WorldWideScience

Sample records for building energy systems

  1. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  2. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  3. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  4. Energy Signal Tool for Decision Support in Building Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  5. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov (United States)

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL researchers are developing tools to understand the impact of changes in home and building energy use and how researchers who received a record of invention for a home energy management system in a smart home laboratory

  6. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  7. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  8. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  9. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  10. The performance of energy efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G.

    1996-08-01

    The adequacy and durability of residential building envelope systems under actual field conditions were evaluated. A building envelope offers protection from cold, heat, moisture, wind and noise. However, they are exposed to thermal, structural, and moisture stresses and their performance can degrade over time. Envelope performance was evaluated at 20 energy efficient and four conventional, detached modern homes in Winnipeg, Canada. The three complementary measurement tools were wood moisture content (WMC) of framing members, thermographic examinations, and airtightness tests. As expected, energy efficient building envelope systems performed better than the conventional systems. No evidence of envelope degradation was found in any of the energy efficient houses. The building envelopes using polyethylene air barriers performed slightly better than those which used the airtight drywall approach, although both were considered satisfactory. WMC levels were a bit lower in the polyethylene-clad house. 1 ref., 1 tab.

  11. Renewable building energy systems and passive human comfort solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-08-15

    With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised

  12. A Buildings Module for the Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  13. A SCADA System for Energy Management in Intelligent Buildings

    OpenAIRE

    Figueiredo, Joao; Sá da Costa, Jose

    2012-01-01

    This paper develops an energy management platform for intelligent buildings using a SCADA system (Supervisory Control And Data Acquisition). This SCADA system integrates different types of information coming from the several technologies present in modern buildings (control of ventilation, temperature, illumination, etc.). The developed control strategy implements an hierarchical cascade controller where inner loops are performed by local PLCs (Programmable Logic Controller), and the outer...

  14. Automatic Energy Control And Monitoring System For Building

    Directory of Open Access Journals (Sweden)

    Hnin Nu Thaung

    2015-08-01

    Full Text Available The use of smart home technology in the home or building offers significant potential for energy savings. In this paper an energy management system based on wireless sensor networks. The proposed system is composed of two main components a wireless sensor network and monitoring terminal. Wireless sensors are used for sensing and transmitting electricity data and remote monitoring and control of appliances are provided to users through computer. The system enables users to save energy by monitoring and controlling appliances through terminal. This paper gives an overview of sensor technology and wireless networks in the development of an intelligent energy management system for buildings. This technology has ample potential to change the way live and work. ZigBee is used as a communication medium in building intelligent energy management system in this paper. From the prototype setup it is shown that ZigBee is a suitable technology to be adopted as the communication infrastructure in energy management system for buildings .The proposed system can be installed and maintained in residential environments with ease.

  15. Buildings Interaction with Urban Energy Systems

    DEFF Research Database (Denmark)

    Heller, Alfred; Wyckmans, Annemie; Zucker, Gerhard

    2015-01-01

    to demonstrate that they can become not only smart fossil-free energy cities but sustainable in a wider sense, including water, waste, transportation and more. In the current paper, the research agenda to support such goals through smart city efforts is presented for a few European cases as examples, focusing...

  16. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    Science.gov (United States)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  17. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  18. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2013-01-01

    Full Text Available Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data through the RS485 field bus and stores the data into an SD card with mass storage, finally, using Internet to finish the communication and transmission to data server through TCP protocol. The collector has been used in application for two years, and the results show that the system is reliable and stable.

  19. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  20. Integrated fuel cell energy system for modern buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moard, D.M.; Cuzens, J.E.

    1998-07-01

    Energy deregulation, building design efficiency standards and competitive pressures all encourage the incorporation of distributed fuel cell cogeneration packages into modern buildings. The building marketplace segments to which these systems apply include office buildings, retail stores, hospitals, hotels, food service and multifamily residences. These applications represent approximately 60% of the commercial building sector's energy use plus a portion of the residential sector's energy use. While there are several potential manufacturers of fuel cells on the verge of marketing equipment, most are currently using commercial hydrogen gas to fuel them. There are few suppliers of equipment, which convert conventional fuels into hydrogen. Hydrogen Burner Technology, Inc. (HBT) is one of the few companies with a proven under-oxidized-burner (UOB) technology, patented and already proven in commercial use for industrial applications. HBT is developing a subsystem based on the UOB technology that can produce a hydrogen rich product gas using natural gas, propane or liquid fuels as the feed stock, which may be directly useable by proton exchange membrane (PEM) fuel cells for conversion into electricity. The combined thermal output can also be used for space heating/cooling, water heating or steam generation applications. HBT is currently analyzing the commercial building market, integrated system designs and marketplace motivations which will allow the best overall subsystem to be designed, tested and introduced commercially in the shortest time possible. HBT is also actively involved in combined subsystem designs for use in automotive and small residential services.

  1. Unintended anchors: Building rating systems and energy performance goals for U.S. buildings

    International Nuclear Information System (INIS)

    Klotz, Leidy; Mack, Daniel; Klapthor, Brent; Tunstall, Casey; Harrison, Jennilee

    2010-01-01

    In the U.S., where buildings account for 40% of energy use, commercial buildings use more energy per unit area than ever before. However, exemplary buildings demonstrate the feasibility of much better energy performance at no additional first cost. This research examines one possible explanation for this inconsistency. The aim is to investigate whether the anchoring bias, which refers to our tendency to gravitate towards a pre-defined standard regardless of its relevance, influences energy performance goals in building design. The scope examines professionals who help set energy performance goals for U.S. buildings. Prior to being asked to set an energy performance goal, these professionals were randomly directed to one of three series of questions. One series set an anchor of 90% energy reduction beyond standard practice, one set a 30% anchor, and one set no anchor. Respondents exposed to the 90% anchor, and respondents exposed to no anchor at all, set higher energy performance goals than respondents exposed to the 30% anchor. These results suggest that building rating systems that only reward incremental energy improvements may inadvertently create anchors, thereby discouraging more advanced energy performance goals and inhibiting energy performance that is technically and economically feasible.

  2. Opportunities of energy saving in lighting systems for public buildings

    Directory of Open Access Journals (Sweden)

    Ayman Abd El-khalek

    2017-03-01

    Full Text Available The lighting system provides many options for cost-effective energy saving with low or no inconvenience. Lighting improvements are excellent investments in most public buildings, it is usually cost-effective to address because lighting improvements are often easier to make than many process upgrades.For public buildings, the easy no and low cost options to help save money and improve the energy performance are:Understand energy use.Identify optionsPrioritize actionsMake the changes and measure the savings.Continue managing energy efficiency.The challenge is to retrofit traditional lamps with LED lamps of good quality. The benefits of LED light bulbs are long-lasting, durable, cool, mercury free, more efficient, and cost effective.The light Emitting Diode (LED bulb uses a semiconductor as its light source, and is currently one of the most energy efficient and quickly developing types of bulbs for lighting. LEDs increasingly are being purchased to replace traditional bulbs. LEDs are relatively more expensive than other types of bulbs, but are very cost-effective because they use only a fraction of electricity of traditional lighting methods nd can last for longer.Benchmarking guides decision makers to policies aimed at the energy sector through better understanding of energy consumption trends nationwide, e.g.: energy price, moderating, peak demand, and encouraging sectors, low energy expansions.The “Improving Energy Efficiency Project of Lighting and Appliances” carried out energy audits and implemented opportunities of energy saving in lighting for different type of public buildings.To rationalize the use of energy by giving guidelines to consumers, the IEEL&A project prepared some brochures.This paper leads with the results of case studies as energy audits, opportunities in lighting systems, energy saving and CO2 reduction.

  3. A generalized window energy rating system for typical office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming [Research Center for Building Environmental Engineering, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  4. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  5. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  6. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  7. 75 FR 17700 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Science.gov (United States)

    2010-04-07

    ... economically dynamic regional innovation cluster focused on energy efficient buildings technologies and systems...-risk, high-reward research that overcomes technology challenges through approaches that span basic... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative...

  8. Ultra high benefits system for electric energy saving and management of lighting energy in buildings

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Presenting a novel multi channel smart system to manage lighting energy in buildings. • Saving considerable electric energy which is converted to lighting in buildings. • Providing desired constant and adjustable luminance for each location in buildings. • Capability of working with all AC electric power sources. • To automatically control and manage lighting energy in buildings. - Abstract: This paper presents a smart system, including a multi channel dimmer and a central process unit (CPU) together with an exact multi channel feedback mechanism, which automatically regulates and manages lighting in buildings. Based on a multi channel luminance feedback, a high benefits technique is utilized to convert the electric energy to lighting energy. Saving a lot of the electric energy which should be converted to lighting energy in buildings, managing the lighting energy in buildings, providing desired constant and adjustable luminance for each room (location), and the capability of working with all AC electric power sources regardless of frequency and voltage amplitude are some advantages of using the proposed system and technique, thus it will be widely used in buildings. An experimental prototype of the proposed smart system has been constructed to validate the theoretical results and to carry out the experimental tests. Experimental results earned by utilizing the proposed smart system in a sample building are presented to prove the benefits of using the system. The experimental results explicitly show a considerable electric energy saving (about 27%) in the sample building while the proposed system has provided desired constant and adjustable luminance for each location of the building

  9. Hierarchical fuzzy control of low-energy building systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhen; Dexter, Arthur [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  10. Acquisition System Verification for Energy Efficiency Analysis of Building Materials

    Directory of Open Access Journals (Sweden)

    Natalia Cid

    2017-08-01

    Full Text Available Climate change and fossil fuel depletion foster interest in improving energy efficiency in buildings. There are different methods to achieve improved efficiency; one of them is the use of additives, such as phase change materials (PCMs. To prove this method’s effectiveness, a building’s behaviour should be monitored and analysed. This paper describes an acquisition system developed for monitoring buildings based on Supervisory Control and Data Acquisition (SCADA and with a 1-wire bus network as the communication system. The system is empirically tested to prove that it works properly. With this purpose, two experimental cubicles are made of self-compacting concrete panels, one of which has a PCM as an additive to improve its energy storage properties. Both cubicles have the same dimensions and orientation, and they are separated by six feet to avoid shadows. The behaviour of the PCM was observed with the acquisition system, achieving results that illustrate the differences between the cubicles directly related to the PCM’s characteristics. Data collection devices included in the system were temperature sensors, some of which were embedded in the walls, as well as humidity sensors, heat flux density sensors, a weather station and energy counters. The analysis of the results shows agreement with previous studies of PCM addition; therefore, the acquisition system is suitable for this application.

  11. Energy conservation and management system using efficient building automation

    Science.gov (United States)

    Ahmed, S. Faiz; Hazry, D.; Tanveer, M. Hassan; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.

    2015-05-01

    In countries where the demand and supply gap of electricity is huge and the people are forced to endure increasing hours of load shedding, unnecessary consumption of electricity makes matters even worse. So the importance and need for electricity conservation increases exponentially. This paper outlines a step towards the conservation of energy in general and electricity in particular by employing efficient Building Automation technique. It should be noted that by careful designing and implementation of the Building Automation System, up to 30% to 40% of energy consumption can be reduced, which makes a huge difference for energy saving. In this study above mentioned concept is verified by performing experiment on a prototype experimental room and by implementing efficient building automation technique. For the sake of this efficient automation, Programmable Logic Controller (PLC) is employed as a main controller, monitoring various system parameters and controlling appliances as per required. The hardware test run and experimental findings further clarifies and proved the concept. The added advantage of this project is that it can be implemented to both small and medium level domestic homes thus greatly reducing the overall unnecessary load on the Utility provider.

  12. 75 FR 7464 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Science.gov (United States)

    2010-02-19

    ... a regional innovation cluster focused on innovation in energy efficient building technologies and... technology challenges through approaches that span basic research to engineering development to... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative...

  13. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    International Nuclear Information System (INIS)

    Feng Yanping; Wu Yong; Liu Changbin

    2009-01-01

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  14. Energy-efficiency supervision systems for energy management in large public buildings. Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Yan-ping, Feng [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China); Yong, Wu [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Chang-bin, Liu [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized. (author)

  15. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yanping [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China)], E-mail: fengyanping10@sohu.com; Wu Yong [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Liu Changbin [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  16. Performance of Radiant Heating Systems of Low-Energy Buildings

    Science.gov (United States)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  17. Recent Developments of the Modelica"Buildings" Library for Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

    2011-04-01

    At the Modelica 2009 conference, we introduced the Buildings library, a freely available Modelica library for building energy and control systems. This paper reports the updates of the library and presents example applications for a range of heating, ventilation and air conditioning (HVAC) systems. Over the past two years, the library has been further developed. The number of HVAC components models has been doubled and various components have been revised to increase numerical robustness.The paper starts with an overview of the library architecture and a description of the main packages. To demonstrate the features of the Buildings library, applications that include multizone airflow simulation as well as supervisory and local loop control of a variable air volume (VAV) system are briefly described. The paper closes with a discussion of the current development.

  18. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...... systems. This energy declaration must refer to the primary energy or CO2 emissions. The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant...

  19. Based on the Hardware Resources Configurable Shanke PLC Building Energy Consumption Detection System

    Directory of Open Access Journals (Sweden)

    Cheng Guanghe

    2017-01-01

    Full Text Available According to the actual situation of the comprehensive office building and the functional requirements of the building energy consumption monitoring and management system, the office building energy consumption monitoring and management system is designed by using the hardware resource configurable Shanke PLC(SKPLC as the data collector. The system uses data bus technology and field data acquisition technology to achieve the building energy consumption data acquisition and management. Practice has proved that energy-saving effect is good.

  20. A Fuzzy-Based Building Energy Management System for Energy Efficiency

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2018-01-01

    Full Text Available Information and communication technologies (ICT offer immense potential to improve the energetic performance of buildings. Additionally, common building control systems are typically based on simple decision-making tools, which possess the ability to obtain controllable parameters for indoor temperatures. Nevertheless, the accuracy of such common building control systems is improvable with the integration of advanced decision-making techniques embedded into software and energy management tools. This paper presents the design of a building energy management system (BEMS, which is currently under development, and that makes use of artificial intelligence for the automated decision-making process required for optimal comfort of occupants and utilization of renewables for achieving energy-efficiency in buildings. The research falls under the scope of the H2020 project BREASER which implements fuzzy logic with the aim of governing the energy resources of a school in Turkey, which has been renovated with a ventilated façade with integrated renewable energy sources (RES. The BRESAER BEMS includes prediction techniques that increase the accuracy of common BEMS tools, and subsequent energy savings, while ensuring the indoor thermal comfort of the building occupants. In particular, weather forecast and simulation strategies are integrated into the functionalities of the overall system. By collecting the aforementioned information, the BEMS makes decisions according to a well-established selection of key performance indicators (KPIs with the objective of providing a quantitative comparable value to determine new actuation parameters.

  1. The effectiveness of energy management system on energy efficiency in the building

    Science.gov (United States)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  2. Integrated building energy systems design considering storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Aki, Hirohisa (Lawrence Berkeley National Laboratory (United States)). e-mail: MStadler@lbl.gov; Siddiqui, Afzal (Dept. of Statistical Science at Univ. College London (United Kingdom))

    2009-07-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g. PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO{sub 2} emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO{sub 2} emissions. The problem is solved for a given test year at representative customer sites, e.g. nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Dept. of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO{sub 2} minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  3. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  4. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  5. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  6. Net positive energy buildings

    International Nuclear Information System (INIS)

    Romero, A.; Barreiro, E.; Sanchez Zabala, V.

    2010-01-01

    Buildings are great consumers of energy, being responsible for almost 36% of CO2 emissions in Europe. Though there are many initiatives towards the reduction of energy consumption and CO2 emissions in buildings, many of the alternatives are diminished due to a lack of a unique and holistic approach to the problem. This paper reports a new innovative concept of Positive Energy Buildings (EB+), as well as an integral methodology that covers the overall design process for achieving them. The methodology evaluates energy efficiency solutions at different scales, from building site to generation systems. An educational building design in Navarra serves as a case study to check the feasibility of the proposed methodology. The study concludes that the key to achieve a Positive Energy Building is a minimized energy demand, complemented by efficient facilities and enhanced by distributed power generation from renewable sources. (Author).

  7. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  8. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  9. Embodied energy of building materials and green building rating systems : a case study for industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2011-01-01

    Green building rating (GBR) systems are developed to provide independent assessment standards that evaluate in a few categories about the performance and sustainability of buildings. However, same category might weight differently in each of the GBR systems. A particular system might favor certain

  10. The building approached as an integration of energy systems

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1993-01-01

    The dynamic thermal interaction between a building and its environmental control systems is both still difficult to predict, and becomes more critical in practice. Therefore knowledge and evaluation tools for this area become increasingly important. It is argued why knowledge and tools need to be

  11. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    International Nuclear Information System (INIS)

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  12. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: zhaojing@tju.edu.cn; Wu Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Zhu Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  13. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Zhu, Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu, Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end. (author)

  14. Solar-Energy System for a Commercial Building--Topeka, Kansas

    Science.gov (United States)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  15. Embodied energy of building materials and green building rating systems : a case study for industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2010-01-01

    Green Building Rating (GBR) systems are developed to provide independent assessment standards that evaluate in a few categories about the performance and sustainability of buildings. However, same category might weight differently in each of the GBR systems, which are different in objectives. A

  16. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency

    International Nuclear Information System (INIS)

    Yang, Zheng; Ghahramani, Ali; Becerik-Gerber, Burcin

    2016-01-01

    Approximately forty percent of total building energy consumption is attributed to HVAC (heating, ventilation, and air conditioning) systems that aim to maintain healthy and comfortable indoor environments. An HVAC system is a network with several subsystems, and there exist heat transfer and balance among the zones of a building, as well as heat gains and losses through a building's envelope. Diverse occupancy (diversity in terms of when and how occupants occupy a building) in spaces could result in increase of loads that are not actual demands for an HVAC system, leading into inefficiencies. This paper introduces a framework to quantitatively evaluate the energy implications of occupancy diversity at the building level, where building information modeling is integrated to provide building geometries, HVAC system layouts, and spatial information as inputs for computing potential energy implications if occupancy diversity were to be eliminated. An agglomerate hierarchical clustering-based iterative evaluation algorithm is designed for iteratively eliminating occupancy diversity. Whole building energy simulations for a real-world building, as well as virtual reference buildings demonstrate that the proposed framework could effectively quantify the HVAC system energy efficiency affected by occupancy diversity and the framework is generalizable to different building geometries, layouts, and occupancy diversities. - Highlights: • Analyze relationships between occupancy diversity and HVAC energy efficiency. • Integrate BIM for quantifying energy implications of occupancy diversity. • Demonstrate the effectiveness and generalizability of iterative evaluation algorithm. • Improve agglomerative hierarchical clustering process using heap data structure.

  17. The impact of Zero Energy Buildings on the Scandinavian energy system

    International Nuclear Information System (INIS)

    Seljom, Pernille; Lindberg, Karen Byskov; Tomasgard, Asgeir; Doorman, Gerard; Sartori, Igor

    2017-01-01

    This paper investigates how an extensive implementation of net Zero Energy Buildings (ZEBs) affects cost-optimal investments in the Scandinavian energy system towards 2050. Analyses are done by a stochastic TIMES model with an explicit representation of the short-term uncertainty related to electricity supply and heat demand in buildings. We define a nearly ZEB to be a highly efficient building with on-site PV production. To evaluate the flexibility requirement of the surrounding energy system, we consider no use of energy storage within the ZEBs. The results show that ZEBs reduce the investments in non-flexible hydropower, wind power and Combined Heat and Power, and increase the use of direct electric heating and electric boilers. With building integrated PV production of 53 TWh in 2050, ZEBs increase the Scandinavian electricity generation by 16 TWh and increase the net electricity export by 19 TWh. Although the increased production reduces the electricity prices, the low heat demand in ZEBs gives a drop in the electricity consumption by 4 TWh in 2050. Finally, the results demonstrate that the Scandinavian energy system is capable of integrating a large amount of ZEBs with intermittent PV production due to the flexible hydropower in Norway and Sweden. - Highlights: • We analyse cost-optimal integration of ZEBs in the Scandinavian energy system. • We capture impact of short-term uncertainty on long-term investment decisions. • ZEBs reduce the investments in the electricity and heating sector. • The Scandinavian electricity sector is capable of integrating ZEBs with PV. • The operation of the flexible hydropower is changed with ZEBs.

  18. Implementation of a demand elasticity model in the building energy management system

    NARCIS (Netherlands)

    Ożadowicz, A.; Grela, J.; Babar, M.

    2016-01-01

    Nowadays, crucial part of modern Building Automation and Control Systems (BACS) is electric energy management. An active demand side management is very important feature of a Building Energy Management Systems (BEMS) integrated within the BACS. Since demand value changes in time and depends on

  19. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  20. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    Science.gov (United States)

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  1. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    International Nuclear Information System (INIS)

    Gulbinas, R.; Jain, R.K.; Taylor, J.E.

    2014-01-01

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  2. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    Science.gov (United States)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  3. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    International Nuclear Information System (INIS)

    Khan, M Reyasudin Basir; Jidin, Razali; Shaaya, Sharifah Azwa; Pasupuleti, Jagadeesh

    2013-01-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  4. Systems and methods for controlling energy use in a building management system using energy budgets

    Science.gov (United States)

    Wenzel, Michael J.

    2012-06-17

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A mathematical linear operator is found that transforms the unused or deferred cooling power usage of the HVAC system based on pre-determined temperature settings to a target cooling power usage. The mathematical operator is applied to the temperature settings to create a temperature setpoint trajectory expected to provide the target cooling power usage.

  5. Development of a new energy efficiency rating system for existing residential buildings

    International Nuclear Information System (INIS)

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Seon Park, Hyo

    2014-01-01

    Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO 2 emission density (i.e., CO 2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign. - Highlights: • A new energy efficiency rating system for the residential building was developed. • The incentive and penalty programs were established using an advanced CBR model. • The new system was established using reasonable and fair standards. • It allows all residents to voluntarily participate in the energy saving campaign. • It can be applied to any country or sector in the global environment

  6. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  7. A control-oriented model for combined building climate comfort and aquifer thermal energy storage system

    NARCIS (Netherlands)

    Rostampour Samarin, Vahab; Bloemendal, J.M.; Jaxa-Rozen, M.; Keviczky, T.

    2016-01-01

    This paper presents a control-oriented model for combined building climate comfort and aquifer thermal energy storage (ATES) system. In particular, we first provide a description of building operational systems together with control framework variables. We then focus on the derivation of an

  8. The use of energy management and control systems to monitor the energy performance of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, Kristin Elizabeth [Univ. of California, Berkeley, CA (United States). Dept. of Architecture

    1994-12-01

    Monitored data play a very important part in the implementation and evaluation of energy conservation technologies and programs. However, these data can be expensive to collect, so there is a need for lower-cost alternatives. In many situations, using the computerized Energy Management and Control Systems (EMCSs)--already installed in many buildings--to collect these commercial building performance data has advantages over more conventional methods. This method provides data without installing incremental hardware, and the large amounts of available operational data can be a very rich resource for understanding building performance. This dissertation addresses several of these issues. One specific objective is to describe a monitoring-project planning process that includes definition of objectives, constraints, resources and approaches for the monitoring. The choice of tools is an important part of this process. The dissertation goes on to demonstrate, through eight case studies, that EMCS monitoring is possible, and to identify and categorize the problems and issues that can be encountered. These issues lead to the creation, use, and testing of a set of methods for evaluation of EMCS monitoring, in the form of guidelines. Finally, EMCS monitoring is demonstrated and compared with conventional monitoring more methodically in a detailed case study.

  9. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J.-M.

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  10. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J -M

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  11. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Science.gov (United States)

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  12. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Directory of Open Access Journals (Sweden)

    Vangelis Marinakis

    2018-02-01

    Full Text Available The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems, energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  13. Power and energy saving in buildings by distributed generation based on gas-engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Arghandeh, R.; Amidpour, M.; Ghaffari, A. [Khaje Nasir Toosi Univ. of Technology, Tehran (Iran, Islamic Republic of). Joint Program of Energy Systems Engineering; Manchester Univ., Manchester (United Kingdom)

    2008-07-01

    Buildings consume high amounts of energy and produce high amounts of greenhouse gas (GHG) emissions. This paper discussed the use of gas cogeneration distributed generation (DG) technologies as a means of reducing energy consumption from buildings as well as energy losses from transmission lines in Iran. Energy sources and power generation systems were reviewed, and the economical benefits and energy savings resulting from the use of cogeneration systems were outlined. Actual rates of electricity consumption for Iran were estimated. Building power consumption was divided into the following 6 major sections: (1) lighting, (2) home appliances, (3) restaurant and cooking devices, (4) sports facilities, (5) utilities, and (6) electronics. Energy consumption criteria (ECC) and daily consumption charts (DCC) were used to plan and design the cogeneration systems. Energy balances, capital costs, and investment rates of return (IRR) were then calculated for 2 scenarios for a sample building. Results of the study showed that gas engine combined heat and power (CHP) DG systems are a reliable and economic technology for reducing energy consumption in buildings. The IRR of the CHP DG system for the sample building was achieved in 1 year. 13 refs., 10 tabs., 11 figs.

  14. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  15. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community

    International Nuclear Information System (INIS)

    Wu, Raphael; Mavromatidis, Georgios; Orehounig, Kristina; Carmeliet, Jan

    2017-01-01

    Highlights: • Simultaneous optimisation of building envelope retrofit and energy systems. • Retrofit and energy systems change interact and should be considered simultaneously. • Case study quantifies cost-GHG emission tradeoffs for different retrofit options. - Abstract: In this paper, a method for a multi-objective and simultaneous optimisation of building energy systems and retrofit is presented. Tailored to be suitable for the diverse range of existing buildings in terms of age, size, and use, it combines dynamic energy demand simulation to explore individual retrofit scenarios with an energy hub optimisation. Implemented as an epsilon-constrained mixed integer linear program (MILP), the optimisation matches envelope retrofit with renewable and high efficiency energy supply technologies such as biomass boilers, heat pumps, photovoltaic and solar thermal panels to minimise life cycle cost and greenhouse gas (GHG) emissions. Due to its multi-objective, integrated assessment of building transformation options and its ability to capture both individual building characteristics and trends within a neighbourhood, this method is aimed to provide developers, neighbourhood and town policy makers with the necessary information to make adequate decisions. Our method is deployed in a case study of typical residential buildings in the Swiss village of Zernez, simulating energy demands in EnergyPlus and solving the optimisation problem with CPLEX. Although common trade-offs in energy system and retrofit choice can be observed, optimisation results suggest that the diversity in building age and size leads to optimal strategies for retrofitting and building system solutions, which are specific to different categories. With this method, GHG emissions of the entire community can be reduced by up to 76% at a cost increase of 3% compared to the current emission levels, if an optimised solution is selected for each building category.

  16. Energy Constraints for Building Large-Scale Systems

    Science.gov (United States)

    2016-03-17

    although most systems built to date do not consider these issues as primary constraints. Keywords: Neuromorphic Engineering; Cortical Operation...2Mbyte, 32bit input data, and 1Mbyte, 32bit output data, results in 3.1mW (Vdd = 2.5V) of power, even though one might find a DSP chip computing at...4MMAC(/s)/mW power efficiency [5], close to the power / energy efficiency wall [6]. A memory chip or data source further away requires even higher

  17. 75 FR 16739 - EDA Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative

    Science.gov (United States)

    2010-04-02

    ...: Promote regional development; Accelerate innovation, technology transfer, and entrepreneurship to create... priorities, which are: Collaborative Regional Innovation. Initiatives that support the development and growth... Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative AGENCY: Economic...

  18. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  19. Travelling energy systems: knowledge transfer for energy efficiency and conservation from European to Australian building projects

    Energy Technology Data Exchange (ETDEWEB)

    Glad, Wiktoria (Tema Technology and Social Change, Linkoeping Univ. (Sweden); Inst. for Sustainable Futures, Univ. of Technology, Sydney (Australia))

    2009-07-01

    Energy efficiency and conservation in the Australian built environment have not yet been implemented to any great extent. Despite favourable prerequisites, such as vast windswept unpopulated areas suitable for wind power and many hours of direct sunlight in most populated areas, electricity is mainly generated by burning brown coal and buildings are poorly equipped for hot summers and cool winters. Australia urgently needs to convert to alternative energy sources and implement energy efficiency measures, since its carbon dioxide emissions per capita are among the highest in the world. In a recent major redevelopment in Sydney, the Carlton and United Brewery (CUB) site knowledge of energy efficiency and conservation measures used in European buildings was transferred and implemented in local designs and infrastructure. This knowledge came mainly from urban planning and developments in London, but also from high-profile architectural firms based in Paris and Germany. The arrival of this knowledge in Australia led to phases when the knowledge was translated and enacted in local spaces and the constituent ideas were transformed into action. The present research is based on ten months of ethnographic fieldwork in which the planning and design of the CUB site was observed. The results of the study identify barriers to and opportunities for energy system knowledge transfer between different cultures and local spaces. Substantial time must be spent overcoming cultural barriers, so the involved parties can start talking the same language. This is not only true for stakeholders operating in different continents, but for stakeholders operating in different local arenas in the same country.

  20. Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Harajli, Hassan A.; Jones, Craig I.; Winnett, Adrian B.

    2012-01-01

    Energy analysis, environmental life-cycle assessment (LCA) and economic appraisals have been utilised to study the performance of a domestic building integrated photovoltaic (BIPV) system on a ‘whole systems’ basis. Energy analysis determined that the system paid back its embodied energy in just 4.5 years. LCA revealed that the embodied impacts were offset by the electricity generated to provide a net environmental benefit in most categories. Only carcinogens, ecotoxicity and minerals had a small net lifetime burden. A financial analysis was undertaken from the householder's perspective, alongside cost-benefit analysis from a societal perspective. The results of both indicated that the systems are unlikely to pay back their investment over the 25 year lifetime. However, the UK is in an important period (2010/11) of policy transition with a move away from the ‘technology subsidies’ of the Low Carbon Buildings Programme (LCBP) and towards a ‘market development policy’ of feed-in tariffs. Representing the next stage on an innovation S-curve this is expected to facilitate rapid PV uptake, as experienced in countries such as Germany, Denmark, and Spain. The results of the present study clearly demonstrate the importance of the new government support scheme to the future uptake of BIPV. - Highlights: ► LCA and economic appraisals of a UK domestic building integrated PV system. ► Energy analysis determined that the system paid back its embodied energy in 4.5 years. ► UK moved towards a market development policy of feed-in tariffs. ► Financial analysis shows the importance of the new FiT scheme to the uptake of PV.

  1. System impact of energy efficient building refurbishment within a district heated region

    International Nuclear Information System (INIS)

    Lidberg, T.; Olofsson, T.; Trygg, L.

    2016-01-01

    The energy efficiency of the European building stock needs to be increased in order to fulfill the climate goals of the European Union. To be able to evaluate the impact of energy efficient refurbishment in matters of greenhouse gas emissions, it is necessary to apply a system perspective where not only the building but also the surrounding energy system is taken into consideration. This study examines the impact that energy efficient refurbishment of multi-family buildings has on the district heating and the electricity production. It also investigates the impact on electricity utilization and emissions of greenhouse gases. The results from the simulation of four energy efficiency building refurbishment packages were used to evaluate the impact on the district heating system. The packages were chosen to show the difference between refurbishment actions that increase the use of electricity when lowering the heat demand, and actions that lower the heat demand without increasing the electricity use. The energy system cost optimization modeling tool MODEST (Model for Optimization of Dynamic Energy Systems with Time-Dependent Components and Boundary Conditions) was used. When comparing two refurbishment packages with the same annual district heating use, this study shows that a package including changes in the building envelope decreases the greenhouse gas emissions more than a package including ventilation measures. - Highlights: • Choice of building refurbishment measures leads to differences in system impact. • Building refurbishment in district heating systems reduces co-produced electricity. • Valuing biomass as a limited resource is crucial when assessing global GHG impact. • Building envelope measures decrease GHG (greenhouse gas) emissions more than ventilation measures.

  2. The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings

    Directory of Open Access Journals (Sweden)

    Giacomo Salvadori

    2016-11-01

    Full Text Available The energy audit for a building is a procedure designed mainly to obtain adequate knowledge of the energy consumption profile, identify, and quantify opportunities for energy savings by a cost-benefit analysis and report, clearly and comprehensively, about the obtained results. If the audit is referred to a building with a significant historical and artistic value, a compatibility evaluation of the energy saving interventions with the architectural features should also be developed. In this paper, analysing the case study of a historical building used as public offices in Pisa (Italy, the authors describe how it is possible to conduct an energy audit activity (especially dedicated to the lighting system and they show how, for this type of buildings, it is possible to obtain significant energy savings with a refurbishment of the lighting system. A total number of seven interventions on indoor and outdoor lighting sub-systems were analysed in the paper. They are characterised by absolute compatibility with the historical and artistic value of the building and they show short payback times, variable between 4 and 34 months, allowing a reduction of the electrical energy consumption for the artificial indoor and outdoor lighting variable from 1.1 MWh/year to 39.0 MWh/year. The followed methodology and the evaluation results described in the paper, although based on a case study, can be extended to numerous historical buildings used as public offices, a recurring situation in the centres of Italian historical cities.

  3. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  4. Scalable Deployment of Advanced Building Energy Management Systems

    Science.gov (United States)

    2013-05-01

    build their own visualization screens containing charts and 3D graphics.  Lack of functionality for generating comprehensive reports that can be sent...through the windows and subsequently absorbed by interior walls, floors and furniture , air leakage through doors, sensible air from HVAC, and sensible...Unit Min Max Temperature of Air Entering Condenser ºC 14 35 Temperature of Chilled Water Leaving Chiller ºC 5 12 Part Load Ratio -- 0.1 1.2 Model

  5. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  6. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  7. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  8. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide minimal

  9. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  10. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  11. Operational Planning of Low-Energy District Heating Systems Connected to Existing Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    . The response of the radiator heating systems at different levels of supply temperature was used to form the operational planning of the low-energy DH system, which determined the design parameters of the low-energy DH network in terms of overall mass flow requirement and the return temperature from...... the buildings. Since the existing buildings were considered to be renovated to low-energy class, the operational planning was simultaneously modelled for both present high-demand and future low-demand situations of the same case area.......This article focuses on low-energy District Heating (DH) systems operating in low-temperatures such as 55°C in terms of supply and 25°C in terms of return in connection with existing buildings. Since the heat loss from the network has a significant impact in case of supplying heat to low...

  12. Decision process for the retrofit of municipal buildings with solar energy systems: a technical guide

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, Michael R.; Wood, Brian; Dozier, Warner; Braly, Mark; Yates, Alan

    1980-11-01

    As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station. (MHR)

  13. Consumer Central Energy Flexibility in Office Buildings

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility in buildings will play an important role in the smart energy system. Office buildings have more potentials to provide energy flexibility to the grid compared to other types of buildings, due to the existing building management, control systems and large energy consumption....... Consumers in office buildings (building owners/managers and occupants) take a main role for adopting and engaging in building energy flexibility. In this paper provides a systematic review of consumer central energy flexibility in office buildings with the discussion of social, technical and business...... can boost energy flexibility in the office buildings....

  14. Preliminary Findings from an Analysis of Building Energy Information System Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish; Price, Philip

    2009-06-01

    Energy information systems comprise software, data acquisition hardware, and communication systems that are intended to provide energy information to building energy and facilities managers, financial managers, and utilities. This technology has been commercially available for over a decade, however recent advances in Internet and other information technology, and analytical features have expanded the number of product options that are available. For example, features such as green house gas tracking, configurable energy analyses and enhanced interoperability are becoming increasingly common. Energy information systems are used in a variety of commercial buildings operations and environments, and can be characterized in a number of ways. Basic elements of these systems include web-based energy monitoring, web-based energy management linked to controls, demand response, and enterprise energy management applications. However the sheer number and variety of available systems complicate the selection of products to match the needs of a given user. In response, a framework was developed to define the capabilities of different types of energy information systems, and was applied to characterize approximately 30 technologies. Measurement is a critical component in managing energy consumption and energy information must be shared at all organizational levels to maintain persistent, efficient operations. Energy information systems are important to understand because they offer the analytical support to process measured data into information, and they provide the informational link between the primary actors who impact building energy efficiency - operators, facilities and energy managers, owners and corporate decision makers. In this paper, preliminary findings are presented, with a focus on overall trends and the general state of the technology. Key conclusions include the need to further pursue standardization and usability, x-y plotting as an under-supported feature, and

  15. Integrated Building Energy Systems Design Considering Storage Technologies

    OpenAIRE

    Stadler, Michael

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 em...

  16. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    NARCIS (Netherlands)

    Finck, C.J.; Li, R.; Kramer, R.P.; Zeiler, W.

    2018-01-01

    In the future due to continued integration of renewable energy sources, demand-side flexibility would be required for managing power grids. Building energy systems will serve as one possible source of energy flexibility. The degree of flexibility provided by building energy systems is highly

  17. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Petritchenko, Oxana [Navigant Consulting, Burlington, MA (United States); Ringo, Decker [Navigant Consulting, Burlington, MA (United States); McClive, Sam [Navigant Consulting, Burlington, MA (United States)

    2017-12-01

    The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promising technology options.

  18. Field performance of energy-efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The airtightness of 24 new houses was measured on a regular basis over periods of up to three years to evaluate the structures' air barrier systems and to study the possibility of air barrier degradation, as would be indicated by an increase in the measured air leakage rate. Ten of the houses were built with the polyethylene air barrier system and 14 using an early version of the airtight drywall approach (ADA). The 24 project houses were architecturally similar and of approximately equal size and general layout; stucco was the predominate wall finish.

  19. The urban wind energy potential for integrated roof wind energy systems based on local building height distributions

    NARCIS (Netherlands)

    Blok, R.; Coers, M.D.

    2017-01-01

    An Integrated Roof Wind Energy System (IRWES) is a roof mounted structure with an internal wind turbine that uses smart aerodynamics to catch and accelerate wind flow. It has been designed for application on (existing) buildings in the urban environment. To estimate the maximum total wind energy

  20. Development and analysis of sustainable energy systems for building HVAC applications

    International Nuclear Information System (INIS)

    Khalid, F.; Dincer, I.; Rosen, M.A.

    2015-01-01

    The main HVAC applications considered in this paper are heating and cooling. Three newly developed systems for heating and cooling applications in buildings are proposed and assessed. Energy and exergy analyses are performed to assess the performance of heating, cooling and overall systems for each case, and the effects of various parameters on the energy and exergy efficiencies are examined. Also, the effect of changing the energy input for each system is also found in terms of overall efficiency. The overall system energy efficiency is found to be highest for the natural gas operated system with a vapour absorption chiller (system 1) at 27.5% and lowest for the photovoltaic (PV) and solar thermal operated system with vapour compression chiller (system 3) at 19.9%. The overall system exergy efficiency is found to be highest for the PV and solar thermal operated system with vapour compression chiller (system 3) at 3.9% and lowest for the PV and solar thermal operated system with heat pump (system 2) at 1.2%, respectively. - Highlights: • Three HVAC systems for buildings using renewable energy sources are proposed and assessed. • A performance improvement study is undertaken. • Parametric studies are carried out to determine the effects of various parameters on energy and exergy efficiencies

  1. Field performance of energy-efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Prowskiw, G.

    1992-05-01

    The air tightness of 24 new houses was measured on a regular basis over periods up to three years to evaluate the structures' air barrier systems and to study the possibility of air barrier degradation, as would be indicated by an increase in the measured leakage rate. Ten of the houses were built with the polyethylene air barrier system and 14 using an early version of the Airtight Drywall Approach (ADA). The 24 project houses were architecturally similar and of approximately equal size and general layout. The airtightness of the polyethylene air barrier houses was found to remain stable over their respective monitoring periods. It was concluded that no evidence could be found to indicate polyethylene is unsuited for use as an air barrier material in residential construction. Although 2 of the 10 houses demonstrated possible, albeit slight, evidence of airtightness degradation, the magnitude of these changes was small and judged not to be of practical significance. All but one of the polyethylene houses met the airtightness requirements of the R-2000 program at the end of their monitoring periods. The project houses with the lowest measured leakage rates were those built with the double wall system and polyethylene barriers. The study also found that the airtightness of the 14 ADA houses remained stable during the monitoring period and it was concluded that no evidence could be found to indicate that the ADA system is unsuited for use in residential construction. Although 6 of the 15 houses displayed possible, but also slight, evidence of airtightness degradation, the magnitude of the changes was small and not of practical significance. All 14 houses met the airtightness requirements of the R-2000 program at the end of their respective monitoring periods. 19 refs., 191 figs., 39 tabs.

  2. A hybrid decision support system for sustainable office building renovation and energy performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Juan, Yi-Kai [Department of Architecture, National Taiwan University of Science and Technology (NTUST) (China); Center for Sustainable Development and Global Competitiveness, Stanford University (United States); Gao, Peng [Department of Traffic and Transportation Engineering, Tongji University (China); Wang, Jie [Center for Sustainable Development and Global Competitiveness, Stanford University (United States)

    2010-03-15

    Energy consumption of buildings accounts for around 20-40% of all energy consumed in advanced countries. Over the last decade, more and more global organizations are investing significant resources to create sustainably built environments, emphasizing sustainable building renovation processes to reduce energy consumption and carbon dioxide emissions. This study develops an integrated decision support system to assess existing office building conditions and to recommend an optimal set of sustainable renovation actions, considering trade-offs between renovation cost, improved building quality, and environmental impacts. A hybrid approach that combines A* graph search algorithm with genetic algorithms (GA) is used to analyze all possible renovation actions and their trade-offs to develop the optimal solution. A two-stage system validation is performed to demonstrate the practical application of the hybrid approach: zero-one goal programming (ZOGP) and genetic algorithms are adopted to validate the effectiveness of the algorithm. A real-world renovation project is introduced to validate differences in energy performance projected for the renovation solution suggested by the system. The results reveal that the proposed hybrid system is more computationally effective than either ZOGP or GA alone. The system's suggested renovation actions would provide substantial energy performance improvements to the real project if implemented. (author)

  3. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Science.gov (United States)

    Pałaszyńska, Katarzyna; Bandurski, Karol; Porowski, Mieczysław

    2017-11-01

    Thermally Activated Building Systems (TABS) are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational). The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year - a typical meteorological year. The model was prepared using a generally accepted simulation tool - TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  4. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Directory of Open Access Journals (Sweden)

    Pałaszyńska Katarzyna

    2017-01-01

    Full Text Available Thermally Activated Building Systems (TABS are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational. The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year – a typical meteorological year. The model was prepared using a generally accepted simulation tool – TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  5. Energy-efficient window systems. Effects on energy use and daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buelow-Huebe, H.

    2001-11-01

    This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate. Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m{sup 2}K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m{sup 2}K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very

  6. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  7. Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems

    DEFF Research Database (Denmark)

    Zong, Yi; Böning, Georg Martin; Santos, Rui Mirra

    2016-01-01

    ) strategy for energy management in smart buildings, which can act as active users interacting with smart energy systems. The challenges encountered during the implementation of EMPC for active demand side management are investigated in detail in this paper. A pilot testing study shows energy savings......When there is a high penetration of renewables in the energy system, it requires proactive control of large numbers of distributed demand response resources to maintain the system’s reliability and improve its operational economics. This paper presents the Economic Model Predictive Control (EMPC...

  8. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount of information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.

  9. Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.

    2011-01-01

    The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires......, (4) the type of energy balance, (5) the accepted renewable energy supply options, (6) the connection to the energy infrastructure and (7) the requirements for the energy efficiency, the indoor climate and in case of gird connected ZEB for the building–grid interaction. This paper focuses...

  10. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  11. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  12. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  13. Energy Performance of a Novel System Combining Natural Ventilation with Diffuse Ceiling Inlet and Thermally Activated Building Systems (TABS)

    DEFF Research Database (Denmark)

    Yu, Tao

    and thermally activated building systems (TABS) for cooling and ventilation in future Danish office buildings. The new solution would have the special potential of using natural ventilation all year round even in the extremely cold seasons without any draught risk. The main focuses of this study are the energy...

  14. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Change-over natural and mechanical ventilation system energy consumption in single-family buildings

    Science.gov (United States)

    Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata

    2017-11-01

    The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.

  16. Building Environment Analysis Based on Temperature and Humidity for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Won

    2012-10-01

    Full Text Available In this paper, we propose a new HVAC (heating, ventilation, and air conditioning control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  17. Building environment analysis based on temperature and humidity for smart energy systems.

    Science.gov (United States)

    Yun, Jaeseok; Won, Kwang-Ho

    2012-10-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  18. Ethernet TCP/IP based building energy management system in a university campus in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jomoah, Ibrahim M. [Department of Industrial Engineering, King Abdulaziz University Jeddah-21589 (Saudi Arabia); Kumar, R. Sreerama; Abdel-Shafi, Nabil Yassien [Saudi Electricity Company Chair for DSM and EE, Vice Presidency for Projects, King Abdulaziz University Jeddah 21589 (Saudi Arabia); Al-Abdulaziz, Abdulaziz Uthman M.; Obaid, Ramzy R. [Department of Electrical and Computer Engineering, King Abdulaziz University Jeddah-21589 (Saudi Arabia)

    2013-07-01

    This paper investigates the effectiveness of the Building Energy Management System (BMS) installed in the typical buildings in the main campus of King Abdulaziz University, Jeddah, in Saudi Arabia. As the domestic electricity and hence the oil consumption in Saudi Arabia is increasing at a very alarming rate compared to the other countries in the world, it is of paramount importance to resort to urgent measures in various industrial, commercial and residential sectors in the country to implement energy conservation measures. The major electrical load in the buildings in the University corresponds to air-handling units and lighting. If the Hajj period, during which millions of pilgrims visit Holy Makah, coincides with the summer, the electricity demand in the country further increases. Considering these issues, the university has taken initiatives to minimize energy consumption in the campuses through the various energy conservation measures. Towards this end, BMS is installed in a few of the typical classrooms and office buildings utilizing the existing campus Ethernet TCP/IP. The data analysis is performed over the period from April to September as it is the peak load period due to summer season. The effectiveness of the BMS in the minimization of the energy consumption in these buildings is established by comparing the results of data analysis with BMS against those before the installation of BMS over the peak period. The investigations reveal that appreciable saving in energy consumption can be achieved with the installation of BMS, the magnitude being dependent upon factors such as building characteristics, type of building, its utilization and period of use.

  19. Development and Application of a ZigBee-Based Building Energy Monitoring and Control System

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2014-01-01

    Full Text Available Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS, which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus’s main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications.

  20. Development of mechanical ventilation system with low energy consumption for renovation of buildings

    DEFF Research Database (Denmark)

    Terkildsen, Søren

    in reducing CO2-emmissions. Over the last decade, initiatives have been taken to reduce its energy consumption e.g. by the European Union, national governments or NGOs. The initiatives have mostly focused on improving the thermal properties of the building envelope to reduce heat losses. Building services......A general reduction in total energy consumption is needed, due to the increasing concerns about climate change caused by CO2-emmissions from fossil fuels. In 2004, the building sector accounted for 40% of the total energy consumption in the EU and the US and therefore must play a crucial role....... The goal was to develop a mechanical system with an SFP-value of 0.5 kJ/m3 and a heat recovery efficiency of 85% that can meet current indoor environment requirements without discomfort in terms of thermal, acoustic and draught issues. The concept was developed for a temperate climate, such as Denmark...

  1. Saving energy by using underfloor-air-distribution (UFAD) system in commercial buildings

    International Nuclear Information System (INIS)

    Alajmi, Ali; El-Amer, Wid

    2010-01-01

    The number of attempts by researchers to reduce building energy consumption has increased, ever since global warming became a serious issue. In this trend, a relatively new approach of air distribution, underfloor-air-distribution system (UFAD), has been widely used in new commercial buildings. This technique is simply accomplished by supplying air through a raised floor using different types of distribution configurations and outlets. In UFAD, the air is directly supplied to the occupants' area (occupied zone) causing occupants plumes and zone heat load stratify to the upper layer of the zone (unoccupied zone), which are later extracted from return points at high level. This flow pattern gives UFAD the advantage of using less energy than a conventional air-distribution system, ceiling-based air distribution (CBAD) due to lower pressure drop and lower air flow rate. This paper investigates the effectiveness of UFAD systems in commercial buildings for various types of application and at different air supply temperatures in a hot climate (The State of Kuwait). The findings show that UFAD has a significant saving of energy compared to CBAD (∼30%); in particular with high ceiling building types, as well as providing satisfactory comfort conditions for the occupants. Ultimately, more investigations should be done on conventional building heights (offices) to optimize the utilization of thermal stratification at design and operation stages.

  2. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  3. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  4. Thermodynamic analyses and assessments of various thermal energy storage systems for buildings

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2012-01-01

    Highlights: ► Proposing a novel latent (PCM), thermochemical and sensible (aquifer) TES combination for building heating. ► Performing comprehensive environmental, energy, exergy and sustainability analyses. ► Investigating the effect of varying dead state temperatures on the TESs. - Abstract: In this study, energetic, exergetic, environmental and sustainability analyses and their assessments are carried out for latent, thermochemical and sensible thermal energy storage (TES) systems for phase change material (PCM) supported building applications under varying environment (surrounding) temperatures. The present system consists of a floor heating system, System-I, System-II and System-III. The floor heating system stays at the building floor supported with a floor heating unit and pump. The System-I includes a latent TES system and a fan. The latent TES system is comprised of a PCM supported building envelope, in which from outside to inside; glass, transparent insulation material, PCM, air channel and insulation material are placed, respectively. Furthermore, System-II mainly has a solar-thermochemical TES while there are an aquifer TES and a heat pump in System-III. Among the TESs, the hot and cold wells of the aquifer TES have maximum exergetic efficiency values of 88.782% and 69.607% at 8 °C dead state temperature, respectively. According to the energy efficiency aspects of TESs, the discharging processes of the latent TES and the hot well of the aquifer TES possess the minimum and maximum values of 5.782% and 94.118% at 8 °C dead state temperature, respectively. Also, the fan used with the latent TES is the most environmentally-benign system component among the devices. Furthermore, the most sustainable TES is found for the aquifer TES while the worst sustainable system is the latent TES.

  5. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    Science.gov (United States)

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-03

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  6. Performance assessment of earth pipe cooling system for low energy buildings in a subtropical climate

    International Nuclear Information System (INIS)

    Ahmed, S.F.; Khan, M.M.K.; Amanullah, M.T.O.; Rasul, M.G.; Hassan, N.M.S.

    2015-01-01

    Highlights: • Earth pipe cooling performance was investigated in a subtropical climate in Australia. • A thermal model was developed using Fluent to assess the cooling performance. • A temperature reduction of around 2 °C was found for the earth pipe cooling system. • Annual energy savings of maximum 866.54 kW (8.82%) was achieved for a 27.23 m"3 room. - Abstract: Energy consumption in heating and cooling around the world has been a major contributor to global warming. Hence, many studies have been aimed at finding new techniques to save and control energy through energy efficient measures. Most of this energy is used in residential, agricultural and commercial buildings. It is therefore important to adopt energy efficiency measures in these buildings through new technologies and novel building designs. These new building designs can be developed by employing various passive cooling systems. Earth pipe cooling is one of these which can assist to save energy without using any customary mechanical units. This paper investigates the earth pipe cooling performance in a hot humid subtropical climate of Rockhampton, Australia. A thermal model is developed using ANSYS Fluent for measuring its performance. Impacts of air velocity, air temperature, relative humidity and soil temperature on room cooling performance are also assessed. A temperature reduction of around 2 °C was found for the system. This temperature reduction contributed to an energy saving of a maximum of 866.54 kW (8.82%) per year for a 27.23 m"3 room.

  7. Building Energy Management Systems BEMS, German contribution to the IEA research projects Annex 16 and 17. Building Energy Management System BEMS; deutscher Beitrag zu den IEA-Forschungsvorhaben Annex 16 und 17

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H.; Stephan, W.; Madjidi, M. (Univ. Stuttgart, IKE, Abt. HLK (Germany)); Brendel, T.; Schneider, A. (Ingenieurbuero Dr. Brendel, Frankfurt am Main (Germany)); Ast, H.; Kellner, H. (IFB, Dr. R. Braschel GmbH, Stuttgart (Germany))

    1991-01-01

    As part of the IEA project Annex 16 and 17 Germany carries out the project Building Energy Management Systems (BEMS). With digital control systems energetic and low-cost operation of space hvac systems can be attained. The project aims at abolishing impediments to efficient use of energy. Potential savings are shown for three examples: A conventional heating system for an office building, a VAV system (circulating air, heating, cooling, washer humidifcation) for an office building and VAV systems (FWRG, heating, cooling, steam humidification) for an office building in compact design. (BWI).

  8. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  9. Research and application of active hollow core slabs in building systems for utilizing low energy sources

    International Nuclear Information System (INIS)

    Xu, Xinhua; Yu, Jinghua; Wang, Shengwei; Wang, Jinbo

    2014-01-01

    Highlights: • A review on the development and modeling of active hollow core slab is presented. • The applications and performance evaluation of the slab in building are reviewed. • Finite element or finite difference method is often used in multidimensional model. • Performance evaluations of building using active slabs for ventilation are limited. • More works on the active hollow core slab are worthwhile. - Abstract: The society and the building professionals have paid much concern in recent years on building energy efficiency and the development and applications of low energy technologies for buildings/green buildings allowing the elimination, or at least reduction of dependence on electricity or fossil fuel while maintaining acceptable indoor environment. Utilizations of favorable diurnal temperature difference and ground thermal source for air conditioning are among these low energy technologies. Utilization of the hollow cores in the prefabricated slab for ventilation and the mass of the slab for thermal storage is widely used in building systems in Europe by exploiting the low energy source of the ambient air. These hollow core slabs aim at enlarging the heat transfer surface between the slab mass and the air in the core, which permits substantial heat flows even for relatively small temperature differences. This, in turn, allows the use of low energy cooling or heating sources, such as the ground, outside air or recovered process heat. In this paper, we present a comprehensive review of the research and application of active hollow core slabs in building systems for utilizing low energy sources. The principle and development of active hollow core slabs in building systems for leveling the indoor temperature fluctuation by ventilation air passing the cores are described. Calculation models of the active hollow core concrete slab as well as the practical applications and performance evaluation of the slab applied in building systems for air

  10. Dynamic classification system in large-scale supervision of energy efficiency in buildings

    International Nuclear Information System (INIS)

    Kiluk, S.

    2014-01-01

    Highlights: • Rough set approximation of classification improves energy efficiency prediction. • Dynamic features of diagnostic classification allow for its precise prediction. • Indiscernibility in large population enhances identification of process features. • Diagnostic information can be refined by dynamic references to local neighbourhood. • We introduce data exploration validation based on system dynamics and uncertainty. - Abstract: Data mining and knowledge discovery applied to the billing data provide the diagnostic instruments for the evaluation of energy use in buildings connected to a district heating network. To ensure the validity of an algorithm-based classification system, the dynamic properties of a sequence of partitions for consecutive detected events were investigated. The information regarding the dynamic properties of the classification system refers to the similarities between the supervised objects and migrations that originate from the changes in the building energy use and loss similarity to their neighbourhood and thus represents the refinement of knowledge. In this study, we demonstrate that algorithm-based diagnostic knowledge has dynamic properties that can be exploited with a rough set predictor to evaluate whether the implementation of classification for supervision of energy use aligns with the dynamics of changes of district heating-supplied building properties. Moreover, we demonstrate the refinement of the current knowledge with the previous findings and we present the creation of predictive diagnostic systems based on knowledge dynamics with a satisfactory level of classification errors, even for non-stationary data

  11. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  12. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    International Nuclear Information System (INIS)

    Dai Xuezhi; Wu Yong; Di Yanqiang; Li Qiaoyan

    2009-01-01

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  13. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai Xuezhi [China Academy of Building Research, Beijing 100013 (China)], E-mail: daixz9999@126.com; Wu Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Di Yanqiang [China Academy of Building Research, Beijing 100013 (China); Li Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  14. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xuezhi; Di, Yanqiang [China Academy of Building Research, Beijing 100013 (China); Wu, Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Li, Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system. (author)

  15. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    Science.gov (United States)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  16. Municipal Building Energy Usage

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set contains energy use data from 2009-2014 for 139 municipally operated buildings. Metrics include: Site & Source EUI, annual electricity, natural...

  17. Energy simulation in building design

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1992-01-01

    Design decision support related to building energy consumption and / or indoor climate, should be based on an integral approach of environment, building, heating, ventilating and airconditioning (HVAC) system and occupants. The tools to achieve this are now available in the form of computer

  18. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Fei Fei

    2014-05-01

    Full Text Available Wireless sensor networks (WSNs have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that converts the mechanical energy from the airflow in ventilation ducts into electrical energy. The system uses a flutter energy conversion device (FECD capable of working at low airflow speeds while installed on the ventilation ducts inside of buildings. A power management strategy implemented with a circuit system ensures sufficient power for driving commercial electronic devices. For instance, the power management circuit is capable of charging a 1 F super capacitor to 2 V under ventilation duct airflow speeds of less than 3 m/s.

  19. Reduced order modeling and parameter identification of a building energy system model through an optimization routine

    International Nuclear Information System (INIS)

    Harish, V.S.K.V.; Kumar, Arun

    2016-01-01

    Highlights: • A BES model based on 1st principles is developed and solved numerically. • Parameters of lumped capacitance model are fitted using the proposed optimization routine. • Validations are showed for different types of building construction elements. • Step response excitations for outdoor air temperature and relative humidity are analyzed. - Abstract: Different control techniques together with intelligent building technology (Building Automation Systems) are used to improve energy efficiency of buildings. In almost all control projects, it is crucial to have building energy models with high computational efficiency in order to design and tune the controllers and simulate their performance. In this paper, a set of partial differential equations are formulated accounting for energy flow within the building space. These equations are then solved as conventional finite difference equations using Crank–Nicholson scheme. Such a model of a higher order is regarded as a benchmark model. An optimization algorithm has been developed, depicted through a flowchart, which minimizes the sum squared error between the step responses of the numerical and the optimal model. Optimal model of the construction element is nothing but a RC-network model with the values of Rs and Cs estimated using the non-linear time invariant constrained optimization routine. The model is validated with comparing the step responses with other two RC-network models whose parameter values are selected based on a certain criteria. Validations are showed for different types of building construction elements viz., low, medium and heavy thermal capacity elements. Simulation results show that the optimal model closely follow the step responses of the numerical model as compared to the responses of other two models.

  20. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  1. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  2. Linking mortgage finance incentives to a voluntary home energy rating system: Insight into consensus building

    International Nuclear Information System (INIS)

    Jenior, M.-M.

    1994-01-01

    A collaborative consensus process was created to implement a program linking voluntary home energy rating systems (HERS) to mortgage incentives. The participants involved many of the stakeholders or interest groups who have a role in implementing and who will be affected by energy efficiency mortgate incentive programs linked to HERS. The participants included representatives from the primary and secondary mortgage market; real estate, home building, and remodeling industries; utilities; state, local, consumer, and environmental organizations; and home energy rating providers. The participants defined the actions required to implement as well as the technical requirements of a program linking home energy ratings and mortgage finance. Building on the recommendations of the collaborative process, members of the collaborative continue to take initiatives to put a Home Energy Rating Systems Council into place, in planning pilot programs for developing and testing ways to link HERS and mortgage programs, and in making home buyers and owners aware of existing mortgage incentives. At the same time, mortgage providers are working to develop uniformity among mortgage incentive programs and with the US Department of Energy to develop procedures to verify the relative accuracy of HERS calculation tools and their application, and with the emerging HERS Council to develop the guidelines for voluntary HERS required under the Energy Policy Act of 1992

  3. Development of an exergy-electrical analogy for visualizing and modeling building integrated energy systems

    International Nuclear Information System (INIS)

    Saloux, E.; Teyssedou, A.; Sorin, M.

    2015-01-01

    Highlights: • The exergy-electrical analogy is developed for energy systems used in buildings. • This analogy has been developed for a complete set of system arrangement options. • Different possibilities of inter-connections are illustrated using analog switches. • Adaptability and utility of the diagram over traditional ones are emphasized. - Abstract: An exergy-electrical analogy, similar to the heat transfer electrical one, is developed and applied to the case of integrated energy systems operating in buildings. Its construction is presented for the case of space heating with electric heaters, heat pumps and solar collectors. The proposed analogy has been applied to a set of system arrangement options proposed for satisfying the building heating demand (space heating, domestic hot water); different alternatives to connect the units have been presented with switches in a visualization scheme. The analogy for such situation has been performed and the study of a solar assisted heat pump using ice storage has been investigated. This diagram directly permits energy paths and their associated exergy destruction to be visualized; hence, sources of irreversibility are identifiable. It can be helpful for the comprehension of the global process and its operation as well as for identifying exergy losses. The method used to construct the diagram makes it easily adaptable to others units or structures or to others models depending on the complexity of the process. The use of switches could be very useful for optimization purposes

  4. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  5. Tropical Zero Energy Office Building

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during...... of 24 – 26 oC can be maintained throughout the office hours. The PV roof of the building serves multiple purposes. During daytime, the roof becomes the powerplant of the building, and during nighttime, the PV roof becomes the “cooling tower” for the chiller. The roof will be covered by a thin water film...

  6. Energy Payback Time Calculation for a Building Integrated Semitransparent Thermal (BISPVT) System with Air Duct

    OpenAIRE

    Kanchan Mudgil; Deepali Kamthania

    2013-01-01

    This paper evaluates the energy payback time (EPBT) of building integrated photovoltaic thermal (BISPVT) system for Srinagar, India. Three different photovoltaic (PV) modules namely mono crystalline silicon (m-Si), poly crystalline silicon (p-Si), and amorphous silicon (a-Si) have been considered for calculation of EPBT. It is found that, the EPBT is lowest in m-Si. Hence, integration of m-Si PV modules on the roof of a room is economical.

  7. Development and Analysis of New Integrated Energy Systems for Sustainable Buildings

    Science.gov (United States)

    Khalid, Farrukh

    Excessive consumption of fossil fuels in the residential sector and their associated negative environmental impacts bring a significant challenge to engineers within research and industrial communities throughout the world to develop more environmentally benign methods of meeting energy needs of residential sector in particular. This thesis addresses potential solutions for the issue of fossils fuel consumption in residential buildings. Three novel renewable energy based multigeneration systems are proposed for different types of residential buildings, and a comprehensive assessment of energetic and exergetic performances is given on the basis of total occupancy, energy load, and climate conditions. System 1 is a multigeneration system based on two renewable energy sources. It uses biomass and solar resources. The outputs of System 1 are electricity, space heating, cooling, and hot water. The energy and exergy efficiencies of System 1 are 91.0% and 34.9%, respectively. The results of the optimisation analysis show that the net present cost of System 1 is 2,700,496 and that the levelised cost of electricity is 0.117/kWh. System 2 is a multigeneration system, integrating three renewable energy based subsystems; wind turbine, concentrated solar collector, and Organic Rankine Cycle supplied by a ground source heat exchanger. The outputs of the System 2 are electricity, hot water, heating and cooling. The optimisation analysis shows that net present cost is 35,502 and levelised cost of electricity is 0.186/kWh. The energy and exergy efficiencies of System 2 are found to be 34.6% and 16.2%, respectively. System 3 is a multigeneration system, comprising two renewable energy subsystems-- geothermal and solar to supply power, cooling, heating, and hot water. The optimisation analysis shows that the net present cost of System 3 is 598,474, and levelised cost of electricity of 0.111/kWh. The energy and exergy efficiencies of System 3 are 20.2% and 19.2%, respectively, with

  8. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    Science.gov (United States)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  9. Energy Conservation in an Office Building Using an Enhanced Blind System Control

    Directory of Open Access Journals (Sweden)

    Edorta Carrascal-Lekunberri

    2017-02-01

    Full Text Available The two spaces office module is usually considered as a representative case-study to analyse the energetic improvement in office buildings. In this kind of buildings, the use of a model predictive control (MPC scheme for the climate system control provides energy savings over 15% in comparison to classic control policies. This paper focuses on the influence of solar radiation on the climate control of the office module under Belgian weather conditions. Considering MPC as main climate control, it proposes a novel distributed enhanced control for the blind system (BS that takes into account part of the predictive information of the MPC. In addition to the savings that are usually achieved by MPC, it adds a potential 15% improvement in global energy use with respect to the usually proposed BS hysteresis control. Moreover, from the simulation results it can be concluded that the thermal comfort is also improved. The proposed BS scheme increases the energy use ratio between the thermally activated building system (TABS and air-handling unit (AHU; therefore increasing the use of TABS and allowing economic savings, due to the use of more cost-effective thermal equipment.

  10. Energy analysis of under-floor air distribution (UFAD) system: An office building case study

    International Nuclear Information System (INIS)

    Alajmi, Ali F.; Abou-Ziyan, Hosny Z.; El-Amer, Wid

    2013-01-01

    Highlights: • The key issue for efficient performance of UFAD system is to ensure the thermal stratification establishment. • The unnecessarily excess air supplied to the room deteriorates the thermal stratification. • Improper UFAD operation increases the fan power and HVAC electric demand. • The proper UFAD system is typically more efficient than the existed UFAD system with energy savings of about 23–37%. • UFAD system shows over the CBAD system saving by about 37–39% during the peak months and 51% during October. - Abstract: This paper presents the results of an experimental and theoretical investigation to evaluate an under-floor air distribution (UFAD) system existed in an office building working on hot climate. Air temperature a distribution and supply air velocity are measured in two measuring stations; each consists of eight temperature sensors which were installed to measure room air temperatures along zone height. The obtained data shows an inefficient operation of the UFAD system which deteriorates the advantages of energy saving that presumed by UFAD system. The building energy simulation program, EnergyPlus, was used to identify the best setting of UFAD system and compare it with the existed UFAD and the conventional ceiling based air distribution (CBAD) system. The simulation results show that setting of room thermostat at 26 °C and supply air temperature at 18 °C provides the best efficient UFAD system. Due to improper operation of the tested UFAD system, its actual consumption is found to be higher than the best simulated UFAD by 23–37% during July to October. Also, the simulation results show that the HVAC demand of UFAD is lower than CBAD by 37–39% during July–September and 51% in October

  11. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  12. Impact of the circulation system on the energy balance of the building

    Directory of Open Access Journals (Sweden)

    Polarczyk Iwona

    2017-01-01

    Full Text Available The efficiency of the hot water system is one of the factors necessary to determine the overall efficiency of the building. From the calculative point of view, it is easy to make. The article presents how working of the circulation system has an influence on the efficiency of domestic hot water system. The differences in the results was presented and based on calculations of various methods, the measurements results was also taken into account. The attention was especially paid to the possibility of using ultrasonic flowmeter for measuring the flow and energy.

  13. A Multi-Agent Based Energy Management Solution for Integrated Buildings and Microgrid System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Rahimi-Kian, Ashkan; Mirian, Maryam S.

    2017-01-01

    -reflex to complex learning agents are designed and implemented to cooperate with each other to reach an optimal operating strategy for the mentioned integrated energy system (IES) while meeting the system’s objectives and related constraints. The optimization process for the EMS is defined as a coordinated......In this paper, an ontology-driven multi-agent based energy management system (EMS) is proposed for monitoring and optimal control of an integrated homes/buildings and microgrid system with various renewable energy resources (RESs) and controllable loads. Different agents ranging from simple...... distributed generation (DG) and demand response (DR) management problem within the studied environment and is solved by the proposed agent-based approach utilizing cooperation and communication among decision agents. To verify the effectiveness and applicability of the proposed multi-agent based EMS, several...

  14. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  15. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhen

    2018-01-01

    Full Text Available In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  16. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  17. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  18. ENERGY STAR and Green Buildings--Using ENERGY STAR Resources for Green Building Rating Systems: LEED[R], Green Globes[R] and CHPS

    Science.gov (United States)

    Utebay, Kudret

    2011-01-01

    Every building, from the smallest school to the tallest skyscraper, uses energy. This energy is most often generated by burning fossil fuels, which releases greenhouse gases into the atmosphere and contributes to climate change. Existing commercial buildings offer a significant opportunity for low-cost, immediate emissions and energy cost…

  19. Energy efficiency of lighting systems in residential buildings; Energieeffizienzsteigerung der Beleuchtungstechnik in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, Andreas [Technische Univ. Dresden (Germany). Elektrotechnisches Inst.; Wittig, Michael; Schlosser, Roman; Wuerfel, Matthias [Westsaechsische Hochschule Zwickau (Germany). Fakultaet Elektrotechnik

    2011-07-01

    Due to political demands such as the law of an eco-friendly-design of Energy Using Products (EBPG), the production and thus the long-term use of conventional light bulbs is no longer possible within the European Union. Energy saving light bulbs are preferred as replacement for those bulbs. However, these lighting systems have unfavourable properties for certain areas of applications, such as low luminance during the heating phase or a low lifetime if used under strongly fluctuating stress. Therefore, using conventional light bulbs in stairwells, their properties are of great disadvantage. The paper examines possible applications for LED lighting systems (Light Emitting Diode), meeting the standards. Investigations of possible on-demand switching or dimming of LED lighting have been executed with the help of presence or movement sensors and by using smart grids such as the KNX-compliant components. Furthermore, technical requirements, economic viability and energetic advantages and disadvantages of separate DC power networks for the operating of the LED lights have been tested. Since energy storage increased in rental buildings, the storage system DC supply can be used for DC power of such consumers. In this way, the AC and the rectifier losses can be avoided and thus the energy efficiency of lighting can be increased in rental buildings. To implement the project a model of a staircase has been created by using the simulation software DIALux. Furthermore the given lighting conditions have been measured in the stairwell. Thus, the staircase model yields comparative results. (orig.)

  20. Electrical Supply System for the Experimental Zero-Energy Building (of 300 m2 Based on Renewable and Alternative Energy Sources

    Directory of Open Access Journals (Sweden)

    Basok, B.I.

    2015-11-01

    Full Text Available The results of the development and implementation of the power supply system of the experimental zero-energy building based on renewable and alternative energy sources are presented. CDF-model to determine the optimal conditions for the deployment of wind energy installations within the building limits is developed.

  1. A Behavioral Model of Managerial Perspectives Regarding Technology Acceptance in Building Energy Management Systems

    Directory of Open Access Journals (Sweden)

    Jacky Chin

    2016-07-01

    Full Text Available The Building Energy Management System (BEMS, a well-known system that has been implemented in some energy corporations, has become attractive to many companies seeking to better monitor their energy consumption efficiency. This study investigated the external factors that influence acceptance of the BEMS from managerial perspectives. An extended model based on the Technology Acceptance Model (TAM was created to evaluate the implementation of the BEMS in the manufacturing industries. A structural equation modeling (SEM approach was used to analyze the model by adopting compatibility, features, technology complexity, and perceived risk as the external variables, and integrating the five dimensions of perceived ease of use, perceived usefulness, attitude, user satisfaction, and behavioral intention. The analysis results indicated that the external factors positively influenced users’ behavioral intention to use the BEMS through expected satisfaction, perceived ease of use, and perceived usefulness. Suggestions for BEMS developers are provided as well.

  2. Residential building stocks and flows as dynamic systems: Chilean dwelling stock and energy modeling, including earthquakes.

    OpenAIRE

    Gallardo, Carla

    2012-01-01

    The building sector comprises a very important part of each country s economy, playing an important role in the consumption of resources and energy. In practice there is little knowledge on how the building stock develops. It is useful then to understand the dynamics and the metabolism of the built environment. Research on building stocks, predominantly on the residential sector, has been performed mainly for developed countries. There is little or none research on building stock for developi...

  3. Parametric Analysis of Energy Consumption in Army Buildings by the Building Loads Analysis and System Thermodynamics (BLAST) Computer Program.

    Science.gov (United States)

    1980-08-01

    orientation, and HVAC systems have on three Army buildings in five different climatic regions. f Optimization of EnerV Usage in Military Facilities...The clinic’s environment is maintained by a multizone air-handling unit served by its own boiler and chiller . The building was modeled with 30... setpoints for the space temperature. This type of throttling range allows the heating system to control around a throttling range of 67 to 69oF (19 to 200

  4. Edificio project: A neuro-fuzzy approach to building energy management systems

    NARCIS (Netherlands)

    Galata, A.; Bakker, L.G.; Morel, N.; Michel, J.B.; Karki, S.; Joergl, H.P.; Franceschini, A.; Martinez, A.

    1998-01-01

    It is well known that building installations for indoor climate control, consume a substantial part of the total energy consumption and that at present these installations use much more energy than required due to inadequate settings and poor control and management strategies. European building

  5. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Chusak, Lee; Daiber, Jared; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2012-07-01

    Using Computational Fluid Dynamics (CFD), four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a) an all-air overhead system, (b) a combined all-air overhead and hydronic radiant system (chilled ceiling), (c) an all-air raised floor system (displacement ventilation), and (d) a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period) and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room). Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  6. Mobilisation of the potential for the renewal of energy systems in existing buildings; Mobilisierung der energetischen Erneuerungspotenziale im Wohnbaubestand

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Baur, M.; Kaufmann, Y. [econcept AG, Zuerich (Switzerland); Jakob, M.; Ott, A. [Centre for Energy Policy and Economics (CEPE), ETH Zuerich, Zuerich (Switzerland)

    2005-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) summarises the findings of an energy-policy project that looked into the potential for the renewal of energy systems in existing buildings. The report presents an analysis of the situation as far as buildings, their ownership and the development of renovation work is concerned. Also, the results of a survey made under the owners of buildings and managers of real estate with respect to building renovation aspects are presented and discussed. Further, an analysis of problems arising from deficits in the renewal of energy-relevant components is provided and background and motivation for the renewal of buildings are looked at. Also, economic aspects and sustainability issues are considered. A further chapter covers strategies and measures that can be used to mobilise the renewal potential, including legislature and labelling systems.

  7. Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management

    Directory of Open Access Journals (Sweden)

    Giovani Almeida Dávi

    2017-08-01

    Full Text Available On-site photovoltaic (PV and battery systems intend to improve buildings energy performance, however battery costs and monetary incentives are a major drawback for the introduction of these technologies into the electricity grids. This paper proposes an energy refurbishment of an office building based on multi-objective simulations. An innovative demand-side management approach is analyzed through the PV and battery control with the purpose of reducing grid power peaks and grid imported energy, as well as improving the project economy. Optimization results of load matching and grid interaction parameters, complemented with an economic analysis, are investigated in different scenarios. By means of battery use, the equivalent use of the grid connection is reduced by 12%, enhancing the grid interaction potential, and 10% of load matching rates can be increased. Project improvements indicate the grid connection capacity can be reduced by 13% and significant savings of up to 48% are achieved on yearly bills. The economy demonstrates the grid parity is only achieved for battery costs below 100 €/kWh and the payback period is large: 28 years. In the case with only PV system, the grid parity achieves better outcomes and the payback time is reduced by a half, making this a more attractive option.

  8. Singapore's Zero-Energy Building's daylight monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Grobe, Lars; Wittkopf, Stephen; Pandey, Anupama Rana; Xiaoming, Yang; Seng, Ang Kian; Scartezzini, Jean-Louis; Selkowitz, Stephen

    2010-02-28

    A setup to monitor the daylighting performance of different glazing types in Singapore is presented. The glazing is installed in the facade of four dedicated testing chambers in BCAA's Zero Energy Building in Singapore. These test rooms are equipped with sensors that both record illuminances on the work plane, and luminances as seen by occupants. The physical and logical design of the monitoring system is presented. Criteria to assess the daylighting performance are introduced, and initial results of the work in progress are presented.

  9. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  10. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  11. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  12. Alternative Natural Energy Sources in Building Design.

    Science.gov (United States)

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  13. Government management and implementation of national real-time energy monitoring system for China large-scale public building

    International Nuclear Information System (INIS)

    Na Wei; Wu Yong; Song Yan; Dong Zhongcheng

    2009-01-01

    The supervision of energy efficiency in government office buildings and large-scale public buildings (GOBLPB) is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. It is significant for China government to achieve the target: reducing building energy consumption by 11 million ton standard coal before 2010. In the framework of a national demonstration project concerning the energy management system, Shenzhen Municipality has been selected for the implementation of the system. A data acquisition system and a methodology concerning the energy consumption of the GOBLPB have been developed. This paper summarizes the various features of the system incorporated into identifying the building consumes and energy saving potential. This paper also defines the methods to achieve the real-time monitoring and diagnosis: the meters installed at each building, the data transmitted through internet to a center server, the analysis and unification at the center server and the publication through web. Furthermore, this paper introduces the plans to implement the system and to extend countrywide. Finally, this paper presents some measurements to achieve a common benefit community in implementation of building energy efficiency supervisory system on GOBLPB in its construction, reconstruction or operation stages.

  14. University Leadership in Energy and Environmental Design: How Postsecondary Institutions Use the LEEDRTM Green Building Rating System

    Science.gov (United States)

    Chance, Shannon Massie

    2010-01-01

    This descriptive, exploratory study focused on how institutions of higher education have used the United States Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED[R]) Green Building Rating system. It employed statistical methods to assess which types of universities have used LEED, what ratings they earned, and…

  15. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    Directory of Open Access Journals (Sweden)

    Ortwein Andreas

    2016-01-01

    Full Text Available Against the background of greenhouse gases causing climate change, combined heat and power (CHP systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat, different technologies are available for the final power conversion step. This includes steam cycles with steam turbines or engines and different working fluids (water, organic fluids, but also combustion based systems like gas turbines or gas engines. Further promising technologies include fuel cells with high electric efficiency. When integrating such CHP systems in buildings, there are different strategies, especially concerning electric power generation. While some concepts are focusing on base load production, others are regulated either by thermal or by electric power demand. The paper will give a systematic overview on the combination of thermo-chemical conversion of biomass and combined heat and power production technologies. The mentioned building integration strategies will be discussed, leading to conclusions for further research and development in that field.

  16. Warming impact on energy use of HVAC system in buildings of different thermal qualities and in different climates

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Altorkmany, Lobna; Al-Khawaj, Mohammed; Hassani, Ferri

    2014-01-01

    Highlights: • Improving TQBE reduces heating load, while it might increase cooling load. • Warming impact on energy use of HVAC varies from one climate to another. • Warming impact on energy use of HVAC depends on building’s thermal quality. • In mild climate, warming does not have a significant impact on energy use of HVAC. - Abstract: In order to combat climate change, energy use in the building must be further reduced. Heating ventilation and air conditioning (HVAC) systems in residential buildings account for considerable fraction of global energy consumption. The potential contribution the domestic sector can make in reducing energy consumption is recognized worldwide. The driving energy of HVACs depends on the thermal quality of the building envelope (TQBE) and outside temperature. Definitely, building regulations are changing with the time toward reduce the thermal loads of buildings. However, most of the existing residential buildings were built to lower TQBE. For instant, 72% of residential dwellings in the 15-EU were built before 1972. To investigate the impact of warming on driving energy of HVACs of a residential building a computer model was developed. Three climate categories/cities were considered, i.e. Stockholm (cold), Istanbul (mild), and Doha (hot). In each city, two buildings were modeled: one was assumed to be built according to the current local buildings regulations (standard TQBE), while the anther was built to lower TQBE. The simulations were run for present and future (in 2050) outdoor designing conditions. The calculations show that the impact of the warming on annual driving energy of HVACs (reduction or increase) depends very much on the climate category and on the TQBE. Based on the climate and TQBE, the change in annual HVACs energy varies from −7.4% (in cold climate) to 12.7% (in hot climate). In mild climate, it was shown that the warming does not have significant impact on annual HVACs energy. Improving the TQBE can

  17. Systems and methods for energy cost optimization in a building system

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Robert D.; Wenzel, Michael J.

    2016-09-06

    Methods and systems to minimize energy cost in response to time-varying energy prices are presented for a variety of different pricing scenarios. A cascaded model predictive control system is disclosed comprising an inner controller and an outer controller. The inner controller controls power use using a derivative of a temperature setpoint and the outer controller controls temperature via a power setpoint or power deferral. An optimization procedure is used to minimize a cost function within a time horizon subject to temperature constraints, equality constraints, and demand charge constraints. Equality constraints are formulated using system model information and system state information whereas demand charge constraints are formulated using system state information and pricing information. A masking procedure is used to invalidate demand charge constraints for inactive pricing periods including peak, partial-peak, off-peak, critical-peak, and real-time.

  18. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  19. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document

  20. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...... of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments....

  1. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  2. Building Automation Systems Using Wireless Sensor Networks: Radio Characteristics and Energy Efficient Communication Protocols

    NARCIS (Netherlands)

    Shu, F.; Halgamuge, M.N.; Chen, W.

    2009-01-01

    Building automation systems (BAS) are typically used to monitor and control heating, ventilation, and air conditioning (HVAC) systems, manage building facilities (e.g., lighting, safety, and security), and automate meter reading. In recent years, the technology of wireless sensor network (WSN) has

  3. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  4. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  5. Defining net zero energy buildings

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available Worldwide increasing attention to energy consumption and associated environmental impacts thereof has resulted in a critical attitude towards energy usage of building. Increasing costs of energy and dependence on energy service providers add...

  6. Energy requirements for new buildings in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    Buildings account for circa 40% of the total energy use in Europe [1] and for about 36% of the EU's total CO{sub 2} emissions [2], including the existing energy conservation in buildings [3]. Key features of the Finnish energy policy are improved energy efficiency and increased use of renewable energy sources. To achieve a sustainable shift in the energy system, a target set by the authorities, both energy savings and increased use of low-pollution energy sources are therefore priority areas. Building low-energy buildings is in accordance with the declared national aim of reducing energy use and thus reducing CO{sub 2} emissions. The main motivation in renewing building codes for new buildings was to build more energy efficiently, encourage the use the most efficient energy sources and to enhance the use of renewable energy sources. In addition the aim was to give more freedom to fi nd the real optimal solutions for energy efficiency by optimising all aspects including the building architecture and different systems with demand controls. However, in order to ensure the good quality of buildings certain minimum requirements for structure U-values are given. (orig.)

  7. The impact of greening systems on building energy performance : A literature review

    NARCIS (Netherlands)

    Raji, B.; Tenpierik, M.J.; Van den Dobbelsteen, A.

    2015-01-01

    Scarcity of resources and environmental issues caused by human activities stimulate designers and policy makers to search for energy efficient strategies for sustainable development. A considerable amount of energy consumption and CO2 emission comes from the building sector which today accounts for

  8. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  9. UP-report. Buildings in the energy system. Basis of the Development platform. Build to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Byggnader i energisystemet. Underlag fraan Utvecklingsplattformen. Bygg till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation in the thematic area buildings in the energy system for the period 2011 - 2016. The report has been compiled by members of the development platform Build. This report provides background and the conditions of the area buildings in the energy system, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge which enabled the Swedish Energy Agency to then develop a strategy that meets the needs of the society and business.

  10. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    Science.gov (United States)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  11. Energy Performance of Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2007-01-01

    "Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development and are c......"Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development...... and are central to improving social and economic well- being, and human welfare and raising living standards. Even if energy is essential for development, it is only a means to an end. The end is good health, high living standards, a sustainable economy and a clean environment. The European Climate change...... programme (ECCP) was established in June 2000 to help identify the most environmentally cost-effective measures enabling the EU to meet its target under the Kyoto Protocol, namely an 8% reduction in greenhouse gas emissions from 1990 levels by 2012. Energy use in buildings accounts for almost half of all CO...

  12. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    OpenAIRE

    Fei Fei; Shengli Zhou; John D. Mai; Wen Jung Li

    2014-01-01

    Wireless sensor networks (WSNs) have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that...

  13. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    2005-01-01

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  14. Energy in buildings: Efficiency, renewables and storage

    Science.gov (United States)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  15. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    Science.gov (United States)

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  17. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  18. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  19. Energy Cloud: Services for Smart Buildings

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja

    2018-01-01

    , and network technologies. Using smart building energy management systems provides intelligent procedures to control buildings’ equipment such as HVAC (heating, ventilating, and air-conditioning) systems, home and office appliances, and lighting systems to reduce energy consumption while maintaining......Energy consumption in buildings is responsible for a significant portion of the total energy use and carbon emissions in large cities. One of the main approaches to reduce energy consumption and its environmental impact is to convert buildings into smart buildings using computer, software, sensor...... the required quality of living in all of the building’s spaces. This chapter discusses and reviews utilizing cloud computing to provide energy-related services to enhance the operations of smart buildings’ energy management systems. Cloud computing can provide many advantages for smart buildings’ energy...

  20. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  1. Combining a building simulation with energy systems analysis to assess the benefits of natural ventilation

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    a thermal air flow simulation program - Into the energy systems analysis model. Descriptions of the energy systems in two geographical locations, i.e. Mexico and Denmark, are set up as inputs. Then, the assessment is done by calculating the energy impacts as well as environmental benefits in the energy...

  2. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  3. Energy Innovations for Healthy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2016-09-23

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  4. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...... water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed...

  5. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...

  6. Impact of energy efficiency goals on systems of building regulations and control

    NARCIS (Netherlands)

    Visscher, H.J.; Meijer, F.M.

    2014-01-01

    Considerations of climate change, but also other political and economic reasons urge for the reduction of use of fossil fuels and the minimization of environmental impact by the built environment. The energy saving potential of the building stock is large and considered to be the most cost efficient

  7. Integrated Urban System and Energy Consumption Model: Public and Singular Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available The present paper illustrates the results of the first steps of a study on one aspect investigated as the preliminary step of the definition of the analysis - comprehension model of the relation between: city, buildings, and user behavior, for the reduction of energy consumption within the research project “Smart Energy Master” for the energetic governance of the territory (PON_MIUR n. pos. 04a2_00120 CUP Ricerca: E61H12000130005, at the Department of Civil, Building and Environmental Engineering - University of Naples Federico II, principal investigator prof. Carmela Gargiulo.Specifically the literary review aimed at determining if, and in what measure, the presence of public and singular buildings is present in the energy consumption estimate models,  proposed by the scientific community, for the city or neighborhood scale.The difficulties in defining the weight of these singular buildings on the total energy consumption and the impossibility to define mean values that are significant for all subsets and different types as well as for each one, have forced model makers to either ignore them completely or chose a portion of this specific stock to include.

  8. Comparing Whole Building Energy Implications of Sidelighting Systems with Alternate Manual Blind Control Algorithms

    Directory of Open Access Journals (Sweden)

    Christopher Dyke

    2015-05-01

    Full Text Available Currently, there is no manual blind control guideline used consistently throughout the energy modeling community. This paper identifies and compares five manual blind control algorithms with unique control patterns and reports blind occlusion, rate of change data, and annual building energy consumption. The blind control schemes detailed here represent five reasonable candidates for use in lighting and energy simulation based on difference driving factors. This study was performed on a medium-sized office building using EnergyPlus with the internal daylight harvesting engine. Results show that applying manual blind control algorithms affects the total annual consumption of the building by as much as 12.5% and 11.5% for interior and exterior blinds respectively, compared to the Always Retracted blinds algorithm. Peak demand was also compared showing blind algorithms affected zone load sizing by as much as 9.8%. The alternate algorithms were tested for their impact on American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE Guideline 14 calibration metrics and all models were found to differ from the original calibrated baseline by more than the recommended ±15% for coefficient of variance of the mean square error (CVRMSE and ±5% for normalized mean bias error (NMBE. The paper recommends that energy modelers use one or more manual blind control algorithms during design stages when making decisions about energy efficiency and other design alternatives.

  9. Building energy governance in Shanghai

    Science.gov (United States)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  10. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten

    2012-01-01

    An important challenge for energy systems today is reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. The efficient consumption of energy is a vital mater for a sustainable energy system. A significant part...... of energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating......, and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps but still have a majority in usage. As result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  12. A Solar Heating and Cooling System in a Nearly Zero-Energy Building: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Zhifeng Sun

    2017-01-01

    Full Text Available The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. Therefore, a nearly zero-energy building, incorporating a solar heating and cooling system, was designed and built in Beijing, China. The system included a 35.17 kW cooling (10-RT absorption chiller, an evacuated tube solar collector with an aperture area of 320.6 m2, two hot-water storage tanks (with capacities of 10 m3 and 30 m3, respectively, two cold-water storage tanks (both with a capacity of 10 m3, and a 281 kW cooling tower. Heat pump systems were used as a backup. At a value of 25.2%, the obtained solar fraction associated with the cooling load was close to the design target of 30%. In addition, the daily solar collector efficiency and the chiller coefficient of performance (COP varied from 0.327 to 0.507 and 0.49 to 0.70, respectively.

  13. Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Ngo, Ngoc-Tri

    2016-01-01

    Highlights: • This study develops a novel time-series sliding window forecast system. • The system integrates metaheuristics, machine learning and time-series models. • Site experiment of smart grid infrastructure is installed to retrieve real-time data. • The proposed system accurately predicts energy consumption in residential buildings. • The forecasting system can help users minimize their electricity usage. - Abstract: Smart grids are a promising solution to the rapidly growing power demand because they can considerably increase building energy efficiency. This study developed a novel time-series sliding window metaheuristic optimization-based machine learning system for predicting real-time building energy consumption data collected by a smart grid. The proposed system integrates a seasonal autoregressive integrated moving average (SARIMA) model and metaheuristic firefly algorithm-based least squares support vector regression (MetaFA-LSSVR) model. Specifically, the proposed system fits the SARIMA model to linear data components in the first stage, and the MetaFA-LSSVR model captures nonlinear data components in the second stage. Real-time data retrieved from an experimental smart grid installed in a building were used to evaluate the efficacy and effectiveness of the proposed system. A k-week sliding window approach is proposed for employing historical data as input for the novel time-series forecasting system. The prediction system yielded high and reliable accuracy rates in 1-day-ahead predictions of building energy consumption, with a total error rate of 1.181% and mean absolute error of 0.026 kW h. Notably, the system demonstrates an improved accuracy rate in the range of 36.8–113.2% relative to those of the linear forecasting model (i.e., SARIMA) and nonlinear forecasting models (i.e., LSSVR and MetaFA-LSSVR). Therefore, end users can further apply the forecasted information to enhance efficiency of energy usage in their buildings, especially

  14. Solar energy system installed at the North Georgia APDC office building

    Science.gov (United States)

    1979-01-01

    A hydronic, automatic drain-down solar heating and cooling system is described. The system provides solar heat exchange from a 2,001 square foot effective collector area and supplies 65-70 percent of the building's cooling demand, 90-95 percent of the heating demand, and domestic hot water. The acceptance test plan and results, system operation and maintenance, and predicted system performance are presented.

  15. Mining Association Rules Between Credits in the Leadership in Energy and Environmental Design for New Construction (LEED-NC) Green Building Assessment System

    National Research Council Canada - National Science Library

    Thomas, Benjamin J

    2008-01-01

    The Leadership in Energy and Environmental Design (LEED) Building Assessment System is a performance-based tool for determining the environmental impact of a facility from the whole-building perspective...

  16. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  17. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  18. Goodbye Passive House, Hello Energy Flexible Building?

    NARCIS (Netherlands)

    Mlecnik, E.; LaRoche, P.; Schiler, M.

    2016-01-01

    The volume uptake of highly energy-efficient buildings is challenged by transformations in the energy system and the introduction of demand response strategies. In the near future buildings will be able to manage their demand and generation according to local climate conditions, user needs and

  19. Energy conservation in industrial buildings. Higher energy efficiency with smart control systems; Energieeinsparung im Gewerbebau. Hoehere Energieeffizienz durch 'intelligente' Regeltechnik

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Edgar [CentraLine c/o Honeywell GmbH, Schoenaich (Germany)

    2009-07-01

    With smart control systems, the energy conservation potential of industrial buildings could be fully utilized. This means, e.g., that classic control algorithms must be replaced by new solutions. New methods will ensure higher energy efficiency with maximum comfort; they will also prolong the service life and the inspection intervals of the technical facilities. (orig.)

  20. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  1. Establishment of Passive Energy Conservation Measure and Economic Evaluation of Fenestration System in Nonresidential Building of Korea

    Directory of Open Access Journals (Sweden)

    Bo-Eun Choi

    2017-01-01

    Full Text Available ECO2 (building energy efficiency rating program and passive energy conservation measures (ECMs were established as a basic study for targeted methodologies and decision support systems development in Korea to meet national regulations. The primary energy consumption and economic evaluation of nonresidential buildings was performed. Passive ECMs were classified as planning and performance elements. The planning elements are the window-to-wall ratio (WWR and horizontal shading angle. The performance elements are the thermal transmittance (U-value of the walls, roof, and floor and the U-value and solar heat gain coefficient (SHGC of windows. This study focused on the window-to-wall ratio and the U-value and solar heat gain coefficient of windows. An economic efficiency database for the constructed alternatives was built; the target building was set and the Passive ECM List for the target building was derived. The energy consumption evaluation and economic evaluation were performed for each of the constructed alternatives, and a methodology for guiding energy efficiency decisions was proposed based on the performance evaluation results, and the optimal Passive ECM List for the target building was derived.

  2. Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system

    International Nuclear Information System (INIS)

    Capeluto, I. Guedi; Ochoa, Carlos E.

    2014-01-01

    Vast amounts of the European residential stock were built with limited consideration for energy efficiency, yet its refurbishment can help reach national energy reduction goals, decreasing environmental impact. Short-term retrofits with reduced interference to inhabitants can be achieved by upgrading facades with elements that enhance energy efficiency and user comfort. The European Union-funded Meefs Retrofitting (Multifunctional Energy Efficient Façade System) project aims to develop an adaptable mass-produced facade system for energy improvement in existing residential buildings throughout the continent. This article presents a simplified methodology to identify preferred strategies and combinations for the early design stages of such system. This was derived from studying weather characteristics of European regions and outlining climatic energy-saving strategies based on human thermal comfort. Strategies were matched with conceptual technologies like glazing, shading and insulation. The typical building stock was characterized from statistics of previous European projects. Six improvements and combinations were modelled using a simulation model, identifying and ranking preferred configurations. The methodology is summarized in a synoptic scheme identifying the energy rankings of each improvement and combination for the studied climates and façade orientations. - Highlights: • First results of EU project for new energy efficient façade retrofit system. • System consists of prefabricated elements with multiple options for flexibility. • Modular strategies were determined that adapt to different climates. • Technologies matching the strategies were identified. • Presents a method for use and application in different climates across Europe

  3. Energy conservation in rented buildings

    Energy Technology Data Exchange (ETDEWEB)

    Klingberg, T.; Broechner, J.; Forsman, J.; Gaunt, L.; Holgersson, M.

    1984-08-01

    The bulletin is an anthology of nine essays by different authors addressing the issue of energy conservation in buildings, where there exists a landlord/tenant relationship. After an overview of the rental market and the stock of rental buildings different types of rental contracts and energy charges are described.

  4. Solar energy in buildings solved by building information modeling

    Science.gov (United States)

    Chudikova, B.; Faltejsek, M.

    2018-03-01

    Building lead us to use renewable energy sources for all types of buildings. The use of solar energy is the alternatives that can be applied in a good ratio of space, price, and resultant benefits. Building Information Modelling is a modern and effective way of dealing with buildings with regard to all aspects of the life cycle. The basis is careful planning and simulation in the pre-investment phase, where it is possible to determine the effective result and influence the lifetime of the building and the cost of its operation. By simulating, analysing and insert a building model into its future environment where climate conditions and surrounding buildings play a role, it is possible to predict the usability of the solar energy and establish an ideal model. Solar systems also very affect the internal layout of buildings. Pre-investment phase analysis, with a view to future aspects, will ensure that the resulting building will be both low-energy and environmentally friendly.

  5. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carbary, Lawrence D. [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  6. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  7. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  8. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  9. BUILDING MECHATRONICS SIMULATION SYSTEM

    OpenAIRE

    HUSI Géza; SZÁSZ Csaba; HASHIMOTO Hideki; NIITSUMA Mihoko

    2014-01-01

    In international references a net zero-energy building (NZEB) is defined as a residential or commercial building with greatly reduced energy needs through efficiency gains such that the balance of energy needs can be supplied with renewable technologies. According to this general term definition, the essence of the concept is that by using low-cost and locally available nonpolluting sources, they generate energy onsite, in a quantity equal or greater than the total amo...

  10. Upgrade energy building standards and develop rating system for existing low-income housing

    International Nuclear Information System (INIS)

    Muller, D.; Norville, C.

    1993-07-01

    The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD's experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD's minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency open-quote in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock

  11. Upgrade energy building standards and develop rating system for existing low-income housing

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1993-07-01

    The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD`s experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD`s minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency{open_quote} in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock.

  12. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  13. Applying a novel extra-low temperature dedicated outdoor air system in office buildings for energy efficiency and thermal comfort

    International Nuclear Information System (INIS)

    Li, Han; Lee, W.L.; Jia, Jie

    2016-01-01

    Highlights: • A novel dedicated outdoor air system was proposed and investigated. • The proposed system adopts extra-low temperature outdoor air for space cooling. • The extra-low temperature air was generated by a multi-stage direct expansion coil. • Heat pipe was added to the proposed system to recover the waste cooling energy. • Energy and exergy analysis as well as thermal comfort analysis were conducted. - Abstract: A novel dedicated outdoor air system consisting of a multi-stage direct expansion coil and a zero-energy heat pipe to generate extra-low temperature outdoor air to avoid moisture-related problems was proposed in this study. The proposed system’s performance in achieving the desirable air conditions and better energy efficiency objectives is compared with a conventional direct expansion system for air-conditioning of a typical office building in Hong Kong based on simulation investigations. The simulations were carried out using equipment performance data of a pilot study, and realistic building and system characteristics. It was found that the proposed system, as compared to the conventional system, could reduce the annual indoor discomfort hours by 69.4%. An energy and exergy analysis was also conducted. It was revealed that the proposed system could reduce the annual air-conditioning energy use by 15.6% and the system exergy loss rate by 13.6%. The associated overall exergy efficiency was also found 18.6% higher. The findings of this study confirm that the proposed system is better than the conventional system in terms of both energy and exergy efficiency and the desirable air conditions.

  14. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system

    International Nuclear Information System (INIS)

    Lundström, Lukas; Wallin, Fredrik

    2016-01-01

    Highlights: • Energy savings impact on an low CO 2 emitting district heating system. • Heat profiles of eight building energy conservation measures. • Exhaust air heat pump, heat recovery ventilation, electricity savings etc. • Heat load weather normalisation with segmented multivariable linear regression. - Abstract: This study highlights the forthcoming problem with diminishing environmental benefits from heat demand reducing energy conservation measures (ECM) of buildings within district heating systems (DHS), as the supply side is becoming “greener” and more primary energy efficient. In this study heat demand profiles and annual electricity-to-heat factors of ECMs in buildings are computed and their impact on system efficiency and greenhouse gas emissions of a Swedish biomass fuelled and combined heat and power utilising DHS are assessed. A weather normalising method for the DHS heat load is developed, combining segmented multivariable linear regressions with typical meteorological year weather data to enable the DHS model and the buildings model to work under the same weather conditions. Improving the buildings’ envelope insulation level and thereby levelling out the DHS heat load curve reduces greenhouse gas emissions and improves primary energy efficiency. Reducing household electricity use proves to be highly beneficial, partly because it increases heat demand, allowing for more cogeneration of electricity. However the other ECMs considered may cause increased greenhouse gas emissions, mainly because of their adverse impact on the cogeneration of electricity. If biomass fuels are considered as residuals, and thus assigned low primary energy factors, primary energy efficiency decreases when implementing ECMs that lower heat demand.

  15. A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system

    International Nuclear Information System (INIS)

    Zhang, Yin; Wang, Xin; Zhang, Yinping; Zhuo, Siwen

    2016-01-01

    Introducing the thermal energy storage (TES) equipment into the building cooling heating and power (BCHP) system proves to be an effective way to improve the part load performance of the whole system and save the primary energy consumption. The location of TES in BCHP has a great impact on the thermal performance of the whole system. In this paper, a simplified model of TES-BCHP system composed of a gas turbine, an absorption chiller/an absorption heat pump, and TES equipment with phase change materials (PCM) is presented. In order to minimize the primary energy consumption, the performances of BCHP systems with different PCM-TES locations (upstream and downstream) are analyzed and compared, for a typical hotel and an office building respectively. Moreover, the influence of the thermal performance of PCM-TES equipment on the energy saving effect of the whole system is investigated. The results confirm that PCM-TES can improve the energy efficiency and reduce the installed capacities of energy supply equipment, and that the optimal TES location in BCHP highly depends on the thermal performance of the TES equipment and the user load characteristics. It also indicates that: 1) the primary energy saving ratio of PCM-TES-BCHP increases with increasing NTU of TES; 2) for the studied cases, downstream TES location becomes more preferable when user loads fluctuate greatly; 3) only downstream TES can reduce the installed capacities of absorption chiller/absorption heat pump. This work can provide guidance for PCM-TES-BCHP system design. - Highlights: • A simplified model of the PCM-TES-BCHP system is established. • TES can increase energy efficiency and decrease installed capacity of equipment. • Primary energy saving ratio increases with increasing NTU of TES. • Downstream TES location is more preferable when user loads fluctuate greatly. • Optimal TES location depends on equipment performances and load characteristics.

  16. Economic and Environmental Assessment of a 1 MW Grid Connected Rooftop Solar PV System for Energy Efficient Building in Bangladesh

    Science.gov (United States)

    Chakraborty, Sanjib; Hosain, Rubayet; Rahman, Toufiqur; Rabbi, Ahmead Fazle

    This paper evaluates the potentiality of a 1 MW grid connected rooftop solar PV system for an Energy Efficient Building in Bangladesh, which was estimated by utilizing NASA SSE solar radiation data, PVsyst simulation software and RETScreen simulation software. Economic and environmental viability for a ten-storied building with roof area of 6,500 m2 in the Capital City of Bangladesh, Dhaka was assessed by using the RETScreen simulation software. The yearly electricity production of the proposed system was 1,581 MWh estimated by PVsyst where the technical prospective of gird-connected solar PV in Bangladesh was calculated as about 50,174 MW. The economic assessments were determined the simple payback in such a way that the generated electricity first fulfills the demand of the building, and then the rest of the energy is supplied to the grid. The result indicates that the roof top solar PV system for an Energy efficient building in Dhaka city has a favorable condition for development both in economic and environmental point of view.

  17. Smart buildings: Energy efficient conditioning of building occupants

    NARCIS (Netherlands)

    Zeiler, W.; Houten, van M.A.; Boxem, G.; Vehler, R.; Verhoeven, M.; Fremouw, M.

    2009-01-01

    To further optimize energy performance of buildings, intelligent building control offers new possibilities. Intelligent Software Agents (ISA) can be implemented at different levels of building automation. Individual agents for individual climate control for each user of the building in combination

  18. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  19. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  20. ImBuild: Impact of building energy efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  1. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  2. Optimization Design Method and Experimental Validation of a Solar PVT Cogeneration System Based on Building Energy Demand

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-08-01

    Full Text Available Photovoltaic-thermal (PVT technology refers to the integration of a photovoltaic (PV and a conventional solar thermal collector, representing the deep exploitation and utilization of solar energy. In this paper, we evaluate the performance of a solar PVT cogeneration system based on specific building energy demand using theoretical modeling and experimental study. Through calculation and simulation, the dynamic heating load and electricity load is obtained as the basis of the system design. An analytical expression for the connection of PVT collector array is derived by using basic energy balance equations and thermal models. Based on analytical results, an optimized design method was carried out for the system. In addition, the fuzzy control method of frequency conversion circulating water pumps and pipeline switching by electromagnetic valves is introduced in this paper to maintain the system at an optimal working point. Meanwhile, an experimental setup is established, which includes 36 PVT collectors with every 6 PVT collectors connected in series. The thermal energy generation, thermal efficiency, power generation and photovoltaic efficiency have been given in this paper. The results demonstrate that the demonstration solar PVT cogeneration system can meet the building energy demand in the daytime in the heating season.

  3. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2014-01-01

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  4. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  5. A Process for the Implementation of New Renewable Energy Systems in a Building by Considering Environmental and Economic Effect

    Directory of Open Access Journals (Sweden)

    Chan-Joong Kim

    2015-09-01

    Full Text Available The excessive use of fossil fuels has led to global warming and air pollution. To solve these problems, interest in new renewable energy system (NRE system has increased in recent years. In particular, photovoltaic, solar thermal heating, fuel cell and ground source heating system are actively implemented for achieving the zero energy building. Since the initial investment cost of the NRE system is quite expensive, it is necessary to conduct a feasibility study from the life cycle perspective. Therefore, this study aimed to develop the process for the implementation of NRE system in a building for the optimal design. This study was conducted with four steps: (i establishing the basic information for the system installation; (ii selecting key factors affecting system performances; (iii making possible alternatives of the system installation; and (iv selecting optimal system by considering environmental and economic effect. The proposed process could enable the final decision-maker to easily and accurately determine the optimal design of the NRE systems from the economic and environmental efficiency in the early design phase. The process could also be applied to any other NRE system and could be extended to any other country in the global environment.

  6. A study on feasibility of super adobe technology –an energy efficient building system using natural resources in Bangladesh

    Science.gov (United States)

    Kamal, Razia; Saifur Rahman, Md.

    2018-04-01

    The inspiration and concept for the Superadobe system originates not from the modern architecture design experience, but from the influence of traditional rural buildings and landscape, together with a 13th century Persian poet named Jala Ad-Din Muhammad Balkhi, Rumi. The poetry sprit of Rumi, connects and enlightens the architectural theme of Nader Khalili with natural resources that anybody in the world should be able to build a home for his or her family with the simplest of elements: Earth, Water, Air and Fire. Therefore, to build a human shelter that will give maximum safety with low financial budget and minimum environmental impact with natural disaster resilient a Superadobe Technology has been adopted. The Superadobe, a form of earth bag construction using sandbag and barbed wire technology, is an economical, time efficient, energy efficient and ecologically friendly system developed by Iranian-born architect “Nader Khalili”. The system connects the natural materials and rural traditions to create a new way to use natural materials such as mud, water, air and fire which can be finished in a short time without any large construction equipment. The goal of this study is to introduce the building system, analyse the ventilation, lighting and insulation of the prototype of Superadobe system replacing the contextual earth house in Bangladesh.

  7. The role of the design and operation of individual heating systems for the energy retrofits of residential buildings

    International Nuclear Information System (INIS)

    Terés-Zubiaga, J.; Campos-Celador, A.; González-Pino, I.; Diarce, G.

    2016-01-01

    Highlights: • Thermal renovation of buildings is analysed by dynamic simulation. • Different envelope and individual heating options are considered. • Temperature set point plays the most important role in the energy consumption. • Condensing boilers increase 10% the energy savings compared to regular ones. • The rebound effect can cause significant differences on energy consumption. - Abstract: The feasibility of individual natural gas fired boiler-based heating systems in the retrofitting of buildings constructed in the 50–60 s in Bilbao (northern Spain) is evaluated in this paper. A holistic approach through dynamic simulations using TRNSYS is employed for the purpose. An existing dwelling previously monitored and used to validate the model applied is selected as a case study. 54 different scenarios are evaluated, which arise from the combination of 3 different envelope options, 2 types of heat production units, 3 heat production temperatures and 3 comfort temperature set-points. The cases are evaluated in terms of energy results, economic aspects, and the influence of user behaviour. Regarding the latter, the influence of the potential rebound effect is also evaluated. The results show energy savings nearby 10% when condensing boilers are compared with high efficiency boilers. In relation to hot water production temperature, energy savings between 5 and 10% are found when the temperature is lowered from 60 to 50 °C. The greatest impact on energy consumption is related to the occupants’ behaviour: reductions up to 89% are achieved if the indoor temperature set-point is lowered 2 °C. This is reinforced with the results related to the rebound effect, which show significant differences on energy consumption values. These evidences demonstrate that the user behaviour is an essential feature to be considered in studies regarding buildings energy performance. As a consequence, the holistic approach herein employed emerges as a key tool to be applied in

  8. Energy use in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  9. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  10. Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques

    International Nuclear Information System (INIS)

    Park, Hyo Seon; Lee, Minhyun; Kang, Hyuna; Hong, Taehoon; Jeong, Jaewook

    2016-01-01

    Highlights: • This study developed a new energy benchmark for office buildings. • Correlation analysis, decision tree, and analysis of variance were used. • The data from 1072 office buildings in South Korea were used. • As a result, six types of energy benchmarks for office buildings were developed. • The operational rating system can be improved by using the new energy benchmark. - Abstract: As improving energy efficiency in buildings has become a global issue today, many countries have adopted the operational rating system to evaluate the energy performance of a building based on the actual energy consumption. A rational and reasonable energy benchmark can be used in the operational rating system to evaluate the energy performance of a building accurately and effectively. This study aims to develop a new energy benchmark for improving the operational rating system of office buildings. Toward this end, this study used various data-mining techniques such as correlation analysis, decision tree (DT) analysis, and analysis of variance (ANOVA). Based on data from 1072 office buildings in South Korea, this study was conducted in three steps: (i) Step 1: establishment of the database; (ii) Step 2: development of the new energy benchmark; and (iii) Step 3: application of the new energy benchmark for improving the operational rating system. As a result, six types of energy benchmarks for office buildings were developed using DT analysis based on the gross floor area (GFA) and the building use ratio (BUR) of offices, and these new energy benchmarks were validated using ANOVA. To ensure the effectiveness of the new energy benchmark, it was applied to three operational rating systems for comparison: (i) the baseline system (the same energy benchmark is used for all office buildings); (ii) the conventional system (different energy benchmarks are used depending on the GFA, currently used in South Korea); and (iii) the proposed system (different energy benchmarks are

  11. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  12. Building sustainable energy systems: the role of nuclear-derived hydrogen

    International Nuclear Information System (INIS)

    Hans-Holger Rogner; Sanborn Scott, D.

    2001-01-01

    Global climate change is the most critical environmental threat of the 21. century. As evidenced in the preliminary draft of the Intergovernmental Panel on Climate Change (IPCC) new Third Assessment Report (TAR), the scientific support for this conclusion is both extensive and growing. In this paper we first review features of the 21. century energy system - how that system evolved and where it seems to be taking us, unless there are clear and aggressive multinational initiatives to mitigate and then reverse the contribution that today's energy system makes to the risks of global climate change. The paper then turns to the extensive deployment of the two non-carbon based energy currencies electricity and hydrogen, which we will call hydricity, that we believe are essential for future reductions in anthropogenic carbon dioxide (CO 2 ) emissions. Of these two, hydrogen will be the newcomer to energy systems. Popular thinking often identifies renewable as the category of energy sources that can provide electricity and hydrogen in sufficient quantities, although much of the public does not realize there will still be a need for a chemical currency to allow renewable to power the market where carbon is most difficult to mitigate, transportation. Renewable, however, while able to make important contributions to future energy supplies, cannot realistically provide the magnitude of energy that will be required. The paper outlines the quantitative limits to the overall renewable contribution and argues that the large-scale deployment of nuclear fission will be essential for meeting future energy needs while limiting greenhouse gas (GHG) emissions. (authors)

  13. Solar energy systems in modernized buildings; Solarenergienutzung bei der Sanierung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Voss, K. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Gruppe Solares Bauen

    1998-02-01

    The statistics of residential buildings in Germany is of extraordinary distinctness: About 70% of the houses are more than 25 years old and the construction rate is about 1% per annum. In most neighbouring European countries the situation is similar. Predictions show that almost 60% of the building stock of the year 2020 is already erected today. The conclusions: The present building stock is essential for the burden of the environment not only today but also tomorrow. Measures saving energy and protecting the climate must include the already existing houses. Solar concepts especially suited for the renovation of old housing should be more promoted. Technically mature products, architecturally and economically attractive and integrated concepts and convincing examples of practical applications are prerequisites for successful advances into this direction. (orig.) [Deutsch] Die statistische Analyse des Bestands an Wohngebaeuden in Deutschland spricht eine deutliche Sprache: Rund 70% der Gebaeude sind aelter als 25 Jahre; die Neubaurate liegt um 1% pro Jahr. In den meisten europaeischen Nachbarlaendern ist die Situation vergleichbar. Eine Hochrechnung auf das Jahr 2020 belegt, dass schon heute knapp 60% des dann vorliegenden Gebaeudebestands existieren. Fazit: Der Gebaeudebestand von heute bestimmt die Umweltbelastung von heute und morgen. Massnahmen zur Energieeinsparung und fuer einen wirkungsvollen Klimaschutz muessen vordringlich am Gebaeudebestand ansetzen. Unter dem Blickwinkel einer Verbreitung der Solartechnik ist offensichtlich, dass Solarkonzepten, die speziell an die Belange der Sanierung im Bestand angepasst sind, eine grosse Bedeutung zukommt. Voraussetzungen fuer einen erfolgreichen Weg in diesen Markt sind technisch ausgereifte Produkte, architektonisch und wirtschaftlich attraktive Gesamtkonzepte sowie ueberzeugende Beispiele aus der Praxis. (orig.)

  14. Zero energy buildings and mismatch compensation factors

    DEFF Research Database (Denmark)

    Lund, Henrik; Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    This paper takes an overall energy system approach to analysing the mismatch problem of zero energy and zero emission buildings (ZEBs). The mismatch arises from hourly differences in energy production and consumption at the building level and results in the need for exchange of electricity via...... the public grid even though the building has an annual net-exchange of zero. This paper argues that, when looked upon from the viewpoint of the overall electricity supply system, a mismatch can be both negative and positive. Moreover, there are often both an element of levelling out mismatches between...... of the energy production unit. Based on historical data for the electricity supply area in western Denmark, this paper makes a first attempt to quantify mismatch compensation factors. The results indicate that such compensation factors are a little below one for buildings with photovoltaics (PV) and a little...

  15. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  16. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  17. A Thermal Energy Recovery System and its Applications in Building (A Short Comunication

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-01-01

    Full Text Available In this paper a heat recovery system from oil heater as a water heater is proposed and analyzed. The potential of heat recovery is studied technically and economically. A model was built and experiments on it are discussed. Recovery of waste heat from the oil heater stack and its application in building is proven to be economically beneficial. The most part of this apparatus was a double-walled tanks and oil heater stack act as firebox for water heater. This tank with 200 liters volume was made of galvanized iron sheets and painted with black color for adsorption of solar radiation. The tank of water heater was filled with 12-15○C water. Sampling was performed at 8 in the morning to 8 at night during one week. The analysis results show that the heat recovery system is recognized as a well option for the examined residential building from both economic and environmental points of view. With the operation considering optimal economic benefits, cost is reduced by about 50%. With maximizing the environmental advantages, CO2 emissions are decreased.

  18. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    Lee, Siew Eang; Rajagopalan, Priyadarsini

    2008-01-01

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  19. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    OpenAIRE

    Ortwein Andreas

    2016-01-01

    Against the background of greenhouse gases causing climate change, combined heat and power (CHP) systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated) electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat), different techno...

  20. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  1. Domestic hot water use study, multi-family building energy monitoring and analysis for DHW system sizing criteria development

    International Nuclear Information System (INIS)

    Goldner, F.S.

    1993-01-01

    Thirty New York City multifamily building combined steam heating and domestic hot water (DHW) plants were instrumented for monitoring (mostly hourly) apartment, outdoor, boiler and DHW temperatures and burner on-off times. In nine of these buildings, which had been upgraded, additional data collected were: stack temperature, DHW flow in 15-minute increments, oil ampersand boiler make-up water flows, and DHW temperature before and after the mixing (tempering) valve and on the circulating return line. The project's objectives are to develop comprehensive operating data on combined DHW and heating systems to be used in system design and specifications and for improving operating procedures. DHW requirements in multi-family buildings are currently calculated on the basis of questionable standards. These new, more precise DHW flow data result in a better basis for sizing than existed heretofore. There is a critical need for improved specifications and performance in newly constructed and renovated buildings. Better system choices among various instantaneous generation and storage scenarios will result in savings derived from smaller initial equipment investments as well as more energy efficient operations. The data being generated define figures for DHW energy use so that more reliable and accurate predictions of savings can be calculated. This paper presents DHW demand patterns, seasonal variations, weekday vs. weekend consumption, consumption vs. occupancy levels, coincidence of 15- and 60-minute demand periods, and average vs. peak demand levels. This project is sponsored by New York State Energy Research and Development Authority (NYSERDA). The results of this research are being reviewed for inclusion in a revision of DHW guidelines for the next edition of the ASHRAE Handbook

  2. The building network energy statistics 2002[Norway]; Bygningsnettverkets energistatistikk 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The report surveys a Norwegian network within the construction business and the energy utilization particularly in various buildings. There are sections on the network structure, the energy use in 2002, the building aspects and various project types. The emphasis is on energy conservation aspects. Various technologies and energy systems as well as building types, are discussed. (tk)

  3. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    Science.gov (United States)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  4. 75 FR 20833 - Building Energy Codes

    Science.gov (United States)

    2010-04-21

    ...-0012] Building Energy Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the current model building energy codes or their equivalent. DOE is interested in better understanding... codes, Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings (or...

  5. Integrated Life Cycle Energy and Greenhouse Gas Analysis of Exterior Wall Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Reza Broun

    2014-11-01

    Full Text Available This paper investigates the breakdown of primary energy use and greenhouse gas (GHG emissions of two common types of exterior walls in the U.K.: insulated concrete form (ICF and cavity walls. A comprehensive assessment was conducted to evaluate the environmental performance of each exterior wall system over 50 years of service life in Edinburgh and Bristol. The results indicate that for both wall systems, use phase is the major contributor to the overall environmental impacts, mainly due to associated electricity consumption. For the ICF wall system in Edinburgh, 91% of GHG emissions were attributed to the use phase, with 7.8% in the pre-use and 1.2% in end-of-life phases. For the same system in Bristol, emissions were 89%, 9% and 2%, respectively. A similar trend was observed for cavity wall systems in both locations. It was concluded that in each scenario, the ICF wall system performed better when compared to the cavity wall system. The results of the sensitivity analysis clearly show that the uncertainties relevant to the change of the thickness of the wall are quite tolerable: variable up to 5%, as far as energy and greenhouse emissions are concerned.

  6. Analysis of energy efficiency retrofit schemes for heating, ventilating and air-conditioning systems in existing office buildings based on the modified bin method

    International Nuclear Information System (INIS)

    Wang, Zhaoxia; Ding, Yan; Geng, Geng; Zhu, Neng

    2014-01-01

    Highlights: • A modified bin method is adopted to propose and optimize the EER schemes. • A case study is presented to demonstrate the analysis procedures of EER schemes. • Pertinent EER schemes for HVAC systems are proposed for the object building. - Abstract: Poor thermal performance of building envelop and low efficiencies of heating, ventilating and air-conditioning (HVAC) systems can always be found in the existing office buildings with large energy consumption. This paper adopted a modified bin method to propose and optimize the energy efficiency retrofit (EER) schemes. An existing office building in Tianjin was selected as an example to demonstrate the procedures of formulating the design scheme. Pertinent retrofit schemes for HVAC system were proposed after the retrofit of building envelop. With comprehensive consideration of energy efficiency and economic benefits, the recommended scheme that could improve the overall energy efficiency by 71.20% was determined

  7. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  8. Simulated performance of the Thermo Active Building System (TABS) with respect to the provided thermal comfort and primary energy use

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.; Toftum, Jørn

    2009-01-01

    The central module of an office building conditioned by a Thermo Active Building System (TABS) coupled with constant volume ventilation was evaluated by means of dynamic computer simulations. Additionally, the same building model was simulated with a conventional all air VAV ventilation system fo...

  9. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  10. An economic perspective on the reliability of lighting systems in building with highly efficient energy: A case study

    International Nuclear Information System (INIS)

    Salata, F.; Lieto Vollaro, A. de; Ferraro, A.

    2014-01-01

    Highlights: • Proper design of efficient lighting systems. • The reliability and durability of the light sources. • Maintenance of lighting systems. • Quality standards of LED lamps. • Optimum economic choice of light sources. - Abstract: The performance of lighting system must be calculated in order to determine the energy requirements of the building. In the normative [EN 12464-1] are established lighting requirements which have effects on energy needs. The European standard [EN 15193] provides guidance on that evaluation. The easiest way to comply with reduction of energy requirements leads to the replacement of traditional lamps with LED ones, but if we calculate also the reliability parameters, the economic return is not guaranteed. Using bibliographic data, we have compared lighting’s results for a museum (LED lamps versus CFL and halogen lamps). The objective function of the study is to optimize the energy consumption of lighting systems, but at the same time to assess the reliability (MTTF of the lamps) of these systems. Without accurate information about this last parameters, the right choice of the lamps cannot be done successfully

  11. Usage of NASA's Near Real-Time Solar and Meteorological Data for Monitoring Building Energy Systems Using RETScreen International's Performance Analysis Module

    Science.gov (United States)

    Stackhouse, Paul W., Jr.; Charles, Robert W.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Ziegler, Urban; Leng, Gregory J.; Meloche, Nathalie; Bourque, Kevin

    2012-01-01

    This paper describes building energy system production and usage monitoring using examples from the new RETScreen Performance Analysis Module, called RETScreen Plus. The module uses daily meteorological (i.e., temperature, humidity, wind and solar, etc.) over a period of time to derive a building system function that is used to monitor building performance. The new module can also be used to target building systems with enhanced technologies. If daily ambient meteorological and solar information are not available, these are obtained over the internet from NASA's near-term data products that provide global meteorological and solar information within 3-6 days of real-time. The accuracy of the NASA data are shown to be excellent for this purpose enabling RETScreen Plus to easily detect changes in the system function and efficiency. This is shown by several examples, one of which is a new building at the NASA Langley Research Center that uses solar panels to provide electrical energy for building energy and excess energy for other uses. The system shows steady performance within the uncertainties of the input data. The other example involves assessing the reduction in energy usage by an apartment building in Sweden before and after an energy efficiency upgrade. In this case, savings up to 16% are shown.

  12. ON REASONABLE ESTIMATE OF ENERGY PERFORMANCE OF THE RESIDENTIAL BUILDINGS SUSTENANCE WITH CENTRALIZED HEAT-SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2016-01-01

    Full Text Available As consisted with Directive No 3 of President of the Republic of Belarus of June, 14th 2007 ‘Economy and Husbandry – the Major Factors of Economic Security of the Republic of Belarus’, saving fuel-and-energy resources over the republic in 2010–2015 should amount to 7,1–8,9 MIO tons of fuel equivalent including 1,00–1,25 MIO tons of fuel equivalent at the expense of heat-supply optimization and 0,25–0,40 MIO tons of fuel equivalent at the expense of increasing enclosing structures heat resistance of the buildings, facilities and housing stock. It means, where it is expected to obtain around 18 % of general thermal resources economy in the process of heat-supply optimization, then by means of enhancing the cladding structure heat resistance of the buildings and constructions of various applications – only about 3–5 % and even a bit less so of the housing stock. Till 1994, in residential sector of the Republic of Belarus, the annual heat consumption of the heating and ventilation averaged more than 130 kW×h/(m2×year (~56 %, of the hot-water supply – around 100 kW×h/(m2×year (~44 %. In residential houses, built from 1994 to 2009, heat consumption of the heating and ventilation is already 90 kW×h/(m2×year, of the hot-water supply – around 70 kW×h/(m2×year. In buildings of modern mainstream construction, they expend 60 kW×h/(m2×year (~46 % on heating and ventilation and 70 kW×h/(m2×year (~54 % on hot-water supply. In some modern residential buildings with the exhausted warm air secondary energy resource utilization, the heating and ventilation takes around 30–40 kW×h/(m2×year of heat. Raising energy performance of the residential buildings by means of reducing heat expenses on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy performance process are producing heat and transporting it over the main lines and outside distribution networks. In

  13. A review on control system algorithm for building automation systems

    CSIR Research Space (South Africa)

    Noubissie-Tientcheu, SI

    2016-09-01

    Full Text Available The building with its components such as Heating Ventilation Air Conditioning (HVAC) and lighting constitute a bigger part of energy consumption in Southern Africa. Control system in a building reduced the energy consumption, according to different...

  14. Management and monitoring of public buildings through ICT based systems: Control rules for energy saving with lighting and HVAC services

    OpenAIRE

    Aghemo, C.; Virgone, J.; Fracastoro, G.V.; Pellegrino, A.; Blaso, L.; Savoyat, J.; Johannes, Kevyn

    2013-01-01

    The presented work addresses the topic of energy savings in existing public buildings, when no significant retrofits on building envelope or plants can be done and savings can be achieved by designing intelligent ICT-based service to monitor and control environmental conditions, energy loads and plants operation. At the end of 2010 the European Commission, within the Seventh Framework Program, has founded a project entitled “Smart Energy Efficient Middleware for Public Spaces” (SEEMPubS). To ...

  15. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  16. Economical optimization of building elements for use in design of nearly zero energy buildings

    DEFF Research Database (Denmark)

    Hansen, Sanne

    2012-01-01

    Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on how to end up with the most economical optimal solution. Therefore this paper present a method...... for finding the economical optimal solutions based on the use of the cost of conserved energy for each main building envelope part and building service system and cost of produced energy for each energy producing system. By use of information on construction cost and developed models of the yearly energy use...

  17. Energy savings in Polish buildings

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  18. Energy Metrics for State Government Buildings

    Science.gov (United States)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  19. Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study

    International Nuclear Information System (INIS)

    Rastogi, Ankush; Choi, Jun-Ki; Hong, Taehoon; Lee, Minhyun

    2017-01-01

    Highlights: •Energy consumption change from applying different LEED versions were investigated. •Four analysis scenarios were compared using different versions of ASHRAE Standard. •A case study of a mid-rise multi-family building was conducted using energy simulation. •Residential buildings could benefit from LEED v4 due to the low prerequisite. •Renovation buildings are highly incentivized regardless of LEED version used. -- Abstract: Various versions of the Leadership in Energy and Environmental Design (LEED ® ) have been introduced with the addition of more stringent sustainability parameters and credit scoring schemes over the past decade. Such changes in LEED versions strongly affect the energy performance and LEED scores of the target building in the LEED certification process. Therefore, to validate and improve the current LEED version, it is crucial to investigate and compare the impact of different LEED versions on the building energy performance and scoring scheme. However, researches comparing the sustainability metrics for mid-rise multi-family buildings are rare. Therefore, this paper investigates the potential changes in the energy performance resulted from applying different LEED versions (i.e., LEED v3 and v4) for the Energy and Atmosphere (EA) category. Towards this end, a case study was carried out with energy modeling and simulation using TRACE 700 to compare the changes in the energy performance of four analysis scenarios applied to an existing mid-rise multi-family building located in Ohio. Results showed notable changes in LEED points when different versions of LEED using different ASHRAE Standards (i.e., ASHRAE Standards 90.1-2007 and 90.1-2010) are applied for the building energy analysis. In particular, mid-rise multi-family buildings could benefit from LEED v4 in terms of LEED credits as the prerequisite for the minimum energy performance improvement in EA category became significantly lenient compared to LEED v3. On the

  20. Building Automation Systems.

    Science.gov (United States)

    Honeywell, Inc., Minneapolis, Minn.

    A number of different automation systems for use in monitoring and controlling building equipment are described in this brochure. The system functions include--(1) collection of information, (2) processing and display of data at a central panel, and (3) taking corrective action by sounding alarms, making adjustments, or automatically starting and…

  1. Energy audit role in building planning

    Science.gov (United States)

    Sipahutar, Riman; Bizzy, Irwin

    2017-11-01

    An energy audit is one way to overcome the excessive use of energy in buildings. The increasing growth of population, economy, and industry will have an impact on energy demand and the formation of greenhouse gas emissions. Indonesian National Standard (SNI) concerning the building has not been implemented optimally due to the socialization process by a government not yet been conducted. An energy audit of buildings has been carried out at offices and public services. Most electrical energy in buildings used for air refresher equipment or air conditioning. Calculation of OTTV has demonstrated the importance of performing since the beginning of the planning of a building to get energy-efficient buildings.

  2. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  3. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  4. A New Method of Technical Analysis to Optimise the Design of Low Impact Energy Systems for Buildings

    Directory of Open Access Journals (Sweden)

    Roberto De Lieto Vollaro

    2013-10-01

    Full Text Available Energy consumption for civil constructions represents about 40% of total energy requirements, so it is necessary to achieve the goal of energy savings and the consequent reduction of greenhouse gases emissions. The study in content aims to provide a design methodology enables to identify the best plant configuration for buildings from a technical, economic and environmental point of view. To assess validity of the calculation model, an analysis of an historical building was carried out in combination with two softwares of proven reliability: TRNSYS, used to evaluate the thermal demand of users, and RETScreen, used to estimate the validity of the chosen energy model.

  5. End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors

    International Nuclear Information System (INIS)

    Wilkerson, Jordan T.; Cullenward, Danny; Davidian, Danielle; Weyant, John P.

    2013-01-01

    The National Energy Modeling System (NEMS) is arguably the most influential energy model in the United States. The U.S. Energy Information Administration uses NEMS to generate the federal government's annual long-term forecast of national energy consumption and to evaluate prospective federal energy policies. NEMS is considered such a standard tool that other models are calibrated to its forecasts, in both government and academic practice. As a result, NEMS has a significant influence over expert opinions of plausible energy futures. NEMS is a massively detailed model whose inner workings, despite its prominence, receive relatively scant critical attention. This paper analyzes how NEMS projects energy demand in the residential and commercial sectors. In particular, we focus on the role of consumers' preferences and financial constraints, investigating how consumers choose appliances and other end-use technologies. We identify conceptual issues in the approach the model takes to the same question across both sectors. Running the model with a range of consumer preferences, we estimate the extent to which this issue impacts projected consumption relative to the baseline model forecast for final energy demand in the year 2035. In the residential sector, the impact ranges from a decrease of 0.73 quads (− 6.0%) to an increase of 0.24 quads (+ 2.0%). In the commercial sector, the impact ranges from a decrease of 1.0 quads (− 9.0%) to an increase of 0.99 quads (+ 9.0%). - Highlights: • This paper examines the impact of consumer preferences on final energy in the Commercial and Residential sectors of the National Energy Modeling System (NEMS). • We describe the conceptual and empirical basis for modeling consumer technology choice in NEMS. • We offer a range of alternative parameters to show the energy demand sensitivity to technology choice. • We show there are significant potential savings available in both building sectors. • Because the model uses its own

  6. CISBAT 2005 proceedings. Renewables in a changing climate - Innovation in building envelopes and environmental systems; CISBAT 2005 proceedings. Energies renouvelables et climat - Enveloppes et systemes environnementaux innovatifs

    Energy Technology Data Exchange (ETDEWEB)

    Scartezzini, J L [ed.

    2005-07-01

    These proceedings include the contributions presented at the 2005 CISBAT conference, held in Lausanne, Switzerland. Hosted by the Swiss Federal Institute of Technology (EPFL) in Lausanne and jointly organised by the Solar Energy and Buildings Physics Laboratory at the EPFL, Cambridge University and the Massachusetts Institute of Technology (MIT), this international conference looked at 'Innovation in building envelopes and environmental systems'. Along with three keynote presentations on climate change, the use of renewables in the European Union and Swiss policies on solar energy, these 632-page conference proceedings include the conference's 106 presentations grouped in 10 sections. These cover the following topics: Design and renovation of building envelopes (33 contributions); solar collectors (16 contributions); active and passive cooling (9 contributions); indoor environment quality and health (10 contributions); optimisation of daylighting and electric lighting (5 contributions); advanced building control systems (2 contributions); environmental impacts of construction (4 contributions); networks and decentralised energy production (1 contribution); sustainable urban development (12 contributions) and software and new information technologies (14 contributions). Organised each second year, the two-day CISBAT international conference 2005 attracted more than 200 participants from all over the world.

  7. CISBAT 2005 proceedings. Renewables in a changing climate - Innovation in building envelopes and environmental systems; CISBAT 2005 proceedings. Energies renouvelables et climat - Enveloppes et systemes environnementaux innovatifs

    Energy Technology Data Exchange (ETDEWEB)

    Scartezzini, J. L. (ed.)

    2005-07-01

    These proceedings include the contributions presented at the 2005 CISBAT conference, held in Lausanne, Switzerland. Hosted by the Swiss Federal Institute of Technology (EPFL) in Lausanne and jointly organised by the Solar Energy and Buildings Physics Laboratory at the EPFL, Cambridge University and the Massachusetts Institute of Technology (MIT), this international conference looked at 'Innovation in building envelopes and environmental systems'. Along with three keynote presentations on climate change, the use of renewables in the European Union and Swiss policies on solar energy, these 632-page conference proceedings include the conference's 106 presentations grouped in 10 sections. These cover the following topics: Design and renovation of building envelopes (33 contributions); solar collectors (16 contributions); active and passive cooling (9 contributions); indoor environment quality and health (10 contributions); optimisation of daylighting and electric lighting (5 contributions); advanced building control systems (2 contributions); environmental impacts of construction (4 contributions); networks and decentralised energy production (1 contribution); sustainable urban development (12 contributions) and software and new information technologies (14 contributions). Organised each second year, the two-day CISBAT international conference 2005 attracted more than 200 participants from all over the world.

  8. Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex

    Science.gov (United States)

    2010-05-01

    of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy , solar heating (and cooling), and...financial evaluation of all projects. The costs of natural gas, alternative energy technology, alter- native fuels and the impact of greenhouse gas...distribution is unlimited. 1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17-22, 2010 Phoenix

  9. Modelling the effects of phase change materials on the energy use in buildings. Results of Experiments and System Dynamics Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Prins, J.

    2012-02-15

    The current era is in need for more and more sustainable energy solutions. Phase Change Materials (PCM's) are a solution for a more sustainable build environment because they can help to reduce the energy use of buildings during heating and cooling of the indoor air. This paper presents the results of recent experiments that have been executed with test boxes. In addition a System Dynamics model has been developed to find out how PCM's can be used efficiently without testing in reality. The first experiment, in which PCM's were applied in a concrete floor, shows a reduction of peak temperatures with 4C {+-} 0.7C on maximum temperatures and over 1.5C {+-} 0.7C on minimum temperatures during warm periods. The model confirmed these findings, although the predicted reductions were slightly. During the second experiment more PCM's were applied by mounting them into the walls using gypsum plasterboard to increase the latent heat capacity. Remarkably, both the experimental set-up as the model showed that the increase of PCM's (of almost 98%) causes hardly any difference compared to the first situation. Adapting the exterior in a way to absorb more solar energy, increases the average indoor temperature but decreases the reduction of peak temperatures. Again the model confirmed these findings of the experiment. These results show that the effect of PCM's varies on different climatological contexts and with different construction components physics. This means no straight forward advice on the use of PCM's for a building design can be given. The solution for this problem is provided by the model, showing that the effects of PCM's can be modelled in order to use PCM's in an effective way in different climatological contexts and with different characteristics of construction components. The research shows that a simple model is already capable of predicting PCM performance in test boxes with reasonable accuracy. Therefore it can be

  10. Overview of rural building energy efficiency in China

    International Nuclear Information System (INIS)

    He, Bao-jie; Yang, Li; Ye, Miao; Mou, Ben; Zhou, Yanan

    2014-01-01

    Over the past three decades, people's living standard in China has been greatly improved, accompanied by the rapid increasing building energy consumption. Rural building energy consumption has become one of the most important parts of the total energy consumption in China, which deserves to be paid much attention. It is of vital importance to promote building energy efficiency for the New Socialist Countryside and energy conservation and emission reduction. This paper provides an overview of building energy consumption in the countryside, which figures out the situation and challenges in energy-saving work. The government has worked for years on rural building code system aimed at narrowing the energy gap between urban areas, but it is in the beginning phase. This paper has analyzed the only special issues about rural building energy efficiency and the mandatory standards for urban buildings, which can facilitate the development of rural building energy efficiency. Based on the above analysis, some recommendations regarding the improvement of rural building energy efficiency are given. - Highlights: • Situation of rural energy consumption in China. • Challenges in rural building energy-saving work. • Design standard, special plan and some pilot projects are analyzed. • Effects of existing energy policies for urban buildings. • Some recommendations are given

  11. Building Student Awareness of Societal Decision-Making Challenges about Energy through the Study of Earth System Data and Innovations in Energy-Related Materials Research

    Science.gov (United States)

    Zalles, D. R.; Acker, J. G.; Berding, M.

    2014-12-01

    Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.

  12. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  13. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  14. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    Science.gov (United States)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  15. Energy savings in CSFR - building sector

    International Nuclear Information System (INIS)

    Jacobsen, F.R.

    1993-01-01

    The Czechoslovak/Danish project on energy savings in buildings proves that it is possible to save up to 30% of the energy in buildings. 10% can be saved at an investment of 27 bill KCS. The total investment that is needed to save 30% is 140 bill KCS. Further energy savings can be obtained through more energy efficient supply systems. Information dissemination is important for the energy saving programme as are economic incentives. Investments in energy savings should be profitable for the investor, but this is not the case in the Czech and Slovak republics today. Changes are needed. Energy prices are still to low, compared to investment costs. Financial possibilities are not satisfactory for private investors. Price systems are not favourable to investment in energy savings. Training is needed for boiler men and energy consultants. Legislation is essential for the support of the full range of activities in the energy sector. Research and Development activities must back up the development of the sector. Pilot projects can illuminate the savings potential. The production of technical equipment for control and metering and production of insulation materials must be promoted. (AB)

  16. Designing of zero energy office buildings in hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gwad, Mohamed

    2011-07-01

    The designing of office buildings by using large glass areas to have a transparent building is an attractive approach in the modern office building architecture. This attitude increases the energy demand for cooling specially in the hot arid region which has long sun duration time, while the use of small glazing areas increases the energy demand for lighting. The use of uncontrolled natural ventilation increases the rate of hot ambient air flow which increases the building energy demand for cooling. At the same time, the use of mechanical ventilation to control the air change rate may increase the energy demand for fans. Some ideas such as low energy design concept are introduced for improving the building energy performance and different rating systems have been developed such as LEED, BREEAM and DGNB for evaluating building energy performance system. One of the new ideas for decreasing the dependence on fossil fuels and improving the use of renewable energy is the net zero-energy building concept in which the building generates enough renewable energy on site to equal or exceed its annual energy use. This work depends on using the potentials of mixing different energy strategies such as hybrid ventilation strategy, passive night cooling, passive chilled ceiling side by side with the integrating of photovoltaic modules into the building facade to produce energy and enrich the architectural aesthetics and finally reaching the Net Zero Energy Building. There are different definitions for zero energy buildings, however in this work the use of building-integrated Photovoltaic (BIPV) to provide the building with its annual energy needs is adopted, in order to reach to a Grid-Connected Net-Zero Energy Office Building in the hot arid desert zone represented by Cairo, Egypt. (orig.)

  17. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  18. Building Web Reputation Systems

    CERN Document Server

    Farmer, Randy

    2010-01-01

    What do Amazon's product reviews, eBay's feedback score system, Slashdot's Karma System, and Xbox Live's Achievements have in common? They're all examples of successful reputation systems that enable consumer websites to manage and present user contributions most effectively. This book shows you how to design and develop reputation systems for your own sites or web applications, written by experts who have designed web communities for Yahoo! and other prominent sites. Building Web Reputation Systems helps you ask the hard questions about these underlying mechanisms, and why they're critical

  19. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  20. Compliance with building energy regulations for new-build dwellings

    International Nuclear Information System (INIS)

    Pan, Wei; Garmston, Helen

    2012-01-01

    Despite increasingly stringent building energy regulations worldwide, non-compliance exists in practice. This paper examines the profile of compliance with building energy regulations for new-build dwellings. In total 404 new-build dwellings completed in the UK from 2006 to 2009 were investigated. Only a third of these dwellings were evidenced as being compliant with Building Regulations Part L (England and Wales). Such low compliance casts a serious concern over the achievability of the UK Government's target for all new-build homes to be ‘zero carbon’ from 2016. Clearly evidenced was a lack of knowledge of Part L and its compliance requirements among the supply and building control sides of new-build dwellings. The results also indicate that the compliance profile was influenced by factors including Standard Assessment Procedure (UK Government's methodology for energy efficiency) calculation submissions, learning and experience of builders and building controls with Part L, use of Part L1A checklist, the introduction of energy performance certificate (EPC), build method, dwelling type, and project size. Better compliance was associated with flats over houses and timber frame over masonry. The use of EPC and Part L1A checklist should be encouraged. Key to addressing the lack of compliance with building energy regulations is training. -- Highlights: ► There exists a lack of compliance, worldwide, with building energy regulations. ► The implementation of England and Wales building energy regulations is problematic. ► Training, learning and experience of builders and building control are critical. ► Energy performance certificate and Part L 2006 checklist helped achieve compliance. ► Flats achieved better compliance over houses; and timber frame over masonry.

  1. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  2. Building Company Loyalty System

    OpenAIRE

    Haniková, Alžběta

    2010-01-01

    The thesis discusses the importance of loyal customers, and loyalty system as a tool for building loyalty. It defines loyalty and customer satisfaction, it deals with the issue of customer retention. It describes the history and types of loyalty programs, important factors for deciding on their implementation and problems associated with them. The practical part is concerned with the clothing market, Orsay company and its Orsay Club loyalty systeme. The work also includes a survey of the loya...

  3. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...

  4. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  5. Energy performance of a 1.2 MWp photovoltaic system distributed over nine buildings at Utrecht University campus

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.; de Waal, A.C.; Uithol, Jasper; Dols, Niekol; Houben, Frederique; Kuepers, Richarrd; Sterrenburg, Michiel; van Lith, Benno; Benjamin, Ferry

    2017-01-01

    A distributed PV system comprising of eight subsystems on separate buildings totaling an installed capacity of 1.2 MWp has been realized at buildings of the Utrecht University campus Utrecht Science Park. A detailed design process was followed taking into account the presence of surrounding

  6. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Directory of Open Access Journals (Sweden)

    Knapik Maciej

    2018-01-01

    Full Text Available The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  7. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Science.gov (United States)

    Knapik, Maciej

    2018-02-01

    The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  8. Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings

    International Nuclear Information System (INIS)

    Ghahramani, Ali; Zhang, Kenan; Dutta, Kanu; Yang, Zheng; Becerik-Gerber, Burcin

    2016-01-01

    Highlights: • We provide a systematic approach to quantify the impact of factors on energy usage. • We study setpoints, deadbands, building size, construction, occupancy, and climate. • We derive the HVAC optimal control parameters with respect to dynamic factors. • We present quantification of optimal setpoints and deadbands energy usages. • Daily optimal setpoints based on outside temperature improves energy efficiency. - Abstract: This paper provides a systematic approach for quantifying the influence of building size, construction category, climate, occupancy schedule, setpoint, and deadband on HVAC energy consumption in office buildings. Simulating the DOE reference office buildings of three sizes and three construction categories in all United States climate zones, using the EnergyPlus, we conducted several N-way ANOVA analyses to study the interrelationships between setpoints, deadbands and several building related and environment related factors. In summary, daily optimal deadband selection of 0, 1, 2, 4, 5, and 6 K would result in an average energy savings of −70.0%, −34.9%, −13.7%, 9.6%, 16.4%, and 21.2%, respectively, compared to baseline deadline of 3 K. Selecting the daily optimal setpoint in the range of 22.5 ± 1 °C, 22.5 ± 2 °C, and 22.5 ± 3 °C would result in an average savings of 7.5%, 12.7%, and 16.4%, respectively, compared to the baseline setpoint of 22.5 °C. Additionally, we found that when the outdoor temperature is within −20 to 30 °C, the optimal setpoint depends on the building size. We also observed a range of outdoor temperatures (e.g., 9–14 °C for small buildings and 8–11 °C for medium buildings) where the setpoint selection would only slightly influence the energy consumption. However, the choice of setpoints becomes very influential (up to 30% of energy savings) where the outdoor temperatures are slightly outside the mentioned ranges on either direction. The potential savings from selecting daily optimal

  9. Operation of buildings: Energy supply and energy conservation measures

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, H

    1985-01-01

    Energy saving in public administration. A list-like collection of the measures to monitor the consumption, the measures of saving energy at existing buildings, new systems and by new techniques. Examples with figures for the savings achieved in the region of Marburg-Biedenkopf (Hesse). Guidelines are set up which are mainly based on energy saving, heat recovery, use of new technologies and renewable energy sources, fluidized-bed combustion also in smaller plants of ca. 2 MW, waste management separating wastes into burnable/unburnable, information of the public administration and the people and the setting up of energy concepts. (PJH).

  10. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  11. MANAGING THE LOAD SCHEDULE OF THE ADMINISTRATIVE BUILDING TAKING INTO ACCOUNT EMERGING RISKS WHEN CONNECTING THE KINETIC ENERGY STORAGE TO THE POWER SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    S. Yu. Shevchenko

    2017-12-01

    Full Text Available Purpose. The purpose of the paper is to analyze load schedules of the administrative building and develop a structural scheme for connecting the kinetic energy storage in the power supply system of this building, which will allow using it as a consumer regulator, as well as a theoretical study of the risks that arise. Methodology. To conduct the research, the theory of designing internal electrical networks of buildings, the theory of plotting electric load graphs, methods of the theory of electromechanical systems and for analyzing the risk system, the T. Saati method of hierarchies were used. Results. The structure of kinetic energy storage (KES connection to the power supply system of the administrative building is developed and the structural diagram of the KES proposed for installation is given, the average daily winter and summer load schedules are presented, a set of groups and subgroups of risks and their influence on the work of the power supply system of the building are connected with the connection of the KES. Originality. For the first time, the application of the kinetic energy storage in the power supply system of the building with the analysis of emerging risks is considered, which makes it possible to improve the reliability of the developed system and the efficiency of load regulation. Practical value. The application of the proposed scheme will make it possible to use administrative buildings as load regulators of the external power supply system, and also effectively manage the load in the internal power supply system of the building.

  12. Energy Conservation of the Designated Government Buildings in Thailand

    Directory of Open Access Journals (Sweden)

    Wangskarn Prapat

    2016-01-01

    Full Text Available The designated government buildings have implemented and administered energy program under the energy development and promotion Act 2007 for many years continuously until 2015. Appointment person responsible for energy, performing energy management and implementing the energy conservation work plan and measures are legal requirements for the designated buildings. Therefore, the ministry of Energy has launched the project to support the implementation of energy management. The aim of the project was to create the energy management system in the designated government buildings, and to reduce energy consumption. In this paper, the evaluation of the project has been presented from the achievements of 839 designated government buildings. The energy saving is more than 440 ktoe/year. This is about 3% of energy consumptions of buildings.

  13. Selection and Implementation of Single Building EMCS (Energy Monitoring and Control Systems).

    Science.gov (United States)

    1983-08-01

    Setpoint Night Setback 161 Figure 20: Dual Setpoint Night Setback/up 162 Figure 21: Centrifugal Chiller Reset 166 Figure 22: Centrifugal Chiller Capacity...Program outputs. Hot water temperature. Application notes. A dedicated local loop controller may be implemented. Chiller optimization . The chiller ... optimization program can be implemented in chilled water plants with multiple chillers . Based on chiller operating data and the energy input requirements

  14. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  15. Renewable Energy Applications for Existing Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  16. Energy-Saving Automation and LED Lighting Systems in Industry, Transport, Building and Municipal Sector

    Directory of Open Access Journals (Sweden)

    V.P. Klimenko

    2013-09-01

    Full Text Available Protocol of diverse technological data unification providing the ability to scale with a minimal increase in auxiliary information volume that allows its usage, ranging from the simplest microcontrollers to integration of automation equipment in global systems was designed for industrial automation systems. Basic technical solutions implemented in development of LED lighting systems of salon subway cars, including a schematic diagram of the lamp, the main technical characteristics of the lamp power supply, the peculiarities of developed design of LED modules are described.

  17. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  18. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  19. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  20. Advanced storage concepts for solar thermal systems in low energy buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

    2006-04-07

    The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

  1. Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Santamouris, M.; Pavlou, C.; Doukas, P.; Synnefa, A.; Hatzibiros, A. [University of Athens, (Greece). Department of Physics, Division of Applied Physics, Laboratory of Meteorology; Mihalakakou, G. [University of Ioannina, Agrinion (Greece). Department of Environment and Natural Resources Management; Patargias, P. [University of Peloponnesus, Kalamata (Greece). Faculty of Human Sciences and Cultural Studies, Department of History, Archaeology and Cultural Heritage Management

    2007-09-15

    This paper deals with the experimental investigation and analysis of the energy and environmental performance of a green roof system installed in a nursery school building in Athens. The investigation was implemented in two phases. During the first phase, an experimental investigation of the green roof system efficiency was presented and analysed, while in the second one the energy savings was examined through a mathematical approach by calculating both the cooling and heating load for the summer and winter period for the whole building as well as for its top floor. The energy performance evaluation showed a significant reduction of the building's cooling load during summer. This reduction varied for the whole building in the range of 6-49% and for its last floor in the range of 12-87%. Moreover, the influence of the green roof system in the building's heating load was found insignificant, and this can be regarded a great advantage of the system as any interference in the building shell for the reduction of cooling load leads usually to the increase of its heating load. (author)

  2. Establishing a commercial building energy data framework for India

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, Satish [Alliance for an Energy Efficient Economy, New Delhi (India); Mathew, Sangeeta [Alliance for an Energy Efficient Economy, New Delhi (India); Stratton, Hannah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathew, Paul A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singh, Mohini [Synurja, Inc. (India)

    2018-04-18

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The United States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.

  3. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    International Nuclear Information System (INIS)

    Zvingilaite, Erika

    2013-01-01

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy system optimisation model of the Danish heat and power sector. The achieved optimal level of heat savings reaches 11% of projected heat demand in 2025 under the model assumptions. Moreover, the analysis reveals the importance of considering energy conservation options in a system wide perspective. Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. - Highlights: ► Heat savings in buildings are analysed together with a heat and power system. ► Heat savings compete with electricity to heat technologies, mainly heat pumps. ► Cost effective heat-savings bring small decrease in health impacts and CO 2 emissions. ► Cost-effectiveness of heat savings depends on the marginal heat generation technology

  4. Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring Algorithm for a Residential Building Energy Management System

    Directory of Open Access Journals (Sweden)

    Kofi Afrifa Agyeman

    2015-08-01

    Full Text Available The concern of energy price hikes and the impact of climate change because of energy generation and usage forms the basis for residential building energy conservation. Existing energy meters do not provide much information about the energy usage of the individual appliance apart from its power rating. The detection of the appliance energy usage will not only help in energy conservation, but also facilitate the demand response (DR market participation as well as being one way of building energy conservation. However, energy usage by individual appliance is quite difficult to estimate. This paper proposes a novel approach: an unsupervised disaggregation method, which is a variant of the hidden Markov model (HMM, to detect an appliance and its operation state based on practicable measurable parameters from the household energy meter. Performing experiments in a practical environment validates our proposed method. Our results show that our model can provide appliance detection and power usage information in a non-intrusive manner, which is ideal for enabling power conservation efforts and participation in the demand response market.

  5. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

  6. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  7. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    International Nuclear Information System (INIS)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-01-01

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards

  8. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  9. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...

  10. IEA EBC Annex 67 Energy Flexible Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Jensen, Søren Østergaard

    2016-01-01

    know ledge on and demonstration of the Energy Flexibility Buildings can provide for the energy grids as well of to identify critical aspects and possible solutions to manage this Energy Flexibility. The paper discusses the background, the aims and the work plan of IEA (International Energy Agency) EBC......The foreseen large deployment of renewable energy sources may seriously affect the stability of energy grids. It will be necessary to control energy consumption to match instantaneous energy production. The built-in Energy Flexibility in buildings may be utilized for stabilizing the energy grids......, allowing for a larger roll out of renewable technologies. The Energy Flexibility of a building is the ability to manage its energy demand and generation according to local climate conditions, user needs and grid requirements. Energy Flexibility of buildings will thus allow for demand side management...

  11. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  12. Calculation of the yearly energy performance of heating systems based on the European Building Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; Langkilde, Gunnar

    2009-01-01

    In 2003 the European Commission (EC) issued a directive, 2002/91/EC [1]. The objective of this directive is to promote the improvement of the energy performance of buildings within the community, taking into account outdoor climatic and local conditions, as well as indoor climate requirements and...

  13. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  14. An overview of solar energy applications in buildings in Greece

    Science.gov (United States)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  15. Building Services Systems

    DEFF Research Database (Denmark)

    Zinzi, Michele; Romeo, Carlo; Thomsen, Kirsten Engelund

    2015-01-01

    of the description of 5 main technologies: condensing boilers, heat pumps, ventilation systems, lighting and photovoltaic systems. For each technology chapter there is the same content list: an introduction, a brief technology description, some advantages and disadvantages, market penetration and utilisation, energy...

  16. A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance

    International Nuclear Information System (INIS)

    Fan, Yuling; Xia, Xiaohua

    2017-01-01

    Highlights: • A multi-objective optimization model for building envelope retrofit is presented. • Facility performance degradation and maintenance is built into the model. • A rooftop PV system is introduced to produce electricity. • Economic factors including net present value and payback period are considered. - Abstract: Retrofitting existing buildings with energy-efficient facilities is an effective method to improve their energy efficiency, especially for old buildings. A multi-objective optimization model for building envelope retrofitting is presented. Envelope components including windows, external walls and roofs are considered to be retrofitted. Installation of a rooftop solar panel system is also taken into consideration in this study. Rooftop solar panels are modeled with their degradation and a maintenance scheme is studied for sustainability of energy and its long-term effect on the retrofitting plan. The purpose is to make the best use of financial investment to maximize energy savings and economic benefits. In particular, net present value, the payback period and energy savings are taken as the main performance indicators of the retrofitting plan. The multi-objective optimization problem is formulated as a non-linear integer programming problem and solved by a weighted sum method. Results of applying the designed retrofitting plan to a 50-year-old building consisting of 66 apartments demonstrated the effectiveness of the proposed model.

  17. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  18. Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS Occupational Health and Safety (OHS Risk

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2016-01-01

    Full Text Available Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the relative safety of various construction methods, including IBS. This study presents a comparative evaluation of the occupational health and safety (OHS risk presented by different construction approaches, namely IBS and traditional methods. The evaluation involved developing a model based on the concept of ‘argumentation theory’, which helps construction designers integrate the management of OHS risk into the design process. In addition, an ‘energy damage model’ was used as an underpinning framework. Development of the model was achieved through three phases, namely Phase I – knowledge acquisitaion, Phase II – argument trees mapping, and Phase III – validation of the model. The research revealed that different approaches/methods of construction projects carried a different level of energy damage, depending on how the activities were carried out. A study of the way in which the risks change from one construction process to another shows that there is a difference in the profile of OHS risk between IBS construction and traditional methods.Therefore, whether the option is an IBS or traditional approach, the fundamental idea of the model is to motivate construction designers or decision-makers to address safety in the design process and encourage them to examine carefully the probable OHS risk variables surrounding an action, thus preventing accidents in construction.

  19. Buildings'energy flexibility : a bottom-up, multi agent, user-based approach to system integration of energy infrastructures to support the smart grid

    NARCIS (Netherlands)

    Zeiler, Wim; Labeodan, Timilehin; Aduda, Kennedy; Boxem, Gert; Sayigh, Ali

    2016-01-01

    Using the flexibility within energy generation, distribution infrastructure, renewable energy sources, and the built environment is the ultimate sustainable strategy within the built environment. However, at the moment this flexibility on the building level has yet to be defined. The new IEA Annex

  20. The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)

  1. Handbook of energy use for building construction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  2. Handbook of energy use for building construction

    Science.gov (United States)

    Stein, R. G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, railroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. Emphasis is given to new building construction; however, some information for the other parts of the construction industry is also included. Building designers are provided with information to determine the energy required for buildings construction and to evaluate the energy required for alternative materials, assemblies, and methods. It is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  3. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  4. Tool coupling for the design and operation of building energy and control systems based on the Functional Mock-up Interface standard

    Energy Technology Data Exchange (ETDEWEB)

    Nouidui, Thierry Stephane; Wetter, Michael

    2014-03-01

    This paper describes software tools developed at the Lawrence Berkeley National Laboratory (LBNL) that can be coupled through the Functional Mock-up Interface standard in support of the design and operation of building energy and control systems. These tools have been developed to address the gaps and limitations encountered in legacy simulation tools. These tools were originally designed for the analysis of individual domains of buildings, and have been difficult to integrate with other tools for runtime data exchange. The coupling has been realized by use of the Functional Mock-up Interface for co-simulation, which standardizes an application programming interface for simulator interoperability that has been adopted in a variety of industrial domains. As a variety of coupling scenarios are possible, this paper provides users with guidance on what coupling may be best suited for their application. Furthermore, the paper illustrates how tools can be integrated into a building management system to support the operation of buildings. These tools may be a design model that is used for real-time performance monitoring, a fault detection and diagnostics algorithm, or a control sequence, each of which may be exported as a Functional Mock-up Unit and made available in a building management system as an input/output block. We anticipate that this capability can contribute to bridging the observed performance gap between design and operational energy use of buildings.

  5. Barriers' and policies' analysis of China's building energy efficiency

    International Nuclear Information System (INIS)

    Zhang, Yurong; Wang, Yuanfeng

    2013-01-01

    With the rapid economic growth and the improvement of people's living standards, China's building energy consumption has kept rising during the past 15 years. Under the effort of the Chinese government and the society, China's building energy efficiency has made certain achievements. However, the implementation of building energy efficiency in China is still far from its potential. Based on the analysis of the existing policies implemented in China, the article concluded that the most essential and the most effective ways to promote building energy efficiency is the government's involvement as well as economic and financial incentives. In addition, the main barriers in the process of promoting building energy efficiency in China are identified in six aspects. It has been found that the legal system and administrative issues constitute major barriers, and the lack of financial incentives and the mismatching of market mechanism also hamper the promotion of building energy efficiency. Finally, in view of the existing policies and barriers analysis, three corresponding policy proposals are presented. -- Highlights: •The existing policies implemented in China from three aspects are presented and analysed. •The Government's involvement is the most essential effective way to promote building-energy efficiency. •Six aspects of barriers in promoting building energy efficiency in China are identified. •The legal system and administrative issues constitute the major barriers. •Three policy proposals to further promote building energy efficiency in China are proposed

  6. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  7. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  8. Identifying intelligent Building Management Systems (BMS) in ...

    African Journals Online (AJOL)

    Identifying intelligent Building Management Systems (BMS) in sustainable housing. ... Journal of Fundamental and Applied Sciences ... attention to the principles of sustainability of energy and organized approach to sustainable development.

  9. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  10. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  11. A strategy for reducing CO_2 emissions from buildings with the Kaya identity – A Swiss energy system analysis and a case study

    International Nuclear Information System (INIS)

    Mavromatidis, Georgios; Orehounig, Kristina; Richner, Peter; Carmeliet, Jan

    2016-01-01

    Within the general context of Greenhouse Gas (GHG) emissions reduction, decomposition analysis allows the quantification of the contribution of different factors to changes in emissions as well as the assessment of the effectiveness of policy and technology measures. The Kaya identity has been widely used for that purpose in order to disaggregate carbon emissions into various driving forces. In this paper, it is applied for the analysis of emissions resulting from energy use at three different scales. First, a decomposition analysis of the carbon emissions for the complete Swiss energy system is presented using the future projections from the Swiss Energy Strategy 2050. The Kaya identity is then applied to the Swiss building sector after it is adapted with factors that are more relatable to building parameters, such as floor area instead of Gross Domestic Product (GDP). Finally, the last level of analysis is a small scale community energy system for a unique Swiss village that aims to significantly reduce its emissions. An energy strategy is developed and its effectiveness is assessed with the adapted Kaya identity and benchmarked against the Swiss average values. The presented method demonstrates how the performance of buildings under various retrofitting scenarios can be benchmarked against future emission targets. - Highlights: • The Kaya identity is used to perform multi-scale emission decomposition analysis. • The original Kaya identity is updated with building-related parameters. • The main drivers of emissions reduction of the Swiss building stock are determined. • An energy strategy to transform the building stock of a Swiss village is developed. • The performance of efficiency measures are benchmarked using the Kaya identity.

  12. New building technology based on low energy design

    International Nuclear Information System (INIS)

    Meggers, Forrest; Leibundgut, Hansjurg

    2009-01-01

    Full text: The construction, operation and maintenance of all residential, commercial, and industrial buildings are responsible for over half of global greenhouse gas emissions, and two-thirds of global electricity is generated solely for building operation. This single sector has a huge potential impact on the future sustainability of society, and therefore new advanced technologies must be rapidly developed and implemented in what is often a slow-moving sector. The concept of the low exergy building has created a new framework for the development of high performance building systems. Exergy analysis has been used to help minimize the primary energy demands of buildings through the minimization of losses in the chain of energy supply in a building system. The new systems that have been created have been shown to be more comfortable and more energy efficient. These systems include integrated thermal mass systems heated by high efficiency heat pumps integrated with energy recovery systems that eliminate the waste that is common in building systems. The underlying principles and concepts of low exergy building systems will be presented along with the analysis of several technologies being implemented in a low Ex building in Zurich, Switzerland. These include an advanced ground source heat pump strategy with integrated heat recovery, decentralized ventilation, and a unique active wall insulation system, which are being researched as part of the IEA ECBCS Annex 49 (www.annex49.org). (author)

  13. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... a missing link in the development. In this paper is demonstrated how a link between a dynamic Building Simulation Programme (BSP) and a simulation program for District Heating (DH) networks can give important information during the design phase. By using a BSP it is possible to analyze the influence...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...

  14. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-20

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications. (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote monitoring

  15. Energy efficiency in multi-story buildings

    Directory of Open Access Journals (Sweden)

    Staritcyna Anastasiia

    2016-01-01

    Full Text Available In this project a research on energy efficiency of Malta house was provided, it is a residential multi-story building in Helsinki, Jätkäsaari area. This project describes introduction with a new heating system for residential dwellings, which uses only heated air. To maintain air temperature in comfort level heat recovery and district heating is used in the same system. The task was to research efficacy of the enclosure structures. For research the 3D model has been created in the program the Revit 2015 and Lumion 13. Thermotechnical calculation for three types of a design has been executed in the program U-value.net.

  16. Opportunity and potential for fuel cell systems for energy in buildings; Moejlighet och potential foer braenslecellsystem foer energifoersoerjning i byggnader

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin (Catator AB (Sweden))

    2011-04-15

    While planning for new sustainable and environmentally friendly communities in Sweden, discussions on using fuel cells for small-scale power and heat production (mCHP) are today on-going. Examples of such communities are Sege Park in Malmoe and Norra Djurgardsstaden in Stockholm, where several members of the Swedish Construction Industry's Organisation for Research and Development (SBUF) are participating in the development. The status and the potential of using fuel cell based mCHP compared to conventional heat and power production technology and other mCHP-technologies (Internal combustion engine (ICE), Stirling) is today therefore a very interesting question for both the energy and the building sector, who also ask for more knowledge within the field. This work focuses on this purpose. The main goals of this report are: 1. To give an overall description of different existing fuel cell technologies and necessary belonging system components. The fuel cell systems are discussed and evaluated based on parameters such as efficiencies, fuel flexibility, life-time, complexity, maturity and cost. The systems are compared to mCHPs based on small heat engines (Internal combustion, Stirling). 2. To give a state-of-the-art report on fuel cell based mCHPs and to describe possibilities and risks related to different technologies. 3. To guideline for future choices of system solutions suitable for different building constructions and different geographical placements. The work is limited to systems suitable for small houses (< 5 kWe) and larger residential buildings (< 50 kWe) situated in population centres/cities where infra-structures for natural gas/biogas and the national grid are available. The project has been performed by Catator AB on the request of SBUF with support from the Swedish Gas Centre (SGC AB), Skanska and Catator. The study is based on the open literature, the information given by leading fuel cell system suppliers and Catator's own knowledge and

  17. Regulation proposal for voluntary energy efficiency labelling of commercial buildings

    International Nuclear Information System (INIS)

    Lamberts, Roberto; Goulart, Solange; Carlo, Joyce; Westphal, Fernando

    2006-01-01

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m 2 or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  18. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  19. Sustainability in energy and buildings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    M' Sirdi, Nacer; Namaane, Aziz [LSIS Laboratory of Systems and Information Sciences, Marseilles (France); Howlett, Robert J. [KES International, Shoreham-by-Sea (United Kingdom); Jain, Lakhmi C. (eds.) [South Australia Univ., Adelaide, SA (Australia). School of Electrical and Information Engineering

    2012-07-01

    Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB'11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systemes (LSIS) in Marseille, France in partnership with KES International. SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field. The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: - the application of intelligent sensing, control, optimisation and modelling techniques to sustainability and - the technology of sustainable buildings. These two themes combine synergetically to address issues relating to The Intelligent Building. SEB'11 attracted a significant number of submissions from around the world. These were subjected to a two-stage blind peer-review process. With the objective of producing a high-quality conference, only the best 50 or so of these were selected for presentation at the conference and publication in the proceedings. It is hoped that you will find this volume an interesting, informative and useful resource for your research.

  20. Energy plus standard in buildings constructed by housing associations?

    International Nuclear Information System (INIS)

    Stutterecker, Werner; Blümel, Ernst

    2012-01-01

    In order to achieve national, European and international energy goals, energy efficiency strategies in the building sector have to be implemented. The passive house standard and low energy standards are already successfully established in single dwelling houses. These high performance standards are starting to penetrate into the sector of housing associations. A case study about an apartment building constructed by a housing association is presented here. It describes the monitoring concept and the results of the 1st year of monitoring. Depending on the definition of the zero energy building standard (extent of loads included in the balancing), the building could be classified as an energy plus building or as a building, which uses more energy, than is supplied by on-site generation. If the building's total energy use (including user specific loads) is defined as load, only 34.5% of these loads were provided by the net energy output of the PV system. If only the heating energy demand is defined as load, the PV system even yielded a surplus of 45.6% of the energy load. -- Highlights: ► Energy monitoring of an apartment building constructed by a housing association. ► Planned as a Passive House with a semi-central ventilation system with decentralized heat pump technology. ► Total end energy demand of the building was 43 kWh/(m² a). ► Total net energy generation by the PV system was 15 kWh/(m² a). ► Apartment no. 1: 52% of the energy demand were used for heating and ventilation.

  1. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are

  2. Building regulations in energy efficiency: Compliance in England and Wales

    International Nuclear Information System (INIS)

    Pan Wei; Garmston, Helen

    2012-01-01

    There is an international pragmatic shift towards the use of building energy regulations, standards and codes to reduce building energy consumption. The UK Government revised Building Regulations in 2002, 2006 and 2010, towards more stringent energy efficiency standards and ultimately the target of ‘zero carbon’ new homes from 2016. This paper aims to: reveal levels of compliance with energy Building Regulations of new-build dwellings in England and Wales; explore underlying issues; and identify possible solutions. In total 376 new-build dwellings were investigated. The compliance revealed was poor, at a level of 35%; accompanied by 43% ‘grey compliance’ and 21% ‘grey non-compliance’ (due to insufficient evidence of achieving required carbon emissions reductions). It is a serious concern when building control approves so many dwellings when insufficient evidence of compliance has been received. Underlying issues were centred on: incorrect compilation and/or insufficient submission of carbon emissions calculations by builders/developers; inappropriate timings of such submissions; and a paucity of proper checks by building control. Exploring these issues reveals a complex system of factors influencing energy regulations compliance, which involves a wide range of stakeholders. The findings should inform the formulation and implementation of energy efficiency building regulations and policy in the future. - Highlights: ► The compliance with energy Building Regulations (England and Wales) was poor. ► The problematic implementation of energy Building Regulations is a serious concern. ► Identified issues suggest a lack of knowledge of builders and building control. ► There is a complex system of factors influencing energy regulations compliance. ► A systems approach is needed to improve compliance, while training is crucial.

  3. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  4. System-Level Monitoring and Diagnosis of Building HVAC System

    OpenAIRE

    Wu, Siyu

    2013-01-01

    Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC system dominates the energy consumption and accounts for 57% of the energy used in U.S. commercial and residential buildings. Unfortunately, the HVAC system may fail to meet the performance expectations due to various faults, including not only complete hardware failures, but also non-optimal operations....

  5. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  6. Building Energy Audit Report, for Hickam AFB, HI

    Energy Technology Data Exchange (ETDEWEB)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.; Dixon, Douglas R.

    2010-09-30

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  7. Environmental and Energy Aspects of Construction Industry and Green Buildings

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2017-04-01

    Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.

  8. BUILDING DESIGN INFLUENCE ON THE ENERGY PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Moga Ligia

    2015-05-01

    Full Text Available Energy efficient design is a high priority in the national energy strategy of European countries considering the latest requirements of the European Directive on the Energy Performance of Buildings. The residential sector is responsible for a significant quantity of energy consumptions from the total amount of consumptions on a worldwide level. In residential building most of the energy consumptions are given mainly by heating, domestic hot water and lighting. Retrofitting the existing building stock offers great opportunities for reducing global energy consumptions and greenhouse gas emissions. The first part of the paper will address the need of thermal and energy retrofit of existing buildings. The second part will provide an overview on how various variables can influence the energy performance of a building that is placed in all four climatic zones from Romania. The paper is useful for specialist and designers from the construction field in understanding that buildings behave differently from the energy point of view in different climatic regions, even if the building characteristic remain the same.

  9. Technical definition for nearly zero energy buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member States to define what these for them exactly constitute. In the definition local conditions are to be obviously taken into account, but the uniform methodology can be used in all......This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... in which way are taken into account in the energy performance assessment. The intention of the Task Force is to help the experts in the Member States in defining the nearly zero energy buildings in a uniform way. The directive requires nearly zero energy buildings, but since it does not give minimum...

  10. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Qing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  11. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  12. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  13. Energy conservation in selected buildings, Gdansk. 1. final report

    International Nuclear Information System (INIS)

    1997-02-01

    This Final Report marks the end of the implementation stage of the project: 'Energy Conservation in Selected Buildings in Gdansk, Poland' supported by the Danish Environment-related Energy Sector Programme for Poland under the Danish Energy Agency. The residential and commercial sectors together with public buildings account for 40-45% of the total energy consumption and are dominated by the use of space heating and hot water. The sector has a significant over-consumption of energy, which first of all is due to the lack of or too weak incentives for the individual tenants to decrease the energy consumption. Bad thermal insulation of buildings and inefficient central heating systems with a widespread lack of measurement and automatic control systems give cause for extensive heat losses. The objective of the project has been to document the effects of energy savings in 18 multi-family houses when different types of energy saving measures are applied. These measures include thermal insulation of buildings, refurbishment of the heating system and introduction of individual billing system for heating and hot tap water. Energy audits of 18 buildings were performed by combination of on-site inspection of all buildings and data collection from the available drawings, technical descriptions, etc. The on-site inspection was carried out by use of an energy audit scheme specially developed for this project. (EG)

  14. Energy conservation in selected buildings, Gdansk. 1. final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This Final Report marks the end of the implementation stage of the project: `Energy Conservation in Selected Buildings in Gdansk, Poland` supported by the Danish Environment-related Energy Sector Programme for Poland under the Danish Energy Agency. The residential and commercial sectors together with public buildings account for 40-45% of the total energy consumption and are dominated by the use of space heating and hot water. The sector has a significant over-consumption of energy, which first of all is due to the lack of or too weak incentives for the individual tenants to decrease the energy consumption. Bad thermal insulation of buildings and inefficient central heating systems with a widespread lack of measurement and automatic control systems give cause for extensive heat losses. The objective of the project has been to document the effects of energy savings in 18 multi-family houses when different types of energy saving measures are applied. These measures include thermal insulation of buildings, refurbishment of the heating system and introduction of individual billing system for heating and hot tap water. Energy audits of 18 buildings were performed by combination of on-site inspection of all buildings and data collection from the available drawings, technical descriptions, etc. The on-site inspection was carried out by use of an energy audit scheme specially developed for this project. (EG)

  15. Energy conservation in developing countries using green building idea

    International Nuclear Information System (INIS)

    Rashid, Akram; Qureshi, Ijaz Mansoor

    2013-01-01

    Green buildings uses processes that are environmentally responsible and resource-efficient throughout a building's life-cycle. In these buildings Certain energy conservative and environment friendly steps are considered and implemented from design, construction, operation, maintenance and renovation. In present era no doubt new technologies are constantly constructed and used in creating greener structures, energy efficient buildings. The common objective is to reduce the overall impact of the built environment on human health using available energy efficiently. To increase the efficiency of the System or the building, Onsite generation of renewable energy through solar power, wind power, hydro power, or biomasscan significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building. Any how power generation using renewable sources that is Solar system may further enhance energy conservation ideas. Power Factor improvement can also be another source of efficient tool for efficient use of Electrical Energy in green buildings. In developing countries a significant amount of Electrical Energy can be conserved and System efficiency as a whole can be increased by Power Factor correction. The reverse flow of power can be locally engaged instead of creating extra stress and opposition to the existing grid lines.

  16. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  17. Optimization of the Public Buildings Energy Supply

    DEFF Research Database (Denmark)

    Filipović, P.; Dominkovic, Dominik Franjo; Ćosić, B.

    2016-01-01

    There is a rising interest in the improvement of energy efficiency in public buildings nowadays atthe EU level. Increasing energy efficiency can lead to both better thermal comfort, as well as netsavings on energy bills. Furthermore, the right choice of energy source can lead to large savings inC...

  18. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  19. Energy efficiency evaluation of hospital building office

    International Nuclear Information System (INIS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S.A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings. (paper)

  20. BLAST: Building energy simulation in Hong Kong

    Science.gov (United States)

    Fong, Sai-Keung

    1999-11-01

    The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was

  1. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  2. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  3. Modeling and Control of AHUs in Building HVAC Systems

    OpenAIRE

    Liang, Wei

    2014-01-01

    Heating, ventilation and air conditioning (HVAC) is a mechanical system that provides thermal comfort and accepted indoor air quality often instrumented for large-scale buildings. The HVAC system takes a dominant portion of overall building energy consumption and accounts for 50% of the energy used in the U.S. commercial and residential buildings in 2012. The performance and energy saving of building HVAC systems can be significantly improved by the implementation of better and smarter contro...

  4. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  5. Commercial Building Energy Saver: An energy retrofit analysis toolkit

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Piette, Mary Ann; Chen, Yixing; Lee, Sang Hoon; Taylor-Lange, Sarah C.; Zhang, Rongpeng; Sun, Kaiyu; Price, Phillip

    2015-01-01

    Highlights: • Commercial Building Energy Saver is a powerful toolkit for energy retrofit analysis. • CBES provides benchmarking, load shape analysis, and model-based retrofit assessment. • CBES covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • CBES includes a web app, API, and a database of energy efficiency performance. • CBES API can be extended and integrated with third party energy software tools. - Abstract: Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision

  6. How much information disclosure of building energy performance is necessary?

    International Nuclear Information System (INIS)

    Hsu, David

    2014-01-01

    Many different governments have begun to require disclosure of building energy performance, in order to allow owners and prospective buyers to incorporate this information into their investment decisions. These policies, known as disclosure or information policies, require owners to benchmark their buildings and sometimes conduct engineering audits. However, given substantial variation in the cost to disclose different types of information, it is natural to ask: how much and what kind of information about building energy performance should be disclosed, and for what purposes? To answer this question, this paper assembles and cleans a comprehensive panel dataset of New York City multifamily buildings, and analyzes its predictive power using a Bayesian multilevel regression model. Analysis of variance (ANOVA) reveals that building-level variation is the most important factor in explaining building energy use, and that there are few, if any, relationships of building systems to observed energy use. This indicates that disclosure laws requiring benchmarking data may be relatively more useful than engineering audits in explaining the observed energy performance of existing buildings. These results should inform the further development of information disclosure laws. - Highlights: • A comprehensive panel dataset of energy performance and building characteristics was assembled and cleaned. • The effectiveness of the disclosed information to predict building energy performance was tested using a regression model. • Building-level variation has a greater effect than any building characteristic or systems. • Benchmarking data alone predicts energy performance equally as well as both benchmarking and engineering audit data together, and better than audit data alone

  7. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...... to evaluate different separate solutions when they interact in the building.When trying to optimize several parameters there is a need for a method, which will show the correct price-performance of each part of a building under design. The problem with not having such a method will first be showed...

  8. Results. Building integrated energy supply; Resultater. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations of which the best combinations were selected. The final result takes form of a single top-50 list with the best combinations of energy systems according to CO{sub 2} emission, energy consumption and economics. The present report contains the conclusions of and comments on the project's results. (ln)

  9. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future.

  10. Demonstration of Energy Savings in Commercial Buildings for Tiered Trim and Respond Method in Resetting Static Pressure for VAV Systems

    Science.gov (United States)

    2017-03-01

    Technology Certification Program EUI Energy Use Intensity EW Energy and Water GHG Greenhouse Gas GSM Global System for Mobile GWh Gigawatt hours...utility bill. Other charges could include basic service charge, transmission service charge, on-peak and off-peak demand charges, and franchise fee...Regulated Air Volume (TRAV) systems. ASHRAE Transactions 99(1):791-800. 106 15. Hartman, T. 1995. Global optimization strategies for high

  11. Modernisation of the energy supply and lighting systems of a school building at Erfurt; Energetische und lichttechnische Sanierung der Regelschule Erfurt

    Energy Technology Data Exchange (ETDEWEB)

    Russ, C. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen

    1997-12-31

    A complete energy-oriented modernization of an Erfurt type school building in large panel construction with the aid of intelligent control systems improves thermal and lighting conditions. Thermal insulation systems and efficient glazing reduce thermal energy demand by approximately 50 per cent. Equally, light-directing systems and daylight-controlled artificial lighting cut down electric energy consumption by about 50 per cent. The executed modernization, lighting system design, and ventilation requirements are discussed in detail. (MSK) [Deutsch] Anhand einer kompletten energetischen Sanierung wird der waerme und lichttechnische Zustand fuer eine Pschlattenbauschule vom Erfurter-Schultyp unter Einbeziehung intelligenter Steuersysteme verbessert. Waermedaemmung und effiziente Verglasung reduzieren den Heiwaermebedarf um ca. 50%. Lichtlenkende Systeme und eine tageslichtabhaengig gesteuerte Kunstlichtbeleuchtung minimieren die Elektroenergie ebenfalls um etwa 50%. Im Einzelnen wird auf die energetische Sanierung, auf die lichttechnische Gestaltung sowie auf den Lueftungsbedarf eingegangen.

  12. 1995 building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1996-02-01

    During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

  13. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since the author......Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... with practitioners in the building sector at the local level. The aim of this report is to look into municipal efforts to promote energy efficient buildings to learn from their experiences: What types of challenges are municipalities facing, when attempting to disseminate energy efficient technologies in local...... building projects through municipal planning practices, and how do they cope with these challenges? The report is based on an in-depth study of proactive planning practices performed by municipal partners in the Class 1 project and a series of experiences, strategies and instru-ments are identified...

  14. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eley, Charles; Gupta, Smita; Torcellini, Paul; Mchugh, Jon; Liu, Bing; Higgins, Cathy; Iplikci, Jessica; Rosenberg, Michael I.

    2017-06-30

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute; Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.

  15. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  16. Intelligent analysis of energy consumption in school buildings

    International Nuclear Information System (INIS)

    Raatikainen, Mika; Skön, Jukka-Pekka; Leiviskä, Kauko; Kolehmainen, Mikko

    2016-01-01

    Highlights: • Electricity and heating energy consumptions of six school buildings were compared. • Complex multivariate data was analysed using modern computational methods. • Variation in electricity consumption cost is considerably low between study schools. • District heating variation is very slight in two new study schools. • District heating cost describes energy efficiency and state of building automation. - Abstract: Even though industry consumes nearly half of total energy production, the relative share of total energy consumption related to heating and operating buildings is growing constantly. The motivation for this study was to reveal the differences in electricity use and district heating consumption in school buildings of various ages during the working day and also during the night when human-based consumption is low. The overall aim of this study is to compare the energy (electricity and heating) consumption of six school buildings in Kuopio, Eastern Finland. The selected school buildings were built in different decades, and their ventilation and building automation systems are also inconsistent. The hourly energy consumption data was received from Kuopion Energia, the local energy supply company. In this paper, the results of data analysis on the energy consumption in these school buildings are presented. Preliminary results show that, generally speaking, new school buildings are more energy-efficient than older ones. However, concerning energy efficiency, two very new schools were exceptional because ventilation was on day and night in order to dry the building materials in the constructions. The novelty of this study is that it makes use of hourly smart metering consumption data on electricity and district heating, using modern computational methods to analyse complex multivariate data in order to increase knowledge of the buildings’ consumption profiles and energy efficiency.

  17. HVAC system operational strategies for reduced energy consumption in buildings with intermittent occupancy: The case of mosques

    International Nuclear Information System (INIS)

    Budaiwi, I.; Abdou, A.

    2013-01-01

    Highlights: • Proper operational zoning in the early design phase of mosques can lead to up to 30% reduction in the annual cooling energy. • Energy performance index of 71.0 kW h/m 2 yr for an insulated mosque can be realized with A/C proper intermitted operation. • 23% energy saving can be achieved when a properly oversized A/C is operated intermittently for 1 h during each prayer. • 13% reduction in cooling energy use can be achieved when A/C operation precedes worshippers’ occupancy in mosques. • Envelope insulation and A/C intermittent operation with proper operational zoning leads to more than 46% savings in energy. - Abstract: Mosques are places of worship for Muslims with unique functional requirements and operational characteristics. They are partially or fully occupied for about an hour for five intermittent periods during the day. In hot climates, maintaining indoor thermal comfort requires a considerable amount of energy that can be reduced by proper operational zoning and effective HVAC operation strategies. The objective of this paper is to investigate the impact of operational zoning and HVAC system intermittent operation strategies on the energy performance of mosques while thermal comfort is maintained. Energy simulation modeling is used for evaluating alternative zoning and HVAC operation strategies. Results indicate that up to 23% reduction in annual cooling energy is achieved by employing suitable HVAC operation strategy and system over-sizing, and 30% reduction is achieved by appropriate operational zoning. Comparing the cooling energy consumption of HVAC summer continuous operation of an un-insulated mosque with the consumption of the insulated mosque with properly oversized HVAC system operated for 1 h during each prayer, indicated that as much as 46% of cooling energy reduction can be achieved. Furthermore, utilizing proper operational zoning and HVAC operation strategies is expected to bring about an additional significant energy

  18. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2004-08-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility and commercial viability of this technology. (1) TRNSYS Modeling of a Hybrid Lighting System: Building Energy Loads and Chromaticity Analysis; (2) High Lumens Screening Test Setup for Optical Fibers; (3) Photo-Induced Heating in Plastic Optical Fiber Bundles; (4) Low-Cost Primary Mirror Development; (5) Potential Applications for Hybrid Solar Lighting; (6) Photobioreactor Population Experiments and Productivity Measurements; and (7) Development of a Microalgal CO2-Biofixation Photobioreactor.

  19. External shading devices for energy efficient building

    Science.gov (United States)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  20. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  1. Building Standards and Codes for Energy Conservation

    Science.gov (United States)

    Gross, James G.; Pierlert, James H.

    1977-01-01

    Current activity intended to lead to energy conservation measures in building codes and standards is reviewed by members of the Office of Building Standards and Codes Services of the National Bureau of Standards. For journal availability see HE 508 931. (LBH)

  2. Energy Consumption Forecasting for University Sector Buildings

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2017-10-01

    Full Text Available Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type. A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed.

  3. Sault Tribe Building Efficiency Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  4. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  5. Building Energy Efficiency through Innovative Thermodevices (BEEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Y. Sungtaek [Univ. of California, Los Angeles, CA (United States); Dunn, Bruce [Univ. of California, Los Angeles, CA (United States); Pei, Qibing [Univ. of California, Los Angeles, CA (United States); Kim, C. -J. [Univ. of California, Los Angeles, CA (United States)

    2012-12-14

    This is the final scientific/technical report for the project "Compact MEMS Electrocaloric Cooling Module" sponsored by ARAPA-E as part of its Building Energy Efficiency through Innovative Thermodevices (BEEIT) program.

  6. Contrasting the capabilities of building energy performance simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, Drury B. [US Department of Energy, Washington, DC (United States); Hand, Jon W. [University of Strathclyde, Glasgow, Scotland (United Kingdom). Energy Systems Research Unit; Kummert, Michael [University of Wisconsin-Madison (United States). Solar Energy Laboratory; Griffith, Brent T. [National Renewable Energy Laboratory, Golden, CO (United States)

    2008-04-15

    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability. (author)

  7. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  8. Exergoeconomic analysis of glycol cold thermal energy storage systems for building applications. Paper no. IGEC-1-155

    International Nuclear Information System (INIS)

    Bakan, K.; Dincer, I.; Rosen, M.A.

    2005-01-01

    An exergoeconomic analysis is reported of glycol cold thermal energy storage (CTES) systems. Exergoeconomics combines thermodynamic analysis (using both the first and second laws of thermodynamics) with principles of economics, mostly cost accounting. Exergy analysis provides more meaningful and useful information than energy analysis about the efficiency and performance of glycol CTES. The main reason is that traditional analyses are based on mass and energy balances and only external losses can be detected, while exergy analysis measures the quality of energy and includes irreversibility's that occur during any process. According to simulation results, the exergy efficiency of the glycol CTES is roughly 75% less than the energy efficiency due to irreversibility's, and the system efficiency is less than the tank efficiency. Irreversibility's for the overall system are higher than for the tank. Also, the reference ambient temperature has an effect on exergy destruction and efficiency. A 5 o C change in ambient temperature causes a 25% change in exergy efficiency. This result implies that cold energy is more efficient at higher ambient temperatures. Heat losses from the tank depend on the ambient temperature; a 5 o C increase in ambient temperature causes a heat loss increase of 6%. (author)

  9. Energy balance framework for Net Zero Energy buildings

    Science.gov (United States)

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  10. Building energy efficiency in different climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Tsang, C.L.; Yang Liu

    2008-01-01

    Energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter - in China using DOE-2.1E. The primary aim was to investigate the thermal and energy performance of office buildings with centralised heating, ventilation and air conditioning plants in the major climatic zones in China. The computed results were analysed in three aspects - heating load, cooling load and the corresponding building energy consumption. The building peak monthly heating load varied from 142 MW h (1033 MW h cooling) in Hong Kong to 447 MW h (832 MW h cooling) in Harbin. It was also found that passive solar designs could have large energy savings potential in the severe cold and cold climates. In Harbin, the window solar component helped lower the annual building heating load by 650 MW h. Internal loads (lighting and office equipment) and part load operations of fans and pumps also played a significant role in the overall building energy efficiency. This paper presents the work, its findings and energy efficiency implications

  11. Revealing myths about people, energy and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.; Moezzi, M.

    2000-05-01

    In this essay we take a closer look at some energy myths, focusing on the ways energy professionals and the public alike, talk, write and teach about how energy affects the way in which we design, operate, retrofit and inhabit buildings. What myths about people, energy and buildings are current today? Who tells these myths and why do we believe them? How do myths affect our behavior? Myths are a way of understanding the world we live in. They may represent incomplete understanding, or be based on premises that are scientifically not valid, but they help us understand and explain how the world works, and we shape our behavior accordingly.

  12. Improving energy sustainability for public buildings in Italian mountain communities.

    Science.gov (United States)

    Mutani, Guglielmina; Cornaglia, Mauro; Berto, Massimo

    2018-05-01

    The objective of this work is to analyze and then optimize thermal energy consumptions of public buildings located within the mountain community of Lanzo, Ceronda and Casternone Valleys. Some measures have been proposed to reduce energy consumption and consequently the economic cost for energy production, as well as the harmful GHG emissions in the atmosphere. Initially, a study of the mountain territory has been carried out, because of its vast extension and climatic differences. Defined the communities and the buildings under investigation, energy dependant data were collected for the analysis of energy consumption monitoring: consumption data of three heating seasons, geometric buildings characteristics, type of opaque and transparent envelope, heating systems information with boiler performance and climatic data. Afterward, five buildings with critical energy performances were selected; for each of these buildings, different retrofit interventions have been hypothesized to reduce the energy consumption, with thermal insulation of vertical or horizontal structures, new windows or boiler substitution. The cost-optimal technique was used to choose the interventions that offered higher energy performance at lower costs; then a retrofit scenario has been planned with a specific financial investment. Finally, results showed possible future developments and scenarios related to buildings energy efficiency with regard to the topic of biomass exploitation and its local availability in this area. In this context, the biomass energy resource could to create a virtuous environmental, economic and social process, favouring also local development.

  13. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  14. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  15. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  16. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  17. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    Science.gov (United States)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  18. Energy efficiency in public buildings; Eficiencia energetica em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Kiperstok, Asher; Garcia, Agenor Gomes Pinto; Vianna, Luis Gustavo; Freitas, Daniela; Oliveira, Braulio; Azevedo, Alexandre; Alves, Igor; Fagundes, Vitor Lacerda [Universidade Federal da Bahia (TECLIM/UFBA), Salvador, BA (Brazil). Rede de Tecnologias Limpas

    2010-07-01

    The implementation process of a energy management system in buildings of the Bahia state administration is presented. Completed a first phase, with a prior knowledge of the characteristics of the energy use in buildings and the implementation of a daily consumption monitoring system (the Vianet), a second phase begins with the definition of consumption targets and mobilization actions of the people, both the whole of the users, and more strongly the 'eco team', group which shall be responsible for the management. This paper makes a theoretical consideration on the use of energy in buildings, showing the room for energy management in addition to the simple exchange by efficient equipment, estimates the reduction obtained by the energy efficiency program of the electric utility with the exchange of light fixtures and air conditioners, shows the targeting process and difficulties found and identifies measures that will be implemented to achieve increasingly efficient patterns of energy use. (author)

  19. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  20. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  1. Energy use in farm buildings

    OpenAIRE

    Hörndahl, Torsten

    2008-01-01

    In Sweden, the agricultural sector uses an estimated 3.7 TWh per year as electricity or fuel. About 34% of this total is estimated to be used in the production of beef, pork, eggs and milk, including the spreading of manure. Some energy is also used for harvesting ley and cereals as feed, which is not included. Most of the energy used is in the form of electricity (approx 63%). All these estimates are based on a 1981-1984 survey by Nilsson & Påhlstorp (1985). Most of the technical equipment i...

  2. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Patrick O' Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  3. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    -connected ZEBs - Net ZEBs, and the annual primary energy balance. The Life Cycle Cost (LCC) analysis conducted with a study case of a multi-storey residential Net ZEB aimed to determine the cost-optimal ''zero'' energy balance, minimum energy performance requirements and options of supplying renewable energy. The calculation encompassed three levels of energy frames, which mirrored the Danish low-energy building classes included in the current building code, and ten renewable energy supply systems including both on-site and off-site options. The results indicated that although the off-site options have lower life cycle costs than the on-site alternatives, their application would promote renewable technologies over energy efficiency measures. Thus, they oppose the Danish plans to gradually make the energy performance requirements stricter. Moreover, the results showed that district heating is a less cost-attractive solution than a ground source heat pump for a private building owner. Finally, with 2010-level of energy prices, cost-optimal ''zero'' energy balance accounts only for the building related energy use. (Author)

  4. Communal energy management. Integrated heat supply systems for buildings owned by the city of Altenburg; Kommunales Energiemanagement. Waermeverbundsysteme der Gebaeudeleittechnik der Stadt Altenburg

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.

    1999-03-01

    The city of Altenburg intended to reduce the investment, energy and operating cost of administrative buildings and schools. Apart from economically efficient power supply, emission reduction was another declared goal. This was achieved by integrated heat supply system and a centralized DDC facility management system. The solution combines high availability with user-friendliness, and the systems reflect the latest state of the art. [Deutsch] Die Stadt Altenburg suchte Wege, die Investitions-, Energie- und Betriebskosten fuer Verwaltungsgebaeude und Schulen zu senken. Neben der wirtschaftlichen Waermeversorgung war ein weiteres Ziel, die hohen Emissionswerte, besonders im inneren Stadtgebiet zu mindern. Die realisierten Waermeverbundsysteme und die zentrale DDC-Gebaeudeleittechnik der Stadt Altenburg gewaehrleisten dies. Die Loesung sichert ausserdem eine hohe Versorgungssicherheit mit Anwendungskomfort. Die Anpassung der Systeme an den jeweiligen Stand der Umweltanforderung und der Technik sind sehr gut gegeben. (orig./MSK)

  5. Optimal balance between energy demand and onsite energy generation for robust net zero energy buildings considering future scenarios

    NARCIS (Netherlands)

    Kotireddy, R.R.; Hoes, P.; Hensen, J.L.M.

    2015-01-01

    Net-zero energy buildings have usually very low energy demand, and consequently heating ventilation and air conditioning (HVAC) systems are designed and controlled to meet this low energy demand. However, a number of uncertainties in the building use, operation and external conditions such as

  6. Toward buildings with a positive energy balance

    International Nuclear Information System (INIS)

    Visier, Jean-Christophe

    2008-01-01

    As the results of the recent 'Grenelle of the Environment', which assembled French officials and organizations for a wide-ranging discussion of ecological issues, enter into application, buildings should gradually switch from being the foremost consumers of energy to becoming producers of energy. The stakes, technically, economically and socially, are enormous

  7. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  8. Alternativini zpusoby chlazeni budov (Alternative cooling systems for buildings)

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.L.M.

    2003-01-01

    in the Czech Republic, low energy in buildings and systems usually refers to low energy consumption for heating. However in modern office buildings cooling is becoming more and more important, therefore the associated energy consumption should also be considered. This paper introduces low energy

  9. The development of preliminary energy bench marking for office buildings in Malaysia

    International Nuclear Information System (INIS)

    Azah Ahmad; Asfaazam Kasbani

    2006-01-01

    Benchmarking energy consumption in buildings means comparing how much energy is used in a building to an average or theoretical standard relative to a set of similar buildings. Building energy benchmarking is a useful starting point for commercial building owners to target energy saving opportunities. Building owners can determine the energy performance efficiency level of their buildings and compare it to the entire group of office buildings of its class. It is also useful during the design stage of a new building or retrofit to determine if a design is relatively efficient. The energy performance of a building can be assessed using Building Energy Index (BEI) regardless of building's size, height or age. In the development of preliminary energy benchmarking for office buildings in Malaysia, Malaysia Energy Centre (PTM) has taken a step through its involvement with The Energy Efficiency and Conservation Network, via the Association of Southeast Asia Nations (ASEAN) Centre for Energy (ACE) through a project a develop a similar benchmarking system for various ASEAN members. Through data collection of 54 office building throughout Malaysia, preliminary or baseline energy consumption could be determined. This paper discusses the findings of current energy consumption of office buildings. I will also examine the overall trends of energy consumption among office buildings in Malaysia

  10. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2013-12-01

    Full Text Available The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water, solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to determine an optimal energy supply variant, the estimated results of energy, environmental, and economic evaluation have been converted into non-dimensional variables (3E using multi-criteria analysis.Article in Lithuanian

  11. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, Russell [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Maurer, Tessa [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  12. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  13. Building Community Knowledge Systems

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.

    2003-01-01

    managers. We followed the system from its introduction in early 1997 until it was abandoned in the beginning of 2000. We focused on the way the system was introduced in the organization, how it changed, and how the intended group of users received (and eventually rejected) the system. Based on our...

  14. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  15. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  16. Country Report on Building Energy Codes in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  17. Country Report on Building Energy Codes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  18. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  19. Energy system modelling and GIS to build an Integrated Climate Protection Concept for Gauteng Province, South Africa

    International Nuclear Information System (INIS)

    Tomaschek, Jan; Kober, Ralf; Fahl, Ulrich; Lozynskyy, Yuriy

    2016-01-01

    South Africa and specifically its economically dominant province of Gauteng aim to reduce their influence on climate change. Especially the transport sector is seen as one of the key drivers of future greenhouse gas (GHG) emissions. This paper describes the methodology used to combine the application of two models in order to provide a basis for informed policy recommendation for GHG mitigation. The TEMT model provides real world emission factors adapted to local conditions in Gauteng for numerous vehicle technology concepts. Those data feed into the TIMES-GEECO energy system model which identifies future technology use for different alternative scenarios. Finally, the scenario results are illustrated spatially using a GIS programme. The results of the scenario analysis show that under implemented policies GHG emissions in Gauteng are likely to increase substantially. Pollutant emissions are currently high as a result of a comparably old vehicle fleet. The spatial display of these results shows where the traffic network is concentrated and the location of so-called emission hot-spots. Energy efficient policies for the transport sector of Gauteng can achieve a significant reduction of emissions and energy consumption. Alternative powertrains and the use of locally produced biofuels can play a significant role in such policies. - Highlights: • Two models to assess the transport sector have been developed. • The methodology covers the energy system and locational information. • Application to Gauteng to provide input for a Climate Protection Concept. • Energy efficient polices will help to significantly reduce transport emissions. • Local renewable resources and efficient powertrains should be part of this policy.

  20. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  1. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    Science.gov (United States)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  2. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  3. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  4. Energy savings potential from improved building controls for the US commercial building sector

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  5. Energy efficiency in buildings. Yearbook 2016

    International Nuclear Information System (INIS)

    Poeschk, Juergen

    2016-01-01

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change. [de

  6. Zero energy office building renovation; Energieneutrale kantoorrenovatie

    Energy Technology Data Exchange (ETDEWEB)

    Deguelle, D.; Krijnen, M. [DHV, Amersfoort (Netherlands); Heijnis, J. [cepezed, Delft (Netherlands)

    2011-04-15

    Building Brains has been set up by TNO as a cooperative and started September 21, 2009. The aim of the project was to answer the question how the energy consumption in the Netherlands can be reduced by 50% up to 2030 or how the built environment can be made energy-neutral. This issue of the magazine is dedicated to Building Brains project. Four different renovation concepts are compared: energy-neutral renovation that involves the exclusive use of sustainable generated energy;.the application of the passive construction principles; the use of Double Skin Facades; and decentralized facade-integrated installation techniques. Following the results of this study two optimized refurbishment approaches for a zero energy office are designed. [Dutch] Building Brains is een door TNO opgezet samenwerkingsproject dat op 21 september 2009 van start ging. Het doel van het project is antwoord te geven op de vraag hoe tot 2030 het energiegebruik in Nederland kan worden gehalveerd of hoe de gebouwde omgeving energieneutraal kan worden gemaakt. Deze aflevering van het tijdschrift TVVL is vrijwel geheel gewijd aan het Building Brains project. Er is onderzocht hoe verschillende renovatieconcepten scoren. Er zijn vier renovatieconcepten met elkaar vergeleken: energie neutraal renoveren door middel van duurzame energieopwekking, toepassen van het passiefhuisprincipe, toepassen van een tweedehuidfacade en toepassen van een decentrale, gevel-geintegreerde installatie. Uit de studie kwamen twee geoptimaliseerde concepten voor een energieneutrale kantoorrenovatie naar voren.

  7. Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material.

    Science.gov (United States)

    Lamnatou, Chr; Motte, F; Notton, G; Chemisana, D; Cristofari, C

    2018-04-15

    Building-integrated solar thermal (BIST) systems are a specific type of solar thermal systems which are integrated into the building and they participate in building functionality. The present article is about the life-cycle assessment of different options of a BIST system (Mediterranean climatic conditions: Ajaccio, France). The environmental profile of the studied configurations is assessed by means of CED (cumulative energy demand), GWP (global warming potential) and EPBT (energy payback time). The proposed configurations (for the collector) include: i) a system without PCM (phase change material) using only rock wool as insulation and ii) a system with PCM (myristic acid) and rock wool. Concerning life-cycle results based on CED and GWP 100a (scenario without recycling), the configuration without PCM shows 0.67 MJ prim /kWh and 0.06 kg CO 2.eq /kWh while the configuration with PCM presents 0.74 MJ prim /kWh and 0.08 kg CO 2.eq /kWh. Regarding EPBT, if the inputs for pumping/auxiliary heating are not taken into account, both configurations (with/without PCM) have almost the same EPBT (about 1.3 years). On the other hand, if the inputs for pumping/auxiliary heating are considered, EPBT is lower for the system with PCM. In addition, scenarios with recycling have been examined and the results demonstrate that recycling considerably improves the environmental profile of the studied configurations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Energy and architecture: improvement of energy performance in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Matthias; Wycmans, Annemie; Solbraa, Anne; Grytli, Eir

    2011-07-01

    This book aims to give an overview of different aspects of retrofitting existing buildings. The target group is students of architecture and building engineering as well as building professionals. Eight out of ten buildings which we will inhabit in 2050 already exist. This means that a great potential for reducing our carbon footprint lies in the existing building stock. Students from NTNU have used the renovation of a 1950s school building at Linesoeya in Soer-Trondelag as a case to increase their awareness and knowledge about the challenges building professionals need to overcome to unite technical details and high user quality into good environmental performance. The students were invited by the building owners and initiators of LIPA Eco Project to contribute to its development: By retrofitting an existing building to passive house standards and combining this with energy generated on site, LIPA Eco Project aims to provide a hands-on example with regard to energy efficiency, architectural design and craftsmanship for a low carbon society. The overall goal for this project is to raise awareness regarding resource efficiency measures in architecture and particularly in existing building mass.(au)

  9. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  10. Resilient mounting systems in buildings

    NARCIS (Netherlands)

    Breeuwer, R.; Tukker, J.C.

    1976-01-01

    The basic elements of resilient mounting systems are described and various measures for quantifying the effect of such systems defined. Using electrical analogue circuits, the calculation of these measures is illustrated. With special reference to resilient mounting systems in buildings, under

  11. Diagnostic information system dynamics in the evaluation of machine learning algorithms for the supervision of energy efficiency of district heating-supplied buildings

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2017-01-01

    Highlights: • Energy efficiency classification sustainability benefits from knowledge prediction. • Diagnostic classification can be validated with its dynamics and current data. • Diagnostic classification dynamics provides novelty extraction for knowledge update. • Data mining comparison can be performed with knowledge dynamics and uncertainty. • Diagnostic information refinement benefits form comparing classifiers dynamics. - Abstract: Modern ways of exploring the diagnostic knowledge provided by data mining and machine learning raise some concern about the ways of evaluating the quality of output knowledge, usually represented by information systems. Especially in district heating, the stationarity of efficiency models, and thus the relevance of diagnostic classification system, cannot be ensured due to the impact of social, economic or technological changes, which are hard to identify or predict. Therefore, data mining and machine learning have become an attractive strategy for automatically and continuously absorbing such dynamics. This paper presents a new method of evaluation and comparison of diagnostic information systems gathered algorithmically in district heating efficiency supervision based on exploring the evolution of information system and analyzing its dynamic features. The process of data mining and knowledge discovery was applied to the data acquired from district heating substations’ energy meters to provide the automated discovery of diagnostic knowledge base necessary for the efficiency supervision of district heating-supplied buildings. The implemented algorithm consists of several steps of processing the billing data, including preparation, segmentation, aggregation and knowledge discovery stage, where classes of abstract models representing energy efficiency constitute an information system representing diagnostic knowledge about the energy efficiency of buildings favorably operating under similar climate conditions and

  12. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  13. THE EVALUATION OF THE SOLAR ORIENTED ENERGY EFFECTIVE BUILDING DESIGN UNDER THE MEDITERRANEAN CLIMATE CONDITIONS IN TERMS OF WATER HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Gizem TETİK

    2014-01-01

    Full Text Available Within the acknowledging of the fact that the half of the resources of the earth is being utilized for construction purposes; in this dissertation, which aims to lower this rate for our country by raising the awareness of the society, it is asserted that the utilization of the solar energy, unlike the common belief, should be considered as a passive manner during the design phase, before utilizing it in an active manner and the types of utilization, in which the solar energy can be benefitted at its full, is further demonstrated. Within this context, the analyses of the solar energy systems were conducted, the variables according to the climate and building types were discussed and the current suggestions for the improvement were presented along with the relevant literature reviews and case studies.

  14. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woloszyn, Monika [Universite de Lyon, Lyon F-69003 (France); Universite Lyon1, Villeurbanne F-69622 (France); INSA-Lyon, CETHIL UMR CNRS 5008, bat. Sadi Carnot, F-69621 Villeurbanne cedex (France); Kalamees, Targo [Chair of Building Physics and Architecture, Tallinn University of Technology, Ehiteja tee 5 19086 (Estonia); Olivier Abadie, Marc [Pontifical Catholic University of Parana - PUCPR/CCET-Thermal Systems Laboratory, Rua Imaculada Conceicao, 1155 Curitiba, PR 80215-901 (Brazil); LEPTIAB-University of La Rochelle, Avenue M. Crepeau, 17000 La Rochelle (France); Steeman, Marijke [Department of Architecture and Urban Planning, UGENT-Ghent University, J. Plateaustraat 22, 9000 Ghent (Belgium); Sasic Kalagasidis, Angela [Department of Building Technology, Chalmers University of Technology, Sven Hultins gata 8, 412 96 Gothenburg (Sweden)

    2009-03-15

    Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat-air-moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO{sub 2}) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level. (author)

  15. Heat Mismatch of future Net Zero Energy Buildings within district heating areas in Denmark<