WorldWideScience

Sample records for building energy efficiency

  1. Energy efficient building design

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  2. Energy efficiency of building envelope

    OpenAIRE

    2014-01-01

    November, 12-13th, in Saint-Petersburg the 7th International congress "Energy efficiency. XXI century" took place. The reports were done in breakuo groups according to the various aspects of energy efficiency challenge: HVAC systems, water supply and sewerage systems, gas supply, energy metering. One of the grourps was devoted to thermophysics of buildings and energy effective design of building envelope.

  3. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  4. Analysis of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LIDeying; FANYun; HAOBin

    2003-01-01

    This paper analyzes the matter of building energy efficiency and heating system, and puts forward the measure of heating innovation, aiming at the improvement of Chinese building energy efficiency and heating innovation, which exceeds some possible advice for future development.

  5. Energy Efficiency Approach to Intelligent Building

    Directory of Open Access Journals (Sweden)

    Gitanjali Birangal

    2015-07-01

    Full Text Available Energy efficiency has nowadays become one of the most challenging tasks and this has boosted research on fresh fields, such as Ambient Intelligence. Energy consumption in the housing and tertiary sectors is especially high in developed countries. There is a great potential for energy savings in these sectors. Energy conservation measures are developed for newly constructed buildings and for buildings under restoration. However, to achieve a significant diminution in energy consumption apart from the standard energy-efficiency methods, pioneering technologies should be implemented, including renewable energy. Now, buildings are increasingly anticipated to meet higher and more complex performance requirements. Among these requirements, energy efficiency is renowned as an international goal to promote energy sustainability. Different approaches have been adapted to concentrate on this goal, the most up to date relating consumption patterns with human occupancy. Energy efficiency is keywords that can be originate these days in all domains in which energy demand exists. A significant aspect that can improve the energy efficiency in buildings is the use of building automation systems. Alternatively, building automation systems are usually not considered for energy conservation, as they are mostly used for comfort and safety. This consistently causes immense problems due to an fruitless use of these systems and unawareness of energy consumption. It is therefore essential that the existing system solutions are adapted to focus on energy conservation. Our research approach in developing an intelligent system to improve energy efficiency in intelligent buildings, which takes into account the different technical infrastructures of building

  6. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... the authorities fail to mobilise the stakeholders to implement energy efficient technologies in local building practices. This points towards a need to reframe policy initiatives in order to take the complexity of the challenge of dissemination of energy efficient technologies in practice into account......; acknowledging that singular instruments are seldom sufficient to boost a wider transition in building practices, since no simple cause or driver for change exists. The municipal level is essential in facilitating change within energy efficient technologies, since municipals have strong interrelations...

  7. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  8. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  9. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  10. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  11. Sault Tribe Building Efficiency Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  12. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  13. Tools for Energy Efficiency in Buildings

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Aden, Nate; Tsakiris, Aristeidis

    With growing urbanization, our cities are playing an increasingly important role in accelerating energy efficiency improvements and mitigating climate change (REN21 2016). Cities are one of the biggest consumers of energy in the world, representing almost two-thirds of global primary energy demand...... and accounting for 70 per cent of greenhouse gas (GHG) emissions in the energy sector (IEA2016). Therefore, with urbanization forecast to continue cities will be a critical driver in the sustainable energy transition. Typically city governments have direct decision powers to implement policy actions, which have...... (Holder 2016). Population growth and urbanization are together expanding global building stocks that are increasing the urgency to reduce GHG emissions from the buildings sector by at least a quarter by 2030, in order to have a chance of limiting average global temperature increase to less than 2 degrees...

  14. Status and prospects of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LONGWeiding; ZHOUHui

    2003-01-01

    The paper briefly describes situation of building energy consumption in China. The authors indicate some relations in building energy efficiency should be dealt with properly: energy saving and energy efficiency, envelopes and building services systems, energy use and indoor environment, electric power saving and energy saving, devices and system, energy efficiency at stable state and at dynamic state. The authors suggest to use Coefficient of Energy Consumption as a Indicator of building energy efficiency.

  15. Energy Efficiency Improvement Potential in Historical Brick Building

    OpenAIRE

    Žogla, Gatis; Blumberga, Andra; Zvaigznītis, Kristaps; Dzikēvičs, Miķelis; Blumberga, Dagnija; Burinskiene, Marija

    2013-01-01

    Energy efficiency in historical heritage buildings is viewed as a taboo because these buildings usually are law-protected and no energy efficiency measures that would change the appearance of building are allowed. In this paper we look at a potential of increasing energy efficiency level in historical buildings. Measurements to determine energy efficiency of a historical brick building have been done, which also give the possibility to determine the potential of energy efficiency measures in ...

  16. Energy efficiency in buildings, industry and transportation

    Science.gov (United States)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  17. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  18. About energy saving and increase of energy efficiency in buildings

    OpenAIRE

    2010-01-01

    In the article the analysis of National law №261 "Energy saving and increase of energy efficiency..." from the point of view of building systems is given. The recommendations for modernization of heat, ventilation and air conditioning (HVAC) systems taking into account energy efficiency requirements are given.

  19. Analysis of a Building Energy Efficiency Certification System in Korea

    Directory of Open Access Journals (Sweden)

    Duk Joon Park

    2015-12-01

    Full Text Available The Korean government has established a national plan for the promotion of zero energy buildings to respond to climate change and energy crises. To achieve this plan, several energy efficiency policies for new and existing buildings have been developed. The Building Energy Efficiency Certification System (BEECS aims to promote the spread of high energy-efficient buildings by evaluating and certifying building energy performance. This study discussed Korean building energy efficiency policies and analyzed especially the influence of the BEECS on the actual energy consumption of a residential building and calculated energy performance of non-residential buildings. The BEECS was evaluated to have influence on gas and district heating consumption in residential buildings. For non-residential buildings, a decreasing trend was shown in calculated primary energy consumption in the years since the BEECS has been enacted. Appropriate improvements of the certification system were also discussed by analyzing relationship between building characteristics and their energy consumptions.

  20. Energy efficiency in multi-story buildings

    Directory of Open Access Journals (Sweden)

    Staritcyna Anastasiia

    2016-01-01

    Full Text Available In this project a research on energy efficiency of Malta house was provided, it is a residential multi-story building in Helsinki, Jätkäsaari area. This project describes introduction with a new heating system for residential dwellings, which uses only heated air. To maintain air temperature in comfort level heat recovery and district heating is used in the same system. The task was to research efficacy of the enclosure structures. For research the 3D model has been created in the program the Revit 2015 and Lumion 13. Thermotechnical calculation for three types of a design has been executed in the program U-value.net.

  1. Implications of building energy standard for sustainable energy efficient design in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Iwaro, Joseph; Mwasha, Abraham [University of West Indies, W. Department of Civil and Environmental Engineering, St. Augustine Campus (Trinidad and Tobago)

    2010-07-01

    The rapid growth of energy use, worldwide, has raised concerns over problems of energy supply, energy sustainability and exhaustion of energy resources. While most of the developed countries are implementing building energy standard rapidly to reduce building energy consumption and moving aggressively to achieve sustainable energy efficient building; the position of developing countries respect to energy standard implementation for this purpose is either poorly documented or not documented at all. Presently, there exists a gap between existing building designs and the increasing demand for sustainable energy efficient building design in developing countries. In that respect, this paper investigates the implementation status of building energy standards in developing countries and its implications for sustainable energy efficient designs in building. The present implementation status of building energy standard in 60 developing countries around the world, were analyzed using online survey. Hence, this study revealed the present implementation status of building energy standards in developing countries, implications for sustainable energy efficient designs in building and how building energy standards can be used to fill the gap between existing building designs and increasing demand for sustainable energy efficient building.

  2. Curriculum for Commissioning Energy Efficient Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Lia

    2012-09-30

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  3. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  4. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  5. Analysis of the Russian Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  6. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  7. 2009 EnerQuality energy efficiency/green building study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    An energy efficiency/green building study was conducted in 2009 related to the perceptions of consumers in making energy efficiency decisions. This presentation provided information and analysis related to the importance of energy efficiency when deciding on a new home purchase; reasons why energy efficiency is important to buyers; energy efficiency features proposed by the builder; the perceived benefit of energy efficient features; and how well builders communicate the benefits of an energy efficient home. In addition, the presentation described energy efficient features purchased by new home buyers and related cost; the likelihood of buyers to search and pay for an energy efficient home; measuring the awareness of different energy efficient certification labels; the importance buyers place on energy efficient certification labels; the importance buyers place on other green building aspects, in addition to energy efficiency; and new home buyers' perceptions toward energy efficiency. The presentation concluded that almost 9 out of 10 homeowners perceive energy efficiency to be important. In addition, cost savings is perceived to be the most important energy efficiency benefit to buyers followed by a healthier indoor environment. figs.

  8. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1981-05-01

    The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

  9. Analysis on energy efficiency in healthcare buildings.

    Science.gov (United States)

    García-Sanz-Calcedo, Justo

    2014-01-01

    The aim of this paper is to analyze and quantify the average healthcare centres' energy behavior and estimate the possibilities of savings through the use of concrete measures to reduce their energy demand in Extremadura, Spain. It provides the average energy consumption of 55 healthcare centres sized between 500 and 3,500 m². The analysis evaluated data of electricity and fossil fuel energy consumption as well as water use and other energy-consuming devices. The energy solutions proposed to improve the efficiency are quantified and listed. The average annual energy consumption of a healthcare centre is 86.01 kWh/m², with a standard deviation of 16.8 kWh/m². The results show that an annual savings of €4.77/m² is possible. The potential to reduce the energy consumption of a healthcare centre of size 1,000 m² is 10,801 kWh by making an average investment of €11,601, thus saving €2,961/year with an average payback of 3.92 years.

  10. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  11. The impact of clerestory lights on energy efficiency of buildings

    Directory of Open Access Journals (Sweden)

    Đenadić Dalibor M.

    2015-01-01

    Full Text Available The buildings are among major energy consumers, whose energy efficiency is rather low. Clerestory windows are responsible for a large portion of energy losses from the buildings. The energy efficiency of buildings can greatly be improved by upgrading clerestory and other windows. This paper focuses on the theoretical and experimental investigations on how this can be performed in an old school building in the town of Bor in eastern part of Serbia. For that purpose a modern measuring technique has been applied to identify the existing status, and to compare theoretical and actual conditions.

  12. Energy efficient design for residential buildings in China

    Institute of Scientific and Technical Information of China (English)

    R.YAO; K.STEEMERS; B.LI

    2003-01-01

    This paper illustrates an integrated energy design model based on the energy balance of a single zone. The results of energy efficient residential building design for the different climate zones of China by implementing an integrated energy model have been presented. Optimum measures of building design for typical Chinese residential buildings are introduced, with the objective of minimizingannual energy consumption for those buildings and improving thermal comfort. One overriding conclusion is that significant energy savings and thermal comfort can be achieved though optimum design.

  13. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions.

  14. Suitable scheme study of Chinese Building Energy Efficiency CDM Projects

    Science.gov (United States)

    Huang, Beijia; Yang, Haizhen; Wang, Shaoping; Wang, Feng

    2010-11-01

    China has great potential to develop Building Energy Efficiency Clean Development Mechanism (BEE CDM) projects, although have many challenges. Our results show that large-scale public buildings and urban residential buildings have relatively high BEE CDM potential, when comparing their characteristics to the CDM project requirements. The building enclosure, illumination energy conservation, air condition energy saving, solar thermal, and solar photovoltaic technology have relatively high application potential while considering the energy saving potential and marginal emission reduction cost. Case study of large-scale buildings shows that technology integration of building enclosure, illumination energy conservation, air condition energy saving, solar thermal can reduce required building number to 130 in order to meet the 1×105 tCO2 e/a reduction criteria. Some suggestions are also given in this paper.

  15. Building technology. Renewable energies, building automation, energy efficiency; Gebaeudetechnik. Erneuerbare Energien, Gebaeudeautomation, Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Veit, Joerg; Schmidt, Peer (eds.)

    2012-07-01

    The functionality and efficiency of a building significantly are influenced by the installations of technical building equipment and especially by the building automation. Under this aspect, the authors of the book under consideration report on new ideas for an enhanced energy efficiency. At first, important regulations and laws (Renewable Energy Law, Act for the Retention, Modernisation and Expansion of Combined Heat and Power) are presented. In the chapter on renewable energies, the authors specifically address photovoltaic systems. Other features of this book are building automation, energy efficiency, operational and project management. The last chapter of this book presents an overview of trade fairs and events as well as training centres of the Zentralverband der Deutschen Elektro- und Informationstechnischen Handwerke (Frankfurt (Main), Federal Republic of Germany) and of the national associations.

  16. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  17. Durability of future energy-efficient building components

    DEFF Research Database (Denmark)

    Lauritsen, Diana

    Over the last decade, there has been a goal-oriented focus in the European Union on energy efficiency in the building sector to free it from the use of fossil fuels. Increases in the energy efficiency of building components means increased initial costs, for both new buildings and renovations...... tools. The method includes both energy analysis compared to current and future energy requirements, and analysis of possible failures in the building design (Failure Mode and Effects analysis). The method also includes an economic perspective (Net present value) given that the choice of a specific...... that the maintenance is already thought into the solution, so that the work can be done fast and easily with a minimum of expense. Minimizing costs is an important aspect in the complete solution so that we not only develop energy-efficient solutions, but also solutions that are economical. Two case studies were...

  18. Energy Efficient Buildings, Salt Lake County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through

  19. Residential building thermal performance energy efficiency in Yangtze River basin

    Institute of Scientific and Technical Information of China (English)

    王厚华; 庄燕燕; 吴伟伟

    2009-01-01

    Using energy consumption software VisualDOE4.0,simulation was carried out on the energy consumption of a typical residential building in Yangtze River basin,with a focus on thermal performance of envelope each component and application of total heating recovery equipment. The effects of thermal performance of building envelope each component on energy efficiency ratio were analyzed. Comprehensive measures schemes of energy saving were designed by the orthogonal experiment. The energy efficiency ratios of different envelopes combination schemes were gained. Finally,the optimize combination scheme was confirmed. With the measurement dates,the correctness of the simulation dates was completely verified.

  20. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  1. Energy efficiency in public buildings; Eficiencia energetica em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Kiperstok, Asher; Garcia, Agenor Gomes Pinto; Vianna, Luis Gustavo; Freitas, Daniela; Oliveira, Braulio; Azevedo, Alexandre; Alves, Igor; Fagundes, Vitor Lacerda [Universidade Federal da Bahia (TECLIM/UFBA), Salvador, BA (Brazil). Rede de Tecnologias Limpas

    2010-07-01

    The implementation process of a energy management system in buildings of the Bahia state administration is presented. Completed a first phase, with a prior knowledge of the characteristics of the energy use in buildings and the implementation of a daily consumption monitoring system (the Vianet), a second phase begins with the definition of consumption targets and mobilization actions of the people, both the whole of the users, and more strongly the 'eco team', group which shall be responsible for the management. This paper makes a theoretical consideration on the use of energy in buildings, showing the room for energy management in addition to the simple exchange by efficient equipment, estimates the reduction obtained by the energy efficiency program of the electric utility with the exchange of light fixtures and air conditioners, shows the targeting process and difficulties found and identifies measures that will be implemented to achieve increasingly efficient patterns of energy use. (author)

  2. Schneider Electric called on real estate leaders to build Energy Efficient Buildings

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Schneider Electric, the global specialist of energy management, together with China Real Estate Industry Association, China Real Estate & Residential Association and China Building Electricity Efficiency Association, implored real estate industry leaders to sign a petition to pledge their dedication towards the building of energy efficient buildings.

  3. Energy efficiency of buildings with phase-change materials

    Directory of Open Access Journals (Sweden)

    Lukić Predrag

    2012-01-01

    Full Text Available The construction of energy efficient buildings using innovative building materials such as phase change materials, in addition to improving indoor comfort, energy savings and costs, can be achieved by increasing their market value. Because of its ability to absorb and release energy at predictable temperatures, phase change materials are effective in controlling and maintaining the thermal environment in the building. The use of phase changing materials, materials stored latent energy storage is an effective form of heat. [Projekat Ministarstva nauke Republike Srbije, br. TR36016: Experimental and theoretical investigation of frames and plates with semi-rigid connections from the view of the second order theory and stability analysis

  4. Improved energy efficiency and optimization of microclimate in buildings

    Directory of Open Access Journals (Sweden)

    Trifunovič Dragišić Vesna

    2016-01-01

    Full Text Available Nowadays it is possible to reduce energy consumption without losing comfort as a result of using efficient energy saving technologies and advanced environment control methods for buildings. One of the measures to improve energy performance of buildings can be installation of decentralized air intake and exhaust mechanical ventilation systems with plate heat exchangers in apartments making it possible to «return» up to 85% of thermal energy. The article deals with the decentralized system controlled ventilation with heat recovery and alternative solutions heating supply air in residential buildings.

  5. Saving Energy in Historic Buildings: Balancing Efficiency and Value

    Science.gov (United States)

    Cluver, John H.; Randall, Brad

    2012-01-01

    By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic integrity and…

  6. Energy Efficiency of Higher Education Buildings: A Case Study

    Science.gov (United States)

    Soares, Nelson; Pereira, Luísa Dias; Ferreira, João; Conceição, Pedro; da Silva, Patrícia Pereira

    2015-01-01

    Purpose: This paper aims to propose an energy efficiency plan (with technical and behavioural improvement measures) for a Portuguese higher education building--the Teaching Building of the Faculty of Economics of the University of Coimbra (FEUC). Design/methodology/approach: The study was developed in the context of both the "Green…

  7. Capacity of Building Energy Efficiency in Liepaja

    Directory of Open Access Journals (Sweden)

    Lilita Ābele

    2014-04-01

    Full Text Available Ventilation with recuperation is a means of reducing heat consumption per square meter below 50 (kWh/m2 in Latvia through proper project design and trained personnel. The aim of this research is to show necessity for a ventilation system with recuperation. This research would further permit preparing recommendations for responsible decision-makers. There are no regulatory enactments that would provide ventilations indispensability during the renovation process in Latvia. The recommendation for ventilation with recuperation should be incorporated during the renovation as a mandatory requirement in Latvia. Renovated buildings with European co-financing in Liepaja city have been used as a research basis. Different renovated building groups are compared: those without ventilation, with ventilation, ventilation with recuperation. Each one of these building groups will have more than one object. The obtained data will be heat consumption per square meter (kWh/m2. It is not possible to achieve good results with badly designed projects as well as with non-trained personnel, therefore this system is quite often either not used or ignored. Ventilation with recuperation is to be a mandatory requirement in renovated buildings. During the research it has been realized that the available information is not sufficient to compare renovation processes in other countries of comparable climatic conditions. It would be preferable to meet researchers working on similar themes to be able to share mutual experience and to promote co-operation in this field.

  8. Town planning parameters in the function of building energy efficiency

    Directory of Open Access Journals (Sweden)

    Bogdanović-Protić Ivana

    2015-01-01

    Full Text Available Energy efficient building is that consuming the least energy while providing comfort. The energy consumption of buildings, in general, as well as in Serbia, is among other things conditioned by the heating, cooling and lighting requirements with a goal of achieving of thermal and light comfort. Heating energy consumption is the result of heat loss and gain, and their values, in addition to other parameters, depend on town planning parameters. The paper focuses on the comparative analysis of impact of building different exposures to wind as well as on impact of the different prevailing orientations on energy efficiency of buildings. [Projekat Ministarstva nauke Republike Srbije, br. 36042: Optimizacija arhitektonskog i urbanističkog planiranja i projektovanja u funkciji održivog razvoja Srbije

  9. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  10. Capacity of Building Energy Efficiency in Liepaja

    Directory of Open Access Journals (Sweden)

    L. Ābele

    2014-03-01

    Full Text Available Ventilation with recuperation is a means of reducing heat consumption per square meter below 50 (kWh/m2 in Latvia through proper project design and trained personnel. The aim of this research is to show necessity for a ventilation system with recuperation.  This research would further permit preparing recommendations for responsible decision-makers. There are no regulatory enactments that would provide ventilations indispensability during the renovation process in Latvia. The recommendation for ventilation with recuperation should be incorporated during the renovation as a mandatory requirement in Latvia. Renovated buildings with European co-financing in Liepaja city have been used as a research basis. Different renovated building groups are compared: those without ventilation, with ventilation, ventilation with recuperation. Each one of these building groups will have more than one object. The obtained data will be heat consumption per square meter (kWh/m2. It is not possible to achieve good results with badly designed projects as well as with non-trained personnel, therefore this system is quite often either not used or ignored. Ventilation with recuperation is to be a mandatory requirement in renovated buildings. During the research it has been realized that the available information is not sufficient to compare renovation processes in other countries of comparable climatic conditions. It would be preferable to meet researchers working on similar themes to be able to share mutual experience and to promote co-operation in this field.DOI: http://dx.doi.org/10.5755/j01.erem.67.1.5858

  11. Intervention strategies for energy efficient municipal buildings: Influencing energy decisions throughout buildings` lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The current energy-related decisionmaking processes that take place during the lifetimes of municipal buildings in San Francisco do not reflect our ideal picture of energy efficiency as a part of staff awareness and standard practice. Two key problems that undermine the success of energy efficiency programs are lost opportunities and incomplete actions. These problems can be caused by technology-related issues, but often the causes are institutional barriers (organizational or procedural {open_quotes}people problems{close_quotes}). Energy efficient decisions are not being made because of a lack of awareness or policy mandate, or because financial resources are not available to decisionmakers. The Bureau of Energy Conservation (BEC) is working to solve such problems in the City & County of San Francisco through the Intervention Strategies project. In the first phase of the project, using the framework of the building lifetime, we learned how energy efficiency in San Francisco municipal buildings can be influenced through delivering services to support decisionmakers; at key points in the process of funding, designing, constructing and maintaining them. The second phase of the project involved choosing and implementing five pilot projects. Through staff interviews, we learned how decisions that impact energy use are made at various levels. We compiled information about city staff and their needs, and resources available to meet those needs. We then designed actions to deliver appropriate services to staff at these key access points. BEC implemented five pilot projects corresponding to various stages in the building`s lifetime. These were: Bond Guidelines, Energy Efficient Design Practices, Commissioning, Motor Efficiency, and Facilities Condition Monitoring Program.

  12. Interactive Visualization of Heterogeneous Data for Energy Efficiency of Buildings

    OpenAIRE

    Rodriguez, Nancy; Lange, Benoit; Puech, William

    2013-01-01

    International audience; Since 1997, Kyoto protocol has highlighted the importance of a rational usage of energy. France and the EU have fixed several objectives concerning reduction of energy consumption and of greenhouse gas emission, and use of renewable energies. The main goal of the RIDER project (Research for IT Driven EneRgy Efficiency), is to develop an ICT-­‐based smart plataform for multiscale and multistandard energy management of buildings. In particular, the visualization componen...

  13. Building Energy-Efficiency Best Practice Policies and Policy Packages

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); de la Rue de Can, Stephane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Amann, Jennifer Thorne [American Council for an Energy-Efficient Economy (ACEEE), Washington, D.C. (United States); Staniaszek, Dan [Sustainability Consulting Ltd., London (United Kingdom)

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO2 emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries.

  14. Environmental effects and energy efficiency in building design - a green building approach. Pt. 1. Energy efficiency techniques

    Energy Technology Data Exchange (ETDEWEB)

    Egle, C.; Pitts, G.C.

    1993-12-31

    A research report describes the energy efficiency techniques to be employed in designing a building which is ``green``. Topics covered include building fabric performance, ventilation and infiltration, passive solar design, heating systems and controls, hot and cold water provision, lighting and electrical appliances. (UK)

  15. Scheduling home appliances for energy efficient buildings

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Kardaras, Georgios; Iversen, Villy Bæk

    2010-01-01

    the electrical devices are classified into low and high priority groups. The high priority devices are always granted power in order to operate normally. On the contrary, the low priority devices are granted or denied access to electrical power according to; their energy consumption and the available margin....... This can become beneficial for both energy companies and users. The electricity suppliers companies will be capable of regulating power generation during demand peaks. Moreover, users can be granted lower electricity bill rates for accepting delaying the operation of some of their appliances. To analyze...

  16. Financing Energy Efficiency in Buildings. Rebuild America Guides Series.

    Science.gov (United States)

    Zelinski, Richard W.; Gatlin, Douglas R.

    The Rebuild America Program, a network of community partnerships of local businesses and governments organized to save money by saving energy through improvements in building energy efficiencies, provides technical and business manuals designed to meet the real-life needs of these partnerships. This document, written for organizations considering…

  17. Buildings Energy Efficiency: Interventions Analysis under a Smart Cities Approach

    Directory of Open Access Journals (Sweden)

    Gabriele Battista

    2014-07-01

    Full Text Available Most of the world’s population lives in urban areas and in inefficient buildings under the energy point of view. Starting from these assumptions, there is the need to identify methodologies and innovations able to improve social development and the quality of life of people living in cities. Smart cities can be a viable solution. The methodology traditionally adopted to evaluate building energy efficiency starts from the structure’s energy demands analysis and the demands reduction evaluation. Consequently, the energy savings is assessed through a cascade of interventions. Regarding the building envelope, the first intervention is usually related to the reduction of the thermal transmittance value, but there is also the need to emphasize the building energy savings through other parameters, such as the solar gain factor and dye solar absorbance coefficients. In this contribution, a standard building has been modeled by means of the well-known dynamic software, TRNSYS. This study shows a parametrical analysis through which it is possible to evaluate the effect of each single intervention and, consequently, its influence on the building energy demand. Through this analysis, an intervention chart has been carried out, aiming to assess the intervention efficiency starting from the percentage variation of energy demands.

  18. Indoor air quality in energy efficient buildings. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Berge, Magnar

    2012-07-01

    There is currently a major focus on measures to reduce global warming. Several international studies show that the energy efficiency of buildings is the easiest and most cost-effective climate action. Passive houses are characterized of that the buildings are more airtight, have more insulation and has balanced mechanical ventilation with heat recovery. This report discusses about this one-sided focus on energy conservation, and if {sup c}hange{sup }in building methods can have a negative impact on indoor air quality and people's health. (Author)

  19. PEB: thermal oriented architectural modeling for building energy efficiency regulations

    OpenAIRE

    Leclercq, Pierre; Juchmes, Roland; Delfosse, Vincent; Safin, Stéphane; Dawans, Arnaud; Dawans, Adrien

    2011-01-01

    As part of the overhauling of the building energy efficiency regulations (following European directive 2002/91/CE), the Wallonia and Brussels-Capital Region commissioned the LUCID to develop an optional 3D graphic encoding module to be integrated with the core energy efficiency computation engine developed by Altran Europe. Our contribution consisted mostly in analyzing the target users’ needs and representations (ergonomics, UI, interactions) and implementing a bespoke 3D CAD modeler dedicat...

  20. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  1. Energy Efficiency in the North American Existing Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This report presents the findings of a new assessment of the techno-economic and policy-related efficiency improvement potential in the North American building stock conducted as part of a wider appraisal of existing buildings in member states of the International Energy Agency. It summarizes results and provides insights into the lessons learned through a broader global review of best practice to improve the energy efficiency of existing buildings. At this time, the report is limited to the USA because of the large size of its buildings market. At a later date, a more complete review may include some details about policies and programs in Canada. If resources are available an additional comprehensive review of Canada and Mexico may be performed in the future.

  2. Building Energy-Efficiency Best Practice Policies and Policy Packages

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Can, Stephane de la Rue de; Zheng, Nina; Williams, Christopher; Amman, Jennifer; Staniaszek, Dan

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO{sub 2} emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries. At the same time, the buildings sector has been particularly resistant to achieving this potential. Technology in other sectors has advanced more rapidly than in buildings. In the recent past, automobile companies have made large investments in designing, engineering, and marketing energy efficient and alternative fuel vehicles that reduce greenhouse gas emissions. At the same time, the buildings sector – dependent on millions and millions of decisions by consumers and homeowners – face a large variety of market barriers that cause very substantial underinvestment in energy efficiency. How can the trajectory of energy use in buildings be changed to reduce the associated CO{sub 2} emissions? Is it possible to greatly accelerate this change? The answer to these questions depends on policy, technology, and behavior. Can policies be crafted and implemented to drive the trajectory down? Can the use of existing energy efficiency technologies be increased greatly and new technologies developed and brought to market? And what is the role of behavior in reducing or increasing energy use in buildings? These are the three overarching issues

  3. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  4. Multicriteria analysis of health, comfort and energy efficiency in buildings

    NARCIS (Netherlands)

    Roulet, C.A.; Flourentzou, F.; Foradini, F.; Bluyssen, P.; Cox, C.; Aizlewood, C.

    2006-01-01

    In order to comply with sustainable development policy, the minimum that buildings should achieve are a healthy, comfortable and energy-efficient environment. Criteria for individually assessing each of the many criteria are known: the occupant's perceived health; the provided thermal, visual and ac

  5. An energy efficient building for the Arctic climate

    DEFF Research Database (Denmark)

    Vladyková, Petra

    the fundamental definition of a passive house in the Arctic and therefore to save the cost of traditional heating, but that would incur high costs for the building materials and the provision of technical solutions of extremely high standards which would take too many years to pay back in the life time...... in the Arctic needs to take into account also different socioeconomic conditions, building traditions and use of buildings, survival issue, sustainability and power supply, among others. In the Arctic, the energy efficient house based on a passive house concept offers a sustainable solution to the operation...

  6. Thermally activated building systems in context of increasing building energy efficiency

    Directory of Open Access Journals (Sweden)

    Stojanović Branislav V.

    2014-01-01

    Full Text Available One of the possible ways to provide heating to the building is to use thermally activated building systems. This type of heating, besides providing significant increase in building energy efficiency, allows using low-temperature heating sources. In this paper, special attention is given to opaque part of the building façade with integrated thermally activated building systems. Due to fact that this type of system strongly depends on temperature of this construction-thermal element and type and thickness of other materials of the façade, influence of these parameters on energy efficiency was analyzed in this paper. Since the simplest and most promising way of using geothermal energy is to use it directly, for our analysis this source of energy was selected. Building energy needs for heating were obtained for real residential multi-family building in Serbia by using EnergyPlus software. The building with all necessary input for simulation was modeled in Google SketchUp with aid of Open Studio Plug-in. Obtained results were compared with measured heating energy consumption. The results show that thermally activated building systems represent good way to increase building energy efficiency and that applying certain temperatures within this element, low-energy house standard can be achieved.

  7. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  8. Managing carbon emissions in China through building energy efficiency.

    Science.gov (United States)

    Li, Jun; Colombier, Michel

    2009-06-01

    This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework.

  9. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M [ORNL; Nutaro, James J [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, where the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.

  10. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  11. EPA's Energy Star Buildings Provides a Road Map to Energy Efficiency.

    Science.gov (United States)

    Guarneiri, Michele

    1997-01-01

    Several colleges and universities participate in the Environmental Protection Agency (EPA) Energy Star Buildings program, in which institutions commit to improving their buildings' energy efficiency and reducing energy costs. All participants must also be a Green Lights Program participant or agree to specific building-wide lighting upgrades. The…

  12. Learning from experiences with energy efficient retrofitting of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, S. [ed.; Nilsson, P.E.; Aronsson, S.; Gusten, J.

    1996-10-01

    Retrofitting is a means of rectifying existing building deficiencies, improving the standard of a building and, sometimes, making it suitable for alternative uses. The main purpose of this report is to provide information about demonstrated and monitored retrofit measures and, as far as possible, to illustrate the lessons learned by examining measures applied to a number of demonstration projects. The report is primarily aimed at residential building owners and administrators, and planners at regional and national levels to give them an overview of possible energy saving techniques and applications. In part two of this report the energy end-use in residential buildings is considered, both generally and at the international level (chapter 2). In chapters 3 and 4 of Part two retrofitting of the building envelope and building services are discussed, while in chapter 5 the options for using more energy efficient domestic appliances are dealt with. In Part three details of 21 demonstration projects are presented in a standard format. 17 figs., 6 tabs., 8 refs.

  13. Energy-efficient buildings program evaluations. Volume 2: Evaluation summaries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Mayi, D.; Edgemon, S.D.

    1997-04-01

    This document presents summaries of code and utility building program evaluations reviewed as the basis for the information presented in Energy-Efficient Buildings Program Evaluations, Volume 1: Findings and Recommendations, DOE/EE/OBT-11569, Vol. 1. The main purpose of this volume is to summarize information from prior evaluations of similar programs that may be useful background for designing and conducting an evaluation of the BSGP. Another purpose is to summarize an extensive set of relevant evaluations and provide a resource for program designers, mangers, and evaluators.

  14. Summarization of Energy efficiency in buildings in West China

    Institute of Scientific and Technical Information of China (English)

    LINZhenguo; ZHANGSuyun; FUXiangzhao; XIAOYimin; BAIXuelian

    2003-01-01

    According to the different climatic characters of the different regions in West China, combining with energy efficiency in buildings (EEB) standards and local resources, this paper discussed the technologies of EEB applicable in the representative cities of freezing, cold, hot-summer and cold-winter, warm regions. The author exploredthe keystones of the EEB technologies'' development, but hasn''t recommended technology of EEB concretely.

  15. Providing for energy efficiency in homes and small buildings. Part I. Understanding and practicing energy conservation in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Parady, W. Harold; Turner, J. Howard

    1980-06-01

    This is a training program to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic guide, which contains three parts. Part I considers the following: understanding the importance of energy; developing a concern for conserving energy; understanding the use of energy in buildings; care and maintenance of energy-efficient buildings; and developing energy-saving habits. A bibliography is presented.

  16. An Occupant Behavior Model for Building Energy Efficiency and Safety

    Science.gov (United States)

    Pan, L. L.; Chen, T.; Jia, Q. S.; Yuan, R. X.; Wang, H. T.; Ding, R.

    2010-05-01

    An occupant behavior model is suggested to improve building energy efficiency and safety. This paper provides a generic outline of the model, which includes occupancy behavior abstraction, model framework and primary structure, input and output, computer simulation results as well as summary and outlook. Using information technology, now it's possible to collect large amount of information of occupancy. Yet this can only provide partial and historical information, so it's important to develop a model to have full view of the researched building as well as prediction. We used the infrared monitoring system which is set at the front door of the Low Energy Demo Building (LEDB) at Tsinghua University in China, to provide the time variation of the total number of occupants in the LEDB building. This information is used as input data for the model. While the RFID system is set on the 1st floor, which provides the time variation of the occupants' localization in each region. The collected data are used to validate the model. The simulation results show that this presented model provides a feasible framework to simulate occupants' behavior and predict the time variation of the number of occupants in the building. Further development and application of the model is also discussed.

  17. Energy-Efficient Building HVAC Control Using Hybrid System LBMPC

    CERN Document Server

    Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

    2012-01-01

    Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

  18. Software augmented buildings: Exploiting existing infrastructure to improve energy efficiency and comfort in commercial buildings

    Science.gov (United States)

    Balaji, Bharathan

    Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide

  19. Energy Demands and Efficiency Strategies in Data Center Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature

  20. Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengpeng, E-mail: xupp.cn@gmail.com [Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong (Hong Kong); Chan, Edwin Hon-Wan; Queena Kun Qian [Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong (Hong Kong)

    2011-11-15

    Hotel building is a type of high-energy-consuming building and most existing hotel buildings need energy efficiency improvement in China. Energy performance contracting (EPC) is considered a win-win mechanism to organize building energy efficiency retrofit (BEER) project. However, EPC mechanism has been introduced into China relatively recently and many EPCs have not been successful in building energy efficiency retrofit projects. This research aims to develop a set of critical success factors (CSFs) of EPC for sustainable energy efficiency retrofit (BEER) of hotel buildings in China. Semi-structured interviews and a questionnaire survey with practitioners and other professionals were conducted. The findings reveal the relative importance of the 21 number of identified success factors. In order to explore the underlying relationship among the identified critical success factors (CSFs), factor analysis method was adopted for further investigation, which leads to grouping the 21 identified CSFs into six clusters. These are (1) project organization process, (2) EPC project financing for hotel retrofit, (3) knowledge and innovation of EPC, sustainable development (SD), and M and V, (4) implementation of sustainable development strategy, (5) contractual arrangement, and (6) external economic environment. Finally, several relevant policies were proposed to implement EPC successfully in sustainable BEER in hotel buildings. - Highlights: > EPC is a win-win mechanism to organize building energy efficiency retrofit project. > CSFs of EPC mechanism for sustainable BEER of hotel building in China are examined. > Six clusters are extracted from 21 identified CSFs based on factor analysis.

  1. Energy efficiency in new museum build: THEpUBLIC

    Science.gov (United States)

    Battle, G.; Yuen, C. H. N.; Zanchetta, M.; D'Cruz, P.

    2006-12-01

    The project MUSEUMS, awarded the Thermie Grant from the European Commission, has applied and tested new and innovative technologies for optimizing energy efficiency and sustainability in nine retrofitted and new museum buildings in Europe. The project will significantly contribute to the acceptance of innovative and renewable technologies in public buildings by demonstrating that retrofitted and new museum buildings can fully meet architectural, functional, comfort, control and safety requirements as well as achieve total energy savings of over 35% and reduce CO2 emissions by over 50%. THEpUBLIC will be a stunning and modern flagship building containing six storeys, with a total area of 11,000Âm2 of galleries for exhibitions, digital art and hands-on displays. In addition, there will be workspaces, creative spaces, retail opportunities, restaurant facilities, public areas, conference rooms and other multi-function spaces. Initiated by Jubilee Arts, the THEpUBLIC, designed by Alsop Architects, will introduce and engage its 400,000 expected visitors in the principles of energy and the environment through a display of art, education, technology and entertainment in the centre of West Bromwich, Sandwell. It will serve as a catalyst for urban regeneration within Sandwell.Battle McCarthy's key environmental design solutions for THEpUBLIC include natural daylighting, mixed-mode ventilation system with operable windows, low energy and maintenance cost systems, potential for integrating renewable energy collection systems, borehole water systems for cooling and water supply, an intelligent facade system with external shading and natural ventilation and night cooling systems.

  2. Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

    Science.gov (United States)

    Antonopoulos, Chrissi Argyro

    This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed

  3. Technological options for and Chinese government regulation of building energy efficiency

    Institute of Scientific and Technical Information of China (English)

    FANYaming; LINZhenguo; FUXiangzhao

    2003-01-01

    Improvement of building energy efficiency, as a part of sustainable development strategies, makes great contribution to global environment protection and energy security. Presented in this paper are (i) a comprehensive overview of the technological options for building energy efficiency, (ii) government regulation of building energy efficiency, especially in China, (iii) some suggestions suitable for China.

  4. U.S. Building-Sector Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  5. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    Science.gov (United States)

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  6. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2015-11-01

    Full Text Available Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria. Measurements of indoor parameters (climate, chemical pollutants and biological contaminants were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  7. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  8. Nano-based PCMs for building energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  9. Influence of Energy Efficient Elements on Energy Saving in Residential Buildings: Case Study of Three Apartments in Penang

    Directory of Open Access Journals (Sweden)

    Nejad Moghadam M.H.

    2014-01-01

    Full Text Available This paper examined the energy consumption of energy efficient buildings, and ascertained the extent to which these buildings are efficient when compared to normal buildings. For this purpose, the early literature regarding energy efficient buildings and the related elements have been reviewed, then three energy efficient buildings have been chosen and data collected from their occupants through a questionnaire. The data was then analysed by computing the average yearly electricity consumption per square feet, for both energy efficient buildings and normal buildings. A comparison of the results showed that the energy consumption in energy efficient buildings was almost half that of the normal buildings. Finally a few suggestions are proposed for promoting these types of energy efficient buildings which will eventually lead to economic growth and environment protection.

  10. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  11. Towards a Wireless Sensor Platform for Energy Efficient Building Operation

    Institute of Scientific and Technical Information of China (English)

    Karsten Menzel; Dirk Pesch; Brendan O'Flynn; Marcus Keane; Cian O'Mathuna

    2008-01-01

    Currently, the IT-support for energy performance rating of buildings is insufficient. So-called IT-platforms often "built" of an ad-hoc, inconsistent combination of off-the-shelf building management compo-nents, distributed data metering equipment and several monitoring software tools. A promising approach to achieve consistent, holistic performance data management is the implementation of an integrated, modular wireless sensor platform. This paper presents an approach of how wireless sensors can be seamlessly inte-grated into existing and future intelligent building management systems supporting improved building per-formance and diagnostics with an emphasis on energy management.

  12. 76 FR 64924 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2011-10-19

    ... three stories) such as condominiums and garden apartments. If the Secretary determines that the revision...: Building thermal envelope improvements. Increases in prescriptive insulation levels of walls, roofs and... Efficiency Building Thermal Envelope Improvements Table R402.1.1 which specifies prescriptive...

  13. Building Energy Efficiency and the Use of Raw Materials

    Science.gov (United States)

    Yuan, Luo

    To become a country of energy saving, consumption reduction, low carbon emissions and life has become a national policy background, we need to convert conception of architectural aesthetics and make necessary adjustments and consciousness. Techniques and methods of support, or method of the research are still needed in the construction, building energy conservation, the environmental protection, low carbon and recycling methods are taken measures. Developing, finding and adopingt "native" and "primary" processed materials, or in which inject new technology to form new material is an effective approach to ensure more ways from environmental protection, energy-saving building and building materials in such ideas to implement.

  14. Thermal comfort and energy-efficient cooling of nonresidential buildings

    CERN Document Server

    Kalz, Doreen

    2014-01-01

    This book supports HVAC planners in reducing the cooling energy demand, improving the indoor environment and designing more cost-effective building concepts. High performance buildings have shown that it is possible to go clearly beyond the energy requirements of existing legislation and obtaining good thermal comfort. However, there is still a strong uncertainty in day-to-day practice due to the lack of legislative regulations for mixed-mode buildings which are neither only naturally ventilated nor fully air-conditioned, but use a mix of different low-energy cooling techniques. Based on the f

  15. Providing for energy efficiency in homes and small buildings: student workbook

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    This workbook parallels the basic manual, providing for energy efficiency in homes and small buildings consisting of three parts: understanding and practicing energy conservation in buildings; determining amount of energy lost or gained in a building; and determining which practices are most efficient and installing materials. A teacher guide is available to answer questions in the student workbook related to these subjects.

  16. Energy efficient building design. A transfer guide for local governments

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  17. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  18. State Policy Initiatives for Financing Energy Efficiency in Public Buildings.

    Science.gov (United States)

    Business Officer, 1984

    1984-01-01

    Alternative financing methods (other than state financing) for developing cost-effective energy efficiency projects are discussed. It is suggested that by properly financing energy efficiency investments, state campuses can generate immediate positive cash savings. The following eight initiatives for maximizing energy savings potential are…

  19. Economic Analysis of Energy-efficient Buildings in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Applying energy-saving measures in residential buildings is usually constrained by the increase of initial investment.However, if it is analyzed from the view of energy cost and life-cycle cost, the energy-saving benefit can offset the increase of initial investment. An analysis method based on life-cycle concept was developed to calculate the energy cost of residential building flats. Several uncertain factors were included into the model, making it more accurate to reflect practical situation. The model was solved using the software DeST and applied to one residential building project in Shanghai. The case study shows that the initial investment (cost) is paid back during the operational phase through less consumption of energy. It further indicates that the investment recovery period is between 10 and 19 years which are acceptable to households and developers in China.

  20. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  1. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  2. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  3. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand....... The analysis also shows that the connection of low-energy buildings to DH networks is potentially a good solution in Denmark for reaching the climatic goals, but a high degree of connection must be reached, especially for detached houses, where most of the buildings in a typical community must be connected......The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...

  4. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  5. European project HOPE (Health Optimization Protocol for Energy-efficient Buildings)

    NARCIS (Netherlands)

    Bluyssen, P.M.; Cox, C.W.J.; Maroni, M.; Boschi, N.; Raw, G.; Roulet, C.A.; Foradini, F.

    2003-01-01

    In January 2002, a new European project named HOPE (Health Optimization Protocol for Energy-efficient Buildings) started with 14 participants from nine European countries. The final goal of the project is to provide the means to increase the number of energy-efficient buildings, i.e. buildings that

  6. New challenge for residential building energy efficiency standards in Japan: unify energy efficiency of envelope and housing appliances

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Chiharu; Nakagami, Hidetoshi; Nakamura, Mikiko [Jyukankyo Research Inst. (Japan)

    2007-07-01

    Residential energy efficiency standards of many countries evaluate envelope performance. Japanese energy efficiency standards of residential building were revised in 1999, and include both a performance standard and a prescriptive standard for envelope energy efficiency. The target is for over 50 % of new houses to meet the standard in 2010. Efficiency of residential appliances are governed by the Top Runner standards. However, these standards consider each appliance individually, but do not evaluate the whole house comprehensively.Because residential energy efficiency varies greatly depending on the performance of appliances, we developed a method to evaluate performance of both the envelope and the appliances, with the following characteristics. 1) Evaluate the energy efficiency of the envelope and appliance together. 2) Evaluate the energy efficiency of the whole house using total energy consumption specified for the space conditioning, water heating, lighting, and ventilation appliances at the time of construction. 3) Evaluate the efficiency for space conditioning and water heating appliances using efficiencies during actual operating time. 4) We have performed detailed measurements to understand the efficiency during actual operation. The evaluation method we developed will have a major impact on future Japanese standards for residential energy efficiency. In this paper, we discuss the composition of new standards for housing energy efficiency and explain our method for evaluating energy efficiency of household appliances.

  7. 76 FR 42688 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2011-07-19

    ... three stories) such as condominiums and garden apartments. If the Secretary determines that the revision... efficiency of the code. Multifamily buildings, which in the past have had separate, less stringent thermal... requirements, the thermal impact when these spaces are not actively conditioned is negligible. Therefore,...

  8. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  9. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  10. Towards a sustainable aesthetics. Architects constructing energy efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ryghaug, Marianne

    2002-07-01

    This interdisciplinary study discusses challenges in energy economising in Norway as they involve the architect profession and their role in affecting the energy standard in buildings. The main research question is separated into two component research questions. The first is to analyse how the reality orientation of the architect profession is constituted and maintained, and how this in turn influences their values in connection to energy related decisions. How is the architects' professional role conception reflected in the educational system and architect journals, and how is it expressed among the 'green outsiders' of the profession? The second component research question is related to decision-making processes regarding design processes, particularly concerning energy in buildings and the role played by the architects in these processes as they interact with other actors and within institutional frames.

  11. ENCOURAGEing results on ICT for energy efficient buildings

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Skou, Arne Joachim; Olsen, Petur

    2016-01-01

    This paper presents how the ICT infrastructure developed in the European ENCOURAGE project, centered around a message oriented middleware, enabled energy savings in buildings and households. The components of the middleware, as well as the supervisory control strategy, are overviewed, to support...

  12. Development of indices to assess educational building energy efficiency at the use stage

    OpenAIRE

    Azaldeen, Yasmin

    2014-01-01

    Energy efficiency is an essential topic nowadays. Several attempts have made to improve energy performance in buildings with particular attention to educational buildings for their high energy consumption. This thesis studies various buildings of the Technical University of Catalonia (UPC) with the aim of exploring the relationship between energy consumption and some parameters of the buildings such as floor area, occupancy, U-value, etc. The proposed methodology includes the definition of...

  13. Proposed Training Plan to Improve Building Energy Efficiency in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd

    2013-01-01

    Vietnam has experienced fast growth in energy consumption in the past decade, with annual growth rate of over 12 percent. This is accompanied by the fast increase in commercial energy use, driven by rapid industrialization, expansion of motorized transport, and increasing energy use in residential and commercial buildings. Meanwhile, Vietnam is experiencing rapid urbanization at a rate of 3.4 percent per year; and the majority of the growth centered in and near major cities such as Hanoi and Ho Chi Minh City. This has resulted in a construction boom in Vietnam.

  14. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  15. Low-energy district heating in energy-efficient building areas

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Christensen, Jørgen Erik

    2011-01-01

    of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network......-efficient buildings. This considerable impact of human behaviour should clearly be included in energy simulations. We also showed that low-energy DH systems are robust systems that ensure security of supply for each customer in a cost-effective and environmentally friendly way in areas with linear heat density down...... energy use in the best design was 14.3% lower than the primary energy use for standard, recently designed networks, and distribution heat losses were halved. Moreover, the exploitation of the entire available pressure by means of careful network design decreased the average pipe size required, which...

  16. Building for the Pacific Rim Countries. Energy-efficient building strategies for hot, humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Sheinkopf, K. [ed.

    1991-09-01

    This book has been published by the Solar Energy Industries Association (SEIA), the US trade association of the solar thermal, photovoltaic, and passive solar manufacturers, distributors, and component suppliers. Its purpose is to help architects, builders, and developers construct energy-efficient homes in hot humid climates like the Pacific Rim Countries, and to allow occupants of these homes to enjoy enhanced comfort without reliance on mechanical air-conditioning systems. Two important factors are addressed in this book. First, the past few years have seen a tremendous increase in practical applications of new research. The current popularity of ceiling paddle fans, attic radiant barriers and natural daylighting attest to the importance of keeping up with the latest concepts in energy-reduction and comfort-awareness. Professionals who have been in the field for the past few years may be unaware of the latest research findings--some of which dramatically alter prior thinking on such subjects as natural ventilation or mechanical air conditioning. The second factor is the importance of site-specific characteristics, which greatly affect building strategies and designs. A thorough understanding of the climate is a prerequisite to good building design. Such factors as temperature, humidity, wind speed and direction, and solar radiation must be understood and properly integrated into the design for the home to be truly energy-efficient.

  17. A Review on ZIGBEE Smart Energy Implementation for Energy Efficient Building

    Directory of Open Access Journals (Sweden)

    Aniket V. Patil

    2014-03-01

    Full Text Available The consumption of energy in residential buildings is increasing day by day due to the use of various advanced technologies and therefore represents a potential source of energy savings. The use of smart energy management system can assist in reducing the energy usage in an efficient way.This paper gives a review of a smart energy system in the development of an energy efficient management system for residential building using ARM7 and ZigBee. A Home section or Device unit is developed using four different devices (or household appliances with an auxiliary load (device which is occasionally used each connected to the ARM7 microcontroller unit respectively. The priority modes are given to the four devices as specified by the user. The auxiliary load is provided with reference wattage such that if the power value of auxiliary load goes beyond this reference wattage then the four devices will be switched according to the priorities given to them in the specified modes. The controlling action and selection of modes can be done at the monitoring unit through ZigBee communication. Thus, a smart system can be developed for energy efficiency in a building.

  18. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  19. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  20. Building an Efficient Model for Afterburn Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  1. BPS, energy efficiency and renewable energy sources for buildings greening and zero energy cities planning harmony and ethics of sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, Marija S. [University of Belgrade, Serbia and Southeast University (China)

    2011-07-01

    Traditional village houses now use renewable materials and energy sources and this paper presents the intrinsic harmony of these buildings' greening and their sustainability. The paper covers building technical systems, sustainable energy supply, and the importance of renewable raw materials (RMS) for sustainable development. This study investigated the role of building dynamic behavior and optimized energy efficiency in reducing thermal loads significantly. A preliminary design for sustainable energy efficient settlements with net zero energy buildings is proposed and a comprehensive multidisciplinary engineering study was done which identified the technical feasibility of sustainable village energy and water supplies using solar or wind technologies. Overall, through analysis of sustainability definitions and possible ways to achieve sustainability, the study demonstrated that this can only be brought about by interdisciplinary interaction and finding the right balance between materiality and spirituality, science and art, and between technological development and concern for cultural and other human values.

  2. Energy-efficient window systems. Effects on energy use and daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buelow-Huebe, H.

    2001-11-01

    This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate. Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m{sup 2}K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m{sup 2}K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very

  3. Energy efficient buildings. Sports. Programming, design, management; Batiments a hautes performances energetique. Sports. Programmer concevoir gerer

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-12-31

    This guidebook is aimed for energy optimization in sport buildings; after an investigation of the sector market and its energy consumption, the characteristics of the various energy consuming systems in these buildings are reviewed and recommendations are given for cost- and energy-efficient design and operation of the different systems: site consideration, building construction and envelope, interior comfort (temperature, humidity, air renewal, lighting, acoustics), occupancy scenarios, space and water heating, air conditioning, ventilation, video systems, swimming pools, electric generators

  4. 75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Science.gov (United States)

    2010-06-18

    ... Parts 433 and 435 RIN 1904-AC13 Energy Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Proposed... proposed rulemaking (NOPR) regarding the application of sustainable design principals with respect to...

  5. Energy efficiency and energy savings in Japanese residential buildings - research methodology and surveyed results

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, L.; Hokoi, S.; Miura, H. [Kyoto University (Japan). Faculty of Engineering, Department of Architecture and Environmental Design; Shuhei, K. [Kansai Electric Power Company Inc., Amagasaki (Japan). Energy Use R and D Center

    2005-07-01

    Worldwide energy consumption has risen 30% in the last 25 years. Fossil fuels exploitation is causing depletion of resources and serious environmental problems. Energy efficiency improvement and energy savings are important targets to be achieved on every society as a whole and in residential buildings in particular. In this article, results of a survey and questionnaire on energy consumption and thermal environment held in Kansai area, Japan are reported. Energy savings potential was analyzed for the surveyed 13 houses focusing on certain electrical appliances e.g. TV, rice cooker and refrigerator. Residents' environmental awareness towards energy consumption was clarified through questionnaire. An energy information session towards residents was held, and the resulting changes in lifestyle and their implications on energy consumption were evaluated. (author)

  6. The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site

    OpenAIRE

    Flores, Joaquim

    2013-01-01

    Background The improvement of energy efficiency in buildings is widely promoted as a measure to mitigate climate change through the reduction of CO2 emissions. Thermal regulations worldwide promote it, for both new and existing buildings. Among the existing stock, traditional and historic buildings pose the additional challenge of heritage conservation. Their energy efficiency upgrade raises the risk of provoking negative impacts on their significance. Aims and Methodology This r...

  7. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  8. Energy efficiency in buildings. Manual for municipalities [in the Netherlands]; Energie prestatie gebouwen. Handboek gemeenten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    New buildings must meet requirements in terms of energy efficiency, expressed in the Energy Performance Coefficient (EPC). Municipalities must pre-test on the basis of calculations. There are two new tools, set up by the NL Agency, by means of which the tests can be performed: this handbook for municipalities and a software program [Dutch] Nieuwe gebouwen moeten aan eisen voldoen qua energiezuinigheid, uitgedrukt in de Energie Prestatie Coefficient (EPC). Gemeenten moeten vooraf toetsen aan de hand van berekeningen. Er zijn twee vernieuwde hulpmiddelen van het Agentschap.nl waarmee de toesting kan plaatsvinden: dit handboek voor gemeenten en een softwareprogramma.

  9. 75 FR 54117 - Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency...

    Science.gov (United States)

    2010-09-03

    ... energy consumption of buildings built to Standard 90.1-2007, as compared with buildings built to Standard... building energy consumption. Additionally, DOE has preliminarily determined site energy savings are...] [FR Doc No: 2010-22060] DEPARTMENT OF ENERGY [Docket No. EERE-2006-BC-0132] RIN 1904-AC18......

  10. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  11. A roadmap for navigating voluntary and mandated programs for building energy efficiency

    NARCIS (Netherlands)

    Peterman, A.; Kourula, A.; Levitt, R.

    2012-01-01

    Commercial building owners and managers often face the challenge of selecting the appropriate combination of voluntary and mandated programs for commercial building energy efficiency. Using a mixed-method, both quantitative and qualitative approach, this study finds that barriers to energy efficienc

  12. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    Science.gov (United States)

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low.

  13. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements

  14. User evaluations of energy efficient buildings: the interplay of buildings and users in seven European case studies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Hauge, Aashild Lappegaard; Denizou, Karine; Jerkoe, Sidsel; Waagoe, Solvaar; Berker, Thomas

    2011-07-01

    The buildings in our study have been operational for just a short period and most of them are still in an adjustment phase. The findings show that users in all case studies often stressed the positive aspects connected to the newness and the architectural quality of the buildings. The interviews also show that energy efficiency is often regarded as a bonus or side effect that is gladly accepted but not the main criteria for choosing a house. Nonetheless, most residents seemed to appreciate the environmental benefits over time. Several respondents were also more concerned about the environment now than before they moved into or started to work in an energy efficient building, and they also reported more environmentally friendly behaviour. In most of the case studies, concerns were expressed about thermal comfort. Informants often experienced the building as too hot in the summer and/or too cold in the winter. This perceived discomfort caused different types of personal actions, which had a potential to interfere with the concept and the calculated energy balance. In order to improve internal conditions, the users in almost every case intervened with the planned use. They found common and known ways to improving their comfort in the buildings without considering how to optimize the new system. None of the respondents had much prior knowledge of energy efficient buildings before moving in or starting to work in the case study buildings. They did not know what to expect from their new environment, and were unfamiliar with the concepts. Many of the informants complained about a lack of information on systems and insufficient training. The studies also show that the occupants desired to control at least some operational aspects. Despite intermittent difficulties with thermal comfort, the tolerance for the buildings performance appeared to be high throughout all the case studies and many respondents were proud of 'their' buildings. Energy efficient buildings are

  15. NAMAs as a tool to deliver energy efficiency measures in buildings

    DEFF Research Database (Denmark)

    Karavai, Maryna; Petrichenko, Ksenia

    -makers on designing and implementing NAMAs aimed at improving energy efficiency in the building sector with a particular focus on tropical and sub-tropical climates. The paper covers the following topics: • generic background for the NAMA concept, it origin and founding principles • potential areas for NAMA...... interventions, policy and technology • technological measures in buildings in hot and humid climates • development process for policy NAMAs that aim to improve energy efficiency in buildings The paper concludes on future prospects for policy NAMAs related to energy efficient buildings and the necessary actions...... greenhouse gas emissions and transforming their development towards sustainable pathways. One of the sectors, which offer significant mitigation potential in developing countries, is the building sector; especially taking into account rapid urbanisation, increase in access to energy, population and economic...

  16. Complex analysis of energy efficiency of public buildings: case study of VGTU

    OpenAIRE

    Rynkun G.; Valancius K.; Motuziene V.

    2012-01-01

    The purpose of this work was to make analysis of energy efficiency of Vilnius Gediminas Technical University (VGTU) buildings. The survey was performed within the frame of the Intelligent Energy – Europe (IEE) project “Use Efficiency” – Universities and Students for Energy Efficiency.The methodology of the detailed auditing proves that energy audits must be performed with the maximum use of measurements. When having main parameters measured, it is much exact and easier to form energy balance ...

  17. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  18. The evaluation of building occupants' public awareness on energy efficiency: The study case of Chancellery Building, USM

    Science.gov (United States)

    Baharum, Faizal; Zainon, Mohamad Rizal; Seng, Loh Yong

    2016-08-01

    It is increasingly perceived that considerable energy savings in building can be accomplished in buildings through changes in staff's behavior. This study explored the public awareness of energy consumption and their perceived level of control over energy use. Generally, individual awareness and attitudes about the need to conserve energy, the perceived actions and opinions of other users and views of control over the ease and opportunity to reduce energy consumption were seen by staffs to identify with whether they would expect to save energy in Chancellery Building, USM. It is important that staff engagement in the successful achievement of the target on energy saving. Therefore, the aim of this research is to create a survey instrument by using staffs as benchmark of evaluation, for the identification of problems in respect to aware the public of energy saving and energy-efficiency in Chancellery Building. This research was conducted in the office of Chancellery Building, USM. Survey forms had been distributed to the staffs in the office to determine their awareness towards energy saving. The results were investigated by utilizing Statistical Package for the Social Science (SPSS) in order to determine its reliability and validity. The research result helped the advancement of energy-efficiency and determine the wastefulness of the existed building.

  19. 75 FR 7464 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Science.gov (United States)

    2010-02-19

    ... the area, the E-RIC will create an economically dynamic region focused on energy efficient buildings... that span basic research to engineering development to commercialization readiness. The Hub will...

  20. Statistical Process Control Concerning the Glazed Areas Influence on the Energy Efficiency of Buildings

    Directory of Open Access Journals (Sweden)

    Daniel Lepădatu

    2008-01-01

    Full Text Available The aim of this paper is to present a statistical investigation, for analyzing the buildings characteristics from the energy efficiency point of view. The energy efficiency of buildings may be estimated by their capacity to ensure a healthy and comfortable environment, with low energy consumption during the whole year. The glazed areas have a decisive role in the building energy efficiency having in view the complex functions that they play in the system. A parametric study, based on the method of factorial plan of experience with two levels, allows us to emphasize the measure in which the geometric and energetic characteristics of glazed areas influence the energy efficiency, estimated by the yearly energy needs, to ensure a comfortable and healthy environment.

  1. 77 FR 29322 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2012-05-17

    ... buildings (not greater than three stories) such as condominiums and garden apartments. If the Secretary... determinations.'' (NRDC, No. 4 at p. 2) RECA also expressed agreement with the Department that the thermal... include: Building thermal envelope improvements Increases in prescriptive insulation levels of...

  2. Accurate energy-efficient construction of buildings; Haeuser richtig energieeffizient bauen

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Reinhard

    2012-07-01

    Only about half of all new constructions in Germany meets the requirements of the Energy Conservation Act. Such deficiencies not only tarnish the pleasure of living, but also can be extremely expensive in the long term: moisture in roofs and walls, mould growth, enhanced costs of heating houses, environmental impacts. Similar problems also occur in the case of refurbishment of old buildings. From this perspective, the author of the book under consideration reports on the following topics: Checklist for energy-efficient and cost-conscious building; prevention of mould by means of optimal ventilation; fire prevention and burglar alarm systems; ensuring air tightness; recommended building materials, comparison of insulating materials; saving costs and prevention of botched job; energy efficient building; pitfalls in building contracts; laws and regulations: Energy Saving Ordinance (EnEV) and Act on Power Generation from Renewable Energy Sources (EEWaermeG).

  3. Scout: An Impact Analysis Tool for Building Energy-Efficiency Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Chioke; Langevin, Jared; Roth, Amir; Phelan, Patrick; Parker, Andrew; Ball, Brian; Brackney, Larry

    2016-08-26

    Evaluating the national impacts of candidate U.S. building energy-efficiency technologies has historically been difficult for organizations with large energy efficiency portfolios. In particular, normalizing results from technology-specific impact studies is time-consuming when those studies do not use comparable assumptions about the underlying building stock. To equitably evaluate its technology research, development, and deployment portfolio, the U.S. Department of Energy's Building Technologies Office has developed Scout, a software tool that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures on the national building stock. Scout efficiency measures improve upon the unit performance and/or lifetime operational costs of an equipment stock baseline that is determined from the U.S. Energy Information Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate measure performance specifications to whole-building energy savings; these savings impacts are then extended to a national scale using floor area weighting factors. Scout represents evolution in the building stock over time using AEO projections for new construction, retrofit, and equipment replacements, and competes technologies within market segments under multiple adoption scenarios. Scout and its efficiency measures are open-source, as is the EnergyPlus whole building simulation framework that is used to evaluate measure performance. The program is currently under active development and will be formally released once an initial set of measures has been analyzed and reviewed.

  4. Energy in the urban environment: the role of energy use and energy efficiency in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark D.; Meier, Alan K.

    1999-12-01

    A century ago, the world had many cities of which the greatest were magnificent centers of culture and commerce. However, even in the most industrialized countries at the time, only a tiny fraction of the people lived in these cities. Most people lived in rural areas, in small towns, in villages, and on farms. Visits to a great city were, for most of the population, uncommon events often of great fascination. The world has changed dramatically in the intervening years. Now most of the industrial world lives in urban areas in close proximity to large cities. Industry is often located in these vast urban areas. As the urbanized zones grow in extent, they begin to approach one another, as on the East Coast of the United States. The phenomenon of urbanization has moved to developing countries as well. There has been a flood of migrants who have left impoverished rural areas to seek economic opportunities in urban areas throughout the developing world. This movement from the countryside to cities has changed the entire landscape and economies of developing nations. Importantly, the growth of cities places very great demands on infrastructure. Transportation systems are needed to assure that a concentrated population can receive food from the countryside without fail. They are needed to assure personal and work-related travel. Water supplies must be created, water must be purified and maintained pure, and this water must be made available to a large population. Medical services--and a host of other vital services--must be provided to the population. Energy is a vital underpinning of all these activities, and must be supplied to the city in large quantities. Energy is, in many ways, the enabler of all the other services on which the maintenance of urban life depends. In this paper, we will discuss the evolution of energy use in residential and commercial buildings. This topic goes beyond urban energy use, as buildings exist in both urban and non-urban areas. The topic

  5. Heterogeneous IPv6 Infrastructure for Smart Energy Efficient Building

    OpenAIRE

    Ben Saad, Leila; Chauvenet, Cedric; Tourancheau, Bernard

    2011-01-01

    International audience; In the context of increasing developments of home, building and city automation, the Power Line Communication (PLC) networking medium is called for unpreceeding usage. Our view of the future building networking infrastructure places PLC as the central point. We show in this paper that even if Wireless Sensors Networks (WSN) are good candidates in several cases of the sensor and actuator networking infrastructure, PLC is mandatory in several place of the smart-grid mete...

  6. Application Of Sustainable Design Principles To Increase Energy Efficiency Of Existing Buildings

    Directory of Open Access Journals (Sweden)

    Mansoury B.

    2014-09-01

    Full Text Available This study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing residential buildings. Based on the research findings, the most effective and practical method of retrofitting has been proposed in order to improve energy efficiency of existing buildings. In order to achieve this goal, an existing residential building has been simulated in FirstRate 5 software so as to determine the existing thermal performance of the building. Afterwards, considering sustainable design principles, different insulation layers, glazing, and construction materials have been employed to conduct a comprehensive thermal performance study. Based on the research outcomes, the best technique for increasing energy efficiency of existing buildings and reducing their environmental impact and footprint has been identified and proposed for practical purposes.

  7. Developing a Rating System for Building Energy Efficiency Based on In Situ Measurement in China

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2017-02-01

    Full Text Available Building energy consumption in China recently surpassed the US building consumption, and it is expected to increase significantly in the next decade pushed by the continuous population and urbanization increase. In response to that situation, the Chinese government introduced a series of building energy codes and rating systems to assess and enhance the building energy performance. The purpose of this study is to develop a rating system for the building energy efficiency, based on in situ measurement. The system is intended for office buildings in China’s cold zone. An evaluation framework, graphic dominant point, and principle of data collection and processing are illustrated in this paper. Three existing buildings were rated under the new rating system. The authors believe that the new system will contribute to a more accurate and comprehensive understanding for asset holders and occupants, that report on the extent to which energy efficiency buildings have been reached. Rating results are expected to be a reference for the retrofitting of existing buildings and the design of new buildings. In addition, the outlook for the rating system was also discussed.

  8. Enabling Energy Efficiency in South Africa's Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    South Africa is leading a number of efforts to support a thriving economy while also reducing energy use. Increasing energy demand coupled with a highly energy intensive economy and energy inefficient industries provide the backdrop for strong government action underway in South Africa. This brochure details how the Clean Energy Solutions Center supported development of the Regulations on Allowance for the Energy Efficiency Savings legislation designed to provide a framework for effective energy efficiency regulation, incentives and energy reduction targets for South Africa's commercial buildings sector.

  9. Energy Efficient Improvements of Existing Buildings through Building Envelope Upgrade Case Study of High Rise Block of Flats on 76, Boulevard Partizanski Odredi in Karpos IV, Skopje

    OpenAIRE

    2016-01-01

    AIM: This research examines the important issue of energy efficient improvements to the existing building stock through building envelope upgrade. To facilitate this, the energy performance characteristics of the existing building stock were identified with a view to establishing an existing building stock type, where building envelope upgrades can contribute to a higher level of energy efficiency improvements. The literature review along with the selected building precedents was used to esta...

  10. Promote Green Building, Facilitate Energy Efficiency and Emissions Reduction, and Improve Habitat Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Green building here refers to the practice of creating structures able to best achieve efficient and environmentally friendly use of resources (energy, land, water, materials) throughout the life-cycle so as to offer healthy, convenient and pleasant buildings for people to live and work in in harmony with nature.It has become a worldwide trend in the development of the construction industry.

  11. Promote Green Building, Facilitate Energy Efficiency and Emissions Reduction, and Improve Habitat Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Green building here refers to the practice of creating structures able to best achieve efficient and environmentally friendly use of resources(energy, land, water, materials) throughout the life-cycle so as to offer healthy, convenient and pleasant buildings for people to live and work in in harmony with nature. It has become a worldwide trend in the development of the construction industry.

  12. Tenant guidelines for energy-efficient renovation of buildings at the Presidio of San Francisco

    Energy Technology Data Exchange (ETDEWEB)

    Warner, J.L.; Sartor, D.; Diamond, R.

    1997-06-01

    These Guidelines are intended to help current and future tenants of the Presidio work with designers and contractors to incorporate energy efficiency and sustainable practices into the renovations of the buildings. This guide is designed to complement the detailed Guidelines for Rehabilitating Buildings at the Presidio of San Francisco, available from the National Park Service. Energy efficiency yields benefits far beyond energy savings. Daylighting and efficient electric lighting, natural ventilation and cooling, and other conservation strategies improve tenant health, comfort, and productivity, while preserving the historical heritage of Presidio buildings. This guide examines the use of energy and resources and opportunities for efficiency in Presidio buildings on the basis of individual components and systems. The authors begin with recommended and discouraged practices for roofs, walls, and foundations, then move to windows and other opening. Next they address efficiency issues in building interiors--lighting, office equipment, and spacing planning. The authors follow with recommendations for mechanical and plumbing systems and conclude with insights on miscellaneous outdoor energy and resource concerns. A concise listing of sources of more detailed information is provided at the end of the document. The authors expect this guide to help tenants begin the process of using energy-efficient and sustainable practices throughout the Presidio of San Francisco.

  13. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    Energy Technology Data Exchange (ETDEWEB)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  14. Energy efficiency and existing buildings. Energetical sanitation of residential buildings and commercial buildings; Energieeffizienz + Bestand. Energetische Sanierung von Wohn- und Nutzgebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Sick, F. (ed.) [Fachhochschule fuer Technik und Wirtschaft, Berlin (Germany)

    2007-07-01

    Within the first International User Forum - energy efficiency and existing buildings - of the Ostbayerische Technologie Transfer Institut e.V. (Regensburg, Federal Republic of Germany) at 15th and 16th February, 2007, in Bad Staffelstein (Federal Republic of Germany) the following lectures were held: (1) Potentials and markets of the energetic building refurbishment (Andreas Wagner); (2) Implementation of the EU building regulation in the Federal Republic of Germany in DIN V 18599; energy pass, EnEV 2006, results of the legislation (Fred Weigl); (3) Financing and economic efficiency of measures of energetic building refurbishment (Frank Pinsler); (4) Saving energy in building pools - Experiences from 1,000 buildings of the capital Munich (Matthias Domke); (5) Solar housing estates - Energy efficiency and utilization of renewable energy in North-Rhine Westphalia (Hartmut Murschall); (6) Integrated planning - from single components to total project (Boris Mahler); (7) Dynamic simulation - Introduction into methods of calculation for non-residential buildings (Andreas Gerber); (8) Approaches of calculation according to DIN 18599 and evaluation (Helmut E. Feustel); (9) An overview on software tools for an energetic building refurbishment (Anja Rosenbach); (10) Incorporation of regenerative energies in building refurbishment - The 'Solar energy centre' in multi-storey residential buildings (Bernhard Jurisch); (11) Home-automation - networking of plants saves energy and operating costs (Manfred Riedel); (12) Cogeneration-cold coupling (Wolfgang Schoelkopf); (13) International significance of the energetic building refurbishment (Robert Hastings); (14) Energetic reconstruction of plate buildings in Germany, Eastern Austria, Russia and People's Republic of China (Alfred Kerschberger); (15) eea - European Energy Award - The European standard for energy efficient communities (Armand Duetz, Ilga Schwidder); (16) Best practice examples from Austria (Ernst

  15. Standardization and Green Economic Change - the Case of Energy Efficiency in Buildings

    DEFF Research Database (Denmark)

    Andersen, Maj Munch; Faria, Lourenco

    2015-01-01

    This paper investigates the role of standardization for green economic change using energy efficiency in buildings as a case. Innovation research on standards tends to focus on the competition between competing emerging standards as well as the economic impacts of these. The idea pursued here...... energy efficiency becomes an issue in standardization work using buildings as a case. The paper seeks more specifically to investigate the rise of building related standards generally over time as well as in different technical areas and geographic regions. The hypothesis pursued in this paper...

  16. Building up energy efficiency: an analysis of the relationship between energy efficiency building codes and electricity consumption in the U.S. residential sector

    Science.gov (United States)

    Merlo, Matthew John

    The effects of climate change caused by the release of greenhouse gases (GHG) are a growing concern for state governments in the United States. The majority of state governments have attempted to mitigate GHG emissions through energy efficiency programs to combat the rising demand for electricity. In order to manage the increasing demand for electricity, states have adopted International Energy Conservation Codes (IECC) for new residential buildings to offset the demand for energy. This paper studies the relationship between state level residential building codes and electricity consumption rates. Using state-level panel data, I construct a database of state residential building code adoptions and energy use from 2000-2010 to measure the relationship between state regulation and residential electricity consumption using an OLS Fixed Effects model. My most conclusive findings suggest that there is a negative association between specific code adoption and electricity consumption, but only in states with low rates of new residential construction. I find that the adoption of the 2006 IECC building code in states with low rates of new residential construction is associated with a 1.7 percent decrease in electrical consumption per 10,000 residents. I also find that the adoption of an up-to-date building code is associated with a .7 percent decrease in electrical consumption per 10,000 residents in states with low rates of new residential construction.

  17. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    -energy district heating concept for low-energy buildings. The annual energy performance is evaluated as well as the socio-economy of a demonstrative network based on realistic energy loads that derived from a human behaviour model. Finally the presentation comments on the reasonable lower limit for the heat......Building design must evolve from today's practice – where the individual building parts are optimized separately – into a future where the whole building, including all installed systems, is optimized by integrating innovative technologies that will furthermore make the building itself an active...... part of the total energy system. Integrated design is a design process informed by multidisciplinary knowledge, where different software plays an important role in the designing process. Numerous simulation programs from different kinds of engineering fields (indoor climate, energy balance, district...

  18. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    Science.gov (United States)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  19. Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

    2014-03-26

    The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

  20. A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2012-12-01

    Full Text Available Building energy efficiency is strongly linked to the operations and control systems, together with the integrated performance of passive and active systems. In new high quality buildings in particular, where these two latter aspects have been already implemented at the design stage, users’ perspective, obtained through post-occupancy assessment, has to be considered to reduce whole energy requirement during service life. This research presents an innovative and low-cost methodology to reduce buildings’ energy requirements through post-occupancy assessment and optimization of energy operations using effective users’ attitudes and requirements as feedback. As a meaningful example, the proposed method is applied to a multipurpose building located in New York City, NY, USA, where real occupancy conditions are assessed. The effectiveness of the method is tested through dynamic simulations using a numerical model of the case study, calibrated through real monitoring data collected on the building. Results show that, for the chosen case study, the method provides optimized building energy operations which allow a reduction of primary energy requirements for HVAC, lighting, room-electricity, and auxiliary supply by about 21%. This paper shows that the proposed strategy represents an effective way to reduce buildings’ energy waste, in particular in those complex and high-efficiency buildings that are not performing as well as expected during the concept-design-commissioning stage, in particular due to the lack of feedback after the building handover.

  1. Energy-efficient HVAC design an essential guide for sustainable building

    CERN Document Server

    Khazaii, Javad

    2014-01-01

    This book provides readers with essential knowledge enabling the successful design of today's new energy efficient HVAC systems. The author introduces important concepts such as Knowledge Categorization, Performance Based Design Standards, and Quantification of Uncertainty in Energy Modeling for Buildings. Pivotal topics that all HVAC and architectural engineers must master in order to navigate the green building renaissance are given focused attention, including the role of renewables, air quality, automatic controls, and thermal comfort. Relevant ASHRAE standards, as well as sustainability s

  2. Circa 20% energy efficiency for sports buildings in 1999; Sportgebouwen in 1999 circa 20% energiezuiniger

    Energy Technology Data Exchange (ETDEWEB)

    Weersink, A.M.S. [DGMR Raadgevende Ingenieurs, The Hague (Netherlands)

    1998-11-01

    By means of the energy efficiency coefficient (EPC, abbreviated in Dutch) energy saving measures for buildings can be exchanged. This article summarizes a publication in which the impacts of windows, indoor climate installations and lighting systems are determined for seven exemplified buildings: a sports hall, a table tennis home, an indoor tennis court and accommodations, an instruction pool, a recreation swimming pool, a community centre and gym, and a clubhouse. 1 ref.

  3. Semantic Bim and GIS Modelling for Energy-Efficient Buildings Integrated in a Healthcare District

    Science.gov (United States)

    Sebastian, R.; Böhms, H. M.; Bonsma, P.; van den Helm, P. W.

    2013-09-01

    The subject of energy-efficient buildings (EeB) is among the most urgent research priorities in the European Union (EU). In order to achieve the broadest impact, innovative approaches to EeB need to resolve challenges at the neighbourhood level, instead of only focusing on improvements of individual buildings. For this purpose, the design phase of new building projects as well as building retrofitting projects is the crucial moment for integrating multi-scale EeB solutions. In EeB design process, clients, architects, technical designers, contractors, and end-users altogether need new methods and tools for designing energy-efficiency buildings integrated in their neighbourhoods. Since the scope of designing covers multiple dimensions, the new design methodology relies on the inter-operability between Building Information Modelling (BIM) and Geospatial Information Systems (GIS). Design for EeB optimisation needs to put attention on the inter-connections between the architectural systems and the MEP/HVAC systems, as well as on the relation of Product Lifecycle Modelling (PLM), Building Management Systems (BMS), BIM and GIS. This paper is descriptive and it presents an actual EU FP7 large-scale collaborative research project titled STREAMER. The research on the inter-operability between BIM and GIS for holistic design of energy-efficient buildings in neighbourhood scale is supported by real case studies of mixed-use healthcare districts. The new design methodology encompasses all scales and all lifecycle phases of the built environment, as well as the whole lifecycle of the information models that comprises: Building Information Model (BIM), Building Assembly Model (BAM), Building Energy Model (BEM), and Building Operation Optimisation Model (BOOM).

  4. Energy Demands and Efficiency Strategies in Data Center Buildings

    Science.gov (United States)

    Shehabi, Arman

    2009-01-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands have increased by nearly a factor of four over the past decade. This dissertation investigates how…

  5. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2010-09-03

    ... condominiums and garden apartments. If the Secretary determines that the revision would improve energy..., less stringent thermal requirements, are an exception. By eliminating the separate requirements, the..., and doors between the sunroom and house meet the code's envelope requirements, the thermal impact...

  6. Inventory of U.S.-led International Activities on Building Energy Efficiency Initial Findings

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alison; Evans, Meredydd

    2010-04-01

    Several U.S. Government agencies promote energy efficiency in buildings internationally. The types and scope of activities vary by agency. Those with the largest role include the U.S. Agency for International Development (USAID), the U.S. Department of State and the Environmental Protection Agency (EPA). Both USAID and the Department of State have a substantial presence overseas, which may present some complementarities with the Department of Energy’s efforts to reach out to other countries. Generally speaking, USAID focuses on capacity building and policy issues; the Department of State focuses on broad diplomatic efforts and some targeted grants in support of these efforts, and EPA has more targeted roles linked to ENERGY STAR appliances and a few other activities. Several additional agencies are also involved in trade-related efforts to promote energy efficiency in buildings. These include the Department of Commerce, the Export-Import Bank, the Overseas Private Investment Corporation and the Trade and Development Agency (TDA). This initial synthesis report is designed to summarize broad trends and activities relating to international cooperation on energy efficiency in buildings, which can help the U.S. Department of Energy (DOE) in developing its own strategy in this area. The Pacific Northwest National Laboratory will develop a more complete synthesis report later in 2010 as it populates a database on international projects on building energy efficiency.

  7. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  8. Methodology to Improving Energy Efficiency of Residential Historic Buildings in St. Petersburg

    Directory of Open Access Journals (Sweden)

    Murgul Vera

    2016-01-01

    Full Text Available The paper contains the analysis of the goals and objectives of improving energy efficiency of residential buildings, as well as the methodology of selecting energy-efficient modernization measures for historic buildings. The priority objective of this study was selected as a residential housing energy efficiency of historic buildings as a tool to improve the quality of the human environment. The development of renewable energy technologies is presented as an alternative for energy saving. If we take the purpose of improving energy efficiency as an improvement of the quality of the human environment (from the living quarters level to global environmental sustainability, the alternative to energy saving of traditional energy resources can be the replacement of them by energy from renewable sources, even lavish spending of which does not harm the environment . All energy saving should be focused primarily in man-made environments (industrial processes, heating systems and etc., the anthropogenic environment (living environment should get the maximum energy for the stable provision of quality microclimate.

  9. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    Directory of Open Access Journals (Sweden)

    Yufei Jiang

    2016-04-01

    Full Text Available Energy Efficient Building (EEB design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful Building Information Modeling (BIM web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The requirements include information exchange requirements, distributed collaboration requirements, internal data storage requirements, and partial model query requirements. We also propose a RESTful web service design model on different abstraction layers to enhance the BIM lifecycle in energy efficient building design. We have implemented a RESTful Application Program Interface (API prototype on a mock BIMserver to demonstrate our idea. We evaluate our design by conducting a user study based on the Technology Acceptance Model (TAM. The results show that our design can enhance the efficiency of data exchange in EEB design scenarios.

  10. How can We Tackle Energy Efficiency in IoT Based Smart Buildings?

    Science.gov (United States)

    Moreno, M. Victoria; Úbeda, Benito; Skarmeta, Antonio F.; Zamora, Miguel A.

    2014-01-01

    Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario. PMID:24887040

  11. How can We Tackle Energy Efficiency in IoT BasedSmart Buildings?

    Directory of Open Access Journals (Sweden)

    M. Victoria Moreno

    2014-05-01

    Full Text Available Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.

  12. How can we tackle energy efficiency in IoT based smart buildings?

    Science.gov (United States)

    Moreno, M Victoria; Úbeda, Benito; Skarmeta, Antonio F; Zamora, Miguel A

    2014-05-30

    Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.

  13. A Wireless Platform for Energy Efficient Building Control Retrofits

    Science.gov (United States)

    2012-08-01

    data for chilled water and hot water ≥15% reduction in HVAC energy consumption Objective exceeded:1 60-85% (results shown in Figure 9...Electric metering data for fans; Btu metering data for chilled water ≥10% reduction in peak power Objective met:2 10-34% (results shown in Figure...Occupancy Sensors (CO2, PIR, PC) MZ AHU Zones Outdoor Temp. and Solar Radiation Sensors Zone 4 MNL- V2RV3 LON DDC Zone 3 MNL- V2RV3 LON DDC Zone 2

  14. Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings

    Directory of Open Access Journals (Sweden)

    Marco Perino

    2015-11-01

    Full Text Available The key role of the building envelope in attaining building energy efficiency and satisfactory indoor comfort has long been established. Nevertheless, until recent times, all efforts and attention have mainly been focused on increasing and optimizing the thermal insulation of the envelope components. This strategy was a winning approach for a long time, but its limitations became obvious when users and designers started to consider the overall energy demand of a building and started to aim for Zero Energy Building (ZEB or nearly ZEB goals. New and more revolutionary concepts and technologies needed to be developed to satisfy such challenging requirements. The potential benefits of this technological development are relevant since the building envelope plays a key role in controlling the energy and mass flows from outdoors to indoors (and vice versa and, moreover, the facades offer a significant opportunity for solar energy exploitation. Several researches have demonstrated that the limitation of the existing facades could be overcome only by switching from ‘static’ to ‘responsive’ and ‘dynamic’ systems, such as Multifunctional Facade Modules (MFMs and Responsive Building Elements (RBE. These components are able to continuously and pro-actively react to outdoor and indoor environment conditions and facilitate and enhance the exploitation of renewable and low exergy sources. In order to reduce the energy demand, to maximize the indoor comfort conditions and to produce energy at the site, these almost ‘self-sufficient’, or even ‘positive energy’ building skins frequently incorporate different technologies and are functionally connected to other building services and installations. An overview of the technological evolution of the building envelope that has taken place, ranging from traditional components to the innovative skins, will be given in this paper, while focusing on the different approaches that have characterized this

  15. Energy efficiency in buildings: the road to a real market transformation

    Energy Technology Data Exchange (ETDEWEB)

    Aerschot, Constant van (Lafarge, RandD (France)); Glachant, Dominique (EDF, Energy Efficiency Program (France))

    2009-07-01

    This paper reports the research carried out by the Energy Efficiency in Buildings (EEB) project of the World Business Council for Sustainable Development between 2006 and 2009. In particular it reports the creation of a computer simulation model of adoption rates for energy-efficiency investments and the outputs of the model in two building classes - residential and commercial - in specific geographies. The EEB research also includes a perception survey among building professionals and opinion formers. It carried out wide-ranging interactions with stakeholders in the six regions covered by the project Brazil, China, Europe, India, Japan and the USA. The purpose of the project is to identify how to achieve substantial progress towards its vision of a world in which buildings consume zero net energy and produce less CO{sub 2}. It concentrates on energy used in buildings rather than energy generation for the grid. The EEB simulation model is designed to simulate decisions made by building owners (or others responsible for making the decisions) faced with a choice of investment in a range of design and construction options. It simulates decisions based on micro-economic criteria and calculates the resulting energy consumption and CO{sub 2} emissions (both at the building and sub-sector levels). Rather than identifying the measures required to achieve a given energy consumption, it sets out to understand the conditions under which certain design and technology selections will be made. EEB concentrated on four major sub-sectors: single-family and multi-family housing, offices and retail buildings. For each sub-sector simulations were run for a specific location, taking account of the actual building, energy and climate characteristics. Several 'reference cases' were created to represent the range of building and energy combinations in that market. Existing building energy data were used to calculate the energy performance of each of 609 potential construction

  16. Kyiv institutional buildings sector energy efficiency program: Lending and implementation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The government of Ukraine, through the State Committee of Energy Conservation (State Committee), is considering the implementation of energy efficiency measures in state and municipal institutional buildings in the city of Kyiv. The State Committee entered into a Memorandum of Cooperation with the US Department of Energy (DOE) to conduct an assessment of the institutional buildings sector efficiency potential. This assessment will be used to support a potential loan by the World Bank for implementing a buildings efficiency improvement program in Kyiv. This report provides an assessment of the options for structuring the lending scenarios and the implementation of the program. Components to the lending structure are options for the disbursement of funds, options for the loan service, and other financial options and considerations. Program implementation includes management structures, reporting, installation activities, and post-installation activities such as training and verification.

  17. Vacuum window glazings for energy-efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. (Solar Energy Research Inst., Golden, CO (USA)); Soule, D.E. (Western Illinois Univ., Macomb, IL (USA))

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  18. A chronological overview of legislation about energy efficiency in buildings in our area

    OpenAIRE

    Zih, Sandra

    2016-01-01

    In graduation thesis I described the legislation about energy efficiency in buildings in our area from 1875 to 2010. I showed the changes in legislation through time in order to provide energy efficiency. Lowering thermal transmittance through time is shown by graphs: • outer wall • roof • ceiling between floors (unheated attic) • underground wall • floor above ground • floor on the ground. I wrote construction examples for outer wall, ceiling between floors and roof. Con...

  19. Essays in economics of energy efficiency in residential buildings - An empirical analysis[Dissertation 17157

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.

    2007-07-01

    Energy efficiency in the building sector is a key element of cost-effective climate change and energy policies in most countries throughout the world. (...) However, a gap between the cost-effectiveness of energy efficiency measures, their benefits, the necessities from a societal point of view on the one hand and the actual investments in the building stock - particularly in the moment of re-investment and refurbishing - on the other hand became more and more evident. The research questions that arose against this background were whether this gap and the low energy efficiency levels and rates could be confirmed empirically and if yes, how the gap could be explained and how it could be overcome by adequate policy measures. To address these questions, the multi-functional character of buildings (i.e. well conditioned and quiet living rooms and working space) had to be considered. Associated benefits arise on the societal level (ancillary benefits) and on the private level (co-benefits), the latter being increasingly addressed by different building labels such as 'Minergie', 'Passive House', and others. It was assumed that these co-benefits are of economic relevance, but empirical evidence regarding their economic value was missing. Thus, putting these benefits into an appropriate economic appraisal framework was at stake to make use of them in market information and policy instruments, preventing uninformed and biased cost benefit analyses and decisions on the private and on the societal level. The research presented in this PhD thesis had the goal to provide a sound empirical basis about costs and benefits of energy efficiency investments in residential buildings, with a special emphasis on the economic valuation of their co-benefits from a building user perspective (owner-occupiers, purchasers and tenants). In view of long time-horizons in the building sector, the techno-economic dynamics should also be addressed. The results should be useful

  20. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for energy-efficiency studies of advanced building technologies. That investment has helped spawn a $2.4-billion US market for key products -- energy-efficient lighting and advanced window coatings -- and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 the authors estimate that the products of that investment will save consumers $16 billion annually. But LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. They analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. They develop planning and demand-management methodologies for electric and gas utilities. They identify technologies and analytical methods for improving human comfort and the quality of indoor air. They contribute to the information superhighway. They focus on the special problems and opportunities presented by energy use in the public sector. And they do all these things at the local, national, and international levels. At LBL, they are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. They also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  1. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for development of advanced energy-efficient building technologies, software, and standards. That investment has helped spawn a $2.4-billion U.S. market for key products-energy-efficient lighting and advanced window coatings-and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 we estimate that the products of that investment will save consumers $16 billion annually. LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. We analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. We develop planning and demand-management methodologies for electric and gas utilities. We identify technologies and analytical methods for improving human comfort and the quality of indoor air. We contribute to the information superhighway. We focus on the special problems and opportunities presented by energy use in the public sector. And we do all these things at the local, national, and international levels. At LBL, we are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. We also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  2. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-07-10

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.

  3. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Directory of Open Access Journals (Sweden)

    Lia Toledo Moreira Mota

    2015-07-01

    Full Text Available Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%, which leads to a linear output response.

  4. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  5. Energy efficiency index to artificially conditioned buildings; Indice de eficiencia energetica para edificios climatizados artificialmente

    Energy Technology Data Exchange (ETDEWEB)

    Jota, Patricia Romeiro da Silva; Santos, Carla da Silva; Costa, Kelly Luciene C. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEMIG/CEFET), Belo Horizonte, MG (Brazil). Centro de Pesquisa em Energia Inteligente

    2010-07-01

    Conditioning buildings has been growing in number and are responsible for a significant portion of the energy used worldwide. The building energy use can be measured by the index of energy performance and specific fuel consumption (EC). The specific consumption is an index where the energy is normalized by the factors that affect energy use in order to obtain an index to explain variations in consumption. In this paper, we present a methodology to obtain a specific consumption that takes into account one of the factors that most affect energy use in these buildings, that is, the external temperature. The study is based on analysis of consumption of air conditioning system according to temperature. Through this analysis we obtain a function to facilitate the standardization of energy use, depending on the temperature outside. This methodology was tested in previous work on real buildings without stratification of energy, and this work will be presented a case study of a building whose energy measurement is stratified. The proposed index is the ratio between the energy consumption of air conditioning system corrected by the temperature through the function K(T). It was possible to demonstrate the efficiency of the index to eliminate the effect of temperature and thus to evaluate the evolution of specific consumption over the months analyzed. (author)

  6. Leveraging Smart Meter Data through Advanced Analytics: Applications to Building Energy Efficiency

    Science.gov (United States)

    Jalori, Saurabh

    The poor energy efficiency of buildings is a major barrier to alleviating the energy dilemma. Historically, monthly utility billing data was widely available and analytical methods for identifying building energy efficiency improvements, performing building Monitoring and Verification (M&V) and continuous commissioning (CCx) were based on them. Although robust, these methods were not sensitive enough to detect a number of common causes for increased energy use. In recent years, prevalence of short-term building energy consumption data, also known as Energy Interval Data (EID), made available through the Smart Meters, along with data mining techniques presents the potential of knowledge discovery inherent in this data. This allows more sophisticated analytical tools to be developed resulting in greater sensitivities due to higher prediction accuracies; leading to deep energy savings and highly efficient building system operations. The research explores enhancements to Inverse Statistical Modeling techniques due to the availability of EID. Inverse statistical modeling is the process of identification of prediction model structure and estimates of model parameters. The methodology is based on several common statistical and data mining techniques: cluster analysis for day typing, outlier detection and removal, and generation of building scheduling. Inverse methods are simpler to develop and require fewer inputs for model identification. They can model changes in energy consumption based on changes in climatic variables and up to a certain extent, occupancy. This makes them easy-to-use and appealing to building managers for evaluating any general retrofits, building condition monitoring, continuous commissioning and short-term load forecasting (STLF). After evaluating several model structures, an elegant model form was derived which can be used to model daily energy consumption; which can be extended to model energy consumption for any specific hour by adding corrective

  7. Towards energy efficient high-rise residential building enclosures: insight from energy bills and enclosure rehabilitations

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Graham; Knowles, Warren; Ricketts, Lorne [RDH Building Engineering Ltd., Vancouver, (Canada)

    2010-07-01

    The building industry is looking to reduce energy consumption and the environmental impact of all building types. This paper investigated the relationship between current building practices and space heating in high-rise multi-unit residential buildings (MURBs). A summary of some of the key findings from a larger study with a focus on issues related to building enclosure conductive thermal losses was presented. This work involved the assessment of energy consumption data and, more specifically, of the space heating characteristics for mid and high-rise MURBs in the Lower Mainland of Vancouver which were selected as representative of typical MURB housing stock and included buildings with architectural forms common to other mid and high-rise residential buildings across North America. The effective R-value for all building enclosure assemblies for each building was calculated and compared with energy bills. The R-values were compared to ASHRAE 90.1. It was found that the overall effective R-values ranges were between R-2 and R-5 ft2 hr F/Btu.

  8. Investigation of the energy efficiency of the military museum building by infrared thermography

    Directory of Open Access Journals (Sweden)

    Slavica S. Ristić

    2013-06-01

    Full Text Available Infrared (IR thermography, as a diagnostic technique, is used to find anomalies in the thermal signature of the Military museum building in Belgrade, to identify irregularities or deficiencies, such as wet materials, voids, or missing insulation and to inspect energy efficiency of the museum building and microclimatic indoor conditions.  It is very important to perform preventative maintenance and stop undesirable environment influences that induce structural damage, modification of materials and agglomeration of pollutants and microorganisms on the cultural heritage artifacts, stored in the museum depot or exhibited in the galleries. The main causes for corrosion in historical buildings and museum artifacts are moisture and changeable temperature conditions. This paper deals with the results obtained in the application of IR thermography in determination of these conditions in the Military museum building, where very important metal artifacts are exhibited and deposed. The results show poor thermal insulation, wet walls and, generally, low energy efficiency.

  9. Checklist energy efficient building in the flower bulbs sector; Checklist energiezuinig bouwen in de bloembollensector

    Energy Technology Data Exchange (ETDEWEB)

    Van Paridon, W.J.A.; Dol, J.J.

    2002-11-15

    This checklist shows the energy saving options for investments in buildings and installations for flower bulb businesses. Next to an energy efficiency improvement of 22%, the Long-term agreement for energy has also adopted the target of 4% sustainable energy deployment. This checklist therefore indicates for each category whether it is in the sustainable energy category or part of the regular saving options [Dutch] In deze checklist wordt aangegeven waar de mogelijkheden liggen tot besparing van energie bij investeringen in gebouwen en installaties voor bloembollenteeltbedrijven. In de meerjarenafspraak energie heeft de bloembollensector naast de energie efficiency verbetering van 22% ook de doelstelling opgenomen om 4% duurzame energie te gebruiken. In de checklist staat daarom per aspect of deze behoort tot de categorie duurzame energie of tot de normale besparingsopties.

  10. Investigation of the energy efficiency of the military museum building by infrared thermography

    OpenAIRE

    Slavica S. Ristić; Suzana R. Polić-Radovanović; Bore V. Jegdić

    2013-01-01

    Infrared (IR) thermography, as a diagnostic technique, is used to find anomalies in the thermal signature of the Military museum building in Belgrade, to identify irregularities or deficiencies, such as wet materials, voids, or missing insulation and to inspect energy efficiency of the museum building and microclimatic indoor conditions.  It is very important to perform preventative maintenance and stop undesirable environment influences that induce structural damage, modification of material...

  11. Energy efficiency in buildings - environmental value for money; Energieffektivisering i bygninger - mye miljoe for pengene

    Energy Technology Data Exchange (ETDEWEB)

    Dokka, Tor Helge; Hauge, Guro; Thyholt, Marit; Klinski, Michael; Kirkhus, Anders

    2009-07-01

    Several international studies have shown that energy efficiency is the simplest and cheapest measure for improving the climate. Energy efficiency in buildings will be an important contribution from Norway in order to develop a sustainable energy system thus meeting the country's international obligations concerning the greenhouse gas emissions during the next decades. Analyses in this report show that energy efficiency in the building trade may contribute to several advantages: There is a potential for saving 12 TWh within 2020, where only just 10 TWh is released energy. The potential amount saved is estimated to be the equivalent of approximately 10 milliard EUROs during the period 2010 to 2020. This commercial potential of 10 milliard EUROs is estimated to generate approximately 10.0000 new workplaces during the next period of four years, and nearly 20.000 workplaces within 2020. This is important for a trade which has been strongly affected by the financial crisis. A national scenario shows that if energy released from the building trade is transferred to the electrification of the transportation sector and offshore activities in addition to the total phase out of oil heaters Norway will be able to reduce it's greenhouse gas emissions by 6 million metric tonnes. This constitutes practically 40% of of the climate agreement's objective on the reduction of internal national greenhouse gas emissions within 2020. Energy efficiency in the building trade will probably also be of decisive importance to enable Norway to meet the obligations in the Renewable Energy Directive (RED) and the EU European Energy Performance of Buildings Directive (EPBD). Analyses estimate that the Government will be able to release the potential of 12 TWh within 2020 by investing 200 million EUROs annually from 2010, increasing the amount gradually to 300 million EUROs towards 2020. (EW)

  12. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    This paper discusses the efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically available information. The U.S. Department of Energy’s Building Technologies Office (BTO) has developed a prioritization tool in an effort to inform programmatic decision making based on the long-term national impact of different energy efficiency measures. The prioritization tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios. It provides an objective comparison of new and existing measures and is being used to inform decision making with respect to BTO’s portfolio of projects.

  13. Carbon Efficient Building Solutions

    Directory of Open Access Journals (Sweden)

    Pellervo Matilainen

    2010-03-01

    Full Text Available Traditionally, the Finnish legislation have focused on energy use and especially on energy used for heating space in buildings. However, in many cases this does not lead to the optimal concept in respect to minimizing green house gases. This paper studies how CO2 emission levels are affected by different measures to reduce energy use in buildings. This paper presents two real apartment buildings with different options of energy efficiency and power sources. The calculations clearly show that in the future electricity and domestic hot water use will have high importance in respect to energy efficiency, and therefore also CO2 equivalent (eq emissions. The importance increases when the energy efficiency of the building increases. There are big differences between average Finnish production and individual power plants; CO2 eq emissions might nearly double depending on the energy source and the power plant type. Both a building with an efficient district heating as a power source, and a building with ground heat in addition to nuclear power electricity as a complimentary electricity source performed very similarly to each other in respect to CO2 eq emissions. However, it is dangerous to conclude that it is not important which energy source is chosen. If hypothetically, the use of district heating would dramatically drop, the primary energy factor and CO2 eq emissions from electricity would rise, which in turn would lead to the increase of the ground heat systems emissions. A problem in the yearly calculations is that the fact that it is very important, sometimes even crucial, when energy is needed, is always excluded.

  14. Impact of energy efficiency goals on systems of building regulations and control

    NARCIS (Netherlands)

    Visscher, H.J.; Meijer, F.M.

    2014-01-01

    Considerations of climate change, but also other political and economic reasons urge for the reduction of use of fossil fuels and the minimization of environmental impact by the built environment. The energy saving potential of the building stock is large and considered to be the most cost efficient

  15. Interoperable tools for designing energy-efficient buildings in healthcare districts

    NARCIS (Netherlands)

    Benner, J.; Häfele, K.H.; Bonsma, P.; Bourdeau, M.; Soubra, S.; Sleiman, H.; Robert, S.

    2015-01-01

    The EU funded collaborative research project STREAMER aims on Energy-efficient Buildings (EeB), focusing on mixed-use healthcare districts. Besides innovations in EeB technology, special emphasis is laid on improving methodologies and tools used in the design process of new or retrofitted hospital b

  16. Semantic BIM and GIS modelling for energy-efficient buildings integrated in a healthcare district

    NARCIS (Netherlands)

    Sebastian, R.; Bohms, H.M.; Bonsma, P.; Helm, P.W. van den

    2013-01-01

    The subject of energy-efficient buildings (EeB) is among the most urgent research priorities in the European Union (EU). In order to achieve the broadest impact, innovative approaches to EeB need to resolve challenges at the neighbourhood level, instead of only focusing on improvements of individual

  17. Integrating Building Energy Efficiency with Land Use and Transportation Planning in Jinan, China

    Directory of Open Access Journals (Sweden)

    Nicolae Duduta

    2013-02-01

    Full Text Available With the rapid growth occurring in the urban regions of China, it is critical to address issues of sustainability through practices that engender holistic energy efficient solutions. In this paper, we present results from a collaborative design project carried out with planning officials from the city of Jinan (population 3.4 million, for the Luokou district, a 3.1 km2 (1.2 mi2 area to the north of the CBD that is expected to house 100,000–130,000 people by 2020. By integrating sustainable building design, land use, urban design, and transportation, our proposal identified opportunities for improving energy efficiency that might have been overlooked by considering buildings and transportation separately. Mixed land uses and walkable neighborhoods were proposed along with highly differentiated street designs, intended to carry different traffic loads and prioritize diverse travel modes. Street widths and building heights were adjusted to maximize the potential for passive solar heating and daylight use within buildings. The district’s environmental performance, analyzed using building energy evaluation and traffic micro simulation models, showed that the design would reduce energy loads by over 25% compared to business as usual. While the proposal complied with national and local policies, and had far better energy performance than conventional designs, the proposal ultimately was not accepted by local officials because initial costs to the developers were higher than for conventional designs.

  18. 76 FR 43287 - Building Energy Standards Program: Determination Regarding Energy Efficiency Improvements in the...

    Science.gov (United States)

    2011-07-20

    ... prototype. Site energy refers to the energy consumed at the building site. In a corresponding fashion, DOE... range from over five hundred Btu per square foot annually for the Fast Food prototype to approximately....1 0.54 Food Service Fast-Food Restaurant...... 0.64 226.5 326.1 552.6 1080.0 10.10...

  19. Energy efficiency of the Rural Wall multi-layer structure in low-rise building design

    Directory of Open Access Journals (Sweden)

    T.A. Golova

    2014-12-01

    Full Text Available This paper presents the study on energy efficiency of various wall design solutions and a new multi-layer wall design for low-rise construction as well as the results of television studies on multi-layer and single-layer envelopes. Indoor climate parameters for various wall design solutions are determined. The study reveals the optimal wall design solutions and specifies the theoretical assessment of their energy efficiency in compliance with Russia's national building code 23-02-2003. The paper presents calculations of building heat loss through the exterior building envelope, reduced resistance to heat transfer of walls and total heat loss of the building with the selected outer wall design during the heating season. Recommendations on the application of the new multi-layer wall design using local wall materials in the construction of energy-efficient low-rise buildings are developed. The recommendations include requirements for wall materials, thermal calculations, production guidelines, properties of layers in a multi-layer walls and physical and mechanical properties of wall layers.

  20. The Energy Upgrading of Existing Buildings: Window and Shading Device Typologies for Energy Efficiency Refurbishment

    Directory of Open Access Journals (Sweden)

    Cristina Carletti

    2014-08-01

    Full Text Available Residential buildings built after the Second World War have high energy consumption and inadequate thermal comfort, especially in summer conditions, largely attributable to the high transmittance of windows and lack of effective shading devices. Performance improvement of these components is essential for energy upgrading of existing buildings. This paper shows the results of the research, which aims to evaluate effects on energy consumption and environmental comfort of combined solutions of windows and shading devices applied to a case study representing a typical post World War II Italian building. In this paper, the main typologies of solar control systems are described and evaluated on the basis of a case study in different climatic locations (Berlin, Milan, Florence and Athens. Thermal behavior has been assessed through the EnergyPlus dynamic calculation code, by using appropriate performance indicators for energy and thermal sensation. Starting from performance evaluation of the existing building, different strategies have been assessed: replacement of existing windows with high-energy performance ones and introduction of shading devices and solar control glasses. Finally, a global comparative analysis has been carried out based on energy, acoustic and lighting performances, technical feasibility and management problems. Results of the different solar shading devices assessment are reported in the form of a data sheet.

  1. Energy-efficient vertical transportation with sensor information in smart green buildings

    Science.gov (United States)

    Bahn, H.

    2016-08-01

    In modern smart green buildings, sensors can detect various physical status of a building such as temperature, humidity, motion, and light, which can be used for smart living services. This paper presents an energy-efficient vertical transportation by making use of indoor sensor technologies. Specifically, sensors detect elevator users before they push the call button, and then inform to the elevator control system through building networks. By using this information, our system generates a reservation call and controls the moving time and direction of each elevator efficiently. Simulation experiments with a variety of traffic situations show that our elevator control system exhibits significantly better performance than the conventional system that does not use sensor information with respect to passengers’ waiting time and energy consumption.

  2. ICT applications for energy efficiency in buildings. Report from the KTH Centre for Sustainable Communication

    Energy Technology Data Exchange (ETDEWEB)

    Kramers, Anna H.; Svane, Oerjan

    2011-07-01

    The project 'ICT as a Motor of Transition' aims to examine how the innovative application of ICT can contribute to more energy-efficient transport habits and facilitate more sustainable ways of managing and using buildings, without the need for drastic changes in the city's physical structure. The project is an extended in-depth study and forms part of current research into urban sustainable development in the SitCit project at KTH Environmental Strategies Research (fms). The full title of the SitCit project is 'Situations of Opportunity in the Growth and Change of Three Stockholm City Districts - Everyday Life, Built Environment and Transport Explored as Energy Usage Systems and Governance Networks' (SitCit, 2010). It is an ongoing, cross-disciplinary, five-year project in collaboration with the Department of Energy Technology at KTH. An important part of the SitCit project is a methodological approach that integrates actors and measures in describing a process of change, in other words to look at 'What' can be transformed in parallel with transformation 'By Whom'? The 'ICT as a Motor of Transition' project focused on ICT solutions for energy-efficient and sustainable ways of managing and using buildings in the existing built environment. ICT could play a role as a key enabler for decreasing energy usage in buildings and at the same time create new business opportunities driven by the need for energy efficiency. Throughout the life cycle of a building, most energy ({approx}80%) is used during the operational stage (REEB, 2009a). The decisions made in the early design stages or in renovation stages for existing buildings thus influence about 80% of the total life cycle energy usage, while the impact of user behaviour and real-time control is in the range of 20% (REEB, 2009a). Therefore there is an urgent need to find new possibilities to decrease the energy usage in buildings. The overarching aim of this study

  3. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  4. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly.

  5. Overcoming Codes and Standards Barriers to Innovations in Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Pamala C.; Gilbride, Theresa L.

    2015-02-15

    In this journal article, the authors discuss approaches to overcoming building code barriers to energy-efficiency innovations in home construction. Building codes have been a highly motivational force for increasing the energy efficiency of new homes in the United States in recent years. But as quickly as the codes seem to be changing, new products are coming to the market at an even more rapid pace, sometimes offering approaches and construction techniques unthought of when the current code was first proposed, which might have been several years before its adoption by various jurisdictions. Due to this delay, the codes themselves can become barriers to innovations that might otherwise be helping to further increase the efficiency, comfort, health or durability of new homes. . The U.S. Department of Energy’s Building America, a program dedicated to improving the energy efficiency of America’s housing stock through research and education, is working with the U.S. housing industry through its research teams to help builders identify and remove code barriers to innovation in the home construction industry. The article addresses several approaches that builders use to achieve approval for innovative building techniques when code barriers appear to exist.

  6. Climate Change and Buildings Energy Efficiency – the Key Role of Residents

    Directory of Open Access Journals (Sweden)

    Miezis Martins

    2016-05-01

    Full Text Available Eastern Europe today is confronted with an unavoidable problem - the multifamily apartment building stock is deteriorating but apartment owners do not have sufficient access to resources be they organizational, financial, technical or legal. In addition, destructive myths have grown about the Soviet era buildings despite their continued resilience or the ex- GDR experience in the 90s with the same buildings. Further, without resources, decision making in residential apartments is seen as a major obstacle and used as an explanation why renovation has not taken place in Latvia. This is important not only in the context of a potential housing crisis but also because the renovation of the apartment buildings is an effective solution to significantly reduce the energy consumption and greenhouse gas emissions. It has a proven potential to effectively finance the long term renovation of these buildings. This paper summarizes the first findings of a comprehensive and in-depth study of apartment buildings, their owners and the processes relating to renovation, combining social and environmental engineering research methods. It seeks to understand how owners of multi-family buildings in Eastern Europe understand their buildings and then to answer two questions - how to motivate owners to renovate their homes and increase energy efficiency and what business models should be used to implement economically viable and high quality projects.

  7. Climate Change and Buildings Energy Efficiency - the Key Role of Residents

    Science.gov (United States)

    Miezis, Martins; Zvaigznitis, Kristaps; Stancioff, Nicholas; Soeftestad, Lars

    2016-05-01

    Eastern Europe today is confronted with an unavoidable problem - the multifamily apartment building stock is deteriorating but apartment owners do not have sufficient access to resources be they organizational, financial, technical or legal. In addition, destructive myths have grown about the Soviet era buildings despite their continued resilience or the ex- GDR experience in the 90s with the same buildings. Further, without resources, decision making in residential apartments is seen as a major obstacle and used as an explanation why renovation has not taken place in Latvia. This is important not only in the context of a potential housing crisis but also because the renovation of the apartment buildings is an effective solution to significantly reduce the energy consumption and greenhouse gas emissions. It has a proven potential to effectively finance the long term renovation of these buildings. This paper summarizes the first findings of a comprehensive and in-depth study of apartment buildings, their owners and the processes relating to renovation, combining social and environmental engineering research methods. It seeks to understand how owners of multi-family buildings in Eastern Europe understand their buildings and then to answer two questions - how to motivate owners to renovate their homes and increase energy efficiency and what business models should be used to implement economically viable and high quality projects.

  8. Energy efficiency of buildings with a solar space : two case studies from Anatolian plateau

    Energy Technology Data Exchange (ETDEWEB)

    Elias-Ozkan, S.T.; Summers, F.; Taner, O. [Middle East Technical Univ., Ankara (Turkey). Dept. of Architecture

    2009-07-01

    This paper reported on a study that demonstrated the benefits of adding south facing solar spaces in buildings on the Anatolian Plateau in Turkey in order to lower the annual heating loads. This semi-arid upland region of Central Turkey is characterized by long severe winters and hot, dry summers. Two case studies were presented. One was an experimental hollow-brick office building on the edge of the capital city of Ankara. The other was a mud-brick eco-center building in the Village of Sahmurath. The thermal behaviour of the 2 solar buildings was analyzed by evaluating the real-time temperature and humidity readings obtained from data loggers. The purpose of the study was to promote energy efficient bioclimatic architecture to provide higher standards of living in villages, with the anticipation that this may contribute a low carbon high growth rural economy and attract people to rural areas. The office building has a glazed south-facing facade with adjustable openings. Materials were selected to maximize energy efficiency and reduce energy consumption. The mud-brick building was designed to use passive solar heating and to harness solar energy for food preservation with small-scale village production units. The study showed that a solar space can be influential in lowering the annual heating loads of buildings. Adding solar spaces to both buildings reduced the annual heating loads by almost 10 per cent. Additionally, the solar space could be used for drying fruit and vegetables under hygienic conditions and for longer periods than the traditional way of drying food out in the open. The solar space proved to be important to the sustenance of villagers since they were able to use the dried fruit and vegetables during winter months. 7 refs., 7 figs.

  9. Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective

    Science.gov (United States)

    Qian Kun, Queena

    Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options

  10. 76 FR 64904 - Building Energy Standards Program: Final Determination Regarding Energy Efficiency Improvements...

    Science.gov (United States)

    2011-10-19

    ... were added to the analysis. DOE used the same simulation tool and data for weighing the results by... rooms, however none of the prototype building models that DOE uses in its simulations have data centers...'' is listed as a major positive and noted as a new efficiency requirement. When the prototype...

  11. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  12. Model of Next Generation Energy-Efficient Design Software for Buildings

    Institute of Scientific and Technical Information of China (English)

    MA Zhiliang; ZHAO Yili

    2008-01-01

    Energy-efficient design for buildings (EEDB) is a vital step towards building energy-saving. In or-der to greatly improve the EEDB, the next generation EEDB software that makes use of latest technologies needs to be developed. This paper mainly focuses on establishing the model of the next generation EEDB software. Based on the investigation of literatures and the interviews to the designers, the requirements on the next generation EEDB software were identified, where the lifecycle assessment on both energy con-sumption and environmental impacts, 3D graphics support, and building information modeling (BIM) support were stressed. Then the workflow for using the next generation EEDB software was established. Finally,based on the workflow, the framework model for the software was proposed, and the partial models and the corresponding functions were systematically analyzed. The model lays a solid foundation for developing the next generation EEDB software.

  13. Energy performance modelling and heat recovery unit efficiency assessment of an office building

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2015-01-01

    Full Text Available This paper investigates and analyzes a typical multi-zone office building’s annual energy performance for the location and climate data of central Belgrade. The aim is to evaluate the HVAC system’s and HR unit’s performance in order to conduct the most preferable heating and cooling solution for the typical climate of Belgrade city. The energy performance of four HVAC system types (heat pump - air to air, gas-electricity, electrical and fan coil system was analyzed, compared and evaluated on a virtual office building model in order to assess the total annual energy performance and to determine the efficiency of the HR unit’s application. Further, the parameters of an energy efficient building envelope, HVAC system, internal loads, building operation schedules and occupancy intervals were implemented into the multi-zone analysis model. The investigation was conducted in EnergyPlus simulation engine using system thermodynamic algorithms and surface/air heat balance modules. The comparison and evaluation of the obtained results was achieved through the conversion of the calculated total energy demand into primary energy. The goal is conduct the most preferable heating and cooling solution (Best Case Scenario for the climate of Belgrade city and outline major criteria in qualitative enhancement.

  14. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  15. Essays in economics of energy efficiency in residential buildings - An empirical analysis[Dissertation 17157

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.

    2007-07-01

    Energy efficiency in the building sector is a key element of cost-effective climate change and energy policies in most countries throughout the world. (...) However, a gap between the cost-effectiveness of energy efficiency measures, their benefits, the necessities from a societal point of view on the one hand and the actual investments in the building stock - particularly in the moment of re-investment and refurbishing - on the other hand became more and more evident. The research questions that arose against this background were whether this gap and the low energy efficiency levels and rates could be confirmed empirically and if yes, how the gap could be explained and how it could be overcome by adequate policy measures. To address these questions, the multi-functional character of buildings (i.e. well conditioned and quiet living rooms and working space) had to be considered. Associated benefits arise on the societal level (ancillary benefits) and on the private level (co-benefits), the latter being increasingly addressed by different building labels such as 'Minergie', 'Passive House', and others. It was assumed that these co-benefits are of economic relevance, but empirical evidence regarding their economic value was missing. Thus, putting these benefits into an appropriate economic appraisal framework was at stake to make use of them in market information and policy instruments, preventing uninformed and biased cost benefit analyses and decisions on the private and on the societal level. The research presented in this PhD thesis had the goal to provide a sound empirical basis about costs and benefits of energy efficiency investments in residential buildings, with a special emphasis on the economic valuation of their co-benefits from a building user perspective (owner-occupiers, purchasers and tenants). In view of long time-horizons in the building sector, the techno-economic dynamics should also be addressed. The results should be useful

  16. Guidelines for sustainable building design: Recommendations from the Presidio of San Francisco energy efficiency design charrette

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.; Sartor, D.; Greenberg, S. [and others

    1996-05-01

    In 1994, the Bay Chapter of the Association of Energy Engineers{reg_sign} organized a two-day design charrette for energy-efficient redevelopment of buildings by the National Park Services (NPS) at the Presidio of San Francisco. This event brought together engineers, researchers, architects, government officials, and students in a participatory environment to apply their experience to create guidelines for the sustainable redesign of Presidio buildings. The venue for the charrette was a representative barracks building located at the Main Post of the Presidio. Examination of this building allowed for the development of design recommendations, both for the building and for the remainder of the facilities. The charrette was organized into a committee structure consisting of: steering, measurement and monitoring, modeling, building envelope and historic preservation (architectural), HVAC and controls, lighting, and presentation. Prior to the charrette itself, the modeling and measurement/monitoring committees developed substantial baseline data for the other committees during the charrette. An integrated design approach was initiated through interaction between the committees during the charrette. Later, committee reports were cross-referenced to emphasize whole building design and systems integration.

  17. Energy-efficient building design in cold climates: Schools as a case study

    Science.gov (United States)

    Rangel Ruiz, Rocio

    Buildings account for great amounts of greenhouse gas emissions. In terms of energy, buildings account for one third of the total amount of energy used in the country every year! Schools account for 14 percent of the energy used annually in commercial and institutional buildings. Further, schools are one of the most commonly constructed building types in Canada and spaces such as classrooms are often duplicated. This makes them preferred candidates for the research that was undertaken where energy-efficient solutions that can be transferred to different school designs were derived. Throughout the study, the Commercial Building Incentive Program (CBIP) was used as a benchmark. The objectives of the study were to demonstrate energy-efficient concepts, provide a case study to evaluate solutions, develop typological models and provide an understanding of the innovation process. The technological and societal aspects of the energy-efficient design were addressed. With respect to the technological aspects, the first step was the analysis of conventional design using a school in Calgary as a case study. The optimization of conventional design was undertaken using computer modeling to identify best practice solutions. Aspects that were included in the studies were lighting design, envelope characteristics, HVAC systems and building plant systems. The inclusion of passive design included the analysis of daylighting and natural ventilation. Computer modeling was used to assess daylighting in classrooms with unilateral and bilateral daylighting. Illuminance levels, glare and light distribution were evaluated. The study of natural ventilation was undertaken using literature review. Airflow and outdoor temperatures were the focus to identify solutions that could be incorporated into the design of classrooms. It was concluded that achieving excellence in energy efficiency in schools could be achieved using readily available technologies. Energy savings of up to 63 percent better

  18. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Nathan

    2012-11-29

    The Forest County Potawatomi Community (FCPC or Community) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (SF) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the Concordia Trust Property). As part of this project, which was conducted with assistance from the Department of Energy's Tribal Energy Program (TEP), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the building's natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a Catalytic Project for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic developmen-providing services to the Indian community and jobs to the neighborhood.

  19. Environmental effects and energy efficiency in building design - a green building approach. Pt. 2. Basic data for environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Egle, C.; Pitts, G.C.

    1993-12-31

    A research report presents the basic data required when designing a building with minimal environmental impacts. Topics covered include the energy consumption of building elements during their lifetime, the environmental implications linked to the extraction and processing of building material and the energy consumed in buildings by the occupants. (UK)

  20. Energy-efficient Building in Greenland: Investigation of the Energy Consumption and Indoor Climate

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Kotol, Martin; Lading, Tove

    2015-01-01

    Recently, a brand new single family home was built in Sisimiut, Greenland. The building was constructed as a wooden house typical for Greenland. However, some non-traditional measures were implemented in order to reduce the energy consumption and improve indoor air quality. Assessment...... was installed in the house. It enables the evaluation of the indoor air quality, as well as building's energy performance. The aim of this investigation was to evaluatethe performance of the newly constructed house by and compare it with the performance of identical house built in a traditional way by using...... a computer model. The data obtained from the measurements in the new house were used to verify the model. Significant energy savings and improvements of indoor air quality were found in the new house when compared to the traditional one. Moreover, all the extra measures have a feasible payback time despite...

  1. Energy-efficient Building in Greenland: Investigation of the Energy Consumption and Indoor Climate

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Kotol, Martin; Lading, Tove

    2016-01-01

    Recently, a brand new single family home was built in Sisimiut, Greenland. The building was constructed as a wooden house typical for Greenland. However, some non-traditional measures were implemented in order to reduce the energy consumption and improve indoor air quality. Assessment...... was installed in the house. It enables the evaluation of the indoor air quality, as well as building's energy performance. The aim of this investigation was to evaluate the performance of the newly constructed house by and compare it with the performance of identical house built in a traditional way by using...... a computer model. The data obtained from the measurements in the new house were used to verify the model. Significant energy savings and improvements of indoor air quality were found in the new house when compared to the traditional one. Moreover, all the extra measures have a feasible payback time despite...

  2. An adjusted energy-saving quantity calculation method for building energy-efficient retrofit

    Institute of Scientific and Technical Information of China (English)

    王清勤; 孟冲

    2009-01-01

    Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.

  3. DST, decision support tool to facilitate energy-efficient renovation of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, I.; Koene, F.G.H.; Kaan, H.F. [ECN Energy in the Built Environment, Petten (Netherlands)

    2008-04-15

    The aim of the DEMOHOUSE project is to develop minimum standards and recommendations for energy-efficient and sustainable renovation of social housing estates. Within this, the Decision Support Tool is one of the final results and uses knowledge gathered throughout the DEMOHOUSE project. In many European countries, social housing is owned by housing associations, municipalities or housing co-operations. To facilitate the decision makers in these organisations a simple instrument which helps to select relevant information for making decisions is developed within the DEMOHOUSE project. There are several phases in the process of renovation of dwellings. Main decisions in relation to ambitions of the renovation in energy-efficiency, sustainability, economic feasibility and occupants participation take place in the first so called initiative phase. It is this phase that the DST is focusing on to guide the decision makers, hosing managers and home owners associations alike, through decision making process towards achieving energy-efficient and sustainable renovation of dwellings. As any building renovation is a complex process with many stages, the tool also contains practical information and offers guidance and links to further more in-depth information of relevance to other stakeholders for example: architects, energy experts, building contractors, and building users.

  4. Energy saving and efficiency in building; Ahorro de energia y eficiencia en edificios

    Energy Technology Data Exchange (ETDEWEB)

    Perez Sanchez, Maria M. [Universidad Autonoma de Yucatan, Merida, Yucatan (Mexico); Pacheco Aguilar, Francisco [Comision Federal de Electricidad, (Mexico)

    2000-07-01

    High energy consumption is one of the serious problems in the world today. Newly, this question has taken on not only economic, but also social and ecological importance. In order to reduce the amount of fossil energy, energy diagnosis are one of the most useful tools for increasing the energy efficiency in buildings. In the Faculty of Engineering, dependency of the Universidad Autonoma de Yucatan, Mexico a program of energy diagnosis was developed under an ongoing project entitled energy savings program, which begun in 1996. This paper describes a methodology about diagnosis building energy consumption building shell and energy efficiency in a case study. No doubt future developments are likely to lead to changes in the estimates. We hope that, nevertheless, this study will contribute to increased energy efficiency in this Faculty. [Spanish] En el mundo actual, uno de los problemas mas serios que se tienen es el elevado consumo de energia, que no solamente representa un problema economico sino que tambien abarca aspectos de indole social y ecologica. Con el fin de reducir el alto costo de la energia fosil, el diagnostico de energia es una de las herramientas mas poderosas para promover la eficiencia de los edificios. En la Facultad de Ingenieria, dependencia de la Universidad Autonoma de Yucatan, Mexico se esta llevando a efecto un diagnostico energetico perteneciente al programa de ahorros de energia que comenzo en el ano de 1996. En este estudio se describe una metodologia de diagnostico de ahorro energetico y eficiencia energetica de la envolvente termica en un estudio del caso, aplicado a los edificios de la Facultad de Ingenieria (FIUADY).

  5. Energy Efficiency and Conservation Block Grant (EECBG)- Better Buildings Neighborhood Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Donisha; Harris, Barbara; Blue, Cynthia; Gaskins, Charla

    2014-09-16

    The original BetterBuildings for Greensboro grant program included an outreach campaign to inform 100% of the Greensboro community about the benefits of reducing energy use; a plan to reduce energy consumption in at least 34% of the homes and 10% of the other buildings in the east Greensboro target area; and a plan to create and retain jobs in the energy conservation industry. Under the original program structure the City of Greensboro planned to partner with local and regional lenders to create a diversified portfolio of loan products to meet the needs of various income levels and building types. All participants would participate in the loan programs as a method of meeting the program’s 5 to1 private capital match/leverage requirements. In June 2011 the program was restructured to include partnerships with large commercial and multifamily projects, with these partners providing the greater portion of the required match/leverage. The geographic focus was revised to include reducing energy consumption across the entire City of Greensboro, targeting neighborhoods with high concentrations of low-moderate income households and aged housing stock. The community outreach component used a neighborhood-based approach to train community residents and volunteers to conduct door-to-door neighborhood sweeps; delivered high quality information on available program resources; helped residents to evaluate alternative energy efficiency measures and alternative financing sources; assisted with contractor selections and monitoring/evaluation of work; coordinated activities with BetterBuildings program partners; and collected data required by the Department of Energy. Additionally, HERO (Home Energy Response Officers) delivered intro packages (energy efficiency information and products) to thousands of households at the initial point of contact. A pilot program (Early Adopters) was offered from March 1, 2011 through June 30, 2011. The Early Adopters program was designed to offer

  6. Development of transparent and opaque vacuum insulation panels for energy efficient buildings

    OpenAIRE

    Erkey, Can; Küçükpınar, Esra; Miesbauer, Oliver; Carmi, Yoash; Fricke, Marc; Gullberg, Leif; Caps, Roland; Rochefort, Malcolm; Moreno, Araceli Galvez; Delgado, Clara; Koehl, Michael; Holdsworth, Paul; Noller, Klaus

    2015-01-01

    One reason for heat losses in buildings is inadequate insulation. Vacuum Insulation Panels (vips) is emerging as a promising solution, being more energy efficient than conventional insulation materials, thinner and lighter. A VIP is made by placing a core insulation material inside a gas-barrier envelope and evacuating the air from inside the panel. The limitations to wide-scale VIP commercialization lie in lack of low-cost and high-volume processes to turn them into products suitable for use...

  7. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai Xuezhi [China Academy of Building Research, Beijing 100013 (China)], E-mail: daixz9999@126.com; Wu Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Di Yanqiang [China Academy of Building Research, Beijing 100013 (China); Li Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  8. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xuezhi; Di, Yanqiang [China Academy of Building Research, Beijing 100013 (China); Wu, Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Li, Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system. (author)

  9. Strategies and Challenges for Energy Efficient Retrofitting: Study of the Empire State Building

    Science.gov (United States)

    De, B.; Mukherjee, M.

    2013-11-01

    Operational and maintenance cost of existing buildings is escalating making it tough for both the owner and the tenants. Retrofitting them with state of the art technologies help them to keep pace with amended recent code provisions and thus extending the older building stocks one more chance to live responsively. Retrofitted iconic buildings can thus retain their status in commerce driven real estate sector. It helps in reducing green house gas emission as well. World's iconic skyscraper, the Empire State Building (ESB), has undergone an exemplary retrofit process since 2008 to reduce its energy demands. To achieve the goal of operational cost and energy consumption reduction, stiff challenges had taken care in a systematic manner to realize benefit throughout the entire lifespan of the ESB. Least disturbances to the tenant and on-site component handling strategies required precise planning. The present paper explores strategies and process adopted for retrofitting the ESB, and derived insightful guidelines towards operational cost savings and energy efficiency of existing buildings through retrofitting.

  10. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  11. STUDY OF SHELL FOR ENERGY EFFICIENT OF SUSTAINABLE LOW-RISE BUILDING

    Directory of Open Access Journals (Sweden)

    DANISHEVSKYI V. V.

    2016-03-01

    Full Text Available The article presents the results of study the shell for energy-efficient environmental low-rise residential building, corresponding to the criteria of sustainable development in construction. Purpose. The purpose of the presented research is providing a study of parameters for shell of energy-efficient environmental low-rise buildings. Methodology. Research is carried out on the basis of an improved method for calculating the thermal characteristics of the external walling, as well as physical heat transfer simulation. Conclusion.The ratio between the thickness of external walling and the proportion of heat loss through them was determined, and also the heat loss through thermal "bridges" was studied. Originality. The limits for the optimum thickness of the external walling of ecological materials was analyzed, and it was offered solution for minimization of heat loss through the nodes of shell. Practical value.Recommendations are worked out on constructing of thermal shell at planning of energy-efficient low-rise residential buildings.

  12. Investigation of techniques for energy-efficient new-build data centres

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Afman, M.; Van Lieshout, M. [CE Delft, Delft (Netherlands); Harryvan, D. [Mansystems, Den Haag (Netherlands)

    2013-05-15

    Data centres are becoming an increasingly important sector of the Dutch economy, but are also substantial and rapidly growing energy consumers, currently responsible for approximately 1.5% of national electricity use. In recent years a range of technical options have been developed that permit major improvements in the energy efficiency of data centres. In this context CE Delft has investigated in-depth a number of options for new-build data centres. All these options limit energy use and are economically and technically feasible. The study was conducted for the Dutch government's NL Agency in close cooperation with the trade association Nederland ICT and individual data centres, as well as national and local government authorities. The study consists of an extensive literature study and entailed interviews with suppliers of energy-efficient techniques. Based on detailed data delivered by these suppliers, model calculations were performed to predict the energy performance at different loading degrees. The results were validated with data centre operators. The results show that a high degree of energy efficiency can be achieved. Various combinations of techniques available to this end can deliver EUEs below 1.2. This is a significant step beyond the EUE of 1.3 used as a reference. EUE, Energy Usage Efficiency, is a measure of how energy-efficient a data centre provides its services. A crucial factor in all technology combinations is substantial use of 'free cooling', i.e. utilising natural sources of cold. The efficient variants use technology geared to maximising such use. The type of power supply is another key factor, and in this respect modular construction is pivotal. Operational aspects are also important for achieving high efficiencies. The report is to serve as a basis for guidelines for local government in the framework of environmental permits.

  13. Policy development in a non-OECD context - energy efficiency policy for Argentine buildings

    Energy Technology Data Exchange (ETDEWEB)

    Smedby, Nora (International Institute for Industrial Environmental Economics, Lund University (Sweden))

    2011-07-01

    Energy efficiency has gained attention as an important means of ensuring energy supply, fostering countries' competitiveness and cost-effectively mitigating CO{sub 2} emissions. Yet, evaluations of energy efficiency policies are often lacking or insufficient. Moreover, researchers have tended to overlook these types of policies in non-OECD countries, although at this very moment many of these countries are about to introduce them. This study has sought to assess energy efficiency policy design, implementation and results in non-OECD countries-using Argentina as an example. The focus is on PRONUREE, an energy efficiency policy programme introduced in Argentina in 2007, and more specifically on this policy programme's sections concerning the existing stock of residential buildings. The study relies on a qualitative research approach and interviews with key players within policy-making, business and academia. Based on this, the programme's output has been assessed. The broader analysis has been complemented by a more detailed assessment of the transparency and administrative burden in the design process. This study's results indicate that the output of PRONUREE has been rather limited. The only specific outcome regarding building construction and installed systems is the initiation of the development of a voluntary classification scheme for building envelopes. Moreover, transparency was lacking throughout the process, and a heavy burden of negotiation put on policy makers was revealed. The study concludes that the limited output is partly attributable to a lack of transparency and policy makers' limited resources. Drawing on so-called policy network theory, it is argued that the lack of interaction between private, public and academic players has hampered the programme's progression. Furthermore, the study highlights the importance of considering (the management of) expectations of actual policy implementation in the study of policy

  14. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    Science.gov (United States)

    2012-02-01

    Screening 3.1.1 Objectives and Background 3.1.1a) Background: Building Energy Efficiency Retrofit Process The key steps (see Figure 3.1.1) in the...current building energy efficiency retrofit, include 1) Facility Audit to collect building information such as: Building type (climate, usage...building. To further benefit the performance of the building, tools were developed for tractable design optimization which trades off building energy efficiency and

  15. Materials for aesthetic, energy-efficient, and self-diagnostic buildings.

    Science.gov (United States)

    Fernández, John E

    2007-03-30

    It has become desirable to reduce the nonrenewable content and energy footprint of the built environment and to develop "smart buildings" that allow for inexpensive monitoring and self-diagnostic capabilities. Latest-generation embedded sensors, self-healing composites, and nanoscale and responsive materials may augur a time when buildings can substantially adjust to changing environmental and functional demands. However, faced with the legal liability resulting from unknown lifetime performance, designers and engineers have had little incentive to incorporate new material technologies into building designs. As efficiency issues become more acute, the potential for improvement in performance from new materials, together with partnerships between the materials science community and those entrusted with the design and engineering of the built environment, may offer real breakthroughs for the future.

  16. Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management

    DEFF Research Database (Denmark)

    Wandahl, Søren; Ussing, Lene Faber

    2013-01-01

    in this discussion paper. The main method is a review to track past merits in the two domains and to detect knowledge gaps that have research potential. A strategic research agenda focusing on energy-efficient construction management is outlined showing the need for future focus on combining industrialization......Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other...... in construction management with sustainability and energy concerns in construction management....

  17. Visual documentation process of historic building refurbishment "Improving energy efficiency by insulating wall cavity"

    Science.gov (United States)

    Bennadji, A.

    2013-07-01

    The North East of Scotland's construction method is similar to most popular building typologies in the UK. This typology can vary in term of external material (Granite, brick or stone) but with a secondary, usually timber sub frame with a lining on its interior. Insulation was seldom a consideration when such buildings were completed. Statistics shows that 80% of existing buildings in the UK will need to be upgraded. The lack of knowledge in dealing with old building fabric's manipulation has a negative impact on buildings' integrity. The documentation of such process seems to be an important step that buildings' actors should undertake to communicate a practical knowledge that is still at incubation stage. We wanted for this documentation to be visual, as descriptions might mislead none specialised and specialised in the field due to the innovative approach our method was conducted with. For the Scottish context this research/experiment will concentrate on existing granite wall buildings with plastered lath internal wall. It is unfortunate to see the commonly beautiful interiors of Scottish buildings disappearing, when the internal linings are removed. Skips are filled with old Plaster and Lath and new linings have to be supplied and fitted. Excessive waste is created in this change. This paper is based on a historic building energy improvement case study financed by the European commission and the Scottish Government. The pilot study consists of insulating an 18th century house using an innovative product and method. The project was a response to a call by the CIC start (Construction Innovation Club), aiming to establish a link between SMEs and the Universities. The project saw the day in collaboration with Icynene Canada, KDL Kishorn (see full list in the acknowledgment). This paper describes the process through which the team went through to improve the building envelope without damaging the buildings original features (Loveday et all). The energy efficiency

  18. Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid

    Directory of Open Access Journals (Sweden)

    Manuela Sechilariu

    2015-07-01

    Full Text Available In the context of sustainable buildings, this paper investigates power flow management for an isolated DC microgrid and focuses on efficiency and energy cost reduction by optimal scheduling. Aiming at high efficiency, the local produced power has to be used where, when, and how it is generated. Thus, based on photovoltaic sources, storage, and a biofuel generator, the proposed DC microgrid is coupled with the DC distribution network of the building. The DC bus distribution maximizes the efficiency of the overall production-consumption system by avoiding some energy conversion losses and absence of reactive power. The isolated DC microgrid aims to minimize the total energy cost and thus, based on forecasting data, a cost function is formulated. Using a mixed integer linear programming optimization, the optimal power flow scheduling is obtained which leads to an optimization-based strategy for real-time power balancing. Three experimental tests, operated under different meteorological conditions, validate the feasibility of the proposed control and demonstrate the problem formulation of minimizing total energy cost.

  19. Selecting Energy Efficient Building Envelope Retrofits to Existing Department of Defense Building Using Value Focused Thinking

    Science.gov (United States)

    2006-03-01

    low sloped, pitched, shingle, modified bitumen , single or multiple ply, and metal. A typical Air Force facility has a low slope built-up roof (BUR...noxious gases if they’re not ventilated well. This is a problem known as sick 34 building syndrome ( SBS ) (DOE, 2005c). IAQ must be taken into account

  20. 75 FR 78231 - Management of Energy and Water Efficiency in Federal Buildings: Availability of Guidance

    Science.gov (United States)

    2010-12-15

    ... of Energy Efficiency and Renewable Energy Management of Energy and Water Efficiency in Federal... water management. This draft guidance is available at: http://www1.eere.energy.gov/femp/pdfs/draft_EISA.... Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Federal Energy...

  1. Bainbridge Energy Challenge. Energy efficiency and conservation block grant (EECBG) - Better buildings neighborhood program. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Yvonne X.

    2014-02-14

    RePower Bainbridge and Bremerton (RePower) is a residential energy-efficiency and conservation program designed to foster a sustainable, clean, and renewable energy economy. The program was a 3.5 year effort in the cities of Bainbridge Island and Bremerton, Washington, to conserve and reduce energy use, establish a trained home performance trade ally network, and create local jobs. RePower was funded through a $4.8 million grant from the US Department of Energy, Better Buildings Program. The grant’s performance period was August 1, 2010 through March 30, 2014.

  2. Review of Prior Commercial Building Energy Efficiency Retrofit Evaluation: A Report to Snohomish Public Utilities District

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2014-11-01

    Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced by real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.

  3. Marginal costs of intensified energy-efficiency measures in residential buildings; Grenzkosten bei forcierten Energie-Effizienzmassnahmen in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.; Jochem, E. [Eidgenoessische Technische Hochschule (ETH), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland); Kristen, K. [Eidgenoessische Technische Hochschule (ETH), Architektur und Baurealisation, Zuerich (Switzerland)

    2002-07-01

    This detailed report for the Swiss Federal Office of Energy (SFOE) examines the large potential for increasing the energy efficiency of residential buildings in Switzerland. The aims of the research project are described including investigation of costs and marginal costs for thermal insulation and efficiency measures, the updating of technical parameters for cost - efficiency characteristics on an empirical basis, a transparent presentation of cost/benefit ratios for different concepts. Another aim is to obtain a more detailed overview of costs and benefits that could be of use for planners, building owners and technology companies. The methodology used for the collection of data for the study is described. The report also takes a look at the indirect advantages of improving the thermal insulation of buildings and examines the initial economic and technical situation. A detailed review of the costs and benefits is given for the various elements of a building such as walls, floors and windows and a reference development scenario for the period 2000 -2030 is presented. Marginal cost curves for various categories of buildings are presented for thermal insulation and ventilation measures.

  4. The social return on investment in the energy efficiency of buildings in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Kuckshinrichs, Wilhelm; Kronenberg, Tobias; Hansen, Patrick [Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2010-08-15

    The German government has developed a variety of policy instruments intended to reduce national CO{sub 2} emissions. These instruments include a programme administered by KfW bank, which aims at improving the energy efficiency of buildings. It provides attractive credit conditions or subsidies to finance refurbishment measures which improve the energy efficiency of buildings significantly. The refurbishment programme leads to a reduction in energy use, which benefits private investors by reducing their energy bills. In order to estimate whether the programme benefits society as a whole, additional effects must be taken into account, such as the amount of employment generated and the impact on the public budget. The aim of this paper is to evaluate the social benefits of the German CO{sub 2} refurbishment programme for the years 2005-2007. An extended input-output model is used to estimate the effect of the refurbishment works on public revenue via taxes and social security contributions. The value of avoided CO{sub 2} emissions is approximated using a range of marginal damage estimates from the literature. From these social benefits, the programme cost is deducted. The net social benefit thus computed turns out to be positive. This finding suggests that the refurbishment programme is a reasonable investment of public funds. (author)

  5. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    Energy Technology Data Exchange (ETDEWEB)

    Ostowari, Ken; Nosson, Ali

    2000-09-30

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  6. Energy-efficient building design and operation: The role of computer technology

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.

    1990-09-01

    Computer technology provides many opportunities to improve the energy performance of commercial buildings throughout the entire building life cycle. We are faced with developing those technologies to put the results of many years of buildings research into the hands of building owners, designers, and operators. This report discusses both the philosophical and technological aspect associated with this topic.

  7. Rising public awareness of energy efficiency of buildings enhanced by “smart” controls of the in-door environment

    Directory of Open Access Journals (Sweden)

    Pantović Vladan

    2016-01-01

    Full Text Available Buildings consume a significant amount of energy today and are expected to consume even more in the future. This consumption necessitates the use of fossil fuels such as coal and natural gas, both of which have significant environmental impacts. While renewable energy sources remain promising, the most of the energy supply will still use conventional fuels in the near term. Therefore, improving the energy efficiency in buildings is critical, and one of the central visions of “smart buildings” is to reduce their energy use while maintaining the same level of service and comfort. However, to make the buildings meaningfully “smart”, their envelopes must first be made compliant with the current energy efficiency standards. In this paper we first examine how the public awareness of energy efficiency was risen in Serbia through different demonstration projects, funded by the state budget and through implementation of the energy efficiency measures in public buildings, funded by municipal funds and soft loans from the banks. Then, we describe how the energy efficiency in buildings might further be increased by the use of new technologies and smart networks for control of the energy consumption. We finally argue that these controls should take into account the personal variables (activity, clothing along with environmental variables (air temperature, velocity, and humidity for an optimum thermal comfort to be achieved in public and residential buildings.

  8. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    Energy Technology Data Exchange (ETDEWEB)

    Birru, Dagnachew [Philips Electronics North America Corporation, Andover, MA (United States); Wen, Yao-Jung [Philips Electronics North America Corporation, Andover, MA (United States); Rubinstein, Francis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clear, Robert D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  9. Glass for Building Energy Efficiency%建筑节能与玻璃

    Institute of Scientific and Technical Information of China (English)

    梁锐

    2013-01-01

    Public buildings and residential buildings are two crucial parts of all buildings. The building envelope is important to the en-ergy efficiency of a building, which composed of the roof, exterior walls and windows. The proportion of window in the wall is increasing for modern design demands, so the energy loss through the windows accounts for 1/3-1/2 of the energy consumption in the entire building. Ener-gy-saving windows are especially important. Usually, except the window frame, the glass is about 80%-90% of the whole window. The glass insulation is crucial. The solar radiation heat and energy efficiency of various glasses are explained, highlighting coated glass.%公共建筑与居住建筑是建筑整体构成的主要部分。建筑物的节能,以外围护结构节能为主;外围护结构节能由屋面、外墙、外窗节能构成。由于现代建筑设计中,外窗占外墙的比例越来越大,导致通过窗户造成的能源损耗约占整体建筑的1/3~1/2。因此,窗户的节能性十分重要。窗户由窗框、玻璃组成,玻璃约占整体窗户的80%~90%,窗玻璃的隔热性能至关重要。阐述了太阳光辐射热能的性质及各种玻璃的节能性,着重介绍了镀膜玻璃及相关节能效果,对建筑节能设计有一定的参考价值。

  10. Energy efficiency in buildings. Yearbook 2016; Energieeffizienz in Gebaeuden. Jahrbuch 2016

    Energy Technology Data Exchange (ETDEWEB)

    Poeschk, Juergen (ed.)

    2016-08-01

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change. [German] Standpunkte, Konzepte und Projekte aus Politik und Praxis bilden auch in 2016 die Schwerpunkte des Jahrbuchs, das sich zum Standardwerk der Wohnungs- und Immobilienwirtschaft in Deutschland entwickelt hat. Die Energiewende war lange Zeit ausschliesslich eine Stromwende. Nun aber rueckt das Themenfeld ''Gebaeude'' immer staerker in den Fokus der politischen wie oeffentlichen Diskussion - und zwar durchaus kontrovers. In vorliegenden Jahrbuch wird der Versuch unternommen, das Themenfeld Energieeffizienz in Gebaeuden in seiner Vielschichtigkeit zu beleuchten. Die ueber 30 Beitraege renommierter Fachautoren gliedern sich in folgende Kapitel: Politische Strategien und Positionen, Studien und Konzepte, Energieforschung fuer Gebaeude und Quartiere; Vorbilder aus der Praxis, Mieterstrom: Konzepte und Projekte; Faktor Mensch: Information - Motivation - Verhaltensaenderung.

  11. Alliance for Sustainable Colorado Renovation Raises Its Energy Performance to New Heights, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Alliance for Sustainable Colorado (The Alliance) is a nonprofit organization aiming to transform sustainability from vision to reality. Part of its mission is to change the operating paradigms of commercial building design to make them more sustainable. Toward that end The Alliance uses its headquarters, The Alliance Center at 1536 Wynkoop Street in Denver, as a living laboratory, conductingpilot studies of innovative commercial-building-design solutions for using and generating energy.

  12. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  13. Energy efficiency in buildings with the natural gas; L'efficacite energetique dans le batiment avec le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    This document summarizes the content of a conference-debate organized by Cegibat, the information service of Gaz de France (GdF) for building engineering professionals, about the improvement of the energy efficiency of buildings thanks to the use of natural gas: 1 - the environmental stakes of energy savings in buildings; 2 -evolution of the regulatory context; 3 - the R and D answers of appliance manufacturers; 4 - GdF's choices and commitments; 5 - efficiency analysis (technical inspections and audits); 6 - efficiency maintenance (renovation and follow-up); 7 - conclusions. (J.S.)

  14. Higher energy efficiency in administrative and office buildings. Optimisation of primary energy consumption and economic efficiency; Energieeffiziente Buero- und Verwaltungsgebaeude. Hinweise zur primaerenergetischen und wirtschaftlichen Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Knissel, J.

    1999-12-15

    The study investigates measures to reduce primary energy consumption in administrative and office buildings and their effects in terms of economic efficiency. An exemplary office building is modernised step by step while recording the changes in the primary energy consumption coefficient. [German] In der vorliegenden Studie wird untersucht, wie weit und mit welchen Massnahmen der Primaerenergiebedarf von Buero- und Verwaltungsgebaeuden gesenkt werden kann und welche Auswirkungen dies auf die Wirtschaftlichkeit hat. Hierzu wird die energetische Ausfuehrungsqualitaet eines einfachen Beispielgebaeudes schrittweise verbessert und die Veraenderung des Primaerenergiekennwertes ermittelt. (orig.)

  15. Energy Efficiency and Conservation Block Grant (EECBG): Better Buildings Neighborhood Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Kat A.

    2014-01-10

    The Neighbor to Neighbor Energy Challenge (N2N) brought together a consortium of 14 leading clean energy rural, suburban, and low income communities throughout Connecticut. N2N was awarded $4.2 million from the U.S. Department of Energy (DOE) competitive BetterBuildings Neighborhood Program on August 10, 2010 to run a two-year pilot program (plus one year of transition and evaluation) (Award No. EMCBC- 00969-10). N2N tested innovative program models and hypotheses for improving Connecticut’s existing residential energy efficiency programs that are overseen by the ratepayer fund board and administered by CT utilities. N2N’s original goal was to engage 10 percent of households in participating communities to reduce their energy usage by 20 percent through energy upgrades and clean energy measures. N2N planned for customers to complete more comprehensive whole-home energy efficiency and clean energy measures and to achieve broader penetration than existing utility-administered regulated programs. Since this was an ARRA award, we report the following figures on job creation in Table 1. Since N2N is not continuing in its current form, we do not provide figures on job retention. Table 1 N2N Job Creation by Quarter Jobs Created 2010 Q4 6.65 2011 Q1 7.13 2011 Q2 4.98 2011 Q3 9.66 2011 Q4 5.43 2012 Q1 11.11 2012 Q2 6.85 2012 Q3 6.29 2012 Q4 6.77 2013 Q1 5.57 2013 Q2 8.35 2013 Q3 6.52 Total 85.31 The N2N team encountered several gaps in the existing efficiency program performance that hindered meeting N2N’s and DOE’s short-term program goals, as well as the State of Connecticut’s long-term energy, efficiency, and carbon reduction goals. However, despite the slow program start, N2N found evidence of increasing upgrade uptake rates over time, due to delayed customer action of one to two years from N2N introduction to completion of deeper household upgrades. Two main social/behavioral principles have contributed to driving deeper upgrades in CT: 1. Word of mouth

  16. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-03-28

    California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and

  17. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-12-01

    This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Hurricane Katrina was the largest natural disaster in the United States, striking the Gulf Coast on August 29, 2005, and flooding 80% of New Orleans; to make matters worse, the city was flooded again only three weeks later by the effects of Hurricane Rita. Many of the buildings, including schools, were heavily damaged. The devastation of schools in New Orleans from the hurricanes was exacerbated by many years of deferred school maintenance. This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools-Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School-and one major renovation, Joseph A. Craig Elementary School-are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates. Before Hurricane Katrina, New Orleans had 128 public schools. As part of the recovery planning, New Orleans Public Schools underwent an assessment and planning process to determine how many schools were needed and in what locations. Following a series of public town hall meetings and a district-wide comprehensive facility assessment, a Master Plan was developed, which outlined the renovation or construction of 85 schools throughout the city, which are expected to be completed by 2017. New Orleans Public Schools expects to build or renovate approximately eight schools each year over a 10-year period to achieve 21st century schools district-wide. Reconstruction costs are estimated at nearly $2 billion.

  18. Controlling Energy-Efficient Buildings in the Context of Smart Grid: A Cyber Physical System Approach

    OpenAIRE

    Maasoumy, Mehdi

    2013-01-01

    The building sector is responsible for about 40% of energy consumption, 40% of greenhouse gas emissions, and 70% of electricity use in the US. Over 50% of the energy consumed in buildings is directly related to space heating, cooling and ventilation. Optimal control of heating, ventilation and air conditioning (HVAC) systems is crucial for reducing energy consumption in buildings. We present a physics-based mathematical model of thermal behavior of buildings, along with a novel Param...

  19. A Comparative Study of Design Strategies for Energy Efficiency in 6 High-Rise Buildings in Two Different Climates

    NARCIS (Netherlands)

    Raji, B.; Tenpierik, M.J.; Van den Dobbelsteen, A.A.J.F.

    2014-01-01

    Due to the ever growing trend of urbanization and population growth, the construction of high-rise buildings is inevitable and will also continue at an ever increasing pace. However, typical high-rise buildings (the traditional template of a rectilinear, air-conditioned box) are not energy efficient

  20. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  1. Decision on optimal building energy efficiency standard in China. The case for Tianjin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Giraud, Pierre-Noel [CERNA-Mines Paris Tech, 60 Boulevard Saint-Michel, 75006 Paris (France); Colombier, Michel [Institute du developpement durable et des relations internationales, 13 Rue de L' Universite, 75007 Paris (France)

    2009-07-15

    This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO{sub 2}) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO{sub 2} emissions mitigation. (author)

  2. Decision on optimal building energy efficiency standard in China-The case for Tianjin

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [CERNA-Mines Paris Tech, 60 Boulevard Saint-Michel, 75006 Paris (France); Colombier, Michel [Institute du developpement durable et des relations internationales, 13 Rue de L' Universite, 75007 Paris (France)], E-mail: michel.colombier@iddri.org; Giraud, Pierre-Noel [CERNA-Mines Paris Tech, 60 Boulevard Saint-Michel, 75006 Paris (France)

    2009-07-15

    This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO{sub 2}) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO{sub 2} emissions mitigation.

  3. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    Energy Technology Data Exchange (ETDEWEB)

    Birru, Dagnachew [Philips Electronics North America Corporation, Andover, MA (United States); Wen, Yao-Jung [Philips Electronics North America Corporation, Andover, MA (United States); Rubinstein, Francis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clear, Robert D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  4. Construction components and energy efficiency in buildings; Componentes de construccion y eficiencia energetica en edificios

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, N.K.; Bhandari, M.S.; Kummar, P.S. [Centro para el Estudio de Energia, Instituto Hindu de Tecnologia, Hauz Khas, Nueva Delhi (Indonesia)

    2005-01-15

    An energy efficiency analysis to a set of buildings was made in India to quantify the effects of the individual design concepts with respect to the energy system in general. The saving potential of energy of different concepts as well as the orientation, windows, air cavities, insulation, etc. was quantified for the different climatic conditions that prevail in most of the Central India regions. It is demonstrated that the specific requirement of heat energy can be reduced to 300 kWh/m{sup 2} a (U{sub edifice} = 2.13 W/m{sup 2} K) for a building of normal construction up to 143 kWh/m{sup 2} a (U{sub edifice} = 0.95 W/m{sup 2} K) when using ceiling insulation and walls and by means of the use of double glass windows. [Spanish] Se realizo el analisis de eficiencia de energia a un conjunto de edificios en la India, para cuantificar los efectos de los conceptos individuales de diseno respecto al sistema de energia en general. El potencial de ahorro de energia de distintos conceptos, como la orientacion, ventanas, cavidades de aire, aislamiento, etc. fue cuantificado para las distintas condiciones climaticas que prevalecen en la mayoria de las regiones de India central. Se demuestra que el requerimiento especifico de energia calorifica puede ser reducida de 300 kWh/m{sup 2} a (U{sub edificio} = 2.13 W/m{sup 2} K) para un edificio de construccion normal hasta 143 kWh/m{sup 2} a (U{sub edificio} = 0.95 W/m{sup 2} K) al usar un aislante en el techo, paredes y mediante el empleo de ventanas de doble vidrio.

  5. Energy and Process Assessment Protocol for Industrial Buildings

    Science.gov (United States)

    2007-05-01

    operation and maintenance procedures pertaining to building energy efficiency . _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _______________________________________________________ ERDC

  6. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Chusak, Lee; Daiber, Jared; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2012-07-01

    Using Computational Fluid Dynamics (CFD), four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a) an all-air overhead system, (b) a combined all-air overhead and hydronic radiant system (chilled ceiling), (c) an all-air raised floor system (displacement ventilation), and (d) a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period) and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room). Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  7. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Directory of Open Access Journals (Sweden)

    Lee Chusak, Jared Daiber, Ramesh Agarwal

    2012-01-01

    Full Text Available Using Computational Fluid Dynamics (CFD, four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a an all-air overhead system, (b a combined all-air overhead and hydronic radiant system (chilled ceiling, (c an all-air raised floor system (displacement ventilation, and (d a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room. Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  8. Technological Measures in Building Energy Efficiency Design%设计中的建筑节能技术措施

    Institute of Scientific and Technical Information of China (English)

    李玲

    2013-01-01

      该文论述了建筑节能设计中的技术措施。在设计中通过节能技术措施,引入绿色天然的环保能源,减少对不可再生资源的损耗,以求实现建筑节能和可持续发展。%Technological measures in building energy efficiency design are elaborated. Green energy is introduced in the design to reduce the consumption of non-renewable resource and to achieve building energy efficiency and sustainable development.

  9. Engineering Cost Management under Building Energy Efficiency%建筑节能下的工程造价管理

    Institute of Scientific and Technical Information of China (English)

    贾宏

    2015-01-01

    From building energy efficiency and the present situation of project cost management as well as the existing problems, the article analyzes building energy efficiency's influence on engineering cost, and puts forward some reform measures in project cost management to adapt to the energy conservation requirements.%本文从建筑节能和工程造价管理的现状以及存在的问题入手,分析了建筑节能对工程造价的影响,并提出了适应节能要求的工程造价管理改革措施。

  10. 76 FR 43298 - Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency...

    Science.gov (United States)

    2011-07-20

    .... Definitions, Adds exceptions for Major + (requires Abbreviations, and Solar Heat Gain daylighting controls... applications such as parking lots to reduce lighting when not needed, and (3) add control for fa ade and... glazing 5. Building Envelope.. which are designed to be able to vary a performance property such as...

  11. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.P.; Lin, K.P.; Di, H.F.; Jiang, Y. [Tsinghua Univ., Beijing (China). Dept. of Building Science and Technology; Yang, B. [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2006-10-15

    Shape-stabilized phase change material (PCM) is a kind of novel PCM. It has the following salient features: large apparent specific heat for phase change temperature region, suitable thermal conductivity, keeping shape stabilized in the phase change process and no need for containers. The preparation for such kind material was investigated and its thermophysical properties were measured. Some applications of such material in energy efficient buildings (e.g., in electric under floor space heating system, in wallboard or floor to absorb solar energy to narrow the temperature swing of a day in winter) were studied. Some models of analyzing the thermal performance of the systems were developed, which were validated with the experiments. The following conclusions are obtained: (1) the applications of the novel PCM we put forward are of promising perspectives in some climate regions; (2) by using different paraffin, the melting temperature of shape-stabilized PCM can be adjusted; (3) the heat of fusion of it is in the range of 62-138 kJ kg{sup -1}; (4) for PCM floor or wallboard to absorb solar energy to narrow the temperature swing in a day in winter, the suitable melting temperature of PCM should be a little higher than average indoor air temperature of the room without PCM for the period of sunshine; (5) for the electric under-floor space heating system, the optimal melting temperature can be determined by simulation; (6) PCM layer used in the aforementioned application should not be thicker than 2 cm; (7) the models developed by us are helpful for applications of shape-stabilized PCM in buildings. (author)

  12. What a New Energy Efficiency Measure for Commercial Buildings Means to You

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.

    2016-12-19

    This article describes a new path for compliance with ASHRAE Standard 90.1-2016. The new approach will lead to increased flexibility for designers, multiple uses for the same building energy models, increased recognition of energy saving design strategies, and lower energy modeling costs.

  13. Application and importance of cost-benefit analysis in energy efficiency projects implemented in public buildings: The case of Serbia

    Directory of Open Access Journals (Sweden)

    Đurovic Dejan M.

    2012-01-01

    Full Text Available The main objective of this paper is to present the advantages of using Cost-Benefit analysis in energy efficiency projects implemented in public buildings, and to prove the hypothesis that Cost-Benefit analysis boosts the effectiveness and efficiency of the said type of projects. The paper offers theoretical and practical explanation of the implementation of Cost-Benefit analysis in the relevant area. Since energy efficiency projects in public buildings usually represent a part of a broader portfolio of similar projects and their implementation demands allocation of substantial financial resources, communities are often be interested in achieving maximal economic and non-economic benefits. This paper aims to demonstrate that Cost-Benefit analysis can represent an excellent contribution when attempting to select the projects for implementation within a broader portfolio of energy efficiency projects in public buildings. This hypothesis was demonstrated by putting a greater emphasis on non-economic benefits and the costs arising from implementation of the aforementioned types of projects. In addition, a practical test of this hypothesis was performed through the implementation of an energy efficiency portfolio in public buildings, worth several tens of millions of dollars - the Serbian Energy Efficiency Project. The paper concludes that the use of Cost-Benefit analysis can help us to effectively evaluate and manage projects of this type aimed at achieving maximum benefits for the community in question.

  14. Material Efficiency of Building Construction

    Directory of Open Access Journals (Sweden)

    Antti Ruuska

    2014-07-01

    Full Text Available Better construction and use of buildings in the European Union would influence 42% of final energy consumption, about 35% of our greenhouse gas emissions and more than 50% of all extracted materials. It could also help to save up to 30% of water consumption. This paper outlines and draws conclusions about different aspects of the material efficiency of buildings and assesses the significance of different building materials on the material efficiency. The research uses an extensive literature study and a case-study in order to assess: should the depletion of materials be ignored in the environmental or sustainability assessment of buildings, are the related effects on land use, energy use and/or harmful emissions significant, should related indicators (such as GHGs be used to indicate the material efficiency of buildings, and what is the significance of scarce materials, compared to the use of other building materials. This research suggests that the material efficiency should focus on the significant global impacts of material efficiency; not on the individual factors of it. At present global warming and greenhouse gas emissions are among the biggest global problems on which material efficiency has a direct impact on. Therefore, this paper suggests that greenhouse gas emissions could be used as an indicator for material efficiency in building.

  15. Potential and barrier study. Energy efficiency in Norwegian vocational buildings; Potensial- og barrierestudie. Energieffektivisering i norske yrkesbygg

    Energy Technology Data Exchange (ETDEWEB)

    Boehn, Trond Ivar; Palm, Linn Therese; Bakken, Line; Nossum, Aase; Jordell, Hanne

    2012-07-01

    On behalf of Enova SF, Multiconsult AS and Analyse og Strategi AS conducted an analysis to identify potential and barriers related to commercial buildings energy performance. The aim of this study was to determine what is the potential for energy efficiency for Norwegian vocational buildings that distinguishes between theoretical, technical, financial and real potential. Technical potential is the percentage of the theoretical potential that is technically feasible. Economic potential is the proportion of technical potential that is economically profitable to implement. Economic potential varies with the energy price. Build a small part of the total potential in 2020. In the calculation of the real potential is taken into account induced potential in terms of that, each year, a percentage actually implementing energy conservation measures (energy efficiency ratio 2%), a percentage rehabilitating / upgrading existing buildings (rehab rate 1.5%), and that a proportion of new buildings built better than regulatory requirements (rate 10%). In real potential for energy efficiency is the proportion of the economic potential that is not natural triggered but which is limited by various barriers. In real potential also varies with energy price. Respondents in our study is particularly concerned with the economic barriers, and least concerned the technical barriers. Attitudes and knowledge barriers are also very important. Lack of knowledge the effects and benefits of energy efficiency means that negative attitudes persist and that myths about the lack of profitability continues to exist. Many believe this is due to lack the knowledge and can be the cause of other types of barriers such as economic barriers. It has been analyzed which part of the real potential bounded by the barriers, and which type of institutions in society that can reduce these barriers with various categories of instrument. Main barriers for existing buildings practical barriers, economic barriers and

  16. Energy Efficiency and Sustainability of Different Building Structures in Latvian Climate

    Science.gov (United States)

    Jakovičs, A.; Gendelis, S.; Bandeniece, L.

    2015-11-01

    Five experimental test buildings have been built in Riga, Latvia. They are identical except external walls for which different mainly regional building materials are used. Calculated U-values of the other walls, floor and ceiling are the same for each test building. Initial moisture influences the relative humidity of indoor air, which can be higher in the initial time period; as a result, heat transmittances are also very different and cause different heating/cooling energy consumption. Overheating risk in summer exists for test buildings with the smallest thermal inertia. Both summer and heating seasons have been analysed and differences between five test houses have been discussed in details.

  17. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    Energy Technology Data Exchange (ETDEWEB)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  18. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-08-01

    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  19. The Analysis on Influence of Main Factors on Theoretical Value of Energy Saving Rate for Energy Efficiency Labeling of Civil Buildings

    Science.gov (United States)

    Wang, Zhiwei; Wang, Zhenling; Jiang, Bo; Zhang, Fan; Li, Peng; Cao, Wei

    For typical residential buildings, no-large-scale and large-scale public buildings, according to China's Technical Guide for the Energy Efficiency Labeling of Civil Buildings, makes up missing data of the calculation benchmark and determines the boundary conditions for calculating the theoretical values of civil building energy efficiency. Based on equivalent full load hours method, develops a modular program and calculates building energy consumption for the demands of dynamic cooling and heating and lighting etc., finds out the corresponding relationship between star level's theoretical value of energy saving rate and specified-term limiting value in the Guide. With orthogonal experimental design and multiple linear regression, establishes the quantitative function of both the theoretical value of energy saving rate and main factors parameters, analyzes the impact of the control parameter on energy saving rate, and reveals the law of theoretical value of energy saving rate variation with the control parameter. For building energy efficiency labeling upgrade, presents technical measure need to be taken and analyses its feasibility. The results from the study can provide theoretical guidance for energy-saving design or retrofitting of civil buildings.

  20. Establishment of potentials for building energy efficiency improvement by thermo graphic snap shooting

    Directory of Open Access Journals (Sweden)

    Jovanović-Popović Milica

    2006-01-01

    Full Text Available Thermo graphic snap shooting of buildings as a method of detecting building envelope heat losses is a rather new method. By thermo graphic camera snapshots it is possible to detect elements of building envelope without thermal insulation or with a poor thermal insulation as well as crakes around windows or in the construction which cause high heat losses. Once, when the causes of thermal losses are detected, it is possible, through the process of reconstruction or refurbishment, to improve thermal characteristics of the buildings. Usually, thermal insulation is added on the facade, windows are changed with new once with better thermal performances and better air tightness, second or third glass pane is added, metal constructions with thermal bridges are removed... Thermo graphic snapshots analyze also enables architects to avoid mistakes in designing new buildings. Several buildings in New Belgrade were photographed with thermal vision camera and the analyze of snapshots is presented In the paper. The chosen buildings, as representatives of specific construction method, were built in the period from 1950. to 1960., when according to the regulations, application of the thermal insulation was not obligatory. As more than 25% of buildings in Belgrade were built in that period, those buildings represent a great potential for energy saving through the process of refurbishment.

  1. 75 FR 20833 - Building Energy Codes

    Science.gov (United States)

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Building Energy Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information. SUMMARY: The...

  2. Comparative thermal performance of static sunshade and brick cavity wall for energy efficient building envelope in composite climate

    Directory of Open Access Journals (Sweden)

    Charde Meghana

    2014-01-01

    Full Text Available Energy efficient building technologies can reduce energy consumption in buildings. In present paper effect of designed static sunshade, brick cavity wall with brick projections and their combined effect on indoor air temperature has been analyzed by constructing three test rooms each of habitable dimensions (3.0 m × 4.0 m × 3.0 m and studying hourly temperatures on typical days for one month in summer and winter each. The three rooms have also been simulated using a software and the results have been compared with the experimental results. Designed static sunshade increased indoor air temperature in winter while proposed brick cavity wall with brick projections lowered it in summer. Combined effect of building elements lowered indoor air temperature in summer and increased it in winter as compared to outdoor air temperature. It is thus useful for energy conservation in buildings in composite climate.

  3. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  4. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  5. Building America Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes; Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.
    home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  6. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  7. Sustainable energy planning with efficient office buildings and cogeneration plants in Frankfurt am Main.

    Science.gov (United States)

    Friedel, Wendelin; Neumann, Werner

    2004-06-01

    Sustainable development of a city not only is determined through the amount of protected areas, but it is also an important task to integrate sustainable development in urban energy planning. In the last 10 years, many new areas for offices and residential buildings have been developed in Frankfurt am Main. In this context, the municipality has taken over a new role as organizer for the integrated energy planning. This article gives an overview of the achievements.

  8. Indicator system of energy efficient technologies evaluation of residential buildings in hot summer and cold winter regions of China

    Institute of Scientific and Technical Information of China (English)

    夏煦

    2014-01-01

    The related existing energy saving index system of buildings is deficient in direction, index coverage, depth, and technological and economic considerations. Aiming at the deficient existing research and with the advancement of energy saving of buildings in China from northern heating regions to southern hot summer and cold winter regions, selecting residential buildings in hot summer and cold winter regions as the research object, and through much evaluation index reference and repeated demonstrations and the borrowing of literature research home and abroad and relevant energy saving standards, filters and eliminates energy efficient technologies evaluation indexes according to the design principle of index system, the factors influencing the energy saving of residential buildings are evaluated, index system weight is established by adopting analytic hierarchy process, and finally the evaluation index system of energy saving technologies of residential buildings in hot summer and cold winter area of China is established. Each target layer includes five standard layer indexes and sixteen index layer indexes. The standard layer of evaluation index, namely primary indexes, includes the technological, energy saving effect, economic, environmental, and social indexes. The secondary indexes are selected based on the principles of concision, comprehensiveness, representativeness and operability.

  9. Tropical Zero Energy Office Building

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    of the building, so that windows are only towards the north and south, in order to reduce the solar heat gains. In order to reduce the loss of cooling through the building envelope, the walls and the roofs are heavily insulated, and the windows have double low energy glazing. The building will be lit primarily...... lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during......The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...

  10. 75 FR 16739 - EDA Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative

    Science.gov (United States)

    2010-04-02

    ... appendices of the Hub project narrative; The copy of the region's Comprehensive Economic Development Strategy... will create practical, replicable strategies for reducing overall energy consumption in buildings. 14... Selecting Official does retain the right to not make an award. Phase 10: Negotiation of Consortium MOU...

  11. Asian success stories in promoting energy efficiency in industry and building

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [International Inst. for Energy Conservation (IIEC), Bangkok (Thailand)

    1996-12-31

    This article describes the program of the International Institute for Energy Conservation (IIEC), which has offices in Washington, Bangkok, Santiago, and London, in addition to staff in a number of other countries. The mission of this private organization is to promote the efficient use of energy as a tool for sustainable development by supporting the development of policies, technologies, and practices. Its focus is on energy efficiency, transportation systems, and renewable energy sources. Examples of specific program activities in Thailand, China, Philippines, Malaysia, Indonesia and Singapore are discussed.

  12. Building an Energy-efficient Uplink and Downlink Delay Aware TDM-PON System

    Science.gov (United States)

    Newaz, S. H. Shah; Jang, Min Seok; Alaelddin, Fuad Yousif Mohammed; Lee, Gyu Myoung; Choi, Jun Kyun

    2016-05-01

    With the increasing concern over the energy expenditure due to rapid ICT expansion and growth of Internet traffic volume, there is a growing trend towards developing energy-efficient ICT solutions. Passive Optical Network (PON), which is regarded as a key enabler to facilitate high speed broadband connection to individual subscribers, is considered as one of the energy-efficient access network technologies. However, an immense amount of research effort can be noticed in academia and industries to make PON more energy-efficient. In this paper, we aim at improving energy saving performance of Time Division Multiplexing (TDM)-PON, which is the most widely deployed PON technology throughout the world. A commonly used approach to make TDM-PON energy-efficient is to use sleep mode in Optical Network Units (ONUs), which are the customer premises equipment of a TDM-PON system. However, there is a strong trade-off relationship between traffic delay performance of an ONU and its energy saving (the longer the sleep interval length of an ONU, the lower its energy consumption, but the higher the traffic delay, and vice versa). In this paper, we propose an Energy-efficient Uplink and Downlink Delay Aware (EUDDA) scheme for TDM-PON system. The prime object of EUDDA is to meet both downlink and uplink traffic delay requirement while maximizing energy saving performance of ONUs as much as possible. In EUDDA, traffic delay requirement is given more priority over energy saving. Even so, it still can improve energy saving of ONUs noticeably. We evaluate performance of EUDDA in front of two existing solutions in terms of traffic delay, jitter, and ONU energy consumption. The performance results show that EUDDA significantly outperforms the other existing solutions.

  13. Measurement Issues for Energy Efficient Commercial Buildings: Productivity and Performance Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    In previous reports, we have identified two potentially important issues, solutions to which would increase the attractiveness of DOE-developed technologies in commercial buildings energy systems. One issue concerns the fact that in addition to saving energy, many new technologies offer non-energy benefits that contribute to building productivity (firm profitability). The second issue is that new technologies are typically unproven in the eyes of decision makers and must bear risk premiums that offset cost advantages resulting from laboratory calculations. Even though a compelling case can be made for the importance of these issues, for building decision makers to incorporate them in business decisions and for DOE to use them in R&D program planning there must be robust empirical evidence of their existence and size. This paper investigates how such measurements could be made and offers recommendations as to preferred options. There is currently little systematic information on either of these concepts in the literature. Of the two there is somewhat more information on non-energy benefits, but little as regards office buildings. Office building productivity impacts can be observed casually, but must be estimated statistically, because buildings have many interacting attributes and observations based on direct behavior can easily confuse the process of attribution. For example, absenteeism can be easily observed. However, absenteeism may be down because a more healthy space conditioning system was put into place, because the weather was milder, or because firm policy regarding sick days had changed. There is also a general dearth of appropriate information for purposes of estimation. To overcome these difficulties, we propose developing a new data base and applying the technique of hedonic price analysis. This technique has been used extensively in the analysis of residential dwellings. There is also a literature on its application to commercial and industrial

  14. China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd

    2010-04-01

    This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listed in the program documents and websites.

  15. Energy Innovations for Healthy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2016-09-23

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  16. Efficient use of energy in buildings - Activities and projects in 2002; Rationelle Energienutzung in Gebaeuden. Aktivitaeten und Projekte 2002

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.

    2003-07-01

    This annual report for the Swiss Federal Office of Energy reviews the activities and projects of the Swiss Programme on the Efficient Use of Energy in Buildings in 2002. The aims of the programme, which concerns itself with building systems, technical installations and the use of solar energy in buildings, are reviewed. Areas targeted in the period 2002 - 2006 are listed, including high-insulation technologies, so-called 'passive' low-energy consumption housing, environmental technology and sustainable neighbourhood development. Progress made in the environmental technology area is described including eco-assessment methods and the development of alternative insulation materials. The topics of solar sustainable housing, low-energy consumption building standards, aids for the optimisation of solar installations in larger buildings and lighting are covered, as is progress in the development of vacuum insulation and translucent elements with latent energy storage and guidelines for air-tightness and mechanical ventilation in 'passive' housing. In the technical services area, the validation of planning tools and manuals for purchasers and operators of heating, ventilation and air-conditioning systems are discussed. Co-operation with national and international institutions is discussed. A list of pilot and demonstration projects completes the report.

  17. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  18. A Methodology to Support Decision-Making Towards an Energy-Efficiency Conscious Design of Residential Building Envelope Retrofitting

    Directory of Open Access Journals (Sweden)

    Thaleia Konstantinou

    2015-11-01

    Full Text Available Over the next decade investment in building energy savings needs to increase, together with the rate and depth of renovations, to achieve the required reduction in building-related CO2 emissions. Although the need to improve residential buildings has been identified, guidelines come as general suggestions that fail to address the diversity of each project and give specific answers on how these requirements can be implemented in the design. During early design phases, architects are in search of a design direction to make informed decisions, particularly with regard to the building envelope, which mostly regulates energy demand. To result in an energy-efficient residential stock, this paper proposes a methodology to support refurbishment strategies design. The methodology, called “façade refurbishment toolbox (FRT approach”, is based on compiling and quantifying retrofitting measures that can be also seen as “tools” used to upgrade the building’s energy performance. The result of the proposed methodology enables designers to make informed decisions that lead to energy and sustainability conscious designs, without dictating an optimal solution, from the energy point of view alone. Its applicability is validated through interviews with refurbishment stakeholders.

  19. PR.I.M.E3. PRocedure for Innovative building Modules Energy Efficient and Eco-compatible

    Directory of Open Access Journals (Sweden)

    Mario Grosso

    2014-05-01

    Full Text Available The building sector is responsible for almost 40% of the final energy use, and a little bit less of related green gasses emissions, in industrialised countries. Fulfilment of the Kyoto Protocol commitments as well as, more recently, of the objectives set by the Energy Performance of Building Directive 2010/31/EC within the strategic European Programme 20/20/20 (20% reduction of energy consumption, 20% of energy produced using renewable sources, 20% less green gasses emissions implies a radical change in the design and construction of buildings, which will have to perform as quasi-zero energy systems by 2020. Hence, it is necessary and urgent to develop technological, architecture-integrated solutions able to perform better that what is strictly required by current standards while assuring indoor comfort conditions during the whole year in different climate zones as the ones characterising the Italian land. Within this framework, the research project PR.I.M.E3, here presented, has intended to contribute to the above mentioned objectives through the development and testing of a prototype of building modular unit, single and combined, characterised by high energy efficiency, reduction of green gasses emissions, and use of eco-compatible materials.

  20. Energy Efficient Green Building Based on Geo Cooling System in Sustainable Construction of Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Rabiul Alam

    2012-12-01

    Full Text Available This paper is focused to utilize geo energy in cooling of building in tropical country like Malaysia where temperature rises in daytime and goes beyond to a comfortable limit. In daytime inside temperature of the room is considered to be reduced by adding thermal conductivity media inside the room elements such as walls through its connectivity to the underground where temperature is less than the ambient room temperature. Due to the ground connectivity of thermal conductivity media a flow of heat creates from the room to the ground and tries to produce a thermal balance between these two medias and therefore, room temperature drops to a temperature close to the underground soil temperature. Aluminium pipes are considered as high thermal conductivity material. The entire study is done numerically using ANSYS 11 finite element software to determine the role of underground soil and thermal conductivity pipes. In numerical investigation heat flow between two systems (building rooms equipped with thermal conductivity pipe and underground soil is studied and the performance of the conductivity materials is examined. The room temperature in the presence of thermal conductivity media as well as mechanical cooling system is also investigated in this study. It is seen that high thermal conductivity media plays a role in transferring heat from room to the ground and makes cooling of the building effectively. It acts also effectively when it uses with other mechanical cooling system of building.

  1. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  2. India’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with India

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd

    2010-06-01

    This report outlines India’s current activities and future plans in building energy efficiency R&D and deployment, and maps them with R&D activities under the Department of Energy’s Building Technologies Program. The assessment, conducted by the Pacific Northwest National Laboratory in FY10, reviews major R&D programs in India including programs under the 11th Five-Year Plan, programs under the NEF, R&D and other programs under state agencies and ongoing projects in major research institutions .

  3. 建筑节能设计的常见问题%Common Problems in Building Energy Efficiency Design

    Institute of Scientific and Technical Information of China (English)

    鲁性旭

    2014-01-01

    Building energy efficiency design is a complicated and meticulous work, composing of sev-eral simple links. Any problems with a simple link will cause the error. This paper summarizes eleven kinds of common problems in building energy efficiency, such as false data, incomplete building envelope items, inconsistencies existing in the drawings, calculations and records table of the same project, energy consumption index, dew point temperature calculation, the selection of design parameters, the use of prod-ucts, unreasonable building structure, design alteration, the setting and calculation of fire belt and the eco-nomics of building energy efficiency. The cause of the errors are analyzed with solutions.%建筑节能设计是一项繁琐、细致的工作,由一系列简单环节组成,任何一个简单环节出现问题,都会导致整个节能设计的错误。从假数据、围护结构部位缺项、图纸计算书备案表三者不一致、能耗指标、露点温度验算、设计参数取值、淘汰和限制使用的产品、构造不合理、设计变更、防火隔离带的设置与计算、节能经济性等十几个方面分析了建筑节能设计的常见问题,并提出了错误原因和解决方法。

  4. Building America Case Study: Philadelphia Housing Authority Energy-Efficiency Turnover Protocols, Philadelphia, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with four PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost-effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing, and measures that improve equipment efficiency. ARIES documented implementation in 18 housing units. Reductions in average air leakage were 16 percent and duct leakage reductions averaged 23 percent. Total source energy consumption savings due to implemented measures was estimated at 3-10 percent based on BEopt modeling with a simple payback of 1.6 to 2.5 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.

  5. Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry

    Directory of Open Access Journals (Sweden)

    Fernando R. Mazarrón

    2012-02-01

    Full Text Available The search for energy efficient construction solutions is still pending in the agro-food industry, in which a large amount of energy is often consumed unnecessarily when storing products. The main objective of this research is to promote high energy efficiency built environments, which aim to reduce energy consumption in this sector. We analyze the suitability of using the thermal inertia of the ground to provide an adequate environment for the storage and conservation of agro-food products. This research compares different construction solutions based on the use of ground thermal properties, analyzing their effectiveness to decrease annual outdoor variations and provide adequate indoor conditions. The analysis undertaken is based on over five million pieces of data, obtained from an uninterrupted four year monitoring process of various constructions with different levels of thermal mass, ranging from high volume constructions to others lacking this resource. It has been proven that constructive solutions based on the use of ground thermal inertia are more effective than other solutions when reducing the effects of outdoor conditions, even when these have air conditioning systems. It is possible to reach optimal conditions to preserve agro-food products such as wine, with a good design and an adequate amount of terrain, without having to use air conditioning systems. The results of this investigation could be of great use to the agro-food industry, becoming a reference when it comes to the design of energy efficient constructions.

  6. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carbary, Lawrence D. [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  7. Energy efficient school buildings in central-western Argentina: an assessment of alternative typologies for the classroom tier

    Energy Technology Data Exchange (ETDEWEB)

    De Rosa, C.; Basso, M.; Fernandez, J.C. [Laboratorio de Ambiente Humano y Vivienda, Mendoza (AR)] [and others

    2000-07-01

    Four energy-efficient demonstration school buildings were built in the western province of Mendoza, Argentina, in 1999, as part of a massive building program required to implement the new Federal Education Plan. The buildings should make medium use of bioclimatic strategies and daylighting. The aspects of typology of the classroom tiers became immediately apparent as one of the main conditioners of the overall scheme. Three different alternative schemes were designed and built. A deeper analysis of these and other possible alternatives were thought essential for future constructions of the type. Four typologies of the classroom tier, using the same, locally available technology, are being comparatively assessed in the aspects of energy efficiently, thermal and luminous comfort, construction and operation costs and environmental impact (LCA). The paper presents the provisional results of the two first items only: energy efficiency and thermal comfort. While all four schemes evaluated are believed to be ''workable'', differences will tend to favour some the other according to context situations. Volumetric Loss Coeff. range from 1.09 to 1.24 W/Km{sup 3}. Solar savings fractions for the school operation hours vary between: 82.83 and 91.58%. Work is being continued to cover all the analysis items in a combined way. (author)

  8. Restoration and conversion to re-use of historic buildings incorporating increased energy efficiency: A case study - the Haybarn complex, Hilandar Monastery, Mount Athos

    Directory of Open Access Journals (Sweden)

    Ivanović-Šekularac Jelena A.

    2016-01-01

    Full Text Available A proper approach to restoration of historic buildings is crucial for monumental heritage protection. The objective of the paper is to define a methodology for historic buildings restoration in order to increase energy efficiency and re-usability in accordance with modern standards. The main method used in the paper is the observation of historic buildings during their restoration and exploitation, analysis and evaluation of achieved results regarding energy efficiency and energy saving, through the examples of the buildings belonging to Hilandar Monastery, Mount Athos, in Greece. Mount Athos was inscribed on the UNESCO World Heritage List for its cultural and natural values. This case study discusses the abandoned and dilapidated historic buildings of the Haybarn Complex (Stable, Mulekeepers’ House and Haybarn, the achieved results regarding the restoration of these buildings, their energy efficiency and turning into the premises for occasional stays. The research results are recommendations for increasing energy efficiency while performing the restoration of historic buildings, so that these buildings could be re-used in a new way. The most significant contribution of the paper is the practical test of energy refurbishment of these historic buildings conducted using the principles and methods of energy efficiency, in compliance with conservation requirements and authenticity of historic buildings.

  9. Influence of advanced room -and building automation and optimized operation control on the energy efficiency of buildings; Einfluss moderner Raum- und Gebaeudeautomation und optimierter Betriebsfuehrung auf die Energieeffizienz von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, P.; Peters, B.; Becker, M. [Hochschule Biberach (Germany). Fachgebiet Gebaeudeautomation

    2008-07-01

    There is an increasing awareness of using our energy resources more efficiently which also leads to the finding of the importance of energy-efficient building services and operation. Unfortunately, we often restrict ourselves looking only at the costs of the investment itself instead of taking into account also the costs during the long time of building operation. In particular this is an obvious fact to decisions of investments for room and building automation equipment. However, building automation and control systems (BACS) deliver high potentials for energy savings with regard to the ongoing operation of a building. Thus, in accordance with sustainable building design, it is extremely important to understand buildings in their entirety and to look at their building facilities in an integral way. This article discusses the energy potentials of building automation and control and how the potentials can be calculated and increased. Further more, it will be presented which tools are needed for an optimized building operation management. (orig.)

  10. Cost-effectiveness of solar energy in energy-efficient buildings; Kosten und Nutzen von Solarenergie in energieeffizienten Bauten

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, S.; Iten, R.; Vettori, A. [Infras, Zuerich (Switzerland); Haller, A.; Ochs, M. [Ernst Schweizer AG, Hedingen (Switzerland); Keller, L. [Bureau d' Etudes Keller-Burnier, Lavigny (Switzerland)

    2005-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that examined the potentials and restraints with respect to the use of solar energy in the new construction and refurbishment of residential buildings in Switzerland. The method used is based on a 'learning-curve' technique. The first part of the report deals with the development of prices for solar-collector installations from 1990 until now. The second part deals with today's costs and future developments up to the year 2030. A reference building is used as the basis for the comparison of eight system variants. A further eight variants combine solar technology with traditional heating installations such as oil, gas and wood boilers and heat-pumps. Scenarios for the market situation for solar energy in 2030 are discussed.

  11. Integrating individual trip planning in energy efficiencyBuilding decision tree models for Danish fisheries

    DEFF Research Database (Denmark)

    Bastardie, Francois; Nielsen, J. Rasmus; Andersen, Bo Sølgaard

    2013-01-01

    the adaptations of individual fishermen to resource availability dynamics, increasing fuel prices, changes in regulations, and the consequences of socioeconomic external pressures on harvested stocks. A new methodology is described here to obtain quantitative information on the fishermen’s micro-scale decisions...... integrate detailed information on vessel distribution, catch and fuel consumption for different fisheries with a detailed resource distribution of targeted stocks from research surveys to evaluate the optimum consumption and efficiency to reduce fuel costs and the costs of displacement of effort. The energy...... hypothetical conditions influencing their trip decisions, covering the duration of fishing time, choice of fishing ground(s), when to stop fishing and return to port, and the choice of the port for landing. Fleet-based energy and economy efficiency are linked to the decision (choice) dynamics. Larger fuel...

  12. Modelling changes in the energy efficiency of buildings using neural networks on the example of Zielona Góra

    Directory of Open Access Journals (Sweden)

    Łączak Andrzej

    2016-01-01

    Full Text Available The objective of this article is to find a way to pursue optimum spatial policy on the local level to meet the assumptions of the energy policy of the European Union. One of the possible ways of developing energy efficient civil engineering is varied town policy and programmes supporting energy efficient buildings. And the second is the use of renewable energy sources as a factor improving the energy safety of built areas and reducing the emission of greenhouse gases. And the third is the optimization of expenditure on these goals in towns. Although our current research and estimations based on it are limited to a medium-sized town in the west of Poland, the observations included in this article may be important for other regions that are interested in reducing energy consumption in buildings, residential areas and towns. Taking into account the geographical context, it is especially important for these regions of Europe that are obtaining financial aid from the European Union in the perspective for the years 2014-2020.

  13. State building energy codes status

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

  14. SIA model for buildings: energy-efficiency path for commercial and residential buildings. Preliminary study on the Swiss model for buildings - Basics for the revision of the 'SIA energy-efficiency path' - Final report; Gebaeudeparkmodell 'SIA Effizienzpfad Energie', Dienstleistungs- und Wohngebaeude. Vorstudie zum Gebaeudeparkmodell Schweiz - Grundlagen zur Ueberarbeitung des SIA Effizienzpfades Energie - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heeren, N.; Gabathuler, M.; Wallbaum, H. [Institut fuer Bauplanung und Baubetrieb, Eidgenoessische Technische Hochschule Zuerich (ETHZ), Zuerich (Switzerland); Jakob, M.; Martius, M.; Gross, N. [TEP Energy GmbH, Technology Economics Policy - Research and Advice, Zuerich (Switzerland)

    2009-10-15

    The aim of the project was to provide a basis for the revision of the so-called 'Efficiency Path' of the Swiss Association of Engineers and Architects (SIA) in the context of the goals of the 2000-Watt-Society. Particularly, the objective is to find the conditions in which the specific goals of the 2000-Watt-Society for residential, school and office buildings could be reached. Considered indicators are the per capita primary energy use in terms of average power and the greenhouse gas emissions. A bottom-up model was developed to estimate final and primary energy demand of the mentioned building types, broken down by different types of energy utilisation. Assumptions were made regarding the most important physical drivers as well as for regarding energy efficiency parameters of new buildings, building retrofits, building technologies and other energy applications in the residential, school and office buildings. Two basic scenarios were developed: an ambitious efficiency scenario was compared to a reference scenario which included current and foreseeable energy policy elements. Regarding electricity supply three scenario-variants of the so-called Swiss Energy Perspectives of the Swiss Federal Office of Energy (SFOE) were used: variant I b 'business-as-usual - nuclear and central fossil plants', IV a: Path to the 2000-Watt-Society - nuclear' and, IV e 'Path to the 2000-Watt-Society - renewable energies'. With this respect it was found that in the case of the efficiency scenario the influence of the electricity generation mix is relatively small. This finding is explained by the fact that hydro power (which is held more or less at the current level) has a large share in the power supply mix in the case of the efficiency scenario with moderate electricity demand and that hydro power is efficient in terms of primary energy and has considerably low greenhouse gas emissions. The results of the study show that with the underlying

  15. Study on risk management for the implementation of energy efficient and renewable technologies in green office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mosly, I., E-mail: ibrahim.mosly@hotmail.com; Zhang, G., E-mail: kevin.Zhang@rmit.edu.au [RMIT University, Melbourne, Victoria (Australia). School of Civil, Environmental and Chemical Engineering

    2010-07-01

    Sustainability is becoming an important subject these days in many countries around the world. This is mainly due to increasing governmental and public awareness about reducing the impacts of climate change on our environment. Green buildings are able to reduce greenhouse gas emissions and consumption of natural resources. Reducing either water or energy consumption is achieved in green buildings with the aid of certain types of advanced technologies. This is done in order to help these buildings become more environmentally friendly. Unfortunately, these technologies are relatively new and may present a number of risks during various phases of their lifecycles, affecting different project stakeholders. This paper will focus on the risks of energy efficient and renewable technologies (EERTs), which are mainly implemented in green office buildings. These risks are divided into four categories: heating, ventilating and air conditioning (HVAC), lighting, solar, and wind. It will present a comprehensive review of a number of risks pertaining to the application of EERTs. Furthermore, it will emphasize the need to create a risk management framework for EERTs implemented in green office buildings due to the current lack of research carried out to investigate and treat these potential risks.

  16. Energy efficiency in the Hellenic building sector. An assessment of the restrictions and perspectives of the market

    Energy Technology Data Exchange (ETDEWEB)

    Karkanias, C.; Papadopoulos, A.M.; Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, Box 483, GR 54124 Thessaloniki (Greece); Boemi, S.N. [Department of Environmental and Natural Resources Management, GR 30100 Agrinio (Greece); Tsoutsos, T.D. [Department of Environmental Engineering, Technical University of Crete, Kounoupidiana Campus, GR 19009 Chania (Greece)

    2010-06-15

    The significance of bioclimatic architecture has become widely accepted since the 1970s and the implementation of its principles in practice is a key factor in order to achieve energy efficiency in the building sector. The way, however, from scientific acceptance to commercial utilization is not a straightforward one. This paper deals with the notion of bioclimatic architecture in buildings and investigates the aspects of this concept in Hellas. A sample of university researchers, building contractors and members of public organisations was interviewed using a standardised set of guidelines. The barriers to promoting bioclimatic design, role of the local government in the adoption process, level of environmental culture as well as perspectives of this concept in Hellas were the key areas of discussion in each of the interviews. The results from the data analysis reveal insufficient economic incentives, a lack in technical information as well as a lack in specific environmental policies that would foster the propagation of bioclimatic architecture. (author)

  17. Energy efficiency in the Hellenic building sector: An assessment of the restrictions and perspectives of the market

    Energy Technology Data Exchange (ETDEWEB)

    Karkanias, C. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, Box 483, GR 54124 Thessaloniki (Greece); Boemi, S.N. [Department of Environmental and Natural Resources Management, GR 30100 Agrinio (Greece); Papadopoulos, A.M. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, Box 483, GR 54124 Thessaloniki (Greece); Tsoutsos, T.D., E-mail: theocharis.tsoutsos@enveng.tuc.g [Department of Environmental Engineering, Technical University of Crete, Kounoupidiana Campus, GR 19009 Chania (Greece); Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, Box 483, GR 54124 Thessaloniki (Greece)

    2010-06-15

    The significance of bioclimatic architecture has become widely accepted since the 1970s and the implementation of its principles in practice is a key factor in order to achieve energy efficiency in the building sector. The way, however, from scientific acceptance to commercial utilization is not a straightforward one. This paper deals with the notion of bioclimatic architecture in buildings and investigates the aspects of this concept in Hellas. A sample of university researchers, building contractors and members of public organisations was interviewed using a standardised set of guidelines. The barriers to promoting bioclimatic design, role of the local government in the adoption process, level of environmental culture as well as perspectives of this concept in Hellas were the key areas of discussion in each of the interviews. The results from the data analysis reveal insufficient economic incentives, a lack in technical information as well as a lack in specific environmental policies that would foster the propagation of bioclimatic architecture.

  18. From design to management: a benchmarking process for the energy efficiency of buildings

    Directory of Open Access Journals (Sweden)

    Judit Kimpian

    2013-05-01

    Full Text Available Environmental quality and energy efficiency are strategic objectives which can highlight the ‘effectiveness’ of design and technological choices, as well as the impact of management strategies and user behaviour. Studies show it is possible to narrow the gap between expected and actual energy consumption if technical performance, occupant behaviour, and management systems are considered together. In the United Kingdom, industries and universities have created ‘Carbon Buzz’ based on the principles of Evidence Based Design. Following on from this project, Rome Tre University, together with UCL and Aedas R&D, are developing a platform using structured data and comparisons to create a link between energy performance and CO2 emissions, and choices regarding design, technology, and management.

  19. Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Directory of Open Access Journals (Sweden)

    Alberto Bonastre

    2011-10-01

    Full Text Available We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  20. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    Science.gov (United States)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  1. Energy efficiency benchmarks and the performance of LEED rated buildings for Information Technology facilities in Bangalore, India

    Energy Technology Data Exchange (ETDEWEB)

    Sabapathy, Ashwin; Ragavan, Santhosh K.V.; Vijendra, Mahima; Nataraja, Anjana G. [Enzen Global Solutions Pvt Ltd, 90, Hosur Road, Madiwala, Bangalore 560 068 (India)

    2010-11-15

    This paper provides a summary of an energy benchmarking study that uses performance data of a sample of Information Technology facilities in Bangalore. Information provided by the sample of occupiers was used to develop an Energy Performance Index (EPI) and an Annual Average hourly Energy Performance Index (AAhEPI), which takes into account the variations in operation hours and days for these facilities. The EPI and AAhEPI were modelled to identify the factors that influence energy efficiency. Employment density, size of facility, operating hours per week, type of chiller and age of facility were found to be significant factors in regression models with EPI and AAhEPI as dependent variables. Employment density, size of facility and operating hours per week were standardised and used in a separate regression analysis. Parameter estimates from this regression were used to normalize the EPI and AAhEPI for variance in the independent variables. Three benchmark ranges - the bottom third, middle third and top third - were developed for the two normalised indices. The normalised EPI and AAhEPI of LEED rated building, which were also part of the sample, indicate that, on average, LEED rated buildings outperform the other buildings. (author)

  2. Application of Renewable Energy in the Building Energy Efficiency%可再生能源在建筑节能中的应用

    Institute of Scientific and Technical Information of China (English)

    孙建梅; 刘云昭

    2014-01-01

    针对我国建筑用能居高态势及其对环境影响的问题,概述了建筑节能的现状和将可再生能源应用于建筑节能的意义。详细解析了太阳能、地热能等可再生能源在建筑节能中的主要应用形式,并指出了其在应用过程中存在的一些成本、技术等问题,从因地制宜、新技术研发等方面提出了几点提高可再生能源利用效率的建议。%Aiming atthe problems of highenergy consumption in buildingsand its impacts on the environment , this article reviews the current status of building energy efficiency and the significance of renewable energy used in building energy efficiencyaccording toChina's current energy situation .In addition ,it describes the main application forms of solar and geothermal energy applied in buildings energy efficiency in detail ,and points out the problems of cost ,technology and other issuesexisting in the application process .At last ,itpro-poses some recommendations to improve the using efficiency of renewable energyfrom the aspectsofmatchin-glocal conditionsandresearchingnew technology ,etc .

  3. Regulation proposal for voluntary energy efficiency labelling of commercial buildings; Regulamentacao de etiquetagem voluntaria de nivel de eficiencia energetica de edificios comerciais e publicos

    Energy Technology Data Exchange (ETDEWEB)

    Lamberts, Roberto; Goulart, Solange; Carlo, Joyce; Westphal, Fernando [Universidade Federal de Santa Catarina (UFSC/LabEEE), Florianopolis, SC (Brazil). Lab. de Eficiencia Energetica em Edificacoes], e-mail: lamberts@ecv.ufsc.br, e-mail: solange@labeee.ufsc.br, e-mail: joyce@labeee.ufsc.br, e-mail: fernando@labeee.ufsc.br

    2006-07-01

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m{sup 2} or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  4. 75 FR 29933 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Science.gov (United States)

    2010-05-28

    ... establish revised performance standards for the construction of new Federal buildings and major renovations... for green buildings that encourages a comprehensive and environmentally-sound approach to certification of green buildings. DATES: Public comments on this proposed rule will be accepted until July...

  5. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  6. Challenges for energy efficiency in the buildings sector in the Sao Paulo State, Brazil; Desafios para eficiencia energetica no setor de edificios no estado de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Maria Ines; Parente, Virginia [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia], email: vparente@iee.usp.br

    2010-07-01

    The consumption of energy in the building sector accounts for more than one third of the total final electricity consumption in Sao Paulo State. Considering that, the development of policy measures aiming at the promotion of energy efficiency in the sector should be encouraged. Analysed data reveals the continuing rise of energy consumption resulting form the high number of new buildings and the rising standards of the population in consequence of economic development. Besides this, the retrofit of old buildings presents a huge potential for energy savings. The article analyses and suggests the use of Building Codes as a suitable policy instrument for the Sao Paulo Sate reality. (author)

  7. Building an Energy-Efficient Prediction S-MAC Protocol for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Mahmoud Abdel-Aziz El-Sakhawy Othman

    2010-12-01

    Full Text Available With the rapid development of wireless networking and micro-electro-mechanical systems (MEMS, wireless sensor networks (WSNs have been immerged. WSNs consist of large amount of small, low-end, resource constrained devices, called sensors. Since sensor nodes are usually intended to be deployed in unattended or even hostile environments, it is almost impossible to recharge or replace their batteries. One of the most important research issues in the wireless sensor networks is to extend the network lifetime by energy efficient battery management. So, there are a lot of approaches that are designed to reduce the power consumption of the wireless sensor nodes. In this paper; a new protocol named "prediction S-MAC protocol" is proposed to reduce the power consumption of the wireless sensor nodes and to improve their performance compared to the previous S-MAC protocols.

  8. An Efficient Approach for Energy Consumption Optimization and Management in Residential Building Using Artificial Bee Colony and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2016-01-01

    Full Text Available The energy management in residential buildings according to occupant’s requirement and comfort is of vital importance. There are many proposals in the literature addressing the issue of user’s comfort and energy consumption (management with keeping different parameters in consideration. In this paper, we have utilized artificial bee colony (ABC optimization algorithm for maximizing user comfort and minimizing energy consumption simultaneously. We propose a complete user friendly and energy efficient model with different components. The user set parameters and the environmental parameters are inputs of the ABC, and the optimized parameters are the output of the ABC. The error differences between the environmental parameters and the ABC optimized parameters are inputs of fuzzy controllers, which give the required energy as the outputs. The purpose of the optimization algorithm is to maximize the comfort index and minimize the error difference between the user set parameters and the environmental parameters, which ultimately decreases the power consumption. The experimental results show that the proposed model is efficient in achieving high comfort index along with minimized energy consumption.

  9. Hygrothermal analysis of characteristic public building rooms before energy efficient retrofitting solutions

    OpenAIRE

    Souaihi, Oussama; Capdevila, Roser; Lopez, Joan; Lehmkuhl Barba, Oriol; Rigola Serrano, Joaquim

    2016-01-01

    In the present paper, a modular, object-oriented and parallel methodology for the multiphysics simulation of buildings is presented. The whole building is modeled as a collection of basic elements (e.g., walls, rooms, outdoor, people, ventilation, solar radiation distributor, etc.). These elements can be modeled with different physical models and scales. A combined heat and moisture transfer model for the building envelopes and rooms have been implemented and validated with different benchmar...

  10. Refurbishment of Residential Buildings: A Design Approach to Energy-Efficiency Upgrades

    NARCIS (Netherlands)

    Konstantinou, T.; Knaack, U.

    Refurbishing the existing building stock is an acknowledged issue in the building industry. Even though awareness has been raised, the design phase of refurbishment projects is often problematic. The decisions taken in the early stages of the design determine the final result; however, the assessmen

  11. Sustainable building with closed cavity facades. Top energy efficiency and more daylight; Nachhaltig bauen mit Closed Cavity Fassaden. Hoechste Energieeffizienz und mehr Tageslicht

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Bernhard

    2012-08-15

    Facades have a key function within the sustainable construction since the energy conservation significantly depends on the building envelope. Beside an enhanced energy efficiency, the Green Building shall offer an improved utilization of day-lighting and comfortable indoor climatic conditions. Here, the innovative Closed Cavity Facade new standards. The former 'Poseidon building' in Frankfurt/Main (Federal Republic of Germany) and the multi-storey building of the Roche company in Basel (Switzerland) are equipped with this facade. The energy costs, operational costs as well as the maintenance costs are reduced sustainably using this closed bivalved facade.

  12. 数据包络分析在建筑能效评价中的应用%Application of Data Envelopment Analysis to Building Energy Efficiency Assessment

    Institute of Scientific and Technical Information of China (English)

    张超; 董春桥; 陈昱廷

    2013-01-01

    An assessment of building energy efficiency is one of the measures which are important to improve building energy efficiency. And scientific building energy efficiency assessment can ensure the improvement of the building energy efficiency and the enhancement of building performance as well. It first introduces the basic principle and characteristics of Data Envelopment Analysis (DEA), then expounds feasibility of the building energy efficiency assessment with DEA, and discusses its application method and model properties, finally demon-strates the result and function of DEA to building energy efficiency assessment with an example. As improvement of building energy efficiency and enhancement of building performance, DEA will play a more and more powerful role.%  建筑能效评价是促进建筑节能的重要措施之一,科学的建筑能效评价方法既是提高建筑能效和节能减排的标尺,又是增强建筑性能的基础。首先介绍数据包络分析的基本原理和特征,然后论证数据包络分析进行建筑能效评价的可行性,并探讨数据包络分析在建筑能效评价中的应用方式和建模特点,最后通过实例验证数据包络分析在建筑能效评价中的效果和意义。随着我国建筑节能工作的深入和节能方式的转变,数据包络分析必将在提高建筑能效和增强建筑性能中发挥更大的作用。

  13. Life cycle cost analysis of commercial buildings with energy efficient approach

    OpenAIRE

    Nilima N. Kale; Deepa Joshi; Radhika Menon

    2016-01-01

    In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC) analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information neces...

  14. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  15. The US Green Building Council`s initiatives to improve the energy and environmental efficiency of the {open_quotes}whole building environment{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Italiano, M.

    1994-12-31

    Today, there is a strong public demand for environmental and energy efficiency in the built environment. According to EPA for at least the past three or four years, there has been one hundred twenty billion dollars annually spent on the environment. This is being done because there are some 30 federal statutes relating to environmental protection. On average there are about 10 separate statutes at every state level. This legislation has taken since the 1970`s to accumulate. They have been enacted because of strong public demand for environmental protection. Public opinion polls have shown for the last five years that support for environmental protections exceeds 90%. It is a very popular national commitment. There are no more debates over whether we need to stop pollution. Those have long gone, and this is being recognized by the building community. We need to recognize that there is a public demand for these issues to be evaluated, discussed and resolved. Buildings, productivity, energy and environmental efficiency are a huge investment in the country, and it is thought that a deliberative debate with decisions on a consensus basis in an expedited manner, is going to be very effective.

  16. The Role of Values, Moral Norms, and Descriptive Norms in Building Occupant Responses to an Energy-Efficiency Pilot Program and to Framing of Related Messages

    Science.gov (United States)

    Arpan, Laura M.; Barooah, Prabir; Subramany, Rahul

    2015-01-01

    This study examined building occupants' responses associated with an occupant-based energy-efficiency pilot in a university building. The influence of occupants' values and norms as well as effects of two educational message frames (descriptive vs. moral norms cues) on program support were tested. Occupants' personal moral norm to conserve energy…

  17. Religious building energy use

    Energy Technology Data Exchange (ETDEWEB)

    Spielvogel, L.G.; Rudin, A.

    1988-02-01

    The Interfaith Coalition on Energy (ICE) was organized in 1980 by the Philadelphia area religious community and, funded in 1982 by local private foundations and corporations, began an energy management program for religious buildings whose utility bills are paid by congregations. Since that time, ICE has completed on-site energy audits for 226 congregations with a total of 546 buildings. Each audit report contains a description of the facilities and their energy systems, a baseline year of energy data, a computation of energy use per square foot, and a list of recommendations to reduce energy costs in order of simple payback.

  18. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  19. Discussion on Application Technology of Building Energy Efficiency in China%我国建筑节能的技术探讨

    Institute of Scientific and Technical Information of China (English)

    郭凯

    2015-01-01

    Building energy efficiency can reduce the growth in the total energy consumption of the building speed, this paper mainly expounds the recently the focus of the work of building energy conservation in our country, gradually strengthen control on building energy consumption of the actual operation, strengthen the building energy-saving technology and technology innovation etc..%建筑节能可以降低建筑总能耗增长的速度。本文主要阐述了近期我国建筑节能的工作重点、逐步加强对建筑实际运行能耗的控制、加强建筑节能的技术基础和技术创新等问题。

  20. Energy Efficiency

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government...

  1. 探讨高效节能的绿色建筑设计%Discuss the Green Building Design of High Efficiency and Energy Saving

    Institute of Scientific and Technical Information of China (English)

    唐海

    2014-01-01

    随着能源危机的日益严重,保护能源迫在眉捷。绿色节能建筑是通过环境与建筑体系之间的关系,使建筑体系减小对环境的破坏。本文对绿色建筑设计进行了探讨,为能够设计出更多高效节能的绿色建筑提供了参考。%With the increasingly serious energy crisis, the en-ergy protection is eyebrow nimble. Green energy-saving build-ings are making the building system reduce the damage to the environment through the relationship between the environment and building system. This article discusses the green building design to provide reference for design a more efficient ener-gy-saving green building.

  2. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  3. Making Energy-Efficiency and Productivity Investments in Commercial Buildings: Choice of Investment Models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    This study examines the decision to invest in buildings and the types of investment decision rules that may be employed to inform the ''go--no go'' decision. There is a range of decision making tools available to help in investment choices, which range from simple rules of thumb such as payback periods, to life-cycle analysis, to decision theoretic approaches. Payback period analysis tends to point toward lower first costs, whereas life-cycle analysis tends to minimize uncertainties over future events that can affect profitability. We conclude that investment models that integrate uncertainty offer better explanations for the behavior that is observed, i.e., people tend to delay investments in technologies that life-cycle analysis finds cost-effective, and these models also lead to an alternative set of policies targeted at reducing of managing uncertainty.

  4. Energy efficiency by use of automated energy-saving windows with heat-reflective screens and solar battery for power supply systems of European and Russian buildings

    Science.gov (United States)

    Zakharov, V. M.; Smirnov, N. N.; Tyutikov, V. V.; Flament, B.

    2015-10-01

    The new energy saving windows with heat-reflecting shields have been developed, and for their practical use they need to be integrated into the automated system for controlling heat supply in buildings and the efficiency of their use together with the existing energy-saving measures must be determined. The study was based on the results of field tests of windows with heat-reflective shields in a certified climate chamber. The method to determine the minimum indoor air temperature under standby heating using heat-reflective shields in the windows and multifunctional energy-efficient shutter with solar battery have been developed. Annual energy saving for the conditions of different regions of Russia and France was determined. Using windows with heat-reflecting screens and a solar battery results in a triple power effect: reduced heat losses during the heating season due to increased window resistance; lower cost of heating buildings due to lowering of indoor ambient temperature; also electric power generation.

  5. A Methodology to Support Decision-Making Towards an Energy-Efficiency Conscious Design of Residential Building Envelope Retrofitting

    OpenAIRE

    2015-01-01

    Over the next decade investment in building energy savings needs to increase, together with the rate and depth of renovations, to achieve the required reduction in building-related CO2 emissions. Although the need to improve residential buildings has been identified, guidelines come as general suggestions that fail to address the diversity of each project and give specific answers on how these requirements can be implemented in the design. During early design phases, architects are in search ...

  6. Municipal Building Energy Usage

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set contains energy use data from 2009-2014 for 139 municipally operated buildings. Metrics include: Site & Source EUI, annual electricity, natural...

  7. A Methodology to Support Decision-Making Towards an Energy-Efficiency Conscious Design of Residential Building Envelope Retrofitting

    NARCIS (Netherlands)

    Konstantinou, T.

    2015-01-01

    Over the next decade investment in building energy savings needs to increase, together with the rate and depth of renovations, to achieve the required reduction in buildingrelated CO2 emissions. Although the need to improve residential buildings has been identified, guidelines come as general sugges

  8. Some issues in building energy efficiency in China%我国建筑节能中的若干问题分析

    Institute of Scientific and Technical Information of China (English)

    刘鸣

    2012-01-01

    以德国节能建筑法规和能效标识为参考,对我国现有建筑节能标准及其内容进行了分析,提出了一些需要完善和改进的意见.建筑节能必须用全年的时间段来分析,才能得出完整、正确的结论;我国建筑能耗的考核统计应全面、规范,除了应有建筑供暖空调能耗限制,也应对建筑的用电、生活热水的能耗和设备、系统效率纳入考核;我国的建筑除了应制定出基本的强制性标准外,还应制定出中、高级的不同等级的建筑节能标准;我国既有建筑的节能工作应加强建筑的气密性、热桥、自然通风与热回收等环节.%Referring to the German building energy efficiency laws and energy labelling, analyses the current Chinese standard for building energy efficiency and its content. Puts forward some ideas to perfect and improve the standard. Building energy efficiency should be analysed in view of the whole year period in order to get a complete and correct conclusion. The assessment and statistics of building energy consumption should be performed in a comprehensive and normative mode i. e. in addition to the building heating and cooling energy consumption, the electricity consumption, the energy consumption for domestic hot water supply and the system efficiency of buildings should also be assessed. Besides establishing basic mandatory standard for building energy efficiency, it is needed to lay down standards for medium to high , classes with different levels of building energy efficiency in China. Such links as air tightness, thermal bridge, natural ventilation and heat recovery should be strengthened for the energy efficiency improvement in current buildings.

  9. ENERGY-EFFICIENT REGIMES FOR HEATING-SUPPLY OF THE RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Rise in comfort and inhabitation safety is one of the main requirements of the general maintenance, reconstruction of the old and construction of the new residential houses. One of the essential factors of it is substitution in the household hot-water preparing sources: from the individual domestic gas  water-heaters to  the common  entire-building hot-water supply at the expense of the centralized heat supply. Extremely erratic hot-water daily consumption by tenants leads to the necessity of sharp increase in central heat-supply level during a few hours of the day, which requires a significant increase of the source heat-power. On that score, the authors propose to direct a significant part (up to 50 % of the centralized heating and ventilation heat power-consumption to the hot water preparation during the period of short-term hot water consumption peak.Substitution  of  the  individual  domestic  gas  water-heaters  with  the  common  entirebuilding hot-water supply releases a huge amount of natural gas which can be utilized not only for production of the necessary heat power but as well for electric power producing. This substitution is especially advantageous if heat-power is delivered to the residential area from a НРС where significant part of heat especially in a relatively warm season of the year is thrown out into the air. The content of the article is based on several patents received earlier.

  10. Energy Efficient Housing for Iran

    OpenAIRE

    Nasrollahi, Farshad; Wehage, Philipp; Shahriari, Effatolsadat; Tarkashvand, Abbas

    2013-01-01

    Zugleich gedruckt erschienen im Universitätsverlag der Technischen Universität Berlin, 2013. - ISBN 978-3-7983-2528-9, ISSN 2193-6099 This volume introduces a cost-neutral method to reduce the energy demand of residential buildings in the climatic conditions of the Tehran region. "Architectural Energy Efficiency" describes how the energy demand of residential buildings can be lowered through a conscious and intelligent design. It indicates the high energy saving potential that can be achie...

  11. Aerial thermography for energy efficiency of buildings: the ChoT project

    Science.gov (United States)

    Mandanici, Emanuele; Conte, Paolo

    2016-10-01

    The ChoT project aims at analysing the potential of aerial thermal imagery to produce large scale datasets for energetic efficiency analyses and policies in urban environments. It is funded by the Italian Ministry of Education, University and Research (MIUR) in the framework of the SIR 2014 (Scientific Independence of young Researchers) programme. The city of Bologna (Italy) was chosen as the case study. The acquisition of thermal infrared images at different times by multiple aerial flights is one of the main tasks of the project. The present paper provides an overview of the ChoT project, but it delves into some specific aspects of the data processing chain: the computing of the radiometric quantities of the atmosphere, the estimation of surface emissivity (through an object-oriented classification applied on a very high resolution multispectral image, to distinguish among the major roofing materials) and sky-view factor (by means of a digital surface model). To collect ground truth data, the surface temperature of roofs and road pavings was measured at several locations at the same time as the aircraft acquired the thermal images. Furthermore, the emissivity of some roofing materials was estimated by means of a thermal camera and a contact probe. All the surveys were georeferenced by GPS. The results of the first surveying campaign demonstrate the high sensitivity of the model to the variability of the surface emissivity and the atmospheric parameters.

  12. Deployment methods of visible light communication lights for energy efficient buildings

    Science.gov (United States)

    Niaz, Muhammad Tabish; Imdad, Fatima; Kim, Soomi; Kim, Hyung Seok

    2016-10-01

    Indoor visible light communication (VLC) uses light emitting diodes (LEDs) to provide both illumination and data communication. The deployment of LED plays an important role in maintaining a steady optical power distribution over the reference receiving plane. Typical ways of luminaire deployment in offices and homes are not optimized for VLC. This paper investigates various configurations of LEDs for deploying them on the ceilings of offices and homes. The existing square array deployment of LEDs does not provide a full coverage on the receiving plane leaving dead spaces, which in turn affects the performance of the whole system. An optimized circular deployment scheme is proposed that considers both the position of the LED transmitters on the ceiling and the first reflections at each wall to yield more accurate results. Rectangular deployment and circular deployment are analyzed through simulation of the received optical power distribution, average outage area rate, and energy consumption. An optimization technique is developed to analyze the LED deployment schemes. It is clear from the results that the circular LED deployment provides a better performance than the square array grid LED deployment.

  13. 建筑节能的实现途径与发展方向%Measures and Development of Building Energy Efficiency

    Institute of Scientific and Technical Information of China (English)

    佟昕; 侯恩哲; 王霖

    2013-01-01

    The Chinese building energy consumption is analyzed to point out the importance and meaning of building energy saving. The effective ways are proposed to realize building energy-efficiency. Promoting energy-efficient residential buildings is one of the most effective methods. The building energy efficiency will be achieved through effective using of natural energy and resources, which implies the strategic idea of harmonious development between man and nature, as well as the embodiment of sustainable development.%  在分析目前中国建筑能耗状况的基础上,剖析了建筑节能的重要性及其内涵,指出实现建筑节能的有效途径,提出推广节能型住宅模式是促进建筑节能最有效的方法之一。今后建筑节能的发展将围绕资源、能源的高效利用以及最大限度地利用自然能等方式,体现人与自然的和谐发展以及可持续发展的战略理念。

  14. Energy Efficiency Ways of Building and Means of Implementation%建筑节能方式和实施途径综述

    Institute of Scientific and Technical Information of China (English)

    周向辉

    2012-01-01

    Modem society increasingly promotes green and sustainable "low carbon life". Under this concept, the paper elaborates the necessity of building energy efficiency and the approach to implement energy-efficient buildings.%现代社会越来越提倡绿色环保、可持续发展的“低碳生活”,在这一理念下本文主要针对建筑节能方面阐述节能建筑的必要性以及实施节能建筑的途径.

  15. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    was assigned with this task. The evaluation aimed to answer the crucial questions: Is the overall design of the portfolio of instruments appropriate? Does the impact of the instruments justify the costs, so that we reach the national goals in a cost efficient way? Will the current instrument portfolio be able...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...

  16. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Deep Retrofits, Central and South Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-22

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.

  17. 谈居民建筑的节能技术%Study on energy efficiency technologies for residential buildings

    Institute of Scientific and Technical Information of China (English)

    王鹰

    2015-01-01

    对民用建筑节能存在的问题进行了研究,并对建筑外墙、外门、外窗、屋顶等节能技术措施作了阐述,总结了住宅工程建筑节能的控制要点,以促进节能技术的推广应用,实现社会经济的可持续发展。%The paper researches civil building energy-saving problems,illustrates energy-saving technology measures of external building wall, door,external window and roof and so on,and summarizes residential engineering building energy-saving control points,with a view to promote energy-saving technology and realize sustainable economic social development.

  18. Renewable Energy Applications for Existing Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  19. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  20. State-of-the-art review revealing a roadmap for public building water and energy efficiency retrofit projects

    Directory of Open Access Journals (Sweden)

    Edoardo Bertone

    2016-12-01

    Full Text Available Governments occupy a significant proportion of building stock and their associated annual water and energy costs can be substantive. Research has shown that significant reductions in energy and water consumption as well as carbon emissions can be achieved through retrofitting public buildings. However, in most countries the current retrofitting rate is very low due to a number of barriers, including a lack of supportive legislation, regulations, guidelines, industry capacity and financial mechanisms. This paper provides a comprehensive review of the barriers as well as the best international practices covering numerous aspects of public building retrofits. Among others, the most important barriers identified were a lack of consideration of the water-energy nexus, and the limited availability of effective financing mechanisms. With a particular focus on the Australian context, a strategic roadmap, as well as a number of recommendations, such as the use of revolving loan fund financing and energy performance procurement, have been developed that aim to foster a greater rate of implementation of energy and water retrofit projects for public buildings. Achievement of such an aim will not only reduce ongoing operational costs of public buildings, but also lower their environmental impact and generate new employment opportunities.

  1. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...... the context of performance of resident businesses. We examine both business performance and energy performance and how they relate to one another to conclude that building occupants, who are also employees, hold the key to optimizing both metrics in one of the most cost-efficient ways. Finally, the goal...... of our contribution is twofold: 1) to re-scope the concept of building performance to and show the importance to consider, hand- in-hand, both energy performance and performance of resident businesses, and 2) re-state the importance of the potential that lies in the active involvement of building...

  2. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Shallow Retrofit Results, Central and South Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-22

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions. Sixty homes have been instrumented to record total house power and detailed energy end-use data on all appliances as well as household interior temperature and relative humidity conditions.

  3. Indoor weather related to the energy consumption of air conditioned classroom: Monitoring system for energy efficient building plan

    Science.gov (United States)

    Rattanongphisat, W.; Suwannakom, A.; Harfield, A.

    2016-08-01

    The current research aims to investigate the relation of indoor weather to energy consumption of air conditioned classroom by design and construct the indoor weather and energy monitoring systems. In this research, a combined temperature and humidity sensor in conjunction with a microcontroller was constructed for the indoor weather monitoring system. The wire sensor network for the temperature-humidity sensor nodes is the Controller Area Network (CAN). Another part is using a nonintrusive method where a wireless current transformer sending the signal to the data collection box then transmitted by the radio frequency to the computer where the Ethernet application software was installed for the energy monitoring system. The results show that the setting air temperature, outdoor ambient temperature and operating time impact to the energy consumption of the air conditioned classroom.

  4. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The different...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  5. Design challenges for a climate adaptive multi-functional lightweight prefab panel for energy-efficient retrofitting of residential building based on one-room model simulations

    NARCIS (Netherlands)

    Dijkmans, T.J.A.; Donkervoort, D.R.; Phaff, J.C.; Valcke, S.L.A.

    2014-01-01

    Current solutions for highly energy-efficient retrofitting rely on thick static insulation, airtight construction and extensive ventilation systems to become independent from variable outdoor conditions. A building skin that adapts to the outdoor conditions to regulate the indoor conditions could pr

  6. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  7. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  8. Energy efficiency. Buildings in the heart of the European challenge; Efficacite energetique. Le batiment au coeur du defi europeen

    Energy Technology Data Exchange (ETDEWEB)

    Rognon, C.

    2002-11-01

    The European parliament has adopted a new directive which aims at reducing the emissions of greenhouse gases in the sector of new and existing buildings. The directive requires that air-conditioning and space-heating systems must be submitted to a regular control and to an evaluation of their energy performances. Short paper. (J.S.)

  9. The computer science institute building of TU Brunswick University. Construction of an energy-efficient university building; Das Informatikzentrum der TU Braunschweig. Realisierung eines energieeffizienten Institutsgebaeudes

    Energy Technology Data Exchange (ETDEWEB)

    Rozynski, M.; Gerder, F. [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik

    2003-07-01

    Saving of resources will be a key issue in future building construction. A new building projected on the campus of Brunswick University will have a power supply and ventilation concept that ensures low energy consumption. The project is carried out with funds provided by the Federal Minister of Economics and Technology (BMWi) in the context of the SolarBau funding concept. Construction of the building will be followed by an extensive monitoring programme that is to ensure its perfect function. [German] Eine wesentliche Zielsetzung zukuenftigen Bauens ist der sparsame Umgang mit Ressourcen. Im Rahmen eines integralen Planungsprozesses konnte fuer den Neubau des Informatikzentrums der TU Braunschweig ein Energie- und Lueftungskonzept realisiert werden, dass auf einen niedrigen Energieverbrauch zielt. Das Projekt wird im Rahmen des Foerderkonzeptes SolarBau durch das Bundesministerium fuer Wirtschaft und Technologie (BMWi) gefoerdert. Durch das anschliessende umfangreiche Monitoringprogramm wird derzeit die Funktionsfaehigkeit dieses Konzeptes ueberprueft. (orig.)

  10. Indoor environment and energy efficiency in schools

    CERN Document Server

    Bellia, Laura; Boerstra, Atze; Dijken, Froukje van; Ianniello, Elvira; Lopardo, Gino; Minichiello, Francesco; Romagnoni, Piercarlo; Gameiro da Silva, Manuel Carlos

    2010-01-01

    School buildings represent a significant part of the building stock and also a noteworthy part of the total energy use. Indoor and Energy Efficiency in Schools Guidebook describes the optimal design and operation of schools with respect to low energy cost and performance of the students. It focuses particularly on energy efficient systems for a healthy indoor environment.

  11. Energy Efficiency Assessment of Decentralized Rural Buildings%分散式村镇建筑能效评估研究

    Institute of Scientific and Technical Information of China (English)

    宁旭艳; 张旭; 高军

    2013-01-01

    针对中国城镇化进程中农村的变化,把村镇建筑分为分散式与集中式两种类型;总结了目前国内外建筑能效评估的两种方法,即建筑能耗基准评估和层次评估,在此基础上,结合分散式村镇建筑的特点,提出了适用于分散式村镇建筑的能效评估方法,通过建立统计基准模型对其进行评估;以沈阳某村镇的调研数据为样本,建立了该村镇多元回归统计模型,并以某户的建筑调研数据为例,给出其能效评估结果。%We divided the rural buildings into decentralized and centralized buildings with the changes in rural urbanization in China;Two methods of building energy efficiency assessment at home and abroad are summarized, including the building energy benchmarking as-sessment and hierarchical assessment. The feasible statistics benchmark model is proposed for energy efficiency assessment of decentralized rural buildings combining the characteristics of decentralized rural building. We used survey data in Shenyang as an example, established the multiple regression statistical models, and evaluated energy efficiency results of a building.

  12. Energy-efficient building - Deficits in higher education; Energieeffizientes Bauen - Defizite in der Hochschulausbildung, Teil 1/3

    Energy Technology Data Exchange (ETDEWEB)

    Lang, T.; Messmer, R. [K.M. Marketing AG, Winterthur (Switzerland); Kunz, M. [Zuercher Hochschule Winterthur, Zentrum Sustainability, Winterthur (Switzerland)

    2005-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the courses of study offered by Swiss Universities of Applied Science and the Federal Institutes of Technology that are concerned with the use of energy in the building area. The results of the survey are presented and commented on. The authors are of the opinion that basic courses of study fulfil their task of knowledge-transfer in the areas concerning energy, ecology, environment and sustainability, although the educational structures used are complex. The importance of interdisciplinary work is stressed. The focus of knowledge-transfer on persons under 40 years of age is criticised as well as deficits in interdisciplinary teamwork. The authors recommend the setting-up of further education programmes for older architects and professionals in the building technical services area.

  13. Analysis of implementation of energy efficiency labeling of buildings in hotel developments; Analise da aplicacao da etiquetagem de eficiencia energetica de edificacoes em empreendimentos hoteleiros

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Myrthes Marcele Farias dos; Faria, Ricardo Wargas de; Hamada, Luciana; Nascimento, Paulo Roberto Lopes do [Servico Brasileiro de Apoio as Micro e Pequenas Empresas (SEBRAE), Rio de Janeiro, RJ (Brazil). Programa de Energia e Eficiencia Energetica

    2010-07-01

    Most Brazilian constructions have low performance in terms of energy, since they received little attention (or none) concerning the energy efficiency. One of the main aspects observed is the intense use of electric energy for climatization and lighting in order to provide comfortable conditions for the dwellers. In 2009, new perspectives to change this situation emerged, due to an initiative by the Federal Government, that established the necessary regulations for energy efficiency labelling in buildings, and broadened the Brazilian Labelling Program (PBE), which, up until then, encompassed only machinery and equipment. The purpose of this article is to analyze the compliance with the new regulations for energy efficiency of constructions in the hotel sector, where small businesses are predominant, aiming at highlighting the barriers and opportunities connected to the possibilities of labeling. Hotels have been targeted for large investments, since they have become the pillars of Brazil's project to welcome tourists during the 2014 World Cup and the 2016 Olympic Games. Taking into consideration the need to develop specific methodologies for lodging possibilities, in addition to the scarce information on the use of energy in small businesses, this article is part of a series of researches carried out within the framework of the Sebrae/RJ - Procel Agreement. The outcome is a global analysis, from a business point of view, on the use of labels of energy efficiency in hotel buildings, organized upon two perspectives: the external environment (opportunities and threats) and the internal environment (strong and weak points). (author)

  14. Towards a Net Zero Building Cluster Energy Systems Analysis for US Army Installations

    Science.gov (United States)

    2011-05-01

    energy optimization process described to this point includes analysis of building energy efficiency improvements and optimization of energy generation... energy efficiency measures for each simulated building type. 3. Simulate the Energy Efficiency Cases – simulate the energy efficiency scenarios and...type identified in the building characterization step from the inventory. 2. Energy Efficiency Measures (EEM) – determine the appropriate building

  15. EULEB EUropean high quality Low Energy Buildings

    OpenAIRE

    2006-01-01

    ABSTRACT: The EULEB-Project is intended to supply information to architects and engineers throughout Europe and beyond it. Within the EU it will support the new Energy Directive on Buildings through providing design and engineering details of European public high quality buildings with low energy consumption. By providing a CD containing information on architecture, energy consumption and economical efficiency as well as the comfort of these innovative buildings in use, the lac...

  16. 优化设计对建筑节能的影响分析%Analysis of Influence of Optimal Design to Building Energy Efficiency

    Institute of Scientific and Technical Information of China (English)

    李鹏

    2011-01-01

    At present, building energy consumption has become one of large energy consumption among China's three energy consumption. It is imperative to control the energy consumption through optimal design. The article put some suggestions for doing optimal design well by analyzing the influence of optimal design to building energy efficiency and the cause of diffculty of implementing optimal design.%目前,建筑耗能已成为中国能源消耗的三大“耗能大户”之一,通过优化设计来有效控制能源消耗势在必行.文章通过分析优化设计对建筑节能的影响以及现阶段推行优化设计运作困难的成因,对搞好优化设计提出几点建议.

  17. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  18. Direct and indirect co-benefits from energy-efficient residential buildings; Direkte und indirekte Zusatznutzen bei energieeffizienten Wohnbauten

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Baur, M. [econcept AG, Zuerich (Switzerland); Jakob, M. [Swiss Federal Institute of Technology (ETH), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland)

    2006-07-01

    Co-benefits of energy efficiency investments such as increased comfort of living, reduced noise exposure, and improved indoor air quality are of considerable evidence. However in investment decisions these co-benefits are rarely taken into account. Using various economic estimation methods (discrete choice, hedonic regression, contingent valuation), this study identifies and quantifies in monetary terms the most important co-benefits of energy efficiency measures. The results show that regarding energy efficiency measures, comfort of living plays a major role and that inhabitants express a non-negligible willingness to pay for it. The willingness to pay is larger than the costs of the energy efficiency measures in most cases and for a large part of the population. To utilise this willingness to pay in the market place it is necessary to establish transparency regarding comfort-of-living aspects and to raise awareness about these aspects among all involved actors (inhabitants, investors, architects, planners, promoters, vendors) by adequate information and communication measures. In view of the high relevance and the noticed economic valuation of the qualitative co-benefits, energy efficiency measures have to be promoted with their related enhancements in terms of comfort of living. (author)

  19. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested

  20. The energy of a building : the simplicity and efficiency of a hybrid system; Energie de batiment : simplicite et efficacite d'un systeme hybride

    Energy Technology Data Exchange (ETDEWEB)

    Beaule, C. [SNC-Lavalin, Montreal, PQ (Canada)

    2007-06-15

    Hydronic hybrid heat pump (HHHP) systems are suitable for recuperating the energy from air conditioners and transferring it to the perimeter of buildings. This principal can be applied when interior air conditioning is required throughout the year in a building, while the periphery of the building requires air conditioning or heating during specific times of the year. The transfer of heat from the air conditioner to the periphery of buildings can be compared to a type of internal geothermal system. This article presented two case studies involving extensive heating ventilation and air conditioning (HVAC) retrofits. They both had different needs. The 7-storey Hotel Place D'Armes in Montreal is 135 years old, and uses electricity and natural gas as source of energy. It was important to choose an HVAC system that would be in accordance with the architectural style of the building while facilitating repair and upkeep of a sustainable HVAC system. The 7-storey Isabella-Decarie office building is 45 years old and also uses electricity and natural gas. The requirements of this building were to adapt the new HVAC system into the restrained space on each level; reduce HVAC energy costs; reduce the size of the mechanical rooms to simplify upkeep; retrofit without disturbing the clientele; upgrade thermal comfort; select a sustainable HVAC system that could be readily adapted to the building's future energy needs; and, stay within the budget. The historical and patrimonial aspects of the building were the main constraints in the renovation projects. The 3 major factors that led to the selection of the HHHP system were: (1) the modular HVAC units could be repaired by staff within 30 minutes and the installation of cooling pipes for the ventilation shafts were readily adaptable to the historical building, (2) the cooling system was composed of two pipes rather than four, requiring a less cumbersome installation of HVAC ducts, thereby reducing mechanical installation

  1. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  2. 浅谈节能建筑设计措施%Discuss the Energy Efficient Measures of Building Design

    Institute of Scientific and Technical Information of China (English)

    王春云

    2013-01-01

    With the development of the society, people’s req-uirements for construction in constant growth, and the energy consumption of building is also increasing. People must dev-elop the energy conservation and environmental protection technology so as to make the energy conservation and environ-mental protection of our country into a new level. This article mainly introduces the residential building energy saving design measures in hot summer and warm winter area in China.%随着社会的发展,人们对建筑要求在不断的增长,建筑能耗也在不断的增加。我们必须大力发展节能环保技术,以便使我国节能环保进入一个新的水平。本文主要介绍了在我国夏热冬暖地区,居住建筑节能设计的一些措施。

  3. Energy savings in Polish buildings

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  4. Energy-Efficient Shaping of Contemporary Buildings and Their Surroundings as an Essential Element of Modernization of Built-Up Areas

    Science.gov (United States)

    Bocheński, Stanisław; Bocheńska-Skałecka, Anna; Kuczyński, Tadeusz

    2016-06-01

    A comprehensive design of a building along with the development of a surrounding land may counterbalance the tendency of housing estates comprising houses built on the basis of "ready-made projects" - which have no references to the existing urban tissue and which do not create a new one. In the first place, the energy intensity of buildings using the so-called passive methods should be lowered, and only then active systems should be applied, considering economic balance. The problem should be considered from two different perspectives i.e. for intensively and for less urbanised areas. The article results in the formulation of guidelines for energy-efficient modernization of contemporary buildings and their surroundings.

  5. Energy-Efficient Shaping of Contemporary Buildings and Their Surroundings as an Essential Element of Modernization of Built-Up Areas

    Directory of Open Access Journals (Sweden)

    Bocheński Stanisław

    2016-06-01

    Full Text Available A comprehensive design of a building along with the development of a surrounding land may counterbalance the tendency of housing estates comprising houses built on the basis of “ready-made projects” - which have no references to the existing urban tissue and which do not create a new one. In the first place, the energy intensity of buildings using the so-called passive methods should be lowered, and only then active systems should be applied, considering economic balance. The problem should be considered from two different perspectives i.e. for intensively and for less urbanised areas. The article results in the formulation of guidelines for energy-efficient modernization of contemporary buildings and their surroundings.

  6. Formation of the Integral Ecological Quality Index of the Technological Processes in Machine Building Based on Their Energy Efficiency

    Science.gov (United States)

    Egorov, Sergey B.; Kapitanov, Alexey V.; Mitrofanov, Vladimir G.; Shvartsburg, Leonid E.; Ivanova, Natalia A.; Ryabov, Sergey A.

    2016-01-01

    The aim of article is to provide development of a unified assessment methodology in relation to various technological processes and the actual conditions of their implementation. To carry the energy efficiency analysis of the technological processes through comparison of the established power and the power consumed by the actual technological…

  7. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  8. Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technolgical, and socioeconomic futures in a regional intergrated-assessment model.

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Daly, Don S.; Zhou, Yuyu; Rice, Jennie S.; Patel, Pralit L.; McJeon, Haewon C.; Kyle, G. Page; Kim, Son H.; Eom, Jiyong; Clarke, Leon E.

    2014-05-01

    Improving the energy efficiency of the building stock, commercial equipment and household appliances can have a major impact on energy use, carbon emissions, and building services. Subnational regions such as U.S. states wish to increase their energy efficiency, reduce carbon emissions or adapt to climate change. Evaluating subnational policies to reduce energy use and emissions is difficult because of the uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change may undercut such policies. Assessing these uncertainties can be a significant modeling and computation burden. As part of this uncertainty assessment, this paper demonstrates how a decision-focused sensitivity analysis strategy using fractional factorial methods can be applied to reveal the important drivers for detailed uncertainty analysis.

  9. Revisiting energy efficiency fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lombard, L.; Velazquez, D. [Grupo de Termotecnia, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Ortiz, J. [Building Research Establishment (BRE), Garston, Watford, WD25 9XX (United Kingdom)

    2013-05-15

    Energy efficiency is a central target for energy policy and a keystone to mitigate climate change and to achieve a sustainable development. Although great efforts have been carried out during the last four decades to investigate the issue, focusing into measuring energy efficiency, understanding its trends and impacts on energy consumption and to design effective energy efficiency policies, many energy efficiency-related concepts, some methodological problems for the construction of energy efficiency indicators (EEI) and even some of the energy efficiency potential gains are often ignored or misunderstood, causing no little confusion and controversy not only for laymen but even for specialists. This paper aims to revisit, analyse and discuss some efficiency fundamental topics that could improve understanding and critical judgement of efficiency stakeholders and that could help in avoiding unfounded judgements and misleading statements. Firstly, we address the problem of measuring energy efficiency both in qualitative and quantitative terms. Secondly, main methodological problems standing in the way of the construction of EEI are discussed, and a sequence of actions is proposed to tackle them in an ordered fashion. Finally, two key topics are discussed in detail: the links between energy efficiency and energy savings, and the border between energy efficiency improvement and renewable sources promotion.

  10. Landscaping for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

  11. CTI capacity building seminar for CEE/FSU countries. Climate technology and energy efficiency. Challenges and changes for climate technology. Seminar proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, Sybille; Moench, Harald (eds.); Mez, Lutz; Krug, Michael (comps.) [Free Univ. Berlin (DE). Environmental Policy Research Centre (FFU)

    2005-01-15

    Within the CTI Capacity Building Seminar for CEE/FSU Countries at 20th to 24th September, 2003 in Tutzing (Federal Republic of Germany) the following lectures were held: (1) Excursion to fuel cell pilot project (Peter Fleischmann); (2) How to construct a climate change program - some basics (Franzjosef Schafhausen); (3) The EU emissions trading directive (Felix Matthes); (4) Emissions trading - The implementation of the EU-Directive in Germany (Franzjosef Schafhausen); (5) Emissions trading from a buyer's perspective (Albrecht von Ruffer); (6) Emissions trading from a seller's perspective: Czech Republic (Toma Chmelik); (7) Discussant notes: Emissions trading (Sonja Butzengeiger); (8) Carbon finance and the world bank: Chances, experiences, lessons learned (Charlotte Streck); (9) Joint implementation: Relationship to and compatibility with the emission trading scheme (Franzjosef Schafhausen); (10) Clean development mechanism in Central Asia (Liliya Zavyalova); (11) Creating a national CDM system in Georgia (Paata Janelidze); (12) Experiences from the certification of JI/CDM projects (Michael Rumberg); (13) Discussant notes Session JI and CDM (Tiit Kallaste); (14) The EU Directive on electricity from renewable energy sources 2001/77/EC (Volkmar Lauber); (15) Amending the Renewable Energy Source Act (Thorsten Mueller); (16) The new renewables support scheme in te Czech Republic (Martin Busik); (17) Replacing nuclear energy by renewables. The case of Lithunia (Kestutis Buinevicius); (18) Renewables in the New Energy Acts of Estonia (Villu Vares); (19) Discussant notes: Session incentive schemes for renewables (Hans-Joachim Ziesing); (20) Bankable energy efficiency projects - How to get energy efficiency investment financed (Petra Opitz); (21) Clear contract - clearinghouse for contracting (Ralf Goldmann); (22) CHP as an important element of a sustainable energy use in Germany (Juergen Landrebe); (23) The European CHP Directive - a step towards the smarter

  12. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  13. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  14. Building Energy Codes: Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  15. Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Chang Heon Cheong

    2014-10-01

    Full Text Available Cooling load in highly glazed residential building can be excessively large due to uncontrolled solar energy entering the indoor space. This study focuses on the cooling load reduction and changes in the daylighting properties via the application of a double window system (DWS with shading with various surface reflectivities in highly glazed residential buildings. Evaluation of thermal and daylighting performances is carried out using simulation tools. The reductions in cooling load and energy cost through the use of DWS are evaluated through a comparative simulation considering conventional windows: a single window and a double window. Three variables of window types, natural ventilation, and shading reflectivity are reflected in the study. According to our results, implementation of DWS reduced cooling load by 43%–61%. Electricity cost during the cooling period was reduced by a maximum of 24%. However, a shading device setting that prioritizes effective cooling load reduction can greatly decrease the daylighting factor and luminance level of indoor space. A DWS implementing shading device with highly reflective at all surfaces is appropriate option for the more comfortable thermal and visual environment, while a shading device with low reflectivity at rear of the surface can contribute an additional 4% cooling load reduction.

  16. Energy Performance of Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2007-01-01

    "Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development and are c......"Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development...... and are central to improving social and economic well- being, and human welfare and raising living standards. Even if energy is essential for development, it is only a means to an end. The end is good health, high living standards, a sustainable economy and a clean environment. The European Climate change...... programme (ECCP) was established in June 2000 to help identify the most environmentally cost-effective measures enabling the EU to meet its target under the Kyoto Protocol, namely an 8% reduction in greenhouse gas emissions from 1990 levels by 2012. Energy use in buildings accounts for almost half of all CO...

  17. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  18. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  19. Country Report on Building Energy Codes in India

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

    2009-04-07

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

  20. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  1. Country Report on Building Energy Codes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  2. Country Report on Building Energy Codes in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  3. Country Report on Building Energy Codes in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

    2009-04-17

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

  4. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy ...... calculated energy use. More buildings should be investigated in the same manner before any sound conclusion can be made regarding whether the implementation of EPBD in a wide context leads to truly energy-efficient buildings.......This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  5. Energy conservation and energy efficiency; Energiebesparing en energie-efficientie

    Energy Technology Data Exchange (ETDEWEB)

    Ossevoort, H.

    2013-07-15

    The author discusses the important role of the concepts of energy conservation and energy efficiency in the design and construction of buildings [Dutch] De auteur bespreekt hoe belangrijk de rol is van de begrippen energiebesparing en energie efficientie bij het ontwerpen en bouwen van gebouwen.

  6. Optimization of the Public Buildings Energy Supply

    DEFF Research Database (Denmark)

    Filipović, P.; Dominkovic, Dominik Franjo; Ćosić, B.

    2016-01-01

    There is a rising interest in the improvement of energy efficiency in public buildings nowadays atthe EU level. Increasing energy efficiency can lead to both better thermal comfort, as well as netsavings on energy bills. Furthermore, the right choice of energy source can lead to large savings inCO2...... be achieved by taking a holistic approach during the refurbishment of thebuilding, at the same time increasing thermal comfort of the students and employees. Finally, thedeveloped model would be easy to adapt to any other similar public building, which could lead tofurther savings in energy consumption....

  7. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  8. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  9. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  10. Making energy efficiency happen

    Science.gov (United States)

    Hirst, E.

    1991-04-01

    Improving energy efficiency is the least expensive and most effective way to address simultaneously several national issues. Improving efficiency saves money for consumers, increases economic productivity and international competitiveness, enhances national security by lowering oil imports, and reduces the adverse environmental effects of energy production. This paper discusses some of the many opportunities to improve efficiency, emphasizing the roles of government and utilities.

  11. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  12. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  13. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  14. Energy Efficient TCP

    NARCIS (Netherlands)

    Donckers, L.; Smit, G.J.M.; Smit, L.T.

    2002-01-01

    This paper describes the design of an energy-efficient transport protocol for mobile wireless communication. First we describe the metrics used to measure the energy efficiency of transport protocols. We identify several problem areas that prevent TCP/IP from reaching high levels of energy efficienc

  15. Building America Case Study: High Performance Ducts in Hot-Dry Climates; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    ?Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, and builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.

  16. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  17. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  18. 灵活运用BEMS促进建筑节能%Flexible Application of BEMS to Promote Building Energy Efficiency

    Institute of Scientific and Technical Information of China (English)

    徐国海

    2008-01-01

    BEMS(Building Energy Management System)是一个根据由测量、计量中获得的信息对能源进行监测、分析从而实施运行管理、自动控制的系统。自1906年创立以来,山武致力于发展楼宇检测和控制的核心技术,在日本自动化行业的始终处于领先地位。并在提供楼宇自动化(BA)、工业自动化(IA)和生活自动化(LA)的革新化解决方案方面有诸多成功案例。

  19. Washington, DC Tops EPAs List of Cities with the Most Energy Star Certified Buildings/Energy efficiency leads to a stronger economy and healthier environment

    Science.gov (United States)

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) has announced its eighth-annual Top Cities list, which ranks the 25 U.S. metropolitan areas with the most Energy Star certified commercial buildings in the preceding calendar year. For th

  20. Atlanta Ranks 4th on EPAs List of Cities with the Most Energy Star Certified Buildings/Energy efficiency leads to a stronger economy and healthier environmen

    Science.gov (United States)

    ATLANTA - The U.S. Environmental Protection Agency (EPA) has announced its eighth-annual Top Cities list, which ranks the 25 U.S. metropolitan areas with the most Energy Star certified commercial buildings in the preceding calendar year with Atlan

  1. Charlotte on EPAs List of Cities with the Most Energy Star Certified Buildings/Energy efficiency leads to a stronger economy and healthier environment

    Science.gov (United States)

    ATLANTA - The U.S. Environmental Protection Agency (EPA) has announced its eighth-annual Top Cities list, which ranks the 25 U.S. metropolitan areas with the most Energy Star certified commercial buildings in the preceding calendar year with Charl

  2. Miami on EPAs List of Cities with the Most Energy Star Certified Buildings/Energy efficiency leads to a stronger economy and healthier environmen

    Science.gov (United States)

    ATLANTA - The U.S. Environmental Protection Agency (EPA) has announced its eighth-annual Top Cities list, which ranks the 25 U.S. metropolitan areas with the most Energy Star certified commercial buildings in the preceding calendar year with Miami

  3. 75 FR 4548 - Energy Efficiency Program for Consumer Products: Commonwealth of Massachusetts Petition for...

    Science.gov (United States)

    2010-01-28

    ... of Energy Efficiency and Renewable Energy Energy Efficiency Program for Consumer Products... Efficiency Standard for Residential Non- Weatherized Gas Furnaces AGENCY: Office of Energy Efficiency and.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program,......

  4. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    Science.gov (United States)

    2008-09-30

    indicate a gap between design intent and construction that results in reduced energy performance (Torcellini et al. 2006). Building energy efficiency is...occupant, building, or community needs and preferences. New technologies that maximize building energy efficiency and minimize operational energy use...including low-income home energy assistance program, weatherization assistance, state energy programs, state building energy efficiency codes incentives and

  5. From Zero Energy Buildings to Zero Energy Districts

    Energy Technology Data Exchange (ETDEWEB)

    Polly, Ben; Kutscher, Chuck; Macumber, Dan; Schott, Marjorie; Pless, Shanti; Livingood, Bill; Van Geet, Otto

    2016-08-26

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assist them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.

  6. A New Type of Paper-frame Cavernous Material and Its Application in Energy Efficiency in Buildings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub.It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is a kind of excellent wall materials and has a wide application prospect.

  7. Embodied Energy in Sustainable Buildings

    NARCIS (Netherlands)

    Kokkos, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. A direct contribution to getting a more sustainable world is to reduce the energy consumption. Much is done in the operational energy of buildings. The embodied energy, used during the construction of a build

  8. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  9. Building energy governance in Shanghai

    Science.gov (United States)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  10. Intelligent buildings in context of energy rationalization

    Directory of Open Access Journals (Sweden)

    Pucar Mila

    2005-01-01

    Full Text Available This paper overviews state of the art, the development activities, and futuristic vision on 'smart' and 'intelligent' buildings' construction in context of measures which improve their energy efficiency. The technologies for programming, regulation and automation of energy consumption in buildings, which characterize the current form of 'smart' buildings together with the implementation of 'intelligent' facades, are already pointing to some significant results which may be accomplished in relation to energy efficiency optimization of buildings without compromising their greater flexibility and comfort in use. One of the major preconditions for further development of these systems is the integration of design processes which refer to the core of a building and to its installation utilities.

  11. 欧盟节能建筑技术的研发趋势%Research and Development of Energy-Efficient Building Technologies in the EU

    Institute of Scientific and Technical Information of China (English)

    张志勤

    2013-01-01

      This paper analyzed the current situation and development trends of energy-efficient building (EEB) technologies in the EU, and introduced the relevant demands of some directives including energy performance buildings directives (EPBD) and energy-efficient services directives (EESD). EU and its member states have made standards for EEB and taken some measures to promote the application of EEB technology, such as, enhancing the energy-saving and emission-reducing in construction industries, improving energy efficiency, and facilitating application of renewable energy technology, etc., which could provide useful references for the development of EEB technologies in China.%  加强建筑行业的节能减排,提高能效和加速应用可再生能源技术,是欧盟及成员国及成员国行动计划的重要组成部分。通过全面介绍欧盟节能建筑技术的发展现状、未来需求和欧盟节能建筑指令和能效指令的有关要求,展望了欧盟节能技术的研发趋势。欧盟制定建筑节能标准和推动相关技术应用等方面的主要措施,对我国建筑节能技术研发和应用具有重要借鉴意义。

  12. Climate technology initiative capacity building seminar: best practice in climate technology and energy efficiency in central and eastern Europe. Seminar Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, P. [ed.

    2000-08-01

    The Capacity Building Seminar on 'Best Practice in Climate Technology and Energy Efficiency in Central and Eastern Europe', held 6-10 December 1999 in Marienthal/Ostritz in Germany, was a very successful event in the framework of the CLIMATE TECHNOLOGY INITIATIVE (CTI). One reason for that is that the seminar allowed delegates from 22 nations, from Kazakhstan to Estonia, come together for an exchange of opinions about 'Energy Efficiency and Climate Protection' and all related issues. A reason is that this seminar provided an excellent starting point for future networking in Central and Eastern Europe and Asia. The colleagues who got to know each other at the seminar will meet again in future workshops and seminars. They can now contact a colleague from abroad to get information about special questions of Energy Efficiency when they need it. A third reason - and the most important one for the entire co-operation within the CTI organisation - is the special character of the seminar as a starting point for multitude of activities on Energy Efficiency and Climate Protection. At the end of the Ostritz seminar eleven delegations stated that they would organise follow up workshops in their own countries to go deeper into the details and to co-operate on a higher level. It may be that these workshops will be followed by others in other European regions. (orig./GL)

  13. 光伏在欧洲建筑节能中的应用%Applications of photovoltaic in building energy efficiency in Europe

    Institute of Scientific and Technical Information of China (English)

    季媛媛; 管永丽

    2016-01-01

    Solar energy is clean and renewable energy. Photo⁃voltaic technology applied to the construction sector can reduce ener⁃gy consumption even zero energy consumption. This paper analyzed the importance and feasibility of photovoltaic technology construction applied to the construction sector. This paper described photovoltaic development prospects in Europe and development prospects of ener⁃gy⁃efficient buildings. The integrated and non⁃integrated photovoltaic building cases were compared and analyzed. Finally, the paper intro⁃duced energy efficiency of the three types of housing in Spanish and analyzed the effect of energy saving, which were detached houses, semi⁃detached houses and multi⁃dwelling houses. The results showed that the photovoltaic building is worth of promoting and developing.%太阳能是清洁的可再生能源,将光伏技术应用于建筑领域能降低建筑能耗甚至实现零能耗。分析了光伏技术应用于建筑领域的重要性和可行性,介绍了光伏在欧洲的发展前景和建筑节能上的发展前景,对比分析了光伏建筑一体化和非一体化的案例,最后介绍了西班牙背景下的3种类型住宅:独立式住宅、半独立住宅和多住户住宅的能源效率,进行了节能效果的分析。结果表明,光伏建筑值得大力推广和发展。

  14. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  15. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  16. ENERGY EFFICIENCY OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets

    2011-03-01

    Full Text Available Abstract. Disparities in the production structure, moral and physical obsolescence and depreciation offixed assets in economics, low-effective use fuel and energy resources (FER and water demands excessiveuse of energy, requiring substantial imports of energy resources (over 50% of needs. The resultingdependence of the basic branches of economy of Ukraine, primarily fuel and energy complex, from theexporting countries of fuel resources and, consequently, increasing the threat to energy safety. Meanwhile,such situation is in contrudiction of the principles of sustainable developments, adopted on the Summit inRio-de-Janeiro (1992. Ukraine needs the more active energy efficient policy.Keywords: energy conservation, energy efficiency, energy intensity of gross domestic product, energysafety state, fuel and energy resources, innovative development, structural changes ineconomy.

  17. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    by 33% compared to current level and that the CO2 emission should be halved. This calls for sustainable development in the building sector, but at the same time, it has to be economically efficient. People are conscious about savings in energy, but consideration to economic aspects are their primary......In 1996 the Danish government presented their plan (Energi21) formulating how Denmark could fulfill the demands for CO2-reduction recommended by United Nations. The major issues in the plan, regarding new and existing buildings, is that heat demand for new buildings in year 2005 should be reduced...... concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...

  18. ENERGY EFFICIENCY AND GDP

    Directory of Open Access Journals (Sweden)

    Branka Gvozdenac-Urošević

    2010-01-01

    Full Text Available Improving energy efficiency can be powerful tool for achieving sustainable economic development and most important for reducing energy consumption and environmental pollution on national level. Unfortunately, energy efficiency is difficult to conceptualize and there is no single commonly accepted definition. Because of that, measurement of achieved energy efficiency and its impact on national or regional economy is very complicated. Gross Domestic Product (GDP is often used to assess financial effects of applied energy efficiency measures at the national and regional levels. The growth in energy consumption per capita leads to a similar growth in GDP, but it is desirable to provide for the fall of these values. The paper analyzes some standard indicators and the analysis has been applied to a very large sample ensuring reliability for conclusion purposes. National parameters for 128 countries in the world in 2007 were analyzed. In addition to that, parameters were analyzed in the last years for global regions and Serbia.

  19. Application of Public Building Energy Efficiency Design in Practical Project%公共建筑节能设计在实际工程中的应用

    Institute of Scientific and Technical Information of China (English)

    刘见阳; 李坤晓

    2013-01-01

      公共建筑节能设计于2005年已经开始实施,在实际工程中结合工程的实际情况,合理调整设计参数,合理采用墙体保温材料及保温形式,使建筑物的围护结构热工性能对能耗的影响降至最低,在满足节能标准的前提下,尽量满足设计的个性化需求。%“Public building energy efficiency design”has been carried out since 2005. Combined with practical situation of the project, reasonable adjustment of design parameters and reasonable adoption of wall thermal insulation materials and forms can minimize the impact of thermal performance of the building envelope on energy consumption. On the premise of meeting the energy-efficient standards, the design should try to satisfy personal requirements.

  20. Classification of low energy houses in Danish Building Regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    The new Danish Building Regulations (Building Regulations, 2005) introduces the total energy consumption, i.e. energy use for heating, ventilation, cooling and domestic hot water, for buildings as a measure for the energy efficiency of new buildings, i.e. moving away from the former U-value demands....... In addition to the minimum requirements for new buildings, the new Building Regulations also specify requirements for characterizing a building as either low energy building class 1 or low energy building class 2. This paper describes a type-house that is presently being built in Denmark. The type......-house easily meets the requirements for being categorized as a low energy building class 1, and the paper investigates how much U-values can be increased if the type-house were to fulfil the requirements for a low energy building class 2 or a building that just fulfils the minimum demands....

  1. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  2. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  3. ENERGY EFFICIENT LAUNDRY PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Tim Richter

    2005-04-01

    With the rising cost of energy and increased concerns for pollution and greenhouse gas emissions from power generation, increased focus is being put on energy efficiency. This study looks at several approaches to reducing energy consumption in clothes care appliances by considering the appliances and laundry chemistry as a system, rather than individually.

  4. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  5. Building as active elements of energy systems

    OpenAIRE

    Bulut, Mehmet Börühan

    2016-01-01

    Buildings account for approximately 40% of the energy demand and 33% of the total greenhouse gas emissions in the European Union. Accordingly, there are several efforts that target energy efficiency in buildings both at the European and Swedish levels. The role of buildings in climate change mitigation, however, is not limited to energy savings. Buildings are expected to become key elements of the future smart energy systems by supplying and using energy in a more flexible way. Reducing the e...

  6. 基于ARM的建筑能效数据采集机器人设计%Design of building energy-efficiency data acquisition robot based on ARM

    Institute of Scientific and Technical Information of China (English)

    孙富康; 方潜生; 张毅; 高武双; 陈燕; 张红艳

    2012-01-01

    The paper introduces a design of building energy-efficiency data acquisition tracked robot. In indoor environment, using wireless senor network and inertial navigation system combined positioning strategy, the tracked robot can collection wireless sensor node information at target point, and finally complete the building energy efficiency data acquisition task. Though ARM system and several sensors, the tracked robot complete driving and positioning with RSSI technology.%设计了一种应用于建筑能效数据采集的室内履带机器人.该履带机器人在室内环境中通过无线传感器网络和惯性导航系统联合定位的策略,到达目标位置采集无线传感器结点信息,最终完成建筑物内部的建筑能效数据采集任务.采用ARM系统的设计方案,使用电子罗盘、加速度和转速等传感器,结合无线传感器网络的RSSI技术实现了机器人的行驶和定位功能.

  7. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  8. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Techato, Kua-anan [International Postgraduate Programs in Environmental Management (Hazardous Waste Management) and ERI (Energy Research Institute), Chulalongkorn University, Bangkok 10330 (Thailand); Watts, Daniel J. [Otto H. York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Chaiprapat, Sumate [Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90112 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management-Satellite Center at Prince of Songkla University (Thailand)

    2009-01-15

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste. (author)

  9. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  10. Building America Case Study: Apartment Compartmentalization with an Aerosol-Based Sealing Process - Queens, NY; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis.
    CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing. Aerosolized sealing was successful by several measures in this study. Many individual leaks that are labor-intensive to address separately were well sealed by the aerosol particles. In addition, many diffuse leaks that are difficult to identify and treat were also sealed. The aerosol-based sealing process resulted in an average reduction of 71% in air leakage across three apartments and an average apartment airtightness of 0.08 CFM50/SF of enclosure area.

  11. Buildings Interaction with Urban Energy Systems

    DEFF Research Database (Denmark)

    Heller, Alfred; Wyckmans, Annemie; Zucker, Gerhard

    2015-01-01

    The goal towards a fossil free energy system is expressed in amongst others European and national targets, and puts pressure on the application of renewable energy sources combined with energy efficiency. Many cities are even more ambitious than their national targets and want to be among the first...... on the impacts that buildings play in the overall energy system. Here buildings are not only consumers but rather prosumers that are able to produce renewable energy themselves. Buildings moreover offer potential storage capacities that can be utilized in demand shifting, which is necessary to enable increased...... to demonstrate that they can become not only smart fossil-free energy cities but sustainable in a wider sense, including water, waste, transportation and more. In the current paper, the research agenda to support such goals through smart city efforts is presented for a few European cases as examples, focusing...

  12. Computational Support for the Selection of Energy Saving Building Components

    NARCIS (Netherlands)

    De Wilde, P.J.C.J.

    2004-01-01

    Buildings use energy for heating, cooling and lighting, contributing to the problems of exhaustion of fossil fuel supplies and environmental pollution. In order to make buildings more energy-efficient an extensive set of âenergy saving building componentsâ has been developed that contributes to mini

  13. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  14. Building America Case Study: Whole-House Solutions for Existing Homes: Greenbelt Homes, Inc. Pilot Retrofit Program; Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. With the community upgrade fully funded by the cooperative through their membership without outside subsidies, this project presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements. Phase 1: baseline evaluation for a representative set of 28 homes sited in seven buildings; Phase 2: installation of the building envelope improvements and continued monitoring of the energy consumption for the heating season and energy simulations supporting recommendations for HVAC and water heating upgrades to be implemented in Phase 3.

  15. Energy efficiency: implemented strategies in the new building for regional Government Offices in Mérida (Spain)

    OpenAIRE

    Fairbanks, Bruce S.; Montero, Eduardo

    2007-01-01

    The architecture office GOP was awarded the execution of the project for the regional government office building “Consejerías”) in the city of Mérida, designed by Bruce S. Fairbanks, through an International Competition of Ideas summoned by the Junta de Extremadura. The new Consejerías in Mérida set the standards for a wholly sustainable building. It modifies its natural outdoors environment by soothing the climate and giving shelter. A design strategy was, among others, to gain as much conf...

  16. SolarBau:MONITOR - energy efficiency and solar energy use in non-domestic buildings - concepts and buildings 2000; SolarBau:MONITOR - Energieeffizienz und Solarenergienutzung im Nichtwohnungsbau - Konzepte und Bauten. Journal 2000

    Energy Technology Data Exchange (ETDEWEB)

    Voss, K. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen; Loehnert, G. [Solidar Planungsgesellschaft Architekten und Ingenieure, Berlin (Germany); Wagner, A. [Karlsruhe Univ. (T.H.) (Germany). Fakultaet fuer Architektur

    2001-07-01

    The projecting experience and performance data of many demonstration projects are presented here. The buildings described are office buildings, administrative buildings and industrial buildings whose architecture and energy concepts vary considerably. The text is supplemented by many pictures and illustration. The subject matter is presented in a concise and practically oriented manner. [German] Im Journal 2000 des wissenschaftlichen Begleitforschungsprojekts SolarBau: MONITOR sind die Planungserfahrungen und Betriebsergebnisse aus vielen Demonstrationsprojekten zusammengestellt. Die Buero-, Verwaltungs- und Gewerbegebaeude (d.h. Nichtwohnungsbau) haben sehr verschiedene Gebaeude- und Energiekonzepte. Gerade deshalb ist es interessant, wie diese im Journal 2000 unter den Aspekten wie 'Tageslichtnutzung', 'Waermeschutz', 'Kuehlung', 'Elektrizitaet', 'Solartechnik' miteinander verglichen werden. Die graphisch gut gestaltete Darstellung auf 80 Seiten wird unterstuetzt durch viele Fotos und Abbildungen und gewinnt durch die praxisnahe Aufbereitung, die in Zusammenarbeit mit den Planungsteams erfolgt ist. (orig.)

  17. 75 FR 12743 - Office of Energy Efficiency and Renewable Energy; Request for Information; Weatherization...

    Science.gov (United States)

    2010-03-17

    ... of Energy Efficiency and Renewable Energy; Request for Information; Weatherization Assistance Program; Sustainable Energy Resources for Consumers Grants AGENCY: Office of Energy Efficiency and Renewable Energy... Program for residential buildings to include materials, benefits, and renewable and domestic...

  18. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    The purpose of Work Package 5 Deliverable 5.1., “Case study reports on energy efficiency and behaviour” is to present examples of behavioral interventions to promote energy efficiency in cities. The case studies were collected in January – June 2014, and they represent behavioural interventions...... factors. The main addressees of D5.1. are city officials, NGO representatives, private sector actors and any other relevant actors who plan and realize behavioural energy efficiency interventions in European cities. The WP5 team will also further apply results from D5.1. with a more general model on how...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...

  19. Relighting for energy efficiency and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L. [USDOE, Washington, DC (United States); Purcell, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1992-10-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  20. Relighting for energy efficiency and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L. (USDOE, Washington, DC (United States)); Purcell, C.W. (Pacific Northwest Lab., Richland, WA (United States))

    1992-01-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  1. Energy efficiency and conservation

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A. [Association for the Conservation of Energy, London (United Kingdom)

    1999-07-01

    The article discusses energy efficiency and conservation in the light of what is termed 'least cost planning'. It is explained how the normal market economy scenario of producing and purchasing in terms of supply and demand are not sufficient to describe the energy market. Seven market imperfections and barriers which hinder optimal investment in energy efficiency are listed. Much of the article is devoted to explaining the meaning of least cost planning and compares energy bills with energy prices. Sub-headings in the article include: (i) Integrated Resource Planning as an Instrument of Strategic Resource Planning; (ii) Accounting for the Environmental Externalities of Electricity Production in the USA; (iii) Monetization Using Damage Costs; (iv) Monetization Using Control Costs; (v) Damage Costs versus Control Costs for Policy Purposes and (vi) Unpriceable Environmental Costs.

  2. Wind energy efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Badger, J.; Rasmussen, Flemming; Soerensen, Poul

    2012-11-15

    As we have shown above, wind energy can help to secure energy efficiency in power generation, and research results and tools are being developed that will increase the role of wind energy in the global energy supply. An important instrument is the development of wind turbine technology to reduce capital and operational costs. This has not been the emphasis in this chapter, though; instead we have focused on equally important instruments, namely making best use of the wind resource and available sites, adapting wind farm layout and technology to the increased exploitation of wind, and improving the interaction between wind farms and the power system. With these developments we expect that wind energy can become the backbone of the power system globally and play a major role in creating an efficient and sustainable power system. (Author)

  3. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  4. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  5. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  6. Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.

    2011-01-01

    clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing a new ZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance...... on the review of the most of the existing ZEB definitions and the various approaches towards possible ZEB calculation methodologies. It presents and discusses possible answers to the abovementioned issues in order to facilitate the development of a consistent ZEB definition and a robust energy calculation...

  7. Energy use in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  8. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  9. 浅谈现代建筑的节能设计%Discuss the Energy Efficiency Design of Modern Building

    Institute of Scientific and Technical Information of China (English)

    梁莉

    2014-01-01

    节能技术对于当前的社会发展来讲十分重要。因为能源利用已经融入到百姓生活的方方面面,所以人们在保护环境发展方面节约使用生存能源变得尤为重要。对于现代建筑工程来讲,能源的消耗都是必然的。%Energy saving technology is very important to the current social development. Because energy utilization has corporate into every aspect of people’s lives, it’s particularly important for people to save the useful energy in the aspect of protecting the environment development. As for the modern architecture engineering, the energy consumption is inevitable.

  10. 10 CFR 435.4 - Energy efficiency performance standard.

    Science.gov (United States)

    2010-01-01

    ... levels of the baseline building. (b) Energy consumption for the purposes of calculating the 30 percent...-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.4 Energy efficiency performance standard. (a) All Federal agencies shall design new...

  11. Nuclear energy efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Nonboel, E. [Technical Univ. of Denmark. DTU Nutech, Roskilde (Denmark); Kyrki-Rajamaeki, R. [Lappeenranta Univ. of Technology (Finland)

    2012-11-15

    Nuclear energy already today plays an important role in decarbonisation of the electricity sector while providing energy security and being economically competitive. Nuclear energy is characterized by its very high energy density and is well suited for large-scale, baseload electricity supply. Similar to renewable energy sources such as wind, solar or biomass, nuclear power is characterized by an abundant supply of its primary energy source, uranium, but is not limited to the same extent as these renewable energy sources from being an intermittent energy supply or imposing severe restrictions on land-use. Improving energy efficiency of nuclear power plants has contributed to a better utilization of the uranium resources and has helped improving the economic performance of nuclear power plants. This is to a large degree accomplished through optimisation of nuclear fuel assemblies as well as renewing turbines and generators. More importantly however, the overall economy of nuclear power has improved though better plant management leading to higher capacity factors and by extending the lifetimes of existing nuclear power plants. Provided that improved safety, economics and successful waste management can be demonstrated nuclear power is likely to grow in the future. Non-electricity applications may further boost the growth of nuclear energy, especially with the development of new reactor systems allowing for cogeneration of electricity and hydrogen or biofuels for transport. (Author)

  12. Based on low carbon of Xiamen planning energy-efficient building analysis%基于低碳厦门规划的节能建筑分析

    Institute of Scientific and Technical Information of China (English)

    程麟

    2011-01-01

    低能耗建筑正日益成为人们关注的焦点,这种建筑基本不消耗或极少消耗煤炭、石油、电力等能源,就能维持建筑的正常运转需要。低能耗建筑的主要特点是除了强调建筑围护结构被动式节能设计外,将建筑能源需求转向太阳能、风能、浅层地热能、生物质能等可再生能源,为人们的建筑行为,为人类、建筑与环境和谐共生寻找到最佳的解决方案。%The low power architecture is increasingly becoming the focus of attention,this building does not consume the basic or minimal consumption of coal,oil,electricity and other energy,can maintain normal operation of the building needs.The main characteristics of low energy buildings in addition to emphasis on passive energy-saving building envelope design,building energy demand will shift as solar,wind,shallow geothermal energy,biomass and other renewable energy sources,building for people to act for mankind,building Harmony with the environment to find the best solution.

  13. Design of low-energy building and energy consumption analyses

    Institute of Scientific and Technical Information of China (English)

    刘鸣; 陈滨; 范悦; 朱佳音; 索健

    2009-01-01

    In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,yearly energy requirement for heating must be less than 55 kWh/(m2·a)(regarded as a low-energy house). The new attempt was carried out in the process of architecture design with an evaluation on energy consumption of the building. The design plan was brought forward and compared. PHPP software from German was applied to calculate energy consumption of the passive residential building. The optimum design planning was discussed and model of passive house suited to China’s national conditions were attempted. The compactness,solar air collector and the window-wall ratio have essential influence on the energy consumption of buildings. The annual heat demands for the buildings with the window-wall ratio 0.35 and 0.50 are 48 kWh/(m2·a) and 46 kWh/(m2·a),respectively. The yearly auxiliary heat of building with the wall-mounted solar air collectors and the window-wall ratio 0.35 is just 4.8 kWh/(m2·a).

  14. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...... leadership role in promoting energy efficiency in buildings in Europe, that will be the most powerful instrument developed to date for the building sector in Europe....

  15. Energy Performance of Buildings - The European Approach to Sustainability

    OpenAIRE

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong leadership role in promoting energy efficiency in buildings in Europe, that will be the most powerful instrument developed to date for the building sector in Europe. This paper presents the European appr...

  16. EC blowers for school building ventilation. Wholesome climate and high energy efficiency; EC-Ventilatoren fuer Schullueftungskonzepte. Gesundes Klima bei hoher Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Salig, Andreas [ebm-papst, Mulfingen (Germany). Verkauf Inland; Grohmann, Erwin [Grohmann Lueftungstechnik GmbH, Forchtenberg (Germany); Reiff, Ellen-Christine [Redaktionsbuero Stutensee (Germany)

    2009-07-01

    Government funds of several thousands of millions were provided in 2009 for the modernisation of school buildings. There are highly flexible commercial ventilation and air conditioning systems for this type of buildings which combine energy savings with optimum room air quality. EC blowers contribute to this. (orig.)

  17. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  18. Energy efficiency drivers in Europe. Regulations and other instruments open new horizons for energy management in buildings; Batiments intelligents, confort et efficacite energetique active. Leviers d'efficacite energetique en Europe. Les reglementations et autres instruments incitatifs ouvrent de nouveaux horizons pour la gestion de l'energie dans les batiments

    Energy Technology Data Exchange (ETDEWEB)

    Obara, H. [Schneider Electric, 92 - Rueil-Malmaison (France)

    2010-09-15

    Curbing climate change and global warming will be one of the major challenges of the 21. Century.The very survival of our society could be at stake. Greenhouse gases including CO{sub 2} have been identified as the culprits and the vast majority of industrialized countries have agreed to cut emissions drastically over coming decades. Buildings account for nearly 40% of the energy used in most countries and are responsible for a similar level of global CO{sub 2} emissions. Energy efficiency in buildings is therefore one of the keys to reducing green-house emissions. The main driving force to achieve the ambitious goals that have been set for the reduction of greenhouse gases will come from energy efficiency regulations, building codes, standards, labels, certifications, obligations and incentives, all of which have been multiplying steadily over recent decades. International institutions are rolling out energy efficiency directives and standards that set minimum requirements for buildings.They are gradually being taken into account in national regulations and building codes. Today, most energy efficiency regulations concern building design. They hardly touch on Energy Management aspects that can generate major operational gains with relatively low investments and quick payback. Beyond regulations that focus on minimum requirements, environmental performance labels use building rating criteria that can take energy efficiency much further.They offer a practical way of assigning value to energy efficiency and in this way represent powerful market drivers. Moreover, the important benefits of Energy Management can be easily integrated in the rating criteria of these far-reaching schemes. Indeed, through effective building measurement, monitoring and control systems, Energy Management is one of the keys to rapidly reducing carbon emissions and achieving climate change targets. (author)

  19. Energy Efficiency for the Nunamiut People

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Dan

    2014-04-09

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  20. The evaluation of the thermal behaviour of a mortar based brick masonry wall coated with TiO2 nanoparticles : an experimental assessment towards energy efficient buildings

    OpenAIRE

    Carneiro, Joaquim A. O.; Vasconcelos, Graça; Azevedo, Sofia; Jesus, Carlos; Palha, Carlos; Gomes, Nuno; Teixeira, Vasco

    2014-01-01

    The transfer of energy (in the form of heat) between the building and its surroundings affects its thermal performance. When a given building system is thermally inefficient it will require that the HVAC equipment will be in permanent activity, increasing the underlying energy costs. This work evaluates the influence of using a TiO2-coated plastering mortar in the thermal performance of a building wall model. The TiO2 aqueous solution was sprayed onto the mortar surface, in its fresh state, b...

  1. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  2. Application of External Wall Thermal Insulation Material in Building Energy-efficient%外墙保温材料在建筑节能中的运用

    Institute of Scientific and Technical Information of China (English)

    何学敏

    2014-01-01

    With the continuous development of building en-ergy-efficient technology, exterior wal thermal insulation technology has been developing. In the exterior wal thermal insulation technology, exterior wal thermal insulation material is very important. This article mainly expounds several kinds of exterior wal thermal insulation material used in exterior energy-efficient technology, and discusses the concrete app-lication of exterior wal thermal insulation in construction en-gineering.%随着建筑节能技术的发展,外墙保温技术也在不断发展中。在外墙保温技术中,外墙保温材料是非常重要的。本文主要阐述了建筑外墙节能技术中常用的几种外墙保温材料,并且探讨了外墙保温材料在建筑工程中的具体运用。

  3. Assessment of energy utilization and leakages in buildings with building information model energy

    Directory of Open Access Journals (Sweden)

    Egwunatum I. Samuel

    2017-03-01

    Full Text Available Given the ability of building information models (BIM to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit less carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1 building energy consumption, (2 building energy performance and analysis, and (3 BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis tool with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world׳s first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise or size.

  4. Whole Building Efficiency for Whole Foods: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Doebber, I.; Hirsch, A.

    2013-02-01

    The National Renewable Energy Laboratory partnered with Whole Foods Market under the Commercial Building Partnership (CBP) program to design and implement a new store in Raleigh, North Carolina. The result was a design with a predicted energy savings of 40% over ASHRAE Standard 90.1-2004, and 25% energy savings over their standard design. Measured performance of the as-built building showed that the building did not achieve the predicted performance. A detailed review of the project several months after opening revealed a series of several items in construction and controls items that were not implemented properly and were not fully corrected in the commissioning process.

  5. 75 FR 30014 - Office of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant...

    Science.gov (United States)

    2010-05-28

    ... of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice. SUMMARY... Efficiency and Renewable Energy (EERE), has experienced historic growth and unprecedented workload...

  6. Energy efficiency fallacies revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, Leonard

    2000-06-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  7. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  8. Energy-Efficient Neuromorphic Classifiers.

    Science.gov (United States)

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2016-10-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.

  9. 78 FR 9042 - Request for Information (RFI) for Commercial Building Energy Asset Score

    Science.gov (United States)

    2013-02-07

    ... of Energy Efficiency and Renewable Energy Request for Information (RFI) for Commercial Building Energy Asset Score AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... its effort to achieve a 20 percent improvement in the energy efficiency of commercial buildings...

  10. Energy modeling of two office buildings with data center for green building design

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Yin, Rongxin; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, Shanghai 200092 (China)

    2008-07-01

    Energy simulation models are developed with EnergyPlus for two office buildings in a R and D center in Shanghai, China to evaluate the energy cost savings of green building design options compared with the baseline building. As a R and D center of an international IT corporation, there are data centers in the two buildings, which make them different from typical office buildings. The data centers house high energy consuming IT equipments and need 24 h air-conditioning every day all year round. In order to achieve energy cost savings, multiple energy efficiency strategies are employed for design proposed building, encompassing high performance building envelope, lighting system, and HVAC system. Through energy modeling, the design proposed options are compared to an ASHRAE 90.1-2004 compliant budget model to highlight energy cost savings versus ''standard practice'' and show the potential LEED trademark Credit EA1 - Optimize Energy Performance. Meanwhile, they are also compared to China Code model to figure out the energy cost savings versus the most popular practice conforming to China Public Building Energy Saving Design Standard. The whole building energy simulation results show that the yearly energy cost saving of the proposed design will be approximately 27% from China Code building and 21% from ASHRAE budget