WorldWideScience

Sample records for building energy systems

  1. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D.M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  2. Buildings Interaction with Urban Energy Systems

    DEFF Research Database (Denmark)

    Heller, Alfred; Wyckmans, Annemie; Zucker, Gerhard;

    2015-01-01

    The goal towards a fossil free energy system is expressed in amongst others European and national targets, and puts pressure on the application of renewable energy sources combined with energy efficiency. Many cities are even more ambitious than their national targets and want to be among the first......, focusing on the impacts that buildings play in the overall energy system. Here buildings are not only consumers but rather prosumers that are able to produce renewable energy themselves. Buildings moreover offer potential storage capacities that can be utilized in demand shifting, which is necessary to...... to demonstrate that they can become not only smart fossil-free energy cities but sustainable in a wider sense, including water, waste, transportation and more. In the current paper, the research agenda to support such goals through smart city efforts is presented for a few European cases as examples...

  3. Analysis of a Building Energy Efficiency Certification System in Korea

    OpenAIRE

    Duk Joon Park; Ki Hyung Yu; Yong Sang Yoon; Kee Han Kim; Sun Sook Kim

    2015-01-01

    The Korean government has established a national plan for the promotion of zero energy buildings to respond to climate change and energy crises. To achieve this plan, several energy efficiency policies for new and existing buildings have been developed. The Building Energy Efficiency Certification System (BEECS) aims to promote the spread of high energy-efficient buildings by evaluating and certifying building energy performance. This study discussed Korean building energy efficiency policies...

  4. Analysis of a Building Energy Efficiency Certification System in Korea

    Directory of Open Access Journals (Sweden)

    Duk Joon Park

    2015-12-01

    Full Text Available The Korean government has established a national plan for the promotion of zero energy buildings to respond to climate change and energy crises. To achieve this plan, several energy efficiency policies for new and existing buildings have been developed. The Building Energy Efficiency Certification System (BEECS aims to promote the spread of high energy-efficient buildings by evaluating and certifying building energy performance. This study discussed Korean building energy efficiency policies and analyzed especially the influence of the BEECS on the actual energy consumption of a residential building and calculated energy performance of non-residential buildings. The BEECS was evaluated to have influence on gas and district heating consumption in residential buildings. For non-residential buildings, a decreasing trend was shown in calculated primary energy consumption in the years since the BEECS has been enacted. Appropriate improvements of the certification system were also discussed by analyzing relationship between building characteristics and their energy consumptions.

  5. Building Energy Information Systems: User Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  6. Building energy information systems. User case studies

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, J.; Piette, M.A.; Ghatikar, G. [Lawrence Berkeley, National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2011-01-15

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze, and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  7. Energy Signal Tool for Decision Support in Building Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  8. Thermally activated building systems in context of increasing building energy efficiency

    OpenAIRE

    Stojanović Branislav V.; Janevski Jelena N.; Mitković Petar B.; Stojanović Milica B.; Ignjatović Marko G.

    2014-01-01

    One of the possible ways to provide heating to the building is to use thermally activated building systems. This type of heating, besides providing significant increase in building energy efficiency, allows using low-temperature heating sources. In this paper, special attention is given to opaque part of the building façade with integrated thermally activated building systems. Due to fact that this type of system strongly depends on temperature of this cons...

  9. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    OpenAIRE

    Liang Zhao; Jili Zhang; Ruobing Liang

    2013-01-01

    Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data thr...

  10. Energy Management System Audit and Implementation in Educational Buildings

    Directory of Open Access Journals (Sweden)

    J. Nouri

    2006-01-01

    Full Text Available Concerning the high energy consumption of educational buildings in available study; it is conducted to estimate the energy consumption at the Faculty of Humanities (Building No. 2, Science and Research Campus (SRC of the Islamic Azad University (IAU, Tehran, Iran. Auditing and implementing the energy management system in the implied building, efforts are finally made to propose managerial solutions towards reducing energy consumption in this building. After gathering data of the building, including quantity of energy consumption in a one-year period of study in 2005 and the energy consumption equipment in the building followed by a detailed data analysis, the overall energy consumption tendency is investigated in the building. As a result, it is found that the lightening system and electric motors of central heating system consumed the highest level of electricity energy and the highest thermal energy consumption due to boilers. By more analysis of the entire data, solutions are suggested for reducing the energy consumption used in lightening, central heating and cooling systems and boilers. A review of all the practical solutions for improving the systems available in the building showed that regarding the energy management matrix, the energy management system in the building stood at zero point, because the building lacked any operating unit under the title of 'Energy Management' which could monitor energy consumption at the university. Therefore, it is concluded that the energy efficiency in the building may be optimized to a certain extent by presenting a system for energy data collection, analysis and systematic implementation as well as a system for collection of basic information about energy-consuming equipment by means of measurement instruments. By providing this system, procedures are presented for optimizing energy consumption and saving in the building, while a management system and a complete information system are created at the

  11. Building Energy Management through a Distributed Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2013-08-01

    Full Text Available Buildings consume significant world’s energy resources, approximately 32% of the total primary energy. The rapid depletion of energy resources, has imparted researchers to focus on energy conservation and wastage. The next generation of smart buildings is becoming a trend to cope with the needs of energy and environmental ease in buildings. This advances the intelligent control of building to fulfill the occupants’ need. Intelligent system control for sustainable buildings is dynamic and highly complex. Building information accuracy with an effective controller scheme is a challenging task. This paper presents the fuzzy control system architecture (FCSA for resolving the conflict of maintaining the inhabitants comfort index and the energy consumption in buildings. It also infers the graphical relationship between energy consumption and comfort parameters. With a distributed fuzzy inference system (FIS, control has been developed for temperature, air quality and artificial lighting comfort parameters. Model simulation has been carried out and control factors have been discussed. The FIS models have also been validated with implication of change function. The presented control system is capable of achieving energy conservation in the buildings.

  12. Improving building energy system performance by continuous commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. [Univ. of Nebraska, Omaha, NE (United States)

    1999-10-01

    Commissioning has played an important role in improved building comfort and reduced energy consumption. This article presents an advanced form of commissioning for existing buildings, called continuous commissioning (CC), which has produced energy savings comparable to those produced by the traditional audit/retrofit process at a third of the cost. It has also increased operating staff skills, reduced maintenance costs, and improved building comfort--extras which are not provided by usual retrofit programs. This article will present the philosophy, process, cost, and savings. Continuous commissioning is a process developed by the Energy Systems Laboratory (ESL) to: (1) optimize the operation of existing systems to improve building comfort and reduce building energy cost; (2) solve existing comfort and IAQ problems; (3) guarantee continuous optimal operation by operational staff in future years; and (4) provide optimal energy retrofit suggestions to owners to minimize the project costs.

  13. Thermally activated building systems in context of increasing building energy efficiency

    Directory of Open Access Journals (Sweden)

    Stojanović Branislav V.

    2014-01-01

    Full Text Available One of the possible ways to provide heating to the building is to use thermally activated building systems. This type of heating, besides providing significant increase in building energy efficiency, allows using low-temperature heating sources. In this paper, special attention is given to opaque part of the building façade with integrated thermally activated building systems. Due to fact that this type of system strongly depends on temperature of this construction-thermal element and type and thickness of other materials of the façade, influence of these parameters on energy efficiency was analyzed in this paper. Since the simplest and most promising way of using geothermal energy is to use it directly, for our analysis this source of energy was selected. Building energy needs for heating were obtained for real residential multi-family building in Serbia by using EnergyPlus software. The building with all necessary input for simulation was modeled in Google SketchUp with aid of Open Studio Plug-in. Obtained results were compared with measured heating energy consumption. The results show that thermally activated building systems represent good way to increase building energy efficiency and that applying certain temperatures within this element, low-energy house standard can be achieved.

  14. BUILDING ENERGY MANAGEMENT SYSTEM USING ISO 50001 STANDARD

    OpenAIRE

    Lokanath, Dr. M Dakshayini

    2016-01-01

    Neither energy can be created nor can be destroyed, so the main purpose of Building Energy Management Systems Software is to control the energy devices to make effective utilization of energy. All efforts are being put reduce energy consumption and decrease the carbon footprint. There are many alternative renewable energy sources to harvest naturally but currently these devices are costly for daily use. The ISO 50001 Standard has been proposed in 2001 for efficient use of energy in all commer...

  15. Energy Controlling System for Smart Building Using GSM and SCADA

    OpenAIRE

    Parkhe, Deepak; Singh, Pushpendra

    2015-01-01

    The efficient utilization of electrical appliances or loads is catching the attention of researchers in building automation. Therefore, a building energy management system plays a vital role in managing the demand response of electric power consumption in smart grid technologies. This integrates many new technologies such as home network, smart home con-troller, monitoring systems etc. This paper presents a scheme to monitor and control the electrical loads from remote locations as well. In p...

  16. Unintended anchors: Building rating systems and energy performance goals for U.S. buildings

    International Nuclear Information System (INIS)

    In the U.S., where buildings account for 40% of energy use, commercial buildings use more energy per unit area than ever before. However, exemplary buildings demonstrate the feasibility of much better energy performance at no additional first cost. This research examines one possible explanation for this inconsistency. The aim is to investigate whether the anchoring bias, which refers to our tendency to gravitate towards a pre-defined standard regardless of its relevance, influences energy performance goals in building design. The scope examines professionals who help set energy performance goals for U.S. buildings. Prior to being asked to set an energy performance goal, these professionals were randomly directed to one of three series of questions. One series set an anchor of 90% energy reduction beyond standard practice, one set a 30% anchor, and one set no anchor. Respondents exposed to the 90% anchor, and respondents exposed to no anchor at all, set higher energy performance goals than respondents exposed to the 30% anchor. These results suggest that building rating systems that only reward incremental energy improvements may inadvertently create anchors, thereby discouraging more advanced energy performance goals and inhibiting energy performance that is technically and economically feasible.

  17. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2013-01-01

    Full Text Available Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data through the RS485 field bus and stores the data into an SD card with mass storage, finally, using Internet to finish the communication and transmission to data server through TCP protocol. The collector has been used in application for two years, and the results show that the system is reliable and stable.

  18. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability

  19. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    Science.gov (United States)

    Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.

    1980-07-01

    The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.

  20. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  1. Energy-Efficient Building HVAC Control Using Hybrid System LBMPC

    CERN Document Server

    Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

    2012-01-01

    Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

  2. Systems accounting for energy consumption and carbon emission by building

    Science.gov (United States)

    Shao, Ling; Chen, G. Q.; Chen, Z. M.; Guo, Shan; Han, M. Y.; Zhang, Bo; Hayat, T.; Alsaedi, A.; Ahmad, B.

    2014-06-01

    The method of systems accounting for overall energy consumption and carbon emission induced by a building is illustrated in terms of a combination of process and input-output analyses with a concrete procedure to cover various material, equipment, energy and manpower inputs. A detailed case study based on raw project data in the Bill of Quantities (BOQ) is performed for the structure engineering of the landmark buildings in E-town, Beijing (Beijing Economic-Technological Development Area). Based on the embodied energy and carbon emission intensity database for the Chinese economy in 2007, the energy consumption and the carbon emission of the structure engineering of the case buildings are quantified as 4.15E+14 J and 4.83E+04 t CO2 Eq., corresponding to intensities of 6.91E+09 J/m2 and 0.81 t CO2 Eq./m2 floor area. Steel and concrete contribute respectively about 50% and 30% of the energy consumption and the carbon emission, as a result of the reinforced-concrete structure of the case buildings. Materials contribute up to about 90% of the total energy consumption and carbon emission, in contrast to manpower, energy and equipment around 8%, 1% and 0.1%, respectively.

  3. Load Modelling of Buildings in Mixed Energy Distribution Systems

    OpenAIRE

    Pedersen, Linda

    2007-01-01

    The main topic of this thesis has been the development of a new method for load modelling of buildings in mixed energy distribution systems. The method estimates design load profiles, yearly load profiles, load duration profiles and annual expected energy demand for a specified planning area, all divided into heat and electricity purposes. The heat load demand includes end-uses such as space heating, ventilation heating and hot tap water, while electricity load demand includes end-uses such a...

  4. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.

    2010-06-01

    A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

  5. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  6. Energy conservation and management system using efficient building automation

    Science.gov (United States)

    Ahmed, S. Faiz; Hazry, D.; Tanveer, M. Hassan; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.

    2015-05-01

    In countries where the demand and supply gap of electricity is huge and the people are forced to endure increasing hours of load shedding, unnecessary consumption of electricity makes matters even worse. So the importance and need for electricity conservation increases exponentially. This paper outlines a step towards the conservation of energy in general and electricity in particular by employing efficient Building Automation technique. It should be noted that by careful designing and implementation of the Building Automation System, up to 30% to 40% of energy consumption can be reduced, which makes a huge difference for energy saving. In this study above mentioned concept is verified by performing experiment on a prototype experimental room and by implementing efficient building automation technique. For the sake of this efficient automation, Programmable Logic Controller (PLC) is employed as a main controller, monitoring various system parameters and controlling appliances as per required. The hardware test run and experimental findings further clarifies and proved the concept. The added advantage of this project is that it can be implemented to both small and medium level domestic homes thus greatly reducing the overall unnecessary load on the Utility provider.

  7. Hierarchical fuzzy control of low-energy building systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhen; Dexter, Arthur [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  8. Sensitivity analysis for robust design of building energy systems

    International Nuclear Information System (INIS)

    The comprehensive design of building systems incorporates the tasks of selection, sizing and control of devices. A simultaneous acquirement of these tasks is a necessity to achieve an overall optimal design. However, such mutual optimizations become a complex problem, implying a high computational effort. A greater challenge appears once the uncertainties of boundary conditions such as weather conditions, user demands and energy costs are taken into account. A common approach to protect the suggested system configuration against the possible uncertainties is a stochastic optimization which results in a robust design. In this paper, first the sensitivity of the design to selected boundary conditions is extensively investigated. In a second step, the resulting designs of the deterministic and stochastic optimizations are compared for several uncertainties. All optimizations are setup using a previously developed framework which is extended to solve the stochastic optimization problem. The comprehensive analyses show that the achievement of a robust design is computationally demanding and not even desirable in general. However, the size of devices may vary by up to 100% when a robust design is attained. - Highlights: • Describing a tool for simultaneous design and control of building energy systems. • Mixed-integer linear programming of thermal and electrical devices in buildings. • Formulation of deterministic and stochastic optimization problems. • Sensitivity analysis for investigating the effects of uncertainties on the design. • A measure to assess the necessity of a robust design in a case study

  9. A comparative study of energy certification systems for buildings

    OpenAIRE

    Milicevic, Jelena

    2014-01-01

    Due to the large amount of energy consumption in buildings and the biggest potential of energy and ecology savings, energy efficiency and sustainable construction represent the priorities of modern architecture and energetics today.This paper shows a comparative analysis of energy certification of residential object in realistic environments with the aim of enhancing their energy efficiencies. Subjects of the analysis were two buildings - one in Norway (Oslo), and the other in Serbia (Belgrad...

  10. Recent Developments of the Modelica"Buildings" Library for Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

    2011-04-01

    At the Modelica 2009 conference, we introduced the Buildings library, a freely available Modelica library for building energy and control systems. This paper reports the updates of the library and presents example applications for a range of heating, ventilation and air conditioning (HVAC) systems. Over the past two years, the library has been further developed. The number of HVAC components models has been doubled and various components have been revised to increase numerical robustness.The paper starts with an overview of the library architecture and a description of the main packages. To demonstrate the features of the Buildings library, applications that include multizone airflow simulation as well as supervisory and local loop control of a variable air volume (VAV) system are briefly described. The paper closes with a discussion of the current development.

  11. Structure optimization of energy supply systems in tertiary sector buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Miguel A.; Ramos, Jose C.; Carvalho, Monica; Serra, Luis M. [Grupo GITSE - I3A, Department of Mechanical Engineering, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2009-10-15

    Trigeneration systems, also known as Combined Heat, Cooling and Power (CHCP) systems, are interesting alternatives to supply different energy services in urban districts and in large buildings, particularly in warm areas such as Mediterranean countries. These systems can provide substantial benefits from economic, energetic, and environmental viewpoints, since the cogenerated heat can be used for heating in winter as well as cooling in summer with an absorption refrigerator. This paper develops an optimization model using Mixed Integer Linear Programming (MILP) to determine the type, number and capacity of equipment in CHCP systems installed in the tertiary sector as well as to establish the optimal operation mode for the different plant components on an hour-by-hour basis throughout the year. The objective function to be minimized is the annual total cost. The optimization model considers the legal constraints imposed to feed the surplus autogenerated electricity into the grid at a regulated feed-in tariff. The optimization model is applied to design a system providing energy services for a hospital located in the city of Zaragoza (Spain). The effects of the financial market conditions and energy prices in the optimal structure of the system are analyzed. (author)

  12. Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio

    OpenAIRE

    Sharafi, M.; Elmekkawy, T.Y.; Bibeau, E.L.

    2015-01-01

    We develop a simulation-based meta-heuristic approach that determines the optimal size of a hybrid renewable energy system for residential buildings. This multi-objective optimization problem requires the advancement of a dynamic multi-objective particle swarm optimization algorithm that maximizes the renewable energy ratio of buildings and minimizes total net present cost and CO2 emission for required system changes. Three proven performance metrics evaluate the quality of the Pareto front g...

  13. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  14. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  15. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  16. Integrated Building Energy Systems Design Considering Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  17. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    Science.gov (United States)

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  18. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  19. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    International Nuclear Information System (INIS)

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  20. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  1. Solar-Energy System for a Commercial Building--Topeka, Kansas

    Science.gov (United States)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  2. A METHODOLOGY FOR ENERGY OPTIMIZATION OF BUILDINGS CONSIDERING SIMULTANEOUSLY BUILDING ENVELOPE HVAC AND RENEWABLE SYSTEM PARAMETERS

    OpenAIRE

    Bayraktar, Meltem

    2015-01-01

    Energy is the vital source of life and it plays a key role in development of human society. Any living creature relies on a source of energy to exist. Similarly, machines require power to operate. Starting with Industrial Revolution, the modern life clearly depends on energy. We need energy for almost everything we do in our daily life, including transportation, agriculture, telecommunication, powering industry, heating, cooling and lighting our buildings, powering electric equipment etc. Glo...

  3. Applications of Optimal Building Energy System Selection and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  4. A cooling system for buildings using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Daiyan, H. [Islamic Azad Univ., Semnan Branch (Iran)

    2007-05-15

    In Iranian historical architecture wind towers are used for cooling and ventilation. A wind tower is a tall structure that stands on the building. A wind tower is used in dray land, and only uses wind energy for conditioning. Its technology dates back over 1000 years. Wind towers were designed according to several parameters, some of the most important of which were building type, cooling space volume, wind direction and velocity and ambient temperature. This paper studies wind towers and characterizes airflow route and explains how to decrease temperature. To confirm the quality of the wind tower, some experiments in a case study shows it can decrease room temperature on comfort range and room temperature is almost constant on during day. (au)

  5. Automated energy management systems for small buildings. Final report, Volume 1: technical document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-01

    Energy controls can perform a valuable function in energy conservation or energy-management strategy in buildings. While the more-simple controls can be applied to virtually any building, the more-complex automation systems are currently available only to large buildings where their greater costs may be justified. At the present, however, there is a lack of effective, automatic energy-management control practices and schemes available for application to small buildings. This is due, in large measure, to the absence of cost-effective integrated control equipment in the small-building marketplace. Furthermore, a general philosophy or strategy, for the application of equipment for total energy conservation in small commercial buildings has not yet evolved. Both technical and marketing issues related to the implementation of automation systems in small commercial buildings under 75,000 square feet gross area are explored. The functional requirements for small-building automation systems are identified and determination of system costs and energy savings potential are made. Market analyses identify cost and payback requirements as well as attitudes of potential equipment buyers in the small-building market. Schools, apartments, and offices, which together consume more than half the energy of the small-building market, are used as analysis models. The market and technical analyses are combined to formulate the potential marketplace for a small building AEMS in terms of building size, and building type. An AEMS concept is defined which embodies the necessary functional requirements within a framework of applied strategy to energy conservation in buildings.

  6. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  7. Thermally activated building systems in office buildings: impact of control strategy on energy performance and thermal comfort

    OpenAIRE

    Sourbron, Maarten; Helsen, Lieve

    2010-01-01

    At the Science Park Arenberg site in Leuven (Belgium) two new office buildings equipped with thermally activated building systems (TABS) to cover the cooling load and the base heating load, are constructed. A ground coupled heat pump/direct cooling (HP/DC) system supplies heat and cold to the TABS, while a gas boiler/chiller combination feeds the air handling units. This paper evaluates the impact of the TABS control strategy on both energy consumption and thermal comfort. Furthermore, con...

  8. Comparison and optimization of building energy supply systems through exergy analysis and its perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Torio Blanco, Herena

    2012-07-01

    Growing concerns on environmental problems related to current energy use have emphasized the importance of ''energy-saving measures'' and the necessity for an increased efficiency in all forms of energy utilization. Being responsible for around 40% of the final energy use in Germany, buildings are major contributors to energy related problems and a sector where a more rational and efficient energy use is absolutely necessary. By showing the thermodynamic efficiency of an energy system, exergy analysis is expected to be a valuable tool for developing and designing more efficient energy supply systems in buildings, similarly as it has contributed to raise the efficiency of power plants. In this thesis, the usability and added value of exergy analysis applied to different building energy systems is investigated. Exergy analysis is, herefore, compared to conventional primary energy assessment and the different results and conclusions obtained from both methods are thoroughly studied and discussed.

  9. Sustainable Energy in Buildings by Contribution of Passive Solar Wall System

    OpenAIRE

    Pescaru, Radu-Aurel; Baran, Irina

    2013-01-01

    Due to the fact that the use and maintenance of buildings, in our country, absorbs about 40% of the entire energy consumption from primary sources it is important to consider this sector into the context of sustainable development. The sustainable development requires rethinking of the architectural concepts for the building in this regard. If the use of solar energy means that significantly less fossil fuel will be consumed, solar systems must be readily adaptable to existing buildings as...

  10. Impact of controlled ventilation systems on energy consumption in mediterranean school buildings

    OpenAIRE

    Fernandez-Aguera Escudero, Jessica; Domínguez Amarillo, Samuel; Campano Laborda, Miguel Ángel

    2012-01-01

    Current standards for indoor air quality (IAQ) in non-residential buildings demand high air renewal rates with different filtration stages and constant flow. Currently, new school buildings must incorporate mechanical ventilation systems which modify traditional heating installations in order to comply with the requirements for indoor air quality and energy efficiency. This study analyses the technical and energy outcomes involved in a school building when changing from a traditio...

  11. System Effects of Improved Energy Efficiency in Swedish District-Heated Buildings

    OpenAIRE

    Åberg, Magnus

    2014-01-01

    To alleviate global warming, European-Union member states must reduce primary energy use, emit less carbon dioxide (CO2), and increase renewable energy use. Buildings constitute a great potential for energy savings, but saving energy in district-heated buildings influences combined heat and power (CHP) production, other electricity generation, and global CO2 emissions.   This thesis investigates the system effects from Swedish district heating production caused by district heating demand chan...

  12. Development of a new energy efficiency rating system for existing residential buildings

    International Nuclear Information System (INIS)

    Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO2 emission density (i.e., CO2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign. - Highlights: • A new energy efficiency rating system for the residential building was developed. • The incentive and penalty programs were established using an advanced CBR model. • The new system was established using reasonable and fair standards. • It allows all residents to voluntarily participate in the energy saving campaign. • It can be applied to any country or sector in the global environment

  13. Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 2. Integration as Passive System

    OpenAIRE

    Niall, Dervilla; McCormack, Sarah; Griffiths, Philip; Cabeza, Luisa; Navarro, Lidia; Castell, Albert; de Grazia, Alvaro; Brown, Maria

    2015-01-01

    Energy consumption trends in residential and commercial buildings show a significant increase in recent decades. One of the key points for reducing energy consumption in buildings is to decrease the energy demand. Buildings envelopes are not just a structure they also provide protection from outdoor weather conditions always taking into account the local climate. Thermal energy storage has been used and applied to the building structure by taking advantage of sensible heat storage of material...

  14. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    International Nuclear Information System (INIS)

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  15. Optimisation of Building Energy System Technology Configuration Using Multi-Criteria Decision Making Methods

    Directory of Open Access Journals (Sweden)

    Rasa Džiugaitė-Tumėnienė

    2013-12-01

    Full Text Available This article presents the evaluation and optimization algorithm of the building energy system. Two main objectives have been achieved: the optimal configuration of the building energy system has been defined, which minimizes the use of non-renewable sources and reduces the environmental impact of the building. Energy demand for the house has been simulated employing DesignBuilder software. Five configurations of technologies for the building energy system have been chosen and simulated applying Polysun software in order to define the seasonal energy efficiency of the generators of each configuration. Multi-criteria decision making methods SAW (Simple Additive Weight, COPRAS (COmplex PRoportion ASsessment and MEW (Multiplicative Exponential Weighting have been used for finding the optimal decision on this case study.Article in Lithuanian

  16. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J.-M.

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  17. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    Science.gov (United States)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  18. Zone Level Occupant-Responsive Building Energy Systems at the GSA

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair

    2014-03-01

    The General Services Administration (GSA) partnered with the U.S. Department of Energy (DOE) to develop and implement building energy system retrofits, aiming to reduce energy consumption of at least two building systems by a total of 30 percent or more, as part of DOE’s Commercial Building Partnership (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program, working with the GSA and a team of consultants. This case study reports expected energy savings from appropriate energy efficient design and operations modifications to lighting and heating, ventilating and air conditioning (HVAC) systems at the selected study sites. These retrofits comprised installation of new lighting systems with dimming capability and occupancy-sensor control at the individual light fixture level, and utilized lighting system occupancy sensor signals to continually readjust zone-level ventilation airflow according to the number of people present, down to minimum rates when vacant.

  19. Improvement of energy performances of existing buildings by application of solar thermal systems

    OpenAIRE

    Krstić-Furundžić Aleksandra; Kosorić Vesna

    2009-01-01

    Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily ...

  20. Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations

    International Nuclear Information System (INIS)

    Energy analysis, environmental life-cycle assessment (LCA) and economic appraisals have been utilised to study the performance of a domestic building integrated photovoltaic (BIPV) system on a ‘whole systems’ basis. Energy analysis determined that the system paid back its embodied energy in just 4.5 years. LCA revealed that the embodied impacts were offset by the electricity generated to provide a net environmental benefit in most categories. Only carcinogens, ecotoxicity and minerals had a small net lifetime burden. A financial analysis was undertaken from the householder's perspective, alongside cost-benefit analysis from a societal perspective. The results of both indicated that the systems are unlikely to pay back their investment over the 25 year lifetime. However, the UK is in an important period (2010/11) of policy transition with a move away from the ‘technology subsidies’ of the Low Carbon Buildings Programme (LCBP) and towards a ‘market development policy’ of feed-in tariffs. Representing the next stage on an innovation S-curve this is expected to facilitate rapid PV uptake, as experienced in countries such as Germany, Denmark, and Spain. The results of the present study clearly demonstrate the importance of the new government support scheme to the future uptake of BIPV. - Highlights: ► LCA and economic appraisals of a UK domestic building integrated PV system. ► Energy analysis determined that the system paid back its embodied energy in 4.5 years. ► UK moved towards a market development policy of feed-in tariffs. ► Financial analysis shows the importance of the new FiT scheme to the uptake of PV.

  1. Energy efficiency of building envelope

    OpenAIRE

    V.M. Yakubson

    2014-01-01

    November, 12-13th, in Saint-Petersburg the 7th International congress "Energy efficiency. XXI century" took place. The reports were done in breakuo groups according to the various aspects of energy efficiency challenge: HVAC systems, water supply and sewerage systems, gas supply, energy metering. One of the grourps was devoted to thermophysics of buildings and energy effective design of building envelope.

  2. The system approach to energy savings in engineering networks of buildings

    Directory of Open Access Journals (Sweden)

    L.L. Goshka

    2011-01-01

    Full Text Available Taking into consideration that there is not definite differentiation between definitions "economy of energy" and "energy saving", often the effect of energy effective technologies can be received only by reduction of air exchange, that is breach of sanitary and hygienic regulations. In the article the attempt to distinguish these definitions with using system approach is done. In building branch absence of the system approach to building and city leads to serious system errors. For example, warming of building wallings using natural ventilation don't give real energy saving, but it leads to the air exchange decrease, therefore the given action raises risk of various diseases. In the article various system errors which can lead to acceptance of the erroneous decisions, influencing the sensitive initial data through air exchange reduction, are considered. A consequence of it are diseases of noninfectious character. To decrease quantity of system errors it is offered to use the system approach to these problems.

  3. The use of energy management and control systems to monitor the energy performance of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, K E [Univ. of California, Berkeley, CA (United States). Dept. of Architecture

    1994-12-01

    Monitored data play a very important part in the implementation and evaluation of energy conservation technologies and programs. However, these data can be expensive to collect, so there is a need for lower-cost alternatives. In many situations, using the computerized Energy Management and Control Systems (EMCSs)--already installed in many buildings--to collect these commercial building performance data has advantages over more conventional methods. This method provides data without installing incremental hardware, and the large amounts of available operational data can be a very rich resource for understanding building performance. This dissertation addresses several of these issues. One specific objective is to describe a monitoring-project planning process that includes definition of objectives, constraints, resources and approaches for the monitoring. The choice of tools is an important part of this process. The dissertation goes on to demonstrate, through eight case studies, that EMCS monitoring is possible, and to identify and categorize the problems and issues that can be encountered. These issues lead to the creation, use, and testing of a set of methods for evaluation of EMCS monitoring, in the form of guidelines. Finally, EMCS monitoring is demonstrated and compared with conventional monitoring more methodically in a detailed case study.

  4. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.

    Science.gov (United States)

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-01-01

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building. PMID:27240379

  5. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  6. Building Environment Analysis Based on Temperature and Humidity for Smart Energy Systems

    OpenAIRE

    Kwang-Ho Won; Jaeseok Yun

    2012-01-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using ...

  7. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  8. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  9. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  10. Decision process for the retrofit of municipal buildings with solar energy systems: a technical guide

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, Michael R.; Wood, Brian; Dozier, Warner; Braly, Mark; Yates, Alan

    1980-11-01

    As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station. (MHR)

  11. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  12. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... (and the the return temperature) would only be a few degrees above room temperature due to the very low heating demand and the large heat transfer surface area. One of the objectives in a newly started IEA Task 32 project is to investigate and develop improved thermal storages for combined solar...... a stable super cooling, i.e. the material is able to cool down below its freezing point (Tfusion) and still be liquid, the possibility exist for a storage with a very low heat loss. When energy is needed from the storage the solidification is activated and the temperature rises almost instantly to...

  13. Optimization of the Building Energy Performance through Dynamic Modeling, Systems Simulation, Field Monitoring and Evaluation of Renewable Energy Applications

    Directory of Open Access Journals (Sweden)

    Reshmi Banerjee

    2015-02-01

    Full Text Available The annual energy consumption in the residential and commercial sectors, in India is rising consistently at about 8% and the overall energy consumption in buildings has seen an increase from a low of 14% in the 1970s to nearly 33% in 2004/05. The electricity sector in India had an installed capacity of 254.049 GW as of end of September 2014. The research paper will deal with the modeling and optimization of the building energy performance by means of the application of the dynamic building simulation, the optimization of the energy systems and the verification of the energy consumptions and comfort conditions. An integrated tool is at an early stage of development to optimize the building energy performance to be expressed in terms of total energy use. The goal of the research paper is to optimize the building energy performance through the potential of the passive building technologies and the increase of efficiency of the building system.

  14. Control and energy optimization of ground source heat pump systems for heating and cooling in buildings

    OpenAIRE

    Cervera Vázquez, Javier

    2016-01-01

    [EN] In a context of global warming concern and global energy policies, in which heating and cooling systems in buildings account for a significant amount of the global energy consumption, ground source heat pump (GSHP) systems are widely considered as being among the most efficient and comfortable heating and cooling renewable technologies currently available. Nevertheless, both an optimal design of components and an optimal operation of the system as a whole become crucial so that these ...

  15. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  16. Energy Performance of a Novel System Combining Natural Ventilation with Diffuse Ceiling Inlet and Thermally Activated Building Systems (TABS)

    DEFF Research Database (Denmark)

    Yu, Tao

    thermally activated building systems (TABS) for cooling and ventilation in future Danish office buildings. The new solution would have the special potential of using natural ventilation all year round even in the extremely cold seasons without any draught risk. The main focuses of this study are the energy....... Both steady-state and dynamic measurements are carried out in the experimental chamber to investigate the energy performance of the system and the thermal comfort in the test room. Overall, this integrated system has high energy saving potential without any compromise of thermal comfort even in extreme......As a response to new stringent energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need in both summer and winter. This study proposes a novel system combining natural ventilation with diffuse ceiling inlet and...

  17. Building Services Systems

    DEFF Research Database (Denmark)

    Zinzi, Michele; Romeo, Carlo; Thomsen, Kirsten Engelund;

    2015-01-01

    This guideline on Building Services Systems is one of four guidelines produced by the School of the Future project. The other three guidelines cover: Building Construction Elements, Improved Indoor Environmental Quality and Concepts for Zero Emission Schools. This guideline consists of the...... description of 5 main technologies: condensing boilers, heat pumps, ventilation systems, lighting and photovoltaic systems. For each technology chapter there is the same content list: an introduction, a brief technology description, some advantages and disadvantages, market penetration and utilisation, energy...

  18. Development and analysis of sustainable energy systems for building HVAC applications

    International Nuclear Information System (INIS)

    The main HVAC applications considered in this paper are heating and cooling. Three newly developed systems for heating and cooling applications in buildings are proposed and assessed. Energy and exergy analyses are performed to assess the performance of heating, cooling and overall systems for each case, and the effects of various parameters on the energy and exergy efficiencies are examined. Also, the effect of changing the energy input for each system is also found in terms of overall efficiency. The overall system energy efficiency is found to be highest for the natural gas operated system with a vapour absorption chiller (system 1) at 27.5% and lowest for the photovoltaic (PV) and solar thermal operated system with vapour compression chiller (system 3) at 19.9%. The overall system exergy efficiency is found to be highest for the PV and solar thermal operated system with vapour compression chiller (system 3) at 3.9% and lowest for the PV and solar thermal operated system with heat pump (system 2) at 1.2%, respectively. - Highlights: • Three HVAC systems for buildings using renewable energy sources are proposed and assessed. • A performance improvement study is undertaken. • Parametric studies are carried out to determine the effects of various parameters on energy and exergy efficiencies

  19. RESIDENTIAL BUILDING ADAPTIVE ENERGY MANAGEMENT SYSTEM (R-BAEMS) DESIGN

    Science.gov (United States)

    The expected outcomes from Phase I included 1) a set of guidelines for implementing R-BAEMS in residential structures from both a retrofit and original design perspective and 2) a cost and energy analysis of R-BAEMS impact on the environment. The status of each of the outcomes...

  20. Building for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    O' Callaghan, P.W.

    1978-01-01

    The need to conserve energy, how energy may be saved, and thermal energy conservation in buildings are discussed in the introductory chapter. Heat gains and losses, fluid flow, convective heat transfer, and radiative heat transfer are covered in chapter 2, fundamentals. Thermal comfort, climate, heat losses from buildings, heat gains to buildings, thermal network analysis, energy thrift, secondary effects, waste heat recovery, and altenative energy sources are subjects covered in chapters 3 to 11. The final chapter, prospectus for the future, covers discussions on areas where energy should be saved, total energy, energy management, energy accounting, and practicing energy conservation. (MCW)

  1. Tropical Zero Energy Office Building

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    by daylight, supplemented by electric lighting during very dark and overcast periods. Extensive active energy efficiency measures are implemented in the building in order to reduce the need for electricity to an absolute minimum, without compromising the request for comfortable temperatures and adequate......The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... system. The overall objective of the project is to achieve zero energy consumption at lowest possible initial investments. The ZEO Building shows implementation of integrated design concepts, where active and passive energy systems are interwoven into the building itself, and where several building...

  2. Operational Planning of Low-Energy District Heating Systems Connected to Existing Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    This article focuses on low-energy District Heating (DH) systems operating in low-temperatures such as 55°C in terms of supply and 25°C in terms of return in connection with existing buildings. Since the heat loss from the network has a significant impact in case of supplying heat to low-energy h......This article focuses on low-energy District Heating (DH) systems operating in low-temperatures such as 55°C in terms of supply and 25°C in terms of return in connection with existing buildings. Since the heat loss from the network has a significant impact in case of supplying heat to low......-energy houses in a traditional DH network, the aim in this paper was given to reduce the dimensions of the low-energy DH network as much as possible. Hence, the performance analyses of the inhouse radiator heating systems equipped in existing buildings were carried out for low temperatures of supply and return....... The response of the radiator heating systems at different levels of supply temperature was used to form the operational planning of the low-energy DH system, which determined the design parameters of the low-energy DH network in terms of overall mass flow requirement and the return temperature from...

  3. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount of information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.

  4. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  5. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  6. Energy performance in buildings

    International Nuclear Information System (INIS)

    The adoption of the building sector regulations strongly oriented to the energy sustainability becomes more effective, also on the economic plan, if placed by one spread of the energetic certification of the buildings

  7. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. PMID:25869418

  8. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  9. Building Environment Analysis Based on Temperature and Humidity for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Won

    2012-10-01

    Full Text Available In this paper, we propose a new HVAC (heating, ventilation, and air conditioning control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  10. Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems

    Science.gov (United States)

    Yun, Jaeseok; Won, Kwang-Ho

    2012-01-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004

  11. Ethernet TCP/IP based building energy management system in a university campus in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jomoah, Ibrahim M. [Department of Industrial Engineering, King Abdulaziz University Jeddah-21589 (Saudi Arabia); Kumar, R. Sreerama; Abdel-Shafi, Nabil Yassien [Saudi Electricity Company Chair for DSM and EE, Vice Presidency for Projects, King Abdulaziz University Jeddah 21589 (Saudi Arabia); Al-Abdulaziz, Abdulaziz Uthman M.; Obaid, Ramzy R. [Department of Electrical and Computer Engineering, King Abdulaziz University Jeddah-21589 (Saudi Arabia)

    2013-07-01

    This paper investigates the effectiveness of the Building Energy Management System (BMS) installed in the typical buildings in the main campus of King Abdulaziz University, Jeddah, in Saudi Arabia. As the domestic electricity and hence the oil consumption in Saudi Arabia is increasing at a very alarming rate compared to the other countries in the world, it is of paramount importance to resort to urgent measures in various industrial, commercial and residential sectors in the country to implement energy conservation measures. The major electrical load in the buildings in the University corresponds to air-handling units and lighting. If the Hajj period, during which millions of pilgrims visit Holy Makah, coincides with the summer, the electricity demand in the country further increases. Considering these issues, the university has taken initiatives to minimize energy consumption in the campuses through the various energy conservation measures. Towards this end, BMS is installed in a few of the typical classrooms and office buildings utilizing the existing campus Ethernet TCP/IP. The data analysis is performed over the period from April to September as it is the peak load period due to summer season. The effectiveness of the BMS in the minimization of the energy consumption in these buildings is established by comparing the results of data analysis with BMS against those before the installation of BMS over the peak period. The investigations reveal that appreciable saving in energy consumption can be achieved with the installation of BMS, the magnitude being dependent upon factors such as building characteristics, type of building, its utilization and period of use.

  12. Development of a commercial building/site evaluation framework for minimizing energy consumption and greenhouse gas emissions of transportation and building systems

    Science.gov (United States)

    Weigel, Brent A.

    In urbanized areas, building and transportation systems generally comprise the majority of energy consumption and greenhouse gas (GHG) emissions. Realization of global environmental sustainability depends upon efficiency improvements of building and transportation systems in the built environment. The selection of efficient buildings and locations can help to improve the efficient utilization of transportation and building systems. Green building design and rating frameworks provide some guidance and incentive for the development of more efficient building and transportation systems. However, current frameworks are based primarily on prescriptive, component standards, rather than performance-based, whole-building evaluations. This research develops a commercial building/site evaluation framework for the minimization of energy consumption and GHG emissions of transportation and building systems through building/site selection. The framework examines, under uncertainty, multiple dimensions of building/site operation efficiencies: transportation access to/from a building site; heating, ventilation, air conditioning, and domestic hot water; interior and exterior lighting; occupant conveyances; and energy supply. With respect to transportation systems, the framework leverages regional travel demand model data to estimate the activity associated with home-based work and non-homebased work trips. A Monte Carlo simulation approach is used to quantify the dispersion in the estimated trip distances, travel times, and mode choice. The travel activity estimates are linked with a variety of existing calculation resources for quantifying energy consumption and GHG emissions. With respect to building systems, the framework utilizes a building energy simulation approach to estimate energy consumption and GHG emissions. The building system calculation procedures include a sensitivity analysis and Monte Carlo analysis to account for the impacts of input parameter uncertainty on

  13. Thermodynamic analyses and assessments of various thermal energy storage systems for buildings

    International Nuclear Information System (INIS)

    Highlights: ► Proposing a novel latent (PCM), thermochemical and sensible (aquifer) TES combination for building heating. ► Performing comprehensive environmental, energy, exergy and sustainability analyses. ► Investigating the effect of varying dead state temperatures on the TESs. - Abstract: In this study, energetic, exergetic, environmental and sustainability analyses and their assessments are carried out for latent, thermochemical and sensible thermal energy storage (TES) systems for phase change material (PCM) supported building applications under varying environment (surrounding) temperatures. The present system consists of a floor heating system, System-I, System-II and System-III. The floor heating system stays at the building floor supported with a floor heating unit and pump. The System-I includes a latent TES system and a fan. The latent TES system is comprised of a PCM supported building envelope, in which from outside to inside; glass, transparent insulation material, PCM, air channel and insulation material are placed, respectively. Furthermore, System-II mainly has a solar-thermochemical TES while there are an aquifer TES and a heat pump in System-III. Among the TESs, the hot and cold wells of the aquifer TES have maximum exergetic efficiency values of 88.782% and 69.607% at 8 °C dead state temperature, respectively. According to the energy efficiency aspects of TESs, the discharging processes of the latent TES and the hot well of the aquifer TES possess the minimum and maximum values of 5.782% and 94.118% at 8 °C dead state temperature, respectively. Also, the fan used with the latent TES is the most environmentally-benign system component among the devices. Furthermore, the most sustainable TES is found for the aquifer TES while the worst sustainable system is the latent TES.

  14. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xuezhi; Di, Yanqiang [China Academy of Building Research, Beijing 100013 (China); Wu, Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Li, Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system. (author)

  15. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai Xuezhi [China Academy of Building Research, Beijing 100013 (China)], E-mail: daixz9999@126.com; Wu Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Di Yanqiang [China Academy of Building Research, Beijing 100013 (China); Li Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  16. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    International Nuclear Information System (INIS)

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  17. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  18. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    Science.gov (United States)

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-01

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages. PMID:27031788

  19. Research and application of active hollow core slabs in building systems for utilizing low energy sources

    International Nuclear Information System (INIS)

    Highlights: • A review on the development and modeling of active hollow core slab is presented. • The applications and performance evaluation of the slab in building are reviewed. • Finite element or finite difference method is often used in multidimensional model. • Performance evaluations of building using active slabs for ventilation are limited. • More works on the active hollow core slab are worthwhile. - Abstract: The society and the building professionals have paid much concern in recent years on building energy efficiency and the development and applications of low energy technologies for buildings/green buildings allowing the elimination, or at least reduction of dependence on electricity or fossil fuel while maintaining acceptable indoor environment. Utilizations of favorable diurnal temperature difference and ground thermal source for air conditioning are among these low energy technologies. Utilization of the hollow cores in the prefabricated slab for ventilation and the mass of the slab for thermal storage is widely used in building systems in Europe by exploiting the low energy source of the ambient air. These hollow core slabs aim at enlarging the heat transfer surface between the slab mass and the air in the core, which permits substantial heat flows even for relatively small temperature differences. This, in turn, allows the use of low energy cooling or heating sources, such as the ground, outside air or recovered process heat. In this paper, we present a comprehensive review of the research and application of active hollow core slabs in building systems for utilizing low energy sources. The principle and development of active hollow core slabs in building systems for leveling the indoor temperature fluctuation by ventilation air passing the cores are described. Calculation models of the active hollow core concrete slab as well as the practical applications and performance evaluation of the slab applied in building systems for air

  20. Energy-efficient window systems. Effects on energy use and daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buelow-Huebe, H.

    2001-11-01

    This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate. Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m{sup 2}K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m{sup 2}K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very

  1. Useful strategy in the design of energy-efficient buildings using innovative daylighting systems

    OpenAIRE

    HAN, HYUN JOO

    2010-01-01

    This research work has been carried out to utilize daylight more effectively for indoor illumination in an energy efficient building without any compromise on indoor environmental quality; especially the visual comfort on task plane. Two different daylighting systems have been designed and constructed, and a series of tests have been performed to assess their photometric characteristics as well as their performance. A typical system considered has an optic concentrator capable of tracking the...

  2. Solar energy system installed at the North Georgia APDC office building

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    Information is provided on the solar energy system installed in the newly constructed office building of the North Georgia Area Planning and Development Commission near downtown Dalton, Georgia. This solar heating, cooling and hot water system supplies 65 to 70% of the cooling demand and 90 to 95% of the heating demand. There are 2,001 square feet of effective Revere collector area, and the absorption chiller is in Arkla model 300 and provides 16 tons of cooling.

  3. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  4. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  5. Dynamic classification system in large-scale supervision of energy efficiency in buildings

    International Nuclear Information System (INIS)

    Highlights: • Rough set approximation of classification improves energy efficiency prediction. • Dynamic features of diagnostic classification allow for its precise prediction. • Indiscernibility in large population enhances identification of process features. • Diagnostic information can be refined by dynamic references to local neighbourhood. • We introduce data exploration validation based on system dynamics and uncertainty. - Abstract: Data mining and knowledge discovery applied to the billing data provide the diagnostic instruments for the evaluation of energy use in buildings connected to a district heating network. To ensure the validity of an algorithm-based classification system, the dynamic properties of a sequence of partitions for consecutive detected events were investigated. The information regarding the dynamic properties of the classification system refers to the similarities between the supervised objects and migrations that originate from the changes in the building energy use and loss similarity to their neighbourhood and thus represents the refinement of knowledge. In this study, we demonstrate that algorithm-based diagnostic knowledge has dynamic properties that can be exploited with a rough set predictor to evaluate whether the implementation of classification for supervision of energy use aligns with the dynamics of changes of district heating-supplied building properties. Moreover, we demonstrate the refinement of the current knowledge with the previous findings and we present the creation of predictive diagnostic systems based on knowledge dynamics with a satisfactory level of classification errors, even for non-stationary data

  6. Calculation of the yearly energy performance of heating systems based on the European Building Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; Langkilde, Gunnar

    2009-01-01

    and cost-effectiveness. For new and existing buildings this requires a calculation of the energy performance of the building including heating, ventilation, cooling and lighting systems, based on primary energy. Each building must have an energy certificate and regular inspections of heating, cooling...... and ventilation systems must be performed. The present paper will present the method for calculating the energy performance for heating systems. The relevant CEN-standards are presented and a sample calculation of energy performance is made for a small family house in different geographical locations: Stockholm...

  7. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Fei Fei

    2014-05-01

    Full Text Available Wireless sensor networks (WSNs have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that converts the mechanical energy from the airflow in ventilation ducts into electrical energy. The system uses a flutter energy conversion device (FECD capable of working at low airflow speeds while installed on the ventilation ducts inside of buildings. A power management strategy implemented with a circuit system ensures sufficient power for driving commercial electronic devices. For instance, the power management circuit is capable of charging a 1 F super capacitor to 2 V under ventilation duct airflow speeds of less than 3 m/s.

  8. Design and Implementation of a Multi-Standard Event-Driven Energy Management System For Smart Buildings

    OpenAIRE

    Patti, Edoardo; Acquaviva, Andrea; Macii, Enrico

    2014-01-01

    This paper presents the design and implementation of a multi-standard energy management system, which leverages heterogeneous devices to convert existing buildings into Smart Buildings. Its main purpose is to increase the energy efficiency of buildings providing user awareness to promote green behaviors. The proposed solution has been designed to enable interoperability across different standards and protocols in order to develop applications with which end users can interact with the system....

  9. Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual

    International Nuclear Information System (INIS)

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned

  10. Technoeconomic assessment of a building-integrated PV system for electrical energy saving in residential sector

    International Nuclear Information System (INIS)

    This paper describes the installation, technical characteristics, operation and economic evaluation of a grid-connected building-integrated photovoltaic system (BIPV) installed in Northern Greece, and in particular in the city of Kastoria. The technical and economical factors are examined using a computerized renewable energy technologies (RETs) assessment tool. A number of different economic and financial feasibility indices are calculated for different financing scenarios in order to assess the gross return of the investment. Useful conclusions were drawn regarding the feasibility of BIPV systems and their potential for increased energy market penetration. (Author)

  11. A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study

    Science.gov (United States)

    Breen, M.; O’Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.

    2016-03-01

    The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.

  12. Exergetic assessment of transmission-concentrated solar energy systems via optical fi bres for building applications

    OpenAIRE

    ZIDANI, Chafika; BENYOUCEF, Boumédiène; MADINI, Nassima

    2012-01-01

    Optical fibressolar energy transmission and concentration provide a flexible way of handling concentrated solar energy. Solar lighting with Fibre Optic Bundles (FOBs) can be considered a promising option for energy-efficient green buildings. This study deals with ...

  13. Management of hybrid energy supply systems in buildings using mixed-integer model predictive control

    International Nuclear Information System (INIS)

    Highlights: • Management of a heating supply system for buildings with storage tank is optimized. • Mixed-integer model predictive controller for hybrid energy supply is proposed. • Efficient management of a stratified storage tank is provided. • Unit commitment problem with switching heat pump is solved for heat load prediction. • Excellent and robust performance is guaranteed by extensive analysis of parameters. - Abstract: In this paper a mixed-integer model predictive controller for hybrid energy supply systems in buildings is presented. This approach is based on a hierarchical building control concept where the energy supply level is coupled to the energy consumption level only by the heat load. The supply level is characterized by non-linear dynamics due to a stratified water storage tank and a switched heat pump with minimum on/off times. The mixed-integer model predictive controller optimizes the unit commitment problem at minimum costs while satisfying the consumption level’s predicted heat load. The hybrid system is formulated as a piecewise affine model comprising continuous and discrete system inputs. Moreover, the proposed controller is able to manage the stratified storage tank including switching sequences of the heat pump with respect to energy price forecasts. The effectiveness of this approach is shown by a comparison to a model predictive controller with an a priori fixed operation mode profile, where the heat pump is only operating at night, and discussing the effect of the variation of the stratified storage tank size. The proposed concept is able to flexibly manage all sizes of stratified storage tanks with better performance than the reference control strategy, which is only effective for larger tanks. Additionally, a robustness analyses demonstrates that the mixed-integer model predictive controller can handle errors in the heat load prediction from the consumption level. Both analyses show promising results for the practical use

  14. Design and Implementation of a Multi-Standard Event-Driven Energy Management System For Smart Buildings

    OpenAIRE

    Khajenasiri, Iman; Patti, Edoardo; Jahn, Marco; Acquaviva, Andrea; Verhelst, Marian; Macii, Enrico; Gielen, Georges

    2014-01-01

    This paper presents the design and implementation of a multi-standard energy management system, which leverages heterogeneous devices to convert existing buildings into Smart Buildings. Its main purpose is to increase the energy efficiency of buildings providing user awareness to promote green behaviors. The proposed solution has been designed to enable interoperability across different standards and protocols in order to develop applications with which end users can interact with the s...

  15. Strategic Energy Planning of Residential Buildings in a Smart City: A System Dynamics Approach

    Directory of Open Access Journals (Sweden)

    Giancarlo Caponio

    2015-12-01

    Full Text Available Buildings are the largest urban energy consumers, but their impact can be largely cut back by improving efficiency. Policy-making plays a crucial role in harmonizing national and local incentive schemes. The authors analyse variables related to energy consumption, then propose a simulation model based on System Dynamics applied to a medium-sized Italian city. The model allows the testing of “what-if” scenarios and analysis of the results of implementing energy efficiency policies. Results stress the importance of a holistic view of urban energy processes. Simulation trends provide essential information for the city’s future energy and carbon emission profiles, helping policy-makers to achieve their goal.

  16. Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.;

    2011-01-01

    , (4) the type of energy balance, (5) the accepted renewable energy supply options, (6) the connection to the energy infrastructure and (7) the requirements for the energy efficiency, the indoor climate and in case of gird connected ZEB for the building–grid interaction. This paper focuses on the......The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires...... clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing a new ZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance...

  17. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  18. Saving Building Energy through Advanced Control Strategies

    Directory of Open Access Journals (Sweden)

    Stephen Treado

    2013-09-01

    Full Text Available This article presents an analysis of the relationship between building energy usage and building control system operation and performance. A method is presented for estimating the energy saving potential of improvements in building and control system operation, including the relative impact of recommssioning and hardware and software upgrades, based on a subjective assessment of the level of energy efficient design and the energy usage of the building relative to similar buildings as indicated by the Energy Utilization Index for the building. The method introduces a Building Design Index and a Building Operating Index to evaluate building energy performance versus similar buildings, and uses these indices to estimate potential savings and effectiveness of control system improvements.

  19. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José;

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures and by...... incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation...

  20. Municipal Building Energy Usage

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set contains energy use data from 2009-2014 for 139 municipally operated buildings. Metrics include: Site & Source EUI, annual electricity, natural...

  1. The design of a solar energy collection system to augment heating and cooling for a commercial office building

    Science.gov (United States)

    Basford, R. C.

    1977-01-01

    Analytical studies supported by experimental testing indicate that solar energy can be utilized to heat and cool commercial buildings. In a 50,000 square foot one-story office building at the Langley Research Center, 15,000 square feet of solar collectors are designed to provide the energy required to supply 79 percent of the building heating needs and 52 percent of its cooling needs. The experience gained from the space program is providing the technology base for this project. Included are some of the analytical studies made to make the building design changes necessary to utilize solar energy, the basic solar collector design, collector efficiencies, and the integrated system design.

  2. Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Ondrej Linda; Milos Manic; Craig Rieger

    2014-08-01

    Building Energy Management Systems (BEMSs) are essential components of modern buildings that utilize digital control technologies to minimize energy consumption while maintaining high levels of occupant comfort. However, BEMSs can only achieve these energy savings when properly tuned and controlled. Since indoor environment is dependent on uncertain criteria such as weather, occupancy, and thermal state, performance of BEMS can be sub-optimal at times. Unfortunately, the complexity of BEMS control mechanism, the large amount of data available and inter-relations between the data can make identifying these sub-optimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD) based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm based BEMS. In six different scenarios, the Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more), that the alarm based BEMS. In addition, the Fuzzy-ADLD method identified cases that were missed by the alarm based system, demonstrating potential for increased state-awareness of abnormal building behavior.

  3. Analysis of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LIDeying; FANYun; HAOBin

    2003-01-01

    This paper analyzes the matter of building energy efficiency and heating system, and puts forward the measure of heating innovation, aiming at the improvement of Chinese building energy efficiency and heating innovation, which exceeds some possible advice for future development.

  4. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive and...... reliable means for seasonal storage of thermal energy. This is particularly true at locations where seasonal variations of solar radiation are significant and/or in climates where seasonally varying space heating and cooling loads dominate energy consumption. This article conducts a literature review of......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long...

  5. ENERGY STAR and Green Buildings--Using ENERGY STAR Resources for Green Building Rating Systems: LEED[R], Green Globes[R] and CHPS

    Science.gov (United States)

    Utebay, Kudret

    2011-01-01

    Every building, from the smallest school to the tallest skyscraper, uses energy. This energy is most often generated by burning fossil fuels, which releases greenhouse gases into the atmosphere and contributes to climate change. Existing commercial buildings offer a significant opportunity for low-cost, immediate emissions and energy cost…

  6. Mobilisation of the potential for the renewal of energy systems in existing buildings; Mobilisierung der energetischen Erneuerungspotenziale im Wohnbaubestand

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Baur, M.; Kaufmann, Y. [econcept AG, Zuerich (Switzerland); Jakob, M.; Ott, A. [Centre for Energy Policy and Economics (CEPE), ETH Zuerich, Zuerich (Switzerland)

    2005-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) summarises the findings of an energy-policy project that looked into the potential for the renewal of energy systems in existing buildings. The report presents an analysis of the situation as far as buildings, their ownership and the development of renovation work is concerned. Also, the results of a survey made under the owners of buildings and managers of real estate with respect to building renovation aspects are presented and discussed. Further, an analysis of problems arising from deficits in the renewal of energy-relevant components is provided and background and motivation for the renewal of buildings are looked at. Also, economic aspects and sustainability issues are considered. A further chapter covers strategies and measures that can be used to mobilise the renewal potential, including legislature and labelling systems.

  7. Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

    OpenAIRE

    Musbah Mohamed H.; Živković Branislav D.; Kosi Franc F.; Abdulgalil Mohamed M.; Sretenović Aleksandra A.

    2014-01-01

    The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar...

  8. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Chusak, Lee; Daiber, Jared; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2012-07-01

    Using Computational Fluid Dynamics (CFD), four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a) an all-air overhead system, (b) a combined all-air overhead and hydronic radiant system (chilled ceiling), (c) an all-air raised floor system (displacement ventilation), and (d) a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period) and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room). Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  9. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Directory of Open Access Journals (Sweden)

    Lee Chusak, Jared Daiber, Ramesh Agarwal

    2012-01-01

    Full Text Available Using Computational Fluid Dynamics (CFD, four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a an all-air overhead system, (b a combined all-air overhead and hydronic radiant system (chilled ceiling, (c an all-air raised floor system (displacement ventilation, and (d a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room. Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  10. Singapore's Zero-Energy Building's daylight monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Grobe, Lars; Wittkopf, Stephen; Pandey, Anupama Rana; Xiaoming, Yang; Seng, Ang Kian; Scartezzini, Jean-Louis; Selkowitz, Stephen

    2010-02-28

    A setup to monitor the daylighting performance of different glazing types in Singapore is presented. The glazing is installed in the facade of four dedicated testing chambers in BCAA's Zero Energy Building in Singapore. These test rooms are equipped with sensors that both record illuminances on the work plane, and luminances as seen by occupants. The physical and logical design of the monitoring system is presented. Criteria to assess the daylighting performance are introduced, and initial results of the work in progress are presented.

  11. Modular system design for vegetated surfaces: a proposal for energy-efficient buildings

    OpenAIRE

    Manso, Maria; Castro-Gomes, J.; Silva, Pedro D.; Virtudes, Ana Lídia; Delgado, F.M.G.

    2013-01-01

    http://issuu.com/maria_manso/docs/bess-sb13-paper-01-revised?workerAddress=ec2-23-22-93-32.compute-1.amazonaws.com Buildings represent 40 % of total energy consumption in the European Union (EU). So it is peremptory to reduce the EU energy dependency and greenhouse gas emissions. The Energy Performance of Buildings Directive 2010/31/EU (EPBD) requires that by 2020 all new buildings must be nearly “zero-energy buildings”. This document also evidences the importance to use passive design sol...

  12. Government management and implementation of national real-time energy monitoring system for China large-scale public building

    International Nuclear Information System (INIS)

    The supervision of energy efficiency in government office buildings and large-scale public buildings (GOBLPB) is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. It is significant for China government to achieve the target: reducing building energy consumption by 11 million ton standard coal before 2010. In the framework of a national demonstration project concerning the energy management system, Shenzhen Municipality has been selected for the implementation of the system. A data acquisition system and a methodology concerning the energy consumption of the GOBLPB have been developed. This paper summarizes the various features of the system incorporated into identifying the building consumes and energy saving potential. This paper also defines the methods to achieve the real-time monitoring and diagnosis: the meters installed at each building, the data transmitted through internet to a center server, the analysis and unification at the center server and the publication through web. Furthermore, this paper introduces the plans to implement the system and to extend countrywide. Finally, this paper presents some measurements to achieve a common benefit community in implementation of building energy efficiency supervisory system on GOBLPB in its construction, reconstruction or operation stages.

  13. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  14. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  15. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  16. SEíS: A semantic-based system for integrating building energy data

    Directory of Open Access Journals (Sweden)

    Madrazo, L.

    2015-03-01

    Full Text Available Access to reliable energy related data is a fundamental factor when taking decisions that help to improve the energy efficiency of buildings. The increase in the amount of data we have available has led to the need to develop information systems that facilitate the analysis of such data to the agents which are present throughout the building life cycle, from the design phase to maintenance. Semantic web technologies provide a solution to interlink distributed data sources. This requires the construction of shared vocabularies (i.e. ontologies which capture the meaning that users give to the data and facilitate access to them. As yet there are no consolidated methods to build these vocabularies. This article presents the methodology developed to create SEíS, an energy information system that uses semantic technologies to integrate energy related data and to facilitate services to the different agents involved throughout the stages of the building life cycle.El acceso a los datos relacionados con la energía es un factor fundamental para tomar decisiones que ayuden a mejorar la eficiencia energética de los edificios. El incremento de la cantidad de datos disponibles ha llevado a la necesidad de desarrollar sistemas de información que faciliten el análisis de los mismos a los agentes que participan a lo largo del ciclo de vida del edificio, desde el diseño hasta el mantenimiento. Las tecnologías de la web semántica proporcionan una solución para interconectar fuentes de datos distribuidas. Esto requiere la construcción de vocabularios compartidos (i.e. ontologías que capten el significado que le dan los usuarios a la información y faciliten el acceso a los datos. No existen aún métodos consolidados para construir estos vocabularios. En este artículo se presenta la metodología desarrollada para crear SEíS, un sistema de información energética que utiliza tecnologías semánticas para integrar datos energéticos y facilitar

  17. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be ta...... of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments.......Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...

  18. Warming impact on energy use of HVAC system in buildings of different thermal qualities and in different climates

    International Nuclear Information System (INIS)

    Highlights: • Improving TQBE reduces heating load, while it might increase cooling load. • Warming impact on energy use of HVAC varies from one climate to another. • Warming impact on energy use of HVAC depends on building’s thermal quality. • In mild climate, warming does not have a significant impact on energy use of HVAC. - Abstract: In order to combat climate change, energy use in the building must be further reduced. Heating ventilation and air conditioning (HVAC) systems in residential buildings account for considerable fraction of global energy consumption. The potential contribution the domestic sector can make in reducing energy consumption is recognized worldwide. The driving energy of HVACs depends on the thermal quality of the building envelope (TQBE) and outside temperature. Definitely, building regulations are changing with the time toward reduce the thermal loads of buildings. However, most of the existing residential buildings were built to lower TQBE. For instant, 72% of residential dwellings in the 15-EU were built before 1972. To investigate the impact of warming on driving energy of HVACs of a residential building a computer model was developed. Three climate categories/cities were considered, i.e. Stockholm (cold), Istanbul (mild), and Doha (hot). In each city, two buildings were modeled: one was assumed to be built according to the current local buildings regulations (standard TQBE), while the anther was built to lower TQBE. The simulations were run for present and future (in 2050) outdoor designing conditions. The calculations show that the impact of the warming on annual driving energy of HVACs (reduction or increase) depends very much on the climate category and on the TQBE. Based on the climate and TQBE, the change in annual HVACs energy varies from −7.4% (in cold climate) to 12.7% (in hot climate). In mild climate, it was shown that the warming does not have significant impact on annual HVACs energy. Improving the TQBE can

  19. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-08-01

    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  20. Alternative Natural Energy Sources in Building Design.

    Science.gov (United States)

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  1. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike;

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The...... different parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables...

  2. Systems and methods for energy cost optimization in a building system

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Robert D.; Wenzel, Michael J.

    2016-09-06

    Methods and systems to minimize energy cost in response to time-varying energy prices are presented for a variety of different pricing scenarios. A cascaded model predictive control system is disclosed comprising an inner controller and an outer controller. The inner controller controls power use using a derivative of a temperature setpoint and the outer controller controls temperature via a power setpoint or power deferral. An optimization procedure is used to minimize a cost function within a time horizon subject to temperature constraints, equality constraints, and demand charge constraints. Equality constraints are formulated using system model information and system state information whereas demand charge constraints are formulated using system state information and pricing information. A masking procedure is used to invalidate demand charge constraints for inactive pricing periods including peak, partial-peak, off-peak, critical-peak, and real-time.

  3. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Wall, L.W.; Rosenfeld, A.H.

    1982-12-01

    Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

  4. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document

  5. building integrated wind energy

    OpenAIRE

    Wang, Jialin

    2013-01-01

    In considering methods of reducing the emission of carbon dioxide; there is a growing interest for use of wind power at domestic building in U.K. But the technology of wind turbines development in building environment is more complicated than in open areas. Small wind turbines in suburban areas have been reported as having unsatisfactory energy output, but it is not clear whether this is due to insufficient wind resource or low turbine efficiency. The aim of this research is to discover wheth...

  6. Energy Efficiency Approach to Intelligent Building

    Directory of Open Access Journals (Sweden)

    Gitanjali Birangal

    2015-07-01

    Full Text Available Energy efficiency has nowadays become one of the most challenging tasks and this has boosted research on fresh fields, such as Ambient Intelligence. Energy consumption in the housing and tertiary sectors is especially high in developed countries. There is a great potential for energy savings in these sectors. Energy conservation measures are developed for newly constructed buildings and for buildings under restoration. However, to achieve a significant diminution in energy consumption apart from the standard energy-efficiency methods, pioneering technologies should be implemented, including renewable energy. Now, buildings are increasingly anticipated to meet higher and more complex performance requirements. Among these requirements, energy efficiency is renowned as an international goal to promote energy sustainability. Different approaches have been adapted to concentrate on this goal, the most up to date relating consumption patterns with human occupancy. Energy efficiency is keywords that can be originate these days in all domains in which energy demand exists. A significant aspect that can improve the energy efficiency in buildings is the use of building automation systems. Alternatively, building automation systems are usually not considered for energy conservation, as they are mostly used for comfort and safety. This consistently causes immense problems due to an fruitless use of these systems and unawareness of energy consumption. It is therefore essential that the existing system solutions are adapted to focus on energy conservation. Our research approach in developing an intelligent system to improve energy efficiency in intelligent buildings, which takes into account the different technical infrastructures of building

  7. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    OpenAIRE

    Byung-Lip Ahn; Ji-Woo Park; Seunghwan Yoo; Jonghun Kim; Hakgeun Jeong; Seung-Bok Leigh; Cheol-Yong Jang

    2015-01-01

    We investigated the synergetic effect between light-emitting diode (LED) lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS) of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement dat...

  8. A Process for the Implementation of New Renewable Energy Systems in a Building by Considering Environmental and Economic Effect

    OpenAIRE

    Chan-Joong Kim; Taehoon Hong; Jimin Kim; Daeho Kim; Dong-yeon Seo

    2015-01-01

    The excessive use of fossil fuels has led to global warming and air pollution. To solve these problems, interest in new renewable energy system (NRE system) has increased in recent years. In particular, photovoltaic, solar thermal heating, fuel cell and ground source heating system are actively implemented for achieving the zero energy building. Since the initial investment cost of the NRE system is quite expensive, it is necessary to conduct a feasibility study from the life cycle perspectiv...

  9. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    Science.gov (United States)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  10. Building for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Burberry, P.

    1978-01-01

    Ways in which buildings may be designed to increase thermal efficiency are discussed, giving first of all examples of thermal design in relation to climate. How the building itself may be designed to take advantage of solar energy and the ways in which heat loss takes place are described; the effect of design variables such as siting, volume, and insulation is shown. The book also reviews the development of thermal regulations for health and comfort and, more recently, energy conservation. It discusses the possitilities and difficulties of legislation for energy saving. The UK regulations are given in detail together with descriptions of the FHA and ASHRAE recommendations for the USA and the lastest Scandinavian norms. The author argues that no significant cost need be involved in many of the aspects of thermal design, e.g., shape and fenestration; and that these factors should automatically be taken into account by designers. Even existing buildings can be adapted in various respects to save energy consumption. The book concludes with an explanation of calculation methods for U-values, heat loss, plant sizing, seasonal heat requirements, and other procedures, amply illustrated with tables and graphs.

  11. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  12. UP-report. Buildings in the energy system. Basis of the Development platform. Build to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Byggnader i energisystemet. Underlag fraan Utvecklingsplattformen. Bygg till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation in the thematic area buildings in the energy system for the period 2011 - 2016. The report has been compiled by members of the development platform Build. This report provides background and the conditions of the area buildings in the energy system, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge which enabled the Swedish Energy Agency to then develop a strategy that meets the needs of the society and business.

  13. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  14. ENERGY EFFICIENCY OF THE BUILDING

    OpenAIRE

    Bocharnikov, Dmitry

    2011-01-01

    The subject of bachelor’s thesis is about energy efficiency of the building. Much attention is being paid to energy saving problems all over the world. In the first part it theoretic base for thermal performance requirements of buildings. It includes main positions of Russian requirements for thermal performance. Also it is about general types of building envelope. The second part is about energy audit of buildings. In this part there is an energy efficiency assessment methodology. Energy eff...

  15. Developing a Strategic Stochastic Optimization Model, Robust Solutions, and a Decision Support System for Energy-efficient Buildings

    OpenAIRE

    Cano, E.L.

    2014-01-01

    This research is being carried out in the context of the EnRiMa project (Energy Efficiency and Risk Management in Public Buildings), funded by the European Commission (EC) within the Seventh Framework Program. Energy Systems Optimization is increasing its importance due to regulations and de-regulations of the energy sector and the setting of targets such as the European Union's 20/20/20. This raises new types of dynamic stochastic energy models incorporating both strategic and operational de...

  16. Design of Low-Energy District Heating System for a Settlement with Low-Energy Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2011-01-01

    was developed with an optimization method in the objective of minimizing heat loss from the network while pressure drop values were kept as the constraints through the DH network. In the dimensioning method also descending pipe dimensions were formed in the branched type DH network by taking into account...... of 55 °C and 25 °C in supply and return line of DH network, respectively with a convenient control of in-house installations (substations). Traditional DH pipe dimensioning methods were based on size searching algorithm in which lowest possible pipe diameter was defined according to the limit of max...... velocity and/or max pressure gradient. Since traditional dimensioning methods cause over-dimensioned network, special attention has to be given to lower the dimensions and as a consequence heat loss from the DH network further. In this investigation pipe dimensioning method of low-energy DH system...

  17. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kircher, Kevin; Ghatikar, Girish; Greenberg, Steve; Watson, Dave; Diamond, Rick; Sartor, Dale; Federspiel, Cliff; McEachern, Alex; Owen, Tom

    2010-05-14

    Energy information systems (real-time acquisition, analysis, and presentation of information from energy end-uses) in commercial buildings have demonstrated value as tools for improving energy efficiency and thermal comfort. These improvements include characterization through benchmarking, identification of retrofit opportunities, anomaly detection to inform retro-commissioning, and feedback to occupants to encourage shifts in behavior. Energy information systems can play a vital role in achieving a variety of ambitious sustainability goals for the existing stock of commercial buildings, but their implementation is often fraught with pitfalls. In this paper, we present a case study of an EIS and sub-metering project executed in a representative commercial office building. We describe the building, highlight a few of its problems, and detail the hardware and software technologies we employed to address them. We summarize the difficulties encountered and lessons learned, and suggest general guidelines for future EIS projects to improve performance and save energy in the commercial building fleet. These guidelines include measurement criteria, monitoring strategies, and analysis methods. In particular, we propose processes for: - Defining project goals, - Selecting end-use targets and depth of metering, - Selecting contractors and software vendors, - Installing and networking measurement devices, - Commissioning and using the energy information system.

  18. Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

    Directory of Open Access Journals (Sweden)

    Musbah Mohamed H.

    2014-01-01

    Full Text Available The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar energy fraction were calculated by varying two major parameters (collector’s slope angle and collector area. The maximum solar fraction of 48% was obtained by means of 1400 m2 of collector surface area. Analysis of results showed that, besides the collector surface area, the main factors affecting the solar fraction were the local weather conditions (intensity of incident solar radiation and the time of day when the plant was operated.

  19. Big Data Analytics of City Wide Building Energy Declarations

    OpenAIRE

    Ma, Yixiao

    2015-01-01

    This thesis explores the building energy performance of the domestic sector in the city of Stockholm based on the building energy declaration database. The aims of this master thesis are to analyze the big data sets of around 20,000 buildings in Stockholm region, explore the correlation between building energy performance and different internal and external affecting factors on building energy consumption, such as building energy systems, building vintages and etc. By using clustering method,...

  20. Energy-saving potential analysis for teaching building with intermittent heating system in university of Tianjin

    Institute of Scientific and Technical Information of China (English)

    何乐; 孙贺江

    2009-01-01

    An energy consumption analysis based on the heating characteristic of a building with central heat exchanger in a university of Tianjin was done,and the feasibility of intermittent heating with variable speed pumps was discussed. By comparing various methods of energy consumption analysis,a modified Bin method based on the weather data in Tianjin was adopted. The heat consumption of the buildings under intermittent heating mode was calculated and compared with continuous heating mode,the result shows that intermittent heating can reduce energy consumption for 1 941 759 kW·h,save standard coal for 341 t,and reduce pump power consumption for 72 679 kW·h annually. Intermittent operation by means of varying the pump frequency not only leads to savings in fuel consumption and reduction in pollutant emissions,but also reduces operating costs significantly and it is an ideal energy-saving method. By analyzing the results,the recommendations of heating operation regulation and the transformation of pipe network were proposed separately to different kinds of buildings in colleges,such as laboratory building,teaching building.

  1. Integrated Building Management System (IBMS)

    Energy Technology Data Exchange (ETDEWEB)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  2. Assesment of Emerging Renewable Energy-based Cogeneration Systems for nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh;

    2016-01-01

    entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in small scale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...... thermal reversible heat pump /organic Rankine cycle (HP/ORC) and cogeneration solar Thermoelectric generators (TEG). This paper aims to give an overview of the state-of-the-art developments, discuss the fundamental and technical challenges facing commercial adoption and prospects of these technologies for...

  3. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  4. Hospital CHCP system optimization assisted by TRNSYS building energy simulation tool

    International Nuclear Information System (INIS)

    The feasibility study of a trigeneration plant intended to integrate the existing natural gas fired-boiler central plant serving a 714 bed hospital located in Parma, North of Italy, is presented. The electric load and the heat load for both sanitary hot water and process steam are estimated on an hourly basis from the monitored actual consumption. The space heating and the cooling loads, instead, are computed, on an hourly basis, by the building energy software tool TRNSYS, version 16, by accounting for the actual climate of the considered location. The energy analysis points out that the Primary Energy Saving (PES) index is inadequate for sizing the Combined Heat and Power generation system (CHP). The approach based on the second principle of thermodynamics, instead, allows to identify its optimal configuration and size, i.e. Combined generation of Heat, Cooling and Power (CHCP) with prime mover overall nominal capacity equal or higher than about 7 MW. The economic analysis confirms that the maximum annual money saving occurs with trigeneration at a prime mover overall nominal capacity of about 7 MW. At higher values the operating financial budget deteriorates because of a too low electricity selling price. At the optimal economic condition the CHCP system simple payback period is of about 15 months. The national policies supporting cogeneration have a great effect on the results of the economic analysis and beyond them cogeneration may loose its economic appeal. - Highlights: ► Feasibility study of the integration of a trigeneration plant in a hospital campus. ► Heating and cooling hourly loads calculated by the TRNSYS tool. ► The PES index is inadequate to optimize the CHP unit size. ► The second law of thermodynamics approach identifies the optimal CHP prime mover size. ► The economic analysis is presented and discussed.

  5. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  6. Integrated Urban System and Energy Consumption Model: Public and Singular Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available The present paper illustrates the results of the first steps of a study on one aspect investigated as the preliminary step of the definition of the analysis - comprehension model of the relation between: city, buildings, and user behavior, for the reduction of energy consumption within the research project “Smart Energy Master” for the energetic governance of the territory (PON_MIUR n. pos. 04a2_00120 CUP Ricerca: E61H12000130005, at the Department of Civil, Building and Environmental Engineering - University of Naples Federico II, principal investigator prof. Carmela Gargiulo.Specifically the literary review aimed at determining if, and in what measure, the presence of public and singular buildings is present in the energy consumption estimate models,  proposed by the scientific community, for the city or neighborhood scale.The difficulties in defining the weight of these singular buildings on the total energy consumption and the impossibility to define mean values that are significant for all subsets and different types as well as for each one, have forced model makers to either ignore them completely or chose a portion of this specific stock to include.

  7. Impact of energy efficiency goals on systems of building regulations and control

    NARCIS (Netherlands)

    Visscher, H.J.; Meijer, F.M.

    2014-01-01

    Considerations of climate change, but also other political and economic reasons urge for the reduction of use of fossil fuels and the minimization of environmental impact by the built environment. The energy saving potential of the building stock is large and considered to be the most cost efficient

  8. An investigation of energy efficient and sustainable heating systems for buildings : Combining photovoltaics with heat pump

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    Renewable energy sources contribute considerable amounts of energy when natural phenomena are converted into useful forms of energy. Solar energy, i.e. renewable energy, is converted to electricity by photovoltaic systems (PV). This study was aimed at investigating the possibility of combining PV with Heat Pump (HP) (PV-HP system). HP uses direct electricity to produce heat. In order to increase the sustainability and efficiency of the system, the required electricity for the HP was supposed ...

  9. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  10. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten;

    2012-01-01

    energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating, and...... water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps but still have a majority in usage. As result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which the......An important challenge for energy systems today is reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. The efficient consumption of energy is a vital mater for a sustainable energy system. A significant part of...

  11. Combining a building simulation with energy systems analysis to assess the benefits of natural ventilation

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    thermal air flow simulation program - Into the energy systems analysis model. Descriptions of the energy systems in two geographical locations, i.e. Mexico and Denmark, are set up as inputs. Then, the assessment is done by calculating the energy impacts as well as environmental benefits in the energy...

  12. Status and prospects of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LONGWeiding; ZHOUHui

    2003-01-01

    The paper briefly describes situation of building energy consumption in China. The authors indicate some relations in building energy efficiency should be dealt with properly: energy saving and energy efficiency, envelopes and building services systems, energy use and indoor environment, electric power saving and energy saving, devices and system, energy efficiency at stable state and at dynamic state. The authors suggest to use Coefficient of Energy Consumption as a Indicator of building energy efficiency.

  13. Solar energy system installed at the North Georgia APDC office building

    Science.gov (United States)

    1979-01-01

    A hydronic, automatic drain-down solar heating and cooling system is described. The system provides solar heat exchange from a 2,001 square foot effective collector area and supplies 65-70 percent of the building's cooling demand, 90-95 percent of the heating demand, and domestic hot water. The acceptance test plan and results, system operation and maintenance, and predicted system performance are presented.

  14. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  15. DESIGN OF A VRF AIR CONDITIONING SYSTEM WITH ENERGY CONSERVATION ON COMMERCIAL BUILDING

    Directory of Open Access Journals (Sweden)

    Shaik Gulam Abul Hasan*

    2015-07-01

    Full Text Available Today, the field if air conditioning design is more technologically challenging than ever before. While design innovations and product improvements promise sleeker, more versatile, more powerful and more energy – efficient air conditioners, the challenge today lies identifying the most appropriate product, or mix of products, for the application at hand. Indeed, today the emphasis is no more on understanding air conditioning products but on creating solutions and not just solutions, but customized solutions that suit specific cooling need of specific business and establishments. The consultant or designer who understands the dynamics of those clients business is more likely to offer better long term cooling solutions than who does not. Every air conditioning application has its own special needs and provided its own challenges. Airports, hotels, shopping malls, office complexes and banks need uniform comfort cooling in every corner of their sprawling spaces and activities involving computers, electronics, aircraft products, precision manufacturing, communication networks and operation in hospitals, infect many areas of programming will come to a halt, so air conditioning is no longer a luxury but an essential part of modern living. There are various stages in the complete design of an air conditioning system. One of the important modules in the process is the duct design. The efficient duct design process enables the proper supply of air quantity, equal distribution of air at every corner of the Air conditioned space. Further the proper designing ensures minimum losses and hence energy conservation is obtained. In the present paper design of Air conditioning is done by using VRF (Variable Refrigerant Flow for a commercial building. The main aim of his project is to conserve the energy by using VRF techniques when compared to conventional chille

  16. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  17. Design of Building Energy Autonomous Control System with the Intelligent Object Energy Chain Mechanism Based on Energy-IoT

    OpenAIRE

    Sangmin Park; Sanguk Park; Jinsung Byun; Yeong Yu; Sehyun Park

    2015-01-01

    The development of the Internet of Things (IoT) technologies has enabled smart objects to communicate with each other, and various IoT methods and techniques have appeared accordingly. At this point in time, there is a growing need for big data-based energy-IoT technology that can reduce energy consumption. However, despite the emergence of these technologies for IoT, there is still a lack of control systems to surmount the energy efficiency problem of hyperconnected IoT applications. In this...

  18. Energy and exergy analysis of fossil plant and heat pump building heating system at two different dead-state temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, S.P. [Kathmandu University, Dhulikhel (Nepal)

    2010-08-15

    In this paper, we deal with the energy and exergy analysis of a fossil plant and ground and air source heat pump building heating system at two different dead-state temperatures. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for heat pump building heating system. Since energy and exergy demand are key parameters to see which system is efficient at what reference temperature, we did a study on the influence of energy and exergy efficiencies. In this regard, a commercial software package IDA-ICE program is used for calculation of fossil plant heating system, however, there is no inbuilt simulation model for heat pumps in IDA-ICE, different COP (coefficient of performance) curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy. The outcome of the energy and exergy flow analysis at two different dead-state temperatures revealed that the ground source heat pumps with ambient reference have better performance against all ground reference systems as well as fossil plant (conventional system) and air source heat pumps with ambient reference. (author)

  19. Energy Performance of Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2007-01-01

    "Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development and are c......"Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development...... and are central to improving social and economic well- being, and human welfare and raising living standards. Even if energy is essential for development, it is only a means to an end. The end is good health, high living standards, a sustainable economy and a clean environment. The European Climate change...... programme (ECCP) was established in June 2000 to help identify the most environmentally cost-effective measures enabling the EU to meet its target under the Kyoto Protocol, namely an 8% reduction in greenhouse gas emissions from 1990 levels by 2012. Energy use in buildings accounts for almost half of all CO...

  20. Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique

    International Nuclear Information System (INIS)

    Highlights: • We have simulated and validated the cooling loads of a multi-zone academic building, in a tropical region. • We have analyzed the effect of occupancy patterns on the cooling loads. • Adaptive cooling technique has been utilized to minimize the energy usage of HVAC system. • The results are promising and show a reduction of energy saving in the range of 20–30%. - Abstract: Application of adaptive comfort temperature as room temperature set points potentially reduce energy usage of the HVAC system during a cooling and heating period. The savings are mainly due to higher indoor temperature set point during hot period and lower indoor temperature set point during cold period than the recommended value. Numerous works have been carried out to show how much energy can be saved during cooling and heating period by applying adaptive comfort temperature. The previous work, however, focused on a continuous cooling load as found in many office and residential buildings. Therefore, this paper aims to simulate the energy saving potential for an academic glazed building in tropical Malaysian climate by developing adaptive cooling technique. A building simulation program (TRNSYS) was used to model the building and simulate the cooling load characteristic using current and proposed technique. Two experimental measurements were conducted and the results were used to validate the model. Finally, cooling load characteristic of the academic building using current and proposed technique were compared and the results showed that annual energy saving potential as much as 305,150 kW h can be achieved

  1. Supervisory control for energy savings and thermal comfort in commercial building HVAC systems.

    OpenAIRE

    Martin, Rodney A; Federspiel, Clifford C Ph.D.; Auslander, David M Ph.D.

    2002-01-01

    The operation and maintenance of commercial building HVAC (heating, ventilation, and air-conditioning) systems is illustrative of an industry that can benefit from the insightful use of all available information sources. Modern HVAC systems using direct digital control can potentially provide useful performance data. Occupant feedback complaint data and HVAC system trend data are stored within modern maintenance management databases. This paper will address the specific issue of integration a...

  2. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  3. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  4. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  5. Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system

    International Nuclear Information System (INIS)

    Vast amounts of the European residential stock were built with limited consideration for energy efficiency, yet its refurbishment can help reach national energy reduction goals, decreasing environmental impact. Short-term retrofits with reduced interference to inhabitants can be achieved by upgrading facades with elements that enhance energy efficiency and user comfort. The European Union-funded Meefs Retrofitting (Multifunctional Energy Efficient Façade System) project aims to develop an adaptable mass-produced facade system for energy improvement in existing residential buildings throughout the continent. This article presents a simplified methodology to identify preferred strategies and combinations for the early design stages of such system. This was derived from studying weather characteristics of European regions and outlining climatic energy-saving strategies based on human thermal comfort. Strategies were matched with conceptual technologies like glazing, shading and insulation. The typical building stock was characterized from statistics of previous European projects. Six improvements and combinations were modelled using a simulation model, identifying and ranking preferred configurations. The methodology is summarized in a synoptic scheme identifying the energy rankings of each improvement and combination for the studied climates and façade orientations. - Highlights: • First results of EU project for new energy efficient façade retrofit system. • System consists of prefabricated elements with multiple options for flexibility. • Modular strategies were determined that adapt to different climates. • Technologies matching the strategies were identified. • Presents a method for use and application in different climates across Europe

  6. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carbary, Lawrence D. [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  7. Building energy governance in Shanghai

    Science.gov (United States)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  8. Hybrid renewable energy system application for electricity and heat supply of a residential building

    OpenAIRE

    Nakomčić-Smaragdakis Branka B.; Dragutinović Nataša G.

    2016-01-01

    Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES) for electricity and heat supply of a typical household i...

  9. Sustainability in Energy and Buildings

    OpenAIRE

    Kinnane, Oliver; Basu, Biswajit

    2014-01-01

    PUBLISHED Cardiff This paper presents a new methodology for characterising the energy performance of buildings suitable for city-scale, top-down energy modelling. Building properties that have the greatest impact on simulated energy performance were identified via a review of sensitivity analysis studies. The methodology greatly simplifies the description of a building to decrease labour and simulation processing overheads. The methodology will be used in the EU FP7 INDICATE project whi...

  10. Energy-efficient timber buildings

    OpenAIRE

    Zbašnik-Senegačnik, Martina; Kitek Kuzman, Manja

    2015-01-01

    The choice of materials for a building with high energy efficiency becomes much more important and strategies for reducing the use of primary energy for the production of materials and components becomes key. The positive trend towards wooden construction is dictated by international guidelines, where a wooden building is an important starting point, not only for low-energy, but also low-emission building with exceptional health and safety aspects. In Europe, the most comprehensiv...

  11. Modelling to predict future energy performance of solar thermal cooling systems for building applications in the North East of England

    International Nuclear Information System (INIS)

    Controlling and reducing energy consumption in buildings has been identified by policy makers and politicians as way of meeting global targets for greenhouse gas reductions and mitigating the impacts of climate change. Buildings must be designed and built to withstand harsh future weather patterns, and be energy efficient to run. In the UK, there has been an increasing demand to provide cooling in summer months and this is likely to increase in the future with global temperatures rising. While the potential of solar thermal energy to cool buildings has been investigated in warmer climates, this is not the case in the UK. An optimised solar thermal simulation model was developed using the UKCIP climate change weather prediction scenarios over the next 40 years to assess cooling effectiveness delivered by solar powered air cooling systems. This paper bridges the modern concept of solar cooling technology and future potential for new build and retrofitted commercial applications, using modern modelling concepts. -- Highlights: • Weather scenarios in 2080 demonstrate greater demand of cooling. • Cooling absorption effectiveness on building types to increase in future years. • Application in cooler climates can still save considerable amounts of carbon

  12. Development of energy labels for residential buildings in Hong Kong

    OpenAIRE

    Lee, RKH; Hui, SCM

    2009-01-01

    To promote energy efficiency for residential buildings in Hong Kong, a research has been conducted to investigate the characteristics of energy consumption in the residential buildings and develop a suitable energy labelling system for assessing the building energy performance. The aims of the research are to review worldwide experience, study the feasibility of establishing building energy labels in Hong Kong, and evaluate the key factors for design and implementation of the building energy ...

  13. Maintenance and Energy Optimization of Lighting Systems for the Improvement of Historic Buildings: A Case Study

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-08-01

    Full Text Available Proper lighting is vital to improve, from an artistic point of view, the surface expanse and decorative detailing of architectural heritage buildings considered valuable. When properly lit, monumental buildings can become to onlookers an essential part of the city. Nowadays, for design planners dealing with the improvement of buildings, whose architectural design should be valorized, the real challenge is to combine the lighting artistic requirements with scrupulous economic management in order to limit the energy demand and to respect the environment. For these reasons, this case study examines the lighting of the monumental façade and the cloister of St. Peter in Chains situated in the Faculty of Engineering of Sapienza University of Rome. The present lighting installation, characterized by metal halides, compact fluorescent and halogen lamps, is compared with an alternative scenario presenting LED lamps and scenographic lighting of the monumental façade. Such comparison is based on the evaluation of the lighting levels for different visual tasks and on energy and maintenance issues; the first analysis was performed through the software DIALux Evo 4.0, whereas the second was performed using ecoCALC. This study leads to the conclusion that the lighting levels of the solution presenting LED lamps are better than those of the present solution, and they comply with current standards. Finally, the higher costs of LED lamp installations and the scenographic lighting of the monumental façade are balanced by lower maintenance costs, with a payback period of seven years.

  14. Upgrade energy building standards and develop rating system for existing low-income housing

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1993-07-01

    The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD`s experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD`s minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency{open_quote} in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock.

  15. Upgrade energy building standards and develop rating system for existing low-income housing

    International Nuclear Information System (INIS)

    The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD's experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD's minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency open-quote in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock

  16. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  17. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  18. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  19. Building Block Apartments Energy Monitoring Interactive System With Social Case Study

    OpenAIRE

    Meyers, Christophe

    2015-01-01

    This report has two aims. First aim is to evaluate the e_ect of installing a home energy monitoring system on the electrical consumption of inhabitants of a Smart City. Numerous literature urges for the need of more informative energy billing; historic, extra information or comparative feedback. This thesis conducts a further evaluation in scope of further validating these _ndings. Second aim is to compare deployment and performance of Open vs commercial energy monitoring systems. Henc...

  20. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  1. Energy and CO2 emissions performance assessment of residential micro-cogeneration systems with dynamic whole-building simulation programs

    International Nuclear Information System (INIS)

    Micro-cogeneration, also termed micro combined heat and power (MCHP) or residential cogeneration, is an emerging technology with the potential to provide energy efficiency and environmental benefits by reducing primary energy consumption and associated greenhouse gas emissions. The distributed generation nature of the technology also has the potential to reduce losses due to electrical transmission and distribution inefficiencies and to alleviate utility peak demand problems. Detailed MCHP models for whole-building simulation tools, developed in Annex 42 of the International Energy Agency (IEA) Energy Conservation in Buildings and Community Systems Programme, have been used to conduct a performance assessment study for a number of micro-cogeneration systems and residential buildings. Annual non-renewable primary energy (NRPE) demand and CO2-equivalent (CO2-eq) emissions were determined by simulation for different cogeneration technologies, namely natural gas-fuelled solid oxide (SOFC) and polymer electrolyte membrane fuel cells, Stirling and internal combustion engines. These were compared to the reference system with a gas boiler and electricity supply from the grid. A ground-coupled heat pump system was also analysed for comparison. The cogeneration units were integrated in single and multi-family houses of different energy standard levels. Two different electricity generation mixes were considered: European mix and combined cycle power plant (CCPP). For the MCHP devices, detailed dynamic component models as well as simplified performance map models were used, developed and calibrated with either results from laboratory experiments or with manufacturer data. The simulations were performed using the whole-building simulation programme TRNSYS, using domestic hot water and electric demand profiles specified in IEA Annex 42. Combinations of three demand levels were analyzed. In NRPE demand, for the European electricity mix, most MCHP systems offered reductions (up to

  2. Modeling and optimization of a hybrid system for the energy supply of a “Green” building

    International Nuclear Information System (INIS)

    Highlights: ► The system model is embedded in a dynamic decision model. ► The model has been applied to a specific case study. ► Optimal results are reported for two main cases: the presence/absence of the energy storage system. - Abstract: Renewable energy sources (RES) are an “indigenous” environmental option, economically competitive with conventional power generation where good wind and solar resources are available. Hybrid systems can help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The aim of this paper is to present a dynamic model able to integrate different RES and one storage device to feed a “Green” building for its thermal and electrical energy needs in a sustainable way. The system model is embedded in a dynamic decision model and is used to optimize a quite complex hybrid system connected to the grid which can exploit different renewable energy sources. A Model Predictive Control (MPC) is adopted to find the optimal solution. The optimization model has been applied to a case study where electric energy is also used to pump water for domestic use. Optimal results are reported for two main cases: the presence/absence of the energy storage system.

  3. ImBuild: Impact of building energy efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  4. Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part I: Energy analysis

    International Nuclear Information System (INIS)

    Highlights: • A building-integrated micro-cogeneration system was dynamically simulated. • Simulation data were analyzed from an energy point of view. • The proposed system was compared with a conventional supply system. • The proposed system allows to save energy under heat-led operation. • Electric vehicle charging enhances the energy saving under electric load-led logic. - Abstract: This work examines the energy performance of a residential building-integrated micro-cogeneration system during the winter season by means of a whole building simulation software; a 6.0 kWel natural gas-fuelled internal combustion engine-based cogeneration unit was coupled with a multi-family house composed of three floors, compliant with the thermal transmittances of both walls and windows equated to the threshold values suggested by the Italian Law. The main purpose of the paper is to compare the proposed system with a conventional system composed of a natural gas-fired boiler (for thermal energy production) and a power plant mix connected to the Italian central grid (for electric energy production) in order to assess the potential energy saving under various operating scenarios. The simulations were performed by considering the multi-family house located into four different Italian cities (Palermo, Napoli, Roma and Milano) representative of different climatic regions of Italy in order to estimate the influence of climatic conditions; a parametric analysis was also performed with the aim to evaluate the sensitivity of the energy flows when varying the volume of the combined storage tank; taking into consideration that the economic viability of the cogeneration unit strongly depends also on the value of the co-produced electricity, the system performance was also evaluated by considering two different electric demand profiles (with and without the electric consumption associated to the overnight charging of an electric vehicle); the operation of the micro

  5. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  6. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    OpenAIRE

    Byung-Lip Ahn; Ji-Woo Park; Seunghwan Yoo; Jonghun Kim; Seung-Bok Leigh; Cheol-Yong Jang

    2015-01-01

    Light-emitting diode (LED) lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED) lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED) lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC) system to move the lighting’s waste heat outdoors. An ex...

  7. A Process for the Implementation of New Renewable Energy Systems in a Building by Considering Environmental and Economic Effect

    Directory of Open Access Journals (Sweden)

    Chan-Joong Kim

    2015-09-01

    Full Text Available The excessive use of fossil fuels has led to global warming and air pollution. To solve these problems, interest in new renewable energy system (NRE system has increased in recent years. In particular, photovoltaic, solar thermal heating, fuel cell and ground source heating system are actively implemented for achieving the zero energy building. Since the initial investment cost of the NRE system is quite expensive, it is necessary to conduct a feasibility study from the life cycle perspective. Therefore, this study aimed to develop the process for the implementation of NRE system in a building for the optimal design. This study was conducted with four steps: (i establishing the basic information for the system installation; (ii selecting key factors affecting system performances; (iii making possible alternatives of the system installation; and (iv selecting optimal system by considering environmental and economic effect. The proposed process could enable the final decision-maker to easily and accurately determine the optimal design of the NRE systems from the economic and environmental efficiency in the early design phase. The process could also be applied to any other NRE system and could be extended to any other country in the global environment.

  8. The Geothermal Field Camp: Capacity building for geothermal energy systems in Indonesia

    Science.gov (United States)

    Moeck, I.; Sule, R.; Saptadji, N. M.; Deon, F.; Herdianita, N. R.; Jolie, E.; Suryantini, N.; Erbas, K.

    2012-04-01

    In July 2011, the first geothermal field camp was hold on Java/Indonesia near the city Bandung south of the volcanic field Tangkuban Perahu. The course was organized by the Institut Teknologie Bandung (ITB) and International Centre for Geothermal Research (ICGR) of the German Centre of Geosciences (GFZ). The purpose of the Geothermal Field Camp is to combine both field based work and laboratory analysis to ultimately better understand the data collected in field and to integrate data gained by various disciplines. The training belongs to a capacity building program for geothermal energy systems in Indonesia and initially aims to train the trainers. In a later stage, the educational personal trained by the Geothermal Field Camp shall be able to hold their individual Geothermal Field Camp. This is of special interest for Indonesia where the multitude of islands hindered a broad uniform education in geothermal energy systems. However, Indonesia hold the largest geothermal potential worldwide and educated personal is necessary to successfully develop this huge potential scattered over region in future. The interdisciplinary and integrative approach combined with field based and laboratory methodologies is the guiding principle of the Geothermal Field Camp. Tangkuban Perahu was selected because this field allows the integration of field based structural geological analysis, observation and sampling of geothermal manifestations as hot springs and sinters and ultimately of structural geology and surface geochemistry. This innovative training introduces in methods used in exploration geology to study both, fault and fracture systems and fluid chemistry to better understand the selective fluid flow along certain fractures and faults. Field geology covered the systematic measurement of faults and fractures, fault plane and fracture population analysis. In addition, field hydro-geochemistry focused on sampling techniques and field measurements onsite. Subsequent data analysis

  9. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  10. DYNAMIC ENERGY SAVING IN BUILDINGS WITH UNDERFLOOR AIR DISTRIBUTION SYSTEM – EXPERIMENTAL AND SIMULATION STUDIES

    Science.gov (United States)

    The present study is aimed at seeking a better understanding of the thermodynamics involved with the air distribution strategies associated with UFAD systems and its impact on the energy saving dynamics. Thus objectives are: Experiment...

  11. Towards Building Energy Efficiency for Developing Countries

    Directory of Open Access Journals (Sweden)

    Usman Aminu Umar

    2013-03-01

    Full Text Available Buildings account for 42 percent of world energy consumption, therefore the rising trend of making buildings more energy efficient is smart business with assists to make local market jobs and added benefits to the environment, even though the main inspiration for energy efficiency initiatives always been energy cost savings, government incentives and improved public image were important. Increasing energy efficiency through measures such as building efficiency has the possibilities to gradual the development of energy demand in developing nations around the world by more than fifty percent by 2020. Building efficiency codes and standards are regulatory instruments that need a minimum amount of energy efficiency in buildings, appliances, equipment or lighting when they are properly designed, they might cost-effectively lower energy costs over each and every item?s lifetime. Energy efficiency improvement targets are aims which can be established for a country or town. Setting a targeted for the whole geography can stimulate greater measures particularly if there is an organization accountable for achieving that target. Furthermore, governments can set efficiency enhancement goals for publicly owned properties to develop capacity and promote the building efficiency industry. This study reveals an overview of the development and present scenario of BEE summarizes its key issues, and proposed measures of improvement and options to enhance the building energy efficiencies systems for sustainable natural environment.

  12. Building envelope for New Buildings and Energy Renovation of Existing Buildings. Project results

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Rose, Jørgen; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    facts, a group of scientists at the Department of Buildings and Energy, Technical University of Denmark, have started a research project to develop better solutions for new building and energy renovation.The publication report the status after the first 3 year of the Building Envelope Project with......At the energy conference in 1995, Denmark agreed on reducing the total CO2-emission by 20%. To achieve this goal, it is necessary to increase thermal insulation thickness both in new and retrofitted buildings.This will, for both cases, impose a series of building physics problems, as the knowledge...... emphasis on the following subjects:Scientific basis for calculation programs, Development of calculationsmethods for heat transfer, Development of new building envelope components, Roofing system based on wooden roof elements, Roofing system with drying properties, Moisture uptake and drying from brick...

  13. Building an Energy-efficient Uplink and Downlink Delay Aware TDM-PON System

    Science.gov (United States)

    Newaz, S. H. Shah; Jang, Min Seok; Alaelddin, Fuad Yousif Mohammed; Lee, Gyu Myoung; Choi, Jun Kyun

    2016-05-01

    With the increasing concern over the energy expenditure due to rapid ICT expansion and growth of Internet traffic volume, there is a growing trend towards developing energy-efficient ICT solutions. Passive Optical Network (PON), which is regarded as a key enabler to facilitate high speed broadband connection to individual subscribers, is considered as one of the energy-efficient access network technologies. However, an immense amount of research effort can be noticed in academia and industries to make PON more energy-efficient. In this paper, we aim at improving energy saving performance of Time Division Multiplexing (TDM)-PON, which is the most widely deployed PON technology throughout the world. A commonly used approach to make TDM-PON energy-efficient is to use sleep mode in Optical Network Units (ONUs), which are the customer premises equipment of a TDM-PON system. However, there is a strong trade-off relationship between traffic delay performance of an ONU and its energy saving (the longer the sleep interval length of an ONU, the lower its energy consumption, but the higher the traffic delay, and vice versa). In this paper, we propose an Energy-efficient Uplink and Downlink Delay Aware (EUDDA) scheme for TDM-PON system. The prime object of EUDDA is to meet both downlink and uplink traffic delay requirement while maximizing energy saving performance of ONUs as much as possible. In EUDDA, traffic delay requirement is given more priority over energy saving. Even so, it still can improve energy saving of ONUs noticeably. We evaluate performance of EUDDA in front of two existing solutions in terms of traffic delay, jitter, and ONU energy consumption. The performance results show that EUDDA significantly outperforms the other existing solutions.

  14. Building Web Reputation Systems

    CERN Document Server

    Farmer, Randy

    2010-01-01

    What do Amazon's product reviews, eBay's feedback score system, Slashdot's Karma System, and Xbox Live's Achievements have in common? They're all examples of successful reputation systems that enable consumer websites to manage and present user contributions most effectively. This book shows you how to design and develop reputation systems for your own sites or web applications, written by experts who have designed web communities for Yahoo! and other prominent sites. Building Web Reputation Systems helps you ask the hard questions about these underlying mechanisms, and why they're critical

  15. Embedded system for building automation

    OpenAIRE

    Rolih, Andrej

    2014-01-01

    Home automation is a fast developing field of computer science and electronics. Companies are offering many different products for home automation. Ranging anywhere from complete systems for building management and control, to simple smart lights that can be connected to the internet. These products offer the user greater living comfort and lower their expenses by reducing the energy usage. This thesis shows the development of a simple home automation system that focuses mainly on the enhance...

  16. Solar energy systems in modernized buildings; Solarenergienutzung bei der Sanierung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Voss, K. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Gruppe Solares Bauen

    1998-02-01

    The statistics of residential buildings in Germany is of extraordinary distinctness: About 70% of the houses are more than 25 years old and the construction rate is about 1% per annum. In most neighbouring European countries the situation is similar. Predictions show that almost 60% of the building stock of the year 2020 is already erected today. The conclusions: The present building stock is essential for the burden of the environment not only today but also tomorrow. Measures saving energy and protecting the climate must include the already existing houses. Solar concepts especially suited for the renovation of old housing should be more promoted. Technically mature products, architecturally and economically attractive and integrated concepts and convincing examples of practical applications are prerequisites for successful advances into this direction. (orig.) [Deutsch] Die statistische Analyse des Bestands an Wohngebaeuden in Deutschland spricht eine deutliche Sprache: Rund 70% der Gebaeude sind aelter als 25 Jahre; die Neubaurate liegt um 1% pro Jahr. In den meisten europaeischen Nachbarlaendern ist die Situation vergleichbar. Eine Hochrechnung auf das Jahr 2020 belegt, dass schon heute knapp 60% des dann vorliegenden Gebaeudebestands existieren. Fazit: Der Gebaeudebestand von heute bestimmt die Umweltbelastung von heute und morgen. Massnahmen zur Energieeinsparung und fuer einen wirkungsvollen Klimaschutz muessen vordringlich am Gebaeudebestand ansetzen. Unter dem Blickwinkel einer Verbreitung der Solartechnik ist offensichtlich, dass Solarkonzepten, die speziell an die Belange der Sanierung im Bestand angepasst sind, eine grosse Bedeutung zukommt. Voraussetzungen fuer einen erfolgreichen Weg in diesen Markt sind technisch ausgereifte Produkte, architektonisch und wirtschaftlich attraktive Gesamtkonzepte sowie ueberzeugende Beispiele aus der Praxis. (orig.)

  17. InterTechnology Corporation report of solar energy systems installation costs for selected commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    The results of a study in which the primary objective was to determine actual costs associated with the installation of solar collector and thermal energy storage subsystems in specific non-residential building applications are presented. A secondary objective of the study was to assemble details of existing solar collector and storage subsystem installations, including caveats concerning cost estimating, logistics and installation practices. The study began with the development of an exhaustive listing and compilation of basic data and contacts for non-residential applications of solar heating and cooling of buildings. Both existing projects and those under construction were surveyed. Survey summary sheets for each project encountered are provided as a separate appendix. Subsequently, the rationale used to select the projects studied in-depth is presented. The results of each of the detailed studies are then provided along with survey summary sheets for each of the projects studied. Installation cost data are summarized and the significance of the differences and similarities between the reported projects is discussed. After evaluating the data obtained from the detailed studies, methods for reducing installation labor costs are postulated based on the experience of the study. Some of the methods include modularization of collectors, preplumbing and preinsulating, and collector placement procedures. Methods of cost reduction and a summary discussion of prominent problems encountered in the projects are considered.(WHK)

  18. A Thermal Energy Recovery System and its Applications in Building (A Short Comunication

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-01-01

    Full Text Available In this paper a heat recovery system from oil heater as a water heater is proposed and analyzed. The potential of heat recovery is studied technically and economically. A model was built and experiments on it are discussed. Recovery of waste heat from the oil heater stack and its application in building is proven to be economically beneficial. The most part of this apparatus was a double-walled tanks and oil heater stack act as firebox for water heater. This tank with 200 liters volume was made of galvanized iron sheets and painted with black color for adsorption of solar radiation. The tank of water heater was filled with 12-15○C water. Sampling was performed at 8 in the morning to 8 at night during one week. The analysis results show that the heat recovery system is recognized as a well option for the examined residential building from both economic and environmental points of view. With the operation considering optimal economic benefits, cost is reduced by about 50%. With maximizing the environmental advantages, CO2 emissions are decreased.

  19. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  20. Domestic hot water use study, multi-family building energy monitoring and analysis for DHW system sizing criteria development

    International Nuclear Information System (INIS)

    Thirty New York City multifamily building combined steam heating and domestic hot water (DHW) plants were instrumented for monitoring (mostly hourly) apartment, outdoor, boiler and DHW temperatures and burner on-off times. In nine of these buildings, which had been upgraded, additional data collected were: stack temperature, DHW flow in 15-minute increments, oil ampersand boiler make-up water flows, and DHW temperature before and after the mixing (tempering) valve and on the circulating return line. The project's objectives are to develop comprehensive operating data on combined DHW and heating systems to be used in system design and specifications and for improving operating procedures. DHW requirements in multi-family buildings are currently calculated on the basis of questionable standards. These new, more precise DHW flow data result in a better basis for sizing than existed heretofore. There is a critical need for improved specifications and performance in newly constructed and renovated buildings. Better system choices among various instantaneous generation and storage scenarios will result in savings derived from smaller initial equipment investments as well as more energy efficient operations. The data being generated define figures for DHW energy use so that more reliable and accurate predictions of savings can be calculated. This paper presents DHW demand patterns, seasonal variations, weekday vs. weekend consumption, consumption vs. occupancy levels, coincidence of 15- and 60-minute demand periods, and average vs. peak demand levels. This project is sponsored by New York State Energy Research and Development Authority (NYSERDA). The results of this research are being reviewed for inclusion in a revision of DHW guidelines for the next edition of the ASHRAE Handbook

  1. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...... costs. It has been successfully applied in a sample case study. The approach can easily be extended to all kind of RES technologies and also allows for implementing further constraints and requirements proprietary to residential NZEBs such as e.g. reliabilities, noise levels or space requirements of...

  2. Building sustainable energy systems: the role of nuclear-derived hydrogen

    International Nuclear Information System (INIS)

    Global climate change is the most critical environmental threat of the 21. century. As evidenced in the preliminary draft of the Intergovernmental Panel on Climate Change (IPCC) new Third Assessment Report (TAR), the scientific support for this conclusion is both extensive and growing. In this paper we first review features of the 21. century energy system - how that system evolved and where it seems to be taking us, unless there are clear and aggressive multinational initiatives to mitigate and then reverse the contribution that today's energy system makes to the risks of global climate change. The paper then turns to the extensive deployment of the two non-carbon based energy currencies electricity and hydrogen, which we will call hydricity, that we believe are essential for future reductions in anthropogenic carbon dioxide (CO2) emissions. Of these two, hydrogen will be the newcomer to energy systems. Popular thinking often identifies renewable as the category of energy sources that can provide electricity and hydrogen in sufficient quantities, although much of the public does not realize there will still be a need for a chemical currency to allow renewable to power the market where carbon is most difficult to mitigate, transportation. Renewable, however, while able to make important contributions to future energy supplies, cannot realistically provide the magnitude of energy that will be required. The paper outlines the quantitative limits to the overall renewable contribution and argues that the large-scale deployment of nuclear fission will be essential for meeting future energy needs while limiting greenhouse gas (GHG) emissions. (authors)

  3. Simulated performance of the Thermo Active Building System (TABS) with respect to the provided thermal comfort and primary energy use

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.; Toftum, Jørn

    2009-01-01

    The central module of an office building conditioned by a Thermo Active Building System (TABS) coupled with constant volume ventilation was evaluated by means of dynamic computer simulations. Additionally, the same building model was simulated with a conventional all air VAV ventilation system for...

  4. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  5. Intelligent buildings in context of energy rationalization

    Directory of Open Access Journals (Sweden)

    Pucar Mila

    2005-01-01

    Full Text Available This paper overviews state of the art, the development activities, and futuristic vision on 'smart' and 'intelligent' buildings' construction in context of measures which improve their energy efficiency. The technologies for programming, regulation and automation of energy consumption in buildings, which characterize the current form of 'smart' buildings together with the implementation of 'intelligent' facades, are already pointing to some significant results which may be accomplished in relation to energy efficiency optimization of buildings without compromising their greater flexibility and comfort in use. One of the major preconditions for further development of these systems is the integration of design processes which refer to the core of a building and to its installation utilities.

  6. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  7. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  8. Development of mechanical ventilation system with low energy consumption for renovation of buildings

    DEFF Research Database (Denmark)

    Terkildsen, Søren

    natural and hybrid ventilation systems is intended to reduce the energy consumption for ventilation, specifically the power consumption of fans in mechanical systems, but these alternative systems have other flaws, e.g. higher ventilation heat loss. Meanwhile, little has been done to improve the...... performance of mechanical ventilation systems. The power consumption of mechanical ventilation depends on the flow rate, fan efficiency and pressure loss in the system. This thesis examines the options and develops a concept and components for the design of low-pressure mechanical ventilation. The hypothesis......-pressure components. The goal was to develop a mechanical system with an SFP-value of 0.5 kJ/m3 and a heat recovery efficiency of 85% that can meet current indoor environment requirements without discomfort in terms of thermal, acoustic and draught issues. The concept was developed for a temperate climate, such as...

  9. Energy use in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  10. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  11. Usage of NASA's Near Real-Time Solar and Meteorological Data for Monitoring Building Energy Systems Using RETScreen International's Performance Analysis Module

    Science.gov (United States)

    Stackhouse, Paul W., Jr.; Charles, Robert W.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Ziegler, Urban; Leng, Gregory J.; Meloche, Nathalie; Bourque, Kevin

    2012-01-01

    This paper describes building energy system production and usage monitoring using examples from the new RETScreen Performance Analysis Module, called RETScreen Plus. The module uses daily meteorological (i.e., temperature, humidity, wind and solar, etc.) over a period of time to derive a building system function that is used to monitor building performance. The new module can also be used to target building systems with enhanced technologies. If daily ambient meteorological and solar information are not available, these are obtained over the internet from NASA's near-term data products that provide global meteorological and solar information within 3-6 days of real-time. The accuracy of the NASA data are shown to be excellent for this purpose enabling RETScreen Plus to easily detect changes in the system function and efficiency. This is shown by several examples, one of which is a new building at the NASA Langley Research Center that uses solar panels to provide electrical energy for building energy and excess energy for other uses. The system shows steady performance within the uncertainties of the input data. The other example involves assessing the reduction in energy usage by an apartment building in Sweden before and after an energy efficiency upgrade. In this case, savings up to 16% are shown.

  12. From Zero Energy Buildings to Zero Energy Districts

    Energy Technology Data Exchange (ETDEWEB)

    Polly, Ben; Kutscher, Chuck; Macumber, Dan; Schott, Marjorie; Pless, Shanti; Livingood, Bill; Van Geet, Otto

    2016-08-26

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assist them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.

  13. About energy saving and increase of energy efficiency in buildings

    OpenAIRE

    L.L. Goshka

    2010-01-01

    In the article the analysis of National law №261 "Energy saving and increase of energy efficiency..." from the point of view of building systems is given. The recommendations for modernization of heat, ventilation and air conditioning (HVAC) systems taking into account energy efficiency requirements are given.

  14. Using occupancy to reduce energy consumption of buildings

    OpenAIRE

    Balaji, Bharathan

    2011-01-01

    Buildings account for 73% of the total electricity consumption in the US. To get an in depth view of where this energy is consumed within buildings, we instrument and monitor the buildings at UCSD to study their power consumption patterns. We observe that the energy consumed is not proportional to the occupancy levels of these buildings, thus indicating energy waste. In order to make the power consumption more proportional to its actual usage, we build an occupancy detection system for the CS...

  15. Methodology for the design of energy production and storage systems in buildings: Minimization of the energy impact on the electricity grid

    OpenAIRE

    Salvador, Michaël; Grieu, Stéphane

    2012-01-01

    Human life requires energy. Moreover, people spend around 90% of their time in buildings while about 40% of primary energy needs are due to buildings. That is why the present paper deals with a methodology allowing identifying and assessing the energy impact of a building on the electricity grid. Thanks to both the building models we developed and fuzzy logic contribution (used to control ventilation and develop occupancy scenarios related to human habits and lifestyle), the results we obtain...

  16. Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia

    OpenAIRE

    Charoenvisal, Kongkun

    2008-01-01

    Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house gas emissions. As a result often environmental design strategies are focused on the performance of these systems. New HVAC technologies such as Geothermal Heat Pump systems have relatively high performance efficiencies when compared to typical systems and therefore could be part of whole-building performance design strategies.In coll...

  17. Effect of thermal energy storage in energy consumption required for air conditioning system in office building under the African Mediterranean climate

    Directory of Open Access Journals (Sweden)

    Abdulgalil Mohamed M.

    2014-01-01

    Full Text Available In the African Mediterranean countries, cooling demand constitutes a large proportion of total electrical demand for office buildings during peak hours. The thermal energy storage systems can be an alternative method to be utilized to reduce and time shift the electrical load of air conditioning from on-peak to off-peak hours. In this study, the Hourly Analysis Program has been used to estimate the cooling load profile for an office building based in Tripoli weather data conditions. Preliminary study was performed in order to define the most suitable operating strategies of ice thermal storage, including partial (load leveling and demand limiting, full storage and conventional A/C system. Then, the mathematical model of heat transfer for external ice storage would be based on the operating strategy which achieves the lowest energy consumption. Results indicate that the largest rate of energy consumption occurs when the conventional system is applied to the building, while the lowest rate of energy consumption is obtained when the partial storage (demand limiting 60% is applied. Analysis of results shows that the new layer of ice formed on the surface of the existing ice lead to an increase of thermal resistance of heat transfer, which in return decreased cooling capacity.

  18. ON REASONABLE ESTIMATE OF ENERGY PERFORMANCE OF THE RESIDENTIAL BUILDINGS SUSTENANCE WITH CENTRALIZED HEAT-SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2016-01-01

    Full Text Available As consisted with Directive No 3 of President of the Republic of Belarus of June, 14th 2007 ‘Economy and Husbandry – the Major Factors of Economic Security of the Republic of Belarus’, saving fuel-and-energy resources over the republic in 2010–2015 should amount to 7,1–8,9 MIO tons of fuel equivalent including 1,00–1,25 MIO tons of fuel equivalent at the expense of heat-supply optimization and 0,25–0,40 MIO tons of fuel equivalent at the expense of increasing enclosing structures heat resistance of the buildings, facilities and housing stock. It means, where it is expected to obtain around 18 % of general thermal resources economy in the process of heat-supply optimization, then by means of enhancing the cladding structure heat resistance of the buildings and constructions of various applications – only about 3–5 % and even a bit less so of the housing stock. Till 1994, in residential sector of the Republic of Belarus, the annual heat consumption of the heating and ventilation averaged more than 130 kW×h/(m2×year (~56 %, of the hot-water supply – around 100 kW×h/(m2×year (~44 %. In residential houses, built from 1994 to 2009, heat consumption of the heating and ventilation is already 90 kW×h/(m2×year, of the hot-water supply – around 70 kW×h/(m2×year. In buildings of modern mainstream construction, they expend 60 kW×h/(m2×year (~46 % on heating and ventilation and 70 kW×h/(m2×year (~54 % on hot-water supply. In some modern residential buildings with the exhausted warm air secondary energy resource utilization, the heating and ventilation takes around 30–40 kW×h/(m2×year of heat. Raising energy performance of the residential buildings by means of reducing heat expenses on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy performance process are producing heat and transporting it over the main lines and outside distribution networks. In

  19. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  20. A New Method of Technical Analysis to Optimise the Design of Low Impact Energy Systems for Buildings

    OpenAIRE

    Roberto de Lieto Vollaro; Matteo Calvesi; Gabriele Battista; Luca Evangelisti; Paola Gori; Claudia Guattari

    2013-01-01

    Energy consumption for civil constructions represents about 40% of total energy requirements, so it is necessary to achieve the goal of energy savings and the consequent reduction of greenhouse gases emissions. The study in content aims to provide a design methodology enables to identify the best plant configuration for buildings from a technical, economic and environmental point of view. To assess validity of the calculation model, an analysis of an historical building was carrie...

  1. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiufeng; Bhattachayra, Prajesh; O& #x27; Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

    2011-11-01

    Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

  2. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Engineering survey building damage assessment training manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The training objectives are: differentiate between the various levels of damage caused to buildings and structures by an earthquake and classify them as to their safety of occupancy, extent of damage, and resources needed for recovery/repair.

  3. The energy performance of office buildings throughout their building process

    OpenAIRE

    Entrop, A.G.; Dewulf, G.P.M.R.; Wamelink, J.W.F.; Geraedts, R.P.; L. Volker

    2011-01-01

    Many innovative techniques and policy measures have been introduced to reduce energy consumption. Despite the high ambitions and societal pressures, the adoption rate of energy measures in office buildings is still low. Using adoption theories this paper provides a framework to analyse the adoption process of energy saving techniques in building processes. This framework is used to analyse the design and building processes of four Dutch office buildings. In these processes the roles of the st...

  4. CISBAT 2005 proceedings. Renewables in a changing climate - Innovation in building envelopes and environmental systems; CISBAT 2005 proceedings. Energies renouvelables et climat - Enveloppes et systemes environnementaux innovatifs

    Energy Technology Data Exchange (ETDEWEB)

    Scartezzini, J. L. (ed.)

    2005-07-01

    These proceedings include the contributions presented at the 2005 CISBAT conference, held in Lausanne, Switzerland. Hosted by the Swiss Federal Institute of Technology (EPFL) in Lausanne and jointly organised by the Solar Energy and Buildings Physics Laboratory at the EPFL, Cambridge University and the Massachusetts Institute of Technology (MIT), this international conference looked at 'Innovation in building envelopes and environmental systems'. Along with three keynote presentations on climate change, the use of renewables in the European Union and Swiss policies on solar energy, these 632-page conference proceedings include the conference's 106 presentations grouped in 10 sections. These cover the following topics: Design and renovation of building envelopes (33 contributions); solar collectors (16 contributions); active and passive cooling (9 contributions); indoor environment quality and health (10 contributions); optimisation of daylighting and electric lighting (5 contributions); advanced building control systems (2 contributions); environmental impacts of construction (4 contributions); networks and decentralised energy production (1 contribution); sustainable urban development (12 contributions) and software and new information technologies (14 contributions). Organised each second year, the two-day CISBAT international conference 2005 attracted more than 200 participants from all over the world.

  5. Optimization and Cost of Energy of Renewable Energy System in Health Clinic Building for a Coastal Area in Tamil Nadu, India Using Homer

    Directory of Open Access Journals (Sweden)

    U. Suresh Kumar

    2014-11-01

    Full Text Available The renewable energy potential of coastal areas of Tamil Nadu, India ranks along with the utmost in the world. This study proposes optimization and cost of energy of different hybrid renewable energy system to power a health clinic in that building. The National Renewable Energy Laboratory (NREL optimization computer model for distributed power, “HOMER,” is used to estimate the optimization and its cost of energy. The implementation of RE systems to supply Rural Health Clinics will contribute to reduce both electricity generation cost and to reduce the consumption of fuel while improving health care and quality of life in these isolated coastal regions. We conclude that using the PV+Wind+Diesel+Battery system for these types of applications in justified on technical and economic grounds. The experimental results show that the least cost of energy at Rs 5.00/KWh, is obtained from above said system and also experiment result shows that the COE decreases with 0% of interest. It is noted, that the PV+Wind+Diesel+Battery hybrid system shows the lowest COE and high amount of Renewable energy.

  6. Electrical Energy Management System

    OpenAIRE

    Oriti, Giovanna

    2014-01-01

    Energy Academic Group Science and Technology Project Research Objectives: To apply power electronics technology to manage electrical energy intelligently in buildings, ships or expeditionary camps. Energy Management System (EMS) laboratory demos and theses.

  7. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    Science.gov (United States)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  8. A New Method of Technical Analysis to Optimise the Design of Low Impact Energy Systems for Buildings

    Directory of Open Access Journals (Sweden)

    Roberto De Lieto Vollaro

    2013-10-01

    Full Text Available Energy consumption for civil constructions represents about 40% of total energy requirements, so it is necessary to achieve the goal of energy savings and the consequent reduction of greenhouse gases emissions. The study in content aims to provide a design methodology enables to identify the best plant configuration for buildings from a technical, economic and environmental point of view. To assess validity of the calculation model, an analysis of an historical building was carried out in combination with two softwares of proven reliability: TRNSYS, used to evaluate the thermal demand of users, and RETScreen, used to estimate the validity of the chosen energy model.

  9. Modelling the effects of phase change materials on the energy use in buildings. Results of Experiments and System Dynamics Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Prins, J.

    2012-02-15

    The current era is in need for more and more sustainable energy solutions. Phase Change Materials (PCM's) are a solution for a more sustainable build environment because they can help to reduce the energy use of buildings during heating and cooling of the indoor air. This paper presents the results of recent experiments that have been executed with test boxes. In addition a System Dynamics model has been developed to find out how PCM's can be used efficiently without testing in reality. The first experiment, in which PCM's were applied in a concrete floor, shows a reduction of peak temperatures with 4C {+-} 0.7C on maximum temperatures and over 1.5C {+-} 0.7C on minimum temperatures during warm periods. The model confirmed these findings, although the predicted reductions were slightly. During the second experiment more PCM's were applied by mounting them into the walls using gypsum plasterboard to increase the latent heat capacity. Remarkably, both the experimental set-up as the model showed that the increase of PCM's (of almost 98%) causes hardly any difference compared to the first situation. Adapting the exterior in a way to absorb more solar energy, increases the average indoor temperature but decreases the reduction of peak temperatures. Again the model confirmed these findings of the experiment. These results show that the effect of PCM's varies on different climatological contexts and with different construction components physics. This means no straight forward advice on the use of PCM's for a building design can be given. The solution for this problem is provided by the model, showing that the effects of PCM's can be modelled in order to use PCM's in an effective way in different climatological contexts and with different characteristics of construction components. The research shows that a simple model is already capable of predicting PCM performance in test boxes with reasonable accuracy. Therefore it can be

  10. BES with FEM: Building Energy Simulation using Finite Element Methods

    OpenAIRE

    Schijndel, van, AWM Jos

    2012-01-01

    An overall objective of energy efficiency in the built environment is to improve building and systems performances in terms of durability, comfort and economics. In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate f...

  11. BES with FEM: Building Energy Simulation using Finite Element Methods

    OpenAIRE

    van Schijndel, A. W. M.

    2016-01-01

    An overall objective of energy efficiency in the built environment is to improve building and systems performances in terms of durability, comfort and economics. In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate f...

  12. End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors

    International Nuclear Information System (INIS)

    The National Energy Modeling System (NEMS) is arguably the most influential energy model in the United States. The U.S. Energy Information Administration uses NEMS to generate the federal government's annual long-term forecast of national energy consumption and to evaluate prospective federal energy policies. NEMS is considered such a standard tool that other models are calibrated to its forecasts, in both government and academic practice. As a result, NEMS has a significant influence over expert opinions of plausible energy futures. NEMS is a massively detailed model whose inner workings, despite its prominence, receive relatively scant critical attention. This paper analyzes how NEMS projects energy demand in the residential and commercial sectors. In particular, we focus on the role of consumers' preferences and financial constraints, investigating how consumers choose appliances and other end-use technologies. We identify conceptual issues in the approach the model takes to the same question across both sectors. Running the model with a range of consumer preferences, we estimate the extent to which this issue impacts projected consumption relative to the baseline model forecast for final energy demand in the year 2035. In the residential sector, the impact ranges from a decrease of 0.73 quads (− 6.0%) to an increase of 0.24 quads (+ 2.0%). In the commercial sector, the impact ranges from a decrease of 1.0 quads (− 9.0%) to an increase of 0.99 quads (+ 9.0%). - Highlights: • This paper examines the impact of consumer preferences on final energy in the Commercial and Residential sectors of the National Energy Modeling System (NEMS). • We describe the conceptual and empirical basis for modeling consumer technology choice in NEMS. • We offer a range of alternative parameters to show the energy demand sensitivity to technology choice. • We show there are significant potential savings available in both building sectors. • Because the model uses its own

  13. Energy Metrics for State Government Buildings

    Science.gov (United States)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  14. Overview of rural building energy efficiency in China

    International Nuclear Information System (INIS)

    Over the past three decades, people's living standard in China has been greatly improved, accompanied by the rapid increasing building energy consumption. Rural building energy consumption has become one of the most important parts of the total energy consumption in China, which deserves to be paid much attention. It is of vital importance to promote building energy efficiency for the New Socialist Countryside and energy conservation and emission reduction. This paper provides an overview of building energy consumption in the countryside, which figures out the situation and challenges in energy-saving work. The government has worked for years on rural building code system aimed at narrowing the energy gap between urban areas, but it is in the beginning phase. This paper has analyzed the only special issues about rural building energy efficiency and the mandatory standards for urban buildings, which can facilitate the development of rural building energy efficiency. Based on the above analysis, some recommendations regarding the improvement of rural building energy efficiency are given. - Highlights: • Situation of rural energy consumption in China. • Challenges in rural building energy-saving work. • Design standard, special plan and some pilot projects are analyzed. • Effects of existing energy policies for urban buildings. • Some recommendations are given

  15. Designing of zero energy office buildings in hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gwad, Mohamed

    2011-07-01

    The designing of office buildings by using large glass areas to have a transparent building is an attractive approach in the modern office building architecture. This attitude increases the energy demand for cooling specially in the hot arid region which has long sun duration time, while the use of small glazing areas increases the energy demand for lighting. The use of uncontrolled natural ventilation increases the rate of hot ambient air flow which increases the building energy demand for cooling. At the same time, the use of mechanical ventilation to control the air change rate may increase the energy demand for fans. Some ideas such as low energy design concept are introduced for improving the building energy performance and different rating systems have been developed such as LEED, BREEAM and DGNB for evaluating building energy performance system. One of the new ideas for decreasing the dependence on fossil fuels and improving the use of renewable energy is the net zero-energy building concept in which the building generates enough renewable energy on site to equal or exceed its annual energy use. This work depends on using the potentials of mixing different energy strategies such as hybrid ventilation strategy, passive night cooling, passive chilled ceiling side by side with the integrating of photovoltaic modules into the building facade to produce energy and enrich the architectural aesthetics and finally reaching the Net Zero Energy Building. There are different definitions for zero energy buildings, however in this work the use of building-integrated Photovoltaic (BIPV) to provide the building with its annual energy needs is adopted, in order to reach to a Grid-Connected Net-Zero Energy Office Building in the hot arid desert zone represented by Cairo, Egypt. (orig.)

  16. Compliance with building energy regulations for new-build dwellings

    International Nuclear Information System (INIS)

    Despite increasingly stringent building energy regulations worldwide, non-compliance exists in practice. This paper examines the profile of compliance with building energy regulations for new-build dwellings. In total 404 new-build dwellings completed in the UK from 2006 to 2009 were investigated. Only a third of these dwellings were evidenced as being compliant with Building Regulations Part L (England and Wales). Such low compliance casts a serious concern over the achievability of the UK Government's target for all new-build homes to be ‘zero carbon’ from 2016. Clearly evidenced was a lack of knowledge of Part L and its compliance requirements among the supply and building control sides of new-build dwellings. The results also indicate that the compliance profile was influenced by factors including Standard Assessment Procedure (UK Government's methodology for energy efficiency) calculation submissions, learning and experience of builders and building controls with Part L, use of Part L1A checklist, the introduction of energy performance certificate (EPC), build method, dwelling type, and project size. Better compliance was associated with flats over houses and timber frame over masonry. The use of EPC and Part L1A checklist should be encouraged. Key to addressing the lack of compliance with building energy regulations is training. -- Highlights: ► There exists a lack of compliance, worldwide, with building energy regulations. ► The implementation of England and Wales building energy regulations is problematic. ► Training, learning and experience of builders and building control are critical. ► Energy performance certificate and Part L 2006 checklist helped achieve compliance. ► Flats achieved better compliance over houses; and timber frame over masonry.

  17. Energy savings in Polish buildings

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  18. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  19. Energy efficiency by use of automated energy-saving windows with heat-reflective screens and solar battery for power supply systems of European and Russian buildings

    Science.gov (United States)

    Zakharov, V. M.; Smirnov, N. N.; Tyutikov, V. V.; Flament, B.

    2015-10-01

    The new energy saving windows with heat-reflecting shields have been developed, and for their practical use they need to be integrated into the automated system for controlling heat supply in buildings and the efficiency of their use together with the existing energy-saving measures must be determined. The study was based on the results of field tests of windows with heat-reflective shields in a certified climate chamber. The method to determine the minimum indoor air temperature under standby heating using heat-reflective shields in the windows and multifunctional energy-efficient shutter with solar battery have been developed. Annual energy saving for the conditions of different regions of Russia and France was determined. Using windows with heat-reflecting screens and a solar battery results in a triple power effect: reduced heat losses during the heating season due to increased window resistance; lower cost of heating buildings due to lowering of indoor ambient temperature; also electric power generation.

  20. BUILDING STRONGER STATE ENERGY PARTNERSHIPS

    Energy Technology Data Exchange (ETDEWEB)

    David Terry

    2002-04-22

    When initiated by the National Association of State Energy Officials (NASEO) and the U.S. Department of Energy's (DOE) Rebuild America Program (RBA), this project--Strengthening the Partnerships Between the State and Territory Energy Offices and the U.S. Department of Energy--was geared toward addressing some project development and communications barriers between the State Energy Offices and the RBA program. While successful in some states, RBA officials were having difficulty assisting states in forming partnerships with communities and taking advantage of the programs technical assistance and other resources. NASEO's efforts under the project were, in large part, aimed at educating state energy offices about RBA's resources and delivering timely information to help move the program forward by emphasizing the successes of key states and identifying concerns and problems in states beginning to implement RBA activities. This report defines these outreach needs and challenges, the tasks designed to address these issues, and results during the first year of the project. As contemplated in NASEO's workplan, the approach during the first year of the agreement focuses on working through NASEO's State Energy Committee structure. Support provided under the agreement for tasks one and two during year one was intended to address partnerships in the buildings area. Specifically, NASEO was to work with its buildings committee, various state energy office members, and the Rebuild America program to improve partnership efforts, communications, and effectiveness of these combined efforts. The approach of to the project included three elements during year one. First, NASEO and its Buildings Committee were to focus on raising awareness and coordination of Rebuild activities. Through education, one-on-one communications, and presentations at NASEO meetings and other events, staff and the committee will assist Rebuild officials in stimulating interest in the

  1. Building Energy Audit Report for Pearl Harbor, HI

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Chvala, William D.; De La Rosa, Marcus I.; Dixon, Douglas R.

    2010-09-30

    A building energy audit was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management Program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at selected Pearl Harbor buildings, identify cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This report documents the findings of that assessment.

  2. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE)hourly from −5.6% to 7.5% and CV(RMSE)hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  3. Modelling energy demand in the Norwegian building stock

    OpenAIRE

    Sartori, Igor

    2008-01-01

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates...

  4. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    International Nuclear Information System (INIS)

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy system optimisation model of the Danish heat and power sector. The achieved optimal level of heat savings reaches 11% of projected heat demand in 2025 under the model assumptions. Moreover, the analysis reveals the importance of considering energy conservation options in a system wide perspective. Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. - Highlights: ► Heat savings in buildings are analysed together with a heat and power system. ► Heat savings compete with electricity to heat technologies, mainly heat pumps. ► Cost effective heat-savings bring small decrease in health impacts and CO2 emissions. ► Cost-effectiveness of heat savings depends on the marginal heat generation technology

  5. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  6. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  7. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  8. Building Student Awareness of Societal Decision-Making Challenges about Energy through the Study of Earth System Data and Innovations in Energy-Related Materials Research

    Science.gov (United States)

    Zalles, D. R.; Acker, J. G.; Berding, M.

    2014-12-01

    Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.

  9. Analysis of Phase Change Material in Glazing Systems in Future Zero-Energy-Buildings

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2016-01-01

    thermal storage capacity of the glazed facade by using phase change material (PCM), in the glazing cavity, reduces the cooling demand. When wanting to use this technology under colder weather conditions, the pane can potentially reduce the heat loss of the pane thereby minimizing energy demand for heating....

  10. Energy Conservation of the Designated Government Buildings in Thailand

    Directory of Open Access Journals (Sweden)

    Wangskarn Prapat

    2016-01-01

    Full Text Available The designated government buildings have implemented and administered energy program under the energy development and promotion Act 2007 for many years continuously until 2015. Appointment person responsible for energy, performing energy management and implementing the energy conservation work plan and measures are legal requirements for the designated buildings. Therefore, the ministry of Energy has launched the project to support the implementation of energy management. The aim of the project was to create the energy management system in the designated government buildings, and to reduce energy consumption. In this paper, the evaluation of the project has been presented from the achievements of 839 designated government buildings. The energy saving is more than 440 ktoe/year. This is about 3% of energy consumptions of buildings.

  11. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    OpenAIRE

    Byung-Lip Ahn; Ji-Woo Park; Seunghwan Yoo; Jonghun Kim; Seung-Bok Leigh; Cheol-Yong Jang

    2015-01-01

    Light-emitting diode (LED) lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED) lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED) lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC) system to move the lighting’s waste heat outdoors. An experi...

  12. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  13. Definition of nearly zero-energy building requirements based on a large building sample

    International Nuclear Information System (INIS)

    According to the recast of the Energy Performance Building Directive, Member States must give an exact definition for nearly zero-energy buildings to be introduced from 2018/2020. The requirement system stipulating the sustainable development of the building sector is usually based on the analysis of a few reference buildings, combining energy efficiency measures and HVAC systems. The risk of this method is that depending on the assumptions either the requirements do not provide sufficient incentives for energy saving measures and renewables or the requirements cannot be fulfilled with rational solutions in many cases. Our method is based on the artificial generation of a large building sample, where the buildings are defined by geometric and other parameters. Due to the large number of combinations, the effect of many variables appear in the results, with the deviations reflecting the sensitivity of the energy balance. The requirements are set based on some fundamental considerations and the statistical analysis of the sample. The method is demonstrated on the example of setting the requirements for residential buildings in Hungary. The proposed requirements are validated against the common European targets. The suggested method is suitable for developing building energy regulation threshold values, certification schemes or benchmarking values. - Highlights: • We analyse the European nearly zero-energy building definition. • We present a method for setting requirements based on a large building sample. • We demonstrate the method for residential buildings in Hungary. • We compare the results with the European targets

  14. An innovative radon mitigation-energy conservation retrofit system for residential buildings

    International Nuclear Information System (INIS)

    Field tests were performed on an innovative radon mitigation system that provides basement pressurization and dilution while conserving heating fuel, improving indoor air quality and human comfort. This year-round radon reduction retrofit device has been successfully installed and monitored in a Wisconsin home that exhibited elevated radon levels. In the design, a secondary heat exchanger for a conventional-type residential furnace is modified to provide heated fresh air exchange and intermittent pressure regulation. Experiments have shown that the average indoor radon level can be reduced by 97 percent and that employment of this system during the heating months exhibits a zero operational cost. Measurements of radon reduction levels, fuel usage and environmental factors that affect radon migration are documented. A state-of-the-art PC-data acquisition system with accompanying instrumentation for radon measurements is also described. 13 refs., 4 figs., 1 tab

  15. Advanced storage concepts for solar thermal systems in low energy buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

    2006-04-07

    The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

  16. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. Important challenges remain with implementation

  17. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand. The...... analysis also shows that the connection of low-energy buildings to DH networks is potentially a good solution in Denmark for reaching the climatic goals, but a high degree of connection must be reached, especially for detached houses, where most of the buildings in a typical community must be connected to......The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present a...

  18. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

  19. Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring Algorithm for a Residential Building Energy Management System

    Directory of Open Access Journals (Sweden)

    Kofi Afrifa Agyeman

    2015-08-01

    Full Text Available The concern of energy price hikes and the impact of climate change because of energy generation and usage forms the basis for residential building energy conservation. Existing energy meters do not provide much information about the energy usage of the individual appliance apart from its power rating. The detection of the appliance energy usage will not only help in energy conservation, but also facilitate the demand response (DR market participation as well as being one way of building energy conservation. However, energy usage by individual appliance is quite difficult to estimate. This paper proposes a novel approach: an unsupervised disaggregation method, which is a variant of the hidden Markov model (HMM, to detect an appliance and its operation state based on practicable measurable parameters from the household energy meter. Performing experiments in a practical environment validates our proposed method. Our results show that our model can provide appliance detection and power usage information in a non-intrusive manner, which is ideal for enabling power conservation efforts and participation in the demand response market.

  20. Estimation of the building energy loads and LNG demand for a cogeneration-based community energy system: A case study in Korea

    International Nuclear Information System (INIS)

    Highlights: • We estimated energy demand of building groups in a town using an in-house tool. • We developed an operation simulator to match supply–demand processes of energy. • Detailed technological information to operate the CES is provided by the simulation. • LNG demand is forecasted for the expansion of the CES up to 14 years in the future. - Abstract: We analyzed energy consumption by a newly constructed part of a city in Korea to forecast the LNG demand for 14 years. The electricity, heating, cooling, and hot-water demands for a cogeneration-based CES (Community Energy System) accommodating 86,000 people in 29,000 houses are estimated using load models developed through direct measurements and statistical surveys. Based on published occupancy rates and forecasts of the rate of increase in energy consumption by third parties through independent study, the energy demands were driven in the form of 8760-h time series for each of the 14 years. Next, we simulate the demand–supply matching processes of a specifically chosen cogeneration engine for the CES to forecast the LNG consumption and the electricity trade for each year. We simulated the demand–supply matching processes with an automation tool specifically developed for this study. The methodology we established in this study can be applied to similar problems which may arise anywhere in the world

  1. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    International Nuclear Information System (INIS)

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards

  2. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  3. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2013-01-01

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers and...... system optimisation model of the Danish heat and power sector. The achieved optimal level of heat savings reaches 11% of projected heat demand in 2025 under the model assumptions. Moreover, the analysis reveals the importance of considering energy conservation options in a system wide perspective....... Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. © 2012Elsevier Ltd. All rights reserved....

  4. Modelling of solar thermo-chemical system for energy storage in buildings

    OpenAIRE

    Skrylnyk, Alexandre; Courbon, Emilie; Frère, Marc; Hennaut, Samuel; Andre, Philippe; Sun, Philippe; Descy, Gilbert

    2012-01-01

    The goal of this paper is the demonstration of the methodological design principles within theoretical modelling of thermal heat storage apparatus and simulation of inter-seasonal heat storage system. The designing procedure starts from the modelling of thermal plant behaviour, based on the simplifications in the basic hypothesis. Afterwards, a more detailed modelling, involving dynamic aspects and additional features of plant components, is prese...

  5. Tool coupling for the design and operation of building energy and control systems based on the Functional Mock-up Interface standard

    Energy Technology Data Exchange (ETDEWEB)

    Nouidui, Thierry Stephane; Wetter, Michael

    2014-03-01

    This paper describes software tools developed at the Lawrence Berkeley National Laboratory (LBNL) that can be coupled through the Functional Mock-up Interface standard in support of the design and operation of building energy and control systems. These tools have been developed to address the gaps and limitations encountered in legacy simulation tools. These tools were originally designed for the analysis of individual domains of buildings, and have been difficult to integrate with other tools for runtime data exchange. The coupling has been realized by use of the Functional Mock-up Interface for co-simulation, which standardizes an application programming interface for simulator interoperability that has been adopted in a variety of industrial domains. As a variety of coupling scenarios are possible, this paper provides users with guidance on what coupling may be best suited for their application. Furthermore, the paper illustrates how tools can be integrated into a building management system to support the operation of buildings. These tools may be a design model that is used for real-time performance monitoring, a fault detection and diagnostics algorithm, or a control sequence, each of which may be exported as a Functional Mock-up Unit and made available in a building management system as an input/output block. We anticipate that this capability can contribute to bridging the observed performance gap between design and operational energy use of buildings.

  6. Renewable Energy Applications for Existing Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  7. Release of systems, plant components and buildings from restrictions under the Nuclear Energy Act

    International Nuclear Information System (INIS)

    Firstly, radioactive substances released in accordance with Art. 29 StrlSchV are ''non-radioactive'' by definition. Secondly, the free-release threshold limits listed there are computed on the basis of the ''10-μSv concept''. It is important to remember in this context that all reputable international radiation safety organizations classify personal dosage levels within a range of several times 10 μSv per year as ''trivial dosages'' below which it is safe to assume that the potential risk is negligible. In keeping with this internationally recognized scientific standard, we contend that a radioactivity threshold value between 10% and one-half of the free-release thresholds limits cited above (e.g. 0.5 Bq/cm2 or 0.05 Bq/g in the case of 60 Co) ensures a sufficient degree of radiation safety. In addition, sampling methods to be used in measuring surface radioactivity are to be specified for the purpose of establishing evidence. The following sections describe in detail the formal procedures proposed for use in the decommissioning the Muelheim-Kaerlich power plant, some of which have already been carried out. One of the most significant problems encountered in this context is that of responding appropriately to continual changes in radiation safety regulations resulting from revision of the Nuclear Energy Act and the Radiation Safety Directive. (orig.)

  8. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  9. Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS Occupational Health and Safety (OHS Risk

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2016-01-01

    Full Text Available Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the relative safety of various construction methods, including IBS. This study presents a comparative evaluation of the occupational health and safety (OHS risk presented by different construction approaches, namely IBS and traditional methods. The evaluation involved developing a model based on the concept of ‘argumentation theory’, which helps construction designers integrate the management of OHS risk into the design process. In addition, an ‘energy damage model’ was used as an underpinning framework. Development of the model was achieved through three phases, namely Phase I – knowledge acquisitaion, Phase II – argument trees mapping, and Phase III – validation of the model. The research revealed that different approaches/methods of construction projects carried a different level of energy damage, depending on how the activities were carried out. A study of the way in which the risks change from one construction process to another shows that there is a difference in the profile of OHS risk between IBS construction and traditional methods.Therefore, whether the option is an IBS or traditional approach, the fundamental idea of the model is to motivate construction designers or decision-makers to address safety in the design process and encourage them to examine carefully the probable OHS risk variables surrounding an action, thus preventing accidents in construction.

  10. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    OpenAIRE

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    2012-01-01

    Building design must evolve from today's practice – where the individual building parts are optimized separately – into a future where the whole building, including all installed systems, is optimized by integrating innovative technologies that will furthermore make the building itself an active part of the total energy system. Integrated design is a design process informed by multidisciplinary knowledge, where different software plays an important role in the designing process. Numerous simu...

  11. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  12. The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)

  13. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, Russell [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Maurer, Tessa [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  14. Energy savings predictions from building equipment retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Yalcintas, M. [Amel Technologies Inc., Honolulu, HI (United States)

    2006-07-01

    This study evaluated the tools currently available for predicting energy savings from retrofit projects. In particular, it addressed the challenges in determining the energy savings associated with equipment retrofits. The main challenges lie in identifying the data after a building's equipment has been replaced. The energy consumption of equipment is sensitive to variations in weather, internal building load such as occupancy, lighting loads, and heating, ventilation and air-conditioning (HVAC) equipment operation schedules. This study focused on energy model development based on the artificial neural networks (ANN) method. The simplicity and nonlinear modeling capabilities of ANN method render it more popular than the multi-linear regression method. The ANN model developed in this study was based on Levenberg-Marquardt backpropagation algorithm. The retrofit project involved the installation of an energy management systems in the guest rooms of a hotel in Honolulu, Hawaii. The installation of a variable frequency drive (VFD) on the air handling units was also considered. The pre-retrofit and post-retrofit energy measurements were recorded from the chiller plant for a 3 week period. Each measurement included hourly electricity demand recordings. In addition to the chiller plant, the building would save energy from the air handling unit operations with new VFDs. Only the energy savings from the chiller plant were included in this analysis because electricity measurements from the air handling units were not available. The purpose in developing the ANN model for the pre-retrofit period was to estimate the pre-retrofit equipment energy consumption rate for the post-retrofit period. Another aspect of this study was a sensitivity analysis of the weather variables on the ANN model prediction. The expected energy savings in the post-retrofit period were estimated by using the statistical average of the weather data for a particular location. 7 refs., 3 tabs., 4 figs.

  15. Comparison of energy balances in public buildings

    OpenAIRE

    Avguštin, Nejc

    2015-01-01

    The thesis deals with a comparative analysis of energy balance of public buildings before and after energy renovation. Most of the energy renovations of public buildings in Slovenia between 2010 and 2015 was co-financed by the Cohesion Fund of the European Union. The analysis is based on the calculations of energy balances of the buildings before and after renovation. The calculations were carried out by designers prior to submitting the project application for subsidy. We had ...

  16. IEA EBC Annex 67 Energy Flexible Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Jensen, Søren Østergaard

    2016-01-01

    know ledge on and demonstration of the Energy Flexibility Buildings can provide for the energy grids as well of to identify critical aspects and possible solutions to manage this Energy Flexibility. The paper discusses the background, the aims and the work plan of IEA (International Energy Agency) EBC......The foreseen large deployment of renewable energy sources may seriously affect the stability of energy grids. It will be necessary to control energy consumption to match instantaneous energy production. The built-in Energy Flexibility in buildings may be utilized for stabilizing the energy grids......, allowing for a larger roll out of renewable technologies. The Energy Flexibility of a building is the ability to manage its energy demand and generation according to local climate conditions, user needs and grid requirements. Energy Flexibility of buildings will thus allow for demand side management and...

  17. Opportunity and potential for fuel cell systems for energy in buildings; Moejlighet och potential foer braenslecellsystem foer energifoersoerjning i byggnader

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin (Catator AB (Sweden))

    2011-04-15

    While planning for new sustainable and environmentally friendly communities in Sweden, discussions on using fuel cells for small-scale power and heat production (mCHP) are today on-going. Examples of such communities are Sege Park in Malmoe and Norra Djurgardsstaden in Stockholm, where several members of the Swedish Construction Industry's Organisation for Research and Development (SBUF) are participating in the development. The status and the potential of using fuel cell based mCHP compared to conventional heat and power production technology and other mCHP-technologies (Internal combustion engine (ICE), Stirling) is today therefore a very interesting question for both the energy and the building sector, who also ask for more knowledge within the field. This work focuses on this purpose. The main goals of this report are: 1. To give an overall description of different existing fuel cell technologies and necessary belonging system components. The fuel cell systems are discussed and evaluated based on parameters such as efficiencies, fuel flexibility, life-time, complexity, maturity and cost. The systems are compared to mCHPs based on small heat engines (Internal combustion, Stirling). 2. To give a state-of-the-art report on fuel cell based mCHPs and to describe possibilities and risks related to different technologies. 3. To guideline for future choices of system solutions suitable for different building constructions and different geographical placements. The work is limited to systems suitable for small houses (< 5 kWe) and larger residential buildings (< 50 kWe) situated in population centres/cities where infra-structures for natural gas/biogas and the national grid are available. The project has been performed by Catator AB on the request of SBUF with support from the Swedish Gas Centre (SGC AB), Skanska and Catator. The study is based on the open literature, the information given by leading fuel cell system suppliers and Catator's own knowledge and

  18. New building technology based on low energy design

    International Nuclear Information System (INIS)

    Full text: The construction, operation and maintenance of all residential, commercial, and industrial buildings are responsible for over half of global greenhouse gas emissions, and two-thirds of global electricity is generated solely for building operation. This single sector has a huge potential impact on the future sustainability of society, and therefore new advanced technologies must be rapidly developed and implemented in what is often a slow-moving sector. The concept of the low exergy building has created a new framework for the development of high performance building systems. Exergy analysis has been used to help minimize the primary energy demands of buildings through the minimization of losses in the chain of energy supply in a building system. The new systems that have been created have been shown to be more comfortable and more energy efficient. These systems include integrated thermal mass systems heated by high efficiency heat pumps integrated with energy recovery systems that eliminate the waste that is common in building systems. The underlying principles and concepts of low exergy building systems will be presented along with the analysis of several technologies being implemented in a low Ex building in Zurich, Switzerland. These include an advanced ground source heat pump strategy with integrated heat recovery, decentralized ventilation, and a unique active wall insulation system, which are being researched as part of the IEA ECBCS Annex 49 (www.annex49.org). (author)

  19. Energy end-use intensities in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  20. Green Roofs and Green Building Rating Systems

    Directory of Open Access Journals (Sweden)

    Liaw

    2015-01-01

    Full Text Available The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED and Ecology, Energy, Waste, and Health (EEWH rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationship between green coverage and the credits of the rating systems, evaluated the credits efficiency, and performed cost analysis. As an example, we used a university building in Keelung, Northern Taiwan. The findings suggest that with EEWH, the proposed green coverage is 50–75%, whereas with LEED, the proposed green coverage is 100%. These findings have implications for the application of green roofs in green building.

  1. Barriers' and policies' analysis of China's building energy efficiency

    International Nuclear Information System (INIS)

    With the rapid economic growth and the improvement of people's living standards, China's building energy consumption has kept rising during the past 15 years. Under the effort of the Chinese government and the society, China's building energy efficiency has made certain achievements. However, the implementation of building energy efficiency in China is still far from its potential. Based on the analysis of the existing policies implemented in China, the article concluded that the most essential and the most effective ways to promote building energy efficiency is the government's involvement as well as economic and financial incentives. In addition, the main barriers in the process of promoting building energy efficiency in China are identified in six aspects. It has been found that the legal system and administrative issues constitute major barriers, and the lack of financial incentives and the mismatching of market mechanism also hamper the promotion of building energy efficiency. Finally, in view of the existing policies and barriers analysis, three corresponding policy proposals are presented. -- Highlights: •The existing policies implemented in China from three aspects are presented and analysed. •The Government's involvement is the most essential effective way to promote building-energy efficiency. •Six aspects of barriers in promoting building energy efficiency in China are identified. •The legal system and administrative issues constitute the major barriers. •Three policy proposals to further promote building energy efficiency in China are proposed

  2. Resilient mounting systems in buildings

    NARCIS (Netherlands)

    Breeuwer, R.; Tukker, J.C.

    1976-01-01

    The basic elements of resilient mounting systems are described and various measures for quantifying the effect of such systems defined. Using electrical analogue circuits, the calculation of these measures is illustrated. With special reference to resilient mounting systems in buildings, under speci

  3. Building Community Knowledge Systems

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.

    2003-01-01

    managers. We followed the system from its introduction in early 1997 until it was abandoned in the beginning of 2000. We focused on the way the system was introduced in the organization, how it changed, and how the intended group of users received (and eventually rejected) the system. Based on our...... interviews and observations we identify five reasons for the systems failure. We close the paper by some reflections on the use of the concept of “shared practice” in the development of IT-supported knowledge sharing systems....

  4. ATLAS Nightly Build System Upgrade

    CERN Document Server

    Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

    2014-01-01

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

  5. ATLAS Nightly Build System Upgrade

    CERN Document Server

    Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

    2013-01-01

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

  6. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  7. Handbook of energy use for building construction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  8. Revisit of Energy Use and Technologies of High Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  9. Regulation proposal for voluntary energy efficiency labelling of commercial buildings

    International Nuclear Information System (INIS)

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m2 or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  10. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy ...... calculated energy use. More buildings should be investigated in the same manner before any sound conclusion can be made regarding whether the implementation of EPBD in a wide context leads to truly energy-efficient buildings.......This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  11. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    Directory of Open Access Journals (Sweden)

    Eleanor S. Lee

    2015-05-01

    Full Text Available As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1. The objective of this study is to (a provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products, and (b quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005 in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.

  12. ATLAS nightly build system upgrade

    International Nuclear Information System (INIS)

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nightly build results, and provides new tools for offline release shifters. We will also outline our long-term plans for distributed nightly releases builds and testing

  13. Building regulations in energy efficiency: Compliance in England and Wales

    International Nuclear Information System (INIS)

    There is an international pragmatic shift towards the use of building energy regulations, standards and codes to reduce building energy consumption. The UK Government revised Building Regulations in 2002, 2006 and 2010, towards more stringent energy efficiency standards and ultimately the target of ‘zero carbon’ new homes from 2016. This paper aims to: reveal levels of compliance with energy Building Regulations of new-build dwellings in England and Wales; explore underlying issues; and identify possible solutions. In total 376 new-build dwellings were investigated. The compliance revealed was poor, at a level of 35%; accompanied by 43% ‘grey compliance’ and 21% ‘grey non-compliance’ (due to insufficient evidence of achieving required carbon emissions reductions). It is a serious concern when building control approves so many dwellings when insufficient evidence of compliance has been received. Underlying issues were centred on: incorrect compilation and/or insufficient submission of carbon emissions calculations by builders/developers; inappropriate timings of such submissions; and a paucity of proper checks by building control. Exploring these issues reveals a complex system of factors influencing energy regulations compliance, which involves a wide range of stakeholders. The findings should inform the formulation and implementation of energy efficiency building regulations and policy in the future. - Highlights: ► The compliance with energy Building Regulations (England and Wales) was poor. ► The problematic implementation of energy Building Regulations is a serious concern. ► Identified issues suggest a lack of knowledge of builders and building control. ► There is a complex system of factors influencing energy regulations compliance. ► A systems approach is needed to improve compliance, while training is crucial.

  14. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  15. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  16. Chinese kangs and building energy consumption

    Institute of Scientific and Technical Information of China (English)

    LI YuGuo; ZHUANG Zhi; LIU JiaPing

    2009-01-01

    Chinese kangs are an integrated system for cooking, sleeping and heating in rural Northern China with more than 2000 years history. In 2004 there were 67 million Chinese kangs used by 44 million rural families or 174 million people. Chinese kangs store surplus heat from stove during cooking and releases it later for both home heating and localized bed heating. Such a widely used heating system has been rarely studied. Understanding kangs is important for developing new effective home heating systems for better energy efficiency and improving indoor air quality in Northern China. In this paper,we review and present some preliminary results from our field measurement and mathematical modeling, and discuss the development of Chinese kangs as related to future energy consumption in rural homes, and building energy consumption in China in general. We suggest that transition and new technologies for rural home heating in Northern China, i.e. the future of Chinese kangs, should be considered as the top priority in managing future building energy consumption in China.

  17. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future. PMID:26067504

  18. ROLE OF NET ZERO ENERGY BUILDING IN ENERGY SECURITY

    OpenAIRE

    Santosh D Jadhav

    2015-01-01

    Buildings have significant impact on energy use and the environment which in turn affects the development of country. Buildings are significant cause of climate change and energy security. In India , Buildings consumes more than 40% of country’s energy and responsible for almost 40% of greenhouse gas emissions. Many initiatives taken by Government of India to increase the efficiency of buildings such as Bachat Lamp Yojna, Use of Energy Efficient Lamps. Suc...

  19. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  20. 1994 Building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1994-09-01

    During the spring of 1994, Pacific Northwest Laboratory (PNL), on behalf of the U.S. Department of Energy (DOE) Office of Codes and Standards, conducted five two-day Regional Building Energy Codes and Standards workshops across the United States. Workshops were held in Chicago, Philadelphia, Atlanta, Dallas, and Denver. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing state building codes in their states. The workshops provided an opportunity for state and other officials to learn more about the Energy Policy Act of 1992 (EPAct) requirements for residential and commercial building energy codes, the Climate Change Action Plan, the role of the U.S. Department of Energy and the Building Energy Standards Program at Pacific Northwest Laboratory, the commercial and residential codes and standards, the Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. In addition to receiving information on the above topics, workshop participants were also encouraged to inform DOE of their needs, particularly with regard to implementing building energy codes, enhancing current implementation efforts, and building on training efforts already in place. This paper documents the workshop findings and workshop planning and follow-up processes.

  1. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    OpenAIRE

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    This paper studies a nonlinear predictive energy management strategy for a residential building with a rooftop photovoltaic (PV) system and second-life lithium-ion battery energy storage. A key novelty of this manuscript is closing the gap between building energy management formulations, advanced load forecasting techniques, and nonlinear battery/PV models. Additionally, we focus on the fundamental trade-off between lithium-ion battery aging and economic performance in energy management. The ...

  2. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  3. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  4. Energy conservation in developing countries using green building idea

    International Nuclear Information System (INIS)

    Green buildings uses processes that are environmentally responsible and resource-efficient throughout a building's life-cycle. In these buildings Certain energy conservative and environment friendly steps are considered and implemented from design, construction, operation, maintenance and renovation. In present era no doubt new technologies are constantly constructed and used in creating greener structures, energy efficient buildings. The common objective is to reduce the overall impact of the built environment on human health using available energy efficiently. To increase the efficiency of the System or the building, Onsite generation of renewable energy through solar power, wind power, hydro power, or biomasscan significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building. Any how power generation using renewable sources that is Solar system may further enhance energy conservation ideas. Power Factor improvement can also be another source of efficient tool for efficient use of Electrical Energy in green buildings. In developing countries a significant amount of Electrical Energy can be conserved and System efficiency as a whole can be increased by Power Factor correction. The reverse flow of power can be locally engaged instead of creating extra stress and opposition to the existing grid lines.

  5. Energy conservation in developing countries using green building idea

    Science.gov (United States)

    Rashid, Akram; Mansoor Qureshi, Ijaz

    2013-06-01

    Green buildings uses processes that are environmentally responsible and resource-efficient throughout a building's life-cycle. In these buildings Certain energy conservative and environment friendly steps are considered and implemented from design, construction, operation, maintenance and renovation. In present era no doubt new technologies are constantly constructed and used in creating greener structures, energy efficient buildings. The common objective is to reduce the overall impact of the built environment on human health using available energy efficiently. To increase the efficiency of the System or the building, Onsite generation of renewable energy through solar power, wind power, hydro power, or biomasscan significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building. Any how power generation using renewable sources that is Solar system may further enhance energy conservation ideas. Power Factor improvement can also be another source of efficient tool for efficient use of Electrical Energy in green buildings. In developing countries a significant amount of Electrical Energy can be conserved and System efficiency as a whole can be increased by Power Factor correction. The reverse flow of power can be locally engaged instead of creating extra stress and opposition to the existing grid lines.

  6. Energy Analysis for New Hotel Buildings in Egypt

    Directory of Open Access Journals (Sweden)

    Dr. George B. Hanna

    2014-12-01

    Full Text Available This paper summarizes the results of energy simulation analysis to determine the effectiveness of building characteristics in reducing electrical energy consumption for hotel buildings in Egypt. Specifically, the impact on building envelope performance is investigated for different strategies such as window size, glazing type and building construction for two geographical locations in Egypt (Cairo and Alexandria. This paper also studies the energy savings in hotel buildings with 200 rooms for different Lighting Power Densities (LPD, Energy Input Ratios (EIR, Set point Temperatures (SPT and HVAC systems. The study shows certain findings of practical significance, e.g. that a Window-to-Wall Ratio of 0.20 and reasonably shaded windows lower the total annual electricity use for hotel buildings by more than 20% in the two Egyptian locations.

  7. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...... comprehensive renovations in the coming years and in connection with this renovation process energy saving measures can be implemented relatively inexpensive and cost effective. This opportunity should be used to insure the buildings in the future as far as energy consumption is concerned. This paper gives a...... short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...

  8. Modernisation of the energy supply and lighting systems of a school building at Erfurt; Energetische und lichttechnische Sanierung der Regelschule Erfurt

    Energy Technology Data Exchange (ETDEWEB)

    Russ, C. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen

    1997-12-31

    A complete energy-oriented modernization of an Erfurt type school building in large panel construction with the aid of intelligent control systems improves thermal and lighting conditions. Thermal insulation systems and efficient glazing reduce thermal energy demand by approximately 50 per cent. Equally, light-directing systems and daylight-controlled artificial lighting cut down electric energy consumption by about 50 per cent. The executed modernization, lighting system design, and ventilation requirements are discussed in detail. (MSK) [Deutsch] Anhand einer kompletten energetischen Sanierung wird der waerme und lichttechnische Zustand fuer eine Pschlattenbauschule vom Erfurter-Schultyp unter Einbeziehung intelligenter Steuersysteme verbessert. Waermedaemmung und effiziente Verglasung reduzieren den Heiwaermebedarf um ca. 50%. Lichtlenkende Systeme und eine tageslichtabhaengig gesteuerte Kunstlichtbeleuchtung minimieren die Elektroenergie ebenfalls um etwa 50%. Im Einzelnen wird auf die energetische Sanierung, auf die lichttechnische Gestaltung sowie auf den Lueftungsbedarf eingegangen.

  9. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  10. ACMV Energy Analysis for Academic Building: A Case Study

    Science.gov (United States)

    Hywel, R.; Tee, B. T.; Arifin, M. Y.; Tan, C. F.; Gan, C. K.; Chong, CT

    2015-09-01

    Building energy audit examines the ways actual energy consumption is currently used in the facility, in the case of a completed and occupied building and identifies some alternatives to reduce current energy usage. Implementation of energy audit are practically used to analyze energy consumption pattern, monitoring on how the energy used varies with time in the building, how the system element interrelate, and study the effect of external environment towards building. In this case study, a preliminary energy audit is focusing on Air-Conditioning & Mechanical Ventilation (ACMV) system which reportedly consumed 40% of the total energy consumption in typical building. It is also the main system that provides comfortable and healthy environment for the occupants. The main purpose of this study is to evaluate the current ACMV system performance, energy optimization and identifying the energy waste on UTeM's academic building. To attain this, the preliminary data is collected and then analyzed. Based on the data, economic analysis will be determined before cost-saving methods are being proposed.

  11. Energy conservation in selected buildings, Gdansk. 1. final report

    International Nuclear Information System (INIS)

    This Final Report marks the end of the implementation stage of the project: 'Energy Conservation in Selected Buildings in Gdansk, Poland' supported by the Danish Environment-related Energy Sector Programme for Poland under the Danish Energy Agency. The residential and commercial sectors together with public buildings account for 40-45% of the total energy consumption and are dominated by the use of space heating and hot water. The sector has a significant over-consumption of energy, which first of all is due to the lack of or too weak incentives for the individual tenants to decrease the energy consumption. Bad thermal insulation of buildings and inefficient central heating systems with a widespread lack of measurement and automatic control systems give cause for extensive heat losses. The objective of the project has been to document the effects of energy savings in 18 multi-family houses when different types of energy saving measures are applied. These measures include thermal insulation of buildings, refurbishment of the heating system and introduction of individual billing system for heating and hot tap water. Energy audits of 18 buildings were performed by combination of on-site inspection of all buildings and data collection from the available drawings, technical descriptions, etc. The on-site inspection was carried out by use of an energy audit scheme specially developed for this project. (EG)

  12. Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS) Occupational Health and Safety (OHS) Risk

    OpenAIRE

    Abas Nor Haslinda; Blismas Nick; Lingard Helen

    2016-01-01

    Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS)’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the ...

  13. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Patrick O' Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  14. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  15. Flexible Framework for Building Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  16. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by

  17. Energy Efficiency Approach to Intelligent Building

    OpenAIRE

    Gitanjali Birangal; Dr. S.V. Admane; Shinde, S. S.

    2015-01-01

    Energy efficiency has nowadays become one of the most challenging tasks and this has boosted research on fresh fields, such as Ambient Intelligence. Energy consumption in the housing and tertiary sectors is especially high in developed countries. There is a great potential for energy savings in these sectors. Energy conservation measures are developed for newly constructed buildings and for buildings under restoration. However, to achieve a significant diminution in en...

  18. Building Energy Audit Report, for Hickam AFB, HI

    Energy Technology Data Exchange (ETDEWEB)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.; Dixon, Douglas R.

    2010-09-30

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  19. Software Build and Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  20. Results. Building integrated energy supply; Resultater. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations of which the best combinations were selected. The final result takes form of a single top-50 list with the best combinations of energy systems according to CO{sub 2} emission, energy consumption and economics. The present report contains the conclusions of and comments on the project's results. (ln)

  1. Modeling energy efficiency of bioclimatic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Tzikopoulos, A.F.; Karatza, M.C.; Paravantis, J.A. [Piraeus Univ. (Greece). Dept. of Technology Education and Digital Systems

    2005-05-01

    The application of bioclimatic principles is a critical factor in reducing energy consumption and CO{sub 2} emissions of the building sector. This paper develops a regression model of energy efficiency as a function of environmental conditions, building characteristics and passive solar technologies. A sample of 77 bioclimatic buildings (including 45 houses) was collected, covering Greece, other Mediterranean areas and the rest of Europe. Average energy efficiency varied from 19.6 to 100% with an average of about 68%. Environmental conditions included latitude, altitude, ambient temperature, degree days and sun hours; building characteristics consisted in building area and volume. Passive solar technologies included (among others) solar water heaters, shading, natural ventilation, greenhouses and thermal storage walls. Degree days and a dummy variable indicating location in the Mediterranean area were the strongest predictors of energy efficiency while taller and leaner buildings tended to be more energy efficient. Surprisingly, many passive technologies did not appear to make a difference on energy efficiency while thermal storage walls in fact seemed to decrease energy efficiency. The model developed may be of use to architects, engineers and policy makers. Suggestions for further research include obtaining more building information, investigating the effect of passive solar technologies and gathering information on the usage of building. (Author)

  2. BUILDING DESIGN INFLUENCE ON THE ENERGY PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Moga Ligia

    2015-05-01

    Full Text Available Energy efficient design is a high priority in the national energy strategy of European countries considering the latest requirements of the European Directive on the Energy Performance of Buildings. The residential sector is responsible for a significant quantity of energy consumptions from the total amount of consumptions on a worldwide level. In residential building most of the energy consumptions are given mainly by heating, domestic hot water and lighting. Retrofitting the existing building stock offers great opportunities for reducing global energy consumptions and greenhouse gas emissions. The first part of the paper will address the need of thermal and energy retrofit of existing buildings. The second part will provide an overview on how various variables can influence the energy performance of a building that is placed in all four climatic zones from Romania. The paper is useful for specialist and designers from the construction field in understanding that buildings behave differently from the energy point of view in different climatic regions, even if the building characteristic remain the same.

  3. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  4. Modelling of the heating system for a building

    International Nuclear Information System (INIS)

    The district-heating systems for the heat-energy supply to the building consume substantial resources and the possibility to analyse the behaviour of the building as a part of the system is very important. The dynamic modelling of such a system may be simplified by using modelling software, such as MatLab. The model of the heat flows in the building and in the heating system and domestic water-heating system with heat-energy controllers has been developed. The model is based on the different equations of the heat flows between the elements of the building

  5. Building-to-Grid Integration through Commercial Building Portfolios Participating in Energy and Frequency Regulation Markets

    Science.gov (United States)

    Pavlak, Gregory S.

    Building energy use is a significant contributing factor to growing worldwide energy demands. In pursuit of a sustainable energy future, commercial building operations must be intelligently integrated with the electric system to increase efficiency and enable renewable generation. Toward this end, a model-based methodology was developed to estimate the capability of commercial buildings to participate in frequency regulation ancillary service markets. This methodology was integrated into a supervisory model predictive controller to optimize building operation in consideration of energy prices, demand charges, and ancillary service revenue. The supervisory control problem was extended to building portfolios to evaluate opportunities for synergistic effect among multiple, centrally-optimized buildings. Simulation studies performed showed that the multi-market optimization was able to determine appropriate opportunities for buildings to provide frequency regulation. Total savings were increased by up to thirteen percentage points, depending on the simulation case. Furthermore, optimizing buildings as a portfolio achieved up to seven additional percentage points of savings, depending on the case. Enhanced energy and cost savings opportunities were observed by taking the novel perspective of optimizing building portfolios in multiple grid markets, motivating future pursuits of advanced control paradigms that enable a more intelligent electric grid.

  6. Software augmented buildings: Exploiting existing infrastructure to improve energy efficiency and comfort in commercial buildings

    Science.gov (United States)

    Balaji, Bharathan

    Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide

  7. 1995 building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1996-02-01

    During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

  8. Energy efficient buildings in Qingdao, China

    OpenAIRE

    Tengteng, Sun

    2011-01-01

    At present, an important task for Chinese governments at all levels is to save energy and reduce pollutant emissions. The task of buildings energy efficiency accounts for 21% in the 12th Five Year Plan which from 2011 to 2015. With the development of social economy,the energy shortage is serious day by day.The energy-conservation of buildings is a high relevant issue in China.There are a large capacity and a wide range of existing buildings in Qingdao among which the overwhelming majority is ...

  9. Solar Energy Windows and Smart IR Switchable Building Technologies

    Energy Technology Data Exchange (ETDEWEB)

    McCarny, James; Kornish, Brian

    2011-09-30

    The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.

  10. Projecting of space and water heating systems for gas-heated low-energy buildings. Final report; Planung von Anlagen zur Heizung und Warmwasserbereitung in gasbeheizten Niedrigenergiehaeusern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, G.; Luedemann, B.

    1997-10-01

    Heating systems for low-energy buildings were investigated theoretically using simulation models (TRNSYS, Smile) calibrated with extensive measured data. Results were obtained for the following aspects: Controlled ventilation, comparison of heating systems, hot water systems. [Deutsch] Die vorliegende Studie hat die Auswirkungen der Niedrigenergiebauweise im Wohnungsbau auf die Planung von Anlagen zur Heizung und Warmwasserbereitung zum Gegenstand. Die Untersuchungen wurden ueberwiegend theoretisch mit Hilfe von Simulationsmodellen (TRNSYS, Smile) durchgefuehrt, die anhand umfangreicher Messdaten kalibriert werden konnten. Die Ergebnisse unterteilen sich in die Punkte: Kontrollierte Lueftung, Vergleich von Heizsystemen, Warmwassersysteme. (orig.)

  11. Biomass fuelled trigeneration system in selected buildings

    International Nuclear Information System (INIS)

    Highlights: → We model a commercial building scale biomass fuelled trigeneration plant. → It is economically feasible to use willow chips, miscanthus and rice husk as the fuel to operate the trigeneration system. → The efficiency of TG is much higher than that of PO, but is lower than that of the combined heat and power (CHP) configuration. → The breakeven electricity selling price (BESP) of the TG system is better than that of the PO option with the CHP option producing the cheapest electricity. -- Abstract: Many buildings require simultaneous electricity, heating and cooling. Biomass is one of the renewable energy sources which is not intermittent, location-dependent or very difficult to store. If grown sustainably, biomass can be considered to be CO2 neutral. A trigeneration system consisting of an internal combustion (IC) engine integrated with biomass gasification may offer a combination for delivering heat, electricity and cooling cleanly and economically. The producer gas generated by the gasifier is used to provide electricity for building use via the IC engine. The waste heat is recovered from the engine cooling system and exhaust gases to supply hot water to space heating, excess heat is also used to drive an absorption cooling system. The proposed system is designed to meet the energy requirements for selected commercial buildings and district heating/cooling applications. This work focuses on the modeling and simulation of a commercial building scale trigeneration plant fuelled by a biomass downdraft gasifier. In order to use both energy and financial resources most efficiently, technical and economic analyses were carried out, using the ECLIPSE process simulation package. The study also looks at the impact of different biomass feedstock (willow, rice husk and miscanthus) on the performance of a trigeneration plant.

  12. Biomass fuelled trigeneration system in selected buildings

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y., E-mail: y.huang@ulster.ac.u [Centre for Sustainable Technologies, School of Built Environment, University of Ulster, Newtownabbey, BT37 0QB (United Kingdom); Wang, Y.D. [The Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle Upon Tyne, NE1 7RU (United Kingdom); Rezvani, S.; McIlveen-Wright, D.R.; Anderson, M.; Hewitt, N.J. [Centre for Sustainable Technologies, School of Built Environment, University of Ulster, Newtownabbey, BT37 0QB (United Kingdom)

    2011-06-15

    Highlights: {yields} We model a commercial building scale biomass fuelled trigeneration plant. {yields} It is economically feasible to use willow chips, miscanthus and rice husk as the fuel to operate the trigeneration system. {yields} The efficiency of TG is much higher than that of PO, but is lower than that of the combined heat and power (CHP) configuration. {yields} The breakeven electricity selling price (BESP) of the TG system is better than that of the PO option with the CHP option producing the cheapest electricity. -- Abstract: Many buildings require simultaneous electricity, heating and cooling. Biomass is one of the renewable energy sources which is not intermittent, location-dependent or very difficult to store. If grown sustainably, biomass can be considered to be CO{sub 2} neutral. A trigeneration system consisting of an internal combustion (IC) engine integrated with biomass gasification may offer a combination for delivering heat, electricity and cooling cleanly and economically. The producer gas generated by the gasifier is used to provide electricity for building use via the IC engine. The waste heat is recovered from the engine cooling system and exhaust gases to supply hot water to space heating, excess heat is also used to drive an absorption cooling system. The proposed system is designed to meet the energy requirements for selected commercial buildings and district heating/cooling applications. This work focuses on the modeling and simulation of a commercial building scale trigeneration plant fuelled by a biomass downdraft gasifier. In order to use both energy and financial resources most efficiently, technical and economic analyses were carried out, using the ECLIPSE process simulation package. The study also looks at the impact of different biomass feedstock (willow, rice husk and miscanthus) on the performance of a trigeneration plant.

  13. Solar energy utilisation and energy conservation in buildings

    International Nuclear Information System (INIS)

    Full text: The paper involves testing and improving the performance of solar water heaters under all possible local solar and weather conditions. A new design of stratified energy storage tanks have been experimentally and theoretically studied by which an improvement of about 15% in system efficiency has been observed over well-mixed tanks. Solar space heating and cooling using absorption systems has also been investigated where both performance and economical return are assessed for local lebanese conditions. Several projects are ongoing related to solar energy utilisation including the use of heat pipes, experimental studies for new means for energy conversion. The paper presents the design and testing of solar water heaters; modeling and simulation of solar-powered air-conditioning absorption system performance in Beirut and energy conservation in Lebanese residential and office buildings and the code-of-practice

  14. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  15. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  16. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  17. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    by 33% compared to current level and that the CO2 emission should be halved. This calls for sustainable development in the building sector, but at the same time, it has to be economically efficient. People are conscious about savings in energy, but consideration to economic aspects are their primary......In 1996 the Danish government presented their plan (Energi21) formulating how Denmark could fulfill the demands for CO2-reduction recommended by United Nations. The major issues in the plan, regarding new and existing buildings, is that heat demand for new buildings in year 2005 should be reduced...... concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...

  18. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  19. HVAC system operational strategies for reduced energy consumption in buildings with intermittent occupancy: The case of mosques

    International Nuclear Information System (INIS)

    Highlights: • Proper operational zoning in the early design phase of mosques can lead to up to 30% reduction in the annual cooling energy. • Energy performance index of 71.0 kW h/m2 yr for an insulated mosque can be realized with A/C proper intermitted operation. • 23% energy saving can be achieved when a properly oversized A/C is operated intermittently for 1 h during each prayer. • 13% reduction in cooling energy use can be achieved when A/C operation precedes worshippers’ occupancy in mosques. • Envelope insulation and A/C intermittent operation with proper operational zoning leads to more than 46% savings in energy. - Abstract: Mosques are places of worship for Muslims with unique functional requirements and operational characteristics. They are partially or fully occupied for about an hour for five intermittent periods during the day. In hot climates, maintaining indoor thermal comfort requires a considerable amount of energy that can be reduced by proper operational zoning and effective HVAC operation strategies. The objective of this paper is to investigate the impact of operational zoning and HVAC system intermittent operation strategies on the energy performance of mosques while thermal comfort is maintained. Energy simulation modeling is used for evaluating alternative zoning and HVAC operation strategies. Results indicate that up to 23% reduction in annual cooling energy is achieved by employing suitable HVAC operation strategy and system over-sizing, and 30% reduction is achieved by appropriate operational zoning. Comparing the cooling energy consumption of HVAC summer continuous operation of an un-insulated mosque with the consumption of the insulated mosque with properly oversized HVAC system operated for 1 h during each prayer, indicated that as much as 46% of cooling energy reduction can be achieved. Furthermore, utilizing proper operational zoning and HVAC operation strategies is expected to bring about an additional significant energy

  20. Wind and building energy consumption: an overview

    OpenAIRE

    Arens, Edward A.; Williams, P

    1981-01-01

    The environment around a building affects its energy consumption primarily by influencing its requirement for space heating and cooling. The environmental variables influencing the amount of energy needed for heating and cooling are outside temperature, humidity, solar radiation, and wind. Wind influences building energy consumption by affecting the following: 1. Air infiltration and exfiltration from conditioned spaces, resulting from pressure gradients and the resulting ma...

  1. Analysis of annual cooling energy requirements for glazed academic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S.A. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering; Hassan, A.H. [Vinyl Chloride Malaysia Sdn Bhd, Terengganu (Malaysia). Dept. of Engineering

    2011-07-01

    Malaysia experienced rapid increase in energy consumption in the last decade due to its high economic growth and increase in the standard living of household. Energy is becoming more costly and the situation is worsened by the global warming as a result of greenhouse gas emission. A more efficient energy usage and significant reduction in the released emission is therefore required. Space cooling with the use of air conditioners is practiced all year round in Malaysia and this accounts for 42% of total electricity energy consumption for commercial buildings and 30% of residential buildings. Reduction in the energy used for cooling in the built environment is a vital step to energy conservation in Malaysia. The objective of the present study was to analyze the annual cooling energy of highly glazed academic buildings which are located in a university in Malaysia. The outcome of the study would enable further remedial actions in reducing the energy consumption of the buildings' air conditioning system. The study is conducted by computer simulation using EnergyPlus software to calculate the cooling energy of a selected building or area. Comparison is made against the rated equipment load (i.e., the air handling unit) installed in the buildings. Since the buildings in the present study are not constructed parallel to each other the effect of building orientations with respect to the sun positions are also studied. The implications of shades such as venetian blind on the cooling energy are investigated in assessing their effectiveness in reducing the cooling energy, apart from providing thermal comfort to the occupants. In the aspect of operation, the present study includes the effects of reducing the set point air temperature and infiltration of outdoor air due to doors that are left open by the occupants. It is found from the present study that there are significant potentials for savings in the cooling energy of the buildings.

  2. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    OpenAIRE

    Giedrius Šiupšinskas; Solveiga Adomėnaitė

    2013-01-01

    The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water), solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to deter...

  3. Passive systems for buildings using buoyancy-driven airflows

    OpenAIRE

    Abreu, Maria Isabel; Corvacho, Helena; Dias, Ricardo P.

    2011-01-01

    The need for countries to become less dependent on fossil fuels has been a determining factor in recent years due to increasing energy and comfort concerns in modern building design. Therefore, the maximization of the use of renewable energies, like the sun, and the use of natural energy flows become strategies to explore. There are already passive building systems that show interesting performances. Different studies have proved that the above-mentioned systems can lead to important energy s...

  4. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  5. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  6. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  7. Intelligent Facades in Low-Energy Buildings

    OpenAIRE

    GhaffarianHoseini, AmirHosein; Berardi, Umberto; GhaffarianHoseini, Ali; Makaremi, Nastaran

    2013-01-01

    Growing interest in development of innovative solutions for enhancement of sustainability in the built environments has been observed in recent years. According to the main constituents of buildings particularly in building envelopes, facades are expected to play a significant role towards the promotion of sustainable design in low energy buildings. This study presents a holistic review towards the analysis of ‘intelligent facades’ according to their types, current implementations...

  8. Field test of a thermal active building system (tabs) in an office building in Denmark

    DEFF Research Database (Denmark)

    Raimondo, Daniela; Olesen, Bjarne W.; Corgnati, Stefano P.

    2013-01-01

    an experimental study in an office building in Denmark where cooling in summer is provided by thermally activated building systems (TABS). Indoor climate quality evaluation, cooling system performance and energy consumption for a specific room were analyzed with different levels of internal gains. The experiments...... in the pipes of the hydronic system, and energy consumption of the chillers were monitored. The performance of this test room was also analyzed by the dynamic building simulation tool Energy Plus. The paper includes a comparison between experimental collected data and simulation results. Besides the paper show...

  9. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten;

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since the...... authorities fail to mobilise the stakeholders to implement energy efficient technologies in local building practices. This points towards a need to reframe policy initiatives in order to take the complexity of the challenge of dissemination of energy efficient technologies in practice into account......; acknowledging that singular instruments are seldom sufficient to boost a wider transition in building practices, since no simple cause or driver for change exists. The municipal level is essential in facilitating change within energy efficient technologies, since municipals have strong interrelations with...

  10. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2004-08-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility and commercial viability of this technology. (1) TRNSYS Modeling of a Hybrid Lighting System: Building Energy Loads and Chromaticity Analysis; (2) High Lumens Screening Test Setup for Optical Fibers; (3) Photo-Induced Heating in Plastic Optical Fiber Bundles; (4) Low-Cost Primary Mirror Development; (5) Potential Applications for Hybrid Solar Lighting; (6) Photobioreactor Population Experiments and Productivity Measurements; and (7) Development of a Microalgal CO2-Biofixation Photobioreactor.

  11. Discovering unexpected information using a building energy visualization tool

    Science.gov (United States)

    Lange, B.; Rodriguez, N.; Puech, W.; Vasques, X.

    2013-03-01

    Building energy consumption is an important problem in construction field, old buildings are gap of energy and they need to be refactored. Energy footprint of buildings needs to be reduced. New buildings are designed to be suitable with energy efficiency paradigm. To improve energy efficiency, Building Management Systems (BMS) are used: BMS are IT (Information Technology) systems composed by a rules engine and a database connected to sensors. Unfortunately, BMS are only monitoring systems: they cannot predict and mine efficiently building information. RIDER project has emerged from this observation. This project is conducted by several French companies and universities, IBM at Montpellier, France, leads the project. The main goal of this project is to create a smart and scalable BMS. This new kind of BMS will be able to dig into data and predict events. This IT system is based on component paradigm and the core can be extended with external components. Some of them are developed during the project: data mining, building generation model and visualization. All of these components will provide new features to improve rules used by the core. In this paper, we will focus on the visualization component. This visualization use a volume rendering method based on sensors data interpolation and a correlation method to create new views. We will present the visualization method used and which rules can be provided by this component.

  12. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  13. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Patrick O' Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  14. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza;

    2015-01-01

    goal of our contribution is twofold: 1) to re-scope the concept of building performance to and show the importance to consider, hand- in-hand, both energy performance and performance of resident businesses, and 2) re-state the importance of the potential that lies in the active involvement of building...

  15. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  16. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed on...

  17. The development of preliminary energy bench marking for office buildings in Malaysia

    International Nuclear Information System (INIS)

    Benchmarking energy consumption in buildings means comparing how much energy is used in a building to an average or theoretical standard relative to a set of similar buildings. Building energy benchmarking is a useful starting point for commercial building owners to target energy saving opportunities. Building owners can determine the energy performance efficiency level of their buildings and compare it to the entire group of office buildings of its class. It is also useful during the design stage of a new building or retrofit to determine if a design is relatively efficient. The energy performance of a building can be assessed using Building Energy Index (BEI) regardless of building's size, height or age. In the development of preliminary energy benchmarking for office buildings in Malaysia, Malaysia Energy Centre (PTM) has taken a step through its involvement with The Energy Efficiency and Conservation Network, via the Association of Southeast Asia Nations (ASEAN) Centre for Energy (ACE) through a project a develop a similar benchmarking system for various ASEAN members. Through data collection of 54 office building throughout Malaysia, preliminary or baseline energy consumption could be determined. This paper discusses the findings of current energy consumption of office buildings. I will also examine the overall trends of energy consumption among office buildings in Malaysia

  18. Sault Tribe Building Efficiency Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  19. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  20. Energy performance of multifamily buildings : building characteristic and user influence

    OpenAIRE

    Sjögren, Jan-Ulric

    2007-01-01

    Today many professional property holders use different types of software for monthly energy analyses. The data is however often limited to energy and water use, that is paid for by the property holder. In year 2001, financed by the Swedish Energy Agency, the first steps were taken to create a national web based data base, eNyckeln. A property holder may then enter consumption data together with about 50 other building specific parameters to this data base in order to enable benchmarking and e...

  1. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

    2013-07-01

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

  2. Energy flow and thermal comfort in buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome

    insulated buildings (R > 5 m2.K/W). In case of single-storey building with a low level of insulation, the effectiveness of radiant terminals is lower due to the larger back losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding...... based on both radiation and convection. Radiant terminals have the advantage of making use of low grade sources (i.e. low temperature heating and high temperature cooling), thus decreasing the primary energy consumption of buildings. But there is a lack of knowledge on the heat transfer from the...... beam. The higher the air change rate and the warmer the outdoor air, the larger the savings achieved with a radiant cooling terminals. Therefore radiant terminals have a large potential of energy savings for buildings with high ventilation rates (e.g. shop, train station, industrial storage). Among...

  3. Zero energy buildings and mismatch compensation factors

    DEFF Research Database (Denmark)

    Lund, Henrik; Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    individual buildings and an element of economy of scale. For these three reasons mismatches should be dealt with at the aggregated level and not at the individual level of each building. Instead, this paper suggests to compensate the mismatch of a building by increasing (or decreasing) the capacity of the...... energy production unit. Based on historical data for the electricity supply area in western Denmark, this paper makes a first attempt to quantify mismatch compensation factors. The results indicate that such compensation factors are a little below one for buildings with photovoltaics (PV) and a little...

  4. Energy-Efficient Renovation of Educational Buildings

    Science.gov (United States)

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  5. Making calculated energy certificate for choosen building

    OpenAIRE

    Hafner, Rok

    2015-01-01

    The graduation thesis addresses four given energy efficiency certificates for the preschool in Škofja Loka, calculated according to the valid legislation and work methodology. The building in question was built in the seventies of last century and had it's efficiency improved in 2014. The state of the building before improvements has both measured and calculated efficiency certificates made using the KI Energija 2014 program, while the two energy efficiency certificates for the...

  6. Building energy efficiency in different climates

    International Nuclear Information System (INIS)

    Energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter - in China using DOE-2.1E. The primary aim was to investigate the thermal and energy performance of office buildings with centralised heating, ventilation and air conditioning plants in the major climatic zones in China. The computed results were analysed in three aspects - heating load, cooling load and the corresponding building energy consumption. The building peak monthly heating load varied from 142 MW h (1033 MW h cooling) in Hong Kong to 447 MW h (832 MW h cooling) in Harbin. It was also found that passive solar designs could have large energy savings potential in the severe cold and cold climates. In Harbin, the window solar component helped lower the annual building heating load by 650 MW h. Internal loads (lighting and office equipment) and part load operations of fans and pumps also played a significant role in the overall building energy efficiency. This paper presents the work, its findings and energy efficiency implications

  7. Energy efficiency in public buildings; Eficiencia energetica em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Kiperstok, Asher; Garcia, Agenor Gomes Pinto; Vianna, Luis Gustavo; Freitas, Daniela; Oliveira, Braulio; Azevedo, Alexandre; Alves, Igor; Fagundes, Vitor Lacerda [Universidade Federal da Bahia (TECLIM/UFBA), Salvador, BA (Brazil). Rede de Tecnologias Limpas

    2010-07-01

    The implementation process of a energy management system in buildings of the Bahia state administration is presented. Completed a first phase, with a prior knowledge of the characteristics of the energy use in buildings and the implementation of a daily consumption monitoring system (the Vianet), a second phase begins with the definition of consumption targets and mobilization actions of the people, both the whole of the users, and more strongly the 'eco team', group which shall be responsible for the management. This paper makes a theoretical consideration on the use of energy in buildings, showing the room for energy management in addition to the simple exchange by efficient equipment, estimates the reduction obtained by the energy efficiency program of the electric utility with the exchange of light fixtures and air conditioners, shows the targeting process and difficulties found and identifies measures that will be implemented to achieve increasingly efficient patterns of energy use. (author)

  8. Computational Support for the Selection of Energy Saving Building Components

    OpenAIRE

    De Wilde, P.J.C.J.

    2004-01-01

    Buildings use energy for heating, cooling and lighting, contributing to the problems of exhaustion of fossil fuel supplies and environmental pollution. In order to make buildings more energy-efficient an extensive set of âenergy saving building componentsâ has been developed that contributes to minimizing the energy need of buildings, that helps buildings to access renewable energy sources, and that helps buildings to utilize fossil fuels as efficiently as possible. Examples of such energy sa...

  9. Integration of Electrochromic Smart Windows in Building Automation Systems

    OpenAIRE

    Hultmark Varejão, Marcus

    2013-01-01

    To lower energy consumption, the building industry invests in smart solutions. These solutions usually use control and automation to both increase energy efficiency and facilitate usage, and therefore attract consumers. This paper gives a better insight into how an electrochromic (EC) window, which is a relatively new smart product, should be used to further improve the intelligence of buildings. The funding company has not yet integrated the EC windows in building automation systems (BASs). ...

  10. Revealing myths about people, energy and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.; Moezzi, M.

    2000-05-01

    In this essay we take a closer look at some energy myths, focusing on the ways energy professionals and the public alike, talk, write and teach about how energy affects the way in which we design, operate, retrofit and inhabit buildings. What myths about people, energy and buildings are current today? Who tells these myths and why do we believe them? How do myths affect our behavior? Myths are a way of understanding the world we live in. They may represent incomplete understanding, or be based on premises that are scientifically not valid, but they help us understand and explain how the world works, and we shape our behavior accordingly.

  11. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    -connected ZEBs - Net ZEBs, and the annual primary energy balance. The Life Cycle Cost (LCC) analysis conducted with a study case of a multi-storey residential Net ZEB aimed to determine the cost-optimal ''zero'' energy balance, minimum energy performance requirements and options of supplying renewable energy. The calculation encompassed three levels of energy frames, which mirrored the Danish low-energy building classes included in the current building code, and ten renewable energy supply systems including both on-site and off-site options. The results indicated that although the off-site options have lower life cycle costs than the on-site alternatives, their application would promote renewable technologies over energy efficiency measures. Thus, they oppose the Danish plans to gradually make the energy performance requirements stricter. Moreover, the results showed that district heating is a less cost-attractive solution than a ground source heat pump for a private building owner. Finally, with 2010-level of energy prices, cost-optimal ''zero'' energy balance accounts only for the building related energy use. (Author)

  12. Rating the energy performance of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-12-01

    In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

  13. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  14. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  15. Assessing prefabrication processes in house building systems

    OpenAIRE

    SCHEFFER, ZOLTAN

    2013-01-01

    This thesis surveys the current building energy regulations in the European Union, Hungary and Spain. Also, surveys the history of the use of prefabricated methods in house building. Then, applies calculations on a example of prefabricated building, defined by the national rules, and makes an analysis of them. The objective is to provide suggestions for improving the thermal behavior of the structure with the aim to improve its energy efficiency, using energy and environment conscious solutio...

  16. Energy Information System

    OpenAIRE

    Bheemi Reddy Sandeep Reddy#1, Badugu Suresh

    2013-01-01

    This paper describes how strategies that can be used to reduce electric load using Energy Information System (EIS), which can monitor and analyze building energy consumption and related data through wireless systems have been increasing in use over the last decade.The objectives of this report1. Provide a review of the basic capabilities of various types of EIS products3. Provide a review of EIS technology from system architecture to application4. Review prospects for future use and capabilit...

  17. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  18. Energy balance framework for Net Zero Energy buildings

    Science.gov (United States)

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  19. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Science.gov (United States)

    2011-11-30

    ... Office of Energy Efficiency and Renewable Energy Measured Building Energy Performance Data Taxonomy... related to a measured building energy performance data taxonomy. DOE has created this measured building energy performance data taxonomy as part of its DOE Buildings Performance Database project....

  20. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  1. Energy systems

    International Nuclear Information System (INIS)

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  2. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  3. Country Report on Building Energy Codes in India

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

    2009-04-07

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

  4. Country Report on Building Energy Codes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  5. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  6. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  7. Country Report on Building Energy Codes in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

    2009-04-17

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

  8. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  9. Energy self-sufficient micro systems using photovoltaics in buildings as an example; Energieautarke Mikrosysteme am Beispiel von Photovoltaik in Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika

    2010-07-01

    The development of energy-optimized electronics with an average power consumption in the range of microwatts enabled the use of ambient energy to power these systems. This energy supply concept is also known as Micro Energy Harvesting. The main characteristics of these energy self-sufficient microsystems are low ambient power densities (microwatts per square centimeter) and an increased importance of higher-order terms in modeling the miniaturized energy converters. Furthermore, possible fields of application are heterogeneous. The range of the energy in the environment is several orders in magnitude. Thus, feasibility studies of regenerative microenergy sytems are bound to the surroundings of specific applications. This individuality raises the planning expenditure and complicates a systematical optimization and commercialization. This research study examines the general characteristic features of regenerative microsystems. The objective is to find modular and general descriptions of rising complexity instead of modeling single components for specialized applications. Thus, regenerative microsystems are treated comprising three main components, i.e. electric power consumption, ambient energy and energy converter. The types of power consumption are reduced into three main groups and the physical minima of required energies are discussed. Energy converters are analyzed in general. Radiant energy in buildings and photovoltaic energy conversion is analyzed analytically, numerically, and experimentally. Firstly, typical optic intensities in buildings are evaluated with radiometric methods. The use of raytracing programs for this application and the influence of user behaviour are examined. The study contains two rooms as well as different weather conditions and geographic positions. Measurements, simulations, and calculations are then carried out to investigate stationary electric light and dynamic solar radiation. A minimum radiation level of about 1-50 Wm{sup -2} is

  10. Introduction [to] Nearly zero energy building refurbishment

    OpenAIRE

    Torgal, Fernando Pacheco

    2013-01-01

    This chapter starts with an overview on CO2 emissions and climate change addressing key investigations and important related events. The situation of the European Union concerning energy efficiency is described. A short analysis of the nearly zero-energy building (NZEB) concept is presented. A book outline is also presented.

  11. Energy renovation of multi-storey buildings with heritage value

    DEFF Research Database (Denmark)

    Harrestrup, Maria

    The EU has a goal of reducing greenhouse gas emissions and energy consumption by 20% by 2020, by 40% in 2030 and by 80% in 2050 compared to 1990-levels, and Denmark has set the even more ambitious goal of being completely fossil-fuel-free by 2050. On the way to this goal, the aim is that the energy......-supply mix for buildings including heating and electricity should be free of fossil fuels as early as 2035 including heating and electricity. Urgent action is therefore needed to meet these requirements for the future energy system. A balance needs to be found between saving energy in buildings and supplying...... energy from district heating based on renewable energy resources and waste incineration. This research took a new approach combining heat savings in buildings with heat supply from district heating and seeing them as two segments that reinforce each other, instead of seeing them as two separate...

  12. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  13. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Based on the need to reduce CO2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  14. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  15. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  16. The analysis of energy consumption of a commercial building in Tianjin, China

    International Nuclear Information System (INIS)

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m2 per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  17. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  18. Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The project includes support to the Ministry of Economics responsible for implementing the EU directive on the energy performance of buildings. The directive includes a number of efforts with the main objective of establishing energy efficiency in buildings: 1. A methodology for calculation of the integrated energy performance of buildings. 2. Application of minimum requirements on the energy performance for new buildings. 3. Application of minimum requirements on the energy performance for larger existing buildings subject to major renovation. 4. Energy performance certification (energy labelling) of buildings. 5. Regular inspection of boilers and of air-conditioning systems in buildings, and assessment of heating installations in older systems. The present project included activities connected to point 4 and point 5. The results include support for major steps in implementing the EU Energy Performance of Buildings (EPB) directive: 1) A Latvian training for energy auditors to be active conducting energy audits and issuing energy performance certificates - energy labelling the buildings and installations. The training includes air-condition systems and assessing older heating systems.18 auditors have been trained by the Latvian teachers. 2) A Latvian training of experts for inspection of boilers. 13 inspectors have been trained. 3) A proposal for the institutional set-up for a connected scheme for energy auditing and a scheme for boiler inspection. 4) Initial information on the EPB directive, and the implementation in Latvia, including the suggested setup and the training of auditors and boiler inspectors. (au)

  19. A progress report of the switch-based data acquisition system prototype project and the application of switches from industry to high-energy physics event building

    International Nuclear Information System (INIS)

    A prototype of a data acquisition system based on a new scalable, highly-parallel, open-system architecture is being developed at Fermilab. The major component of the new architecture, the parallel event builder, is based on a telecommunications industry technique used in the implementation of switching systems, a barrel-shift switch. The architecture is scalable both in the expandability of the number of input channels and in the throughput of the system. Because of its scalability, the system is well suited for low to high-rate experiments, test beams and all SSC detectors. The architecture is open in that as new technologies are developed and made into commercial products (e.g., arrays of processors and workstations and standard data links), these new products can be easily integrated into the system with minimal system modifications and no modifications to the system's basic architecture. Scalability and openness should guarantee that the data acquisition system does not become obsolete during the lifetime of the experiment. The paper first gives a description of the architecture and the prototype project and then details both the prototype project's software and hardware status including details of some architecture simulation studies. Suggestions for future R and D work on the new data acquisition system architecture are then described. The paper concludes by examining interconnection networks from industry and their application to event building and to other areas of high-energy physics data acquisition systems

  20. A Review on ZIGBEE Smart Energy Implementation for Energy Efficient Building

    OpenAIRE

    Aniket V . Patil

    2014-01-01

    The consumption of energy in residential buildings is increasing day by day due to the use of various advanced technologies and therefore represents a potential source of energy savings. The use of smart energy management system can assist in reducing the energy usage in an efficient way.This paper gives a review of a smart energy system in the development of an energy efficient management system for residential building using ARM7 and ZigBee. A Home section or Device unit is ...

  1. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2013-12-01

    Full Text Available The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water, solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to determine an optimal energy supply variant, the estimated results of energy, environmental, and economic evaluation have been converted into non-dimensional variables (3E using multi-criteria analysis.Article in Lithuanian

  2. Heating Energy and Peak-Power Demand in a Standard and Low Energy Building

    OpenAIRE

    Miimu Airaksinen; Mika Vuolle

    2013-01-01

    Building energy efficiency legislation has traditionally focused on space heating energy consumption. This has led to a decrease in energy consumption, especially in space heating. However, in the future when more renewable energy is used both on site and in energy systems, the peak energy demand becomes more important with respect to CO2 emissions and energy security. In this study it was found out the difference between space heating energy consumption was 55%–62% when a low energ...

  3. Building Energy Codes: Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  4. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  5. Model Predictive Control for the Operation of Building Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  6. Energy efficiency in buildings. Yearbook 2016

    International Nuclear Information System (INIS)

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change.

  7. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building’s façades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1......This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...... depth, façade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over the course of this project, this approach resulted in building designs with an energy demand at least 25% below the minimum...

  8. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  9. Classification of low energy houses in Danish Building Regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    The new Danish Building Regulations (Building Regulations, 2005) introduces the total energy consumption, i.e. energy use for heating, ventilation, cooling and domestic hot water, for buildings as a measure for the energy efficiency of new buildings, i.e. moving away from the former U-value demands....... In addition to the minimum requirements for new buildings, the new Building Regulations also specify requirements for characterizing a building as either low energy building class 1 or low energy building class 2. This paper describes a type-house that is presently being built in Denmark. The type......-house easily meets the requirements for being categorized as a low energy building class 1, and the paper investigates how much U-values can be increased if the type-house were to fulfil the requirements for a low energy building class 2 or a building that just fulfils the minimum demands....

  10. HVAC system optimization - in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lu; Wenjian Cai; Lihua Xie; Shujiang Li; Yeng Chai Soh [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2005-01-01

    This paper presents a practical method to optimize in-building section of centralized Heating, Ventilation and Air-conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimization method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  11. HVAC system optimisation-in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Cai, W.; Xie, L.; Li, S.; Soh, Y.C. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (Singapore)

    2004-07-01

    This paper presents a practical method to optimise in-building section of centralised Heating, Ventilation and Air-Conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimisation method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  12. The Economics of Energy Efficiency in Buildings

    OpenAIRE

    Trevor Houser

    2009-01-01

    At the 2008 summit in Hokkaido, Japan, and again this summer in L'Aquila, Italy, G-8 leaders called for a 50 percent reduction in greenhouse gas (GHG) emissions by 2050 in order to avert the most serious dangers from global climate change. Improving the energy efficiency of buildings is essential: The International Energy Agency (IEA) has estimated that meeting the G-8's emission-reductions goal will require reducing annual GHG emissions from the building sector by 8.2 billion tons by 2050 be...

  13. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    - were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool......, which is based on monthly quasi-steady state calculations, using a visual parametric programming language (Grasshopper) coupled with a 3D design interface (Rhinoceros). The estimated heat demand of the examined houses from both simulation tools is compared to actual measured data of heat consumption...

  14. How to Define Nearly Net Zero Energy Buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick;

    2011-01-01

    This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... in which way are taken into account in the energy performance assessment. The intention of the Task Force is to help the experts in the Member States in defining the nearly zero energy buildings in a uniform way. The directive requires nearly zero energy buildings, but since it does not give minimum...... renewable sources, including energy from renewable sources produced on-site nearby. Based on the directive’s definition, nearly zero energy buildings is technically defined through the net zero energy building, which is a building using 0 kWh/(m2a) primary energy. Following the cost-optimality principle of...

  15. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  16. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  17. Commercial building energy use in six cities in Southern China

    International Nuclear Information System (INIS)

    With China’s continuing economic growth, the percentage of government offices and large commercial buildings has increased tremendously; thus, the impact of their energy usage has grown drastically. In this survey, a database with more than 400 buildings was created and analyzed. We researched energy consumption by region, building type, building size and vintage, and we determined the total energy use and performed end use breakdowns of typical buildings in six cities in southern China. The statistical analysis shows that, on average, the annual building electricity use ranged from 50 to 100 kW h/m2 for office buildings, 120 to 250 kW h/m2 for shopping malls and hotels, and below 40 kW h/m2 for education facilities. Building size has no direct correlation with building energy intensity. Although modern commercial buildings built in the 1990s and 2000s did not use more energy on average than buildings built previously, the highest electricity intensive modern buildings used much more energy than those built prior to 1990. Commercial buildings in China used less energy than buildings in equivalent weather locations in the US and about the same amount of energy as buildings in India. However, commercial buildings in China provide comparatively less thermal comfort than buildings in comparable US climates. - Highlights: ► The worst modern buildings use more energy than the worst old buildings. ► Government office buildings did not use more energy than private office buildings. ► Commercial buildings in China use less energy than buildings in the US. ► Modern commercial buildings don't use more energy than old buildings.

  18. Preoperational test report, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  19. Preoperational test report, vent building ventilation system

    International Nuclear Information System (INIS)

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  20. Design of low-energy building and energy consumption analyses

    Institute of Scientific and Technical Information of China (English)

    刘鸣; 陈滨; 范悦; 朱佳音; 索健

    2009-01-01

    In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,yearly energy requirement for heating must be less than 55 kWh/(m2·a)(regarded as a low-energy house). The new attempt was carried out in the process of architecture design with an evaluation on energy consumption of the building. The design plan was brought forward and compared. PHPP software from German was applied to calculate energy consumption of the passive residential building. The optimum design planning was discussed and model of passive house suited to China’s national conditions were attempted. The compactness,solar air collector and the window-wall ratio have essential influence on the energy consumption of buildings. The annual heat demands for the buildings with the window-wall ratio 0.35 and 0.50 are 48 kWh/(m2·a) and 46 kWh/(m2·a),respectively. The yearly auxiliary heat of building with the wall-mounted solar air collectors and the window-wall ratio 0.35 is just 4.8 kWh/(m2·a).

  1. Energy Efficiency Improvement Potential in Historical Brick Building

    OpenAIRE

    Žogla, Gatis; Blumberga, Andra; Zvaigznītis, Kristaps; Dzikēvičs, Miķelis; Blumberga, Dagnija; Burinskiene, Marija

    2013-01-01

    Energy efficiency in historical heritage buildings is viewed as a taboo because these buildings usually are law-protected and no energy efficiency measures that would change the appearance of building are allowed. In this paper we look at a potential of increasing energy efficiency level in historical buildings. Measurements to determine energy efficiency of a historical brick building have been done, which also give the possibility to determine the potential of energy efficiency measures in ...

  2. ACCURATE BUILDING INTEGRATED PHOTOVOLTAIC SYSTEM (BIPV) ARCHITECTURAL DESIGN TOOL

    Science.gov (United States)

    One of the leading areas of renewable energy applications for the twenty-first century is building integrated photovoltaics (BIPV). Integrating photovoltaics into building structures allows the costs of the PV system to be partially offset by the solar modules also serving a s...

  3. Energy pole system in the new building of the PAGO AG, Grabs (CH); Energiepfahlsystem im Neubau der PAGO AG, Grabs (CH)

    Energy Technology Data Exchange (ETDEWEB)

    Scheuss, U. [NDS-HTL, Ingenieurbuero Lippuner und Partner AG, Grabs (Switzerland)

    1997-12-01

    With 570 concrete poles and 80 km of tubes, 100,000 m{sup 3} of ground serve as a cold and heat storage resservoir for a building. The building houses a printing shop, which needs cooling in summer and heating in winter. The energy pole system can be used as a dual system for heating and cooling in both seasons. The project is a pilot project of the BWE (Swiss General Office for Utilities and Power Supply), who also started an extensive accompanying measurig campaign. The results during the first year of operation were very positive, and the performance of the energy pole system was up to expectations. (orig.) [Deutsch] Mittelpunkt der PAGO-Energietechnik ist das Energiepfahlsystem. Mittels 570 Betonpfaehlen und 80 km Rohrschlangen wird das Erdreich unter dem Gebaeude als ueber 100.000 m{sup 3} grosser Waerme- und Kaeltespeicher genutzt. Ueber dieses Energiepfahlsystem wird dieser Druckereibetrieb mit hohen Anforderungen an das Raumklima und viel Maschinenabwaerme sehr umweltschonend im Winter behizt und im Sommer gekuehlt. Das Besondere an diesem System ist diese ganzjaehrige Doppelnutzung zu Heiz- und Kuehlzwecken. Aus diesem Grunde wurde dieses Projekt vom Bundesamt fuer Energiewirtschaft (BEW) als Pilot- und Demonstrationsprojekt anerkannt. Zur Ueberpruefung von dessen Ausbeute und der Wirksamkeit der gesamten Energietechnik wurde vom BEW ein umfangreiches Messprojekt gestartet. Der Innovationswert der PAGO -Energietechnik liegt allerdings nicht allein im Einsatz der alternativen Komponenten. Mindestens so wichtig ist die Konzeption und die Feinabstimmung der gesamten Energietechnik. Der Betrieb lief im ersten Betriebsjahr sehr positiv und von Anfang an ohne groessere Probleme. Das Energiepfahlsystem konnte im wesentlichen die Erwartungen erfuellen. (orig.)

  4. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  5. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  6. Energy management through building automation. Fundamentals - Technologies - Applications

    International Nuclear Information System (INIS)

    The books available in the market consider only the use of individual buildings bus systems, but not to compare with each other with respect to cost-benefit and applicability. In this book, a total of 40 different systems, such as radio bus systems, PEHA-PHC, EIB, LCN, LON, PLC systems, investigated for their possible use in the various categories of buildings. The comparison refers to all levels of the automation pyramid from fieldbus, to automation to the control level and considers in particular the usability for SmartMetering-based energy management.

  7. Hydro Solar 21- A building energetic demand providing system based on renewable energies and hydrogen; Hydro Solar 21- Energias renovables e hidrogeno para el abastecimiento energetico de un edificio

    Energy Technology Data Exchange (ETDEWEB)

    Renilla Collado, R.; Ortega Izquierdo, M.

    2008-07-01

    Hydro Solar 21 is an energy innovation Project carried out in Burgos City to develop an energy production system based on renewable energies to satisfy light and air condition requirements of a restored building. Nocturnal light demand is satisfied with hydrogen consumption in fuel cells. This hydrogen is produced with an energy renewable system made up of two wind turbine generators and a photovoltaic system. The air conditioning demand is satisfied with an adsorption solar system which produces cold water using thermal solar energy. (Author) 8 refs.

  8. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  9. To build an energy-saving society

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ To speed up the development of cycling economy and build an energy-saving society is the key point of work in the coming years for the General Administration of Qualitv Supervision, Inspection and Quarantine of the People's Republic of China(AQSIQ).

  10. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  11. Investigation of Energy Saving Possibilities in Buildings

    Directory of Open Access Journals (Sweden)

    Edita Milutienė

    2010-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Buildings sector is the largest single energy end-user in the EU. There are numerous possibilities to save energy in buildings. This research deals with the analysis of the possibilities to save energy in buildings of northern latitudes by applying a passive solar energy technique. The article presents results of solar radiation monitoring in Vilnius for a 12 years period and assessment of the possibilities to save heat energy. Data could be used in designing solar houses, calculating passive solar energy gains and evaluating CO2 emissions reduction.

  12. ENERGY, ACOUSTICS AND ENVIRONMENTAL SUSTAINABILITY ANALYSIS OF BUILDING SYSTEMS BASED ON WOOD WOOL MINERALIZED WITH PORTLAND CEMENT

    OpenAIRE

    Pavarin, Cora

    2014-01-01

    In the present work various aspects of the energetic, thermal and acoustic properties of porous materials with wood wool mineralized Portland cement have been analyzed, in cooperation with the company Celenit Srl, a manufacturer of panels for building insulation. These products are also recognized interesting and desirable for their environmental sustainability through specific certifications. Remind that sustainability means "development that meets the needs of the present without comprom...

  13. Distributed energy resources at naval base ventura county building 1512

    International Nuclear Information System (INIS)

    This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year

  14. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  15. Building energy modeling for green architecture and intelligent dashboard applications

    Science.gov (United States)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the

  16. Control of temperature and energy consumption in buildings - A review

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera, C. F. Pfeiffer, N.-O Skeie

    2014-01-01

    Full Text Available Building sector is one of the largest energy consumers in the world and currently it utilizes 40% of the total energy in the European Union. At the beginning of the article, energy crisis related to the buildings is defined with regard to occupant thermal comfort, energy savings and temperature control. Subsequently, a brief presentation of various types of building heating models available for control purposes is given. Afterward, different approaches used for controlling the building thermal comfort and the energy consumption are shown. These strategies are primarily, classical control, advanced control, intelligent control and hybrid control. The proposed survey also provides up-to-date applications of control techniques. The overview hence affords an insight into current control systems used for temperature and energy consumption in buildings. Further, it helps to have a comprehensive understanding about the variety of control techniques in the field of HVAC (Heating, Ventilation and Air conditioning applications, at the same time delivering information for careful design of suitable controllers.

  17. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  18. Energy consumptions in existing buildings; Les consommations d'energie des batiments existants

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, St. [Ecole Nationale Superieure des Arts et Industries de Strasbourg, 78 - Saint-Remy-Les-Chevreuse (France)]|[Costic, 78 - Sainte Remy les Chevreuses (France)

    2002-05-01

    This document presents a sectoral analysis of the energy consumptions in existing French buildings: 1) - residential sector: social buildings, private dwellings; 2) - tertiary sector: office buildings, hotels, commercial buildings, school buildings, hospitals; 3) - industry; 4) - general status. (J.S.)

  19. A comparison of the energy and carbon implications of new systems of energy provision in new build housing in the UK

    International Nuclear Information System (INIS)

    The built environment needs to develop sustainable, decarbonised, low energy systems and approaches that are socially acceptable and economically beneficial. The UK mainstream house construction industry is being driven, through policy and regulation, towards achieving this end without evidence of how these new systems of provision are used by passively adopting households. In this paper energy use, consequential emissions of CO2, and annual running costs for a case study comprising 14 newly constructed low energy affordable homes are evaluated. Four different energy typologies are compared: ground sourced heat pumps; active solar (thermal and photovoltaic); passive solar and mechanical ventilation with heat recovery; conventional high efficiency gas boiler. The carbon embodied in construction and emitted over a 20 year occupation period for each typology is calculated. Ground source heat pumps have the highest annual primary energy demand, CO2 emission and annual running costs over the 20 year period. The homes with active solar technologies provided most benefit across all three evaluation criteria. Energy and CO2 emissions associated with end uses other than heating were similar to the UK average. This poses significant questions on the probability of policy application in the real world to deliver projected reductions in emissions of CO2. - Research Highlights: → Heat pumps have the highest primary energy demand, CO2 emissions and running costs. → Solar technologies have greatest benefit to passively adopting households. → No difference in energy demand of non heating end uses compared with UK average. → Reductions attributed to technology not behaviour in passively adopting households. → Policy may not deliver projected reductions in CO2 emissions in real world.

  20. Commercial Building Energy Asset Rating Program -- Market Research

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  1. Generic bottom-up building-energy models for developing regional energy transition scenarios

    OpenAIRE

    Knoeri, Christof; Goetz, Alessandra; Binder, Claudia R.

    2014-01-01

    Energy demand from buildings has the largest single share of the global final energy demand, but offers massive energy saving potentials through state-of-the-art technologies and behavioural changes. However, the required speed of technology adoption and behavioural changes to achieve such savings are largely uncertain and embedded in complex socio-technical system. Successful examples of achieving such systemic transition in the energy system are mostly found on the regional scale. Therefore...

  2. Solar energy conscious allotting and building

    International Nuclear Information System (INIS)

    In order to use solar energy now and in the future several measures should be taken in the field of urban development and housing construction. A number of policy instruments is available to the local governments to stimulate the use of solar energy. However, little use is made of these possibilities so far. In many municipalities there are uncertainties about the financial consequences of solar energy conscious building. In practice it appears that there are hardly any extra costs for the infrastructure if building blocks and roofs are designed and built with south orientation. Also possibilities to minimize the investment barrier for the occupants of the houses are available. An overview is presented of the policy instruments and practical examples are given for the Dutch municipalities Gouda, Schiedam, Heerhugowaard, Delft and Haarlemmermeer. 2 tabs., 2 appendices, 6 refs

  3. Miscellaneous investigations. Subreport 3; CO{sub 2}-reductions in low-energy buildings and communities by implementation of low-temperature district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Brand, M. (DTU-BYG, Kgs. Lyngby (Denmark)); Kaarup Olsen, P. (COWI A/S, Kgs. Lyngby (Denmark))

    2011-05-15

    The report focuses on possibilities of how to further decrease CO{sub 2} emissions by implementation of low-temperature district heating (LTDH) in areas with new low-energy buildings as well as in areas with existing buildings. In the first chapter, three different sites where LTDH is considered are reported. The first site is in Solbjerg near Aarhus, where 104 low-energy single-family houses are planned to be built. Calculations for a LTDH network (60/30 deg. C) have been made in the program TERMIS. The results show that depending on the houses being built as low-energy class 1 or 2, a cost saving potential of 6-13% can be achieved compared to traditional district heating (DH). The CO{sub 2}-reduction potential is 4.4-7.5 tonnes per year. The second reported site is an area with single-family houses built in the 1970s in Skjoldhoejparken in Tilst near Aarhus. Eight single-family houses have been investigated. Refurbishment can reduce the heat demand and make the houses more suitable for LTDH, but even with subsidy it is difficult to motivate the building owners to make energy saving initiatives. Analyses show that if the DH supply temperature is lowered gradually from 80 deg. C to 60 deg. C, depending on the outdoor temperature, the heat loss in the existing pipe network for the eight houses can be reduced by 20%. An even larger potential can be achieved with replacement of the existing pipe system. The third site is neighbourhood in Soenderby in Hoeje Taastrup with 75 single-family houses from the 1990s. The existing DH network is poor and has a heat loss of more than 40%. With LTDH it will be possible to reduce the network heat loss to 15% or lower. The CO{sub 2}-emission could be reduced by about 66 tonnes per year. In the second chapter are described existing district heating systems in Aarhus and Hoeje Taastrup. The average DH temperature is currently 80-77/47-42 deg. C, so there is a potential for LTDH. The network heat loss in the DH systems is 15

  4. Existing buildings energy footprint (AE – an instrument for the evaluation of real PEC (building energy performance in real conditions of climatic and anthropic loads

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2010-01-01

    Full Text Available The energy footprint of a building is an operational characteristic specific to the building structure as well as to the energyrelated operational conditions of the building. This paper presents the experimental programme carried out on the support of the CE INCERC Bucharest experimental building in the 2008-2009 cold season and the results obtained in the form of the building energy footprint. At the same time, the building energy footprint before the energy-related upgrading (2003-2004 cold season are presented, as well as those subsequent to the energy-related upgrading (thermal protection, equipping with a ventilated solar space and heating system replacement. The character natural laws of the energy footprint are emphasized. This paper presents a theoretical substantiation of the use of the energy footprint method in the case of condominiums in the form of the operational method, which is useful in settling the functional characteristic in any climatic conditions and in any operational conditions.

  5. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  6. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume III. Appendixes. [10 appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs, Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)

  7. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  8. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  9. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  10. Energy Gaining Windows for Residental Buildings

    OpenAIRE

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with o...

  11. Commercial Building Energy Asset Rating Tool User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

    2012-05-01

    The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

  12. Research on statistical methodology to investigate energy consumption in public buildings sector in China

    International Nuclear Information System (INIS)

    The purpose of this research is to find a statistical methodology to investigate the national energy consumption in the public buildings sector in China, in order to look into the actuality of the national energy consumption of public buildings and to provide abundant data for building energy efficiency work. The frame of a national statistical system of energy consumption for public buildings is presented in this paper. The statistical index system of energy consumption is constituted, which refers to the general characteristics of public buildings, their possession and utilization of energy consumption equipment and their energy consumption quantities. Sequentially, a set of statistical report forms is designed to investigate the energy consumption of cities, provinces and the country, respectively. On this base, the above statistical methodology is used to gather statistics of a public building for annual energy consumption

  13. Economic assessment of energy storage for load shifting in Positive Energy Building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Georges, Emeline;

    2016-01-01

    Net Zero Energy Buildings (NZEB) and Positive Energy Buildings (PEB) are gaining more and more interest. In this paper, the impact of the integration of a battery in a positive energy building is assessed in order to increase its self-consumption of electricity. Parametric studies are carried out...... energy and payback period. It is shown that the battery size leading to the minimum payback period within the input range, is comprised between 2.6 kWh and 6.2 kWh. The lowest payback periods, (~5.6 years), are reached with a well-insulated building envelope, a high lightning and appliance consumption, a...... by varying the building envelope characteristics, the power supply system, the climate, the lightning and appliances profiles, the roof tilt, the battery size and the electricity tariffs, leading to 3200 cases. The analysis is performed on an annual basis in terms of self-consumption rate, shifted...

  14. Tipping points for carbon dioxide and air pollution benefits: an energy systems analysis of natural gas verses electric technologies in the U.S. buildings sector

    Science.gov (United States)

    Our analysis examines emission trade-offs between electricity and natural gas use in the buildings sector at the system level, including upstream emissions from the electric sector and natural gas mining emissions.

  15. Building Systems: Passing Fad or Basic Tool?

    Science.gov (United States)

    Rezab, Donald

    Building systems can be traced back to a 1516 A.D. project by Leonardo da Vinci and to a variety of prefabrication projects in every succeeding century. When integrated into large and repetitive spatial units through careful design, building systems can produce an architecture of the first order, as evidenced in the award winning design of…

  16. Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology

    International Nuclear Information System (INIS)

    Buildings are crucial to addressing energy problems because they are large consumers of end-use energy, and potential exists to dramatically improve their efficiencies. However, the pace of innovation in buildings is generally characterized as inadequate, despite the implementation of an array of policy instruments aimed at promoting efficiency. The literature on innovation in the building industry provides several explanations including: fragmented decision-making, principal agent problems, inadequate information, and limited learning across heterogeneous projects. We investigate the innovation process for buildings in the U.S. with a case study of patenting in energy management control systems (EMCS) for commercial buildings and programmable thermostats (PT) for residential buildings. Using U.S. patent data, we find that: (1) patenting activity peaked around 1980, subsequently declined, and then increased considerably in the past decade; (2) commercial, rather than residential, buildings account for the recent increase; and (3) building control technologies have benefitted from inventions originating outside the industry, notably from electronics and computers, with a shift toward the latter in recent years. - Highlights: ► We investigate the innovation process for buildings in the U.S. using patents. ► We use commercial and residential building controls technology as a case study. ► Patenting peaked around 1980, declined, and then increased in the past decade. ► Commercial building control patents account for most of the recent increase. ► Inventions in electronics and computers have led to innovation in building controls.

  17. The ELENA Programme in the Province of Chieti - A Public Private Partnership Best Practice Improving Energy Efficiency of Buildings and Public Lighting Systems

    Directory of Open Access Journals (Sweden)

    Pierluigi Fecondo

    2015-09-01

    To date, the most relevant Project outcomes consist 87 municipalities involved, a structured database of energy audit and data about 144 buildings and about 46,000 public light points. Moreover, an effective engagement of public and private stakeholders, lays the foundation for a strong Energy Performance Contract framework able to leverage financing based on minimun guaranteed energy savings of 20% in respect to baseline values.

  18. Building integration of photovoltaic systems in cold climates

    Science.gov (United States)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  19. The first indications of the effects of the new legislation concerning the energy performance of buildings on renewable energy applications in buildings in Greece

    Directory of Open Access Journals (Sweden)

    Nikos Papamanolis

    2015-12-01

    Full Text Available Greece is a country rich in renewable energy sources yet also a country in which the building sector is relatively energy-intensive. In October 2010 the EU Directive on the Energy Performance of Buildings was incorporated into Greek law. At the same time other legislative and administrative measures, as well as financial incentives, were implemented to improve the energy performance of buildings in Greece. Some of these measures were intended to increase the number of renewable energy applications in buildings and to improve the ways in which the country’s favourable climatic conditions are exploited. This package of measures and regulations has had a catalytic effect on the whole of the country’s building production and management system. Based on the first indications of the effects of the implementation of the new legislation, this study attempts to evaluate the impact that the latter has had on the progress of renewable energy applications in buildings in Greece.

  20. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... windows have already been developed and prototypes constructed for laboratory test and a third generation of the window design is now in the developing and designing face in a new project. The first window constructed was made of wood profiles and a low-energy double glazing unit. The second and third...... longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  1. Comparison of building energy use data between the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jianjun; Hong, Tianzhen; Shen, Qi; Feng, Wei; Yang, Le; Im, Piljae; Lu, Alison; Bhandari, Mahabir

    2013-10-30

    Buildings in the United States and China consumed 41percent and 28percent of the total primary energy in 2011, respectively. Good energy data are the cornerstone to understanding building energy performance and supporting research, design, operation, and policy making for low energy buildings. This paper presents initial outcomes from a joint research project under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The goal is to decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders. This paper first reviews and compares several popular existing building energy monitoring systems in both countries. Next a standard energy data model is presented. A detailed, measured building energy data comparison was conducted for a few office buildings in both countries. Finally issues of data collection, quality, sharing, and analysis methods are discussed. It was found that buildings in both countries performed very differently, had potential for deep energy retrofit, but that different efficiency measures should apply.

  2. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  3. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  4. Scripted Building Energy Modeling and Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  5. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  6. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam......, radiant floor, wall and ceiling) have been compared for a typical office room, both numerically and experimentally. From the steady-state numerical analysis and the full-scale experiments, it has been observed that the difference between the two types of terminals is mainly due to changes in the...... back losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different...

  7. Changing Dashboard build system to Bamboo

    CERN Document Server

    Varga, Robert

    2013-01-01

    The aim of this project is to change Cosmic custom build system to an Automated build system used Bamboo CI System services. The goal is when a developer performs some changes on the source code, the system builds installation packages for different architectures and runs tests automatically on the software modules as soon as possible. The Bamboo build system polls the git repository which is a commonly used source code repository by the developers of the IT department. Bamboo CI System is a widely used system by the department. Thus the project uses widely accepted tools by the department which makes the Cosmic project even more standardized. Project also aims to create packages for every versions of Cosmic modules for different architectures (SLC5/SLC6) which can be accessed by different package repositories on AFS file system. The created package repositories can be used for automated deploy environment such as puppet.

  8. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    OpenAIRE

    Sidheswaran, Meera

    2010-01-01

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source contr...

  9. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  10. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  11. Model code for energy conservation in new building construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    In response to the recognized lack of existing consensus standards directed to