - -. THEATER MOBa Name, WTrU SBSS RE7TAIL WrA"i,0 SATELLITE USERS

  14. Design Build Delivery and the Air Forces’ Application of the Concept

    Science.gov (United States)

    1990-12-01

    less familiar, things usually do not run as well ( Hellriegel 1989). The change may be viewed as a threat to power. This is very applicable to design...to Military Construction Program Projects, Department of the Air Force. AFT, Wright Patterson AFB, Ohio, September 1989. 23. Hellriegel , Don and Slocum

  15. Development and application of an integrated indoor air quality audit to an international hotel building in Taiwan.

    Science.gov (United States)

    Kuo, Nae-Wen; Chiang, Hsin-Chen; Chiang, Che-Ming

    2008-12-01

    Indoor air quality (IAQ) has begun to surface as an important issue that affects the comfort and health of people; however, there is little research concerned about the IAQ monitoring of hotels up to now. Hotels are designed to provide comfortable spaces for guests. However, most complaints related to uncomfortable thermal environment and inadequate indoor air quality appear. In addition, microbial pollution can affect the health of tourists such as the Legionnaire's disease and SARS problems. This study is aimed to establish the comprehensive IAQ audit approach for hotel buildings with portable equipment, and one five-star international hotel in Taiwan was selected to exam this integrated approach. Finally, four major problems are identified after the comprehensive IAQ audit. They are: (1) low room temperature (21.8 degrees C), (2) insufficient air exchange rate (0.02 ppm), and (4) the microbial pollution (total bacteria: 2,624-3,799 CFU/m(3)). The high level of formaldehyde may be due to the emission from the detergent and cleaning agents used for housekeeping.

  16. Anisotropic charged core envelope star

    Science.gov (United States)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  17. Computing The No-Escape Envelope Of A Short-Range Missile

    Science.gov (United States)

    Neuman, Frank

    1991-01-01

    Method for computing no-escape envelope of short-range air-to-air missile devised. Useful for analysis of both strategies for avoidance and strategies for attack. With modifications, also useful in analysis of control strategies for one-on-one air-to-air combat, or wherever multiple control strategies considered.

  18. Definition and means of maintaining the effluent stack monitors portion of the PFP safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.J.

    1997-01-21

    The Effluent Stack Monitors ensure that the release of alpha emitting radionuclides to the environment via the building exhaust stacks is continuously monitored and alarms are initiated if the release exceeds identified limits. This document defines the safety envelope for the Effluent Stack Monitors and identifies the operability requirements, components, and procedures which ensure this safety envelope is maintained.

  19. Final Environmental Assessment: Replacement Joint Force Headquarters Building, Hanscom Air Force Base Massachusetts

    Science.gov (United States)

    2010-01-22

    Headquarters U.S. Air Force 22 January 2010 iv PSD Prevention of Significant Deterioration RFTA Reserve Forces Training Area SAPs Satellite ...including adhesives, sealants, greases, waste paint and thinners, solvents, and corrosive cleaning compounds, are accumulated at satellite ...Chang. clarinet. grade ll edo Chang. trombone. e10 1el Davidow. French hom. ell stey. French hom. grade es Gorry. flute. grade 12 Andrew Goulet

  20. Building the Future Air Force: Analysis of Platform versus Weapon Development

    Science.gov (United States)

    2016-05-26

    priorities toward smaller conflicts prompted considerable debate about how best to cope with these wars … In the Air Force, many believed that existing...with an increasingly unpopular war.”163 Unfortunately, there was “no answer to the problem of interdiction against Marxist- style guerillas” throughout...focused on disabling the enemy forces through nuclear attack, and as such, the focus on training was geared towards nuclear attack. The platforms

  1. Healthy Buildings?

    Science.gov (United States)

    Grubb, Deborah

    Health problems related to school buildings can be categorized in five major areas: sick-building syndrome; health-threatening building materials; environmental hazards such as radon gas and asbestos; lead poisoning; and poor indoor air quality due to smoke, chemicals, and other pollutants. This paper provides an overview of these areas,…

  2. AM Envelope : The Potential of Additive Manufacturing for facade constructions

    NARCIS (Netherlands)

    Strauss, H.

    2013-01-01

    The continuous development of the building envelope over the past hundred years can be exemplified by a few ground-breaking inventions. Firstly, the separation of primary and secondary structure during the beginning of the 20th century; by implementing a curtain wall façade to physically separate

  3. Classification of buildings mold threat using electronic nose

    Science.gov (United States)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  4. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  5. Analysis of indoor air pollutants checklist using environmetric technique for health risk assessment of sick building complaint in nonindustrial workplace

    Directory of Open Access Journals (Sweden)

    Syazwan AI

    2012-09-01

    Full Text Available AI Syazwan,1 B Mohd Rafee,1 Hafizan Juahir,2 AZF Azman,1 AM Nizar,3 Z Izwyn,4 K Syahidatussyakirah,1 AA Muhaimin,5 MA Syafiq Yunos,6 AR Anita,1 J Muhamad Hanafiah,1 MS Shaharuddin,7 A Mohd Ibthisham,8 I Mohd Hasmadi,9 MN Mohamad Azhar,1 HS Azizan,1 I Zulfadhli,10 J Othman,11 M Rozalini,12 FT Kamarul131Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 2Department of Environmental Science/ Environmental Forensics Research Center (ENFORCE, Universiti Putra Malaysia, Selangor, 3Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, 4Department of Therapy and Rehabilitation, Faculty of Health Science and Biomedical Engineering, Universiti Teknologi Malaysia, Johor, 5Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, Selangor, 6Plant Assessment Technology (PAT, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 7Department of Environmental and Occupational Health Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 8Department of Mechanical Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, 9Department of Forest Production, Faculty of Forestry, Universiti Putra Malaysia, Selangor, 10Faculty of Built Environment and Architect, Universiti Teknologi Malaysia, Johor, 11Department of Counselor Education and Psychology Counseling, Faculty of Educational Studies, Universiti Putra Malaysia, Selangor, 12Occupational Safety, Health and Environment Unit, Multimedia University, Jalan Multimedia 63100 Cyberjaya, Selangor, 13ERALAB SDN. BHD. (Environmental Research and Analytical Laboratory Sdn. Bhd., Selangor, MALAYSIAPurpose: To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial

  6. The Correlation of Radon Concentration with Various Building Attributes at U.S. Air Force Bases

    Science.gov (United States)

    1992-08-01

    these daughter products that continue to decay giving off radiation which can then lead to the development of lung cancer . The United States Air Force...USAF) is concerned about the increased risk of developing lung cancer by persons exposed to elevated levels of radon in their domiciles and in their...CONOM 0 S * 0 0 a N&NO.)C Nowfum - a w em C mec0- C Mama - 00 4.4 .Q0 0 40 VO O 02ýCt > a MW 0 5 O 0 500 0 ’-ONM > Co S- -W N 00l 0 N 0 O--0 CPe go - Na Wm

  7. Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

    Directory of Open Access Journals (Sweden)

    Musbah Mohamed H.

    2014-01-01

    Full Text Available The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar energy fraction were calculated by varying two major parameters (collector’s slope angle and collector area. The maximum solar fraction of 48% was obtained by means of 1400 m2 of collector surface area. Analysis of results showed that, besides the collector surface area, the main factors affecting the solar fraction were the local weather conditions (intensity of incident solar radiation and the time of day when the plant was operated.

  8. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    Science.gov (United States)

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  9. Building a QC Database of Meteorological Data from NASA KSC and the United States Air Force's Eastern Range

    Science.gov (United States)

    Brenton, J. C.; Barbre, R. E.; Decker, R. K.; Orcutt, J. M.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) provides atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large datasets consists of ensuring erroneous data are removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, development methodologies, and periods of record. The goal of this activity is to use the previous efforts to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, It is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.

  10. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  11. Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas

    Directory of Open Access Journals (Sweden)

    Elisa Pennacchia

    2016-06-01

    Full Text Available Building energy efficiency and urban waste management are two focal issues for improving environmental status and reducing greenhouse gas emissions. The main aim of this paper is to compare economic costs of new building envelope structures designed by authors reusing and upcycling municipal waste in order to decrease energy demand from the building sector and, at the same time, improve eco-friendly waste management at the local scale. The reuse of waste for building envelope structures is one of the main principles of the Earthship buildings model, based on the use of passive solar principles in autonomous earth-sheltered homes. This Earthship principle has been analyzed in order to optimize buildings’ energy performance and reuse municipal waste for new building envelope structures in urban areas. Indeed, the elaborated structures have been designed for urban contexts, with the aim of reuse waste coming from surrounding landfills. The methods include an analysis of thermal performance of urban waste for designing new building envelope structures realized by assembling waste and isolating materials not foreseen in Earthship buildings. The reused materials are: cardboard tubes, automobile tires, wood pallets, and plastic and glass bottles. Finally, comparing economic costs of these new building envelope structures, the obtained results highlight their economic feasibility compared to a traditional structure with similar thermal transmittance.

  12. Case Study of Envelope Sealing in Existing Multiunit Structures

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Conlin, Francis [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States)

    2012-10-01

    This report describes envelope air sealing that was included in the retrofit of a 244 unit low-rise multifamily housing complex in Durham, N.C. On average, total leakage was reduced by nearly half, from 19.7 ACH50 to 9.4 ACH50. Important air leakage locations identified included plumbing and electrical penetrations, dropped ceilings/soffits, windows, ducts and wall-to-floor intersections. Specifications and a pictorial guide were developed for contractors performing the work.

  13. Building-related health symptoms and classroom indoor air quality: a survey of school teachers in New York State.

    Science.gov (United States)

    Kielb, C; Lin, S; Muscatiello, N; Hord, W; Rogers-Harrington, J; Healy, J

    2015-08-01

    Most previous research on indoor environments and health has studied school children or occupants in non-school settings. This investigation assessed building-related health symptoms and classroom characteristics via telephone survey of New York State school teachers. Participants were asked about 14 building-related symptoms and 23 classroom characteristics potentially related to poor indoor air quality (IAQ). Poisson regression analysis was used to assess the relationship between these symptoms and each classroom characteristic, controlling for potential confounders. About 500 teachers completed the survey. The most frequently reported classroom characteristics included open shelving (70.7%), food eaten in class (65.5%), dust (59.1%), and carpeting (46.9%). The most commonly reported symptoms included sinus problems (16.8%), headache (15.0%), allergies/congestion (14.8%), and throat irritation (14.6%). Experiencing one or more symptoms was associated most strongly with reported dust (relative risk (RR) = 3.67; 95% confidence interval (CI): 2.62-5.13), dust reservoirs (RR = 2.13; 95% CI: 1.72-2.65), paint odors (RR = 1.73; 95% CI: 1.40-2.13), mold (RR = 1.71; 95% CI: 1.39-2.11), and moldy odors (RR = 1.65 95% CI: 1.30-2.10). Stronger associations were found with increasing numbers of reported IAQ-related classroom characteristics. Similar results were found with having any building-related allergic/respiratory symptom. This research adds to the body of evidence underscoring the importance to occupant health of school IAQ. Teachers play an important role in educating children, and teacher well-being is important to this role. Health symptoms among New York teachers while at work are common and appear to be associated with numerous characteristics related to poor classroom IAQ. Improving school Indoor Air Quality may reduce sickness and absenteeism and improve teacher performance. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The LHC on an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  15. The LHC in an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  16. Algae façade as green building method: application of algae as a method to meet the green building regulation

    Science.gov (United States)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  17. Multifamily Envelope Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Faakye, O. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Griffiths, D. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  18. UNSUSTAINABLE BUILDING FAÇADES AND FASHIONS IN SURABAYA

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2006-01-01

    Full Text Available In the past ten years, there have been intense developments in the application of energy savings in buildings and high technology glass invented in all over the regions of the world. The complexity of curtain-glass used in buildings is always crucial related to energy savings and climatic nature in every region of the world. More specifically this paper will observe the direct and global solar radiation behaviours that have impacts on building envelopes in every orientation, horizontal and slope surfaces. Because of the limited data of the solar radiation behaviours in every region in Indonesia, public (building or residence owners and solar hot water supplier actually do not know the accurate orientations and tilt angles for gaining maximum solar heat radiation. Moreover, the local or foreign building consultants often act in different ways for designing building façades-mostly by applying curtain-glasses instead of curtain-walls on the building without concerning the tropical hot humid climate of Surabaya. This paper will try to give an outline of the failures of the curtain-glass building facades built and some post-modern buildings outlook in fashions which cause energy wasting. Obviously, the sustainability of the curtain-glass building is wasting energy in term of applying air condition buildings in Surabaya.

  19. Performance Study of a Novel Solar Solid Dehumidification/Regeneration Bed for Use in Buildings Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Wansheng Yang

    2017-09-01

    Full Text Available In this paper, a novel solar solid dehumidification/regeneration bed has been proposed, and its three regeneration methods, i.e., simulated solar radiation regeneration, microwave regeneration, and combined regeneration of the microwave and simulated solar radiation, were experimentally investigated and compared, as well as the dehumidification performance. The degree of regeneration of the proposed system under the regeneration method combining both microwave irradiation and simulated solar radiation could reach 77.7%, which was 3.77 times higher than that of the system under the simulated solar regeneration method and 1.05 times higher than that of the system under the microwave regeneration. The maximum energy efficiency of the proposed system under the combined regeneration method was 21.7%, while it was only 19.4% for the system under microwave regeneration. All these proved that the combined regeneration method of the simulated solar and microwave radiation not only improved the regeneration efficiency of the system, but also enhanced the energy efficiency. For the dehumidification performance, the maximum transient moisture removal was 14.1 g/kg, the maximum dehumidification efficiency was 68.0% and the maximum speed of dehumidification was 0.294 g/(kg·s when the inlet air temperature was at 26.09 °C and the air relative humidity was at 89.23%. By comparing the testing results with the semi-empirical results from the Page model, it was indicated that the Page model can predict the regeneration characteristics of the novel solar solid dehumidification/regeneration bed under the combined method of microwave and simulated solar regeneration. The results of this research should prove useful to researchers and engineers to exploit the potential of solar technologies in buildings worldwide.

  20. Inventory of the French data about the air quality inside buildings; Inventaire des donnees francaises sur la qualite de l'air a l'interieur des batiments

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueron, L.; Nedellec, V.

    2001-12-01

    In the framework of the implementation of the French observatory for the indoor air quality (OQAI), the Vincent Nedellec consulting office (VNC) has carried out an inventory study of the French data relative to the air quality inside buildings on request of the building scientific and technical center (CSTB). Only data relative to dwellings, office and school buildings are considered. The pollutants considered in this study are: nitrogen dioxide (NO{sub 2}), inert particulates, carbon monoxide (CO), volatile organic compounds (VOCs: benzene, glycol ethers, formaldehyde), bacteria, legionella, fungi, moulds, animal allergens, radon, asbestos and artificial mineral fibers, lead, biocides. The objective is to identify the available French data, to collect them and to analyze their validity, in particular in terms of methodology, representativeness and extrapolation. Data are presented separately for each pollutant. (J.S.)

  1. AM Envelope. The potential of Additive Manufacturing for facade constructions

    Directory of Open Access Journals (Sweden)

    Holger Strauss

    2017-11-01

    Full Text Available This dissertation shows the potential of Additive Manufacturing (AM for the development of building envelopes: AM will change the way of designing facades, how we engineer and produce them. To achieve today’s demands from those future envelopes, we have to find new solutions. New technologies offer one possible way to do so. They open new approaches in designing, producing and processing building construction and facades. Finding the one capable of having big impact is difficult – Additive Manufacturing is one possible answer. The term ‘AM Envelope’ (Additive Manufacturing Envelope describes the transfer of this technology to the building envelope. Additive Fabrication is a building block that aids in developing the building envelope from a mere space enclosure to a dynamic building envelope. First beginnings of AM facade construction show up when dealing with relevant aspects like material consumption, mounting or part’s performance. From those starting points several parts of an existing post-and-beam façade system were optimized, aiming toward the implementation of AM into the production chain. Enhancements on all different levels of production were achieved: storing, producing, mounting and performance. AM offers the opportunity to manufacture facades ‘just in time’. It is no longer necessary to store or produce large numbers of parts in advance. Initial investment for tooling can be avoided, as design improvements can be realized within the dataset of the AM part. AM is based on ‘tool-less’ production, all parts can be further developed with every new generation. Producing tool-less also allows for new shapes and functional parts in small batch sizes – down to batch size one. The parts performance can be re-interpreted based on the demands within the system, not based on the limitations of conventional manufacturing. AM offers new ways of materializing the physical part around its function. It leads toward customized

  2. AM Envelope. The potential of Additive Manufacturing for facade constructions

    Directory of Open Access Journals (Sweden)

    Holger Strauss

    2013-02-01

    Full Text Available This dissertation shows the potential of Additive Manufacturing (AM for the development of building envelopes: AM will change the way of designing facades, how we engineer and produce them. To achieve today’s demands from those future envelopes, we have to find new solutions.New technologies offer one possible way to do so. They open new approaches in designing, producing and processing building construction and facades. Finding the one capable of having big impact is difficult – Additive Manufacturing is one possible answer.The term ‘AM Envelope’ (Additive Manufacturing Envelope describes the transfer of this technology to the building envelope. Additive Fabrication is a building block that aids in developing the building envelope from a mere space enclosure to a dynamic building envelope.First beginnings of AM facade construction show up when dealing with relevant aspects like material consumption, mounting or part’s performance.From those starting points several parts of an existing post-and-beam façade system were optimized, aiming toward the implementation of AM into the production chain. Enhancements on all different levels of production were achieved: storing, producing, mounting and performance.AM offers the opportunity to manufacture facades ‘just in time’. It is no longer necessary to store or produce large numbers of parts in advance. Initial investment for tooling can be avoided, as design improvements can be realized within the dataset of the AM part. AM is based on ‘tool-less’ production, all parts can be further developed with every new generation.Producing tool-less also allows for new shapes and functional parts in small batch sizes – down to batch size one. The parts performance can be re-interpreted based on the demands within the system, not based on the limitations of conventional manufacturing. AM offers new ways of materializing the physical part around its function. It leads toward customized and

  3. Analytical simplified model to establish the annual impact of thermal isolated in buildings; Um moledo analitico simplificado para establecer o impacto anual do aumento do isolamento termico da envolvente dos edificios

    Energy Technology Data Exchange (ETDEWEB)

    Chvatal, K. M. S.; Maldonado, E. A. B.; Corvacho, M. H. P.

    2004-07-01

    There is a tendency for prescribing more and more severe restrictions for the building envelope insulation in the European legislations. However, in certain situations, insulation will cause a rise in the internal temperature which in turn may lead to the need of air conditioning installations that would not be necessary with less insulation. This work presents the methodology adopted to establish the impact of the increase of the insulation of the building envelope upon the thermal performance and the annual energy consumption in buildings, as well as the results that have been obtained. The results show that, in order to obtain a positive effect of the increase of the envelope insulation in summer, it is necessary to closely control solar and internal heat gains. Finally, a simple analytical model that can properly represent the situation without performing simulations is described. (Author)

  4. Solar thermal energy / exhaust air heat pump / wood pellet furnace for a sustainable heat supply of low energy buildings in older buildings; Solarthermie / Abluft-Waermepumpe / Pelletofen. Kombisysteme zur nachhaltigen Waermeversorgung von Niedrigenergiehaeusern im Gebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, Nikolaus; Born, Rolf [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany); Staerz, Norbert [Ingenieurbuero inPlan, Pfungstadt (Germany)

    2009-11-13

    The research project under consideration reports on combination systems for a sustainable heat supply for low-energy buildings in older building. For this, a central and decentralized system configuration consisting of solar thermal energy, exhaust air heat pump and wood pellet furnace are presented. Solutions for an interaction of these three heat suppliers in one plant are designated regarding the control strategy. The fundamentals of the computerized simulations for the central and decentralized system are presented. A cost estimate with both variants of the combination system as well as a comparison with conventional energy-saving heat supply systems follow.

  5. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers.

    Science.gov (United States)

    Stanley, Nicholas J; Kuehn, Thomas H; Kim, Seung Won; Raynor, Peter C; Anantharaman, Senthilvelan; Ramakrishnan, M A; Goyal, Sagar M

    2008-04-01

    Background culturable bacteria aerosols were collected and identified in two large public buildings located in Minneapolis, Minnesota and Seattle, Washington over a period of 5 months and 3 months, respectively. The installed particulate air filters in the ventilation systems were used as the aerosol sampling devices at each location. Both pre and final filters were collected from four air handing units at each site to determine the influence of location within the building, time of year, geographical location and difference between indoor and outdoor air. Sections of each loaded filter were eluted with 10 ml of phosphate buffered saline (PBS). The resulting solutions were cultured on blood agar plates and incubated for 24 h at 36 degrees C. Various types of growth media were then used for subculturing, followed by categorization using a BioLog MicroStation (Biolog, Hayward, CA, USA) and manual observation. Environmental parameters were gathered near each filter by the embedded on-site environmental monitoring systems to determine the effect of temperature, humidity and air flow. Thirty nine different species of bacteria were identified, 17 found only in Minneapolis and 5 only in Seattle. The hardy spore-forming genus Bacillus was the most commonly identified and showed the highest concentrations. A significant decrease in the number of species and their concentration occurred in the Minneapolis air handling unit supplying 100% outdoor air in winter, however no significant correlations between bacteria concentration and environmental parameters were found.

  6. Groupwise Dimension Reduction via Envelope Method.

    Science.gov (United States)

    Guo, Zifang; Li, Lexin; Lu, Wenbin; Li, Bing

    2015-12-01

    The family of sufficient dimension reduction (SDR) methods that produce informative combinations of predictors, or indices, are particularly useful for high dimensional regression analysis. In many such analyses, it becomes increasingly common that there is available a priori subject knowledge of the predictors; e.g., they belong to different groups. While many recent SDR proposals have greatly expanded the scope of the methods' applicability, how to effectively incorporate the prior predictor structure information remains a challenge. In this article, we aim at dimension reduction that recovers full regression information while preserving the predictor group structure. Built upon a new concept of the direct sum envelope, we introduce a systematic way to incorporate the group information in most existing SDR estimators. As a result, the reduction outcomes are much easier to interpret. Moreover, the envelope method provides a principled way to build a variety of prior structures into dimension reduction analysis. Both simulations and real data analysis demonstrate the competent numerical performance of the new method.

  7. A cost-effective method for simulating city-wide air flow and pollutant dispersion at building resolving scale

    Science.gov (United States)

    Berchet, Antoine; Zink, Katrin; Muller, Clive; Oettl, Dietmar; Brunner, Juerg; Emmenegger, Lukas; Brunner, Dominik

    2017-06-01

    A cost-effective method is presented allowing to simulate the air flow and pollutant dispersion in a whole city over multiple years at the building-resolving scale with hourly time resolution. This combination of high resolution and long time span is critically needed for epidemiological studies and for air pollution control, but still poses a great challenge for current state-of-the-art modelling techniques. The presented method relies on the pre-computation of a discrete set of possible weather situations and corresponding steady-state flow and dispersion patterns. The most suitable situation for any given hour is then selected by matching the simulated wind patterns to meteorological observations in and around the city. The catalogue of pre-computed situations corresponds to different large-scale forcings in terms of wind speed, wind direction and stability. A meteorological model converts these forcings into realistic mesoscale flow patterns accounting for the effects of topography and land-use contrasts in a domain covering the city and its surroundings. These mesoscale patterns serve as boundary conditions for a microscale urban flow model which finally drives a Lagrangian air pollutant dispersion model. The method is demonstrated with the modelling system GRAMM/GRAL v14.8 for two Swiss cities in complex terrain, Zurich and Lausanne. The mesoscale flow patterns in the two regions of interest, dominated by land-lake breezes and driven by the partly steep topography, are well reproduced in the simulations matched to in situ observations. In particular, the combination of wind measurements at different locations around the city appeared to be a robust approach to deduce the stability class for the boundary layer within the city. This information is critical for predicting the temporal variability of pollution concentration within the city, regarding their relationship with the intensity of horizontal and vertical dispersion and of turbulence. In the vicinity of

  8. Parasitic Events in Envelope Analysis

    Directory of Open Access Journals (Sweden)

    J. Doubek

    2001-01-01

    Full Text Available Envelope analysis allows fast fault location of individual gearboxes and parts of bearings by repetition frequency determination of the mechanical catch of an amplitude-modulated signal. Systematic faults arise when using envelope analysis on a signal with strong changes. The source of these events is the range of function definition of used in convolution integral definition. This integral is used for Hilbert image calculation of analyzed signal. Overshoots (almost similar to Gibbs events on a synthetic signal using the Fourier series are result from these faults. Overshoots are caused by parasitic spectral lines in the frequency domain, which can produce faulty diagnostic analysis.This paper describes systematic arising during faults rising by signal numerical calculation using envelope analysis with Hilbert transform. It goes on to offer a mathematical analysis of these systematic faults.

  9. Establishment of potentials for building energy efficiency improvement by thermo graphic snap shooting

    Directory of Open Access Journals (Sweden)

    Jovanović-Popović Milica

    2006-01-01

    Full Text Available Thermo graphic snap shooting of buildings as a method of detecting building envelope heat losses is a rather new method. By thermo graphic camera snapshots it is possible to detect elements of building envelope without thermal insulation or with a poor thermal insulation as well as crakes around windows or in the construction which cause high heat losses. Once, when the causes of thermal losses are detected, it is possible, through the process of reconstruction or refurbishment, to improve thermal characteristics of the buildings. Usually, thermal insulation is added on the facade, windows are changed with new once with better thermal performances and better air tightness, second or third glass pane is added, metal constructions with thermal bridges are removed... Thermo graphic snapshots analyze also enables architects to avoid mistakes in designing new buildings. Several buildings in New Belgrade were photographed with thermal vision camera and the analyze of snapshots is presented In the paper. The chosen buildings, as representatives of specific construction method, were built in the period from 1950. to 1960., when according to the regulations, application of the thermal insulation was not obligatory. As more than 25% of buildings in Belgrade were built in that period, those buildings represent a great potential for energy saving through the process of refurbishment.

  10. Isolation and Identification of Air Borne Fungal Spores and Fragments in Buildings within Usmanu Danfodiyo University Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Shinkafi Sa’adatu Aliyu

    2014-07-01

    Full Text Available Abstract - Indoor air contains a complex mixture of microorganisms, microorganism fragments, and by products such as molds, bacteria, endotoxins, mycotoxins, and volatile microbial organic compounds. Airborne fungi and bacteria can be toxic, allergenic and/or infectious. A research was conducted to determine the number and types of airborne fungal spores in Buildings of Usmanu Danfodiyo University Sokoto, Nigeria. Five (5 areas were chosen within the University for the Survey, these were student Hostel, Staff Quarters, Botanical garden, Microbiology laboratory and city campus of Usmanu Danfodiyo University. . A total number of fifteen (15 petri dishes containing potato dextrose agar each were vertically placed in each sampler and exposed at end of each height and site for 10 and 20 minutes respectively.  A total of thirteen (13 different fungal specie were identified namely; Aspergillus niger, A. flavus, A fumigates, A. ustus, A. terreus, Fusarium solani, F. oxysporum, Alterneria altenata, Rhizopus oryzae,  R. stolonifer, Helminthosporum sp., Penicillum candidum and Absedia corymbifera. Aspergillus niger had the highest frequency of occurrence of (14.9%, Helminthosporus species had the least frequency of occurrence of (1.5%. Conclusively it was observed that the concentration of fungal spores was high in the upper surface than the ground level at the time of the survey.

  11. Physical Quality of Air and Sick Building Syndrome in Office Employees of “X” Company in Jakarta

    Directory of Open Access Journals (Sweden)

    Rama Putra Effendi

    2014-08-01

    Full Text Available Physical symptoms had led to the suggestion that a disease called Sick Building Syndrome (SBS occured to the office of “X” Company in the city of Jakarta. This research that used a random sampling technique examined the physical air quality of the “X” Company, such as indoor temperature and humidity aspects, the SBS cases of 90 workers. Research results on the Company “X” office workers showed that, (1 47.8% workers had cases of SBS; and, (2 a value of 0.714 was acquired from the result of bivariate analysis using Chi square statistics program with p value of 0.325 and RP of 95 percent. This signifies that there were no relations between indoor temperature and humidity with the SBS cases of the Company “X” workers in Jakarta City. Possibilities of other factors were found to trigger the SBS symptoms such as chemical and microbiological factors (from work tools and facilities, and psychosocial factor (from the workers themselves

  12. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-09

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore the small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.

  13. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. A Numerical Study on the Impact of Wind Gust Frequency on Air Exchanges in Buildings with Variable External and Internal Leakages

    Directory of Open Access Journals (Sweden)

    Dimitrios Kraniotis

    2014-03-01

    Full Text Available Wind-driven air infiltration has been recognized among the major reasons for energy loss in buildings, and the impact to energy efficiency under steady conditions has been reported and issued as part of many building codes. The nearly zero-energy building demand makes uncontrolled leakage paths even more undesired and creates the need for further investigation of their behavior under unsteady wind conditions. The present numerical study examines the role of wind gustiness on instantaneous infiltration rates of a low-rise building. For this purpose, two levels of gust frequency Ω have been simulated, expressed as a sinusoidal factor in the wind profile formula. In parallel, a ratio α is employed to represent seven different cases of external leakages distribution, while five scenarios of compartmentalization and internal leakages shows the impact of the latter on the dynamics of building air exchange rates. The results indicate that higher wind gustiness results in higher ACH, marking out gusts as a potential critical factor under unsteady climate conditions. The infiltration rates shown in relation to the leakage distribution ratio α provide arguments for the importance of the detailed detection of external leakages while the comparison of the different internal-volume-scenario highlights the key-role of internal leakages control towards a drastic reduction of infiltration rates.

  15. Air condensation thermo-pumps for residential and small commercial buildings; Les thermopompes a condensation par air dans le residentiel et le petit tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Carteret, P. [Societe Airwell, (France)

    1997-12-31

    The advantages of recent air conditioning systems in terms of temperature control, air quality, air renewal, humidity control, air distribution, acoustic comfort, flexibility, are reviewed and some aspects concerning the evolution of the market in France are discussed (steady growth of the AC residential market). The different types of air conditioning systems are presented (direct expansion with the split-system, and cool water system); the characteristics, advantages and investment/operation costs of split-system and multi-splits thermo-pumps and hot water / cooled water production central units are described

  16. Handbook on data envelopment analysis

    CERN Document Server

    Cooper, William W; Zhu, Joe

    2011-01-01

    Focusing on extensively used Data Envelopment Analysis topics, this volume aims to both describe the state of the field and extend the frontier of DEA research. New chapters include DEA models for DMUs, network DEA, models for supply chain operations and applications, and new developments.

  17. Integrating Environmentally Responsive Elements in Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Andresen, Inger; Perino, Marco

    2006-01-01

    Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie...... with technologies that promote the integration of responsive building elements and building services in integrated building concepts. In order to address some of these issues an international research effort, IEA-ECBCS Annex 44 has been initiated. The paper especially presents the annex activities regarding...

  18. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  19. Experiences when employing different alternatives for envelope upgrading

    Directory of Open Access Journals (Sweden)

    Peru Elguezabal Esnarrizaga

    2015-06-01

    Full Text Available The challenges of achieving the 2020 goals in terms of energy savings and improving efficiency are guiding numerous research initiatives looking for more insulated envelopes, dealing with thermal performance of insulation materials and envelope systems. Nevertheless, the envelope integrates within the building and this improvement on the insulation performance has to be properly adopted, taking into account the interrelation of main elements composing the overall system (facade, frame, slabs, openings, partitions etc., as well as side effects originated not only for new erected buildings, but specifically in renovation and retrofitting works. This paper describes real experiences when considering various options for upgrading the facade through the increase of the insulation capacity, starting from external overcladding prefabricated panels and ventilated facades, advancing to more sustainable low carbon systems and ending with even more highly insulated solutions employing aerogels. Lessons from these cases, where energy and hygrothermal assessments have being carried out, demonstrate the influence of the design and construction phases and the relevance of disregarded effects such as minor thermal bridges, uncontrolled craftsmanship on site, and moisture transfer for the different technologies considered. Finally, possible alternatives are provided to overcome some of the detected difficulties, such as combination with non-metallic structural components and building membranes, and being prepared for future challenges and new developments when these isolative elements are combined with other technologies, as for example, renewable energy harvesting devices.  

  20. Hydrodynamic Performances of Air-Water Flows in Gullies with and without Swirl Generation Vanes for Drainage Systems of Buildings

    National Research Council Canada - National Science Library

    Der-Chang Lo; Jin-Shuen Liou; Shyy Woei Chang

    2015-01-01

    ...) image and optical systems for experimental study, the mechanism of air entrainment by vortex, the temporal variations of airflow pressure, the trajectories of drifting air bubbles and the self...

  1. Air Leakage of U.S. Homes: Model Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; McWilliams, Jennifer A.

    2007-01-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.

  2. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27

    The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in

  3. The new research centre of the Brazilian Petroleum Company in Rio de Janeiro, Brazil: The achievements in the thermal performance of air-conditioned buildings in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rafael; Marcondes, Monica Pereira; De Benedetto, Gisele S.; Goncalves, Joana Carla Soares; Duarte, Denise Helena Silva; Ramos, Jose Ovidio [Laboratorio de Conforto Ambiental e Eficiencia Energetica (LABAUT), Departamento de Tecnologia da Arquitetura (AUT), Faculdade de Arquitetura e Urbanismo, Universidade de Sao Paulo (FAUUSP), Sao Paulo, Brasil, Rua do Lago, 876, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil)

    2008-07-01

    The study on the thermal performance of the air-conditioned buildings of the new research centre of the Brazilian Petroleum Company, in the tropical climate of Rio de Janeiro, was part of a bigger research and consultancy project involving environmental issues. The architectural design was the subject of a national competition in 2004, encompassing over 100,000 m{sup 2}. According to the design brief, out of the 10 buildings of the new research centre, 7 have to be either completely or partially air-conditioned, due to specific occupation requirements. The challenge for better thermal performance was related to systems' energy efficiency, to the introduction of natural ventilation and to the notion of adaptive comfort, which were verified with the support of thermal dynamic simulations. At the early stages of the assessments, the potential for natural ventilation in the working spaces considering the mixed-mode strategy achieved 30% of occupation hours. However, the development of the design project led to fully air-conditioned working spaces, due to users' references regarding the conventional culture of the office environment. Nevertheless, the overall architectural approach in accordance to the climatic conditions still showed a contribution to the buildings' energy efficiency. (author)

  4. A survey of CN in circumstellar envelopes

    NARCIS (Netherlands)

    Bachiller, R; Fuente, A; Bujarrabal, [No Value; Colomer, F; Loup, C; Omont, A; deJong, T

    We have conducted a survey of CN N=2-1 and N=1-0 line emission in the envelopes of evolved stars. The sample consists of 42 objects, including C-rich and O-rich envelopes, S-stars, detached envelopes, and proto-planetary nebulae. Confident detections have been achieved in 30 objects. Both CN lines

  5. Solar envelope zoning: application to the city planning process. Los Angeles case study

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Solar envelope zoning represents a promising approach to solar access protection. A solar envelope defines the volume within which a building will not shade adjacent lots or buildings. Other solar access protection techniques, such as privately negotiated easements, continue to be tested and implemented but none offer the degree of comprehensiveness evident in this approach. Here, the City of Los Angeles, through the Mayor's Energy Office, the City Planning Department, and the City Attorney's Office, examine the feasibility of translating the concept of solar envelopes into zoning techniques. They concluded that envelope zoning is a fair and consistent method of guaranteeing solar access, but problems of complexity and uncertainty may limit its usefulness. Envelope zoning may be inappropriate for the development of high density centers and for more restrictive community plans. Aids or tools to administer envelope zoning need to be developed. Finally, some combination of approaches, including publicly recorded easements, subdivision approval and envelope zoning, need to be adopted to encourage solar use in cities. (MHR)

  6. Buoyancy-Driven Ventilation Generated by the Double-Skin Façade of a High-Rise Building in Tropical Climate: Case Study Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    Aziiz Akhlish Diinal

    2017-01-01

    Full Text Available High-rise buildings in tropical region is identical to the use of mechanical Air Conditioning in massive scale. Nevertheless, there is an encouragement to high-rise buildings to reduce its energy consumptions, since they consume quite large amount of energy. This challenge can be overcome with various of strategies, one of them, by means of reducing the cooling load of mechanical Air Conditioning in high-rise building. Prospects come from the modern tall building design strategies, for example the use of double-skin façade to give addition of building skin which could provide indoor temperature protection from outside. Double-skin façade system has continued to increase in buildings in a tropical region such as in Indonesia. However, there is another potential of double skin façade, which is the possibility to increase the buoyancy effect in the air gap between the skin and building envelope. The possibility needs to be studied in order to give a proper way in designing double-skin façade of a high-rise building, especially on Bandung-Indonesia tropical climate. This paper explores the potential of double-skin façade in driving the air inside the façade to generate natural ventilation for a high-rise building in Bandung climate condition. Two parameters are used in exploring the buoyancy force, the width of double-skin façade and the temperature of the skin façade. In general, double-skin façade of a high-rise building in tropical climate can generate buoyancy driven ventilation for the building, it relates strongly to the distance between of the double-skin façade and the building envelope.

  7. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  8. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    Energy Technology Data Exchange (ETDEWEB)

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  9. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    Directory of Open Access Journals (Sweden)

    Hery Tiana Rakotondramiarana

    2015-05-01

    Full Text Available Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. For the case of Antananarivo, the amplitude of the temperature fluctuations at the top face of the support is reduced by 28 °C when using green roof. The impact of the green roof on indoor air temperature and energy demand is investigated. The vegetation decreases the maximum indoor air temperature and improves the building thermal comfort during summer days. It has no effect on the minimum indoor air temperature, but additional soil thickness can increase it. In addition, a global sensitivity analysis, which is carried out on the proposed model without considering any specific weather data, allows us to identify the most influential parameters on the energy demand. It has been found that green roofs have almost insignificant thermal impact in insulated buildings; however, their potential prevails over the building envelope and weather characteristics in the case of non-insulated building.

  10. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  11. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    Energy Technology Data Exchange (ETDEWEB)

    Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Field-Macumber, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); and service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.

  12. Case Study of Envelope Sealing in Existing Multiunit Structures

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Conlin, F.; Podorson, D.

    2012-10-01

    Envelope air sealing was included in the retrofit of a 244 unit low-rise multifamily housing complex in Durham, N.C. Pre- and post-retrofit enclosure leakage tests were conducted on 51 units and detailed diagnostics were performed on 16. On average, total leakage was reduced by nearly half, from 19.7 ACH50 to 9.4 ACH50. Costs for air sealing were $0.31 per square foot of conditioned floor area, lower than estimates found in the National Residential Efficiency Measures Database (NREMD) and other sources, perhaps due in part to the large-scale production nature of the project. Modeling with BEopt software -- using an estimate of 85% of the envelope air leakage going to the outside (based on guarded tests performed at the site) -- calculated a space conditioning energy cost savings of 15% to 21% due to the air sealing retrofit. Important air leakage locations identified included plumbing and electrical penetrations, dropped ceilings/soffits, windows, ducts and wall-to-floor intersections. Previous repair activity had created significant leakage locations as well. Specifications and a pictorial guide were developed for contractors performing the work.

  13. Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations

    NARCIS (Netherlands)

    Melse, R.W.; Ploegaert, J.P.M.; Ogink, N.W.M.

    2012-01-01

    The removal of ammonia (NH3) by a full scale packed-bed biotrickling filter (packing volume: 3.8 m3; water buffer tank: 20 m3) under fluctuating loading conditions was studied. The unit was operated at an animal house for treatment of exhaust air at an average air contact time of 1.2 s. Continuous

  14. Field measurements of perceived air quality and concentration of volatile organic compounds in four offices of the university building

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, M.

    2015-01-01

    to investigate the perceived air quality, sensory pollution load and concentration of Volatile Organic Compounds (VOCs) in the offices. As the refurbishment comprised also installation of demand controlled ventilation (DCV), its influence on the perceived air quality was also tested. Measurements comprised...

  15. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    Science.gov (United States)

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Does the Dutch Building Decree 2012 guarantee air quality? Quality is essential for productivity and health; Bouwbesluit 2012 garantie voor luchtkwaliteit? Kwaliteit essentieel voor productiviteit en gezondheid

    Energy Technology Data Exchange (ETDEWEB)

    Vollebregt, R.

    2011-10-15

    Poor indoor air quality in new buildings is a common problem. According to the Health Council scientific evidence is lacking that it is necessary to tighten ventilation requirements in the Building Decree . GGD Netherlands are advocates for stricter rules. Several studies show that the productivity in offices and the academic performance of children will benefit. [Dutch] Slechte kwaliteit van de binnenlucht in nieuwe gebouwen is een veel voorkomend probleem. Volgens de Gezondheidsraad ontbreken echter wetenschappelijke aanwijzingen dat het noodzakelijk is de ventilatie-eisen in het Bouwbesluit aan te scherpen. GGD Nederland pleit wel voor strengere regels. Diverse onderzoeken laten zien dat de productiviteit op kantoor en de leerprestaties van kinderen daarbij gebaat zijn.

  17. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated

  18. Electric coheating experiment to determine the heat-loss coefficient of a double-envelope house

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J. K.E.; Anderson, J. V.; Connolly, J. M.; Bingham, C. E.

    1981-07-01

    An electric coheating experiment was conducted on a double-envelope house in Arvada, Colorado, to determine the total heat loss coefficient (UA) of the double-shelled structure, as well as the heat loss coefficients of the inner and outer shells. Electric coheating is fairly well established as an experimental method for determining the total heat loss coefficient in conventional residential buildings. However, special problems are introduced with passive and double-envelope buildings. A new methodology was developed to meet these problems. That methodology and the results of the experimental investigation are presented and discussed.

  19. Guidebook of natural gas air conditioning in the buildings of territorial organizations; Guide de la climatisation gaz naturel dans les batiments des collectives territotiales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    In the framework of the 'common energy' approach, a partnership between Gaz de France (GdF) and the territorial associations (association of French territorial engineers (AITF) and association of French territorial graduate technicians (ATTF)), the publication since 15 years of this book of good practices makes a status of the implementation of natural gas air-conditioning in the buildings of the territorial organizations. Its aim is to supply information about the absorption principle, the existing products, the design of a natural gas air-conditioning system, its implementation, exploitation and maintenance. It presents also some experience feedbacks (town halls, swimming pools..) and three reference files in appendix. (J.S.)

  20. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  1. Application of the quality index methodology for dosimetric verification of build-up effect beyond air-tissue interface in treatment planning system algorithms.

    Science.gov (United States)

    Caneva, Sandra; Tsiakalos, Miltiadis F; Stathakis, Sotirios; Zefkili, Sofia; Mazal, Alejandro; Rosenwald, Jean-Claude

    2006-05-01

    We have designed a simple benchmark test for the user of a treatment planning system to check the calculation algorithm's ability to model the build up effect beyond an air/tissue interface. The expected result is expressed as an inhomogeneity correction factor CF derived from measurements and from Monte Carlo calculations for a full range of photon beam qualities. The linear regression lines obtained from plotting CF as a function of beam quality index form the basis for a quantitative check of the algorithm performance.

  2. THE INFLUENCE OF THE DAILY FLUCTUATIONS OF OUTSIDE AIR TEMPERATURE ON THE INDOOR CLIMATE

    Directory of Open Access Journals (Sweden)

    A. E. Zakharevich

    2016-01-01

    Full Text Available The investigation of indoor air temperature fluctuations within the occupied zone (habitable zone induced by the periodic changes of outdoor air temperature was carried out with the use of numerical simulation of heat transfer processes in the heated room. The developed and programme-implemented two-dimensional physical and mathematical model takes into account unsteady nature of the complex conjugate heat transfer in building envelopes and indoor air spaces when using different types of heating devices. The design features of building structures and windows are considered. The model includes the equations of radiative heat transfer between indoor surfaces, window panes and outdoor environment. In the study, the harmonic changes of outside temperature are specified by the cosine law with the twenty-four-hour period. Two types of heaters are examined: radiator and underfloor heating. Heating output of the devices is specified time-invariable according to the thermal balance defined by the traditional method. Simulations are performed for the three combinations of heat-transfer properties of building structures. The quantitative characteristics of the induced indoor air temperature fluctuations within the occupied zone depending on the building envelope thermal inertia and the type of used heater were found out. The analysis of results yielded the following conclusions. Reducing inertia of glazing leads to more rapid penetration of outdoor temperature wave into the room. While the amplitude of the indoor air temperature fluctuations within the occupied zone remains constant by reason of the unchanged thermal inertia of the main building structures. The significant increase in the amplitude of harmonic changes of indoor air temperature within the occupied zone is observed when reducing inertia of walls and floors whereas the delay with respect to outside air temperature fluctuations remains almost invariable.

  3. Safeguards Envelope Progress FY10

    Energy Technology Data Exchange (ETDEWEB)

    Richard Metcalf

    2010-10-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  4. Operations and Maintenance Manual for Expanded Bioventing System at Buildings 2034/2035, Fairchild Air Force Base, Washington

    National Research Council Canada - National Science Library

    1996-01-01

    This Operations and Maintenance (O&M) Manual has been created as a guide for monitoring and maintaining the performance of the full-scale bioventing blower system and vent well plumbing at Fairchild Air Force Base (AFB), Washington...

  5. Assessment of windows on noise intrusion, energy efficiency, and indoor air quality for residential buildings near airports.

    Science.gov (United States)

    2012-06-01

    The continuing increase in air traffic has implications for the preservation of our common : resources and causes global and micro-environmental pollution. This pollution affects public : health and causes damage to the prospects of future generation...

  6. Adaptive Flight Envelope Estimation and Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, in collaboration with the Georgia Institute of Technology, proposes to develop and demonstrate an innovative flight envelope estimation and...

  7. Sick building syndrome in relation to air exchange rate, CO(2), room temperature and relative air humidity in university computer classrooms: an experimental study.

    Science.gov (United States)

    Norbäck, Dan; Nordström, Klas

    2008-10-01

    To study the effects of ventilation and temperature changes in computer classrooms on symptoms in students. Technical university students participated in a blinded study. Two classrooms had higher air exchange (4.1-5.2 ac/h); two others had lower (2.3-2.6 ac/h) air exchange. After 1 week, ventilation conditions were interchanged between the rooms. The students reported symptoms during the last hour, on a seven-step rating scale. Room temperature, relative air humidity (RH) carbon dioxide (CO(2)), PM10 and ultra-fine particles (UFP) were measured simultaneously (1 h). Illumination, air velocity, operative temperature, supply air temperature, formaldehyde, NO(2) and O(3) were measured. Multiple logistic regression was applied in cross-sectional analysis of the first answer (N = 355). Those participating twice (N = 121) were analysed longitudinally. Totally 31% were females, 2.9% smokers and 3.8% had asthma. Mean CO(2) was 993 ppm (674-1,450 ppm), temperature 22.7 degrees C (20-25 degrees C) and RH 24% (19-35%). Lower and higher air exchange rates corresponded to a personal outdoor airflow of 7 l/s*p and 10-13 L/s*P, respectively. Mean PM10 was 20 microg/m(3) at lower and 15 microg/m(3) at higher ventilation flow. Ocular, nasal and throat symptoms, breathlessness, headache and tiredness were significantly more common at higher CO(2) and temperature. After mutual adjustment, ocular (OR = 1.52 per 1 degrees C), nasal (OR = 1.62 per 1 degrees C) and throat symptoms (OR = 1.53 per 1 degrees C), headache (OR = 1.51 per 1 degrees C) and tiredness (OR = 1.54 per 1 degrees C) were significantly associated with temperature; headache was associated only with CO(2) (OR = 1.19 per 100 ppm CO(2)). Longitudinal analysis demonstrated that increased room temperature was related to tiredness (P < 0.05). Computer classrooms may have CO(2) above 1,000 ppm and temperatures above 22 degrees C. Increased temperature and CO(2) may affect mucosal membrane symptoms, headaches and tiredness

  8. Indoor air quality and occupant satisfaction in five mechanically and four naturally ventilated open-plan office buildings

    DEFF Research Database (Denmark)

    Hummelgaard, J.; Juhl, P.; Saebjornsson, K.O.

    2007-01-01

    Occupant responses and indoor environment characteristics were recorded and compared in five mechanically and four naturally ventilated open-plan office buildings by using a simple approach that enabled us to survey many buildings simultaneously. All occupant responses were obtained during one...... afternoon. In a pre-experiment, temperature and the concentration Of CO2 were monitored in 2-10 locations/office to evaluate the variation throughout the offices. A representative measurement point was subsequently selected and measurements of the same parameters were made during one week. All offices were...... monitored during the same week and occupant responses to the indoor environment were collected via the internet on the same day within that week. The temperature and the CO2 concentration varied more and were in some cases higher in the naturally ventilated buildings, but occupant responses in terms...

  9. Solar building construction - new technologies; Solares Bauen - Neue Technologien fuer Gebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Luther, J.; Voss, K.; Wittwer, V. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. ``Thermische und Optische Systeme``

    1998-02-01

    There is an increasing demand for integrated building concepts in order to reduce energy consumption. Building design, construction and heating, ventilation and air-conditioning (HVAC) technology are decisive in this respect. Thus, an essentially higher energy efficiency is achieved and solar energy becomes the main energy source. An `active building envelope` assumes the task of controlling the energy flows between inside and outside. This paper reports on new components, system concepts and planning tools for solar building. (orig.) [Deutsch] Fuer zukuenftige Bauten werden in hohem Masse Forderungen nach integrierten Konzepten zur Begrenzung des Energieverbrauchs gestellt. Gestalt, Konstruktion und Klimatechnik sind dabei massgebliche Einflussfaktoren. Hierdurch wird eine wesentlich hoehere Energieeffizienz erzielt und Solarenergie kann die uebrigen Energiequellen zurueckdraengen. Eine `aktive Gebaeudehuelle` uebernimmt die Aufgabe, den Energiefluss zwischen Innen und Aussen zu steuern. Der Beitrag berichtet ueber neue Komponenten, Systemkonzepte und Planungswerkzeuge fuer das Solare Bauen. (orig.)

  10. Correlation between the morphology of unheated staircase and energy performance of residential buildings

    Directory of Open Access Journals (Sweden)

    Rajčić Aleksandar N.

    2015-01-01

    Full Text Available As a side effect of the need for greater energy efficiency of buildings, there is a problem of decrease of the available interior space affected by the reduction in U-value of parts of thermal building envelope, i.e. an increase in thickness of insulating layer, which is especially present in unheated staircase. Having in mind that present methods of calculation of transmission heat losses through elements of thermal envelope include the adjustment factor which regulates designed temperature conditions if the temperature at the colder side of the element of the thermal envelope differs from that of the external environment, this paper strives to demonstrate that in the case of unheated staircases, this fixed value should be reconsidered and treated as a variable depending on the morphology, i.e. form, size and position of the staircase within the building. This problem has been analyzed on the example of Serbian housing stock and relevant national thermal regulations. Three morphological types of unheated staircases have been distinguished within which three models have been defined and examined with respect to variations in number of floors and percentage of glazing. Average temperatures of staircase volume and temperature correction factors were calculated in following temperature modes: stationary that excluded solar gains and ventilation heat losses and gains, and dynamic with variations in air exchange rates and insolation conditions, expressing in all of the cases variations in calculated values of temperature correction factors in comparison to the prescribed fixed value.

  11. Mosaic HIV envelope immunogenic polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  12. Energy Conservation Through Heat Transfer Treatment In Buildings Case Study Building B At The British University In Egypt Bue

    Directory of Open Access Journals (Sweden)

    Samar M. Sheweka

    2015-08-01

    Full Text Available Nowadays the most important problem facing the world is the problem of energy. Egypt needs about 20 more than the power station provides to avoid the electricity shortage 1 But it is not only about energy production a part of the current problem solution is to save energy and reduce the energy consumption through the building envelope. At this study the researchers are intending to reduce the heat transfer from outside the buildings to inside through the walls by using different types of thermal walls insulations. A discussion for each type will be held with its impact on energy consumption rate used in cooling process. Building B at the British University in Egypt has been selected and thermal wall insulation strategies were applied to achieve the best kind of thermal wall insulation preventing the heat transfer from outside to inside the building. A simulation study has been conducted to calculate the amount of heat entering the building in the summer and how much energy does the air condition consume to cool the building spaces for each kind of thermal wall. The research ended up with different recommendations and conclusions for buildings with sustainable approaches in arid climate regions.

  13. Comment on "The envelope of projectile trajectories"

    CERN Document Server

    Butikov, E I

    2003-01-01

    Several simple alternative methods to obtain the equation of the envelope of the family of projectile trajectories corresponding to the same initial speed are suggested, including methods in which the boundary of the region occupied by the parabolic trajectories is found as an envelope of a set of circles. Two possible generalizations of the discussed problem are also suggested. (letters and comments)

  14. 14 CFR 23.333 - Flight envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown at...

  15. Delivering COBie data - Focus on curtain walls and building envelopes

    DEFF Research Database (Denmark)

    Karlshøj, Jan; Borin, P.; Carradori, M.

    BIM policies and requirements, this paper shows the results obtained applying COBie to complex products such as curtain walls. Two Information Delivery Manuals (IDMs) were also developed, in order to provide a com-monly known and standardized framework, which can regulate the COBie-based information...... exchanges. Fu-ture developments of this study could concern the application of the developed IDMs to different case studies in order to overtake that specificity characterizing each single project and verify the validity of the proposal....

  16. Biomimetic Potentials for Building Envelope Adaptation in Egypt

    National Research Council Canada - National Science Library

    ElDin, N. Nour; Abdou, A; ElGawad, I. Abd

    2016-01-01

    ... of Fine Arts, Helwan University, Cairo, Egypt Abstract Biomimicry is a science that seeks sustainable solutions by emulating nature’s time-tested 3.8 billion years of patterns and strategies...

  17. Energy efficiency with high demands on air conditioning. Energetic modernization of the Wilhelm-Hack-Museum building at Ludwigshafen; Energieeffizienz mit hohen klimatischen Anforderungen. Energetische Modernisierung des Wilhelm-Hack-Museums, Ludwigshafen

    Energy Technology Data Exchange (ETDEWEB)

    Haracska, Heike [LUWOGE consult GmbH, Ludwigshafen (Germany); Kuder, Gerhard [Balck und Partner Facility Engineering, Heidelberg (Germany)

    2009-09-15

    In the field of residential buildings, many concepts have been established for energy-efficient modernization during the past few years. Some of them even took an integrated approach and attempted to find the best and most efficient variant. In contrast, non-domestic buildings are getting into focus more slowly, and there are hardly any state funding programmes in this field. Since the introduction of the DIN V 18599 standard, the whole building must be considered, i.e. the building shell, room and water heating sytems, air conditioners, humidifiers and dehumidifiers, ventilation systems, lighting, and the use of renewable energy sources. (orig.)

  18. Evolution of Space Shuttle Range Safety (RS) Ascent Flight Envelope Design

    Science.gov (United States)

    Brewer, Joan D.

    2011-01-01

    Ascent flight envelopes are trajectories that define the normal operating region of a space vehicle s position from liftoff until the end of powered flight. They fulfill part of the RS data requirements imposed by the Air Force s 45th Space Wing (45SW) on space vehicles launching from the Eastern Range (ER) in Florida. The 45SW is chartered to protect the public by minimizing risks associated with the inherent hazards of launching a vehicle into space. NASA s Space Shuttle program has launched 130+ manned missions over a 30 year period from the ER. Ascent envelopes were delivered for each of those missions. The 45SW envelope requirements have remained largely unchanged during this time. However, the methodology and design processes used to generate the envelopes have evolved over the years to support mission changes, maintain high data quality, and reduce costs. The evolution of the Shuttle envelope design has yielded lessons learned that can be applied to future endevours. There have been numerous Shuttle ascent design enhancements over the years that have caused the envelope methodology to evolve. One of these Shuttle improvements was the introduction of onboard flight software changes implemented to improve launch probability. This change impacted the preflight nominal ascent trajectory, which is a key element in the RS envelope design. While the early Shuttle nominal trajectories were designed preflight using a representative monthly mean wind, the new software changes involved designing a nominal ascent trajectory on launch day using real-time winds. Because the actual nominal trajectory position was not known until launch day, the envelope analysis had to be customized to account for this nominal trajectory variation in addition to the other envelope components.

  19. Electric efficiency in lighting system and air conditioners replacement and automation of air conditioners split type in public buildings; Eficiencia eletrica na substituicao do sistema de iluminacao e de condicionadores de ar e automacao do sistema de condicionadores de ar tipo split em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Arnulfo Barroso de; Apolonio, Roberto; Silva, Luciana Oliveira da; Gomes, Fernanda Leles [Universidade Federal de Mato Grosso (UFMT), MT (Brazil); Malheiro, Teresa Irene Ribeiro de Carvalho [Instituto Federal de Educacao, Ciencia e Tecnologia de Mato Grosso (IFMT), MT (Brazil); Barros, Regiane Silva de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    The reduction in expenditure on electricity is a major benefit not only consumers but also to utilities. In this context, this article examines the process of replacing the system of internal lighting, window type air conditioners and automation of Split type air conditioners from buildings of public institutions of the state of Mato Grosso during 2009 year and verifies the reduction in annual consumption of electric power and demand active power. Thus, measurements and calculations performed are presented for the interior lighting systems and air conditioners of these buildings before and after implementation of the process of replacing the system of internal lighting and window type air conditioners and automation of Split type air conditioners. This work is the result of integration among the Dealer Network Energy Rede Cemat, the Federal University of Mato Grosso (UFMT) and the Administration of all public buildings, where the academy answered these real issues, solving the specific problem presented. (author)

  20. Experimental data and boundary conditions for a Double-Skin Facade building in external air curtain mode

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Jensen, Rasmus Lund

    was carried out in a full scale test facility ‘The Cube’, in order to compile three sets of high quality experimental data for validation purposes. The data sets are available for preheating mode, external air curtain mode and transparent insulation mode. The objective of this article is to provide the reader...

  1. Measurement of aerosol fractions in the air in environment of storage accommodation of precision of device building production

    OpenAIRE

    Антонюк, Віктор Степанович; Мережаний, Юрій Григорович

    2015-01-01

    The article examines modern methods and equipment for conducting measurements of aerosol fraction quantity in the air in the storage accommodation; analyzes techniques of instrumentation management system construction. The paper explains peculiarities of technological processes of precision device putting; gives recommendation s to improvement of quality performance of precision operations of device putting and regulation.

  2. Hygrothermal Analysis of Indoor Environment of Residential Prefabricated Buildings

    Science.gov (United States)

    Kraus, Michal

    2017-10-01

    Recent studies show that the relative humidity and the indoor air temperature constitute an important determinant of the quality of indoor air. Hygrothermal microclimate has a significant impact on occupant’s health and their comfort. The study presents the results of experimental measurement of indoor air temperature and relative humidity in selected apartment in prefabricated panel house situated in Ostrava, Czechia. The contribution describes and analysis the relation between indoor air temperature [°C] and relative humidity [%] in this apartment. The experimental object is selected with respect to the housing stock in the Czech Republic. A third of the housing stock in the Czech Republic is composed of prefabricated panel houses. Regeneration and revitalization of these buildings were in the focus of interest during recent years. Building modifications, such as thermal insulation of building envelope or window replacement, lead to a significantly higher level of airtightness of these objects. Humidity and indoor air temperature are measured in 10-minute cycles for two periods. The values of temperature and humidity are measured for the non-heating and the heating season. The length of each experimental period is 30 days. The mean value of indoor air temperature is 22.21 °C and average relative humidity is 45.87% in the non-heating period. The values of 22.62 °C and 35.20% represent average values for the heating period. A slight increase of the average temperature of the indoor environment (+1.85%) is observed. The decrease of the relative humidity is evident at first glance. The relative humidity of the internal environment is approximately 10% lower in the heating period. Long-term decline of relative humidity below 30% brings many problems. It is necessary to take measures to increase of relative humidity in residential prefabricated building. The aquarium appears to be ineffective. The solution may be forced artificial ventilation or humidifiers.

  3. Application of FMEA-DEA (Failure Modes and Effect Analysis - Data Envelopment Analysis) to the air conditioning system of the control room a nuclear power plant; Aplicacao de FMEA-DEA ao sistema de ar condicionado da sala de controle de uma usina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa Junior, Gilberto Varanda

    2007-03-15

    This dissertation presents the FMEA-DEA analysis application to the air conditioning system of the control room of a nuclear power plant. After obtaining the failure modes, the index associated to the occurrence probability, the severity of the effects and the potential of detention, a priority order is established for the failure modes or deviations. This number is obtained by multiplying the three mentioned index that vary in a natural scale from 1 to 10, where the higher the index, the more critical the situation will be. In this work, it is intended to use a model based on the data envelopment analysis, DEA jointly with the FMEA, to identify the current efficiency of the system and which failure modes or deviations are considered more critical, and by means of the weights attributed for the mathematical modeling to identify which index are contributing more for these deviations. From this identification, improvements can be set, which may consider administrative changes, operator training and so on, thus adding value to the final product. (author)

  4. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    A. Poerschke, R. Beach, T. Begg

    2017-06-01

    IBACOS investigated the performance of a small-diameter high-velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance.

  5. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  6. METHOD FOR DECREASE OF STANDARD HEAT LOSSES IN RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    A. E. Piir

    2017-01-01

    Full Text Available A simplified method for calculation of standard coefficient for heat transfer in a residential building has been developed in the paper. Investigations have been carried out with the purpose to determine influence of building size, level of thermal insulation in external enclosures and share of heat regeneration in ventilation system on total heat losses. The paper considers buildings of a simple geometrical form (“matchbox” with number of floors 1, 2, 4, 8, 16 and living area from 100 up to 25600 m2 at the level of thermal resistance of walls 1; 3 and 5 m2 ⋅°C/W and share of heat regeneration in ventilation air stream of 0; 0.5 and 0.66. The investigation results have shown that while increasing building size then there is a sudden transformation of dimensions and structure in external enclosures: share of overlapping area is reduced by 3-fold and share of wall area is increased by 2-fold. Surface area of building external envelope is reduced by 6-fold in comparison with its heated area. An average coefficient of building heat transfer assigned to heated area is decreased by 3-fold. It has been shown that the most efficient methods for further decrease of standard heat losses for residential buildings are the following: heat recovery in the ventilation system: it is deeper if heat protection rate is higher and climate of a building construction zone is colder; enlargement of building size through decrease of their number; limit-exceeding increase in heat protection of small apartment buildings and cottages; cubic form of 2–3-floor buildings for Far North.

  7. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...... evaporation. Two outdoor summer climates were simulated in the study, i.e. the design summer climate of Las Vegas and the extreme summer climate of Copenhagen represented hot/dry and warm/dry climates. The results showed that the flash evaporative cooling technology, a simple and green cooling technology......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  8. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    OpenAIRE

    Vine, Edward

    2002-01-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving...

  9. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Techato, Kua-anan [International Postgraduate Programs in Environmental Management (Hazardous Waste Management) and ERI (Energy Research Institute), Chulalongkorn University, Bangkok 10330 (Thailand); Watts, Daniel J. [Otto H. York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Chaiprapat, Sumate [Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90112 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management-Satellite Center at Prince of Songkla University (Thailand)

    2009-01-15

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste. (author)

  10. Prevalence and risk factors associated with nonspecific building-related symptoms in office employees in Japan: relationships between work environment, Indoor Air Quality, and occupational stress.

    Science.gov (United States)

    Azuma, K; Ikeda, K; Kagi, N; Yanagi, U; Osawa, H

    2015-10-01

    A nationwide cross-sectional study of 3335 employees was conducted in 320 offices in Japan to estimate the prevalence of building-related symptoms (BRSs) and determine the risk factors related to work environment, Indoor Air Quality, and occupational stress. Data were collected through self-administered questionnaires. The prevalences of general symptoms, eye irritation, and upper respiratory symptoms were 14.4%, 12.1%, and 8.9%, respectively. Multiple logistic regression analyses revealed that eye irritation was significantly associated with carpeting [odds ratio (OR), 1.73; 95% confidence interval (CI), 1.24-2.41], coldness perception (OR, 1.28; 95% CI, 1.13-1.45), and air dryness perception (OR, 1.61; 95% CI, 1.42-1.82). General symptoms were significantly associated with unpleasant odors (OR, 1.37; 95% CI, 1.13-1.65), amount of work (OR, 1.24; 95% CI, 1.06-1.45), and interpersonal conflicts (OR, 1.44; 95% CI, 1.23-1.69). Upper respiratory symptoms were significantly associated with crowded workspaces (OR, 1.36; 95% CI, 1.13-1.63), air dryness perception (OR, 2.07; 95% CI, 1.79-2.38), and reported dustiness on the floor (OR, 1.39; 95% CI, 1.16-1.67). Although psychosocial support is important to reduce and control BRSs, maintaining appropriate air-conditioning and a clean and uncrowded workspace is of equal importance. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Evaluation of health factors in high-rise buildings. 2. Bioclimatological consequences resulting from comparative measurements of the air ionisation in a high-rise building located in a heavily contaminated suburban area and at certain altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Moese, J.R.; Fischer, G.

    1981-01-01

    According to accepted scientific theories inhaled small ions deliver their charges in the pulmonary alveoli and this leads to local recharges. This process stimulates structures of the central nervous system and the activity of the endocrine is excited, resulting in an enhancement of the general well-being. These possibilities of interpretation regarding a biological ionic effect are supported, with reservations by positive medical effects during and after a stay in a well-ventilated mountain climate or also in a sea-climate. Owing to their lower mobility the large ions are inhaled as small ions to an increasing extent. The chemical and physical noxa are delivered and deposited in the respiratory tract. They stick the epithelia in the trachea and in the bronchi as well as the endothelia in the lung vesicles. The number of the ciliary movements is reduced. Similar effects are known to be caused also by nicotine abuse. This results in a decreased ability of expectoration and a lower intake of oxygen by the alveoli. These facts could furnish an explanation for the increased vulnerability of city dwellers to infections diseases and to catarrh. The changed ionisation of air in urbanised areas definitely represents only one of the many risk factors. In addition to the attempt to characterize bioclimatically local weather conditions by means of the non-conventional parameter air ionisation our study has also been intended to establish biologically oriented criteria for the living in a high-rise building in a particularly unfavourable location. Under specific microclimatic conditions the uppermost storeys were at times bioclimatically favoured over the lowermost, especially when shallow air inversion is present. In such cases, small ions exclusively were registered in the upper storeys and large ions in the lower floors.

  12. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  13. Safeguards Envelope Progress FY09

    Energy Technology Data Exchange (ETDEWEB)

    Richard Metcalf; Robert Bean

    2009-09-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters which nuclear facilities may operate within to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). As a result of the U.S. having no operating nuclear chemical reprocessing plants, there has been a strong interest in obtaining process monitoring data from the ICPP. The ICPP was shut down in 1996 and a recent effort has been made to retrieve the PM data from storage in a data mining effort. In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z- testing7.

  14. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  15. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  16. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ Model–I: building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. F. Mueller

    2010-05-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  17. Clean air school buildings and governmental subsidy. Project ventiLation; Frisse scholen dankzij regeringssubsidie. Project VentiLeren

    Energy Technology Data Exchange (ETDEWEB)

    Luigjes, B.; De Wit, J.W. [Rucon Ventilatoren, Harderwijk (Netherlands)

    2010-03-15

    The Dutch government has provided local authorities with 100 million euros to address the polluted air in class rooms of primary schools. However, this amount is not sufficient to solve the problem entirely. This problem has been solved by linking the implementation to a project dedicated to combating youth unemployment, named 'VentiLeren'. [Dutch] De Nederlandse overheid heeft 100 miljoen euro beschikbaar gesteld aan gemeenten om de vervuilde lucht in de lokalen van basisscholen aan te pakken. Dit bedrag is echter ontoereikend om het hele probleem op te lossen. Door de uitvoering ervan te koppelen aan een project ter bestrijding van jeugdwerkloosheid, ventiLeren genaamd, wordt dit opgelost.

  18. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of our supplies and services correspond with the level of the Polish market.

  19. A Low-energy Building under Arctic Conditions - Experiences After Five Years of Operation

    DEFF Research Database (Denmark)

    Rode, Carsten; Vladyková, Petra; Kotol, Martin

    2011-01-01

    , advanced windows, a ventilation system with heat recovery, and a solar collector that supplies a significant proportion of the domestic hot water. A very ambitious target was set for the annual energy consumption for heating, which was less than half of the value for permissible heat consumption according...... matches the expectations regarding low energy consumption and a high indoor climatic standard. The house did not meet the anticipated low target for energy consumption, and some reasons have been found which could explain why. Insufficient air-tightness of the building envelope, malfunction of some...

  20. Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making.

    Science.gov (United States)

    Maddalena, R; Mendell, M J; Eliseeva, K; Chan, W R; Sullivan, D P; Russell, M; Satish, U; Fisk, W J

    2015-08-01

    Ventilation rates (VRs) in buildings must adequately control indoor levels of pollutants; however, VRs are constrained by the energy costs. Experiments in a simulated office assessed the effects of VR per occupant on perceived air quality (PAQ), Sick Building Syndrome (SBS) symptoms, and decision-making performance. A parallel set of experiments assessed the effects of VR per unit floor area on the same outcomes. Sixteen blinded healthy young adult subjects participated in each study. Each exposure lasted four hours and each subject experienced two conditions in a within-subject study design. The order of presentation of test conditions, day of testing, and gender were balanced. Temperature, relative humidity, VRs, and concentrations of pollutants were monitored. Online surveys assessed PAQ and SBS symptoms and a validated computer-based tool measured decision-making performance. Neither changing the VR per person nor changing the VR per floor area, had consistent statistically significant effects on PAQ or SBS symptoms. However, reductions in either occupant-based VR or floor-area-based VR had a significant and independent negative impact on most decision-making measures. These results indicate that the changes in VR employed in the study influence performance of healthy young adults even when PAQ and SBS symptoms are unaffected. The study results indicate the importance of avoiding low VRs per person and low VRs per floor area to minimize decrements in cognitive performance. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.