WorldWideScience

Sample records for building e3640 decommissioning

  1. Geophysics: Building E5375 decommissioning, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-08-01

    Building E5375 was one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Several anomalies wear, noted: (1) An underground storage tank located 25 ft east of Building E5375 was identified with magnetic, resistivity, and GPR profiling. (2) A three-point resistivity anomaly, 12 ft east of the northeast comer of Building E5374 (which borders Building E5375) and 5 ft south of the area surveyed with the magnetometer, may be caused by another underground storage tank. (3) A 2,500-gamma magnetic anomaly near the northeast corner of the site has no equivalent resistivity anomaly, although disruption in GPR reflectors was observed. (4) A one-point magnetic anomaly was located at the northeast comer, but its source cannot be resolved. A chaotic reflective zone to the east represents the radar signature of Building E5375 construction fill

  2. Geophysics: Building E5481 decommissioning, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-11-01

    Building E5481 is one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The building is located on the northern margin of a landfill that was sited in a wetland. The large number of magnetic sources surrounding the building are believed to be contained in construction fill that had been used to raise the grade. The smaller anomalies, for the most part, are not imaged with ground radar or by electrical profiling. A conductive zone trending northwest to southeast across the site is spatially related to an old roadbed. Higher resistivity areas in the northeast and east are probably representive of background values. Three high-amplitude, positive, rectangular magnetic anomalies have unknown sources. The features do not have equivalent electrical signatures, nor are they seen with radar imaging

  3. Interim progress report -- geophysics: Decommissioning of Buildings E5974 and E5978, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-11-01

    Buildings E5974 and E5978, located near the mouth of Canal Creek, were among 10 potentially contaminated sites in the Westwood and Canal Creek areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including the complementary technologies of magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeters of the buildings to guide a sampling program prior to decommissioning and dismantling. The magnetic anomalies and the electrically conductive areas around these buildings have a spatial relationship similar to that observed in low-lying sites in the Canal Creek area; they are probably associated with construction fill. Electrically conductive terrain is dominant on the eastern side of the site, and resistive terrain predominates on the west. The smaller magnetic anomalies are not imaged with ground radar or by electrical profiling. The high resistivities in the northwest quadrant are believed to be caused by a natural sand lens. The causes of three magnetic anomalies in the high-resistivity area are unidentified, but they are probably anthropogenic

  4. Environmental geophysics: Buildings E5485, E5487, and E5489 decommissioning - the open-quotes Ghost Townclose quotes complex, Aberdeen Proving Ground, Maryland

    International Nuclear Information System (INIS)

    McGinnis, L.D.; Thompson, M.D.; Miller, S.F.

    1994-06-01

    Buildings E5485, E5487, and E5489, referred to informally as the open-quotes Ghost Townclose quotes complex, are potentially contaminated sites in the Edgewood section of Aberdeen Proving Ground. Noninvasive geophysical surveys, including magnetics, EM-31, EM-61, and ground-penetrating radar, were conducted to assist a sampling and monitoring program prior to decommissioning and dismantling of the buildings. The buildings are located on a marginal wetland bordering the west branch of Canal Creek. The dominant geophysical signature in the open-quotes Ghost Town close quotes complex is a pattern of northeast-southwest and northwest-southeast anomalies that appear to be associated with a trench/pipe/sewer system, documented by the presence of a manhole. Combinations of anomalies suggest that line sources include nonmetallic and ferromagnetic materials in trenches. On the basis of anomaly associations, the sewer lines probably rest in a trench, back-filled with conductive, amphibolitic, crushed rock. Where the sewer lines connect manholes or junctions with other lines, ferromagnetic materials are present. Isolated, unidentified magnetic anomalies litter the area around Building E5487, particularly to the north. Three small magnetic sources are located east of Building E5487

  5. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  6. Decommissioning of building part of nuclear power plant

    International Nuclear Information System (INIS)

    Sochor, R.

    1988-01-01

    The characteristics are discussed using literature data of building work during decommissioning or reconstruction of nuclear power plants. The scope of jobs associated with power plant decommissioning is mainly given by the size of contaminated parts, intensity of radioactivity, the volume of radioactive wastes and the possible building processes. Attention is devoted to the cost of such jobs and the effect of the plant design on cost reduction. (Z.M.). 6 refs

  7. Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)

    International Nuclear Information System (INIS)

    Musall, John C.; Cope, Jeff L.

    2008-01-01

    SRS recently completed a four year mission to decommission ∼250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft 2 laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of ∼48,000 ft 2 . Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, ∼1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete ∼5' thick and ∼30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete beams below-grade and concrete on

  8. 21 CFR 890.3640 - Arm sling.

    Science.gov (United States)

    2010-04-01

    ... arm sling is a device intended for medical purposes to immobilize the arm, by means of a fabric band... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arm sling. 890.3640 Section 890.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...

  9. Innovative nuclear power plant building arragement in consideration of decommissioning

    International Nuclear Information System (INIS)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed

  10. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  11. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  12. 21 CFR 872.3640 - Endosseous dental implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  13. Decontamination and decommissioning of the SPERT-I Reactor Building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Dolenc, M.R.

    1986-02-01

    This final report documents the decontamination and decommissioning of the SPERT-I Reactor Building. This 20- by 40-ft galvanized steel building was dismantled; and the resultant contaminated sludge, liquid, and carbon steel were disposed of at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. This report presents the results of the characterization, decision analysis, planning, and decommissioning of the facility. The total cost of these activities was $139,500. Of this total, $103,500 was required for decommissioning operations. (This latter figure represents a 20% savings over the estimated costs generated during the planning effort.) The objectives of decommissioning this facility were to stabilize the seepage pit area and remove the reactor building. The D and D work was divided into two parts; the seepage pit was decommissioned in 1984, and the reactor building in 1985. The entire area was backfilled with radiologically clean soil, graded, and seeded. Two markers were installed to identify the locations of the pit and reactor building. The only isotopes found in either decommissioning operation were cesium-137 and uranium-235 in very low concentrations. Decommissioning operations of the reactor building were carried out during August 1985. The project generate 297 ft 3 of radioactive waste. No personnel radiation exposure above background was received by D and D workers

  14. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    International Nuclear Information System (INIS)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-01-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m 2 . In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition

  15. Decommissioning Unit Cost Data

    International Nuclear Information System (INIS)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-01-01

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  16. Final decommissioning report for the 183-C Filter Building/Pumproom facility

    International Nuclear Information System (INIS)

    Marske, S.G.

    1997-04-01

    This report documents the decommissioning and demolition (D ampersand D) of the 183-C Filter Building/Pumproom facility (located at the Hanford Site in Richland, Washington). The 183-C Facility D ampersand D involved the performance of characterization to support the development of a project plan and final hazard classification

  17. Final decommissioning of the former active handling Building A59 at UKAEA Winfrith

    International Nuclear Information System (INIS)

    Cornell, Rowland; Brown, Nick; Staples, Andy

    2006-01-01

    RWE NUKEM has been decommissioning the former active handling Building A59 at Winfrith since July 2000 for the site owners and nuclear site licence holders UKAEA, following a competitive tendering process. Following recent government changes the UK's Nuclear Decommissioning Authority has contracts with UKAEA for delivery of the site clean-up programme. Decommissioning work has centred upon two heavily shielded suites of caves originally used to carry out remote examination of irradiated nuclear fuel elements although other supporting facilities are also involved. Starting activity and contamination levels were extremely high in the two cave lines but decommissioning operations have steadily advanced and both facilities have now been decontaminated such that they are ready for demolition. The processes used to achieve this objective involved mainly standard off-the-shelf equipment but the work has demonstrated the importance of undertaking the task with the right tooling and lessons learnt will be described for the benefit of other operators. The essential challenge is always to achieve these objectives in a safe and cost-effective way whilst ensuring that the radiation exposure of the operators is kept as low as reasonably practicable (ALARP). This paper describes how the approach to cave line demolition had to be amended from the original plan owing to features of the original building design which provide structural support for the main fabric from the concrete cave line walls. As a result, the original plan to demolish the cave lines first could not be undertaken economically and the building itself will now be cleared, decontaminated and demolished ahead of these two major facilities. Considerable benefits have flowed from this decision and the paper will set out the advantages that have been gained, which may be of benefit to others carrying out similar tasks. Finally, the paper will explain how the achievement of cost-effective and safe solutions to all these

  18. The Turnover Process at Chalk River Laboratories from Operations to Decommissioning

    International Nuclear Information System (INIS)

    Pottelberg, Paul; Tremblay, Roger

    2016-01-01

    of the Preliminary Decommissioning Plan (PDP). If the PDP is not current then it should be revised before Facilities Decommissioning accepts full responsibility for the facility, building, component or area; - Details of Shutdown activities (e.g. isolations, draining, decontamination, etc.); - Hazards that remain; - Significant environmental aspects and operational controls; - Details of system/equipment that remain energized or continue to perform their design function (e.g. holding tank still containing radiological liquid, etc.); - Updated drawings and equipment specifications; - Status of Engineering Change Control (ECC) that are in progress; - Safety Related Systems (SRS) list; - Fire code and building code violations or deficiencies; - Maintenance schedule; - Inventory of Nuclear Materials; - Governing documents e.g. Criticality Safety Document, Preliminary Decommissioning Plan, Environmental Assessment, Safety Analysis Report, Facility Authorization, etc.; - Outstanding Regulatory commitments; - Information on any required amendments to the Site License; and - Listing of all documentation and records to be included with the Transfer Certificate. Key responsibilities are laid out defining what is required from each party and other groups involved in the transfer of the facility. (authors)

  19. Unrestricted re-use of decommissioned nuclear laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, R; Noynaert, L; Harnie, S; Marien, J

    1996-09-18

    A decommissioning strategy was developed by the Belgian Nuclear Research Centre SCK/CEN. In this strategy decommissioning works are limited to the radioactive parts of the nuclear installation. After obtaining an attestation for unrestricted reuse of the building after removal of all radioactivity, the building can be used for new industrial purposes outside the nuclear field. The decommissioning activities according to this strategy have been applied in four buildings. The results are described.

  20. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  1. Survey of decontamination and decommissioning techniques

    International Nuclear Information System (INIS)

    Kusler, L.E.

    1977-01-01

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  2. Optimized determination of the radiological inventory during different phases of decommissioning

    International Nuclear Information System (INIS)

    Hillberg, Matthias; Beltz, Detlef; Karschnick, Oliver

    2012-01-01

    The decommissioning of nuclear facilities comprises a lot of activities such as decontamination, dismantling and demolition of equipment and structures. For these activities the aspects of health and safety of the operational personnel and of the general public as well as the minimization of radioactive waste have to be taken into account. An optimized, comprehensible and verifiable determination of the radiological inventory is essential for the decommissioning management with respect to safety, time, and costs. For example: right from the start of the post operational phase, the radiological characterization has to enable the decision whether to perform a system decontamination or not. Furthermore it is necessary, e.g. to determine the relevant nuclides and their composition (nuclide vector) for the release of material and for sustaining the radiological health and safety at work (e. g. minimizing the risk of incorporation). Our contribution will focus on the optimization of the radiological characterization with respect to the requisite extent and the best instant of time during the decommissioning process. For example: which additional information, besides the history of operation, is essential for an adequate amount of sampling and measurements needed in order to determine the relevant nuclides and their compositions? Furthermore, the characterization of buildings requires a kind of a graded approach during the decommissioning process. At the beginning of decommissioning, only a rough estimate of the expected radioactive waste due to the necessary decontamination of the building structures is sufficient. With ongoing decommissioning, a more precise radiological characterization of buildings is needed in order to guarantee an optimized, comprehensible and verifiable decontamination, dismantling and trouble-free clearance. These and other examples will be discussed on the background of and with reference to different decommissioning projects involving direct

  3. Decommissioning challenges - an industrial reality

    International Nuclear Information System (INIS)

    Moore, H.; Mort, P.; Hutton, E.

    2008-01-01

    Sellafield Limited has undergone many transformations in previous years. The Nuclear Decommissioning Authority (NDA) has managed the site from April 2005, and a new Parent Body Organisation (PBO) is soon to be announced. In addition, it is an exciting time for the nuclear industry following the announcement of the UK government support new reactor builds. Should the site be selected for new build, the impact on Sellafield, its decommissioning program and economic impact on the local area can only be speculated at the current time. Every past, present and future decommissioning project at the Sellafield Limited site offers complex challenges, as each facility is unique. Specialist skills and experience must be engaged at pre-planned phases to result in a safe, efficient and successful decommissioning project. This paper provides an overview of a small selection of decommissioning projects, including examples of stakeholder engagement, plant and equipment dismantling using remote handling equipment and the application of innovative techniques and technologies. In addition, the final section provides a summary upon how future technologies required by the decommissioning projects are being assessed and developed. (authors)

  4. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  5. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    International Nuclear Information System (INIS)

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft 2 of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL

  6. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  7. Measuring and reporting on decommissioning progress

    International Nuclear Information System (INIS)

    Lange, B.A.

    2006-01-01

    One of the challenges facing AECL, as well as other organizations charged with the responsibility of decommissioning nuclear facilities, is the means by which to measure and report on decommissioning progress to various audiences which, in some cases, may only have a peripheral knowledge or understanding of the complexities associated with the decommissioning process. The reporting and measurement of decommissioning progress is important for a number of reasons, i.e., It provides a vehicle by which to effectively communicate the nature of the decommissioning process; It ensures that stakeholders and shareholders are provided with a transparent and understandable means for assessing value for money; It provides a means by which to integrate the planning, measurement, and operational aspects of decommissioning One underlying reason behind the challenge of reporting decommissioning progress lies in the fact that decommissioning programs are generally executed over periods of time that far exceed those generally associated with typical design and build projects. For example, a decommissioning program could take decades to complete in which case progress on the order of a few percent in any one year might be typical. However, such progress may appear low compared to that seen with more typical projects that can be completed in a matter of years. As a consequence, AECL undertook to develop a system by which to measure decommissioning progress in a straightforward, meaningful, and understandable fashion. The system is not rigorously objective, and there are subjective aspects that are necessitated by the need to keep the system readily understandable. It is also important to note that while the system is simple in concept, there is, nonetheless, significant effort involved in generating and updating the parameters used as input, and in the actual calculations. (author)

  8. Decommissioning of four small nuclear waste storage buildings and an evaporation plant

    International Nuclear Information System (INIS)

    Hedvall, R.H.; Ellmark, C.; Stocker, P.

    2008-01-01

    A small-scale decommissioning concept was applied with staff from an earlier project wish strong knowledge of radiation protection, minimized radiation doses and environmental pollution. The project was therefore initiated with less than 10 people involved using standard hand held equipment. The aim of the decommissioning project was to set free as much material as possible, i.e. remove waste from the regulatory control regime and also free the remaining structures and buildings for conventional demolition and subsequent reuse of the property. Complete decommissioning will be concluded at the end of 2008 when all waste is taken case of. This is the fourth in a series of important decommissioning projects in Studsvik since the 1980s. Some of the conclusions are: 1) Obtain a group with well-known personnel that have been working together before for the entire project For a project larger than this, project management assistant would have made follow-up more efficient. Experts in instrumentation and statistics are also important. Also important is knowledge about practical decisions that would make the project more efficient in terms of time. Interviews and historical facts are important when choosing which nuclides are of most interest for measurements (but be critic). 2) Be sure all authoritative requirements are followed, like setting up a work environment plan at the entrance to the site and placing a fence around the work site. 3) Check all individual radiation exposures before project start and do whole body measurements both before and after the project. Urine samples should be taken if alpha contamination is a risk. 4) Calculate for unwanted and 'not what you expected' situations in the time schedule. 5) Be aware of contaminations and radiation sources outside the actual area. They might have to be moved. 6) Calculate and order bins and containers for waste storage well in advance. Stay informed of the updated amount of waste and keep it in locked storage. 7

  9. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-09-24

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  10. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  11. Building confidence in decommissioning in France: Towards a safe, industrially applicable, coherent national system without site or waste liberation

    International Nuclear Information System (INIS)

    Averous, J.; Chapalain, E.

    2002-01-01

    The rate of decommissioning in France is accelerating, as the first generation of power reactors will be actively decommissioned in the next few years. Experience has been gathered from past decommissioning activities and some current pilot decommissioning operations. This experience has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts : 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities ; 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorisation based on a radiological impact study and a public inquiry ; a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanisation plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. (author)

  12. Site Characterization Plan for decontamination and decommissioning of Buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    Buildings 3506, the Waste Evaporator Facility, and 3515, the Fission Product Pilot Plant, at Oak Ridge National Laboratory (ORNL), are scheduled for decontamination and decommissioning (D and D). This Site Characterization Plan (SCP) presents the strategy and techniques to be used to characterize Buildings 3506/3515 for the purpose of planning D and D activities. The elements of the site characterization for Buildings 3506/3515 are planning and preparation, field investigation, and characterization reporting. Other level of effort activities will include management and oversight, project controls, meetings, and progress reporting. The objective of the site characterization is to determine the nature and extent of radioactive and hazardous materials and other industrial hazards in and around the buildings. This information will be used in subsequent planning to develop a detailed approach for final decommissioning of the facilities: (1) to evaluate decommissioning alternatives and design the most cost-effective D and D approach; (2) to determine the level and type of protection necessary for D and D workers; and (3) to estimate the types and volumes of wastes generated during D and D activities. The current D and D characterization scope includes the entire building, including the foundation and equipment or materials within the building. To estimate potential worker exposure from the soil during D and D, some subfoundation soil sample collection is planned. Buildings 3506/3515 are located in the ORNL main plant area, to the west and east, respectively, of the South Tank Farm. Building 3506 was built in 1949 to house a liquid waste evaporator and was subsequently used for an incinerator experiment. Partial D and D was done prior to abandonment, and most equipment has been removed. Building 3515 was built in 1948 to house fission product separation equipment. In about 1960, all entrances were sealed with concrete block and mortar. Building 3515 is expected to be

  13. Safety decommissioning regulations of radiochemical objects - the problem, requires urgent decision

    International Nuclear Information System (INIS)

    Rovnyj, S.I.; Arsent'eva, N.V.; Emel'yanov, N.M.; Kolesnikov, V.N.

    2001-01-01

    The necessity of planning and pursuance of the measures on decommissioning of radiochemical industry is discussed. Technological processes were stopped more than in 30 buildings and constructions of the PO Mayak. The characteristics of the technological buildings to be decommissioned were treated in the context of building peculiarities, function, character and level of contamination. An acceptable variant for reactor decommissioning invites development of the standard-legal aspects [ru

  14. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  15. Decommissioning of DR 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N.

    2009-02-15

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  16. Decommissioning of DR 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt

    2006-01-15

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  17. Decommissioning of DR 1, Final report

    International Nuclear Information System (INIS)

    Lauridsen, Kurt

    2006-01-01

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  18. Nuclear fission energy: new build, operation, fuel cycle and decommissioning in the international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Stefan [AREVA GmbH, Erlangen (Germany)

    2015-07-01

    Over 60 nuclear power reactors are in construction today and over 400 are connected to the grid. The presentation will show where. A nuclear new build project involves a team of several thousand people. Some pictures from ongoing new build projects will illustrate this. Using concrete examples from the AREVA group, the nuclear fuel cycle from uranium mines in Niger, Kazakhstan or Canada to chemical conversion, enrichment and fuel manufacturing will be explained. Also the recycling of used fuel and the fabrication of MOX fuel is addressed. The presentation closes with an overview on decommissioning and final storage projects.

  19. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    Energy Technology Data Exchange (ETDEWEB)

    Rod, Kerry [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States); Shelanskey, Steven K. [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States); Kristofzski, John [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)

    2013-07-01

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes

  20. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    International Nuclear Information System (INIS)

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    2013-01-01

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes

  1. Nuclear decommissioning trusts: A case for convertible bonds

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1992-01-01

    Asset-liability management is studied with special emphasis on application of the author's findings to the management of nuclear decommissioning trusts (NDTs). The trust themselves are investment vehicles established to accumulate and build funds to be used to defray future decommissioning costs. Decommissioning, in turn, is the process of dismantling the shell of a nuclear reactor and the surrounding concrete structures, followed by disposal of the radioactive material, the objective being to return the site to a greenfield state i.e. the site is freed up for unrestricted use. Unfortunately, the assets of NDTs are not so easily managed. The liability that the trusts have been established to fund is a highly uncertain moving target for which little historical data is available. This study first develops a framework for selecting portfolios when the investment objective is to invest against a future liability. The challenge then is to build an investment strategy around an uncertain liability, in the presence of taxes and miscellaneous portfolio constraints. The study then explores the viability of convertible bonds for liability-driven investment strategies because of the hybrid debt/equity nature of these instruments

  2. The decommissioning of the Barnwell nuclear fuel plant

    International Nuclear Information System (INIS)

    McNeil, J.

    1999-01-01

    The decommissioning of the Barnwell Nuclear Fuel Plant is nearing completion. The owner's objective is to terminate the plant radioactive material license associated with natural uranium and transuranic contamination at the plant. The property is being released for commercial-industrial uses, with radiation exposure from residual radioactivity not to exceed 0.15 millisieverts per year. Historical site assessments have been performed and the plant characterized for residual radioactivity. The decommissioning of the uranium hexafluoride building was completed in April, 1999. Most challenging from a radiological control standpoint is the laboratory building that contained sixteen labs with a total of 37 glove boxes, many of which had seen transuranics. Other facilities being decommissioned include the separations building and the 300,000-gallon underground high-level waste tanks. This decommissioning in many ways is the most significant project of this type yet undertaken in South Carolina. Many innovations have been made to reduce the time and costs associated with the project. (author)

  3. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  4. Optimization of costs versus radiation exposures in decommissioning

    International Nuclear Information System (INIS)

    Konzek, G.J.

    1979-01-01

    The estimated worth of decommissioning optimization planning during each phase of the reactor's life cycle is dependent on many variables. The major variables are tabulated and relatively ranked. For each phase, optimization qualitative values (i.e., cost, safety, maintainability, ALARA, and decommissioning considerations) are estimated and ranked according to their short-term and long-term potential benefits. These estimates depend on the quality of the input data, interpretation of that data, and engineering judgment. Once identified and ranked, these considerations form an integral part of the information data base from which estimates, decisions, and alternatives are derived. The optimization of costs and the amount of occupational radiation exposure reductions are strongly interrelated during decommissioning. Realizing that building the necessary infrastructure for decommissioning will take time is an important first step in any decommissioning plan. In addition, the following conclusions are established to achieve optimization of costs and reduced occupational radiation exposures: the assignment of cost versus man-rem is item-specific and sensitive to the expertise of many interrelated disciplines; a commitment to long-term decommissioning planning by management will provide the conditions needed to achieve optimization; and, to be most effective, costs and exposure reduction are sensitive to the nearness of the decommissioning operation. For a new plant, it is best to start at the beginning of the cycle, update continually, consider innovations, and realize full potential and benefits of this concept. For an older plant, the life cycle methodology permits a comprehensive review of the plant history and the formulation of an orderly decommissioning program based on planning, organization, and effort

  5. Roadmap and performance carried out during Ciemat site decommissioning

    International Nuclear Information System (INIS)

    Quinones, Javier; Diaz Diaz, Jose Luis

    2005-01-01

    Ciemat (Research Centre for Energy, Environment and Technology) located in the heart of the Ciudad Universitaria of Madrid, occupies a property of 20 Ha. Since its creation in 1951 as JEN, and in 1986 renowned as Ciemat, it has involved on R and D projects in the field of Energy and Environment, i.e., Nuclear Fission, Nuclear Fusion, Fossils Fuels, Renewable Energy. As a consequence of the R and D projects developed between 1951 - 1986 on Nuclear Fission field (fuel design, fabrication, characterization on irradiated fuels, safety studies, etc) and to the diversification of the goals as well, it is necessary to Decommissioning and Dismantling (D and D) from nuclear facilities (nuclear reactor, Hot Cells, Irradiation facility), buildings and soils. Preparations for D and D included a staged shutdown of operations, planning documentation and licensing for decommissioning. As a prerequisite to Ciemat application for a decommissioning license and nuclear environmental assessment was carried out according to Spanish Nuclear Council (CSN) and approval of the site decommissioning project was obtained in 2000 and valid until December 31, 2006. Since 2001 - 2003 is underway and focussed on the radiological characterization of the site (divided in pieces of ground), when each piece of ground is characterized a planning for D and D is presented to CSN in order to obtain a license for actuation. Nowadays several pieces of ground are decontaminated and modifications have been done in order to achieve a safe state of storage-with-surveillance. Later phases have planned waste management improvements for selected wastes already on temporally storage, eventually followed by final decommissioning of facilities and buildings and cleaning of contaminants from soils and removal of waste from the site. This paper describes the planning, nuclear and environment assessment and descriptions of decommissioning activities currently underway at Ciemat. (Author)

  6. A nationwide modelling approach to decommissioning - 16182

    International Nuclear Information System (INIS)

    Kelly, Bernard; Lowe, Andy; Mort, Paul

    2009-01-01

    In this paper we describe a proposed UK national approach to modelling decommissioning. For the first time, we shall have an insight into optimizing the safety and efficiency of a national decommissioning strategy. To do this we use the General Case Integrated Waste Algorithm (GIA), a universal model of decommissioning nuclear plant, power plant, waste arisings and the associated knowledge capture. The model scales from individual items of plant through cells, groups of cells, buildings, whole sites and then on up to a national scale. We describe the national vision for GIA which can be broken down into three levels: 1) the capture of the chronological order of activities that an experienced decommissioner would use to decommission any nuclear facility anywhere in the world - this is Level 1 of GIA; 2) the construction of an Operational Research (OR) model based on Level 1 to allow rapid what if scenarios to be tested quickly (Level 2); 3) the construction of a state of the art knowledge capture capability that allows future generations to learn from our current decommissioning experience (Level 3). We show the progress to date in developing GIA in levels 1 and 2. As part of level 1, GIA has assisted in the development of an IMechE professional decommissioning qualification. Furthermore, we describe GIA as the basis of a UK-Owned database of decommissioning norms for such things as costs, productivity, durations etc. From level 2, we report on a pilot study that has successfully tested the basic principles for the OR numerical simulation of the algorithm. We then highlight the advantages of applying the OR modelling approach nationally. In essence, a series of 'what if...' scenarios can be tested that will improve the safety and efficiency of decommissioning. (authors)

  7. Responding To Changes in the Decommissioning Plans for Demolition of a Former Active Handling Building at The United Kingdom Atomic Energy Establishment Winfrith

    International Nuclear Information System (INIS)

    Brown, N.; Parkinson, S.J.; Cornell, R.M.; Staples, A.T.

    2006-01-01

    The full decommissioning of the former Active Handling Building A59 at Winfrith in Dorset is being carried out by RWE NUKEM Limited under contract from the site owners and nuclear site licence holder, United Kingdom Atomic Energy Authority (UKAEA). Following recent government changes, the United Kingdom's Nuclear Decommissioning Authority (NDA) has now set up contracts with UKAEA for delivery of the site clean-up programme. The building contains two heavily shielded suites of caves originally used to carry out remote examination of irradiated nuclear fuel elements together with other supporting facilities. The original intention was to demolish the caves ahead of the building but after detailed consideration it was concluded that demolition of the building in advance of the caves was more operationally effective. As a result, the original decommissioning plan had to be reworked to reflect these changes. The paper briefly explains how this situation arose and the means by which the problems experienced were overcome by a complete revision to the decommissioning programme. The updated plan has been adopted by UKAEA and work is now proceeding apace to clear the building of redundant items, to complete decontamination of all remaining areas and facilities and to carry out detailed radiological surveys to confirm that the building structure is clean and ready for demolition. Both cave lines have been completely decontaminated to low residual levels of activity and are essentially ready for controlled demolition. This paper describes some of the significant tasks undertaken during the past year with particular reference to the decommissioning techniques that gave the greatest success and the limitations of others originally considered. Some of these processes were aimed at minimising the volume of low level waste (LLW) generated by using standard off-the-shelf equipment to remove contamination from ∼5 Ton concrete blocks recovered from both cave line structures. A

  8. Rancho Seco--Decommissioning Update

    International Nuclear Information System (INIS)

    Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

    2003-01-01

    The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered

  9. Decommissioning of AECL Whiteshell laboratories - 16311

    International Nuclear Information System (INIS)

    Koroll, Grant W.; Bilinsky, Dennis M.; Swartz, Randall S.; Harding, Jeff W.; Rhodes, Michael J.; Ridgway, Randall W.

    2009-01-01

    Whiteshell Laboratories (WL) is a Nuclear Research and Test Establishment near Winnipeg, Canada, operated by AECL since the early 1960's and now under decommissioning. WL occupies approximately 4400 hectares of land and employed more than 1000 staff up to the late-1990's, when the closure decision was made. Nuclear facilities at WL included a research reactor, hot cell facilities and radiochemical laboratories. Programs carried out at the WL site included high level nuclear fuel waste management research, reactor safety research, nuclear materials research, accelerator technology, biophysics, and industrial radiation applications. In preparation for decommissioning, a comprehensive environmental assessment was successfully completed [1] and the Canadian Nuclear Safety Commission issued a six-year decommissioning licence for WL starting in 2003 - the first decommissioning licence issued for a Nuclear Research and Test Establishment in Canada. This paper describes the progress in this first six-year licence period. A significant development in 2006 was the establishment of the Nuclear Legacy Liabilities Program (NLLP), by the Government of Canada, to safely and cost effectively reduce, and eventually eliminate the nuclear legacy liabilities and associated risks, using sound waste management and environmental principles. The NLLP endorsed an accelerated approach to WL Decommissioning, which meant advancing the full decommissioning of buildings and facilities that had originally been planned to be decontaminated and prepared for storage-with-surveillance. As well the NLLP endorsed the construction of enabling facilities - facilities that employ modern waste handling and storage technology on a scale needed for full decommissioning of the large radiochemical laboratories and other nuclear facilities. The decommissioning work and the design and construction of enabling facilities are fully underway. Several redundant non-nuclear buildings have been removed and redundant

  10. Decommissioning: the final folly

    International Nuclear Information System (INIS)

    Dibdin, T.

    1990-01-01

    The Second International Seminar on Decommissioning of Nuclear Facilities held in London is reviewed. Various solutions to the reactor decommissioning, including isolating the reactor core, and turning the surrounding buildings into a theme park, are mentioned. The International Atomic Energy Agency identifies three decommissioning stages. Stage 1, defuelling; Stage 2 dismounting of non-radioactive plant with isolation of the nuclear island and Stage 3, return to a 'green field' site. The real debate is about waste management and timing of the stages - whether to defer Stage 3 for a century or so, or even whether to attempt Stage 3 at all. Cost estimation is also discussed. In the United Kingdom, the timing of completion of the deep repository for high level waste will affect the timing. (UK)

  11. A Decommissioning Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Hong, S. B.; Chung, U. S.; Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    In 1996, it was determined that research reactors, the KRR-1 and the KRR-2, would be shut down and dismantled. A project for the decommissioning of these reactors was launched in January 1997 with the goal of a completion by 2008. The total budget of the project was 19.4 million US dollars, including the cost for the waste disposal and for the technology development. The work scopes during the decommissioning project were the dismantling of all the facilities and the removal of all the radioactive materials from the reactor site. After the removal of the entire radioactivity, the site and buildings will be released for an unconditional use. A separate project for the decommissioning of the uranium conversion plant was initiated in 2001. The plant was constructed for the development of the fuel manufacturing technologies and the localization of nuclear fuels in Korea. It was shut downed in 1993 and finally it was concluded in 2000 that the plant would be decommissioned. The project will be completed by 2008 and the total budget was 9.2 million US dollars. During this project, all vessels and equipment will be dismantled and the building surface will be decontaminated to be utilized as general laboratories.

  12. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    International Nuclear Information System (INIS)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-01-01

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment

  13. Stakeholder involvement in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    2007-01-01

    Significant numbers of nuclear facilities will need to be decommissioned in the coming decades. In this context, NEA member countries are placing increasing emphasis on the involvement of stakeholders in the associated decision procedures. This study reviews decommissioning experience with a view to identifying stakeholder concerns and best practice in addressing them. The lessons learnt about the end of the facility life cycle can also contribute to better foresight in siting and building new facilities. This report will be of interest to all major players in the field of decommissioning, in particular policy makers, implementers, regulators and representatives of local host communities

  14. Decommissioning Challenges, strategy and programme development

    Energy Technology Data Exchange (ETDEWEB)

    Potier, J.M.; Laraie, M.; Dinner, P. [Waste Technology Section, Dept. of Nuclear Energy, International Atomic Energy Agency (IAEA), Vienna (Austria); Pescatore, C.; O' Sullivan [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 75 - Paris (France); Dupuis, M.C. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Szilagyi, A.; Collazo, Y.; Negin, Ch. [U.S. Department of Energy, Washington, DC (United States)

    2008-11-15

    This document gathers 4 short articles. The first one presents the IAEA decommissioning activities. These activities include: -) the development and implementation of the international action on decommissioning, -) the provision of experts and equipment to assist member states, -) networking activities such as training or exchange of knowledge and experience. The second article presents the work program of the Nea (nuclear energy agency) in the field of decommissioning and reports on the lessons that have been learnt. Among these lessons we can quote: -) selecting a strategy for decommissioning and funding it adequately, -) regulating the decommissioning of nuclear activities, -) thinking of the future in terms of reusing materials, buildings and sites, -) involving local and regional actors in the decommissioning process from decision-making to dismantling work itself, and -) increasing transparency in decision-making in order to build trust. The third article presents the management of radioactive wastes in France. This management is based on the categorization of wastes in 6 categories according to both the activity level and the radioactive half-life T: 1) very low activity, 2) low activity and T < 31 years, 3) low activity and T > 31 years, 4) intermediate activity and T < 31 years, 5) intermediate activity and T > 31 years, and 6) high activity. For categories 1, 2, 3 and 5, the waste treatment process and the disposal places have been operating for a long time while for categories 4 and 6, the disposal places are still being studied: low-depth repository and deep geological repository respectively. The last article presents the action of the US Department of energy in decommissioning activities and environmental remediation, the example of the work done at the ancient nuclear site of Rocky Flats gives an idea of the magnitude and complexity of the operations made. (A.C.)

  15. Management of the decommissioning of the Thetis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Luc; Maris, Patrick; Noynaert, Luc [SCK-CEN, Mol (Belgium)

    2013-07-01

    decommissioning job. We gained the decommissioning license in May 2012. We also prepared the software tool allowing managing the decommissioning project by updating the inventory and recording the progress, the characterization measurements and the material and waste production. This software allows also to trace all the material streams and to report to the Authorities. This software is a simplified release of the ones developed by SCK-CEN in the framework of other decommissioning projects like BR3 and Belgonucleaire. The dismantling of the reactor i.e. reactor pool, circuits and rabbit system, will be performed in 2013. In 2014, it is planned to map all the surfaces of the infrastructure to highlight residual contamination of floor, walls and ceiling. The contaminated surfaces will be decontaminated and controlled. The objective is to reach the free release of the reactor building and laboratories by the end of 2014. (authors)

  16. Shippingport Station decommissioning project overview

    International Nuclear Information System (INIS)

    Schreiber, J.J.

    1985-01-01

    The U.S. Department of Energy is in the process of decommissioning the Shippingport Atomic Power Station located on the Ohio River, 30 miles northwest of Pittsburgh, Pennsylvania. The Shippingport Station is the first commercial size nuclear power plant to undergo decommissioning in the United Staes. The plant is located on approximately 7 acres of land owned by the Duquesne Light Company (DLC) and leased to the U.S. Government. DLC operates two nuclear power plants, Beaver Valley 1 and 2, located immediately adjacent to the site and the Bruce Mansfield coal-fired power plant is also within the immediate area. The Station was shutdown in October, 1982. Defueling operations began in 1983 and were completed by September, 1984. The Shippingport Station consists of a 275' x 60' fuel handling building containing the reactor containment chamber, the service building, the turbine building, the radioactive waste processing building, the administration building and other smaller support buildings. The Station has four coolant loops and most of the containment structures are located below grade. Structures owned by the U.S. Government including the fuel handling building, service building, contaminated equipment room, the boiler chambers, the radioactive waste processing building and the decontamination and laydown buildings will be dismantled and removed to 3 feet below grade. The area will then be filled with clean soil and graded. The turbine building, testing and training building and the administration building are owned by DLC and will remain

  17. Derivation of the mass factors for decommissioning cost estimation of low contaminated auxiliary systems

    International Nuclear Information System (INIS)

    Poskas, G.

    2015-01-01

    Ignalina NPP was operating two RBMK-1500 reactors. Unit 1 was closed at the end of 2004, and Unit 2 - at the end of 2009. Now they are under decommissioning. Decommissioning has been started from the reactor's periphery, with dismantling of non-contaminated and low contaminated equipment and installations. This paper discusses a methodology for derivation of mass factors for preliminary decommissioning costing at NPP when the number of inventory items is significant, and separate consideration of each inventory item is impossible or impractical for preliminary decommissioning plan, especially when the level of radioactive contamination is very low. The methodology is based on detailed data analysis of building V1 taking into account period and inventory based activities, investment and consumables and other decommissioning approach- related properties for building average mass factors. The methodology can be used for cost estimation of preliminary decommissioning planning of NPP auxiliary buildings with mostly very low level contamination. (authors)

  18. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    International Nuclear Information System (INIS)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D ampersand D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D ampersand D plans for the turbine building were prepared from 1979 through 1990. D ampersand D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D ampersand D activities were completed with no radiation exposure to the workers. The D ampersand D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain

  19. The decommissioning of nuclear facilities; Le demantelement des installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R

    2008-11-15

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  20. Geophysics: Building E5476 decommissiong, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    Miller, S.F.; Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.

    1992-11-01

    Building E5476 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The large number of magnetic sources surrounding the building are believed to be contained in construction fill. The smaller anomalies, for the most part, were not imaged with ground radar or by electrical profiling. Large magnetic anomalies near the southwest comer of the building are due to aboveground standpipes and steel-reinforced concrete. Two high-resistivity areas, one projecting northeast from the building and another south of the original structure, may indicate the presence of organic pore fluids in the subsurface. A conductive lineament protruding from the south wall that is enclosed by the southem, high-resistivity feature is not associated with an equivalent magnetic anomaly. Magnetic and electrical anomalies south of the old landfill boundary are probably not associated with the building. The boundary is marked by a band of magnetic anomalies and a conductive zone trending northwest to southeast. The cause of high resistivities in a semicircular area in the southwest comer, within the landfill area, is unexplained

  1. Decommissioning and material recycling. Radiation risk management issues

    International Nuclear Information System (INIS)

    Dodd, D.H.

    1996-09-01

    Once nuclear fuel cycle facilities have permanently stopped operations they have to be decommissioned. The decommissioning of a nuclear facility involves the surveillance and dismantling of the facility systems and buildings, the management of the materials resulting from the dismantling activities and the release of the site for further use. The management of radiation risks associated with these activities plays an important role in the decommissioning process. Existing legislation covers many aspects of the decommissioning process. However, in most countries with nuclear power programmes legislation with respect to decommissioning is incomplete. In particular this is true in the Netherlands, where government policy with respect to decommissioning is still in development. Therefore a study was performed to obtain an overview of the radiation risk management issues associated with decommissioning and the status of the relevant legislation. This report describes the results of that study. It is concluded that future work at the Netherlands Energy Research Foundation on decommissioning and radiation risk management issues should concentrate on surveillance and dismantling activities and on criteria for site release. (orig.)

  2. Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361

    International Nuclear Information System (INIS)

    Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike; Daniska, Vladimir

    2013-01-01

    The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

  3. Decommissioning handbook

    Energy Technology Data Exchange (ETDEWEB)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  4. Decommissioning handbook

    International Nuclear Information System (INIS)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained

  5. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    International Nuclear Information System (INIS)

    Serrato, Michael G.; Musall, John C.; Bergren, Christopher L.

    2013-01-01

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m 3 ) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international

  6. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

    2013-07-01

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and

  7. Stakeholders involvement in the decommissioning processes in Italy

    International Nuclear Information System (INIS)

    Dionisi, Mario

    2006-01-01

    The aim of this paper is to present the situation about stakeholders involvement in Italy in the framework of the decommissioning process of the Italian nuclear installations, and in particular the specific experience of the Italian Regulatory Body APAT. Specific aspects and APAT initiatives for building confidence of stakeholders in the process of the release of solid material from the regulatory control are presented. Content: Decommissioning activities in Italy, Decommissioning licensing procedures (Site and material release, APAT - ARPA Partnership approach in the clearance process)

  8. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  9. The Importance of Experience Based Decommissioning Planning

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2016-01-01

    Decommissioning of a nuclear facility is an extensive and multidisciplinary task, which involves the management and technical actions associated with ceasing operation and thereafter the step-by-step transfer of the facility from an operating plant to an object under decommissioning. The decommissioning phase includes dismantling of systems and components, decontamination and clearance, demolition of buildings, remediation of any contaminated ground and finally a survey of the site. Several of these activities generate radioactive or potentially radioactive waste, which has to be managed properly prior to clearance or disposal. What makes decommissioning of nuclear installations unique is to large extent the radioactive waste management. No other industries have that complex regulatory framework for the waste management. If decommissioning project in the nuclear industry does not consider the waste aspects to the extent required, there is a large risk of failure causing a reduced trust by the regulators and other stakeholders as well as cost and schedule overruns. This paper will give an overview of important aspects and findings gathered during decades of planning and conducting decommissioning and nuclear facility modernization projects. (authors)

  10. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  11. Development of decommissioning technologies in Sumitomo Mitsui Construction Co., Ltd

    International Nuclear Information System (INIS)

    Maruyama, Shinichiro; Suzuki, Toru; Ogane, Daisuke

    2011-01-01

    The decommissioning program of nuclear reactors in Japan first started in December 2001 on the Japan's first commercial nuclear power station Tokai Power Plant. In February 2008, the decommissioning of 'Fugen' was first approved as the program on a large-scale water reactor in Japan, and was started. From now on, decommissioning programs of LWRs constructed in the early stage of nuclear development will gradually increase. Decommissioning projects are required more than 20 years for completing the entire processes, because of its characteristics to placing the utmost priority to safety. Diverse types of element technologies are fully utilized in decommissioning projects, such as technology of evaluating remaining radioactivity, decontamination, dismantling/remote control, and treatment/disposal/recycling. Also there are a lot of civil engineering or building technologies and its applied technologies in these element technologies. Sumitomo Mitsui Construction Co., Ltd. has been committed to contributing to the promotion of decommissioning projects in Japan, and has carried out investigation/evaluation of applicability of the existing dismantling technologies to dismantling of reactors, seismic evaluation of the buildings for dismantling the reactor zone, development of recycling of concrete, and discussion of rational waste treatment/disposal methods. In this thesis, we present our decommissioning technologies focusing on the element technologies that our company has investigated and developed so far. (author)

  12. Decommissioning and demolition 1992

    International Nuclear Information System (INIS)

    Whyte, I.L.

    1992-01-01

    The decommissioning and demolition of structures offshore, onshore and in nuclear works involves new technologies and industries in demolition and removal. The aim of the conference was to provide a forum to keep up to date with technological developments, to publicise new techniques and to share and discuss present and future plans. A particular feature was the multi-disciplinary approach to promote and encourage communication between different sectors of this difficult field of operations. The conference emphasised not only technical issues but also legislative, management and health and safety aspects. Papers were presented by practising engineers, contractors and research workers involved in offshore structures, buildings, power stations, contaminated sites, nuclear plant and includes specialist techniques of cutting, lifting, explosives, ground treatment and decontamination. Many valuable case histories and records based on practical experience were reported. The volume provides a reference source on the state-of-the-art in decommissioning and demolition. The ten papers relevant to the decommissioning and demolition of nuclear facilities are indexed separately. (Author)

  13. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also

  14. Radiation protection in decommissioning of the NPP V1

    International Nuclear Information System (INIS)

    Svitek, J.; Kaizer, J.; Siska, J.

    2014-01-01

    What's new in decommissioning of the NPP V1? In 2014 the first stage of the decommissioning should be finished. The program of the first stage was characterized by decommissioning of the non-contaminated facilities and buildings (facilities and buildings out of the control area). However, during the first stage, two key activities were done during which radiation protection had to be especially supervised: BIDSF project - Treatment and Conditioning of Wet Historical Waste - Sludge and Sorbents in the operational tanks NPP V1 (the treatment has been the condition of the regulatory body for the ending of the first stage) and preparation of decontamination of both primary circuits NPP (without reactors). In the year 2015, the second stage of decommissioning should be started. Program for the second stage is broad and it includes fragmentation and treatment of activated parts of the primary circuits (reactors, their internal parts, shielding cassettes). Modification of the radiation protection equipment on the NPP site has been made by BIDSF projects. During the first stage, two basic projects have been done: C12 - Refurbishment of the radiation protection monitoring equipment and C-10 - Free release of decommissioning materials. The present state of monitoring systems, as the result of the aforementioned projects, and the first experiences are main part of this presentation. Another activity, which prepared basic conditions for an execution of radiation protection in the second stage of decommissioning, was the preparation of documents for the procurement of license for the second stage of decommissioning. (authors)

  15. The planning of decommissioning activities within nuclear facilities - Generating a Baseline Decommissioning Plan

    International Nuclear Information System (INIS)

    Meek, N.C.; Ingram, S.; Page, J.

    2003-01-01

    BNFL Environmental Services has developed planning tools to meet the emerging need for nuclear liabilities management and decommissioning engineering both in the UK and globally. It can provide a comprehensive baseline planning service primarily aimed at nuclear power stations and nuclear plant. The paper develops the following issues: Decommissioning planning; The baseline decommissioning plan;The process; Work package; Compiling the information; Deliverables summary; Customer Benefits; - Planning tool for nuclear liability life-cycle management; - Robust and reliable plans based upon 'real' experience; - Advanced financial planning; - Ascertaining risk; - Strategy and business planning. The following Deliverables are mentioned:1. Site Work Breakdown Structure; 2. Development of site implementation strategy from the high level decommissioning strategy; 3. An end point definition for the site; 4. Buildings, operational systems and plant surveys; 5. A schedule of condition for the site; 6. Development of technical approach for decommissioning for each work package; 7. Cost estimate to WBS level 5 for each work package; 8. Estimate of decommissioning waste arisings for each work package; 9. Preparation of complete decommissioning programme in planning software to suit client; 10. Risk modelling of work package and overall project levels; 11. Roll up of costs into an overall cost model; 12. Cash flow, waste profiling and resource profiling against the decommissioning programme; 13. Preparation and issue of Final Report. Finally The BDP process is represented by a flowchart listing the following stages: [Power Station project assigned] → [Review project and conduct Characterisation review of power station] → [Identify work packages] → [Set up WBS to level 3] → [Assign work packages] → [Update WBS to level 4] →[Develop cost model] → [Develop logic network] → [Develop risk management procedure] ] → [Develop project strategy document]→ [Work package

  16. Offshore decommissioning issues: Deductibility and transferability

    International Nuclear Information System (INIS)

    Parente, Virginia; Ferreira, Doneivan; Moutinho dos Santos, Edmilson; Luczynski, Estanislau

    2006-01-01

    Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international 'best practices' standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions

  17. Planning and progress of the WAGR decommissioning project

    International Nuclear Information System (INIS)

    Boorman, T.

    1988-01-01

    In the United Kingdom, the earliest production reactors, which will be decommissioned first, are of the Magnox type. The Windscale Advanced Gas-cooled Reactor, is however, sufficiently similar to make it a suitable prototype decommissioning project. The planning and progress so far is described. Special decommissioning equipment, including a remote dismantling machine, has been developed and a waste packaging building built on site. Its function is to enable all intermediate-level and low-level radioactive waste removed from the reactor vault by remote equipment to be packaged remotely into suitable containers. The work done on the WAGR decommissioning has shown that the dismantling of a power-producing reactor is feasible and can be accomplished using existing engineering techniques. (U.K.)

  18. Decommissioning of NPP A1 - HWGCR type

    International Nuclear Information System (INIS)

    Burclova, J.

    1998-01-01

    Prototype nuclear power plant A-1 located at Jaslovske Bohunice, was a HWGCR with channel type reactor KS 150 (refuelling during operation) and capacity of 143 MWe. Single unit has been constructed with reactor hall building containing reactor vessel, heavy water system and equipment for spent fuel handling. Another compartment of main building contents coolant system piping, six steam generators and six turbo compressors, the turbine hall was equipped by three turbines. Unit also shares liquid radwaste treatment and storage buildings and ventilation systems including chimney. It started operation in 1972 and was shutdown in 1977 after primary coolant system integrity accident. In 1979 a final decision was made to decommission this plant. The absence of waste treatment technologies and repository and not sufficient storage capacity affected the planning and realization of decommissioning for NPP A-1. The decommissioning policy for the first stage is for lack of regulations based on 'case by case' strategy. For these reasons and for not existence of Decommissioning Found until 1995 the preferred decommissioning option is based on differed decommissioning with safe enclosure of confinement. Transfer of undamaged spent fuel cooled in organic coolant to Russia was finished in 1990. It was necessary to develop new technology for the damaged fuel preparation for transport. The barriers check-up and dismantling of secondary circuit and cooling towers was performed during 1989/90. The complex plan for the first phase of A-1 decommissioning - the status with treated operational radwaste, removed contamination and restored treated waste and spent fuel (in case of interruption of transfer to Russia) was developed in 1993-1994. Under this project bituminization of all liquid operational radwaste (concentrates) was performed during 1995/96, vitrification of inorganic spent fuel coolant started at 1996, decontamination of spent fuel pool coolant occurs (under AEA Technology

  19. Lessons learned on stakeholder issues in decommissioning

    International Nuclear Information System (INIS)

    O'Sullivan, P.; Pescatore, C.

    2008-01-01

    Issues of public concern during decommissioning and dismantling (D and D) are partly the same and partly different from those of the preceding phases (planning, construction and operation). While in the course of construction and operation the main challenges include meeting expectations of a higher quality of life, accommodating a growing population, mitigating construction nuisances, and assuring the safe operation of the facility, the main concerns in the D and D phase are decreasing employment rate, the eventual reduction of revenues for the municipality, the future use of the affected land and negative social impacts (e.g., out-migration). The decommissioning phase is characterised by heterogeneity of stakeholder interests and values, difficulties of reaching consensus or compromise, and difficulties in connection with the harmonization of energy production, environmental protection and sustainable socio-economic development considerations. Typically, there might also be tensions between local and regional decisions. As in other phases, the building of trust between stakeholder is crucial from the point of view of conflict management, and social lessons learnt from the siting and developments of nuclear facilities are widely applicable in the field of D and D as well. A review is presented of major lessons to be learnt from NEA activities in the field of decommissioning and stakeholder involvement. (author)

  20. Lessons learned on stakeholder issues in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, P.; Pescatore, C. [OECD Nuclear Energy Agency, 92 - Issy les Moulineaux (France)

    2008-07-01

    Issues of public concern during decommissioning and dismantling (D and D) are partly the same and partly different from those of the preceding phases (planning, construction and operation). While in the course of construction and operation the main challenges include meeting expectations of a higher quality of life, accommodating a growing population, mitigating construction nuisances, and assuring the safe operation of the facility, the main concerns in the D and D phase are decreasing employment rate, the eventual reduction of revenues for the municipality, the future use of the affected land and negative social impacts (e.g., out-migration). The decommissioning phase is characterised by heterogeneity of stakeholder interests and values, difficulties of reaching consensus or compromise, and difficulties in connection with the harmonization of energy production, environmental protection and sustainable socio-economic development considerations. Typically, there might also be tensions between local and regional decisions. As in other phases, the building of trust between stakeholder is crucial from the point of view of conflict management, and social lessons learnt from the siting and developments of nuclear facilities are widely applicable in the field of D and D as well. A review is presented of major lessons to be learnt from NEA activities in the field of decommissioning and stakeholder involvement. (author)

  1. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant - 16022

    International Nuclear Information System (INIS)

    Walthery, Robert; Lewandowski, Patrick; Ooms, Bart; Reusen, Nancy; Van Laer, Wim

    2009-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building has been divided into three parts - each part is isolated from the others. In September 2008 the eastern part of the building has been demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS strategy will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also specific breathing and cooling air

  2. Decommissioning considerations at a time of nuclear renaissance

    International Nuclear Information System (INIS)

    Devgun, Jas S.

    2007-01-01

    At a time of renaissance in the nuclear power industry, when it is estimated that anywhere between 60 to 130 new power reactors may be built worldwide over the next 15 years, why should we focus on decommissioning? Yet it is precisely the time to examine what decommissioning considerations should be taken into account as the industry proceeds with developing final designs for new reactors and the construction on the new build begins. One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Even though decommissioning may be sixty years down the road from the time they go on line, eventually all reactors will be decommissioned. It is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. The overall objective in this regard is that when the time comes for decommissioning, it can be completed in shorter time frames, with minimum generation of radioactive waste, and with better radiological safety. This will ensure that the tail end costs of the power reactors are manageable and that the public confidence in the nuclear power is sustained through the renaissance and beyond. (author)

  3. Cost Estimates for the Decontamination and Decommissioning of Eight ORNL Buildings

    International Nuclear Information System (INIS)

    Hogan, M.

    2006-01-01

    The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) contains a number of buildings that are antiquated and no longer used. These buildings historically were used for the production of atomic weapons and often remain contaminated with radioactive materials. Certain costs and risks are associated with the long-term stewardship of the buildings. One way to reduce these liabilities is to eliminate the buildings that are no longer in use and are not expected to be used in the future. Some of these buildings at ORNL are located in an area known as 'Isotope Circle'. From this area, eight buildings that are expected to be decontaminated and decommissioned (D and D) in the next five to ten years were chosen to have cost estimates completed. The specific facilities are Buildings 3030, 3031, 3118, 3032, 3033, 3033 Annex, 3034, and 3093. There are many challenges for estimating the costs to D and D buildings potentially contaminated with radionuclides. Each building is unique, has various types and levels of contamination, and (as in this case) often lacks up-to-date information. Because of these limitations, order-of- magnitude cost estimates for each of the eight ORNL buildings were completed using parametric cost modeling software known as RACER TM (Remedial Action Cost Engineering and Requirements System). This type of cost estimate is useful for screening technical concepts and is used for budgetary planning. For the eight buildings evaluated in this study, the total cost to D and D was estimated to be nearly $6 M. This value includes the direct cost of approximately $3.5 M to complete D and D and $2.5 M in cost markups. Also, assuming the actual project does not begin until the year 2010, this total cost is escalated to almost $6.7 M, which accounts for expected inflation. Although the cost estimates in this study were expected to have a wide range in accuracy, there are various factors that could impact these estimates in a negative or positive fashion

  4. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  5. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  6. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building

  7. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    International Nuclear Information System (INIS)

    Kenny, Stephen

    2008-01-01

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred

  8. Decommissioning of the MTR-605 process water building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Browder, J.H.; Wills, E.L.

    1985-01-01

    Decontamination and decommissioning (D and D) of the unused radioactively contaminated portions of the MTR-605 building at the Test Reactor Area of the Idaho National Engineering Laboratory has been completed; this final report describes the D and D project. The building is a two-story concrete structure that was used to house piping systems to channel and control coolant water flow for the Materials Testing Reactor (MTR), a 40 MW (thermal) light water test reactor that was operated from 1952 until 1970 and then deactivated. D and D project objectives were to reduce potential environmental and radioactive contamination hazards to levels as low a reasonably achievable. Primary tasks of the D and D project were: to remove contaminated piping (about 400 linear ft of 36- and 30-in.-dia stainless steel pipe) and valves from the primary coolant pipe tunnels, to remove a primary coolant pump and piping, and to remove the three 8-ft-dia by 25-ft-long evaporators from the building second floor

  9. Health physics program for the Edgemont Uranium Mill decommissioning project

    International Nuclear Information System (INIS)

    Polehn, J.L.; Wallace, R.G.; Reed, R.P.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority (TVA) is actively involved in decommissioning a uranium mill located near the town of Edgemont, South Dakota. The Edgemont Mill Decommissioning Project, which is unique in many respects, will involve dismantlement of the old inactive mill building and excavation and transportation of several million tons of uranium mill tailings to a permanent disposal site. To ensure that workers are adequately protected from radiation exposure during decommissioning operations, a health physics program appropriate for the decommissioning situation was developed. The Edgemont Mill Decommissioning Project Health Physics Manual (HPM) gives the programmatic requirements for worker radiation protection. The requirements of the HPM are implemented by means of detailed onsite operating procedures. The Edgemont project health physics program was developed using currently available regulations and guidance for an operating uranium mill with appropriate modifications for decommissioning. This paper discusses the development, implementation, and documentation of that program

  10. Offshore decommissioning issues: deductibility and transferability

    Energy Technology Data Exchange (ETDEWEB)

    Parente, V.; Santos, M. dos [University of Sao Paulo (Brazil). Instituto de Electrotecnica; Ferreira, D. [State University of Campinas (Brazil). Dept. of Geology and Natural Resources; Luczynski, E. [Grupo de Estudos e Pesquisas Economico-Energeticas, Belem (Brazil)

    2006-10-15

    Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international ''best practices'' standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions. (author)

  11. Challenges of Ignalina NPP Decommissioning - View of Lithuanian Operator

    International Nuclear Information System (INIS)

    Aksionov, P.

    2017-01-01

    The state enterprise Ignalina Nuclear Power Plant (INPP) operates 2 similar design units of RBMK-1500 water-cooled graphite-moderated channel-type power reactors (1500 MW electrical power). INPP is carrying out the decommissioning project of the 2 reactors which includes: -) the retrieval of the spent nuclear fuel from the power units and its transportation into the Interim Spent Fuel Storage Facility; -) equipment and building decontamination and dismantling; -) radioactive waste treatment and storage; and -) the operation of key systems to ensure nuclear, radiation and fire protection. Ignalina NPP decommissioning project is planned to be completed by 2038. The presentation will be focused on the ongoing decommissioning activities at Ignalina NPP. The overview of main aspects and challenges of INPP decommissioning will be provided

  12. The Ministry of Dilemmas [decommissioning nuclear submarines

    International Nuclear Information System (INIS)

    Peden, W.

    1995-01-01

    A consultant for Greenpeace, the anti-nuclear campaigners, looks at the United Kingdom Government's problems with decommissioning of its nuclear submarine fleet as the vessels become obsolete, and at the transport and storage of spent fuels from the submarine's propulsion reactors. It is argued that no proper plans exist to decommission the vessels safely. The Ministry of Defence sites such as Rosyth and Devonport are immune from inspection by regulatory bodies, so there is no public knowledge of any potential radioactive hazards from the stored out-of-service carcasses, floating in dock, awaiting more active strategies. The author questions the wisdom of building new nuclear submarines, when no proper program exists to decommission existing vessels and their operational waste. (U.K.)

  13. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    International Nuclear Information System (INIS)

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D ampersand D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project

  14. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  15. Pre-decommissioning radiological characterization of concrete

    International Nuclear Information System (INIS)

    Boden, Sven; Cantrel, Eric

    2007-01-01

    The decommissioning of the BR3 (Belgian Reactor 3) approaches its final phase, in which the building structures are being decontaminated and either denuclearized for possible reuse or demolished. Apart from the presence of naturally occurring radionuclides in building materials, other radionuclides might be present due to contamination or activation. The overall process of the BR3 building structure D and D (Decontamination and Decommissioning) consists of the following steps: - make a complete inventory and preliminary categorize all elements based on historical data; characterize and determine the contamination or activation depth; - determine the decontamination method; - perform the decontamination and clean up; - a possible intermediate characterization followed by an additional decontamination step; and characterize for clearance. A good knowledge of the contamination and activation depth (second step) is fundamental in view of cost minimization. Currently, the method commonly used for the determination of the depth is based on core drilling and destructive analysis. Recently, we have introduced a complementary non destructive assay based on in-situ gamma spectroscopy. Field tests at BR3, both for contamination and activation, showed promising results. (authors)

  16. Procedures and Practices - Challenges for Decommissioning Management and Teamwork

    Energy Technology Data Exchange (ETDEWEB)

    Rindahl, G., E-mail: grete.rindahl@hrp.no [Institute for Energy Technology, Halden (Norway)

    2013-08-15

    The mental and practical approach to a decommissioning project is often not the same at all levels of an organization. Studies indicate that the early establishment of a decommissioning mindset throughout an organization is an important and frequently overlooked process. It is not enough to establish procedures, if practices and mental approaches are overlooked; and for decommissioning projects that are more often than not dominated by one of a kind problem solving, procedure design is challenging, and new requirements are put on communication. Our research considers stakeholder involvement in these processes in the wider sense of the term; however the main stakeholders in focus are regulators and the work force that will perform or lead the tasks related to decommissioning. Issues here treated include: Decommissioning mindset and the manifestation of mindset issues in decommissioning projects, including challenges and prospective solutions; trust building and trust breaking factors in communication and collaboration relevant to transition and decommissioning; new technologies for collaboration and communication and how these may impair or empower participants - experiences from several domains. This paper is based on work done in collaboration with the OECD NEA Halden Reactor Project. (author)

  17. Radiological Characterisation for Decommissioning of Nuclear Installations - Final Report of the Task Group on Radiological Characterisation and Decommissioning (RCD) of the Working Party on Decommissioning and Dismantling (WPDD) - Final Report, September 2013

    International Nuclear Information System (INIS)

    Andrieu, Caroline; Olivier Dehaye, Catherine; Tardy, Frederic; Boisserie, Thierry; Desnoyers, Yvon; Thierfeldt, Stefan; Martin, Nieves; Henrik Efraimsson; Haakansson, Lars; Larsson, Arne; Dunlop, Alister A.; Jarman, Sean; Orr, Peter; Abu-Eid, Boby

    2013-01-01

    , or during the dismantling phase where systems, structures, components and buildings have to be characterised for decisions regarding the extent of decontamination, application of appropriate dismantling techniques, identification, classification, treatment of radioactive materials, etc. The final status survey on the site has quite distinctive features as it also has to take into account the possibility of subsurface contamination, which may lead to radionuclide transfer into ground water and surface water bodies. Careful planning and implementation of radiological characterisation campaigns will allow significant reduction of time, costs and effort. On a strategic and managerial level, there are ways to maximise the efficiency of measurement techniques (e.g. by combining several types of measurement and sampling approaches) to increase efficiency of characterisation (e.g. by integrating characterisation into other tasks), or to choose an optimum form of organisation by allocating staff and resources timely and adequately to achieve the required characterisation results when needed, thus avoiding delays in the normal decommissioning work-flow or radioactive waste management. Today, experience gained from a large number of decommissioning projects helps to implement radiological characterisation effectively. Radiological characterisation is undoubtedly one of the key factors for any successful decommissioning project. The aim of this report is to identify and give an overview of the best practice for radiological characterisation at different stages of decommissioning and to point out areas that could or should be developed further through international co-operation and co-ordination. The report summarises various issues relating to radiological characterisation in a short and succinct way, giving an overview of the issues, the techniques, possible obstacles, strategic aspects and lessons learned. The reader interested in more in-depth or detailed information should

  18. R and D and Innovation Needs for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Farr, Harvey; LaGuardia, Thomas S.

    2014-01-01

    Nuclear decommissioning activities can greatly benefit from research and development (R and D) projects. This report examines applicable emergent technologies, current research efforts and innovation needs to build a base of knowledge regarding the status of decommissioning technology and R and D. This base knowledge can be used to obtain consensus on future R and D that is worth funding. It can also assist in deciding how to collaborate and optimise the limited pool of financial resources available among NEA member countries for nuclear decommissioning R and D. (authors)

  19. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  20. OECD/NEA Radiological characterisation in decommissioning - Evaluation of questionnaire. Strategies for Radiological Characterisation used by Decommissioning Projects in OECD Countries

    International Nuclear Information System (INIS)

    Thierfeldt, Stefan; Haneke, K.

    2012-01-01

    In the first half of 2011, the Radiological Characterization and Decommissioning Task Group (RCD) of the WPDD of the OECD/NEA has prepared a questionnaire on the characterisation of nuclear facilities that has been circulated among nuclear installations in various OECD countries. The aim of this questionnaire was to gather information on the approaches and methods that are used for radiological characterisation (RC) for systems and components, for buildings and for sites (land), on domestic and international guidance and regulations that govern RC, and on the experience with RC that is already available in the particular country. The number of responses to this questionnaire that were received in the second half of 2011 was very satisfactory, so that a broad overview is now available from the following countries: Belgium, Canada, Denmark, Finland, France, Germany, Japan, Korea, Spain, Sweden, and United Kingdom. The presentation deals with the results that were obtained from the evaluation of these questionnaires and gives overviews of the objectives of characterisation, the input data for planning of characterisation, the measurement techniques that were used for metallic structures and components, for buildings and for sites, the data management and QA measures, the obstacles that were encountered, the experience with availability of as-built plans, the regulatory framework and guidelines, and the costs for RC. All information on RC is further broken down with respect to the operational phase (where RC is used for preliminary decommissioning planning), the transition phase (where RC supports decommissioning planning) and the actual decommissioning phase (where RC is needed for dismantling, decontamination and treatment of systems, components, buildings etc.). The presentation also offers conclusions on these subjects. (authors)

  1. Financial aspects of decommissioning (key aspects of decommissioning costing)

    International Nuclear Information System (INIS)

    Danska, V.

    2009-01-01

    In this presentation the following aspects of NPPs decommissioning are discussed: Requirements and purpose of decommissioning costing; Decommissioning costing methodologies; Standardised decommissioning cost structure; Input data for cost estimate process; Waste management in cost estimate process; Grading aspects in cost estimating; Cost control in decommissioning projects; Summary of the cost estimation process; Conclusions and recommendations.

  2. Decommissioning of TRIGA Mark II type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  3. Planning and management for reactor decommissioning

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2001-01-01

    This report describes decommissioning strategy, planning process, regulation, management and organization, radiological characterization and safety. Planning is used to identify, define and organize the requirements for decommissioning including decommissioning options, items to be accomplished (objective, scope), to solve problems of how it is to be accomplished (methods, means and procedures), questions of who will execute it (resources, organization and responsibilities, interfacing), and time when it will be executed (schedule for meeting the objectives). A plan is highly dependent on the quality of the management team assembled to carry it out. Radiological characterization involves a survey of existing data, calculation, in situ measurements and/or sampling and analyses. Using this databases decommissioning planner may assess options, considering: decontamination processes, dismantling procedures, tools required, radiological protection of workers and public/environment, waste classification, and resulting costs. Comparison and optimization of these factors will lead to selection of a decommissioning strategy, i.e. typically, immediate or deferred dismantling. The planning and implementation of decommissioning for nuclear reactors should be referred both recent dismantling techniques and many decommissioning experiences. The technical lessons learned from many projects will help in the planning for future decommissioning projects. And systematic planning and management are essential to successful completion of a decommissioning project. (author)

  4. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  5. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge

  6. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  7. JAEA involvement in Education and Training for Decommissioning

    International Nuclear Information System (INIS)

    Nakayama, Shinichi

    2017-01-01

    Education and Training for Decommissioning in Japan: E&T for decommissioning in Japan is: prioritized to decommissioning of TEPCO’s Fukushima Daiichi NPS; mostly government-funded: - Ministry Of Education, Culture, Sports, Science And Technology; -Ministry Of Economy, Trade And Industry; performed through collaborative R&D activities between research institutes, university/college, and academic societies. JAEA is involved in the E&T through: - University summer schools on robotics, decommissioning robot competition; - Participation in and/or invitation to JAEA’s international Fukushima Research Conferences, and to cooperative courses with scientific institutions; - Lectures at universities/colleges; - Hot facility construction/operation for engineers, characterization of radioactive wastes and fuel debris for radiochemists and technicians

  8. Decommissioning activities for Salaspils research reactor - 59055

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnacs, J.

    2012-01-01

    In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor (SRR). The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH at 1998-1999. The Latvian government decided to start the direct dismantling to 'green field' in October 26, 1999. The upgrade of decommissioning and dismantling plan was performed in 2003-2004 years, which change the main goal of decommissioning to the 'brown field'. The paper deals with the SRR decommissioning experience during 1999-2010. The main decommissioning stages are discussed including spent fuel and radioactive wastes management. The legal aspects and procedures for decommissioning of SRR are described in the paper. It was found, that the involvement of stakeholders at the early stages significantly promotes the decommissioning of nuclear facility. Radioactive waste management's main efforts were devoted to collecting and conditioning of 'historical' radioactive wastes from different storages outside and inside of reactor hall. All radioactive materials (more than 96 tons) were conditioned in concrete containers for disposal in the radioactive wastes repository 'Radons' at Baldone site. The dismantling of contaminated and activated components of SRR systems is discussed in paper. The cementation of dismantled radioactive wastes in concrete containers is discussed. Infrastructure of SRR, including personal protective and radiation measurement equipment, for decommissioning purposes was upgraded significantly. Additional attention was devoted to the free release measurement's technique. The certified laboratory was installed for supporting of all decommissioning activities. All non-radioactive equipments and materials outside of reactor buildings were released for clearance and dismantled for reusing or conventional disposing. Weakly contaminated materials from reactor hall were collected

  9. Die Energiewerke Nord GmbH. From operator of a decommissioned Russian nuclear power plant to one of Europe's leading decommissioning companies

    International Nuclear Information System (INIS)

    Philipp, Marlies

    2011-01-01

    EWN GmbH is a state-owned company with these duties: - decommissioning and demolition of the Greifswald and Rheinsberg nuclear power stations; - safe operation of the Zwischenlager Nord interim store; - development of the 'Lubminer Heide' industrial and commercial estate. Other projects for which EWN GmbH uses its know-how: - disposal of 120 decommissioned Russian nuclear submarines in Murmansk; - decommissioning and dismantling of the Juelich, NRW, AVR experimental reactor; - demolition of nuclear plants; running the Central Decontamination Operations Department at Karlsruhe, BW. Since 2008, EWN GmbH has held 25% of the shares of Deutsche Gesellschaft zum Bau- und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE), a firm building and operating nuclear repositories. (orig.)

  10. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  11. Decommissioning Work Modeling System for Nuclear Facility Decommissioning Design

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, W. H.; Choi, Y. D.; Moon, J. K.

    2012-01-01

    During the decommissioning activities of the KRR-1 and 2 (Korea Research Reactor 1 and 2) and UCP (Uranium Conversion Plant), all information and data, which generated from the decommissioning project, were record, input and managed at the DECOMMIS (DECOMMissioning Information management System). This system was developed for the inputting and management of the data and information of the man-power consumption, operation time of the dismantling equipment, the activities of the radiation control, dismantled waste management and Q/A activities. When a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste volume and estimating the cost of the decommissioning project. That is why, the DEFACS (DEcommissioning FAcility Characterization DB System) was established for the management of the facility characterization data. The DEWOCS (DEcommissioning WOrk-unit productivity Calculation System) was developed for the calculation of the workability on the decommissioning activities. The work-unit productivities are calculated through this system using the data from the two systems, DECOMMIS and DEFACS. This result, the factors of the decommissioning work-unit productivities, will be useful for the other nuclear facility decommissioning planning and engineering. For this, to set up the items and plan for the decommissioning of the new objective facility, the DEMOS (DEcommissioning work Modeling System) was developed. This system is for the evaluation the cost, man-power consumption of workers and project staffs and technology application time. The factor of the work-unit productivities from the DEWOCS and governmental labor cost DB and equipment rental fee DB were used for the calculation the result of the DEMOS. And also, for the total system, DES (Decommissioning Engineering System), which is now

  12. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  13. The decommissioning and redevelopment of NECSA site

    International Nuclear Information System (INIS)

    Visagie, A.L.; Fourie, E.

    2008-01-01

    Full text: The South African nuclear programme started in 1948 and was focussed on research and development in the nuclear field. In the early 70s a uranium conversion plant and a uranium enrichment plant were constructed on the NECSA site. The enriched uranium was used for military purposes, as fuel for the research reactor SAFARI-1 at Necsa. A semi-commercial uranium enrichment plant and a fuel manufacturing plant were commissioned in the 80's to supply fuel for the nuclear power plant at Koeberg near Cape Town. Currently the research reactor is utilized for the generation of radioactive isotopes for industrial and medical applications. Various other research projects were initiated and buildings constructed on the Necsa site to accommodate the different projects. The uranium conversion and enrichment projects were terminated in the early 90's, and many buildings on the Necsa site became redundant. An initial decommissioning strategy was to return the Necsa site to green fields. This endpoint of decommissioning has changed dramatically with the nuclear renaissance to include redevelopment and reuse options. In the case of a multi-facility nuclear site, such as the Necsa site, it is vital to develop a total site redevelopment plan rather than to decommission and allocate individual facilities for isolated reuse demands. A holistic approach should be assured by considering current and projected future redevelopment demands in the development of a redevelopment and reuse plan. It is important not to allow the redevelopment and reuse of a single facility on a multi-facility site based on short- term financial gain. With the recent increase in demand for nuclear facilities the redevelopment and reuse of nuclear facilities for non-nuclear applications should generally not be considered due to the inherent advantages associated with an existing licensed site. The initial decommissioning plan did not consider the Necsa site as a whole. Decommissioning costs, and the

  14. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  15. The French decommissioning program: a stakeholder point of view

    International Nuclear Information System (INIS)

    Chatry, Jean-Paul; Grenouillet, Jean-Jacques

    2006-01-01

    In January 2001, EDF owner of 56 plants in operation and 9 plants in decommissioning stage decided to accelerate the decommissioning of its first nine nuclear generation units in order to achieve final decommissioning in 25 years' time. An engineering center dedicated to decommissioning, radwaste management and environment was set up to implement this strategy. Four years after its creation, the first lessons learned in the fields of organization, project and program management can now be described. During the 4 years that have elapsed since the creation of CIDEN in 2001 to implement EDF's new decommissioning strategy, its organization has constantly improved to ensure success of its decommissioning projects. The aim has been to build an efficient organization with clearly defined roles for the key players. Simultaneously, the Program Management activities have received increasing consideration and specific mechanisms have been implemented to bring financing and licensing flexibility to the program. The continuous improvement of its organization and the development of new project or program management methodologies is a constant preoccupation of EDF. Its aim is to successfully implement its decommissioning strategy, one of the key issues for guaranteeing the future of a safe economic and environment friendly nuclear energy in France

  16. Workshop on decommissioning

    International Nuclear Information System (INIS)

    Broden, K.

    2005-12-01

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  17. The WAK decommissioning and dismantling program

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    After an extensive rinsing of the reprocessing equipment the operation in the plant was terminated in 1991 following the principal political decision to abolish reprocessing of nuclear fuel in Germany. Since July 1991 only the safety relevant units are still in operation including the waste storage facilities for 80 m 3 of high active waste concentrate (HAWC). The decommissioning and dismantling will be achieved in six steps taking into account that some of the reprocessing equipment can be dismantled before and the rest only after the HAWC has been vitrified approximately by mid 2000. So far two licenses for decommissioning have been granted. An application for the dismantling of twelve systems in the process building including headend and tailend facilities will be licensed in 1995. The remote dismantling of equipment from the hot cells in the process building is being planned and will be executed between 1998--2001. New remote handling equipment will be cold tested in a test facility scheduled to start in the middle of this year. The final task is the green meadow after demolishing of the building and remediation of the site which is scheduled for 2005

  18. The Community's research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The programme, adopted by the Council of the European Communities, seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontaminations for decommissioning purposes; dismantling techniques; treatment of specific waste materials (steel, concrete and graphite); large transport containers for radioactive waste arising from decommissioning of nuclear power plants in the Community; and influence of nuclear power plant design features on decommissioning

  19. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist.

  20. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    International Nuclear Information System (INIS)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon

    2014-01-01

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist

  1. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process.

  2. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  3. Efeitos das condições de amadurecimento sobre a suscetibilidade de bananas 'SH 3640' ao despencamento natural Effects of ripening conditions on susceptibility of 'SH 3640' banana to finger drop

    Directory of Open Access Journals (Sweden)

    Victor Martins Maia

    2004-08-01

    Full Text Available Com o objetivo de verificar os efeitos das condições de amadurecimento sobre o despencamento natural de bananas 'SH 3640', foi instalado um experimento segundo delineamento inteiramente casualizado, com quatro tratamentos: T1 - amadurecimento em temperatura ambiente (24,6 ± 1,7ºC; T2 - pré-condicionamento dos frutos a 5ºC por 6 horas, seguido de amadurecimento em temperatura ambiente; T3 - pré-condicionamento dos frutos a 5ºC por 12 horas, seguido de amadurecimento em temperatura ambiente; T4 - amadurecimento dos frutos em sacos de polietileno de baixa densidade a 18ºC. Foram utilizadas 6 repetições para as observações anatômicas e 4 repetições para as avaliações de resistência ao despencamento, consistência da polpa do fruto maduro e do tempo entre a colheita e o amadurecimento, sendo cada repetição constituída de um fruto. Os frutos dos tratamentos T2 e T4 apresentaram maior resistência ao despencamento natural, o que é justificado pelo aumento da espessura e pela maior deposição de lignina nas paredes celulares. Os frutos do tratamento T4 tiveram o amadurecimento retardado em relação aos demais. Os frutos dos diversos tratamentos não diferiram quanto à consistência da polpa.Aiming to verify the effects of the ripening conditions on the finger drop of bananas 'SH 3640', this experiment was set up on an entirely randomized design, with four treatments: T1 - ripening under environmental temperature (24.6 ± 1.7ºC; T2 - preconditioning of the fruits at 5ºC for 6 hours, following the ripening under environmental temperature; T3 - preconditioning of the fruits at 5ºC for 12 hours, following the ripening under environmental temperature; and T4 - ripening of the fruits in low-density polyethylene bags at 18ºC. Six replicates were used for the anatomical observations, and 4 replicates for evaluating the resistance to finger drop, pulp consistence of the ripe fruit and the number of days from harvest to ripening

  4. Decommissioning plan and current status of JRR-2

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Banba, Masao; Arigane, Kenji

    1999-01-01

    Japan Research Reactor No.2 (JRR-2), heavy water moderated and cooled tank type research reactor with maximum thermal power of 10 MW, was used over 36 years, and was permanently shut down in December, 1996. Afterward, dismantling report was submitted to the STA, and dismantling was begun in 1997. Decommissioning of JRR-2 is planned in 11 years, and the program are divided into 4 phases. Phase l had already been ended, phase 2 is being executed at present. Reactor body will be removed in phase 4 by one piece removal or caisson techniques. On reactor building, it is planned to use effectively as a hot experimental facilities after decommissioning ends. For ensuring safety under decommissioning, detailed examination on work method, exposure and radioactive waste quantities is executed on each dismantling in advance. On exposure of worker in phase 1, it was achieved to control lower than the estimate. How to treat tritium contamination also becomes an important problem to achieve ensuring safety. On heavy water, transportation to foreign country is planned in phase 2. On primary cooling system and reactor building concrete, various investigation and examination is being advanced aiming at phase 3 and 4. (author)

  5. Development of decommissioning management system for nuclear fuel cycle facilities (DECMAN)

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Tanimoto, Ken-ichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    In making a plan of decommissioning of nuclear fuel facilities, it is important to optimize the plan on the standpoint of a few viewpoints, that is, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost (they are called evaluation indexes). In the midst of decommissioning, the decommissioning plan would be modified suitably to optimize the evaluation indexes adjusting to progress of the decommissioning. The decommissioning management code (DECMAN), that is support system on computer, has been developed to assist the decommissioning planning. The system calculates the evaluation indexes quantitatively. The system consists of three fundamental codes, facility information database code, technical know-how database code and index evaluation code, they are composed using Oracle' database and 'G2' expert system. The functions of the system are as follows. (1) Facility information database code. Information of decommissioning facility and its rooms, machines and pipes in the code. (2) Technical know-how database code. Technical Information of tools to use in decommissioning work, cutting, dose measure, and decontamination are there. (3) Index evaluation code. User build decommissioning program using above two database codes. The code evaluates five indexes, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost, on planning decommissioning program. Results of calculation are shown in table, chart, and etc. (author)

  6. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-02-01

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  7. Decommissioning Handbook

    International Nuclear Information System (INIS)

    Cusack, J.G.; Dalfonso, P.H.; Lenyk, R.G.

    1994-01-01

    The Decommissioning Handbook provides technical guidance on conducting decommissioning projects. Information presented ranges from planning logic, regulations affecting decommissioning, technology discussion, health and safety requirements, an developing a cost estimate. The major focus of the handbook are the technologies -- decontamination technologies, waste treatment, dismantling/segmenting/demolition, and remote operations. Over 90 technologies are discussed in the handbook providing descriptions, applications, and advantages/disadvantages. The handbook was prepared to provide a compendium of available or potentially available technologies in order to aid the planner in meeting the specific needs of each decommissioning project. Other subjects presented in the Decommissioning Handbook include the decommissioning plan, characterization, final project configuration based planning, environmental protection, and packaging/transportation. These discussions are presented to complement the technologies presented in the handbook

  8. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes

  9. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    1986-01-01

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  10. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  11. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets

  12. Integrated approach to planning the remediation of sites undergoing decommissioning

    International Nuclear Information System (INIS)

    2009-01-01

    Responding to the needs of Member States, the IAEA has launched an environmental remediation guidance initiative dealing with the issues of radioactive contamination world wide. Its aim is to collate and disseminate information concerning the key issues affecting environmental remediation of contaminated sites. This IAEA initiative includes the development of documents that report on remediation technologies available, best practices, and information and guidance concerning (a) Strategy development for environmental remediation; (b) Characterization and remediation of contaminated sites and contaminated groundwater; (c) Management of waste and residues from mining and milling of uranium and thorium; (d) Decommissioning of buildings; (e) A database for contaminated sites. The subject of this present report concerns the integration of decommissioning and remediation activities at sites undergoing decommissioning and this fits within the first category of guidance documentation (strategy development). This document addresses key strategic planning issues. It is intended to provide practical advice and complement other reports that focus on decommissioning and remediation at nuclear facilities. The document is designed to encourage site remediation activities that take advantage of synergies with decommissioning in order to reduce the duplication of effort by various parties and minimize adverse impacts on human health, the environment, and costs through the transfer of experience and knowledge. To achieve this objective, the document is designed to help Member States gain perspective by summarizing available information about synergies between decommissioning and remediation, strategic planning and project management and planning tools and techniques to support decision making and remediation. Case studies are also presented as to give concrete examples of the theoretical elements elaborated in the documents. This publication investigates the potential synergies

  13. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  14. Decommissioning of the CANDU-PHW reactor

    International Nuclear Information System (INIS)

    Unsworth, G.N.

    1977-04-01

    This report contains the results of a study of various aspects of decommissioning of reactors. The study places in perspective the size of the job, the hazards involved, the cost and the environmental impact. The three internationally agreed ''stages'' of decommissioning, namely, mothballing, entombment, and dismantling are defined and discussed. The single unit 600 MW(e) CANDU is chosen as the type of reactor on which the discussion is focussed but the conclusions reached will provide a basis for judgement of the costs and problems associated with decommissioning reactors of other sizes and types. (author)

  15. IDMT an integrated system to manage decommissioning activities

    International Nuclear Information System (INIS)

    Marsiletti, M.; Mini, G.; Orlandi, S.

    2003-01-01

    In the frame of decommissioning activities Ansaldo has developed a set of Integrated Decommissioning Management Tools (IDMT) addressed to dismantling work as well as to management of the wastes. The tools MIRAD and DECOM arise from the project of dismantling Italian NPPs (e.g. Caorso) as described in this paper. MIRAD is an integration between a 3 D CAD Model of the NPP in as build configuration and a computerized database (presently an MS Access application) which stores the information related to the radiological measurements detected through in field monitoring associated to any item present in the plant. DECOM is an integration system between a 3 D CAD Model of the NPP (as minimum for the controlled zone) in as-built configuration and a computerized database (presently an MS Access application) which stores the information associated to primary and secondary wastes produced during operation, dismantling or treatment activities.The IDMT system is currently used in the following NPPs in Italy: Caorso NPP (Mark II GE Containment BWR), Garigliano NPP (Dual Cycle GE BWR) and Trino NPP (Westinghouse PWR Plant). (authors)

  16. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  17. Germany: Management of decommissioning waste in Germany

    International Nuclear Information System (INIS)

    Borrmann, F.; Brennecke, P.; Koch, W.; Kugel, K.; Steyer, S.

    2007-01-01

    Over the past two decades, Germany has gained a substantial amount of experience in the decommissioning of nuclear facilities of different types and sizes. Many research reactors and all prototype nuclear power plants, as well as a few larger nuclear power plants and fuel cycle facilities, are currently at varying stages of decommissioning. Several facilities have been fully dismantled and the sites have been cleared for reuse. The decommissioning projects comprise 18 power and prototype reactors, 33 research reactors and 11 fuel cycle facilities which are being or have been decommissioned. In the future, further nuclear power plants will be shut down and decommissioned in accordance with Germany?s energy policy to phase out the use of nuclear power for commercial electricity generation as given in the April 2002 amendment of the Atomic Energy Act. Radioactive waste, from operations as well as from decommissioning activities, is to be conditioned in such a way as to comply with the waste acceptance requirements of a repository. In Germany, all types of radioactive waste (i.e., short-lived and long-lived) are to be disposed of in deep geological formations. A distinction is being made for heat generating waste (i.e., high level waste) and waste with negligible heat generation (i.e., low level and intermediate level waste). Radioactive decommissioning waste is waste with negligible heat generation. Waste acceptance requirements of a repository are of particular importance for the conditioning of radioactive waste, including decommissioning waste. The waste acceptance requirements, as they resulted from the Konrad licensing procedure, are being applied by the waste generators for the conditioning of decommissioning waste. Compliance with these requirements must be demonstrated through the waste package quality control, even if the waste will be disposed of in the future. In 2002 the Konrad repository was licensed for the disposal of all types of waste with negligible

  18. BN-350 nuclear power plant. Regulatory aspects of decommissioning

    International Nuclear Information System (INIS)

    Shiganakov, S.; Zhantikin, T.; Kim, A.

    2002-01-01

    Full text: The BN-350 reactor is a fast breeder reactor using liquid sodium as a coolant [1]. This reactor was commissioned in 1973 and operated for its design life of 20 years. Thereafter, it was operated on the basis of annual licenses, and the final shutdown was initially planned in 2003. In 1999, however, the Government of the Republic of Kazakhstan adopted Decree on the Decommissioning of BN-350 Reactor. This Decree establishes the conception of the reactor plant decommissioning. The conception envisages three stages of decommissioning. The first stage of decommissioning aims at putting the installation into a state of long term safe enclosure. The main goal is an achievement of nuclear-and radiation-safe condition and industrial safety level. The completion criteria for the stage are as follows: spent fuel is removed and placed in long term storage; radioactive liquid metal coolant is drained from the reactor and processed; liquid and solid radioactive wastes are reprocessed and long-term stored; systems and equipment, that are decommissioned at the moment of reactor safe store, are disassembled; radiation monitoring of the reactor building and environment is provided. The completion criteria of the second stage are as follows: 50 years is up; a decision about beginning of works by realization of dismantling and burial design is accepted. The goal of the third stage is partial or total dismantling of equipment, buildings and structure and burial. Since the decision on the decommissioning of BN-350 Reactor Facility was accepted before end of scheduled service life (2003), to this moment 'The Decommissioning Plan' (which in Kazakhstan is called 'Design of BN-350 reactor Decommission') was not worked out. For realization of the Governmental Decree and for determination of activities by the reactor safety provision and for preparation of its decommission for the period till Design approval the following documents were developed: 1. Special Technical Requirements

  19. Platform decommissioning: Socio-economic impacts

    International Nuclear Information System (INIS)

    Scheelhaase, Janina D.

    1998-01-01

    The object of this presentation is to evaluate the socio-economic effects of the decommissioning of steel jacket platforms in the North Sea and in the North East Atlantic in the period up to 2020 in their entirety. It is focused on two different decommissioning options, namely total and partial removal of installations. Partial removal applies only to installations in water deeper than 75 meters. All other installations, i.e those in waters shallower than 75 meters, have to be totally removed and brought onshore for disposal. Areas being analyzed cover costs of different decommissioning options, effects of the different options on employment, fiscal aspects of the different options, and aspects of recycling onshore. 6 figs., 13 tabs

  20. Decommissioning of naval nuclear ships

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1993-10-01

    During the next decade the two major nuclear powers will each have to decommission more than 100 naval nuclear vessels, in particular submarines. The problems connected with this task is considered in this report. Firstly the size of the task is considered, i.e. the number of nuclear vessels that has to be decommissioned. Secondly the reactors of these vessels, their fuel elements, their power level, the number of reactors per vessel and the amount of radioactivity to be handled are discussed. Thirdly the decommissioning procedures, i.e. The removal of fuel from the vessels, the temporary storage of the reactor fuel near the base, and the cleaning and disposal of the reactor and the primary circuit components are reviewed. Finally alternative uses of the newer submarines are briefly considered. It should be emphasizes that much of the detailed information on which this report is based, may be of dubious nature, and that may to some extent affect the validity of the conclusions of the report. (au)

  1. Decommissioning of Brennilis NPP

    International Nuclear Information System (INIS)

    Baize, Jean-Marc

    1998-01-01

    This EDF press communique give information related to the decommissioning of the Brennilis NPP. The following five items are developed in this report: 1. the level-2 decommissioning operations at the Brennilis NPP; 2. the Brennilis NPP, a pilot operation from the commissioning up to the decommissioning; 3. history of the Brennilis NPP decommissioning; 4. the types of radioactive wastes generated by the Brennilis NPP decommissioning; 5. the Brennilis NPP - a yard management as a function of the wastes. The document contains also seven appendices addressing the following subjects: 1. the share of decommissioning assigned to EDF and the decommissioning steps; 2. the EDF installations in course of decommissioning; 3. the CEA decommissioned installations or in course of decommissioning; 4. regulations; 5. costs; 6. waste management - principles; 7. data on the decommissioning yard

  2. Decommissioning the Jason Argonaut research reactor at a world heritage site

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, R.J.S.; Beeley, P.A. [HMS Sultan, Gosport, Hampshire (United Kingdom)

    2001-07-01

    The Jason low power Argonaut type, water and graphite moderated reactor was located in King William Building, which is a Grade 1 listed building within the Royal Naval College, Greenwich, London. The College itself is a Scheduled Ancient Monument with World Heritage Site status and is situated about a mile from the Greenwich Dome. The decision to decommission Jason to International Atomic Energy Agency Stage 3 status (unrestricted site use) was taken in 1996. All physical decommissioning work was completed by October 1999, site radiological clearance was obtained in November 1999, the site license was withdrawn and the site was handed over for future unrestricted use on 9 December 1999. The Jason decommissioning project was safely completed to time, cost and quality by the Millennium [2] without any adverse effects on World Heritage aspects of the site. In this paper details are provided about the Jason fuel removal phase and an outline of the other phases of the project.

  3. A large decommissioning project with added value

    International Nuclear Information System (INIS)

    Clements, D.W.

    1998-01-01

    The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, is a centerpiece for the Department of Energy's Reindustrialization program, which seeks to convert formerly used facilities for broad, industrial purposes. BNFL and its partners have been charged with the decommissioning and decontamination of three large gaseous diffusion buildings. BNFL's prior experience with a similar site, Capenhurst, in the United Kingdom was successful in reducing the quantities and costs of low level wastes for disposal. In that program, over 99% of 160,000 tonnes of surface-contaminated materials were safely and cost-effectively treated. Resulting materials could thus be recycled for complete unrestricted re-use within the UK. Decommissioning and decontamination at the ETTP site will be informed by the prior experience and lessons learned. Specialized technologies and approaches developed at Capenhurst will find expression at ETTP. The result will be safe, cost-effective techniques that permit maximum recycle and further use of presently contaminated buildings for industrial purposes. (author)

  4. FAMS DECOMMISSIONING END-STATE ALTERNATIVE EVALUATION

    International Nuclear Information System (INIS)

    Grimm, B; Stephen Chostner, S; Brenda Green, B

    2006-01-01

    Nuclear Material Management (NMM) completed a comprehensive study at the request of the Department of Energy Savannah River Operations Office (DOE-SR) in 2004 (Reference 11.1). The study evaluated the feasibility of removal and/or mitigation of the Pu-238 source term in the F-Area Material Storage (FAMS) facility during on-going material storage operations. The study recommended different options to remove and/or mitigate the Pu-238 source term depending on its location within the facility. During April 2005, the Department of Energy (DOE) sent a letter of direction (LOD) to Washington Savannah River Company (WSRC) directing WSRC to implement a new program direction that would enable an accelerated shutdown and decommissioning of FAMS (Reference 11.2). Further direction in the LOD stated that effective December 1, 2006 the facility will be transitioned to begin deactivation and decommissioning (D and D) activities. To implement the LOD, Site D and D (SDD) and DOE agreed the planning end-state would be demolition of the FAMS structure to the building slab. SDD developed the D and D strategy, preliminary cost and schedule, and issued the deactivation project plan in December 2005 (Reference 11.3). Due to concerns and questions regarding the FAMS planning end-state and in support of the project's Critical Decision 1, an alternative study was performed to evaluate the various decommissioning end-states and the methods by which those end-states are achieved. This report documents the results of the alternative evaluation which was performed in a structured decision-making process as outlined in the E7 Manual, Procedure 2.15, ''Alternative Studies'' (Reference 11.4)

  5. Shippingport Station Decommissioning Project Start of Physical Decommissioning

    International Nuclear Information System (INIS)

    Crimi, F. P.

    1987-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy, and the turbine-generator and balance of plant, which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by DOE from Duquesne Light Company. The Shippingport Station Decommissioning Project is being performed under contract to the DOE by the General Electric Company and its integrated subcontractor, Morrison-Knudsen Company. as the Decommissioning Operations Contractor. This paper describes the current status of the physical decommissioning work, which started September 1985. The preparations required to start a major decommissioning work effort in a safe and cost effective manner are discussed including the development and implementation of a cost/schedule control system. The detailed plan required to ensure that people, property, and procedures are ready in sufficient time to support the start of physical decommissioning is also discussed. The total estimated cost of the Shippingport Station Decommissioning Project should be $98.3 M, with the Project scheduled for completion in April 1990. As the decommissioning of the first commercial-scale nuclear power plant, the Shippingport Project is expected to set the standard for safe, cost-effective demolition of nuclear plants

  6. The Communities' research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This is the first progress report of the European Community's programme (1979-1983) of research on the decommissioning of nuclear power plants. It shows the status of the programme on 31 December 1980. The programme seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific waste materials: steel, concrete and graphite; large transport containers for radioactive was produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive wastes arising from decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  7. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    International Nuclear Information System (INIS)

    Bollinger, James S.; Koffman, Larry D.; Austin, William E.

    2008-01-01

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design

  8. Decommissioning of the Plutonium Purification and Residues Recovery Plant

    International Nuclear Information System (INIS)

    Hunt, J. G.

    2006-01-01

    British Nuclear Group is continuing to build on BNFL's successful record of decommissioning redundant nuclear facilities. Challenging radiological conditions and complex technical problems have been overcome to reduce the hazard associated with the UK's nuclear legacy. The former Plutonium Purification and Residues Recovery Plant at Sellafield operated from 1954 through to 1987. This is the only plant to have experienced an uncontrolled criticality incident in the UK, in August 1970 during operations. The plant comprised of two mirror image cells approximately 6.5 m x 13.5 m x 16 m, constructed of bare brick. The cell structure provided secondary containment, the process vessels and pipes within the cell providing primary containment. The plant utilized a solvent extraction process to purify the plutonium stream. Surrounding the two process cells to the north, east and south is an annulus area that housed the operational control panels, feed and sample glove-boxes, and ancillary equipment. The building was ventilated by an unfiltered extract on the process cells and a filtered extract from the vessels and glove-boxes. During the long operational lifetime of the plant, the primary containment deteriorated to such an extent that the process cells eventually became the main containment, with levels of radioactive contamination in excess of 14,256 pCi alpha. This led to significant aerial effluent discharges towards the end of the plant's operational life and onerous working conditions during decommissioning. Implementation of a phased decommissioning strategy from 1991 has led to: - A reduction of approximately 60% in the Sellafield site's aerial alpha discharges following installation of a new ventilation system, - Removal of 12 plutonium contaminated glove-boxes and sample cabinets from the building, - Disposal of the approximately 500 m 2 of asbestos building cladding, - Removal of over 90% of the active pipes and vessels from the highly contaminated process cells

  9. Applicability of EPRI Decommissioning Pre-Planning Manual to International Decommissioning Projects

    International Nuclear Information System (INIS)

    Lessard, Leo; Kay, Jim; Lefrancois, Donald; Furr, Richard; Lucas, Matthieu; Schauer, Konrad

    2016-01-01

    Industry models for planning the efficient decommissioning of a nuclear power plant continue to evolve. Effective planning is a key to cost control, a critical aspect of decommissioning. In 2001, the Electric Power Research Institute (EPRI) published the 'Decommissioning Pre-Planning Manual', referred to as the 'Manual'. The goal of the Manual was to develop a framework for use in pre-planning the decommissioning of a nuclear power plant. The original research was based on information collected during the active decommissioning of power reactors in New England, and the ongoing decommissioning planning of another reactor still in operation. The research team identified thirty-two (32) major Decommissioning Tasks that support the strategic and tactical planning that can be conducted in advance of plant shutdown. The Decommissioning Tasks were organized in a logical sequence of execution, and sorted in common discipline groupings. Owners of U.S. nuclear plants that have shut down prematurely during the past 5 years have found the EPRI Decommissioning Pre-Planning Manual useful in developing their transition plans from an operating to shutdown facility. Concurrently, during the past 15 years, the IAEA has published numerous technical and safety reports on nuclear reactor decommissioning planning and execution. IAEA's goal is to provide its global members with useful and timely guidance for the planning and execution of nuclear decommissioning projects. This information has been used extensively by international nuclear plant operators. One of the key objectives will be to develop a road-map linking the 32 EPRI Decommissioning Tasks with the comparable (or equivalent) topics covered in the IAEA library of decommissioning knowledge. The logical and convenient structure of the Manual will be cross-referenced to the IAEA topics to aid in organizing the development of decommissioning plans. The road-map will serve to provide a basis for improved

  10. History of radiological characterisation in Studsvik - History of radiological characterisation in decommissioning projects in Studsvik

    International Nuclear Information System (INIS)

    Hedvall, Robert

    2012-01-01

    AB SVAFO is a nuclear waste technology and decommissioning company based in Sweden in the scenic surroundings of Studsvik on the Baltic coast. SVAFO is owned by the Swedish nuclear power industry. The company was created in 1992 by Sydsvenska Vaermekraft AB, Vattenfall AB, Forsmarks Kraftgrupp AB and Oskarshamns Kraftgrupp AB as a consequence of the Act on the Financing of the Management of Certain Radioactive Waste etc, from 1988. AB SVAFO's main business is to take care of formerly state-owned spent nuclear waste at the site, including small amounts of nuclear fuel. Buildings are also included, mainly nuclear waste storage buildings and a research reactor. Some buildings have already been decommissioned and all the fuel is treated. In the past 30 years, various decommissioning projects have been carried out, encompassing areas such as an underground research reactor, a Van de Graaff accelerator, 15,000 m 2 of nuclear laboratories, two 150 m 3 underground concrete sludge silos and several waste-storage buildings. Up till now only one or two persons did a simple characterisation before the project started to get the level of contamination. With the start of the decommissioning of the former uranium mine in Ranstad and the R2-reactor, more efforts have been put for the characterisation. The change in methods will be described. (author)

  11. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    International Nuclear Information System (INIS)

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs

  12. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Poderis, Reed J. [NSTec; King, Rebecca A. [NSTec

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  13. Radiation protection aspects of the decommissioning of the Linac-Adone storage ring

    International Nuclear Information System (INIS)

    Chiti, M.; Esposito, A.

    1996-01-01

    An e + e - collider, christened DAΦNE (Double Annular Φ factory for Nice Experiments), optimized for operation at a total energy of 1020 MeV, is under construction at the Frascati National Laboratories (LNF) of the National Institute of Nuclear Physics (INFN). The new machine will be placed into the existing buildings which in the past housed the Linac-Adone complex, which definitively ceased operation April 26th 1993 and was at once decommissioned. The Linac-Adone complex has operated without stopping up to the 26th of April 1993 except for the ordinary maintenance periods. It was composed by a Linac, capable of accelerating 100 mA of e - beam peak current to 400 MeV and 1 mA of e + beam peak current to 365 MeV, in operation since 1964, and by an e + e - storage ring capable of storing 2x10 11 particles per beam at 1500 MeV, in operation since 1967. Radiation safety standard and criteria for unrestricted release adopted at LNF. The objectives of radiation safety for the Linac-Adone decommissioning were: - limitation of personal doses, - control of radioactive materials either for reuse or for disposal, -prevention of dispersion of radioactive material during handling and transportation to the final destination. The limits for personal doses and radioactive material were taken from the recommendations of the Italian National Agency of Environment Protection and from the law in force on the safety and health protection for workers and population against the danger of ionizing radiation field, as follows: - the reference dose for people working in decommissioning areas was 15 mSv/y; - a limit for unrestricted release for My emitters was set at l kBq/m 2 for surface contamination and 1 kBq/kg for mass activity. (author)

  14. Study on decommissioning

    International Nuclear Information System (INIS)

    2012-01-01

    This project consists of researches on (1) establishment of review plan on application of decommissioning, (2) establishment of specific method to confirm decommissioning completion, of decommissioning and (3) establishment of radioactive waste management guideline during dismantling and (4) development of the regulatory system on decommissioning in response to Fukushima Daiichi NPP accident. About researches on establishment of review plan on application of decommissioning. 'Planning of the Commercial Power Reactor Decommissioning:2001' which was published by Atomic Energy Society of Japan, was evaluated whether it suited the requirement for the decommissioning stipulated in the law, and the draft evaluation report was prepared. About researches on establishment of specific method to confirm decommissioning completion, technical information of practical procedures on the confirmation in U.S.A. were organized based on MARSSIM (Multi-Agency Radiation Survey and Site Investigation Manual, NUREG-1575) and applicability of MARSSIM on the confirmation in Japan was examined. Exposed doses for public during decommissioning period were estimated to study dose criterion of the confirmation. Radioactive concentrations in the soil of Tokai and Hamaoka NPP caused by the Fukushima Daiichi NPP accident were also investigated. About researches on establishment of radioactive waste management guideline during dismantling, one concrete core was sampled in biological shield of the Tokai NPP and radioactive concentrations were investigated. About researches on development of the regulatory system on decommissioning in response to Fukushima Daiichi NPP accident, present status of Three Mile Island Unit 2 and Chernobyl NPP Unit 4 were investigated. Present status of regulatory systems for decommissioning in foreign countries taken in consideration of the accident was also researched. (author)

  15. Training for decommissioning

    International Nuclear Information System (INIS)

    Dietzold, A.

    2009-01-01

    Plants entering decommissioning face many challenges One of the most important is the challenge of training for decommissioning This is important because: The facility operators and management have spent many years successfully operating the facility; The facility management arrangements are geared to operation; Decommissioning will include non-nuclear specialists and other stakeholders; Other skills are needed to decommission successfully. UKAEA has decommissioned many facilities at its sites in Dounreay, Windscale, Harwell and Winfrith in the UK. We have faced all of the challenges previously described and have developed many training methods for ensuring the challenges are met safely and effectively. We have developed courses for specialised skills such as safety cases which can be deployed to support any decommissioning. (author)

  16. How it is possible to build a national system for decommissioning waste management without site nor waste liberation: the case of France

    International Nuclear Information System (INIS)

    Averous, Jeremie; Chapalain, Estelle

    2003-01-01

    Past experience in decommissioning in France has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts: - 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities; - 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorization based on a radiological impact study and a public inquiry; - a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanization plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. It is now widely accepted by stakeholders. The French Nuclear Safety Authority is now working to apply this methodology more widely to other nuclear practices like the waste management from medical, research and industrial activities, or from past or remediation activities. (authors)

  17. Decommissioning of nuclear facilities. Feasibility, needs and costs

    International Nuclear Information System (INIS)

    1986-01-01

    Reactor decommissioning activities generally are considered to begin after operations have ceased and the fuel has been removed from the reactor, although in some countries the activities may be started while the fuel is still at the reactor site. The three principal alternatives for decommissioning are described. The factors to be considered in selecting the decommissioning strategy, i.e. a stage or a combination of stages that comprise the total decommissioning programme, are reviewed. One presents a discussion of the feasibility of decommissioning techniques available for use on the larger reactors and fuel cycle facilities. The numbers and types of facilities to be decommissioned and the resultant waste volumes generated for disposal will then be projected. Finally, the costs of decommissioning these facilities, the effect of these costs on electricity generating costs, and alternative methods of financing decommissioning are discussed. The discussion of decommissioning draws on various countries' studies and experience in this area. Specific details about current activities and policies in NEA Member Countries are given in the short country specific Annexes. The nuclear facilities that are addressed in this study include reactors, fuel fabrication facilities, reprocessing facilities, associated radioactive waste storage facilities, enrichment facilities and other directly related fuel cycle support facilities. The present study focuses on the technical feasibility, needs, and costs of decommissioning the larger commercial facilities in the OECD member countries that are coming into service up to the year 2000. It is intended to inform the public and to assist in planning for the decommissioning of these facilities

  18. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    International Nuclear Information System (INIS)

    Bierschbach, M.C.; Haffner, D.R.; Schneider, K.J.; Short, S.M.

    2002-01-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of 3 H-labeled compounds; a laboratory for the manufacture of 14 C-labeled compounds; a laboratory for the manufacture of 123 I-labeled compounds; a laboratory for the manufacture of 137 Cs sealed sources; a laboratory for the manufacture of 241 Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires

  19. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  20. Decommissioning program of JRR-2

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Banba, Masao; Arigane, Kenji

    1999-01-01

    Japan Research Reactor No.2(JRR-2), heavy water moderated and cooled tank type research reactor with maximum thermal power of 10 MW, was used over 36 years, and was permanently shut down in December, 1996. Afterward, dismantling report was submitted to the STA, and dismantling was begun in 1997. Decommissioning of JRR-2 is planned in 11 years from 1997 to 2007, and the program is divided into 4 phases. Phase 1 had already been ended, phase 2 is being executed at present. Reactor body will be removed in phase 4 by one piece removal or caisson techniques. On reactor building, it is planned to use effectively as a hot experimental facilities after decommissioning ends. How to treat heavy water and primary cooling system contaminated by tritium becomes an important problem to lead decommissioning to success because JRR-2 is heavy water reactor. On heavy water, transportation to foreign country is planned in phase 2. On primary cooling system, it is planned to remove and dispose the majority in phase 3, and tritium decontamination with technique established by the proof test is planned before them. As a preparation for them, various investigation and examination are being advanced at present. (author)

  1. Utility planning for decommissioning

    International Nuclear Information System (INIS)

    Williams, D.H.

    1982-01-01

    Though the biggest impact on a utility of nuclear power plant decommissioning may occur many years from now, procrastination of efforts to be prepared for that time is unwarranted. Foresight put into action through planning can significantly affect that impact. Financial planning can assure the recovery of decommissioning costs in a manner equitable to customers. Decision-making planning can minimize adverse affects of current decisions on later decommissioning impacts and prepare a utility to be equipped to make later decommissioning decisions. Technological knowledge base planning can support all other planning aspects for decommissioning and prepare a utility for decommissioning decisions. Informed project planning can ward off potentially significant pitfalls during decommissioning and optimize the effectiveness of the actual decommissioning efforts

  2. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.

    1994-01-01

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  3. Post-accident cleanup and decommissioning of a reference pressurized water reactor

    International Nuclear Information System (INIS)

    Murphy, E.S.; Holter, G.M.

    1982-01-01

    This paper summarizes the results of a conceptual study to evaluate the technical requirements, costs, and safety impacts of the cleanup and decommissioning of a large pressurized water reactor (PWR) involved in an accident. The costs and occupational doses for post-accident cleanup and decommissioning are estimated to be substantially higher than those for decommissioning following the orderly shutdown of a reactor. A major factor in these cost and occupational dose increases is the high radiation environment that exists in the containment building following an accident which restricts worker access and increases the difficulty of performing certain tasks. Other factors which influence accident cleanup and decommissioning costs are requirements for the design and construction of special tools and equipment, increased requirements for regulatory approvals, and special waste management needs. Radiation doses to the public from routine accident cleanup and decommissioning operations are estimated to be below permissible radiation dose levels in unrestricted areas and within the range of annual doses from normal background. 6 references, 1 figure, 7 tables

  4. Monitoring programmes for unrestricted release related to decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Decommissioning of nuclear facilities usually results in a large volume of radioactive and non-radioactive materials. All these materials will have to be segregated as radioactive, non-radioactive and exempt from regulatory control, and then disposed of, reused or recycled. As more and more facilities approach decommissioning, controlling these wastes and setting release criteria and limits for these materials will represent a major task for the regulatory body and the licensee. Efforts are, therefore, under way at the IAEA to help achieve international consensus on the release criteria for decommissioning and a monitoring programme to verify compliance with these criteria. Within the above context, the present report was conceived as a technical document to provide an overview of all the factors to be considered in the development, planning and implementation of a monitoring programme to assure regulatory compliance with criteria for unrestricted release of materials, buildings and sites from decommissioning. The report is intended as a planning document for the owners, operators and regulatory bodies involved in decommissioning. 41 refs, 4 figs, 2 tabs

  5. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  6. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods - mothballing, entombing, or dismantling, or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which requires surveillance and maintenance for a significant period to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for an 1100-MW(e) light-water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as US $200,000. Although some tooling development will be needed for removing highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g. the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund, or annual depreciation type operating allowance, will have little effect on construction or on operating costs. (author)

  7. European Learning Initiatives for Nuclear Decommissioning and Environmental Remediation

    International Nuclear Information System (INIS)

    Abousahl, Said; )

    2017-01-01

    Situation nuclear decommissioning in the EU: - Demonstration of decommissioning at an industrial scale, as a 'last but feasible step' of the nuclear life-cycle, is essential for the credibility of the nuclear energy option; - Decommissioning market is in expansion, particularly in Europe; - Currently, an industrial experience exist, however... further attention is necessary for: - Development of the most suitable techniques, with respect to safety, efficiency and waste limitation; - Standardisation and harmonisation (incl. cost estimation); - Offering and promoting dedicated education and training opportunities; - Sharing knowledge and experiences. Offering and promoting dedicated Education and Training (E&T) opportunities: JRC organised jointly with the University of Birmingham in April 2015 a seminar on Education and Training in Nuclear Decommissioning, in an attempt to answer to the questions: •What are the E&T needs ? •What are the opportunities, what does already exist ? •How can we attract young talent ? Outcome of the seminar is published in a joint report with orientations on the way forward to support Education and Training in Nuclear Decommissioning in the EU

  8. Decommissioning and decontamination

    International Nuclear Information System (INIS)

    Dadoumont, J.; Cantrel, E.; Valenduc, P.; Noynaert, L.

    2009-01-01

    The SCK-CEN has built a large know-how in decommissioning and decontamination, thanks to its BR3 decommissioning project. In 2007, the decommissioning activities at BR3 have been continued according to the strategy. This article discusses main realisations the following domains: decommissioning of the neutron shield tank and installation of new ventilation for the controlled area, dismantling of the former one and characterization of the stack

  9. Progress of decommissioning of Rikkyo reactor in FY2014

    International Nuclear Information System (INIS)

    Suzuki, M.; Kato, M.; Tanzawa, T.; Kawaguchi, K.; Terasawa, T.; Yamada, Shigeru; Nakai, Masaru

    2015-01-01

    Institute for Atomic Energy, Rikkyo University, applied in 2012 for changes in the decommissioning plan toward the abolition of the reactor facilities, and received approval. It promoted the decommissioning work of the research reactors in a plan for two years from 2012, conducted the removal of the structure installed in the reactor tank and storage management measures, and implemented the function stop of the disposal facility of liquid waste and the removal of part of them. These procedures achieved the safe storage condition of core internal structure / equipment with relatively high radioactivity due to neutron irradiation. In addition, the maintenance management of partial facilities and equipment that had been maintained in operational conditions had come to be unnecessary. Based on these results, the implementation plan for decommissioning scheduled for 2015-2016 was prepared. The contents of main works are as follows: (1) dismantling and removal of disposal facilities for liquid waste and storage management of subsequently generated radioactive waste in the reactor building control area, (2) storage management of radioactive solid waste of solid waste storage facilities in the reactor building control area, (3) dismantling and removal of solid waste storage facilities that become unnecessary, and (4) release of part of the controlled area associated with the above actions. (A.O.)

  10. Preparations for decommissioning the TRIGA Mark III Berkeley Research Reactor

    International Nuclear Information System (INIS)

    Denton, Michael M.; Lim, Tek. H.

    1988-01-01

    On December 20, 1986 the chancellor of UC Berkeley announced his decision to decommission the 20 year old Berkeley Research Reactor citing as principal reasons a decline in use and a need to erect a new computer science building over the reactor's site. In order to meet the University's construction timetable for the new building, the reactor staff together with other units of the campus administration have initiated a program to remove the reactor structure and clear the room for unlicensed use as expediently as possible. Due to the sequence of events which must occur in a limited amount of time, the University adopted a policy to contract out as much of the work as possible, including generation of the defueling and decommissioning plans.The first physical step in the decommissioning project is the removal of the irradiated fuel. This task is largely contracted out to a commercial firm with experience in the transport of radioactive materials and reactor fuel. As suggested by the NRC, the reactor will be defueled under the current operating license. This requires that all fuel must be off-site before the DP can be approved. Therefore any delay in defueling in-turn delays the decommissioning. The NRC has given no commitment or date for completion of their review. Informal discussion with NRC project managers and the experience from other facilities indicate that the review process will take between six and nine months

  11. The situation in the field of decontamination, decommissioning and reutilization in Slovak Republic

    International Nuclear Information System (INIS)

    Menyhardt, P.; Michal, V.

    2000-01-01

    This presentation deals with present status and results in the field of decommissioning, decontamination and reutilization (DD and R) in the Slovak Republic. The decommissioning of nuclear power plants (NPP) is described from the following viewpoints: legislation for decommissioning in the Slovak Republic, supervising bodies, design documentation, dosimetry measurements, transportation, dismantling, decontamination, reusing of buildings, technological equipment and material, radwaste treatment and its conditioning, storage, final disposal and information and archive systems. Each main point is explored to describe the present status and development in the Slovak Republic and the recommendations are proposed when it is possible. (author)

  12. The situation in the field of decontamination, decommissioning and reutilization in Slovak Republic

    Energy Technology Data Exchange (ETDEWEB)

    Menyhardt, P; Michal, V [Dept. for Preparation of NPP Decommissioning, Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    2000-07-01

    This presentation deals with present status and results in the field of decommissioning, decontamination and reutilization (DD and R) in the Slovak Republic. The decommissioning of nuclear power plants (NPP) is described from the following viewpoints: legislation for decommissioning in the Slovak Republic, supervising bodies, design documentation, dosimetry measurements, transportation, dismantling, decontamination, reusing of buildings, technological equipment and material, radwaste treatment and its conditioning, storage, final disposal and information and archive systems. Each main point is explored to describe the present status and development in the Slovak Republic and the recommendations are proposed when it is possible. (author)

  13. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  14. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  15. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  16. NPP A-1 decommissioning - Phase I

    International Nuclear Information System (INIS)

    Krstenik, A.; Blazek, J.

    2000-01-01

    Nuclear power plant A-1 with output 150 MW e , with metallic natural uranium fuelled, CO 2 cooled and heavy water moderated reactor had been prematurely finally shut down in 1977. It is necessary to mention that neither operator nor regulatory and other authorities have been prepared for the solution of such situation. During next two consecutive years after shutdown main effort of operator focused on technical and administrative activities which are described in the previous paper together with approach, condition and constraints for NPP A-1 decommissioning as well as the work and research carried out up to the development and approval of the Project for NPP A-1 decommissioning - I. phase. Subject of this paper is description of: (1) An approach to NPP A -1 decommissioning; (2) An approach to development of the project for NPP A-1 decommissioning; (3) Project - tasks, scope, objectives; (4) Mode of the Project realisation; (5) Progress achieved up to the 1999 year. (authors)

  17. Decommissioning of facilities for mining and milling or radioactive ores and closeout of residues

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to provide information to Member States in order to assist in planning and implementing the decommissioning/closeout of uranium mine/mill facilities, mines, tailings impoundments, mining debris piles, leach residues and unprocessed ore stockpiles. The report presents an overview of the factors involved in planning and implementing the decommissioning/closeout of uranium mine/mill facilities. The information applies to mines, mills, tailings piles, mining debris piles and leach residues that are present as operational, mothballed or abandoned projects, as well as to future mining and milling projects. The report identifies the major factors that need to be considered in the decommissioning/closeout activities, including regulatory considerations; decommissioning of the mine/mill buildings, structures and facilities; decommissioning/closeout of open pit and underground mines; decommissioning/closeout of tailings impoundments; decommissioning/closeout of mining debris piles, unprocessed ore and other contaminated material such as heap leach piles, in situe leach facilities and contaminated soils; restoration of the site, vicinity properties and groundwater; radiation protection and health and safety considerations; and an assessment of costs and post-decommissioning or post-closeout maintenance and monitoring needs. 55 refs, figs and tabs

  18. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part B: Decontamination, robotics/automation, waste management

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the decontamination, robotics/automation, and WM data sheets

  19. Decommissioning of nuclear facilities: 'it can and has been done'

    International Nuclear Information System (INIS)

    2009-01-01

    Considerable international experience gained over the last 20 years demonstrates that nuclear facilities can be safely dismantled and decommissioned once a decision is made to cease operations and permanently shut them down. The term decommissioning is used to describe all the management and technical actions associated with ceasing operation of a nuclear installation and its subsequent dismantling to facilitate its removal from regulatory control (de-licensing). These actions involve decontamination of structures and components, dismantling of components and demolition of buildings, remediation of any contaminated ground and removal of the resulting waste. Worldwide, of the more than 560 commercial nuclear power plants that are or have been in operation, about 120 plants have been permanently shut down and are at some stage of decommissioning. About 10% of all shutdown plants have been fully decommissioned, including eight reactors of more than 100 MWe. A larger number of various types of fuel cycle and research facilities have also been shut down and decommissioned, including: facilities for the extraction and enrichment of uranium, facilities for fuel fabrication and reprocessing, laboratories, isotope production facilities and particle accelerators. This brochure looks at decommissioning across a spectrum of nuclear facilities and shows worldwide examples of successful projects. Further information can be found in NEA publications and on a number of web-sites

  20. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  1. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods, namely, mothballing, entombing, or dismantling or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which require surveillance and maintenance for a significant period of time to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for a 1100 MW(e) light water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as $200,000. Although some tooling development will be needed for the removal of the highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g., the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund or annual depreciation type operating allowance will have little impact on either construction or operating costs

  2. An overview of plutonium-238 decontamination and decommissioning (D and D) projects at Mound

    International Nuclear Information System (INIS)

    Bond, W.H.; Davis, W.P.; Draper, D.G.; Geichman, J.R.; Harris, J.C.; Jaeger, R.R.; Sohn, R.L.

    1987-01-01

    Mound is currently decontaminating for restricted reuse and/or decommissioning for conditional release four major plutonium-238 contaminated facilities that contained 1700 linear feet of gloveboxes and associated equipment and services. Several thousand linear feet of external underground piping, associated tanks, and contaminated soil are being removed. Two of the facilities contain ongoing operations and will be reused for both radioactive and nonradioactive programs. Two others will be completely demolished and the land area will become available for future DOE building sites. An overview of the successful techniques and equipment used in the decontamination and decommissioning of individual pieces of equipment, gloveboxes, services, laboratories, sections of buildings, entire buildings, and external underground piping, tanks, and soil in a highly populated residential area is described and pictorially presented

  3. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost.

  4. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    International Nuclear Information System (INIS)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook

    2015-01-01

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost

  5. Post-accident cleanup and decommissioning of a reference pressurized-water reactor

    International Nuclear Information System (INIS)

    Murphy, E.S.; Holter, G.M.

    1982-10-01

    This paper summarizes the results of a conceptual study to evaluate the technical requirements, costs, and safety impacts of the cleanup and decommissioning of a large pressurized water reactor (PWR) involved in an accident. The costs and occupational doses for post-accident cleanup and dcommissioning are estimated to be substantially higher than those for decommissioning following the orderly shutdown of a reactor. A major factor in these cost and occupational dose increases is the high radiation environment that exists in the containment building following an accident which restricts worker access and increases the difficulty of performing certain tasks. Other factors which influence accident cleanup and decommissioning costs are requirements for the design and construction of special tools and equipment, increased requirements for regulatory approvals, and special waste management needs. Radiation doses to the public from routine accident cleanup and decommissioning operations are estimated to be below permissible radiation dose levels in unrestricted areas and within the range of annual doses from normal background

  6. Decommissioning of the Nuclear Licensed Facilities at the Fontenay aux Roses CEA Center

    International Nuclear Information System (INIS)

    Jeanjacques, Michel; Piketty, Laurence; Mandard, Lionel; Pedron, Guy; Boissonneau, Jean Francois; Fouquereau, Alain; Pichereau, Eric; Lethuaire, Nathalie; Estivie, David; Binet, Cedric; Meden, Igor

    2008-01-01

    This is a summary of the program for the decommissioning of all the CEA's facilities in Fontenay aux Roses. The particularity of this center is that it is located in a built-up area. Taking into account the particularities of the various buildings and the levels of radioactivity in them, it was possible to devise a coherent, optimized program for the CEA-FAR licensed nuclear facility decommissioning operations

  7. Demonstration of safety of decommissioning of facilities using radioactive material

    International Nuclear Information System (INIS)

    Batandjieva, Borislava; O'Donnell, Patricio

    2008-01-01

    at national and regional level (e.g. Europe); (4) the international projects such as DeSa (Evaluation and Demonstration of Safety during Decommissioning of Nuclear Facilities) and its planned follow-up, R 2 D 2 P and Iraq project; as well as (5) through training and education of specialists working in the field of decommissioning and (6) facilitation of the exchange of knowledge and experience between all Member States (e.g. Athens conference in 2006, International decommissioning forum, Annual forum for operators and regulators in decommissioning). The ongoing cooperation with Member States shows that the areas of specific interest for the Member States remain the following: the relevant safety criteria and safety assessment methodology to be applied to decommissioning; application of the graded approach in the development and review of safety assessments or decommissioning plans; evolution of the decommissioning plan and the supporting arguments through the decommissioning project. This paper presents a summary of the recent IAEA activities and projects on demonstration of safety during decommissioning and the lessons learned to date. (author)

  8. Feasibility studies for decommissioning

    International Nuclear Information System (INIS)

    Hladky, E.

    2000-01-01

    In this presentation author deals with planning of decommission of the NPPs A1, V1 and V2 Bohunice and Mochovce. It was concluded that: Used model for decommissioning parameters assessment has been suitable for elaboration of initial decommissioning plans (feasibility studies); Basic assessment of main decommissioning parameters and basic comparison of various decommissioning options have been possible; Improvement of the model and corresponding software is desirable and works on software improvement began one year ago; V1-NPP initial decommissioning plan should be actualized, because initial decommissioning plan does not correspond by its content and structure to requirements of Act No. 130/98 and Nuclear Regulatory Authority Degree No. 246/99; Strategy of radioactive wastes treatment and conditioning together with technical provisions at Jaslovske Bohunice site was changed in comparison with the assumptions in 1991-92; Considered V1 NPP decommissioning options are necessary to be re-evaluated in accordance with latest development of knowledge and approaches to NPP decommissioning in the world; Specific unit costs are substantially and differentially changed in comparison with the assumptions in 1991-92; Necessity to take into account technical changes resulted from V1 NPP reconstruction. (author)

  9. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP Krsko. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for a decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill the decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economic aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling of all activities necessary for the decommissioning of the NPP Krsko are presented. (author)

  10. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP KRSKO. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and the results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economical aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling all activities necessary for the decommissioning of the NPP KRSKO are presented. (author)

  11. Decontamination and decommissioning of a luminous dial painting facility: radiological characterization, segregation and disposal of building materials

    International Nuclear Information System (INIS)

    Ed, D.; Chu, L.; Chepulis, P.; Hamel, M.

    1986-01-01

    The State of Illinois, Department of Nuclear Safety, has decontaminated and decommissioned the defunct Luminous Processes, Inc. facility located in Ottawa, Illinois. The state's overall experience throughout the project is generally described, with particular emphasis given to the radiological characterization (Ra-226+progeny and H-3) and subsequent segregation and disposal of building materials as either radioactive or non-radioactive. Experiences involving direct application of health physics principles (criteria selection, sampling schemes, analytical techniques, data reduction, quality assurance) are discussed. Experiences involving other health physics regimens (personnel protection and dosimetry, environmental monitoring) as well as social sciences and economic considerations (public perception, media relations, political involvement, contractor interactions, fiscal management) are discussed only insofar as they affect the radiological characterization, segregation and disposal processes

  12. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  13. Team Building e a enfermagem Team Building e enfermería Team Building and nursing

    Directory of Open Access Journals (Sweden)

    Filipa Homem

    2012-07-01

    Full Text Available Num ambiente de insatisfação crescente e de imprevisibilidade como é o da enfermagem, cada vez mais é fundamental motivar as equipas, conferindo-lhes competências pessoais, relacionais, comunicacionais e, acima de tudo, fomentar o trabalho em equipa e consequentemente a produtividade. O Team Building, surge assim como uma estratégia eficaz para obter resultados positivos. Por ser uma estratégia ainda pouco utilizada em Portugal, decidimos realizar este artigo teórico sobre o assunto e refletir sobre a sua pertinência e potencialidades nas equipas de enfermagem, tendo definido como objetivos: aprofundar conhecimentos sobre Team Building, contextualizar o Team Building no âmbito das teorias organizacionais, descrever diferentes modelos de Team Building e refletir sobre a utilidade do Team Building na qualidade da prestação de cuidados de enfermagem. Deste modo, foram pesquisados artigos na plataforma eletrónica de bases de dados EBSCO, assim como consultada literatura relacionada com a psicologia organizacional. Com a presente pesquisa conclui-se que esta estratégia de dinamização de equipas é útil no âmbito da enfermagem, podendo melhorar a comunicação e relações interpessoais, identificar pontos fortes e fracos das equipas, proporcionar maior satisfação no trabalho e, deste modo, aumentar a qualidade dos cuidados de saúde prestados.En un ambiente de creciente descontento y de imprevisibilidad como el de la enfermería, es cada vez más primordial motivar a los equipos, dándoles competencias personales, relacionales, y, sobre todo, fomentar el trabajo en equipo y consecuentemente la productividad. El Team Building surge así como una estrategia eficaz para lograr resultados positivos. Al ser una estrategia aún poco utilizada en Portugal, se decidió realizar este artículo teórico sobre el asunto y reflexionar sobre la pertinencia y el potencial de los equipos de enfermería, para lo que se definieron los objetivos

  14. Decontamination and Decommissioning Experience at a Sellafield Uranium Purification Plant

    International Nuclear Information System (INIS)

    Prosser, J.L.

    2006-01-01

    Built in the 1950's, this plant was originally designed to purify depleted uranyl nitrate solution arising from reprocessing operations at the Primary Separation and Head End Plant (Fig. 1). The facility was used for various purposes throughout its life cycle such as research, development and trial based processes. Test rigs were operated in the building from the 1970's until 1984 to support development of the process and equipment now used at Sellafield's Thermal Oxide Reprocessing Plant (THORP). The extensive decommissioning program for this facility began over 15 years ago. Many challenges have been overcome throughout this program such as decommissioning the four main process cells, which were very highly alpha contaminated. The cells contained vessels and pipeline systems that were contaminated to such levels that workers had to use pressurized suits to enter the cells. Since decommissioning at Sellafield was in its infancy, this project has trialed various decontamination/decommissioning methods and techniques in order to progress the project, and this has provided valuable learning for other decommissioning projects. The project has included characterization, decontamination, dismantling, waste handling, and is now ready for demolition during late 2005, early 2006. This will be the first major facility within the historic Separation Area at Sellafield to be demolished down to base slab level. The lessons learnt from this project will directly benefit numerous decommissioning projects as the cleanup at Sellafield continues. (authors)

  15. Economic aspects of decommissioning

    International Nuclear Information System (INIS)

    Jenne, C.

    1988-01-01

    Two viewpoints on decommissioning are quoted; the first suggests that decommissioning can be viewed as a technical detail that is of limited relevance whereas the second suggests that decommissioning is a key financial issue. Both are specifically relevant to United Kingdom nuclear power stations. This paper attempts to reconcile the two views. It suggests that decommissioning does raise some important issues for regulation and financing of a privatised industry but, despite this, the economics of nuclear do remain insensitive. The paper begins by examining the significance of decommissioning costs in a number of contexts, including nuclear unit generating costs and financing requirements. It then addresses the degree of uncertainty in the decommissioning cost estimates. With privatisation on the horizon, the paper considers the significance of decommissioning and the associated uncertainty for the investor; this last section considers regulatory issues raised in relation to funding, accounting policy and electricity pricing. (author)

  16. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  17. Decommissioning engineering systems for nuclear facilities and knowledge inheritance for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo

    2016-01-01

    Information on construction, operation and maintenance of a nuclear facility is essential in order to plan and implement the decommissioning of the nuclear facility. A decommissioning engineering system collects these information efficiently, retrieves necessary information rapidly, and support to plan the reasonable decommissioning as well as the systematic implementation of dismantling activities. Then, knowledge of workers involved facility operation and dismantling activities is important because decommissioning of nuclear facility will be carried out for a long period. Knowledge inheritance for decommissioning has been carried out in various organizations. This report describes an outline of and experiences in applying decommissioning engineering systems in JAEA and activities related to knowledge inheritance for decommissioning in some organizations. (author)

  18. 1982 international decommissioning symposium

    International Nuclear Information System (INIS)

    Mickelson, S.

    1982-01-01

    Sixty-four papers were presented at the following sessions: policy, regulations, and standards; management of decommissioning wastes; decommissioning experience; decommissioning tooling and techniques; radiological concerns; and planning and engineering

  19. Decommissioning of multiple-reactor stations: facilitation by sequential decommissioning

    International Nuclear Information System (INIS)

    Moore, E.B.; Smith, R.I.; Wittenbrock, N.G.

    1982-01-01

    Reductions in cost and radiation dose can be achieved for decommissionings at multiple reactor stations because of factors not necessarily present at a single reactor station: reactors of similar design, the opportunity for sequential decommissioning, a site dedicated to nuclear power generation, and the option of either interim or permanent low-level radioactive waste storage facilities onsite. The cost and radiation dose reductions occur because comprehensive decommissioning planning need only be done once, because the labor force is stable and need only be trained once, because there is less handling of radioactive wastes, and because central stores, equipment, and facilities may be used. The cost and radiation dose reductions are sensitive to the number and types of reactors on the site, and to the alternatives selected for decommissioning. 3 tables

  20. Lessons Learned for Decommissioning Planning

    International Nuclear Information System (INIS)

    Sohn, Wook; Kim, Young-gook; Kim, Hee-keun

    2015-01-01

    The purpose of this paper is to introduce the U.S. nuclear industrial's some key lessons learned especially for decommissioning planning based on which well informed decommissioning planning can be carried out. For a successful decommissioning, it is crucial to carry out a well-organized decommissioning planning before the decommissioning starts. This paper discussed four key factors which should be decided or considered carefully during the decommissioning planning period with introduction of related decommissioning lessons learned of U.S. nuclear industry. Those factors which have been discussed in this paper include the end state of a site, the overall decommissioning strategy, the management of the spent fuels, and the spent fuel pool island. Among them, the end state of a site should be decided first as it directs the whole decommissioning processes. Then, decisions on the overall decommissioning strategy (DECON vs. SAFSTOR) and the management of the spent fuels (wet vs. dry) should follow. Finally, the spent fuel pool island should be given due consideration because its implementation will result in much cost saving. Hopefully, the results of this paper would provide useful inputs to performing the decommissioning planing for the Kori unit 1

  1. Decommissioning of Ukrainian NPPs

    International Nuclear Information System (INIS)

    Skripov, A.E.

    2002-01-01

    The decision about the development of 'Decommissioning Concept of Ukrainian NPPs' being on commercial operational stage was approved by NAEK 'Energoatom' Board of Administration by way of the decommissioning activity effective planning. The Concept will be the branch document, containing common approaches formulations on problem decisions according to the units decommissioning with generated resources, and RAW and SNF management strategy during decommissioning

  2. Decommissioning experience at UKAEA Winfrith

    International Nuclear Information System (INIS)

    Miller, K.

    2008-01-01

    The Winfrith Site was used for development of nuclear reactors, particularly the 100 MW(e) Steam Generating Heavy Water Reactor (SGHWR) and the 30 MW gas-cooled DRAGON reactor. Following the closure of the SGHWR reactor in 1990 the site has run down nuclear operations by removing from site most of the high level hazards from both reactors and then commencing the decommissioning of major items of plant and other site facilities. After the SGHWR was shut down, UKAEA prepared a decommissioning programme for this plant comprising a multistage process, each to be subjected to a competitive tendering operation. The recently completed Stage 1 decommissioning contract, awarded to Nuvia in 2005, involved decommissioning and removal of all the ancillary plant and equipment in the secondary containment and non-containment areas of the plant. The decommissioning processes involved with these large and heavy plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations. Over the past 18 years Nuvia has gained vast experience with decommissioning operations on redundant nuclear plant and facilities on the Winfrith Site and has been extremely successful in meeting its contractual obligations in a safe and efficient manner. The final section of the paper will dwell upon the key issues that have made a difference in achieving these objectives for the benefit of others involved in similar operations. (author)

  3. Decommissioning project of commercial nuclear power plant

    International Nuclear Information System (INIS)

    Karigome, S.

    2008-01-01

    Decommissioning project of commercial nuclear power plant in Japan was outlined. It is expected that the land, after the decommissioning of commercial nuclear power plants, will serve as sites for new plants. Steps will be taken to reduce the amount of wastes generated and to recycle/reuse them. Wastes with a radioactivity concentration below the 'clearance level' need not be dealt with as radioactive material, and may be handled in the same way as conventional wastes. The Tokai-1 power station, a 166 MWe carbon dioxide cooled reactor which closed down in 1998, is being decommissioned and the first ten years as 'safe storage' to allow radioactivity to decay. Non-reactor grade components such as turbines were already removed, heat exchanger dismantling started and the reactor will be dismantled, the buildings demolished and the site left ready for reuse. All radioactive wastes will be classified as low-level wastes in three categories and will be buried under the ground. The total cost will be 88.5 billion yen -34.7 billion for dismantling and 53.8 billion for waste treatment including the graphite moderator. (T. Tanaka)

  4. The use of managing agencies in decommissioning

    International Nuclear Information System (INIS)

    Nelson, R.L.

    1994-01-01

    On 1 April 1994 UKAEA Government Division was formed and one of its main responsibilities is the safe and cost effective management of the facilities which have already closed and the fuel reprocessing and radioactive waste management plant required to assist in the current programme of decommissioning. UKAEA Government Division, working on behalf of DTI, is intended to be a lean and efficient programme management and procurement organisation. Rather than build up its own project management capability it intends to use external resources for this function, obtained in future by competitive tendering. For each major facility undergoing decommissioning a Managing Agency has been, or will be, appointed to act on behalf of UKAEA Government Division. The responsibilities of each Managing Agency will be to assist in the definition of tasks, the commissioning of option studies and safety studies, the specification of individual contracts, management of the tendering processes and the subsequent management of the Implementation Contractors carrying out the decommissioning work, including the associated safety and training responsibilities. Teams involved in Managing Agency work require skills in project management, relevant technical issues, contract and safety management. (author)

  5. Decommissioning plan of the nuclear-powered ship 'Mutsu'

    International Nuclear Information System (INIS)

    1992-01-01

    The nuclear-powered ship 'Mutsu' is to be decommissioned at Sekinehama Port immediately after finishing the experimental voyage based on the 'Fundamental plan on the research required for the development of nuclear ships in Japan Atomic Energy Research Institute' decided in March, 1985. The decommissioning plan which determines the methods of the works regarding the decommissioning and others is as follows. In order to utilize the ship hull of Mutsu, the reactor room including the reactor and shielding is removed in a lump, and the removal and isolation method of preserving it as it is on land is adopted. The measures for environment preservation and ensuring the safety of residents are taken, and the sufficient work control is carried out for preventing accidents and reducing the radiation exposure of workers. The ship is used as the ship with ordinary propulsion system for ocean research and the research and development of marine reactors. The utilization of Sekinehama and Ominato facilities is investigated. The reactor room removed from Mutsu is exhibited to public, being preserved safely in a building. (K.I.)

  6. CECP, Decommissioning Costs for PWR and BWR

    International Nuclear Information System (INIS)

    Bierschbach, M.C.

    1997-01-01

    1 - Description of program or function: The Cost Estimating Computer Program CECP, designed for use on an IBM personal computer or equivalent, was developed for estimating the cost of decommissioning boiling water reactor (BWR) and light-water reactor (PWR) power stations to the point of license termination. 2 - Method of solution: Cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial volume and costs; and manpower staffing costs. Using equipment and consumables costs and inventory data supplied by the user, CECP calculates unit cost factors and then combines these factors with transportation and burial cost algorithms to produce a complete report of decommissioning costs. In addition to costs, CECP also calculates person-hours, crew-hours, and exposure person-hours associated with decommissioning. 3 - Restrictions on the complexity of the problem: The program is designed for a specific waste charge structure. The waste cost data structure cannot handle intermediate waste handlers or changes in the charge rate structures. The decommissioning of a reactor can be divided into 5 periods. 200 different items for special equipment costs are possible. The maximum amount for each special equipment item is 99,999,999$. You can support data for 10 buildings, 100 components each; ESTS1071/01: There are 65 components for 28 systems available to specify the contaminated systems costs (BWR). ESTS1071/02: There are 75 components for 25 systems available to specify the contaminated systems costs (PWR)

  7. 10 CFR 70.38 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Science.gov (United States)

    2010-01-01

    ... of decommissioning operations and presents no undue risk from radiation to the public health and... description of the planned final radiation survey; and (v) An updated detailed cost estimate for... physical security plan and material control and accounting plan provisions in place during decommissioning...

  8. Alternatives evaluation for the decontamination and decommissioning of buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-01-01

    This is an alternative evaluation document that records the evaluation process and justification for choosing the alternative recommended for the decontamination and decommissioning (D ampersand D) of the 3506 and 3515 buildings at the Oak Ridge National Laboratory (ORNL). The alternatives for the D ampersand D of the two buildings were: (1) no action (continued surveillance and maintenance), (2) decontamination for free release, (3) entombment in place, (4) partial dismantlement, and (5) complete dismantlement. Soil remediation is not included in any of the alternatives. The recommended alternative for the D ampersand D of Building 3506 is partial dismantlement at an estimated cost of $936, 000 in escalated dollars. The cost estimate for complete dismantlement is $1,384,000. The recommended alternative for the D ampersand D of Building 3515 is complete dismantlement at an estimated cost of $3,733,000 in escalated dollars. This alternative is recommended, because the soils below the foundation of the 3515 building are highly contaminated, and removing the foundation in the D ampersand D project results in lower overall worker risk, costs, and improved post-D ampersand D site conditions. A further recommendation is to revise these cost estimates after the conclusion of the ongoing characterization study. The results of the characterization of the two buildings is expected to change some of the assumptions and resolve some of the uncertainties in the development of these estimates

  9. Evaluation of the UCP Decommissioning Activities in 2008 using DECOMMIS

    International Nuclear Information System (INIS)

    Park, S. K.; Park, J. H; Hwang, D. S.; Lee, K. W.; Chung, U. S.

    2009-01-01

    In early 1992, Korea Atomic Energy Research Institute (KAERI) decided that the operation of the Uranium Conversion Plant (UCP) would be stopped due to a relatively higher production cost than that of the international market. The conversion plant has been shut down and minimally maintained for the prevention of a contamination by a deterioration of the equipment and the lagoon. In 2000, the decommissioning was finally decided upon and a decommissioning program was launched to complete the following tasks by 2010 with the total budget, 10 million US dollars: planning and assessment of the environmental impact; dismantling of the pipes, tanks, vessels and equipment for a canning or reuse; decontamination of the dismantled metal wastes for release, decontamination of the building for an reuse as an another experimental facility, and the treatment of the sludge waste and the demolition of the lagoon. The decommissioning works started in 2004. The Uranium Conversion Plant building is composed 3 stories and the floor area is 2,950 m 2 . The equipment and facilities consist of chemical reactors such as a dissolver and FBR, tanks, pumps, pipes, and electric and electronic equipment. The radiological conditions before a dismantling were as follows; radiation dose 3x10 -4 ∼3x10 -2 mSv/hr, surface contamination of equipment and structure 0.001∼3.6 Bq/cm 2 , and surface contamination of concrete 0.01∼1.4 Bq/cm 2 . The lagoon is used for store the waste water which generated during an operation. The lagoon consists of two artificial ponds constructed by a concrete structure with a lubber coating and the surface area is 760 m 2 . Total weight of the sludge is about 330 tons. The major compounds are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and natural uranium of 1 wt%. Radiological conditions were as follows; radiation dose 1x10 -4 ∼3x10 -3 mSv/hr. The DECOMMIS, which is the data base system, developed in 2005 for the decommissioning project

  10. Guidelines of Decommissioning Schedule Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Yun, Taesik; Kim, Younggook; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning has recently become an issue highlighted in Korea due to the Permanent Shutdown (PS) of Kori-1 plant. Since Korea Hydro and Nuclear Power (KHNP) Company decided the PS of Kori-1 instead of further continued operation, Kori-1 will be the first decommissioning plant of the commercial reactors in Korea. Korean regulatory authority demands Initial Decommissioning Plan (IDP) for all the plants in operation and under construction. In addition, decommissioning should be considered for the completion of the life cycle of NPPs. To date, Korea has no experience regarding decommissioning of the commercial reactor and a lot of uncertainties will be expected due to its site-specific factors. However, optimized decommissioning process schedule must be indispensable in the safety and economic efficiency of the project. Differed from USA, Korea has no experience and know-hows of the operation and site management for decommissioning. Hence, in Korea, establishment of decommissioning schedule has to give more weight to safety than precedent cases. More economical and rational schedule will be composed by collecting and analyzing the experience data and site-specific data and information as the decommissioning progresses. In a long-range outlook, KHNP having capability of NPP decommissioning will try to decommissioning business in Korea and foreign countries.

  11. The Importance of Building and Enhancing Worldwide Industry Cooperation in the Areas of Radiological Protection, Waste Management and Decommissioning

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2006-01-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates) is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry ' s involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG

  12. The importance of building and enhancing worldwide industry cooperation in the areas of radiological protection, waste management and decommissioning

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2006-01-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates) is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of Summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry's involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG

  13. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem

  14. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem.

  15. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Moe, H.J.; Lahey, T.J.

    1985-02-01

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m 3 (19,000 ft 3 ) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  16. Present state and subjects for hereafter of technical development for decommissioning

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Onozawa, Teruo; Saishu, Sadanori

    1997-01-01

    As to the decommissioning of nuclear power facilities, it was confirmed that there is no technical problem which makes decommissioning impossible in the report of the nuclear power subcommittee of Advisory Committee for Energy. In OECD/NEA, the international joint research for exchanging the information and experience of the decommissioning projects has been carried out. In foreign countries, the decommissioning has been executed practically. As the disassembling techniques for structures, laser cutting, plasma are cutting, arc gouging and gas cutting, arc saw cutting, gas cutting and powder gas cutting, mechanical cutting and molded explosive cutting are described. As the disassembling techniques for concrete structures, diamond wire saw method, mechanical cutting, water jet cutting and the method of using disk cutter and mechanical wedge are described. As to decontamination techniques, decontamination before disassembling, decontamination of large equipment, and decontamination after disassembling by blast, electrolysis and chemical immersion are described. The technology for measuring the radiation before disassembling and the radiation of buildings and disassembled waste is reported. (K.I.)

  17. Incorporating design for decommissioning into the layout of nuclear facilities

    International Nuclear Information System (INIS)

    Collum, B.; Druart, A.

    2008-01-01

    Design for Decommissioning (DfD) is the design of nuclear facilities in a manner that facilitates ultimate decommissioning in as safe, technically efficient and cost effective way as possible. Strictly speaking, (DfD) should need minimal introduction and this paper should ideally be aimed at discussing the finer points of some improvement to a practice that is already widely embedded throughout the nuclear industry. The reality though is quite different. As an industry, we all know what DfD is and indeed we do incorporate it into our designs. However, application is at best patchy and there is little evidence of applying it to the level that will be advocated here. When applied at its highest level, DfD is all about truly designing nuclear facilities with their whole life cycle in mind, such that the decommissioning phase is an integral part of the design of a facility from the very first day. In this way, when a facility comes to the end of its operational life, it can move smoothly to Post Operational Clean Out (POCO) and then through the various phases of decommissioning. Demonstrating from the start that the nuclear industry addresses the challenges posed by decommissioning will help it to gain support from the regulators and the general public for proposals to build new nuclear generating capacity. (author)

  18. Experiences in teaching decommissioning - 16179

    International Nuclear Information System (INIS)

    Catlow, Fred

    2009-01-01

    The paper describes the experience gained by the author in teaching decommissioning in the Highlands of Scotland. Initially when asked to teach the subject of decommissioning to students sitting for a BSc degree in 'Electrical or Mechanical Engineering with Decommissioning Studies', the author was taken aback, not having previously taught degree students and there was no precedent since there was no previous material or examples to build on. It was just as difficult for the students since whilst some had progressed from completing HND studies, the majority were employed at the Dounreay site and were mature students with families who were availing themselves of the opportunity for career advancement (CPD). Some of the students were from the UKAEA and its contractors whilst others were from Rolls-Royce working at Vulcan, the Royal Navy's establishment for testing nuclear reactors for submarines. A number of the students had not been in a formal learning environment for many years. The College which had originally been funded by the UKAEA and the nuclear industry in the 1950's was anxious to break into the new field of Decommissioning and were keen to promote these courses in order to support the work progressing on site. Many families in Thurso, and in Caithness, have a long tradition of working in the nuclear industry and it was thought at the time that expertise in nuclear decommissioning could be developed and indeed exported elsewhere. In addition the courses being promoted by the College would attract students from other parts so that a centre of excellence could be established. In parallel with formal teaching, online courses were also developed to extend the reach of the College. The material was developed as a mixture of power point presentations and formal notes and was obtained from existing literature, web searches and interactive discussions with people in the industry as well as case studies obtained from actual situations. Assignments were set and

  19. Basic Research on Selecting ISDC Activity for Decommissioning Costing in KRR-2 Decommissioning Project Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI is performing research for calculation of expected time of a decommissioning work and evaluation of decommissioning cost and this research calculate a decommissioning work unit productivity based on the experience data of decommissioning activity for KRR-2. The KAERI be used to calculate the decommissioning cost and manage the experience data from the decommissioning activity through the Decommissioning Information Management System (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), and Decommissioning Work-unit Productivity Calculation System (DEWOCS). In this paper, the methodology was presented how select the ISDC activities in dismantling work procedures of a 'removal of radioactive concrete'. The reason to select the 'removal of radioactive concrete' is main key activity and generates the amount of radioactive waste. This data will take advantage of the cost estimation after the code for the selected items derived ISDC. There are various efforts for decommissioning costing in each country. In particular, OECD/NEA recommends decommissioning cost estimation using the ISDC and IAEA provides for Cost Estimation for Research Reactors in Excel (CERREX) program that anyone is easy to use the cost evaluation from a limited decommissioning experience in domestic. In the future, for the decommissioning cost evaluation, the ISDC will be used more widely in a strong position. This paper has described a method for selecting the ISDC item from the actual dismantling work procedures.

  20. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  1. The application of modern project management principles and processes in major nuclear decommissioning programmes

    International Nuclear Information System (INIS)

    Bayliss, C. R.

    2003-01-01

    The UKAEA has embarked upon an accelerated programme of decommissioning works. This has resulted in a review of its project management systems and processes. This paper describes these processes and their application to nuclear decommissioning and associated new build construction projects. Efficiencies from these processes are necessary. In addition this paper describes how UKAEA, where appropriate, utilizes modern forms of alliance contract so as to work in partnership with its contractors. (author)

  2. Workshop on decommissioning; Seminarium om avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. (ed.)

    2005-12-15

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  3. Safety Assessment for Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    In the past few decades, international guidance has been developed on methods for assessing the safety of predisposal and disposal facilities for radioactive waste. More recently, it has been recognized that there is also a need for specific guidance on safety assessment in the context of decommissioning nuclear facilities. The importance of safety during decommissioning was highlighted at the International Conference on Safe Decommissioning for Nuclear Activities held in Berlin in 2002 and at the First Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in 2003. At its June 2004 meeting, the Board of Governors of the IAEA approved the International Action Plan on Decommissioning of Nuclear Facilities (GOV/2004/40), which called on the IAEA to: ''establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area''. In response, in November 2004, the IAEA launched the international project Evaluation and Demonstration of Safety for Decommissioning of Facilities Using Radioactive Material (DeSa) with the following objectives: -To develop a harmonized approach to safety assessment and to define the elements of safety assessment for decommissioning, including the application of a graded approach; -To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facility through a selected number of test cases; -To investigate approaches for the review of safety assessments for decommissioning activities and the development of a regulatory approach for reviewing safety assessments for decommissioning activities and as a basis for regulatory decision making; -To provide a forum

  4. Decontamination and decommission of a radiochemical laboratory building complex

    International Nuclear Information System (INIS)

    Zoubek, Norbert

    2008-01-01

    Full text: Handling of unsealed radioactive substances for research and development purposes in chemical or pharmaceutical industries or research centres as well as production of radioactive substances (e.g. for applications in nuclear medicine or industry) requires operation of special radiochemical laboratories. In general, operation of radiochemical laboratories is strongly regulated by the government and national authorities. The operator needs a permit related to radiological protection. In general, technical requirements for such facilities are very high. To ensure high safety standards with respect to the employees and the environment, several radiological protection measures have to be taken. These measures (for example special shielding or ventilation and waste water systems) depend on various factors, e.g. activity in use, kind of nuclides, chemical properties and volatility of substances. In order to close-down such radiochemical laboratories some radiological protection measures have to be maintained to ensure protection of both humans and the environment induced by possible residual contaminations within the facility including technical inventory. However, a later reuse of the facility as a non-radioactive facility requires removal of all radioactive contamination with respect to national regulation. Resulting radioactive wastes have to be disposed of under control of competent authorities. Based on the experience of a decontamination and decommission project for a former radiochemical laboratory complex, the main steps necessary to release such a facility are discussed. Analytical aspects of initial conditions, necessary organisational structures within the project, resources needed estimation and exploration of the radiological situation in the laboratory, elaboration of a measuring strategy and decontamination methods as well as different waste disposal routes in relation to different waste types are reported. (author)

  5. Decommissioning of nuclear facilities involving operations with uranium and thorium

    International Nuclear Information System (INIS)

    Shum, E.Y.; Neuder, S.M.

    1990-01-01

    When a licensed nuclear facility ceases operation, the U.S. Nuclear Regulatory Commission (NRC) ensures that the facility and its site are decontaminated to acceptable levels so they may safely be released for unrestricted public use. Because specific environmental standards or broad federal guidelines governing release of residual radioactive contamination have not been issued, NRC has developed ad hoc cleanup criteria for decommissioning nuclear facilities that involved uranium and thorium. Cleanup criteria include decontamination of buildings, equipment, and land. We will address cleanup criteria and their rationale; procedures for decommissioning uranium/thorium facilities; radiological survey designs and procedures; radiological monitoring and measurement; and cost-effectiveness to demonstrate compliance

  6. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  7. The Reuse of Decommissioned Facilities and Sites as an Emerging Means to Alleviate the Decommissioning Burden and its Potential Applications within IAEA's International Decommissioning Network

    International Nuclear Information System (INIS)

    Laraia, M.

    2009-01-01

    Around the world, but particularly in developing Member States, there are disused nuclear facilities or those approaching the end of their useful lives, for which appropriate decommissioning steps have not been taken, primarily due to limited technical and financial resources or competing priorities. One way of alleviating the financial and social burden associated with the final shutdown and decommissioning of nuclear facilities is the redevelopment of decommissioned facilities and sites for new, productive uses, either nuclear or non-nuclear. Sustainable development implies economic development with maintenance of social and community integrity. This objective can best be served by the sensitive redevelopment of sites to provide continuity of employment and new productive activity. Finally, experience to date with redevelopment both inside and outside the nuclear field suggests that successful engagement of the stakeholders can be a key success factor in promoting outcomes which are both profitable for the operator and recognised as responsible and worthwhile by the wider community. Following a generic discussion on factors and issues inherent to the re-development of decommissioned sites, this paper expands on several examples. It is noted that experience from the non-nuclear industrial sector is much more extensive than from the nuclear sector, and lessons from this sector should not be neglected. Many of world's nuclear facilities are small and widely distributed geographically, e.g. ∼300 aging or shut-down research reactors. Requests for assistance to address this issue from Member States exceed the capability of IAEA (and others) to deliver. However, integrating individual initiative into a designed-for-purpose network may compensate for these limitations. A new IAEA initiative amongst organizations from both potential 'donor' and 'recipient' Member States has taken the form of an 'International Decommissioning Network (IDN)'. The objectives of the IDN are

  8. Decommissioning of Kozloduy NPP units 1÷4 progress and challenges

    International Nuclear Information System (INIS)

    Kazakov, Momchil

    2016-01-01

    The process of decommissioning of Units 1 to 4 is under implementation according to the approved schedule and dismantling work in the TH is expected to be completed in due time, i.e. the end of 2018. Management of dismantled materials is difficult due to the lack of licensed sites for management of materials from the decommissioning activities, as well as due to the long free release procedures. In order to solve the above mentioned issues, measures have been taken concerning the design and construction of sites for management of materials from the decommissioning activities and in respect of the release of material from regulatory control. The preparation of the CA and auxiliary buildings for dismantling has started on schedule, as well as the dismantling of potentially contaminated equipment; Management and treatment of decommissioning RAM and RAW will be assisted by putting into operation of the Size Reduction and Decontamination Workshop (SRDW) and Plasma Melting Facility (PMF) which is scheduled for 2017; Management of RAW from the Mortuaries in the CA is another challenge for SERAW and in that regard a Feasibility Study for the Management of “Mogilnik” storages of KNPP Units 1-4 is first planned to be carried out and thereafter a management approach is to be selected; Regarding dismantling in the CA, SERAW is in the process of Elaboration of a Design for Dismantling of Equipment in the Controlled Areas of KNPP Units 1-4; Based on the selected option for dismantling, particularly the Reactor Pressure Vessel (RPV), reactor internals and the rest activated components, the Consultant shall justify by relevant analyses the requirement for temporary storage areas for activated equipment by complying with the best international practices

  9. Comparison of standardised decommissioning costing tools on pilot Vienna TRIGA MARK-II research reactor

    International Nuclear Information System (INIS)

    Hornacek, M.; Kristofova, K.; Slugen, V.; Zachar, M.; Stummer, T.

    2017-01-01

    The main purpose of the paper is to compare decommissioning costing code CERREX (Cost Estimation for Research Reactors in Excel) with advanced calculation methodology applied in eOMEGA-RR code. CERREX code was developed in line with the IAEA recommendations for decommissioning costing of research facilities and fully implements the ISDC (International Structure for Decommissioning Costing of Nuclear Installations) structure and costing methodology. In comparison with CERREX, usually applied in preliminary costing, the code eOMEGA-RR incorporates the realistic activity and material flow during decommissioning process (e.g. decontamination, dismantling and waste management). This advanced approach enables to carry out the decommissioning planning and costing more effectively. Moreover, the user-friendly interface helps to perform wide range of sensitivity analyses. In order to meet the above mentioned objectives, the model calculation costing case for TRIGA MARK-II research reactor in Vienna was developed in both calculation codes. The whole process covered four step-by-step procedures to be implemented. At first, inventory database taking into account physical as well as radiological parameters (e.g.: contamination, dose rates, nuclide vectors, limits and conditions) was developed. At second, advanced decommissioning costing case using CERREX and eOMEGA-RR code was created. At third, sensitivity analyses to estimate the impact of changing input parameters on calculated results were performed. Finally, costing results obtained from both cost calculation codes are compared and discussed. (authors)

  10. Guideline to Estimate Decommissioning Costs

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Taesik; Kim, Younggook; Oh, Jaeyoung [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The primary objective of this work is to provide guidelines to estimate the decommissioning cost as well as the stakeholders with plausible information to understand the decommissioning activities in a reasonable manner, which eventually contribute to acquiring the public acceptance for the nuclear power industry. Although several cases of the decommissioning cost estimate have been made for a few commercial nuclear power plants, the different technical, site-specific and economic assumptions used make it difficult to interpret those cost estimates and compare them with that of a relevant plant. Trustworthy cost estimates are crucial to plan a safe and economic decommissioning project. The typical approach is to break down the decommissioning project into a series of discrete and measurable work activities. Although plant specific differences derived from the economic and technical assumptions make a licensee difficult to estimate reliable decommissioning costs, estimating decommissioning costs is the most crucial processes since it encompasses all the spectrum of activities from the planning to the final evaluation on whether a decommissioning project has successfully been preceded from the perspective of safety and economic points. Hence, it is clear that tenacious efforts should be needed to successfully perform the decommissioning project.

  11. Radiological characterization and challenges at decommissioning sites

    International Nuclear Information System (INIS)

    Moore, Scott

    2002-01-01

    Scott Moore described the dose-based radiological characterisation process used in the USA, and four current characterisation issues faced there. His paper emphasized the importance of characterisation to control decommissioning hazards and costs: The License Termination Rule (LTR), Subpart E to 10 CFR Part 20, provides the dose-based criteria that the U.S. Nuclear Regulatory Commission (NRC) uses as the basis for regulating cleanup at material and reactor sites. The LTR permits the release of sites for unrestricted use, if the radioactivity that is distinguishable from background results in a total effective dose equivalent to an average member of a critical group that does not exceed 0.25 milli-Sievert per year (mSv/yr) (25 milli-rem/year) and the residual radioactivity has been reduced to levels that are as low as reasonably achievable. Additionally, the LTR establishes criteria for license termination with restrictions on future land use, which allow for a dose to the critical group of 0.25 mSv/yr (25 milli-rem/year) with restrictions in place, and 1 mSv/yr (100 milli-rem/year) if the restrictions fail. In certain circumstances as outlined in Subpart E, a dose as high as 5 mSv/yr (500 milli-rem/year) is permitted if restrictions fail. Following issuance of the dose-based LTR in 1997, NRC staff developed the Standard Review Plan for Decommissioning Plans (NUREG-1727). NUREG-1727 is a guidance document that describes the methods that NRC has determined are acceptable for implementing the LTR and other decommissioning regulations. While NUREG-1727 is focused on the review of decommissioning plans for nuclear material sites, it provides general guidance that in many cases is applicable to reactor sites (e.g., review criteria for dose-modeling and radiological surveys). In addition to NUREG-1727, staff developed the Standard Review Plan for Evaluating Nuclear Power Reactor License Termination Plans (NUREG-1700) as specific guidance for reactor decommissioning. NUREG

  12. The Waste Management Plan integration into Decommissioning Plan of the WWR-S research reactor from Romania

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Oprescu, Theodor; Filip, Mihaela; Sociu, Florin

    2008-01-01

    The paper presents the progress of the Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor WWR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for WWR-S decommissioning was also developed. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are part of the radioactive waste management strategy. (authors)

  13. DASAO: software tool for the management of safeguards, waste and decommissioning

    International Nuclear Information System (INIS)

    Noynaert, Luc; Verwaest, Isi; Libon, Henri; Cuchet, Jean-Marie

    2013-01-01

    Decommissioning of nuclear facilities is a complex process involving operations such as detailed surveys, decontamination and dismantling of equipment's, demolition of buildings and management of resulting waste and nuclear materials if any. This process takes place in a well-developed legal framework and is controlled and followed-up by stakeholders like the Safety Authority, the Radwaste management Agency and the Safeguards Organism. In the framework of its nuclear waste and decommissioning program and more specifically the decommissioning of the BR3 reactor, SCK-CEN has developed different software tools to secure the waste and material traceability, to support the sound management of the decommissioning project and to facilitate the control and the follow-up by the stakeholders. In the case of Belgium, it concerns the Federal Agency for Nuclear Control, the National Agency for radioactive waste management and fissile material and EURATOM and IAEA. In 2005, Belgonucleaire decided to shutdown her Dessel MOX fuel fabrication plant and the production stopped in 2006. According to the final decommissioning plan ('PDF') approved by NIRAS, the decommissioning works should start in 2008 at the earliest. In 2006, the management of Belgonucleaire identified the need for an integrated database and decided to entrust SCK-CEN with its development, because SCK-CEN relies on previous experience in comparable applications namely already approved by authorities such as NIRAS, FANC and EURATOM. The main objectives of this integrated software tool are: - simplified and updated safeguards; - waste and material traceability; - computerized documentation; - support to project management; - periodic and final reporting to waste and safety authorities. The software called DASAO (Database for Safeguards, Waste and Decommissioning) was successfully commissioned in 2008 and extensively used from 2009 to the satisfaction of Belgonucleaire and the stakeholders. SCK-CEN is

  14. Technical meeting on decommissioning of fast reactors after sodium draining. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the technical meeting was to provide a forum for in-depth scientific and technical exchange on topics related to the decommissioning experience with fast reactors, in particular with regard to the decommissioning of components after sodium draining. Accordingly, the scope of the meeting covers the review and analyses of the experience gained from the decommissioning of both active sodium loops and sodium cooled fast reactors (e.g., KNK II, Superphenix, RAPSODIE, EBR-II, FERMI, BN-350, BR-10). It is expected that the outcome of the meeting will contribute to the Agency initiative to preserve fast reactor data and knowledge. The main focus of the technical meeting was given on the decommissioning of both active loop and reactor components (e.g., the primary vessel of a sodium-cooled reactor) that have been drained of sodium, but that still conserve some residual amounts of sodium (e.g., films covering the entire surface of the component, or particular sodium heels that cannot be drained)

  15. Decommissioning Trawsfynydd - How public consultation shaped the strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Martin J [Nuclear Electric plc. (United Kingdom)

    1995-07-01

    This case study discusses the ned of consulting the public when decommissioning a nuclear power plants. When Trawsfynydd power station in North Wales shutdown in July 1993, Nuclear Electric's strategy for decommissioning its stations was not clearly defined. The company had altered its corporate policy on decommissioning fro he strategy referred to as the 'Reference Case' which had been approved by the Government, to the preferred 'Deferred Safestore' strategy, which was waiting Government approval. Deferred Safestore is preferred as it simplifies the engineering work involved by capitalising an the basic strength and integrity of the reactor building. It minimises thd radiation exposure to workers and radioactivity released to the environment, reduces the amount of radioactive waste produced and significantly cuts the total decommissioning cost. The closure and the decommissioning of Trawsfynydd power station was a sensitive issue as: The station lies within a National Park of outstanding beauty. The economic circumstances in the area are such that employment opportunities are very limited. At a crucial time when the company was approaching a Government review which would decide its future, Nuclear Electric could not afford to lose any credibility. A public consultation programme was launched in the vicinity of the power station To gauge the reactions of the public and elected local government bodies to a series of decommissioning options. Nuclear Electric presented three main options with details on the employment opportunities, the costs, and the lorry loads of material involved with each. The people were identified on whom decommissioning Trawsfynydd power station is likely to have an environmental or socioeconomic impact. As a result of the polls the Nuclear Electric received feedback in two ways. Formal feedback from the local councils Independent analysis of the completed questionnaires. The company was wholly committed to a meaningful consultation. Before

  16. Decommissioning Trawsfynydd - How public consultation shaped the strategy

    International Nuclear Information System (INIS)

    Kay, Martin J.

    1995-01-01

    This case study discusses the ned of consulting the public when decommissioning a nuclear power plants. When Trawsfynydd power station in North Wales shutdown in July 1993, Nuclear Electric's strategy for decommissioning its stations was not clearly defined. The company had altered its corporate policy on decommissioning fro he strategy referred to as the 'Reference Case' which had been approved by the Government, to the preferred 'Deferred Safestore' strategy, which was waiting Government approval. Deferred Safestore is preferred as it simplifies the engineering work involved by capitalising an the basic strength and integrity of the reactor building. It minimises thd radiation exposure to workers and radioactivity released to the environment, reduces the amount of radioactive waste produced and significantly cuts the total decommissioning cost. The closure and the decommissioning of Trawsfynydd power station was a sensitive issue as: The station lies within a National Park of outstanding beauty. The economic circumstances in the area are such that employment opportunities are very limited. At a crucial time when the company was approaching a Government review which would decide its future, Nuclear Electric could not afford to lose any credibility. A public consultation programme was launched in the vicinity of the power station To gauge the reactions of the public and elected local government bodies to a series of decommissioning options. Nuclear Electric presented three main options with details on the employment opportunities, the costs, and the lorry loads of material involved with each. The people were identified on whom decommissioning Trawsfynydd power station is likely to have an environmental or socioeconomic impact. As a result of the polls the Nuclear Electric received feedback in two ways. Formal feedback from the local councils Independent analysis of the completed questionnaires. The company was wholly committed to a meaningful consultation. Before

  17. Decommissioning project feedback experience in the Japan Atomic Energy Research Institut

    International Nuclear Information System (INIS)

    Yanagihara, S.; Tachibana, M.; Miyajima, K.

    2003-01-01

    and to implement a decommissioning project in safe and economical manner. The Japan Power Demonstration Reactor (JPDR) decommissioning project was completed by March, 1996, accumulating various data, experience and know-how on dismantling activities. The data and project experience were analyzed for future decommissioning of commercial and research nuclear facilities, in which the lessons learnt are categorized into three groups: safety case, waste management and work efficiency. The feedback experience was good for planning and implementing decommissioning projects. This paper deals with the decommissioning projects and the feedback experience in JAERI. At present more than 20 research nuclear facilities are listed for decommissioning in the near future in JAERI, and some of the facilities are in dismantling stage. In addition, nearly 200 nuclear facilities will be decommissioned in JAERI and JNC for 80 years after unification of both research organizations. Consequently, it has been required to implement the decommissioning projects in safe and economical manner by effectively referring the past decommissioning experience. JPDR and JRTF decommissioning projects were set up as demonstration programs for future decommissioning of large nuclear facilities. The JPDR decommissioning project was completed successfully without serious problems, accumulating various data and know-how. The JRTF decommissioning project has also been in progress, in which the experience of JPDR dismantling activities are referred and various data and experience are collected to characterize the dismantling activities in fuel cycle facilities. In case of JRR-2 decommissioning project, it has been decided that the building will be used for a centralized fuel storage facility for the time before dismantling the core part. Various lessons learnt have been accumulated through these projects, including technology application, project management and organizational matters. The project data and the

  18. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  19. State of decommissioning process in Romania

    International Nuclear Information System (INIS)

    Ciuculescu, C.

    2002-01-01

    In Romania, there are several installations that arrived at the decommissioning stage. These installations are: VVR-S research reactor, Sub critical Assembly HELEN, and Zero Power Reactor (RP-0). In this paper, the methods the Romanian Regulatory Body is developing the legal framework for decommissioning process of nuclear installations are described. There is a draft of decommissioning norms for research reactors. This regulation provides each stage of decommissioning and requirements for decommissioning plan. Also, CNCAN has evaluated and made requirements for completion of a VVR-S research reactor decommissioning plan submitted by IFIN-HH. Further, the reasons for which the decommissioning plan was rejected and requirements that the owner of VVR-S research reactor must fulfil in order to receive decommissioning licence are presented. (author)

  20. Preliminary decommissioning plan of the reactor IPEN-MB01

    International Nuclear Information System (INIS)

    Vivas, Ary de Souza

    2014-01-01

    Around the world, many nuclear plants were built and need to be turned off at a certain time because they are close to their recommended time of use is approximately 50 years. So the IAEA (International Atomic Energy Agency), seeks to guide and recommend a set of guidelines for the conduct of activities of nuclear facilities, with special attention to countries that do not have a framework regulatory Legal that sustain the activities of decommissioning. Brazil, so far, does not have a specific standard to guide the steps of the guidelines regarding decommissioning research reactors. However, in March 2011 a study committee was formed with the main task facing the issues of decommissioning of nuclear installations in Brazil, culminating in Resolution 133 of November 8, 2012, a standard project that treat about the Decommissioning of nucleoelectric plants. O Instituto de Pesquisas Energeticas e Nucleares (IPEN) has two research reactors one being the reactor IPEN/MB-01. The purpose of this master dissertation is to develop a preliminary plan for decommissioning this research reactor, considering the technical documentation of the facility (RAS-Safety Analysis Report), the existing standards of CNEN (National Nuclear Energy Commission), as well as IAEA recommendations. In terms of procedures for decommissioning research reactors, this work was based on what is most modern in experiences, strategies and lessons learned performed and documented in IAEA publications covering techniques and technologies for decommissioning. Considering these technical knowledge and due to the peculiarities of the facility, was selected to immediate dismantling strategy, which corresponds to the start of decommissioning activities once the installation is switched off, dividing it into work sectors. As a resource for monitoring and project management of reactor decommissioning and maintenance of records, we developed a database using Microsoft Access 2007, which contain all the items and

  1. Surface radiological free release program for the Battelle Columbus Laboratory Decommissioning Project

    International Nuclear Information System (INIS)

    Horton, C.N.

    1995-01-01

    This paper was prepared for the Second Residual Radioactivity and Recycling Criteria Workshop and discusses decommissioning and decontamination activities at the Battelle Columbus Laboratories Decommissioning Project (BCLDP). The BCLDP is a joint effort between the Department of Energy (DOE) and Battelle Columbus Operations to decontaminate fifteen Battelle-owned buildings contaminated with DOE radioactive materials. The privately owned buildings located across the street from The Ohio State University campus became contaminated with natural uranium and thorium during nuclear research activities. BCLDP waste management is supported by an extensive radiological free-release program. Miscellaneous materials and building surfaces have been free-released from the BCLDP. The free-release program has substantially reduced radioactive waste volumes and supported waste minimization. Free release for unrestricted use has challenged regulators and NRC licensees since the development of early surface-release criteria. This paper discusses the surface radiological free-release program incorporated by the BCLDP and the historical development of the surface radiological free-release criteria. Concerns regarding radiological free-release criteria are also presented. (author)

  2. Current status of Chernobyl NPP decommissioning

    International Nuclear Information System (INIS)

    2009-01-01

    Strategy of Chernobyl NPP decommissioning with the decommissioning license 2002-2064 is presented. The main activities at the stage of ChNPP units shutdown (2002 - 2012) are: units maintenance in safe state; decommissioning infrastructure construction; unloading of SNF – main activity determining the stage duration; systems and elements final shutdown; decommissioning life-support systems reconstruction; Comprehensive engineering and radiation survey (CERS); dismantling of the reactor facilities external equipment; removal of RAW from units; decommissioning documentation development. The decommissioning activities main results are presented

  3. Decontamination and decommissioning of the Argonne National Laboratory East Area radioactively contaminated surplus facilities: Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Fassnacht, G.F.; Moe, H.J.

    1987-07-01

    ANL has decontaminated and decommissioned (D and D) seven radiologically contaminated surplus facilities at its Illinois site: a ''Hot'' Machine Shop (Building 17) and support facilities; Fan House No. 1 (Building 37), Fan House No. 2 (Building 38), the Pangborn Dust Collector (Building 41), and the Industrial Waste Treatment Plant (Building 34) for exhaust air from machining of radioactive materials. Also included were a Nuclear Materials Storage Vault (Building 16F) and a Nuclear Research Laboratory (Building 22). The D and D work involved dismantling of all process equipment and associated plumbing, ductwork, drain lines, etc. After radiation surveys, floor and wall coverings, suspended ceilings, room partitions, pipe, conduit and electrical gear were taken down as necessary. In addition, underground sewers were excavated. The grounds around each facility were also thoroughly surveyed. Contaminated materials and soil were packaged and shipped to a low-level waste burial site, while nonactive debris was buried in the ANL landfill. Clean, reusable items were saved, and clean metal scrap was sold for salvage. After the decommissioning work, each building was torn down and the site relandscaped. The project was completed in 1985, ahead of schedule, with substantial savings

  4. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    International Nuclear Information System (INIS)

    Ogawa, Ryuichiro; Ishijima, Noboru

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  5. Radiation protection aspects of the decommissioning of the linac-adone storage ring

    International Nuclear Information System (INIS)

    Chiti, M.; Esposito, A.

    1996-06-01

    An e + e - collider, christened DAPHNE (Double Anular Φ factory for Nice Experiments), optimized for operation at a total energy of 1020 MeV, is under construction at the Frascati national laboratories (LNF) of the National Institute of Nuclear Physics (INFN). The new machine will be placed into the existing buildings which in the past housed the Linac-Adone complex, which definitively ceased operation April 26. 1993 and was at once decommissioned. The Linac-Adone complex has operated without stopping up to 26th of April 1993 except for the ordinary maintenance periods. It was composed by a Linac, capable of accelerating 100 mA of e - beam peak current to 400 MeV and 1 mA of e + beam peak current to 365 MeV, in operation since 1964, and by an e + e - storage ring capable of storing 2 x 10 11 particles per beam at 1500 MeV, in operation since 1967

  6. Radiation protection aspects of the decommissioning of the linac-adone storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chiti, M; Esposito, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-06-01

    An e{sup +}e{sup -} collider, christened DAPHNE (Double Anular {Phi} factory for Nice Experiments), optimized for operation at a total energy of 1020 MeV, is under construction at the Frascati national laboratories (LNF) of the National Institute of Nuclear Physics (INFN). The new machine will be placed into the existing buildings which in the past housed the Linac-Adone complex, which definitively ceased operation April 26. 1993 and was at once decommissioned. The Linac-Adone complex has operated without stopping up to 26th of April 1993 except for the ordinary maintenance periods. It was composed by a Linac, capable of accelerating 100 mA of e{sup -} beam peak current to 400 MeV and 1 mA of e{sup +} beam peak current to 365 MeV, in operation since 1964, and by an e{sup +}e{sup -} storage ring capable of storing 2 x 10{sup 11} particles per beam at 1500 MeV, in operation since 1967.

  7. New projects related to decommissioning

    International Nuclear Information System (INIS)

    Benbow, R.

    2008-01-01

    The PMU has been established in support of the KNPP Decommissioning Department. All of the Infrastructure Projects associated with Decommissioning have been identified and are being managed through the EBRD Procurement Process. The status of the following projects is presented: Evaluation of the Radiological Inventory for Units 1 to 4; Supply of Size Reduction and Decontamination Workshops; Dismantling Tools and Equipment; Heat Generation Plant; Environmental Assessment for Decommissioning; Decay Storage Site for Transitional RAW ; Information Centres for Decommissioning; Storage Site for Conventional Waste from Decommissioning; Inventory, Treatment an Conditioning of Contaminated Soil; Concrete Core Sampling Analysis; Asbestos Removal Equipment; Demolition Equipment

  8. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper on nuclear decommissioning was presented by Dr H. Lawton to a meeting of the British Nuclear Energy Society and Institution of Nuclear Engineers, 1986. The decommissioning work currently being undertaken on the Windscale advanced gas cooled reactor (WAGR) is briefly described, along with projects in other countries, development work associated with the WAGR operation and costs. (U.K.)

  9. Decommissioning in western Europe

    International Nuclear Information System (INIS)

    Lundqvist, K.

    1999-12-01

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe and waterproof conditions for a longer period of

  10. Money Related Decommissioning and Funding Decision Making

    International Nuclear Information System (INIS)

    Goodman, Lynne S.

    2008-01-01

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds

  11. The History and Evolution of the IAEA Technical Assistance Programme on Decommissioning and the International Decommissioning Network as its Highest Point

    International Nuclear Information System (INIS)

    Laraia, M.

    2009-01-01

    Around the world, but particularly in developing Member States, there are disused nuclear facilities or those approaching the end of their useful lives, for which appropriate decommissioning steps have not been taken, primarily due to limited technical and financial resources or competing priorities. In line with its mission to encourage safe and peaceful applications of nuclear energy, the International Atomic Energy Agency (IAEA) systematically covers the technical, regulatory, radiation protection, planning, management, and economic aspects related to the decommissioning of nuclear installations. The IAEA's overall objective of the decommissioning programme is to assist its Member States in developing the required expertise, equipment, and programmes so that they can decommission their nuclear facilities in a safe, timely, and cost-effective manner. Technical Cooperation (TC) with Member States having limited resources is commonly provided in the form of workshops, expert missions, equipment design and procurement, training courses, fellowships and scientific visits. Key examples are provided in this paper to illustrate the start, evolution and current status of TC activities and typical mechanisms by which such activities are implemented. Many of world's nuclear facilities are small and widely distributed geographically, e.g. ∼300 aging or shut-down research reactors. Requests for assistance to address this issue from Member States exceed the capability of IAEA (and others) to deliver. However, integrating individual initiative into a designed-for-purpose network may compensate for these limitations. A new IAEA initiative amongst organizations from both potential 'donor' and 'recipient' Member States has taken the form of an 'International Decommissioning Network (IDN)'. The objectives of the IDN are to improve the flow of knowledge and experience amongst those engaged in decommissioning, and specifically to enhance the 'user-oriented' focus for all IAEA

  12. Decommissioning of NPP A-1

    International Nuclear Information System (INIS)

    Anon

    2009-01-01

    In this presentation the Operation history of A1 NPP, Project 'Decommissioning of A1 NPP' - I stage, Project 'Decommissioning of A1 NPP ' - II stage and Next stages of Project 'Decommissioning of A1 NPP ' are discussed.

  13. Fort St. Vrain decommissioning project

    International Nuclear Information System (INIS)

    Fisher, M.

    1998-01-01

    Public Service Company of Colorado (PSCo), owner of the Fort St. Vrain nuclear generating station, achieved its final decommissioning goal on August 5, 1997 when the Nuclear Regulatory Commission terminated the Part 50 reactor license. PSCo pioneered and completed the world's first successful decommissioning of a commercial nuclear power plant after many years of operation. In August 1989, PSCo decided to permanently shutdown the reactor and proceed with its decommissioning. The decision to proceed with early dismantlement as the appropriate decommissioning method proved wise for all stake holders - present and future - by mitigating potential environmental impacts and reducing financial risks to company shareholders, customers, employees, neighboring communities and regulators. We believe that PSCo's decommissioning process set an exemplary standard for the world's nuclear industry and provided leadership, innovation, advancement and distinguished contributions to other decommissioning efforts throughout the world. (author)

  14. Information management for decommissioning projects

    International Nuclear Information System (INIS)

    LeClair, A.N.; Lemire, D.S.

    2011-01-01

    This paper explores the importance of records and information management for decommissioning projects. Key decommissioning information and elements of a sound information management strategy are identified. Various knowledge management strategies and tools are discussed as opportunities for leveraging decommissioning information. The paper also examines the implementation of Atomic Energy of Canada Limited's (AECL) strategy for the long term preservation of decommissioning information, and its initiatives in leveraging of information with the application of several knowledge management strategies and tools. The implementation of AECL's strategy illustrates common as well as unique information and knowledge management challenges and opportunities for decommissioning projects. (author)

  15. Development of decommissioning system engineering technology

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, S. K.; Seo, B. K.

    2012-02-01

    In the decommissioning planning stage, it is important to select the optimized decommissioning process considering the cost and safety. Especially the selection of the optimized decommissioning process is necessary because it affects to improve worker's safety and decommissioning work efficiency. The decommissioning process evaluation technology can provide the optimized decommissioning process as constructing various decommissioning scenarios and it can help to prevent the potential accidents as delivering the exact work procedures to workers and to help workers to perform decommissioning work skillfully. It's necessary to measure the radioactive contamination in the highly contaminated facilities such as hot-cells or glove-boxes to be decommissioned for decommissioning planning. These facilities are very high radiation level, so it is difficult to approach. In this case the detector system is preferable to separate the sensor and electronics, which have to locate in the facility outside to avoid the electric noise and worker's radiation exposure. In this project, we developed the remote detection system for radiation measurement and signal transmission in the high radiation area. In order to minimize worker's exposure when decommissioning highly activated nuclear facilities, it is necessary to develop the remote handling tool to perform the dismantling work remotely. Especially, since cutting, measuring, and decontamination works should be performed remotely in the highly activated area, the remote handling tool for conducting these works should be developed. Therefore, the multi-purpose dismantling machine that can measuring dose, facility cutting, and remote handling for maintenance and decommissioning of highly activated facility should be needed

  16. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  17. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    Neri, Emilio; French, Amanda; Urso, Maria Elena; Deffrennes, Marc; Rothwell, Geoffrey; ); Rehak, Ivan; Weber, Inge; ); Carroll, Simon; Daniska, Vladislav

    2016-01-01

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  18. Technology and costs for decommissioning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs.

  19. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  20. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Baumann, S.; Teunckens, L.; Walthery, R.; Lewandowski, P.; Millen, D.

    2002-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale and will continue till the end of 2005. In view of the final demolition of the building, a clearance methodology has to be proposed. Application of the methodology applied for the storage buildings of the pilot project is complicated for several reasons. Although this methodology is not rejected as such, an alternative has been studied thoroughly. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radioactivity. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  1. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Buck, S.

    1996-01-01

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  2. Decommissioning strategy selection

    International Nuclear Information System (INIS)

    Warnecke, E.

    2005-01-01

    At the end of their useful life nuclear facilities have to be decommissioned. The strategy selection on how to decommission a facility is a highly important decision at the very beginning of decommissioning planning. Basically, a facility may be subject to (a) immediate dismantling; (b) deferred dismantling after a period of ''safe enclosure'' or (c) entombment where a facility is turned into a near surface disposal facility. The first two strategies are normally applied. The third one may be accepted in countries without significant nuclear activities and hence without disposal facilities for radioactive waste. A large number of factors has to be taken into account when a decision on the decommissioning strategy is being made. Many of the factors cannot be quantified. They may be qualitative or subject to public opinion which may change with time. At present, a trend can be observed towards immediate dismantling of nuclear facilities, mainly because it is associated with less uncertainty, less local impact, a better public acceptance, and the availability of operational expertise and know how. A detailed evaluation of the various factors relevant to strategy selection and a few examples showing the situation regarding decommissioning strategy in a number of selected countries are presented in the following article. (orig.)

  3. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Schneider, K.J.

    1979-01-01

    The Symposium was jointly sponsored by OECD/NEA and IAEA and was attended by more than 225 participants from 26 countries. Forty one papers were presented in eight sessions which covered the following topics: national and international policies and planning; engineering considerations relevant to decommissioning; radiological release considerations and waste classifications; decommissioning experience; and decontamination and remote operations. In addition, a panel of decommissioning experts discussed questions from the participants

  4. Financing the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Decommissioning of both commercial and R and D nuclear facilities is expected to increase significantly in the coming years, and the largest of such industrial decommissioning projects could command considerable budgets. It is important to understand the costs of decommissioning projects in order to develop realistic cost estimates as early as possible based on preliminary decommissioning plans, but also to develop funding mechanisms to ensure that future decommissioning expenses can be adequately covered. Sound financial provisions need to be accumulated early on to reduce the potential risk for residual, unfunded liabilities and the burden on future generations, while ensuring environmental protection. Decommissioning planning can be subject to considerable uncertainties, particularly in relation to potential changes in financial markets, in energy policies or in the conditions and requirements for decommissioning individual nuclear installations, and such uncertainties need to be reflected in regularly updated cost estimates. This booklet offers a useful overview of the relevant aspects of financing the decommissioning of nuclear facilities. It provides information on cost estimation for decommissioning, as well as details about funding mechanisms and the management of funds based on current practice in NEA member countries. (authors)

  5. Cost Control Guide For Decommissioning Of Nuclear Installations

    International Nuclear Information System (INIS)

    2013-01-01

    This cost control guide was prepared in response to the request from the OECD/NEA Working Party on Decommissioning and Dismantling (WPDD) - Decommissioning Cost Estimation Group (DCEG) to offer the industry guidance in preparing and implementing cost and schedule controls during decommissioning. The DCEG sent out a survey questionnaire in 2010 soliciting comments from OECD member states on their use of cost controls during decommissioning. While the response was limited, the consensus was to proceed with the preparation of this guide. Cost and schedule control systems have been in use for more than 30 years, and in the last 10 years or so have evolved into a more formalised earned value management system (EVMS). This guide is based on the internationally recognised standard, Earned Value Management Systems (ANSI, 2007). The EVMS is built on a work breakdown structure (WBS) of decommissioning activities, and a defined process for controlling a project. The EVMS not only provides measurement of project status and future performance, but also builds a structure and culture for accountability on project performance. This guide describes the performance metrics used to determine the value earned based on what was planned to be done, what was actually accomplished and what it actually cost. Variances measured monthly at a minimum indicate where potential problems are arising and raise a flag for the project manager to implement corrective actions for the next reporting period. The success of the EVMS programme depends on management commitment to implement a culture change for its employees, and to impose the EVMS on potential future contractors performing decommissioning work at a facility. Formal training is required to ensure all elements of the process are understood and put into action. It is recommended to begin with a small project, and graduate to larger projects as the staff learns how to use the system. The EVMS process has been used internationally for small

  6. Nuclear Decommissioning R and D: a successful history that goes on. Evolution of R and D for nuclear decommissioning

    International Nuclear Information System (INIS)

    Laraia, Michele; )

    2017-01-01

    Research and Development (R and D) in Nuclear Decommissioning date back to the 1980's and 1990's. At that time, decommissioning was a relatively new, sporadic activity; technologies were mostly imported from the non-nuclear field and adapted to nuclear uses (a trend that continues to this day and should not be looked down). R and D were first applied to a laboratory scale, and later on expanded to prototype and pilot installations. The European Commission launched a series of multi-year R and D programmes, ultimately covering the full-scale decommissioning of nuclear power plants and other large installations. Certain installations (especially the BR-3 reactor at Mol, Belgium), were used to test and compare different technologies and assign a ranking based on various factors. In parallel, the US Department of Energy was active in a number of R and D activities, culminating in a number of topical publications until around the year 2000 and the explosive growth of the decommissioning market. In Japan in early 1990's the decommissioning of the Japan Power Demonstration Reactor (JPDR) was used to test almost all dismantling techniques being available at that time: the spin-offs of JPDR work were still flowing into the nuclear community until recently. It has to be also highlighted that the Chernobyl accident boosted a spate of decommissioning R and D aimed at solving practical problems in the aftermath of that severe accident. Although R and D in this field peaked around the year 2000, R and D efforts have continued to this day. While decommissioning is not 'rocket science' and it can be safely stated that this industry has reached maturity, there are areas (e.g. management of secondary waste, access, characterization and dismantling in 'difficult' environments) that require further efforts to optimize processes and reduce the still high costs. The IAEA has contributed to these advances in various ways. For example, some 50 topical reports on the decommissioning of

  7. Decommissioning funding: ethics, implementation, uncertainties

    International Nuclear Information System (INIS)

    2006-01-01

    This status report on Decommissioning Funding: Ethics, Implementation, Uncertainties also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). The report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems. (authors)

  8. Decommissioning and dismantling of the reprocessing plant Karlsruhe

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    Reprocessing activities were discontinued in late 1990. The facility was drained and rinsed, and 80 m3 of HLWC have since been stored in special tanks, awaiting vitrification. Decommissioning work is scheduled to proceed in six phases. The reprocessing areas of the facility will be prepared for release from radiological control and dismantled in the first phase. The remaining facilities can be deregulated, and storage tanks dismantled, only after termination of phase 1. The goal of the following phase is clearance from radiological control of all controlled areas, and the last phase is to cover dismantling of all buildings and restoration of a green field site. The overall costs of these activities are estimated to amount to DM 1.657 million. The article explains the contents of the first permits for decommissioning as well as the documents prepared for planning of work and licence application. (orig./HP) [de

  9. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  10. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  11. Challenges with Final Status Surveys at a Large Decommissioning Site - 13417

    International Nuclear Information System (INIS)

    Downey, Heath; Collopy, Peter; Shephard, Eugene; Walter, Nelson; Conant, John

    2013-01-01

    As part of decommissioning a former nuclear fuel manufacturing site, one of the crucial final steps is to conduct Final Status Surveys (FSS) in order to demonstrate compliance with the release criteria. At this decommissioning site, the area for FSS was about 100 hectares (248 acres) and included varying terrain, wooded areas, ponds, excavations, buildings and a brook. The challenges in performing the FSS included determining location, identifying FSS units, logging gamma walkover survey data, determining sample locations, managing water in excavations, and diverting water in the brook. The approaches taken to overcome these challenges will be presented in the paper. The paper will present and discuss lessons learned that will aid others in the FSS process. (authors)

  12. Radioprotection criteria for decommissioning of the `Usina de Santo Amaro`; Criterios de radioprotecao aplicados no descomissionamento da Usina de Santo Amaro

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Katia Moniz; Menezes, Regina Maria; Paiva, Rogerio Luiz Cunha; Cardoso, Eliezer de Moura; Nouailhetas, Yannick [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Superintendencia de Licenciamento e Controle. Coordenacao de Instalacoes Nucleares

    1997-12-31

    The first decommissioning process of a nuclear facility, in Brazil, has been carried out in the Usina de Santo Amaro (USAM), located in Sao Paulo city, where activities of milling of monazitic sands, including physical and chemical processing, were performed during about 50 years. This activities were interrupted in June 1992, due to technical and economical difficulties and to adequate the facility to the present radioprotection regulations. The decommissioning purposes include the release of the terrain for sale, the reuse of some equipment in other facilities and the sale of others. The Brazilian Nuclear Energy Commission (CNEN) has been following up this process of decommissioning verifying the accomplishment of release limits, in a way that the activities must be executed within the safety standards. This paper presents the release limits for the equipment, buildings and lands in restricted and unrestricted conditions, as well as effluent release limits. These criteria are conservative in order to assure the non dissemination of the contamination to the environment. (author) 7 refs., 2 tabs.; e-mail: knsilva at cnen.gov.br

  13. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  14. Project No. 8 - Final decommissioning plan

    International Nuclear Information System (INIS)

    2000-01-01

    Ignalina NPP should prepare the final Ignalina NPP unit 1 decommissioning plan by march 31, 2002. This plan should include the following : description of Ignalina NPP and the Ignalina NPP boundary that could be influenced by decommissioning process; decommissioning strategy selected and a logical substantiation for this selection; description of the decommissioning actions suggested and a time schedule for the actions to be performed; conceptual safety and environmental impact assessment covering ionizing radiation and other man and environment impact; description of the environmental monitoring program proposed during decommissioning process; description of the waste management proposed; assessment of decommissioning expenses including waste management, accumulated funds and other sources. Estimated project cost - 0.75 M EURO

  15. Recordkeeping in the decommissioning process

    International Nuclear Information System (INIS)

    Boing, L. E.

    2000-01-01

    In the US, there are two sets of key decommissioning records clearly identified -- those that are essential for planning the D and D of a facility and then those that are the result of the decommissioning process itself. In some cases, the regulatory authorities require and in others advise the licensees of the records that may be useful or which are required to be kept from the decommissioning. In the remainder of the paper, the author attempts to highlight some important aspects of decommissioning recordkeeping

  16. Decommissioning project management unit started its activities

    International Nuclear Information System (INIS)

    Medeliene, D.

    2002-01-01

    The Decommissioning Project Management Unit team comprises western experts as well as experts from INPP Decommissioning Service who all work as a single team. The DPMU will develop the Final Decommissioning Plan and a more detailed Decommissioning Project, which will describe how the plant will be removed from service and safely decommissioned

  17. Decommissioning Funding: Ethics, Implementation, Uncertainties

    International Nuclear Information System (INIS)

    2007-01-01

    This status report on decommissioning funding: ethics, implementation, uncertainties is based on a review of recent literature and materials presented at NEA meetings in 2003 and 2004, and particularly at a topical session organised in November 2004 on funding issues associated with the decommissioning of nuclear power facilities. The report also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). This report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems

  18. Safety problems in decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Auler, I.; Bardtenschlager, R.; Gasch, A.; Majohr, N.

    1975-12-01

    The safety problems at decommissioning are illustrated by the example of a LWR with 1300 MW electric power after 40 years of specified normal operation. For such a facility the radioactivity in the form of activation and contamination one year after being finally taken out of service is in the order of magnitude of 10 7 Ci, not counting the fuel assemblies. The dose rates occurring during work on the reactor vessel at nozzle level may amount to some 10 4 rem/h. After a rough estimation the accumulated dose for the decommissioning personnel during total dismantling will be about 1200 rem. During performance of the decommissioning activities the problems are mainly caused by direct radiation of the active components and systems and by the release of radioactive particles, aerosols and liquids if these components are crushed. The extent of later dismantling problems may be reduced by selecting appropriate materials as well as considering the requirements for dismantling in design and arrangement of the components already in the design stage of new facilities. Apart from plant design also the concept for the disposal of the radioactive waste from decommissioning will provide important boundary conditions. E.g. the maximum size of the pieces to be stored in the ultimate storage place will very much influence the dose expenditure for handling these parts. For complete dismantling of nuclear power plants an ultimate store must be available where large amounts of bulky decommissioning waste, containing relatively low activity, can be stored. The problems and also the cost for decommissioning may be considerably reduced by delaying complete disposal of the radioactive material >= 40 years and during this period, keeping the radioactivity enclosed within the plant in the form of a safe containment. (orig./HP) [de

  19. European Decommissioning Academy

    International Nuclear Information System (INIS)

    Slugen, V. S.; Hornacek, M.

    2016-01-01

    Full text: Experiences from the first run of the European Decommissioning Academy (EDA) are reported in details. EDA was created at the Slovak University of Technology in Bratislava Slovakia, based on discussion and expressed needs declared at many international meetings including ECED2013. The first run successfully passed 15 participants during 7–26 June 2015. Academy was focused on decommissioning issues via lessons, practical exercises in laboratories, on-site training prepared at NPP V-1 in Jaslovské Bohunice, Slovakia as well as four day technical tour to other European decommissioning facilities in Switzerland and Italy. Detailed information can be found at http://kome.snus.sk/inpe/. (author

  20. Dose control during decommissioning stage 1.2 of decommissioning SGHWR facility

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, M.J. [AEA Technology (United Kingdom)

    1995-12-31

    Dose control during decommissioning stage 1.2 of the SGHWR facility, i.e preparation for an extended period of care and maintenance, is discussed. The method of control of dose uptake is described and also the systems of dose uptake review, the use of dose restraint objections and other tools for limitation of dose uptake. Dose uptake data are presented for periods of maintenance shutdowns. Finally the option of chemical clearing of the circuit following shutdown is considered. (UK).

  1. Methodology to collect data on decommissioning costs and occupational radiation exposure

    International Nuclear Information System (INIS)

    Petrasch, P.; Roger, J.

    1993-01-01

    Decommissioning data collection has been, up to now, almost a national matter. The present joint study performed by NIS Ingenieurgesellschaft mbH, Hanau, and the Commissariat a l'energie atomique, Unite de declassement d'installations nucleaires, and coordinated by the Commission of the European Communities, is intended to identify a methodology allowing the collection of data which are useful to manage a decommissioning project, e.g. data on dismantling costs, occupational radiation exposure and waste arisings. A common structure for decommissioning tasks (called working packages) derived from those already in use at the abovementioned organizations has been established and the corresponding first series of data-collection sheets defined in order to cover data from LWRs, GCRs (UNGGs) and nuclear fuel cycle installations. Work focused on the cost of decommissioning tasks. The study is intended to be a first step towards an EC-wide usable data-base for data generated in the various ongoing and future decommissioning projects

  2. IAEA Assistance on Decommissioning of Small Facilities with Limited Resources

    International Nuclear Information System (INIS)

    Batandjieva, B.; Warnecke, E.

    2008-01-01

    The number of facilities reaching their lifetime is increasing and drawing the attention of operators, regulators, public and other interested parties (potential users of the site after decommissioning) on the importance of adequate planning, funding and implementation of decommissioning activities in compliance with regulatory requirements and criteria. Specific attention is required for small facilities that have been used for research purposes and in most cases state owned by and dependent on state funding. With the current tendency for expansion of the nuclear industry such small facilities could become less of importance for the operators which can increase the probability that these facilities become abandoned, hazardous and imposing undue burden to future generations. This concern is more related to countries with limited human and financial resources at the operating organizations and the regulatory body. The International Atomic Energy Agency (IAEA) has been working on the; (i) establishment of internationally recognized safety standards on decommissioning and (ii) providing Member States with assistance on the application of these standards. The recent international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Practices (Athens, Greece, 2006) has demonstrated that the set of IAEA standards is almost complete and that the International Action Plan on Decommissioning (2004), that is addressing decommissioning of small facilities, is being successfully implemented. However the need for further assistance on decommissioning of small facilities in countries with limited resources was also recognized and the Agency is planning its future work in this field. The IAEA also addresses the needs of small nuclear countries that have only a limited number of nuclear facilities, e.g. a research reactor, in its R esearch Reactor Decommissioning Demonstration Project (R 2 D 2 P. The Philippine Research Reactor

  3. Decommissioning of evaporation technology for processing liquid radioactive waste in UJV Rez, a. s

    International Nuclear Information System (INIS)

    Tous, M.; Otcovsky, T.; Podlaha, J.

    2015-01-01

    The UJV Rez, a. s. is the main leader in processing institutional radioactive waste (RAW) in the Czech Republic and the Waste Management Department has been established since the research reactor VVR-S (now LVR-15) was put in operation. Due to the large activities in nuclear research and engineering in the past, a big capacity of waste management technologies was needed. The low pressure compactor for volume reduction of solid RAW, as well as chemical pre-treatment technology of liquid RAW were installed and later the evaporation technology for effective processing the liquid RAW with the cementation and bituminization unit for final conditioning of concentrated liquid RAW were used. During the years of research reactor operation and research activities in UJV Rez, a. s. there were two installed evaporation technologies in row. After the latest evaporator lifetime, changes in liquid RAW production and together with higher decontamination factor requirements, this technology was decided to be decommissioned. The decommissioned evaporation technology was installed and put in operation in 1991. This technology was used for processing liquid aqueous RAW produced from internal research activities and of course for external producers and institutions (e.g. universities, medicine, research institutes, industry). The approved decommissioning plan was prepared and the licence for immediate decommissioning was obtained in 2012. Then the decommissioning project started. The preparing stages as dosimetric survey, expected material balance and of course initial decontamination activities were performed. Evaporation technology dismantling and processing the arising RAW were done by the internal staff of Waste Management Department. The total volume of produced RAW was 49,5 m 3 of RAW. The secondary liquid RAW (from decontamination) of amount 1,4 m 3 , contaminated sludge of amount 0,5 m 3 , solid RAW (construction steel) of amount 39,1 m 3 , solid compressible RAW (protective

  4. Investigations on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Goertz, R.; Bastek, H.; Doerge, W.; Kruschel, K.P.

    1985-01-01

    The study discusses and evaluates safety and licensing related aspects associated with the decommissioning of nuclear power plants. Important decommissioning projects and experiences with relevance to decommissioning are analyzed. Recent developments in the field of decommissioning techniques with the potential of reducing the occupational dose to decommissioning workers are described and their range of application is discussed. The radiological consequences of the recycling of scrap metal arising during decommissioning are assessed. The results may be used to evaluate present licensing practices and may be useful for future licensing procedures. Finally the environmental impact of radionuclide release via air and water pathways associated with decommissioning activities is estimated. (orig.) [de

  5. HSE policy on decommissioning and radioactive waste management at licensed nuclear sites

    International Nuclear Information System (INIS)

    Bacon, M.

    1997-01-01

    In the UK, radioactive waste management and decommissioning on a licensed nuclear is regulated by the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to radioactive waste management and decommissioning activities. This provides a continuous but flexible safety regime until there is no danger from ionizing radiations. The regulatory policy is discussed, taking into account the implications of the 1995 White Paper reviewing radioactive waste management policy. For both radioactive waste management and decommissioning the key element of HSE policy is the need for strategic planning. This should ensure that problems are not allowed to build up and to demonstrate that, taking into account all factors, the proposed actions are the optimum in terms of safety. There is a presumption in HSE's policy towards disposal of radioactive waste as soon as possible where disposal routes exist. Where long-term storage is necessary passively safe forms are preferred over those requiring continuous monitoring or frequent intervention. (author)

  6. International Good Practice on Practical Implementation of Characterisation in Decommissioning. Radiological Characterization in Decommissioning of Nuclear Facilities: International Good Practice on Practical Implementation

    International Nuclear Information System (INIS)

    Larsson, A.; Empdage, M.; Weber, I.; )

    2017-01-01

    Within the Nuclear Energy Agency (NEA), the Working Party on Decommissioning and Dismantling (WPDD) operates under the umbrella of the Radioactive Waste Management Committee (RWMC). The WPDD provides a focus for the analysis of decommissioning policy, strategy and regulation, including the related issues of waste management, release of buildings and sites from regulatory control and associated cost estimation and funding. WPDD also convenes task groups comprised of experts from the NEA member countries to review related topics such as characterisation techniques which support decommissioning and associated waste management. The Task Group on Radiological Characterisation and Decommissioning was established in 2011 to identify and present characterisation good practice at different stages of decommissioning and to identify areas that could, or should, be developed further through international cooperation and coordination. By the end of 2016 two phases of work will be complete. The first phase developed strategic guidance for decision makers on the selection and tailoring of strategies for radiological characterisation, which gives an overview of good practice for radiological characterisation at different phases of the life cycle of a nuclear installation. The second phase has focused on strategies for practical implementation of radiological characterisation from a waste and materials end-state perspective. This paper provides a summary of the phase 2 findings, covering: -) a major international survey (questionnaire) to elicit the views of characterisation experts regarding good practice; -) Learning drawn from recent international case studies; -) The collation and analysis of regulations, standards and guidance documents; -) Learning distilled from an international conference on characterisation co-organised by the task group; and -) Overall conclusions regarding characterisation good practice, recommendations and identified areas for further international

  7. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-03-01

    The main tasks performed during the period related to the influence of manufacture, transport and disposal on the design of such packages. It is deduced that decommissioning wastes will be transported under the IAEA Transport Regulations under either the Type B or Low Specific Activity (LSA) categories. If the LSA packages are self-shielded, reinforced concrete is the preferred material of construction. But the high cost of disposal implies that there is a strong reason to investigate the use of returnable shields for LSA packages and in such cases they are likely to be made of ferrous metal. Economic considerations favour the use of spheroidal graphite cast iron for this purpose. Transport operating hazards have been investigated using a mixture of desk studies, routes surveys and operations data from the railway organisations. Reference routes were chosen in the Federal Republic of Germany, France and the United Kingdom. This work has led to a description of ten accident scenarios and an evaluation of the associated accident probabilities. The effect of disposal on design of packages has been assessed in terms of the radiological impact of decommissioning wastes, an in addition corrosion and gas evolution have been examined. The inventory of radionuclides in a decommissioning waste package has low environmental impact. If metal clad reinforced concrete packages are to be used, the amount of gas evolution is such that a vent would need to be included in the design. Similar unclad packages would be sufficiently permeable to gases to prevent a pressure build-up. (author)

  8. Nuclear decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, H.

    1987-02-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level.

  9. Applicability of Learning From Experience to Sellafield Post-Operation Clean Out and Decommissioning Programmes

    International Nuclear Information System (INIS)

    Ytournel, Bertrand; Clement, Gilles; Macpherson, Ian; Dunlop, Alister

    2016-01-01

    Nuclear cycle facilities, such as recycling plants, over the world differ in their design and operation history. Transferability of Learning From Experience (LFE), Best Practices and Decommissioning tools and techniques may not appear as relevant as it would be for a fleet of reactors. Moreover Regulatory, Economic and Social Drivers may differ from one country to another. Technical Drivers being comparable, AREVA and Sellafield Ltd (SL) have conducted various benchmarks and technical peer reviews to consider LFE from AREVA's Post-Operation Clean Out (POCO) and Decommissioning projects (such as UP2-400 on the La Hague site) and those performed for customers (such as CEA's UP1 on the Marcoule site). The intention is that Sellafield can benefit from AREVA experience and incorporate some recommendations in their own programmes. These reviews highlighted not only that investigation tools and methods as well as Decommissioning techniques are fully transferable, but also that strategic, technical and organizational key recommendations are applicable. 1. End-state definition (for each programme step) has a strong impact on POCO and Decommissioning scenarios. 2. A waste-driven strategy is essential for the overall programme cost and schedule management, and it avoids detrimental activities and short-term decisions made under pressure that may have negative impacts on the Programme. 3. Safety issues associated with POCO and decommissioning programmes are different from the commercial operations environment. 4. An extensive characterization plan (with physical and radiological surveys and active sampling) is essential to underpin the final POCO / decommissioning scenario and build a plant configuration baseline that will be updated as the decommissioning progresses. 5. Transition from operations to decommissioning requires a major change in culture; the organization must adapt to the new decommissioning environment. 6. Securing specific competencies, resources and

  10. Decommissioning: a problem or a challenge?

    Directory of Open Access Journals (Sweden)

    Mele Irena

    2004-01-01

    Full Text Available With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste management programme for each nuclear facility in time, and financial provisions for implementing such programme should be provided. In this paper a presentation of current decommissioning experience in Slovenia is given. The main problems and difficulties in decommissioning of the Žirovski Vrh Uranium Mine are exposed and the lesson learned from this case is presented. The preparation of the decommissioning programme for the Nuclear Power Plant Krško is also described, and the situation at the TRIGA research reactor is briefly discussed.

  11. A Comparative Perspective on Reactor Decommissioning

    International Nuclear Information System (INIS)

    Devgun, J.S.; Zelmer, R.

    2006-01-01

    A comparative perspective on decommissioning, based on facts and figures as well as the national policies, is useful in identifying mutually beneficial 'lessons learned' from various decommissioning programs. In this paper we provide such a perspective on the US and European approaches based on a review of the programmatic experience and the decommissioning projects. The European countries selected for comparison, UK, France, and Germany, have nuclear power programs comparable in size and vintage to the US program but have distinctly different policies at the federal level. The national decommissioning scene has a lot to do with how national nuclear energy policies are shaped. Substantial experience exists in all decommissioning programs and the technology is in a mature state. Substantial cost savings can result from sharing of decommissioning information, technologies and approaches among various programs. However, the Achilles' heel for the decommissioning industry remains the lack of appropriate disposal facilities for the nuclear wastes. (authors)

  12. The decommissioning information management system

    International Nuclear Information System (INIS)

    Park, Seung-Kook; Moon, Jei-Kwon

    2015-01-01

    At the Korea Atomic Energy Research Institute (KAERI), the Korea Research Reactor (KRR-2) and one uranium conversion plant (UCP) were decommissioned. A project was launched in 1997, for the decommissioning of KRR-2 reactor with the goal of completion by 2008. Another project for the decommissioning of the UCP was launched in 2001. The physical dismantling works were started in August 2003 and the entire project was completed by the end of 2010. KAERI has developed a computer information system, named DECOMMIS, for an information management with an increased effectiveness for decommissioning projects and for record keeping for the future decommissioning projects. This decommissioning information system consists of three sub-systems; code management system, data input system (DDIS) and data processing and output system (DDPS). Through the DDIS, the data can be directly inputted at sites to minimize the time gap between the dismantling activities and the evaluation of the data by the project staff. The DDPS provides useful information to the staff for more effective project management and this information includes several fields, such as project progress management, man power management, waste management, and radiation dose control of workers and so on. The DECOMMIS was applied to the decommissioning projects of the KRR-2 and the UCP, and was utilized to give information to the staff for making decisions regarding the progress of projects. It is also to prepare the reference data for the R and D program which is for the development of the decommissioning engineering system tools and to maintain the decommissioning data for the next projects. In this paper, the overall system will be explained and the several examples of its utilization, focused on waste management and manpower control, will be introduced. (author)

  13. Preparation for Ignalina NPP decommissioning

    International Nuclear Information System (INIS)

    Medeliene, D.

    2004-01-01

    Latest developments of atomic energy in Lithuania, works done to prepare Ignalina NPP for final shutdown and decommissioning are described. Information on decommissioning program for Ignalina NPP unit 1, decommissioning method, stages and funding is presented. Other topics: radiation protection, radioactive waste management and disposal. Key facts related to nuclear energy in Lithuania are listed

  14. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  15. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1975-01-01

    Present concepts on stages of, designing for and costs of decommissioning, together with criteria for site release, are described. Recent operations and studies and assessments in progress are summarized. Wastes from decommissioning are characterized

  16. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  17. Costing for decommissioning: Continuing NEA engagement

    International Nuclear Information System (INIS)

    Gillogly, Mari; Weber, Inge; ); Siemann, Michael; )

    2017-01-01

    On 20-21 September 2016, the International Conference on Financing of Decommissioning of nuclear power plants was held in Stockholm, Sweden. The conference focused on the exchange and sharing of information on current and emerging issues in the financing of nuclear power plant decommissioning and the underlying costs of decommissioning. It aimed at providing a good picture of the variety of financing systems in place to cover the costs of decommissioning of nuclear facilities. As an increasing number of nuclear reactors are expected to be permanently shut-down and enter into the decommissioning phase, the conference highlighted challenges for financing and delivering these decommissioning activities and explored the ways in which they were being addressed. This also included consideration of the implications of potentially under-funded or uncertain decommissioning liabilities. The insights gained in the course of the conference informed future development of work on these issues. The conference addressed a variety of issues from a range of perspectives under three main themes: financing systems - the variety of financing systems in place to provide the financial resources needed for decommissioning, including the arrangements for collecting and developing financial resources during operation and drawing down the assets during decommissioning activities, as well as oversight and reporting issues; decommissioning costing - understanding the cost estimates, quality and interpretation issues in decommissioning costing, the challenges of assurance, comparisons of estimates and actual costs, exploring ways to remedy the current lack of comparable actual cost data, possible benchmarking, etc.; [financial] risk management - effective management of financial assets, risk management strategies, the changing of markets and investment strategies for financial assets, balancing the rates of return and the reduction of risk, implications of the major changes in the energy and

  18. Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  19. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    International Nuclear Information System (INIS)

    Salazar, M.D.

    1998-01-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel

  20. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  1. Planning activities for ANPP decommissioning

    International Nuclear Information System (INIS)

    Ghazaryan, K.G.

    2002-01-01

    suggested solution was a choice of SAFSTOR as a viable decommissioning option. Spent fuel management is not considered part of decommissioning; however it can strongly affect the decommissioning strategy. Currently the spent nuclear fuel is being stored on site in pools and in a newly constructed NUHOMS storage facility built by FRAMATOME under license of USA Transnuclear West Company. The facility includes 11 horizontal storage modules (HSM). Each HSM has a capacity of 56 non-failed fuel assemblies. A capacity of the existing dry storage facility is not sufficient to accommodate all spent fuel generated during plant operation. However, the NUHOMS concept is modular and it is possible to increase the storage capacity. The facility is designed for 50 years storage of spent nuclear fuel. In any case, these studies should be considered as an informative basis only. Much more additional information should be collected and the detailed characterization survey, i.e. the comprehensive engineering and radiological survey, conducted to have sufficient data for all further planning activities. (author)

  2. Technology, safety and costs of decommissioning a refernce boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  3. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  4. Development of guidance and methodical documents for providing the decommissioning of radiation-hazardous objects

    International Nuclear Information System (INIS)

    Ermakov, A.

    2015-01-01

    Federal Center for Nuclear and Radiation Safety (JSC FCNRS) developed and approbated guidance and methodical documents for providing the facility to radiologically safe status in the course of Building B decommissioning activity at JSC VNIINM (A.A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials). The scope of application of the documents developed is as follows: - preliminary segregation of radwaste into streams during its collection and preparation for removal from facilities/sites under decommissioning; - express assessment of specific activity (activity) of radwaste generated in the course of dismantling and decontamination activities; - radiological survey of premises and building structures following completion of dismantling and decontamination activities; - SRW processing (compaction, reduction in size), packaging, characterisation and containerisation in order to reduce risks of spread of radioactive contamination. Documents that have been developed can be used both at nuclear facilities/ sites similar to the JSC VNIINM Building B in terms of work stages and types of waste to be generated, and other facilities/ sites taking into consideration their peculiarities. (author)

  5. Decommissioning of the AVR reactor, concept for the total dismantling

    International Nuclear Information System (INIS)

    Marnet, C.; Wimmers, M.; Birkhold, U.

    1998-01-01

    After more than 21 years of operation, the 15 MWe AVR experimental nuclear power plant with pebble bed high temperature gas-cooled reactor was shout down in 1988. Safestore decommissioning began in 1994. In order to completely dismantle the plant, a concept for Continued dismantling was developed according to which the plant could be dismantled in a step-wise procedure. After each step, there is the possibility to transform the plant into a new state of safe enclosure. The continued dismantling comprises three further steps following Safestore decommissioning: 1. Dismantling the reactor vessels with internals; 2. Dismantling the containment and the auxiliary units; 3. Gauging the buildings to radiation limit, release from the validity range of the AtG (Nuclear Act), and demolition of the buildings. For these steps, various technical procedures and concepts were developed, resulting in a reference concept in which the containment will essentially remain intact (in-situ concept). Over the top of the outer reactor vessel a disassembling area for remotely controlled tools will be erected that tightens on that vessel and can move down on the vessel according to the dismantling progress. (author)

  6. NPP Decommissioning: the concept; state of activities

    International Nuclear Information System (INIS)

    Nemytov, S.; Zimin, V.

    2001-01-01

    The main principles of NPP decommissioning concept in Russia are given. The conditions with fulfillment of works on NPP unit pre-decommissioning and decommissioning including: development of the normative documentation, creation of special fund for financing NPP decommissioning activities, deriving the Gosatomnadzor license for decommissioning of shut down NPP units, development of the equipment and technologies for waste and spent fuel management are presented. The decommissioning cost and labour intensity of one WWER-440 unit are shown. The practical works, executed on shut down units at Beloyarsk NPP (Unit1 and 2) and Novo Voronezh NPP (Unit 1 and 2) are outlined

  7. Planning the Decommissioning of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J., E-mail: pod@ujv.cz [Nuclear Research Institute Rez, 25068 Rez (Czech Republic)

    2013-08-15

    In the Czech Republic, three research nuclear reactors are in operation. According to the valid legislation, preliminary decommissioning plans have been prepared for all research reactors in the Czech Republic. The decommissioning plans shall be updated at least every 5 years. Decommissioning funds have been established and financial resources are regularly deposited. Current situation in planning of decommissioning of research reactors in the Czech Republic, especially planning of decommissioning of the LVR-15 research reactor is described in this paper. There appeared new circumstances having wide impact on the decommissioning planning of the LVR-15 research reactor: (1) Shipment of spent fuel to the Russian Federation for reprocessing and (2) preparation of processing of radioactive waste from reconstruction of the VVR-S research reactor (now LVR-15 research reactor). The experience from spent fuel shipment to the Russian Federation and from the process of radiological characterization and processing of radioactive waste from reconstruction of the VVR-S research reactor (now the LVR-15 research reactor) and the impact on the decommissioning planning is described in this paper. (author)

  8. Decommissioning in British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Colquhoun, A.

    1988-01-01

    Decommissioning projects at the BNFL Sellafield site have been selected taking the following into account; the need to gain experience in preparation for the decommissioning of the Magnox reactors and for the post Magnox stage; the need to develop larger scale projects; the need to be cost effective and to foster long term safety. The balance between prompt or delayed decommissioning has to consider operator dose uptake and radioactive waste management. The ten year plan for decommissioning at Sellafield is described briefly. Currently decommissioning is of the fuel pond and decanning plant, the Windscale Pile Chimneys, the coprecipitation plant and the uranium recovery plant. (author)

  9. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs

  10. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 49 refs., 44 figs., 14 tabs

  11. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  12. Brief Assessment of Krsko NPP Decommissioning Costs

    International Nuclear Information System (INIS)

    Skanata, D.; Medakovic, S.; Debrecin, N.

    2000-01-01

    The first part of the paper gives a brief description of decommissioning scenarios and models of financing the decommissioning of NPPs. The second part contains a review of decommissioning costs for certain PWR plants with a brief description of methods used for that purpose. The third part of the paper the authors dedicated to the assessment of decommissioning costs for Krsko NPP. It does not deal with ownership relations and obligations ensuing from them. It starts from the simple point that decommissioning is an structure of the decommissioning fund is composed of three basic cost items of which the first refers to radioactive waste management, the second to storage and disposal of the spent nuclear fuel and the third to decommissioning itself. The assessment belongs to the category of preliminary activities and as such has a limited scope and meaning. Nevertheless, the authors believe that it offers a useful insight into the basic costs that will burden the decommissioning fund of Krsko NPP. (author)

  13. Decommissioning planning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Gunnar; Bergh, Niklas [Westinghouse Electric Sweden AB, Vaesteraes (Sweden)

    2013-07-01

    The technologies required for the decommissioning work are for the most part readily proven. Taken into account that there will be many more years before the studied reactor units will undergo decommissioning, the techniques could even be called conventional at that time. This will help bring the decommissioning projects to a successful closure. A national waste fund is already established in Sweden to finance amongst others all dismantling and decommissioning work. This will assure that funding for the decommissioning projects is at hand when needed. All necessary plant data are readily available and this will, combined with a reliable management system, expedite the decommissioning projects considerably. Final repositories for both long- and short-lived LILW respectively is planned and will be constructed and dimensioned to receive the decommissioning waste from the Swedish NPP:s. Since the strategy is set and well thought-through, this will help facilitate a smooth disposal of the radioactive decommissioning waste. (orig.)

  14. Remote Decommissioning Experiences at Sellafield

    International Nuclear Information System (INIS)

    Brownridge, M.

    2006-01-01

    British Nuclear Group has demonstrated through delivery of significant decommissioning projects the ability to effectively deploy innovative remote decommissioning technologies and deliver cost effective solutions. This has been achieved through deployment and development of off-the-shelf technologies and design of bespoke equipment. For example, the worlds first fully remotely operated Brokk was successfully deployed to enable fully remote dismantling, packaging and export of waste during the decommissioning of a pilot reprocessing facility. British Nuclear Group has also successfully implemented remote decommissioning systems to enable the decommissioning of significant challenges, including dismantling of a Caesium Extraction Facility, Windscale Pile Chimney and retrieval of Plutonium Contaminated Material (PCM) from storage cells. The challenge for the future is to continue to innovate through utilization of the supply chain and deploy off-the-shelf technologies which have been demonstrated in other industry sectors, thus reducing implementation schedules, cost and maintenance. (authors)

  15. Decommissioning licensing procedure

    International Nuclear Information System (INIS)

    Perello, M.

    1979-01-01

    Decommissioning or closure of a nuclear power plant, defined as the fact that takes place from the moment that the plant stops producing for the purpose it was built, is causing preocupation. So this specialist meeting on Regulatory Review seems to be the right place for presenting and discusing the need of considering the decommissioning in the safety analysis report. The main goal of this paper related to the licensing procedure is to suggest the need of a new chapter in the Preliminary Safety Analysis Report (P.S.A.R.) dealing with the decommissioning of the nuclear power plant. Therefore, after a brief introduction the problem is exposed from the point of view of nuclear safety and finally a format of the new chapter is proposed. (author)

  16. The IAEA Safety Regime for Decommissioning

    International Nuclear Information System (INIS)

    Bell, M.J.

    2002-01-01

    Full text of publication follows: The International Atomic Energy Agency is developing an international framework for decommissioning of nuclear facilities that consists of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, and a hierarchy of Safety Standards applicable to decommissioning. The Joint Convention entered into force on 18 June 2001 and as of December 2001 had been ratified by 27 IAEA Member States. The Joint Convention contains a number of articles dealing with planning for, financing, staffing and record keeping for decommissioning. The Joint Convention requires Contracting Parties to apply the same operational radiation protection criteria, discharge limits and criteria for controlling unplanned releases during decommissioning that are applied during operations. The IAEA has issued Safety Requirements document and three Safety Guides applicable to decommissioning of facilities. The Safety Requirements document, WS-R-2, Pre-disposal Management of Radioactive Waste, including Decommissioning, contains requirements applicable to regulatory control, planning and funding, management of radioactive waste, quality assurance, and environmental and safety assessment of the decommissioning process. The three Safety Guides are WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, WS-G-2.2, Decommissioning of Medical, Industrial and Research Facilities, an WS-G-2.4, Decommissioning of Nuclear Fuel Cycle Facilities. They contain guidance on how to meet the requirements of WS-R-2 applicable to decommissioning of specific types of facilities. These Standards contain only general requirements and guidance relative to safety assessment and do not contain details regarding the content of the safety case. More detailed guidance will be published in future Safety Reports currently in preparation within the Waste Safety Section of the IAEA. Because much material arising during the decommissioning

  17. BUILDING e-CLUSTERS

    OpenAIRE

    Milan Davidovic

    2013-01-01

    E-clusters are strategic alliance in TIMES technology sector (Telecommunication, Information technology, Multimedia, Entertainment, Security) where products and processes are digitalized. They enable horizontal and vertical integration of small and medium companies and establish new added value e-chains. E-clusters also build supply chains based on cooperation relationship, innovation, organizational knowledge and compliance of intellectual properties. As an innovative approach for economic p...

  18. The Community's research and development programme on decommissioning of nuclear installations: First annual progress report (year 1985)

    International Nuclear Information System (INIS)

    1986-01-01

    This is the first Annual Progress Report of the European Community's 1984-88 programme of research on the decommissioning of nuclear installations. It shows the status of implementation reached on 31 December 1985. The 1984-88 programme has the following contents: A. Research and development projects concerning the following subjects: Project No 1: Long-term integrity of building and systems; Project No 2: Decontamination for decommissioning purposes; Project No 3: Dismantling techniques; Project No 4: Treatment of specific waste materials: steel, concrete and graphite; Project No 5: Large containers for radioactive waste produced in the dismantling of nuclear installations; Project No 6: Estimation of the quantities of radioactive wastes arising from the decommissioning of nuclear installations in the Community; Project No 7: Influence of installation design features on decommissioning. B. Identification of guiding principles, namely: - certain guiding principles in the design and operation of nuclear installations with a view to simplifying their subsequent decommissioning, - guiding principles in the decommissioning of nuclear installations which could form the initial elements of a Community policy in this field. C. Testing of new techniques under real conditions, within the framework of large-scale decommissioning operations undertaken in Member States. This first progress report, covering the period of putting the programme into action, describes the work to be carried out under the 27 research contracts concluded, as well as initial work performed and first results obtained

  19. Funding nuclear-power-plant decommissioning. Final report

    International Nuclear Information System (INIS)

    Burns, R.E.; Henderson, J.S.; Pollard, W.; Pryor, T.; Chen, Y.M.

    1982-10-01

    The report is organized according to the steps that one might go through when analyzing funding of decommissioning costs. The first step in analyzing decommissioning costs might be to review the present regulatory framework within which decommissioning cost decisions must be made. A description is presented of the present NRC regulations that address the decommissioning of a nuclear power plant. A description is also presented of recent public utility commission activities concerning funding the costs of decommissioning. Possible future trends in NRC regulation are also discussed. The estimation of decommmissioning costs is analyzed. A description of each of the possible decommissoining options is presented. The options of decommissioning include immediate dismantlement, various types of safe storage, and entombment. A discussion is presented of cost estimations for each decommissioning option for nuclear units containing pressurized water reactors and boiling water reactors. A description is included of the various methods of collecting funds for decommissioning as well as a discussion of their possible regulatory treatment. Material is presented which will provide the reader with background information that might assist state utility commissioners or their staffs in choosing or evaluating one of the financial mechanisms for covering decommissioning costs

  20. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  1. Status of the Fort St. Vrain decommissioning

    International Nuclear Information System (INIS)

    Fisher, M.J.

    1990-01-01

    Fort St. Vrain is a high temperature gas cooled reactor. It has been shut down as a result of financial and technical difficulties. Fort St. Vrain has been planning for defueling and decommissioning for at least three years. The preliminary decommissioning plan, in accordance with the NRC's final rule, has been submitted and is being reviewed by the NRC. The basis of the preliminary decommissioning plan has been SAFSTOR. Public Service Company, who is the owner and operator of FSV, is scheduled to submit a proposed decommissioning plan to the NRC in the fourth quarter of 1990. PSC has gone out for bid on the decontamination and dismantlement of FSV. This paper includes the defueling schedule, the independent spent fuel storage installation status, the probability of shipping fuel to DOE, the status of the preliminary decommissioning plan submittal, the issuance of a possession only license and what are the results of obtaining this license amendment, preliminary decommissioning activities allowed prior to the approval of a proposed decommissioning plan, the preparation of a proposed decommissioning plan and the status of our decision to proceed with SAFSTOR or DECON as identified in the NRC's final decommissioning rule

  2. European Decommissioning Academy (EDA). Ready to start

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2015-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11 September 2012 in Brussels, it was stated that at least 2,000 new international experts for decommissioning will be needed in Europe up to 2025, which means about 150 each year. The article describes the European Decommissioning Academy (EDA) which is prepared for the first term in June 2015 in Slovakia. The main goal is a creation of new nuclear experts generation for decommissioning via the Academy, which will include lessons, practical exercises in laboratories as well as 2 days on-site training at NPP V-1 in Jaslovske Bohunice (Slovakia). Four days technical tour via most interesting European decommissioning facilities in Switzerland and Italy are planned as well. After the final exam, there is the option to continue in knowledge collection via participation at the 2nd Eastern and Central European Decommissioning (ECED) conference in Trnava (Slovakia). We would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future.

  3. Operating Procedures to Identify Wastes of Decommissioning

    International Nuclear Information System (INIS)

    Gatea, M.A.

    2016-01-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive material. Many of these sites suffered substantial physical damage during the Gulf Wars as well as the challenging of the difficult security situation in the country.The destruction of the former nuclear facilities during the 1991 Gulf war aggravated the problem. As a result of these events, many of these nuclear facilities have lost their containment of the radioactive material and it now has an increased potential to be dispersed into the environment.Iraqi Decommissioning Directorate (IDD) is one of the Ministry of Science and Technology (MoST) formations. It deals with decommissioning of former Iraqi nuclear sites. It considers a producer of radioactive waste.Therefore, waste management represents the vital requirement to work accomplishment.The work carries out on-site waste pretreatment which considers as a minimization of waste management.W M is necessary to: Segregate 'at source' as much materials as possible to minimize quantities of radioactive waste, clear or exempt as much materials as possible and decontaminate and recycle as much radioactive waste as possible. And in more general terms: to control and account for radioactive waste to protect human health and the environment, to make sure we do not leave unnecessary burdens for future generations, to concentrate, contain and isolate the waste from the environment therefore, this make any releases to the environment to be restricted and subject to regulatory control.This procedure applies on-site waste pretreatment which comprises segregating, characterizing, minimizing, classifying, packaging and relocating of generated wastes during decommissioning of destroyed nuclear facilities. The stationary waste treatment activities are the responsibility of RWTD/MoST.The (RPC/MoE) is the national regulatory body during the whole radioactive waste management

  4. Decommissioning of the Zirovski Vrh Uranium Mill

    International Nuclear Information System (INIS)

    Zabukovec, I.; Logar, Z.; Arh, S.

    1996-01-01

    First of the inventions, which will ensure the beginning of the permanent closure of uranium ore exploitation and prevent the consequences of mining in the Zirovski Vrh Uranium Mine, abandoned according to the law from July 1992, will be soon realized. After obtaining the location permit for dismantling the equipment, foundations and installations in four main buildings of the uranium mill, current procedures are carried out in order to obtain the permission for performing the mentioned activities and to make contracts with acting organizations. Those buildings contain sources of radiation, which were considered within the legal procedures and design of technical documentation. Instructions for decontamination and protection against radiation, both issued with those projects, highly contribute to the Slovenian experience in the field of practical management of radiation sources. Additional requirement, which enters difference between decommissioning of similar mills worldwide and the one mentioned, is preservation of buildings in order to change their purpose. (author)

  5. Study on decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    This study examines the status of maintenance of the decommissioning-related regulations to which the maintenance is still insufficient. The contents in 2012 are as follows. First, we examined site release criteria through reports by international organizations, by overseas countries where nuclear sites have been released, and the environment standards in Japan. Then we also examined the standards of decommissioning completion confirmation (in other words, site release criteria). The study results will be utilized to document standards. Second, we assessed the present Japanese decommissioning regulatory system based on safety requirements of IAEA, and identified improvements. Then we prepared an improvement plan benefiting from the regulatory experiences in foreign countries. The study results will be utilized to document standards. Third, the Fukushima Daiichi NPS, which experienced serious core accident in March, 2011, has become a Specified Nuclear Facilities according to the new nuclear regulation, and the examination of the implementation plan is performed of the Nuclear Regulation Authority. As Units 1 to 4 at the Fukushima Daiichi NPS are planned to be decommissioned, we investigated regulatory requirements in foreign countries which experienced severe accidents. (author)

  6. Considerations about the European Decommissioning Academy (EDA)

    International Nuclear Information System (INIS)

    Slugen, V.; Hinca, R.

    2014-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year.Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning (16:74:10), as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the overbridging this gap.For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe.A graduate of the European Decommissioning Academy (EDA) should have at least bachelor level from technical or natural science Universities or Colleges and at least one year working experiences in the area of NPP decommissioning or nuclear power engineering. This study creates prerequisites for acquiring and completion of professional and specialized knowledge in the subjects which are described. (authors)

  7. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    Galkin, A.; Tkachenko, V.

    2002-01-01

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  8. The curious accountancy of decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Financial provision for the decommissioning and waste management of the United Kingdom Magnox and AGR reactor is discussed. In the last set of accounts prior to privatisation a decommissioning provision of Pound 8.34 bn was indicated whereas previous figures had only shown Pound 2.88. It is suggested that the increase was only achieved on paper, without real financial provision. Estimates of decommissioning costs for the Magnox stations have increased greatly. Cost estimates for AGR decommissioning have still to be released but it is expected that the post-privatisation owners of the nuclear power industry, Nuclear Electric, will have to find Pound 6-7 bn to dismantle its own reactors. Much of this it hopes to put off for over 100 years. The South of Scotland Electicity Board has made much more realistic provision for its own Magnox and two AGR stations. Reprocessing costs for AGR reactor fuel is uncertain and high reprocessing and decommissioning costs will mean increases in the price of nuclear electricity. (UK)

  9. Decommissioning Plan for European Spallation Source

    Directory of Open Access Journals (Sweden)

    Ene Daniela

    2017-01-01

    Full Text Available This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  10. Review of Impact Factors on Decommissioning Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Taesik; Jung, Hyejin; Kim, Younggook [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This article is prepared to factor out decommissioning strategies mostly appropriate to the decommissioning Kori-1 nuclear power plant. Terms used to delineate the lifetime of an authorized facility and of the associated licensing process consists of six core stages such as siting, design, construction, commissioning, operation and decommissioning. The term decommissioning implies the administrative and technical actions taken to allow the removal of some or all of the regulatory controls from a facility except for the part of a disposal facility in which the radioactive waste is emplaced. Whole range of each process of decommissioning should be considered throughout the other five stages. The decommissioning process is typically composed of its planning, conducting actions and terminating the authorization. In order to achieve the successful decommissioning, the impact factor on the strategy should be analyzed and evaluated to optimally apply to Kori-1 project. From my perspective, among eight factor, stakeholder’s consideration and spent fuel management are considered the key elements we have to concentrate on to smoothly go ahead for successful decommissioning of Kori-1.

  11. Nuclear decommissioning and society

    International Nuclear Information System (INIS)

    Pasqualetti, M.J.

    1990-01-01

    Links between decommissioning in general, reactor decommissioning in particular, and the public are indexed. The established links are recognised and others, such as jobs, are discussed. Finally the links with policy, such as political geography, and wider issues of the environment and public concern over waste disposal are considered. Decommissioning is a relatively new field where public opinion must now be considered but it has implications both for existing nuclear power plants and those planned for the future, especially in their siting. This book looks especially at the situation in the United Kingdom. There are twelve papers, all indexed separately. (UK)

  12. Decommissioning situation and research and development for the decommissioning of the commercial nuclear power station in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Tatsumi.

    1996-01-01

    There are 48 commercial nuclear power stations in operation in Japan as of January 1, 1995, which supplies about 28% (2.2 x 10 8 MWh) of total annual electricity generation in FY 1992. Accordingly, as the nuclear power contributes so much in electricity generation, there is a growing concern in the public toward the safety on decommissioning nuclear power station. It is gravely important to secure the safety throughout the decommissioning. This paper discusses: the decommissioning situation in Japan; the Japanese national policy for decommissioning of commercial nuclear power stations; R and D for decommissioning of commercial nuclear power stations in Japan; and the present conditions of low-level radioactive wastes disposal in Japan

  13. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  14. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    Pasquini, L.A.

    1986-01-01

    The purpose of the Shippingport Station Decommissioning Project (SSDP) is to place the Shippingport Atomic Power Station in a long-term radiologically safe condition following defueling of the reactor, to perform decommissioning in such a manner as to demonstrate to the nuclear industry the application of decommissioning procedures to a large scale nuclear power plant, and to provide useful planning data for future decommissioning projects. This paper describes the Technology Transfer Program for collecting and archiving the decommissioning data base and its availability to the nuclear industry

  15. Human resource development for management of decommissioning

    International Nuclear Information System (INIS)

    Tanaka, Kenichi

    2017-01-01

    This paper described the contents of 'Human resource development for the planning and implementation of safe and reasonable nuclear power plant decommissioning' as the nuclear human resource development project by the Ministry of Education, Culture, Sports, Science and Technology. The decommissioning of a nuclear power plant takes 30 to 40 years for its implementation, costing tens of billions of yen. As the period of decommissioning is almost the same as the operation period, it is necessary to provide a systematic and continuous supply of engineers who understand the essence of the decommissioning project. The engineers required here should have project management ability to take charge of preparation, implementation, and termination of decommissioning, and have the ability to perform not only technology, but also factor management, cost management, and the like. As the preconditions of these abilities, it is important to develop human resources who possess qualities that can oversee decommissioning in the future. The contents of human resource education are as follows; (1) desk training (teaching materials: facilities of nuclear power plants, management of nuclear fuels, related laws, decommissioning work, decontamination, dismantling, disposal of waste, etc.), (2) field training (simulators, inspection of power station under decommissioning, etc.), (3) practical training (radiation inventory evaluation, and safety assessment), and (4) inspection of overseas decommissioning, etc. (A.O.)

  16. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  17. Management of Decommissioning on a Multi-Facility Site

    International Nuclear Information System (INIS)

    Laraia, Michele; McIntyre, Peter; Visagie, Abrie

    2008-01-01

    The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate

  18. The waste management implications of decommissioning

    International Nuclear Information System (INIS)

    Passant, F.H.

    1988-01-01

    Decommissioning policy can only be framed in the light of radioactive waste management policy. What can be done with the waste materials, how and when, will determine the overall decommissioning plans and costs. In this paper the waste management options and their costs are reviewed for the decommissioning of the Central Electricity Generating Boards civil nuclear power stations. The paper concentrates on the decommissioning of Magnox stations, although comparative information on waste volumes and costs are given for the AGR programme and a typical PWR. (author)

  19. ECED 2013: Eastern and Central Europe Decommissioning. International Conference on Decommissioning of Nuclear Facilities. Conference Guide and Book of Abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The Conference included the following sessions: (I) Opening session (2 contributions); (II) Managerial and Funding Aspects of Decommissioning (5 contributions); (III) Technical Aspects of Decommissioning I (6 contributions); (IV) Experience with Present Decommissioning Projects (4 contributions); (V) Poster Session (14 contributions); (VI) Eastern and Central Europe Decommissioning - Panel Discussion; (VII) Release of Materials, Waste Management and Spent Fuel Management (6 contributions); (VIII) Technical Aspects of Decommissioning II (5 contributions).

  20. Using geographical information systems in planning NLLP decommissioning and environmental restoration activities

    International Nuclear Information System (INIS)

    McGregor, R.; Turner, W.

    2011-01-01

    The Nuclear Legacy Liabilities Program (NLLP) manages Canada's nuclear legacy liabilities at Atomic Energy of Canada Limited (AECL) sites and is funded by the Government of Canada through Natural Resources Canada (NRCan). Through the first five years of the Program these two organizations have worked collaboratively to bring numerous projects to completion. In addition to the diversity of facilities and waste dealt with under the NLLP, the Program involves seven sites in three different provinces. The breadth of the Program encompasses over 20 different projects at AECL's Chalk River Laboratories (CRL) site alone, with new projects evolving as work continues. Nuclear legacy liabilities are the result of over 60 years of nuclear research and development conducted by the National Research Council of Canada (1944 to 1952) and AECL (1952 to 2006) on behalf of the Government of Canada. The liabilities consist of outdated and unused research facilities and buildings, a wide variety of buried and stored radioactive waste, and affected lands. Since 1952, AECL has safely and cost effectively managed Canada's nuclear research facilities and the waste generated by their operation. During this time AECL improved waste management technologies and developed expertise in best practices. All projects undertaken by the NLLP contain a spatial, or geographically referenced, component that can be captured in a geographic information system (GIS). From the decommissioning of a single building within the plant itself (e.g. the building location itself or spaces within the building) to the process of locating a new facility within the CRL site (e.g. location within the CRL property in three dimensions and adjacency to other communities) all these projects contain spatially referenced information. This spatial information can be captured, organized and used by the GIS software to analyze and model any number of questions. The paper will discuss projects that address a

  1. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    International Nuclear Information System (INIS)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-01-01

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site

  2. Comparative analysis of the Oskarshamn 3 and Barsebaeck site decommissioning studies

    International Nuclear Information System (INIS)

    Hansson, Bertil; Joensson, Lars-Olof

    2009-01-01

    included. For future cost estimates and in order to permit comparison of results, the power plant owner must clearly specify in the decommissioning plan boundary conditions, what facilities/buildings are included and the decommissioning schedule. Strategies for how to manage plant staff, as well as how the staff will participate in the decommissioning activities, are the responsibility of the power plant owner. To facilitate comparison, it is desirable to have a set of similar boundary conditions, end states etc. In reality, different decommissioning projects will be based on different premises, and it is essential that all conditions be documented clearly and transparently. Experience shows that the method used today, where the estimated decommissioning cost from a reference plant is transferred in almost direct relation to unit size and thermal power, is not accurate, but instead only a small portion is related to thermal power. For this reason, unit- and site-specific decommissioning cost calculations are recommended, based on well defined and transparent documented premises. A decommissioning project can in many ways be compared to a cross between a maintenance outage and the construction of a nuclear facility. Decommissioning is not so far off in time, and it is therefore surprising that such meagre resources are devoted to the detailed planning of the activities in such costly project. Our comment from having read and studied the two studies is that the difference lies not so much in how you calculate the cost of the individual decommissioning cost items, but rather more in how you control the basic costs such as the size of the management group in charge of the decommissioning, the time allotted for the project, the basic costs for the support and service staffs engaged in the project, and of course the execution of the actual decommissioning work. Experience shows that the method used today, where the decommissioning cost from a reference plant is transferred in

  3. Comparative analysis of the Oskarshamn 3 and Barsebaeck site decommissioning studies

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Bertil (Bewon, Loeddekoepinge (Sweden)); Joensson, Lars-Olof (Barsebaeck Kraft AB, Loeddekoepinge (Sweden))

    2009-01-15

    what is included. For future cost estimates and in order to permit comparison of results, the power plant owner must clearly specify in the decommissioning plan boundary conditions, what facilities/buildings are included and the decommissioning schedule. Strategies for how to manage plant staff, as well as how the staff will participate in the decommissioning activities, are the responsibility of the power plant owner. To facilitate comparison, it is desirable to have a set of similar boundary conditions, end states etc. In reality, different decommissioning projects will be based on different premises, and it is essential that all conditions be documented clearly and transparently. Experience shows that the method used today, where the estimated decommissioning cost from a reference plant is transferred in almost direct relation to unit size and thermal power, is not accurate, but instead only a small portion is related to thermal power. For this reason, unit- and site-specific decommissioning cost calculations are recommended, based on well defined and transparent documented premises. A decommissioning project can in many ways be compared to a cross between a maintenance outage and the construction of a nuclear facility. Decommissioning is not so far off in time, and it is therefore surprising that such meagre resources are devoted to the detailed planning of the activities in such costly project. Our comment from having read and studied the two studies is that the difference lies not so much in how you calculate the cost of the individual decommissioning cost items, but rather more in how you control the basic costs such as the size of the management group in charge of the decommissioning, the time allotted for the project, the basic costs for the support and service staffs engaged in the project, and of course the execution of the actual decommissioning work. Experience shows that the method used today, where the decommissioning cost from a reference plant is

  4. Preservation and Implementation of Decommissioning Lessons Learned in the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Rodriguez, Rafael L.

    2008-01-01

    Over the past several years, the United States Nuclear Regulatory Commission (NRC) has actively worked to capture and preserve lessons learned from the decommissioning of nuclear facilities. More recently, NRC has involved industry groups, the Organization of Agreement States (OAS), and the Department of Energy (DOE) in the effort to develop approaches to capture, preserve and disseminate decommissioning lessons learned. This paper discusses the accomplishments of the working group, some lessons learned by the NRC in the recent past, and how NRC will incorporate these lessons learned into its regulatory framework. This should help ensure that the design and operation of current and future nuclear facilities will result in less environmental impact and more efficient decommissioning. In summary, the NRC will continue capturing today's experience in decommissioning so that future facilities can take advantage of lessons learned from today's decommissioning projects. NRC, both individually and collectively with industry groups, OAS, and DOE, is aggressively working on the preservation and implementation of decommissioning lessons learned. The joint effort has helped to ensure the lessons from the whole spectrum of decommissioning facilities (i.e., reactor, fuel cycle, and material facilities) are better understood, thus maximizing the amount of knowledge and best practices obtained from decommissioning activities. Anticipated regulatory activities at the NRC will make sure that the knowledge gained from today's decommissioning projects is preserved and implemented to benefit the nuclear facilities that will decommission in the future

  5. Worldwide overview of nuclear submarine decommissioning plans and issues

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1995-06-01

    The number of nuclear propelled vessels that have reached the end of their useful life, is increasing. This raises the question of what to do with these vessels. In this paper the order of magnitude of the problem is first discussed, i.e. the number of nuclear ships built and the number already taken out of service. Next the problems of the first stages of decommissioning are discussed, i.e. the removal of the fuel and the preparation of the reactor parts for final disposal, including the amounts of radioactivity involved. Thirdly, the various methods of final disposal are considered, sea disposal, shallow land burial and deep land burial. Finally, the risks involved in nuclear submarine decommissioning are briefly discussed. (au)

  6. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that ∼5,500 m 3 of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste

  7. Avaliação de variedades e híbridos de bananeiras sob irrigação Evaluation of banana varieties and hybrids under irrigation

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Rodrigues Donato

    2003-08-01

    Full Text Available O Brasil dispõe de um grande número de variedades de bananeira, porém poucas atendem integralmente as exigências relativas à preferência dos consumidores, à produtividade e à resistência a doenças. O objetivo deste trabalho foi avaliar, durante dois ciclos produtivos, em Guanambi (BA, as variedades Nam (AAA, Caipira (AAA, Grande Naine (AAA e Prata Anã (AAB e os híbridos (AAAB PA12-03, FHIA-01, SH3640 e FHIA-18 quanto ao porte, ao peso do cacho, ao número de pencas e de frutos, ao número de folhas no florescimento e na colheita e ao ciclo, no delineamento inteiramente casualizado. A 'Grande Naine' destacou-se nos dois ciclos, sobretudo na produtividade. No primeiro ciclo, a 'Caipira' e os híbridos FHIA-18 e SH3640 obtiveram, após a Grande Naine, os melhores rendimentos no peso do cacho. A Caipira também se destacou no número de frutos e os híbridos SH3640, FHIA-01 e FHIA-18 mostraram um bom desempenho no número de pencas, superando a 'Prata Anã'. O SH3640 apresentou o maior número de folhas na colheita e o PA12-03 foi o genótipo mais baixo e mais precoce. No segundo ciclo, o SH3640 foi um dos destaques quanto ao peso do cacho, ao número de pencas e ao número de folhas no florescimento e na colheita, perdendo apenas para a Grande Naine, nos dois primeiros caracteres, e para a Prata Anã, nos dois últimos. No número de frutos, a Caipira sobressaiu-se, superando a Grande Naine. Como no primeiro ciclo, o PA12-03 foi o genótipo mais precoce, ao lado do FHIA-18, e o segundo mais baixo, ao lado da Nam. O porte e o peso do cacho tiveram um acréscimo, entre os ciclos, nos genótipos avaliados. Os híbridos possuem potencial para ser lançados como cultivares.Brazil has a great number of banana varieties, however a few of them attend completely the exigencies related to the consumers preference requirements, productivity and diseases resistance. The objective of this work was to evaluate banana varieties and hybrids in Guanambi

  8. Lesson Learned in Preparation for Decommissioning of Three Canadian Prototype Power Reactors

    International Nuclear Information System (INIS)

    Vickerd, Meggan; Kenny, Stephen

    2016-01-01

    semi-custodial state as an active safe enclosure strategy. As a result of continued occupancy and re-purposing some of the buildings post shutdown, most of the building services including heating, ventilation, water and fire detection systems at the Douglas Point site have been maintained operational. With the exception of the fuel canister area, security is maintained as access control for the multi facility site. The Gentilly-1 Nuclear Generating Station was put into service in 1972. It consisted of a 250 MW CANDU- BWR experimental reactor located in Beancour, Quebec on a shared site with the Gentilly-2 Nuclear Generating Station (owned by Hydro Quebec). Following issues in attaining a full operational status, the reactor was put into a lay-up state in 1980 and permanently shutdown in 1982. The Gentilly-1 site is maintained with a safe enclosure strategy primarily in a 'Cold and Quiet' state with all ventilation and heating systems shutdown. However, a dehumidifier is installed to maintain the moisture levels within the reactor building envelope. Fire detection is limited to areas of concern and, with the exception of the canister area, security is maintained for access control to a multi-facility site. Lesson learned from the deferred decommissioning strategy on the maintenance of existing building structures and associated storage facilities while we allow for decay of the radioactive materials; the impact on costs and other associated factors will be explored. This paper will discuss the lesson learned from shutdown strategies and the impact of these strategies on the safe enclosure period through to decommissioning as it was employed at the three Canadian prototype power reactor sites. Topics will include the advantages and drawbacks, as well as, the repercussions of these strategies, due to the extended shut down periods which affect shut down operating costs, life management strategies, regulatory implications and progression into the final

  9. Preparatory activities of the Fugen decommissioning

    International Nuclear Information System (INIS)

    Iguchi, Y.; Tajiri, T.; Kiyota, S.

    2004-01-01

    The Advanced Thermal Reactor Fugen is a 165 MWe, heavy water moderated, light-water cooled, pressure-tube type reactor. In February 1998, the Atomic Energy Commission of Japan introduced a new policy that development and research of decommissioning of Fugen should be promoted in order to carry out the decommissioning smoothly after the shutdown. The Fugen reactor was shut down definitely in March 2003, and Fugen has been preparing for the project, including necessary development of technologies. The development of decommissioning for Fugen is divided into two areas. One area is the development of unique technology for dismantling special components such as the reactor core and the heavy water system. Another area is the improvement and enhancement of existing technologies. Especially the former area requires effort and comprises development of the reactor dismantlement, tritium decontamination of heavy water system and engineering support systems. The activities are as follows: the density and amount of radioactive nuclides in all equipment or concrete including the reactor core need to be evaluated for the decommissioning. To prepare for decommissioning, analysis, measurement and evaluation of the neutron flux density have been executed during reactor operation. Special dismantling process is necessary for the heavy water system and the reactor that are unique to Fugen. Some studies and tests are going on for the safe dismantling based on existing technologies and their combination. Systems engineering approach is necessary in order to optimize the work load, exposure dose, waste mass and cost by selecting appropriate dismantling process at the planning stage of the decommissioning. For this reason, in order to make a decommissioning plan efficiently, we have been developing an Engineering Support System for decommissioning by adopting new information technologies such as three-dimensional computer-aided design system and virtual reality system. Moreover, the

  10. Decommissioning of nuclear facilities in Korea

    International Nuclear Information System (INIS)

    Hahn, Pil Soo

    2003-01-01

    In 1996, it was concluded that the first Korea research reactor (KRR-1) and the second Korea research reactor (KRR-2) would be shut down and decommissioned. The main reason for the decommissioning was that the facilities became old and has become surrounded by the urbanised community. And many difficulties, including the higher cost, were faced according to the enhanced regulations. Another reason was the introduction of a new research reactor 'HANARO' in 1995. A project to decommission the reactors was launched on January of 1997 with a goal of release of the site and buildings for unrestricted use by 2008. All the radioactive wastes generated are to be transported to the national repository, planned by the Korea Hydro and Nuclear Power Company (KHNP), and the final evaluation of the residual radioactivity will be made before the clearance of the site. As a first step of the project, a decommissioning plan, including the assessment of the environmental impact and the quality assurance program, was prepared and submitted to the government in 1998. It was approved, after its safety evaluation, by the Korea Institute of Nuclear Safety (KINS) in November of 2000. After some preparative works such as documentation of procedures, the decontamination and dismantling works for the laboratories and hot cells of KRR-2 were started in September, 2001 and finished in December, 2002. The spent fuels that had been generated from the reactors were transferred to the United States in 1998 and no spent fuel remained at the site. All the liquid waste, both operational and decommissioning, was very low in its radioactivity and was treated in a natural evaporation facility of 200 m3/year capacity, developed by KAERI. Especially the laundry waste was treated in a membrane filtering unit for the removal of surfactants before being introduced to the natural evaporator. The solid wastes were segregated and packed in the container of 4 m3, designed according to the ISO-1496, and also in

  11. Decommissioning of Facilities. General Safety Requirements. Pt. 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  12. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  13. Decommissioning of the MZFR nuclear power plant at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Demant, W.; Engelhardt, G.

    1991-01-01

    The MZFR multipurpose research reactor was permanently shut down on May 3, 1984. The envisaged decommissioning concept provides for disposal in five steps. The first two steps are devoted to preparatory work on dismantling and simplification of the systems needed for dismantling. In the third step the reactor auxiliary systems in the auxiliary building and in the fourth step the reactor systems in the reactor building will be dismantled. In the fifth step remote dismantling of the reactor pressure vessel and demolition of the building will take place. The scheduled date of completion is the year 2001. (author)

  14. UK reactor decommissioning strategy

    International Nuclear Information System (INIS)

    Woollam, P.B.

    2004-01-01

    With the cessation of electricity generation, nuclear power stations move into the next stage of the overall life cycle of the facility: decommissioning. Decommissioning is defined as the process whereby a nuclear facility, at the end of its economic life, is taken permanently out of service and its site made available for other purposes. This involves the implementation of a structured and safe programme for dismantling and clearing the site and making it available for alternative use in the future. In practical terms, 'decommissioning' means the systematic and progressive reduction of hazards to the point where the site could eventually be de-licensed. (author)

  15. Decommissioning of AECL Whiteshell Laboratories: progress from first five years of legacy funding

    International Nuclear Information System (INIS)

    Swartz, R.S.; Bilinsky, D.M.; Harding, J.W.; Ridgway, W.R.

    2011-01-01

    In 2006, the Government of Canada adopted a new long-term strategy to deal with the nuclear legacy liabilities and initiated a five-year start-up phase. The objective is to safely and cost-effectively reduce these liabilities, and associated risks, based on sound waste management and environmental principles in the best interests of Canadians. AECL's Whiteshell Laboratories is part of the long-term strategy and decommissioning activities are underway. Several redundant non-nuclear buildings have been removed/decommissioned, and redundant nuclear facilities (hot cell facilities, radiochemical laboratories) are being decontaminated and prepared for demolition. This paper describes the progress in the first five-year funding period (2006 April to 2011 March). (author)

  16. New start of nuclear-powered ship 'Mutsu'. 2. On decommissioning works

    International Nuclear Information System (INIS)

    Matsuo, Ryusuke

    1996-01-01

    It was decided that 'Mutsu' is decommissioned immediately after the finish of the experimental voyage in the fundamental plan. Therefore, Nuclear-powered Ship Decommissioning Department was organized in Japan Atomic Energy Research Institute in 1992, and the investigation was begun on the measures to abolish the reactor facilities of 'Mutsu'. The fundamental plan was decided to adopt the removal and isolation method for the reactor room including the reactor and shields, to use the ship as the conventional propulsion ocean research ship, and to exhibit the removed reactor chamber under proper control. The required technical assessment and safety examination were carried out based on this fundamental plan. The technical feasibility studies were carried out on the safety of placing 'Mutsu' on a semisubmersible barge, the safety of the cutting works of the hull, the safety of a floating crane, and the safety at the time of accidents. Taking-out of fuel assemblies, the removal works of machinery and equipment in the reactor auxiliary machine room and others, the removal and transport works of the reactor room in a lump, the construction works of the preservation building, and the safety control on the decommissioning works are described. (K.I.)

  17. Risk Assessment Strategy for Decommissioning of Fukushima Daiichi Nuclear Power Station

    Directory of Open Access Journals (Sweden)

    Akira Yamaguchi

    2017-03-01

    Full Text Available Risk management of the Fukushima Daiichi Nuclear Power Station decommissioning is a great challenge. In the present study, a risk management framework has been developed for the decommissioning work. It is applied to fuel assembly retrieval from Unit 3 spent fuel pool. Whole retrieval work is divided into three phases: preparation, retrieval, and transportation and storage. First of all, the end point has been established and the success path has been developed. Then, possible threats, which are internal/external and technical/societal/management, are identified and selected. “What can go wrong?” is a question about the failure scenario. The likelihoods and consequences for each scenario are roughly estimated. The whole decommissioning project will continue for several decades, i.e., long-term perspective is important. What should be emphasized is that we do not always have enough knowledge and experience of this kind. It is expected that the decommissioning can make steady and good progress in support of the proposed risk management framework. Thus, risk assessment and management are required, and the process needs to be updated in accordance with the most recent information and knowledge on the decommissioning works.

  18. Risk assessment strategy for decommissioning of Fukushima Daiichi Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akira; Jang, Sung Hoon [The University of Tokyo, Tokyo (Japan); Hida, Kazuki [Nuclear Damage Compensation and Decommissioning Facilitation Corporation, Tokyo (Japan); Yamanaka, Yasunori [Tokyo Electric Power Company Holdings, Tokyo (Japan); Narumiya, Yoshiyuki [The Kansai Electric Power Co., Inc., Osaka (Japan)

    2017-03-15

    Risk management of the Fukushima Daiichi Nuclear Power Station decommissioning is a great challenge. In the present study, a risk management framework has been developed for the decommissioning work. It is applied to fuel assembly retrieval from Unit 3 spent fuel pool. Whole retrieval work is divided into three phases: preparation, retrieval, and transportation and storage. First of all, the end point has been established and the success path has been developed. Then, possible threats, which are internal/external and technical/societal/management, are identified and selected. “What can go wrong?” is a question about the failure scenario. The likelihoods and consequences for each scenario are roughly estimated. The whole decommissioning project will continue for several decades, i.e., long-term perspective is important. What should be emphasized is that we do not always have enough knowledge and experience of this kind. It is expected that the decommissioning can make steady and good progress in support of the proposed risk management framework. Thus, risk assessment and management are required, and the process needs to be updated in accordance with the most recent information and knowledge on the decommissioning works.

  19. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  20. Human resource development for decommissioning

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2016-01-01

    This paper summarized the features of decommissioning work and the methods how to develop human resources. The general flow of decommissioning includes the following steps: (1) evaluation of facility characteristics, (2) planning, (3) decontamination and disassembly of equipment and structures contaminated with radioactivity, (4) radioactivity measurement, (5) treatment and disposal of radioactive waste, and (6) release from legal restrictions (termination of decommissioning). For this purpose, techniques in various fields are required. In the evaluation of facility characteristics, radiation measurement and calculation of activation amount in the core part are required. In decontamination and dismantling, cutting technology (mechanical cutting, thermal cutting, etc.), decontamination technology, and remote control technology are required. In the nuclear power education in the past, the fields related to design, construction, operation, and maintenance among the plant life cycle were the main parts. Much attention was not payed to decommissioning and the treatment/disposal of radioactive waste in the second half of life cycle. As university education, Hokkaido University and Fukui University have lectures on decommissioning. Furthermore, the education and research for students are proceeding at seven universities, with a focus on common reactors including those of Fukushima Daiichi Power Station. It is a key for promoting decommissioning, to incorporate project management, risk analysis, cost evaluation, and decision making into education, and to foster human resources heading toward challenging problems including social problems. (A.O.)

  1. An outsider's view of decommissioning

    International Nuclear Information System (INIS)

    Wilkie, T.

    1996-01-01

    The decommissioning of nuclear facilities is not just a technical or even a financial issue. Presenting decommissioning as a technically difficult task overcome by superhuman effort on the part of the industry will not gain much credit amongst sophisticated consumers who now require that any complex technology will work and work safely. Any engineering problems are surmountable given the money to find the solution. Some of the financial aspects of decommissioning are worrying, however, given their open-ended nature. The cost of waste disposal is one of these. Despite a lapse of fifty years since the start-up of its first reactor, the United Kingdom is unlikely to have available a repository for the disposal of intermediate level waste until about 2020. Waste disposal is a large consideration in decommissioning and the industry's forecasts of cost in this area lack credibility in the light of a poor track record in financial prediction. Financial engineering in the form of the segregated fund set up in March 1996 to cover the decommissioning of nuclear power stations in the United Kingdom is likely to provide only short term reassurance in the light of doubts about a credible future for nuclear power. This lack of confidence over the wider problems of nuclear power creates particular problems for decommissioning which go beyond technical difficulties and complicate financial considerations. (UK)

  2. Principles of record keeping for decommissioning purposes

    International Nuclear Information System (INIS)

    Laraia, M.

    2003-01-01

    At the siting and conceptual design stage of a nuclear facility the first records pertaining to that facility are produced and stored. Subsequent phases in the facility's life cycle (detailed design, construction, commissioning, operation and shutdown) will include the production and retention of a large variety of records. Design, as-built drawings and operational records are essential for safe and efficient operation of any nuclear facility. This set of records is constantly updated and augmented during operation. Records from all phases of a nuclear facility are important for planning its decommissioning. Although not all of these records need to be included explicitly in the decommissioning plan itself, the process of initial, ongoing and final planning utilizes pertinent records for, and ultimately achieves, safe and cost effective decommissioning. When a nuclear facility is shutdown for decommissioning, current operating experience may be lost. Therefore, one important element of planning is to identify, secure and store appropriate operational records to support decommissioning. This process is preferably initiated during the design and construction phase and continues throughout operation including shutdown. Part of the records inventory from operation will become records for decommissioning and it is cost effective to identify these records before final facility shutdown. Experience shows that lack of attention to record keeping may result in an undue waste of time, other resources and additional costs. The newly established Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management recognizes the importance of keeping decommissioning-related records. In addition, the systematic management of records is an essential part of quality assurance and is often a licence condition. A good comprehensive decommissioning records management system (RMS) is one specific application of the broader concepts of 'Protection

  3. Fort St. Vrain defueling ampersand decommissioning considerations

    International Nuclear Information System (INIS)

    Warembourg, D.

    1994-01-01

    Fort St. Vrain Nuclear Generating Station (FSV) is one of the first commercial reactors to be decommissioned under NRC's decommissioning rule. The defueling and decommissioning of this 330 MWe High Temperature Gas Cooled Reactor (HTGR) has involved many challenges for Public Service Company of Colorado (PSC) including defueling to an Independent Spent Fuel Storage Installation (ISFSI), establishing decommissioning funding, obtaining regulatory approvals, arranging for waste disposal, and managing a large fixed price decommissioning contract. In 1990, a team comprised of the Westinghouse Corporation and Morrison Knudsen Corporation, with the Scientific Ecology Group as a major subcontractor, was contracted by PSC to perform the decommissioning under a fixed price contract. Physical work activities began in August 1992. Currently, physical dismantlement activities are about 45% complete, the project is on schedule, and is within budget

  4. Annual summary report on the Decontamination and Decommissioning Program at the Oak Ridge Y-12 Plant for the period ending September 30, 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Y-12 Decontamination and Decommissioning (D ampersand D) Program provides for the ultimate disposition of plant process buildings and their supporting facilities. The overall objective is to enable the Y-12 Plant to meet applicable environmental regulations and Department of Energy (DOE) orders to protect human health and the environment from contaminated facilities through decommissioning activities. This objective is met by providing for the surveillance and maintenance (S ampersand M) of accepted standby or shutdown facilities awaiting decommissioning; planning for decommissioning of these facilities; and implementing a program to accomplish the safe, cost-effective, and orderly disposition of contaminated facilities. The Y-12 D ampersand D Program was organized during FY 1992 to encompass the needs of surplus facilities at the Y-12 Plant. The need existed for a program which would include Weapons Program facilities as well as other facilities used by several programs within the Y-12 Plant. Building 9201-4 (Alpha 4) is the only facility that is formally in the D ampersand D Program. Funding for the work completed in FY 1992 was shared by the Environmental Restoration and Waste Management Program (EW-20) and Weapons Operations (GB-92). This report summarizes the FY 1992 D ampersand D activities associated with Building 9201-4. A section is provided for each task; the tasks include surveillance, routine and special maintenance, safety, and D ampersand D planning

  5. Cost estimation for decommissioning: a review of current practice

    International Nuclear Information System (INIS)

    O'Sullivan, P.; Pescatore, C.

    2009-01-01

    boundary conditions; cost estimation methodologies; and experience gained during the process. Twelve countries provided responses and participated in the analysis: Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, the Slovak Republic, Spain, Sweden, the United Kingdom and the United States. The final report documenting the study is nearing publication. Its main findings are reported in this article. There is no single cost assessment methodology that applies equally at all stages of a decommissioning project. This means that different cost assessment methodologies may need to be used as the project advances. Such methodologies should be continuously updated using cost data from actual decommissioning projects, thus improving the cost assessment, providing better control of uncertainties and contingencies for each major cost category, and facilitating the preparation of an annualized schedule of expenditures for each facility. In the future, risk management may benefit from an approach that uses a deterministic calculation (base case) that feeds into a probabilistic assessment of future costs. Such approaches may be used to gain a better understanding of potential cost and programme requirements. Attention should also be given early on to socio-economic factors, including impacts caused by loss of employment, to help in building public support and acceptance of a decommissioning project. Early meetings with stakeholders may be used to gain agreement on project boundary conditions, strategy, release criteria and measurement protocols, and waste containers used. In view of the very significant impacts that changes and increases in scope may have on cost estimates, it is important that these be identified and controlled immediately, and incorporated into the estimate so that the estimate may continue to provide a viable benchmarking resource. Characterisation is acknowledged to be an important part of cost estimating accuracy, as it affects system and structure

  6. The European community's programme of research on the decommissioning of nuclear power plants: objectives, scope and implementation

    International Nuclear Information System (INIS)

    Huber, B.

    1984-01-01

    The European Community's research activities on the decommissioning of nuclear installations are aimed at developing effective techniques and procedures for ensuring the protection of man and his environment against the potential hazards from nuclear installations that have been withdrawn from service. The first five-year (1979-1983) programme of research on the decommissioning of nuclear power plants has comprised seven R and D projects concerning the following areas: maintaining disused plants in safe condition; surface decontamination for decommissioning purposes; dismantling techniques; treatment of the main waste materials arising in decommissioning, i.e. steel, concrete and graphite; large containers for decommissioning waste; arisings and characteristics of decommissioning waste; plant design features facilitating decommissioning. The research work was carried out by organizations and companies in the Member States under 51 research contracts, most of them cost-sharing. The Commission is now launching a new five-year (1984-1988) programme of research on the decommissioning of nuclear installations. (author)

  7. Decommissioning of nuclear power facilities

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Yashchenko, Ya.V.

    2005-01-01

    This is the first manual in Ukraine giving the complete review of the decommissioning process of the nuclear power facilities including the issues of the planning, design documentation development, advanced technology description. On the base of the international and domestic experience, the issues on the radwaste management, the decontamination methods, the equipment dismantling, the remote technology application, and also the costs estimate at decommissioning are considered. The special attention to the personnel safety provision, population and environment at decommissioning process is paid

  8. Needs for European decommissioning academy (EDA)

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2014-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year. Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning, as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the over-bridging this gap. The main goal is - from about 74% of nuclearized experts (graduated at different technical Universities and increased their nuclear knowledge and skills mostly via on-job training and often in the area of NPP operation) to create nuclear experts for decommissioning via our post-gradual coursed organized in two semester study at our Academy, which will include the lessons, practical exercises in our laboratories, on-site training at NPP V-1 in Jaslovske Bohunice, Slovakia as well as 3 days technical tour to JAVYS (Slovakia), UJV Rez (Czech Rep.) and PURAM (Hungary), respectively. Beside the exams in selected topics (courses), the final thesis written under supervision of recognized experts will be the precondition for graduation and certification of the participants. For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe. The growing decommissioning market creates a potential for new activities, with highly skilled jobs in an innovative field, involving high-level technologies. A clear global positioning of the EU will stimulate the export of know-how to

  9. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    International Nuclear Information System (INIS)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-01

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample

  10. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  11. Decommissioning standards: the radioactive waste impact

    International Nuclear Information System (INIS)

    Russell, J.L.; Crofford, W.N.

    1979-01-01

    Several considerations are important in establishing standards for decommissioning nuclear facilities, sites and materials. The review includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions, and low-level radioactive waste. Decommissioning appears more closely related to radiation protection than to waste management, although it is often carried under waste management programs or activities. Basically, decommissioning is the removal of radioactive contamination from facilities, sites and materials so that they can be returned to unrestricted use or other actions designed to minimize radiation exposure of the public. It is the removed material that is the waste and, as such, it must be managed and disposed of in an environmentally safe manner. It is important to make this distinction even though, for programmatic purposes, decommissioning may be carried under waste management activities. It was concluded that the waste disposal problem from decommissioning activities is significant in that it may produce volumes comparable to volumes produced during the total operating life of a reactor. However, this volume does not appear to place an inordinate demand on shallow land burial capacity. It appears that the greater problems will be associated with occupational exposures and costs, both of which are sensitive to the timing of decommissioning actions

  12. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    Baumann, B.L.; Haffner, D.R.; Miller, R.L.; Scotti, K.S.

    1986-06-01

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  13. Challenges for decommissioning policies

    International Nuclear Information System (INIS)

    Riotte, H.

    2007-01-01

    In the coming years, OECD member countries will be increasingly faced with the need to make appropriate provisions, in terms of policy, finance and management, for all aspects of decommissioning. Decommissioning requires regulatory approval and oversight, the directions of which are guided by national policy. In several instances, governments have only recently begun to address their approaches to decommissioning policy and regulation in national legislation, and international overviews of such approaches, which may eventually lead to international harmonization, are only now beginning to emerge. In parallel, policy and regulation have been evolving and a broadened competence has developed in relevant regulatory authorities. The challenge lying ahead is to establish a framework that will allow for the growth of nuclear industrial activities in competitive, globalized markets, while maintaining and assuring the safety of decommissioning for the public and for workers. Within this context, institutional arrangements, stakeholder issues, costs and funding, waste management and policies for release from regulatory control, as well as the availability of technologies and skills, need to be reviewed. (author)

  14. Program change management during nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Bushart, Sean; Kim, Karen; Naughton, Michael

    2011-01-01

    Decommissioning a nuclear power plant is a complex project. The project involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As certain project Milestones are met, the evolution of such plant programs and regulations can help optimize project execution and cost. This paper will provide information about these Milestones and the plant departments and programs that change throughout a decommissioning project. The initial challenge in the decommissioning of a nuclear plant is the development of a definitive plan for such a complex project. EPRI has published several reports related to decommissioning planning. These earlier reports provided general guidance in formulating a Decommissioning Plan. This Change Management paper will draw from the experience gained in the last decade in decommissioning of nuclear plants. The paper discusses decommissioning in terms of a sequence of major Milestones. The plant programs, associated plans and actions, and staffing are discussed based upon experiences from the following power reactor facilities: Maine Yankee Atomic Power Plant, Yankee Nuclear Power Station, and the Haddam Neck Plant. Significant lessons learned from other sites are also discussed as appropriate. Planning is a crucial ingredient of successful decommissioning projects. The development of a definitive Decommissioning Plan can result in considerable project savings. The decommissioning plants in the U.S. have planned and executed their projects using different strategies based on their unique plant circumstances. However, experience has shown that similar project milestones and actions applied through all of these projects. This allows each plant to learn from the experiences of the preceding projects. As the plant transitions from an operating plant through decommissioning, the reduction and termination of defunct programs and regulations can help optimize all facets of

  15. Waste generated by the future decommissioning of the Magurele VVR-S Research Reactor

    International Nuclear Information System (INIS)

    Dragolici, F.; Turcanu, C.N.; Dragolici, A.C.

    2001-01-01

    Nuclear Research Reactor WWR-S from the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei', Bucharest-Magurele, was commissioned in July 1957 and it was shut down in December 1997. At the moment the reactor is in conservation state. During its operation this reactor worked at an average power of 2MW, almost 3216 h/year, producing a total thermal power of 230 x 10 3 MWh. No major modifications or improvements were made during the 40 years of operation to the essential parts of the reactor, respective to the primary cooling system, reactor vessel, active core and electronic devices. So, all components of the measure, control and protection systems are old, generally at the technical level of the 1950s, therefore a reason why in December 1997 the operation was ceased. At present, the reactor can be considered, by IAEA definition in the first stage (reactor shut down, but the vital functions are maintained and monitored). The survey is related to the second stage - restrictive use of the area. To develop a real decommissioning project, it was first necessary to evaluate the volume and the characteristics of the radioactive waste which will be generated. Radioactive waste generated during the decommissioning of Magurele WR-S research reactor may be classified as: Activated wastes (internal structures, horizontal channels and thermal column, biological shield); Contaminated wastes (primary circuit non-activated components, hot cells, some technological rooms as main hall, pumps room, radioactive material transfer areas, ventilation building and stack); Possibly contaminated materials from any area of reactor building and ventilation building. After 40 years of nuclear research activities, all such areas are suspected of contamination. The volume of wastes that will result from WWR-S Research Reactor decommissioning is summarized

  16. Generic Overview of the Status of Characterization Surveys and Guidance for Decommissioning

    International Nuclear Information System (INIS)

    Abu Eid, Rateb Boby

    2012-01-01

    This paper presents an overview of several topical areas pertaining to characterization and survey for decommissioning, including: U.S. NRC regulatory requirements for decommissioning and survey; a description of the decommissioning processes particularly role of characterization and survey; characterization survey types and NRC categorization of decommissioning groups; status of U.S. characterization survey guidance; and overview of key characterization and survey Issues. The specific topical areas are briefly discussed below: - The paper addresses the U.S. NRC requirements under 10 CFR Part 20, Subpart E - 'Radiological Criteria for License Termination', and final status surveys requirements under 10 CFR 20.1501(a). Other requirements under 10CFR Parts 50.75, 50.82, 51.53, and 51.95) as well as, reporting and record keeping for decommissioning planning will be outlined. The paper also discusses NRC general decommissioning process for materials and fuel cycle facilities, as well as, for power reactor facilities. - Strategy and planning for decommissioning using the data quality objectives (DQO) approach and its seven step process will be presented in some detail. - The US NRC 'Surveys and Site Investigation Process' as described in NUREG 1757 and categorization of 'Decommissioning Groups' in the context of characterization and survey needs will be addressed. - The paper briefly outlines methodologies, approaches, and status of U.S. multi-agency key guidance documents such as MARSSIM (NUREG-1575), MARSAME (NUREG- 1575, Supp.1), and more recently, the NRC Subsurface Guidance NUREG/CR 7021. - Dose modeling and software development/update in support of radiological survey and characterization for derivation of derived concentration guideline levels. - Lessons Learned from Regulatory 'Reviews of Survey Plans' particularly attributes of survey plans, common survey issues, and key aspects for decommissioning success are discussed in the paper. (author)

  17. The Community's research and development programme on decommissioning of nuclear power plants. Fourth annual progress report (year 1983)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This is the fourth progress report of the European Community's program. (1979-83) of research on decommissioning of nuclear power plants. It covers the year 1983 and follows the 1980, 1981 and 1982 reports (EUR 7440, EUR 8343, EUR 8962). The present report describes the further progress of research and contains a large amount of results. For a majority of the 51 research contracts composing the 1979-83 programme, work was completed by the end of 1983; the conclusions drawn from this work are in this report. The European Community's program deals with the following fields: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific wastes materials (steel, concrete and graphite); large transport containers for radioactive waste produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive waste arising from the decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  18. Site decommissioning management plan

    International Nuclear Information System (INIS)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff's strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites

  19. Site decommissioning management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  20. Evaluation of the I. Stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1

    International Nuclear Information System (INIS)

    Hrasnova, E.

    2015-01-01

    In this paper author deals with following aspects: 1. Introduction of company Nuclear and Decommissioning Company, plc; 2. Evaluation of the I. stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1; (author)

  1. Decommissioning standards

    International Nuclear Information System (INIS)

    Crofford, W.N.

    1980-01-01

    EPA has agreed to establish a series of environmental standards for the safe disposal of radioactive waste through participation in the Interagency Review Group on Nuclear Waste Management (IRG). One of the standards required under the IRG is the standard for decommissioning of radioactive contaminated sites, facilities, and materials. This standard is to be proposed by December 1980 and promulgated by December 1981. Several considerations are important in establishing these standards. This study includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include: the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions. 4 refs

  2. Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

    Directory of Open Access Journals (Sweden)

    Schlömer Luc

    2017-01-01

    Full Text Available The decommissioning of a light water reactor (LWR, which is licensed under § 7 of the German Atomic Energy Act, following the post-operational phase requires a comprehensive licensing procedure including in particular radiation protection aspects and possible impacts to the environment. Decommissioning includes essential changes in requirements for the systems and components and will mainly lead to the direct dismantling. In this context, neutron induced activation calculations for the structural components have to be carried out to predict activities in structures and to estimate future costs for conditioning and packaging. To avoid an overestimation of the radioactive inventory and to calculate the expenses for decommissioning as accurate as possible, modern state-of-the-art Monte-Carlo-Techniques (MCNP™ are applied and coupled with present-day activation and decay codes (ORIGEN-S. In this context ADVANTG is used as weight window generator for MCNP™ i. e. as variance reduction tool to speed up the calculation in deep penetration problems. In this paper the calculation procedure is described and the obtained results are presented with a validation along with measured activities and photon dose rates measured in the post-operational phase. The validation shows that the applied calculation procedure is suitable for the determination of the radioactive inventory of a nuclear power plant. Even the measured gamma dose rates in the post-operational phase at different positions in the reactor building agree within a factor of 2 to 3 with the calculation results. The obtained results are accurate and suitable to support effectively the decommissioning planning process.

  3. Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

    Science.gov (United States)

    Schlömer, Luc; Phlippen, Peter-W.; Lukas, Bernard

    2017-09-01

    The decommissioning of a light water reactor (LWR), which is licensed under § 7 of the German Atomic Energy Act, following the post-operational phase requires a comprehensive licensing procedure including in particular radiation protection aspects and possible impacts to the environment. Decommissioning includes essential changes in requirements for the systems and components and will mainly lead to the direct dismantling. In this context, neutron induced activation calculations for the structural components have to be carried out to predict activities in structures and to estimate future costs for conditioning and packaging. To avoid an overestimation of the radioactive inventory and to calculate the expenses for decommissioning as accurate as possible, modern state-of-the-art Monte-Carlo-Techniques (MCNP™) are applied and coupled with present-day activation and decay codes (ORIGEN-S). In this context ADVANTG is used as weight window generator for MCNP™ i. e. as variance reduction tool to speed up the calculation in deep penetration problems. In this paper the calculation procedure is described and the obtained results are presented with a validation along with measured activities and photon dose rates measured in the post-operational phase. The validation shows that the applied calculation procedure is suitable for the determination of the radioactive inventory of a nuclear power plant. Even the measured gamma dose rates in the post-operational phase at different positions in the reactor building agree within a factor of 2 to 3 with the calculation results. The obtained results are accurate and suitable to support effectively the decommissioning planning process.

  4. Planning of the BN-350 reactor decommissioning

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Tazhibayeva, I.L.; Zhantikin, T.M.; Baldov, A.N.; Nazarenko, P.I.; Koltyshev, S.M.; Wells, P.B.

    2002-01-01

    The experimental and commercial BN-350 NPP equipped with a fast neutron sodium cooled reactor is located in Kazakhstan near the Aktau city on the Caspian Sea coast. It was commissioned in 1973 and intended for weapon-grade plutonium production and as stream supply to a water desalination facility and the turbines of the Mangyshlak Atomic Energy Complex. Taking into account technical, financial and political issues, the Government of Kazakhstan enacted the Decree no. 456 'On Decommissioning of the Reactor BN-350 in the Aktau City of the Mangystau Region'. Because the decision on reactor decommissioning was adopted before the end of scheduled operation (2003), the plan to decommission the BN-350 reactor has not yet been developed. To determine the activities required for ensuring reactor safety and in preparation for decommission in the period prior, the development and ensuring approval by the Republic of Kazakhstan Government of the decommissioning plan, a 'Plan of Priority Actions for BN-350 Reactor Decommissioning' was developed and approved. Actions provided for in the plan include the following: Development of BN-350 Reactor Decommissioning Plan; Accident prevention during the period of transition; Unloading nuclear fuel from reactor and draining the coolant from the heat exchange circuits. Decommission is defined as a complex of administrative and technical actions taken to allow the removal of some or all of regulatory controls over a nuclear facility. These actions involve decontamination, dismantling and removal of radioactive materials, waste, components and structures. They are carried out to achieve a progressive and systematic reduction in radiological hazards and are undertaken on the basis of planning and assessment in order to ensure safety decommissioning operations. In accordance with the decision of Kazakhstan Government, three basic stages for BN-350 reactor decommissioning are envisaged: First stage - Placement of BN-350 into long-term storage

  5. 77 FR 41107 - Decommissioning Planning During Operations

    Science.gov (United States)

    2012-07-12

    ..., 40, 50, 70, and 72 [NRC-2011-0162] Decommissioning Planning During Operations AGENCY: Nuclear... (DG) 4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the NRC's Decommissioning Planning Rule. The NRC...

  6. 76 FR 77431 - Decommissioning Planning During Operations

    Science.gov (United States)

    2011-12-13

    ... (DG) DG-4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the.... The draft regulatory guide entitled, ``Decommissioning Planning During Operations,'' is temporarily..., 40, 50, 70, and 72 RIN 3150-AI55 [NRC-2011-0286; NRC-2008-0030] Decommissioning Planning During...

  7. 78 FR 663 - Decommissioning Planning During Operations

    Science.gov (United States)

    2013-01-04

    ...] Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide..., ``Decommissioning Planning During Operations.'' The guide describes a method that the NRC staff considers acceptable for use by holders of licenses in complying with the NRC's Decommissioning Planning Rule (DPR) (76 FR...

  8. Development of computer program for estimating decommissioning cost - 59037

    International Nuclear Information System (INIS)

    Kim, Hak-Soo; Park, Jong-Kil

    2012-01-01

    The programs for estimating the decommissioning cost have been developed for many different purposes and applications. The estimation of decommissioning cost is required a large amount of data such as unit cost factors, plant area and its inventory, waste treatment, etc. These make it difficult to use manual calculation or typical spreadsheet software such as Microsoft Excel. The cost estimation for eventual decommissioning of nuclear power plants is a prerequisite for safe, timely and cost-effective decommissioning. To estimate the decommissioning cost more accurately and systematically, KHNP, Korea Hydro and Nuclear Power Co. Ltd, developed a decommissioning cost estimating computer program called 'DeCAT-Pro', which is Decommission-ing Cost Assessment Tool - Professional. (Hereinafter called 'DeCAT') This program allows users to easily assess the decommissioning cost with various decommissioning options. Also, this program provides detailed reporting for decommissioning funding requirements as well as providing detail project schedules, cash-flow, staffing plan and levels, and waste volumes by waste classifications and types. KHNP is planning to implement functions for estimating the plant inventory using 3-D technology and for classifying the conditions of radwaste disposal and transportation automatically. (authors)

  9. Financial aspects of decommissioning

    International Nuclear Information System (INIS)

    Chirica, T.; Havris, A.

    2003-01-01

    European Commission adopted recently two proposals of Directives designed to pave the way for a Community approach to the safety of nuclear power plants and the processing of radioactive waste. Nuclear safety cannot be guaranteed without making available adequate financial resources. With regard, in particular, to the decommissioning of nuclear facilities, the Directive defines the Community rules for the establishment, management and use of decommissioning funds allocated to a body with legal personality separate from that of the nuclear operator. In order to comply with the acquis communautaire, Romanian Government issued the Emergency Ordinance no. 11/2003 which set up the National Agency for Radioactive Waste (ANDRAD) and soon will be established the financial mechanism for raising the necessary funds. Societatea Nationala 'Nuclearelectrica' S.A. operates, through one of its branches, Cernavoda NPP Unit 1 and has to prepare its decommissioning strategy and to analyze the options to assure the financing for covering the future costs. The purpose of this paper is to clarify the financial systems' mechanisms to the satisfaction of the nuclear operator obligations, according to the disbursement schedule foreseen by decommissioning projects . The availability of cash to pay for all the decommissioning expenditure must be foreseen by setting up assets and establishing a suitable financing plan. The different practices of assets management shall be presented in this paper on the basis of the international experience. Some calculation samples shall be given as an illustration. (author)

  10. Nuclear decommissioning planning, execution and international experience

    CERN Document Server

    2012-01-01

    A title that critically reviews the decommissioning and decontamination processes and technologies available for rehabilitating sites used for nuclear power generation and civilian nuclear facilities, from fundamental issues and best practices, to procedures and technology, and onto decommissioning and decontamination case studies.$bOnce a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any ...

  11. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  12. Policy and systems analysis for nuclear installation decommissioning

    International Nuclear Information System (INIS)

    Gu Jiande

    1995-01-01

    On the basis of introducing into principal concept for nuclear installation decommissioning, form policy, sciences point of view, the author analyses present problems in the policy, the administrative and programme for decommissioning work in China. According to the physical process of decommissioning, the author studied engineering economics, derived method and formulas to estimate decommissioning cost. It is pointed out that basing on optimization principle for radiation protection and analysing cost-benefit for decommissioning engineering, the corresponding policy decision can be made

  13. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  14. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  15. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    Massaut, V.

    2000-01-01

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  16. The assessment system based on virtual decommissioning environments to reduce abnormal hazards from human errors for decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan Seong; Moon, Jei Kwon; Choi, Byung Seon; Hyun, Dong jun; Lee, Jong Hwan; Kim, Ik June; Kang, Shin Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decommissioning of nuclear facilities has to be accomplished by assuring the safety of workers. So, it is necessary that before decommissioning, the exposure dose to workers has to be analyzed and assessed under the principle of ALARA (as low as reasonably achievable). Furthermore, to improve the proficiency of decommissioning environments, method and system need to be developed. To establish the plan of exposure dose to workers during decommissioning of nuclear facilities before decommissioning activities, it is necessary that assessment system is developed. This system has been successfully developed so that exposure dose to workers could be real-time measured and assessed in virtual decommissioning environments. It can be concluded that this system could be protected from accidents and enable workers to improve his familiarization about working environments. It is expected that this system can reduce human errors because workers are able to improve the proficiency of hazardous working environments due to virtual training like real decommissioning situations.

  17. Training practices to support decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bourassa, J.; Clark, C.R.; Kazennov, A.; Laraia, M.; Rodriguez, M.; Scott, A.; Yoder, J.

    2006-01-01

    Adequate numbers of competent personnel must be available during any phase of a nuclear facility life cycle, including the decommissioning phase. While a significant amount of attention has been focused on the technical aspects of decommissioning and many publications have been developed to address technical aspects, human resource management issues, particularly the training and qualification of decommissioning personnel, are becoming more paramount with the growing number of nuclear facilities of all types that are reaching or approaching the decommissioning phase. One of the keys to success is the training of the various personnel involved in decommissioning in order to develop the necessary knowledge and skills required for specific decommissioning tasks. The operating organisations of nuclear facilities normally possess limited expertise in decommissioning and consequently rely on a number of specialized organisations and companies that provide the services related to the decommissioning activities. Because of this there is a need to address the issue of assisting the operating organisations in the development and implementation of human resource management policies and training programmes for the facility personnel and contractor personnel involved in various phases of decommissioning activities. The lessons learned in the field of ensuring personnel competence are discussed in the paper (on the basis of information and experiences accumulated from various countries and organizations, particularly, through relevant IAEA activities). Particularly, the following aspects are addressed: transition of training from operational to decommissioning phase; knowledge management; target groups, training needs analysis, and application of a systematic approach to training (SAT); content of training for decommissioning management and professional staff, and for decommissioning workers; selection and training of instructors; training facilities and tools; and training as

  18. The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning

    International Nuclear Information System (INIS)

    Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms, B.

    2003-01-01

    Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial

  19. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  20. Decommissioning of nuclear facilities: Feasibility, needs and costs

    International Nuclear Information System (INIS)

    DeLaney, E.G.; Mickelson, J.R.

    1985-01-01

    The Nuclear Energy Agency's Working Group on Decommissioning is preparing a study entitled ''Decommissioning of Nuclear Facilities: Feasibility, Needs and Costs.'' The study addresses the economics, technical feasibility and waste management aspects of decommissioning larger commercial reactors and nuclear support facilities. Experience on decommissioning small reactors and fuel cycle facilities shows that current technology is generally adequate. Several major projects that are either underway or planned will demonstrate decommissioning of the larger and more complex facilities. This experience will provide a framework for planning and engineering the decommissioning of the larger commercial reactors and fuel cycle facilities. Several areas of technology development are desired for worker productivity improvement, occupational exposure reduction, and waste volume reduction. In order to assess and plan for the decommissioning of large commercial nuclear facilities, projections have been made of the capacity of these facilities that may be decommissioned in the future and the radioactive waste that would be produced from the decommissioning of these facilities. These projections through the year 2025 are based on current data and the OECD reactor capacity forecast through the year 2000. A 25-year operating lifetime for electrical power generation was assumed. The possibilities of plant lifetime extension and the deferral of plant dismantlement make this projection very conservative

  1. Development of the Decommissioning Project Management System, DECOMMIS

    International Nuclear Information System (INIS)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B.

    2007-03-01

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies

  2. The decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Barker, F.

    1992-01-01

    This report has been commissioned by the National Steering Committee of Nuclear Free Local Authorities to provide: a comprehensive introduction to the technical, social, political, environmental and economic dimensions to nuclear power station decommissioning; an independent analysis of Nuclear Electric's recent change of decommissioning strategy; the case for wider public involvement in decision making about decommissioning; and a preliminary assessment of the potential mechanisms for achieving that essential wider public involvement

  3. Trojan Decommissioning Project Cost Performance

    International Nuclear Information System (INIS)

    Michael B. Lackey

    2000-01-01

    The Trojan nuclear plant (Trojan) was an 1160-MW(electric) four-loop pressurized water reactor located in Rainier, Oregon. The plant was permanently shut down in 1993 after ∼17 yr of commercial operation. The early plant closure was an economic decision. The key factors in the closure analysis were escalation of inspection and repair costs associated with steam generator tube cracking and the projected availability of inexpensive replacement power in the Pacific Northwest region of the United States. Since the plant closure, Portland General Electric (PGE) has been actively engaged in decommissioning. The Trojan Decommissioning Project currently has a forecast at completion of $429.7 million (all costs are in millions of 1997 dollars, unless otherwise noted). The cost performance of the Trojan Decommissioning Project to date is addressed, as well as the tools that are in place to provide cost control through completion of decommissioning

  4. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  5. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  6. Government Assigns New Supervisory Task. Safe Decommissioning

    International Nuclear Information System (INIS)

    Lekberg, Anna

    2003-01-01

    When the Government decided to shutdown one of the two Barsebaeck reactors in February of 1998, it presented SKI with a task that came much earlier than expected; the supervision of the decommissioning of a reactor. As a result of proposals presented in Parliament, SKI began the formulation of a long-term strategy in 1997 for the inspection of a nuclear plant during the decommissioning process. As a preliminary task, SKI started a research programme dealing with the potential risks associated with the transition from normal operations through shutdown to final deconstruction of the power plant. Emphasis was laid on safety culture issues and on questions of organization, as opposed to an earlier stress on the purely technical aspects of decommissioning. After a long period of uncertainty, following much discussion, in July 1998 a Government decision was finally reached to shutdown the first reactor at Barsebaeck. This was carried out in November 1999. It is still uncertain as to when the other reactor will be decommissioned; a decision is expected at the earliest in 2004. This uncertainty, resulting from the prolonged decision making process, could be detrimental to the safety culture on the site; motivation could diminish, and key personnel could be lost. Decommissioning is a new phase in the life cycle of a plant, giving rise to new inspection issues of supervision. During the period of uncertainty, while awaiting SKI has identified ten key areas, dealing with the safety culture of the organization, in connection with the decommissioning of Barsebaeck 1. 1. Obtaining and retaining staff competence during decommissioning; 2. Sustaining organizational memory; 3. Identifying key organizational functions and management skills that are critical during the transition from operations to decommissioning. 4. Sustaining organizational viability and accountability for decommissioning; 5. Sustaining motivation and trust in management of dismantlement; 6. Overseeing

  7. The decommissioning plan of the Nuclear Ship MUTSU

    International Nuclear Information System (INIS)

    Adachi, M.; Matsuo, R.; Fujikawa, S.; Nomura, T.

    1995-01-01

    This paper describes the review about the decommissioning plan and present state of the Nuclear Ship Mutsu. The decommissioning of the Mutsu is carried out by Removal and Isolation method. The procedure of the decommissioning works is presented in this paper. The decommissioning works started in April, 1992 and it takes about four years after her last experimental voyage. (author)

  8. Decommissioning techniques for research reactors. Final report of a co-ordinated research project 1997-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    in this technical publication. Operating experience in real-scale applications, lessons learned, key results in laboratory scale or pilot scale research, and validation of mathematical models, are among the most significant achievements of the CRP and have been highlighted. The objective of this CRP was to promote the exchange of information on the practical experience gained by Member States in decommissioning or operation, maintenance, and refurbishment activities which would be eventually related to the decommissioning of research reactors. Special emphasis was given to the development/adaptation of methods and approaches for optimization of the decommissioning process. The scope of the project included several technical areas of decommissioning rather than focusing on a single aspect of it. It was felt that this format would generate more awareness of the integrated approach to decommissioning. In particular, the scope included the following: design, construction and operational features to assist in final decommissioning; planning for decommissioning, including technical solution assessment; decommissioning strategies and their technological implications; radiological and physical characterization; dismantling technology; decontamination technology; remotely operated equipment; means to reduce occupational exposures; waste generation and management, including clearance of solid materials; restricted and unrestricted site release, including final surveys; costs and financial provisions; safe enclosure of shutdown reactors, including long-term integrity of buildings and systems; decommissioning experience; and ageing management and refurbishment experience.

  9. Decommissioning techniques for research reactors. Final report of a co-ordinated research project 1997-2001

    International Nuclear Information System (INIS)

    2002-02-01

    in this technical publication. Operating experience in real-scale applications, lessons learned, key results in laboratory scale or pilot scale research, and validation of mathematical models, are among the most significant achievements of the CRP and have been highlighted. The objective of this CRP was to promote the exchange of information on the practical experience gained by Member States in decommissioning or operation, maintenance, and refurbishment activities which would be eventually related to the decommissioning of research reactors. Special emphasis was given to the development/adaptation of methods and approaches for optimization of the decommissioning process. The scope of the project included several technical areas of decommissioning rather than focusing on a single aspect of it. It was felt that this format would generate more awareness of the integrated approach to decommissioning. In particular, the scope included the following: design, construction and operational features to assist in final decommissioning; planning for decommissioning, including technical solution assessment; decommissioning strategies and their technological implications; radiological and physical characterization; dismantling technology; decontamination technology; remotely operated equipment; means to reduce occupational exposures; waste generation and management, including clearance of solid materials; restricted and unrestricted site release, including final surveys; costs and financial provisions; safe enclosure of shutdown reactors, including long-term integrity of buildings and systems; decommissioning experience; and ageing management and refurbishment experience

  10. ORNL decontamination and decommissioning program

    International Nuclear Information System (INIS)

    Bell, J.P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed

  11. Decontamination and decommissioning of nuclear facilities: a literature search

    International Nuclear Information System (INIS)

    Sande, W.E.; Freeman, H.D.; Hanson, M.S.; McKeever, R.

    1975-05-01

    is bibliography includes 429 unclassified references to the decontamination and decommissioning of nuclear facilities. The references are arranged in chronological order and cover the period from 1944 through 1974. Subject and author indexes are e provided. (U.S.)

  12. Development of the Decommissioning Project Management System, DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-03-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies.

  13. Vandellos 1 NPP decommissioning feedback experience

    International Nuclear Information System (INIS)

    Fernandez, Rodriguez A.

    2003-01-01

    necessary to support in order to reuse and apply the model to others projects. This knowledge and experience are mostly in three areas: -Data Bases, -Basic Document and - Lessons Learned which are described. Lessons Learned are summarized in eleven conclusions: a) The dilemma about the difference between an installation in operation and a decommissioning works. A NPP in operation is an installation; a NPP in decommissioning process is an activity, this impact is fundamental from the documentary and controls points of view; b) The flexibility of the time schedule of the project. In opposition with a construction, the time schedule of a decommissioning project it possible to maintain with small delays due to the versatility of parallel tasks; c) The authorization procedure is one of the key points, before and during the process. As a new activity, decommissioning was born without specifics regulation; day by day all the actors realize that is necessary to reflect back together in order to define and establish new standards to regulate the decommissioning processes; d) The prevention of the risks on site is a topic not only related to the Protection Radiation, the conventional risks have more importance in the decommissioning tasks. The issue of the new regulation about it, impact directly in the executions of the works. The training and the information to the workers are the best corrective tool again the risks; e) Some performances or characteristics of the auxiliary systems must be taken in account in the procurement process for decommissioning, namely, the modularity, versatility of the auxiliary systems and the reuse as a way of reducing wastes and save row materials. The radiation protection is the subject concern during all the operations; Important issues of radioprotection as operational radiological history, the characterization of the materials and the environment to prevent the risk, and special care with the internal contamination of the body; g) The very big

  14. Evaluating decommissioning costs for nuclear power plants

    International Nuclear Information System (INIS)

    MacDonald, R.R.

    1980-01-01

    An overview is presented of the economic aspects of decommissioning of large nuclear power plants in an attempt to put the subject in proper perspective. This is accomplished by first surveying the work that has been done to date in evaluating the requirements for decommissioning. A review is presented of the current concepts of decommissioning and a discussion of a few of the uncertainties involved. This study identifies the key factors to be considered in the econmic evaluation of decommissioning alternatives and highlights areas in which further study appears to be desirable. 12 refs

  15. Optimizing decommissioning strategies

    International Nuclear Information System (INIS)

    Passant, F.H.

    1993-01-01

    Many different approaches can be considered for achieving satisfactory decommissioning of nuclear installations. These can embrace several different engineering actions at several stages, with time variations between the stages. Multi-attribute analysis can be used to help in the decision making process and to establish the optimum strategy. It has been used in the Usa and the UK to help in selecting preferred sites for radioactive waste repositories, and also in UK to help with the choice of preferred sites for locating PWR stations, and in selecting optimum decommissioning strategies

  16. Platform decommissioning costs

    International Nuclear Information System (INIS)

    Rodger, David

    1998-01-01

    There are over 6500 platforms worldwide contributing to the offshore oil and gas production industry. In the North Sea there are around 500 platforms in place. There are many factors to be considered in planning for platform decommissioning and the evaluation of options for removal and disposal. The environmental impact, technical feasibility, safety and cost factors all have to be considered. This presentation considers what information is available about the overall decommissioning costs for the North Sea and the costs of different removal and disposal options for individual platforms. 2 figs., 1 tab

  17. Scheduling for decommissioning projects

    International Nuclear Information System (INIS)

    Podmajersky, O.E.

    1987-01-01

    This paper describes the Project Scheduling system being employed by the Decommissioning Operations Contractor at the Shippingport Station Decommissioning Project (SSDP). Results from the planning system show that the project continues to achieve its cost and schedule goals. An integrated cost and schedule control system (C/SCS) which uses the concept of earned value for measurement of performance was instituted in accordance with DOE orders. The schedule and cost variances generated by the C/SCS system are used to confirm management's assessment of project status. This paper describes the types of schedules and tools used on the SSDP project to plan and monitor the work, and identifies factors that are unique to a decommissioning project that make scheduling critical to the achievement of the project's goals. 1 fig

  18. An analysis of decommissioning costs

    International Nuclear Information System (INIS)

    Teunckens, L.; Loeschhorn, U.; Yanagihara, S.; Wren, G.; Menon, S.

    1992-01-01

    Within the OECD/NEA Cooperative Programme on Decommissioning a Task Group was set up early in 1989 to identify the reasons for the large variations in decommissioning cost estimates. The Task Group gathered cost data from 12 of the 14 projects in the Programme to form the basis of their analysis. They included reactors being decommissioned to various stages as well as fuel cycle facilities. The projects were divided into groups of projects with similar characteristics ('models') to facilitate the analysis of the cost distribution in each group of projects and the cost data was progressively refined by a dialogue between the Task Group and the project managers. A comparative analysis was then performed and project specific discrepancies were identified. The Task Group's report is summarized on the results of the comparative analysis as well as the lessons learnt by the Task Group in the acquisition and analysis of cost data from international decommissioning projects. (author) 5 tabs

  19. Decommissioning Study of Oskarshamn NPP

    International Nuclear Information System (INIS)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  20. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  1. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  2. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  3. Decommissioning and dismantling of the Rossendorf Isotope Production

    International Nuclear Information System (INIS)

    Grahnert, Thomas

    2016-01-01

    After just over 40 years of production operation 2000, the operation of the Rossendorf Isotope Production was finally stopped. In the last few years of production already sections of the Rossendorf Isotope Production have been decommissioned. With the end of the isotope production the decommissioning of the entire complex started. In the two-part report, the decommissioning and dismantling of the Rossendorf Isotope production is presented. In part 1 (atw 5/2016) mainly the authorisation procedures and the realised decommissioning concept are presented. Part 2 (atw 6/2016) deals with special selected aspects of the implementation of the decommissioning programme.

  4. Public attitudes toward nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Lough, W.T.

    1987-01-01

    A public workshop was conducted with a group of citizens to obtain the concerns and preferences of the group with respect to decommissioning. Seventeen concerns about decommissioning were identified and prioritized. The participants were most concerned about the potential health and safety effects from decommissioning. The potential impacts from the lost tax base and loss of employment were also rated highly. The estimated increase in electric utility rates was not a major concern. The participants were split fairly evenly on preferences about the methods of decommissioning. However, nine of the ten participants preferred power plant life extension over decommissioning by any method. Finally, the participants were given an evaluation questionnaire about the workshop. In general, they concluded that the process was effective, and they felt like they were a part of the Commission's planning process

  5. Decommissioning in the oil and gas industry and the inclusion of decommissioning permit in the Brazilian system of environmental permitting - first thoughts; O descomissionamento na industria de petroleo e gas e a inclusao da licenca de desinstalacao no procedimento de licenciamento ambiental brasileiro - primeiras reflexoes

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Luiz Gustavo Escorcio [Stroeter e Royster Advogados, Sao Paulo, SP (Brazil)]|[Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Direito. Programa de Estudos e Pesquisa em Direito do Petroleo (ANP - PRH33)

    2005-07-01

    This paper aims to promote discussions regarding the decommissioning issue, its role in the protection of the environment and the feasibility of the inclusion of a Decommissioning Permit in the Brazilian System of Environmental Permitting. (author)

  6. Strategic aspects on waste management in decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Rannemalm, T.; Eliasson, S.; Larsson, A.; Lidar, P.; Bergh, N.; Hedin, G.

    2017-01-01

    A team composed of experts from the facility owner OKG, Westinghouse and Studsvik (today Cyclife Sweden and Studsvik Consulting) was asked to develop a basis for decision on an overall strategy for the management of the material and waste arising from the decommissioning of two BWR NPPs at the Oskarshamn site in Sweden. To be able to provide a good basis for decision the full waste management chain from generation to disposition, i.e. clearance or disposal had to be assessed, categorised, quantified and analysed with regards to costs, environmental impact and risks. A systematic approach was applied taking benefit of the decommissioning studies made previously for the two facilities, the decommissioning concepts developed by Ndcon (the partnership in decommissioning between Studsvik and Westinghouse) and the combined knowledge and experience in the project team. In total 4 different waste management concepts were compared individually and in combinations. The four concepts evaluated were based on: direct disposal in the national geological repository; treatment of the waste for volume reduction and where applicable clearance in an external waste treatment facility; decontamination and clearance in an on-site waste treatment facility; direct disposal in a near surface repository at the NPP site. It was important to be able to compare the different options in a quantifiable way. Therefore the project team set up a matrix with parameters for the different options gained from the utility, the national waste management company, external vendors and the experience of the team. In this way a quantitative analysis could be done with the four different waste management options. In addition to the quantitative analysis the team summarised decades of experience in radioactive waste management and decommissioning recommendations and risk analyses. Special attention was given to risk mitigation and redundancy in the waste management chain. The development of an overall waste

  7. Record keeping for the decommissioning of nuclear facilities: Guidelines and experience

    International Nuclear Information System (INIS)

    2002-01-01

    This report covers record keeping for the decommissioning of nuclear facilities. Nuclear facilities include large commercial facilities such as nuclear power plants or chemical nuclear facilities (e.g. for fabrication and reprocessing), but also include smaller facilities such as research reactors and medical, industrial and other research facilities. Special attention may be needed for these small facilities owing to factors such as the low priority given to decommissioning by research teams and the possibility of poorly recorded structural and operational changes. A focus on research reactors is also important because of their widespread distribution. Two IAEA TECDOCs address record keeping for radioactive waste management and disposal facilities, and therefore these areas are not covered in this report. The objective of this report is to provide information, experience and assistance on how to identify, update as needed and maintain records to assist in the decommissioning of nuclear facilities, including for the decommissioning plan. This report is intended to be useful to policy makers, regulators, owners, operators, decommissioning contractors and other interested parties. Record keeping is an integral part of overall QA or quality management programmes, and this is emphasized in this report. This report also indicates the possible consequences of not maintaining adequate records. This report describes the needs and the sources of the records for decommissioning (Section 3) and the process of identifying and selecting these records (Section 4). Section 5 considers the records from the decommissioning process itself and their retention, while Section 6 deals with QA, organization and responsibilities. The Records Management System (RMS) is dealt with in Section 7 and the management of new records in Section 8. A summary of observations is included in Section 9. The report is complemented by an appendix and annexes that describe case histories

  8. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities

  9. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L F; Nemec, J F; Koochi, A K

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively. (DLC)

  10. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Munson, L.F.; Nemec, J.F.; Koochi, A.K.

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively

  11. Decommissioning of nuclear facilities by the United States Department of Energy Oak Ridge Field Office

    International Nuclear Information System (INIS)

    DeLozier, M.F.P.

    1992-01-01

    The Oak Ridge Field Office of the United States Department of Energy is projecting one of the largest decommissioning efforts in the nation during the next ten to twenty years. The nuclear facilities are varied with respect to the types of contaminants and types of structures and equipment involved. The facilities planned for decommissioning include 26 ORNL facilities (e.g., OGR, HRE, MSRE), 70 facilities at Oak Ridge K25 site, and the Y-12 plant at Oak Ridge. Innovative technologies are required to decommission the facilities and dispose of the waste generated. (R.P.)

  12. Health physics experience on the decommissioning of Thorium plant of IRE Ltd. at Trombay

    International Nuclear Information System (INIS)

    Savant, P.B.; Venkata Rao, D.V.; Rangarajan, R.; Pushparaja

    2003-01-01

    Thorium plant which was in operation for the last 45 years at Trombay, was decommissioned during the period 1999-2001. The decommissioning operation was spread over a period of 18 months. Over the years of operations, considerable activity was build-up was on the plant equipment and supporting structures. A new plant is erected at OSCOM to meet the thorium nitrate requirement. In view of the aging of the process equipment and resulting increase in the Person-Sv expenditure, it was decided to decommission the plant at Trombay. Decommissioning work is a voluminous job and hence required a careful planning of manpower, budgeting of personnel exposures and safe transfer of radioactive wastes. A considerable reduction in the budgeted man- days was achieved by using appropriate machinery and modern gadgets. A total of 3465 man-days were utilised for the work. 40 contract labourers were engaged in two phases. The total dose received was 123.32 Person-mSv as against the budgeted 189.29 Person-mSv for the entire operation. The maximum individual whole body dose received was 4.5 mSv. Around 2000 m 3 of low level radioactive solid waste was disposed off. Chipping of walls and floor has resulted in reduction of the volume of low level waste by as much as 766 m 3 as compared-to estimated volume of 4000 m 3 . This paper discusses briefly the experience gained by the RHC Unit in providing RHC surveillance for the decommissioning work. (author)

  13. Technical and cost aspects of radioactive wastes from decommissioning

    International Nuclear Information System (INIS)

    Claes, J.; Menon, S.

    2001-01-01

    The OECD Nuclear Energy Agency's Co-operative Programme on Decommissioning was established in 1985 to share the experience and information emerging from on-going decommissioning projects within member countries. The main aim of the programme is to gather and collate such data, which can then provide the basis for planning the future industrial phase of decommissioning of commercial nuclear plants. Starting with 10 decommissioning projects in 1985, today the programme has 35 participating projects from 12 countries. Apart from exchanging valuable information, task groups have been set up for in-depth analysis and studies of areas of common interest, among which are the recycling of material from decommissioning projects and decommissioning costs. This paper will describe the structure and mode of operation of the programme. Some of the results of the work in the task groups will be presented, with particular emphasis on the management of materials from decommissioning and on decommissioning costs. (author)

  14. Preliminary plan for decommissioning - repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hallberg, Bengt; Tiberg, Liselotte

    2010-06-01

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable for the

  15. Progress of JPDR decommissioning project

    International Nuclear Information System (INIS)

    Kiyota, M.; Yanagihara, S.

    1995-01-01

    The Japan Power Demonstration Reactor (JPDR) decommissioning project is progressively achieving its final goal; the project will be finished by March 1996 to release the JPDR's site into unrestricted use in a green field condition. The new techniques which developed or improved in R and D, the first phase of this program, have been successfully applied to the actual dismantling activities. Some decommissioning wastes have been managed as the first case of onsite shallow land burial based on the new regulatory frame of radioactive waste management. The experiences and the data obtained from the JPDR dismantling activities are expected to contribute to future decommissioning of commercial nuclear power plants. (author)

  16. Preliminary dismantling for the decommissioning of nuclear licensed facilities at the CEA Centre in Fontenay aux Roses

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.

    2008-01-01

    Under the perimeter modification programme for the Nuclear Licensed Facilities (NLFs) of the French Atomic Energy Commission centre at Fontenay aux Roses (CEN-FAR), preliminary dismantling work proved necessary to decommission the buildings outside the nuclear perimeter and create interim storage areas for waste packages. This summary describes the dismantling of Buildings 07, 53 and 91/54, which are the most representative of the preliminary dismantling work. (author)

  17. Prospective needs for decommissioning commercial nuclear facilities

    International Nuclear Information System (INIS)

    Stevens, G.H.; Yasui, M.; Laraia, M.

    1992-01-01

    The answers to the questions: How many reactors will face the end of their operating lifetime over the next few decades? To what extent are the issues of decommissioning urgent? The answers will lead us to those issues that should be tackled now in order to complete smoothly the decommissioning of commercial nuclear power plants. The prospective needs for decommissioning of nuclear power plants are illustrated from the viewpoint of reactor age, and some of the issues to be tackled, in particular by governments, in this century are discussed, to prepare for the future decommissioning activities. (author) 18 refs.; 2 figs.; 2 tabs

  18. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  19. Experience Practices on Decontamination Activity in NPP Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Kim, Jeongju; Sohn, Wook [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning of a nuclear power plant (NPP) involves various technical and administrative activities for a utility to terminate its license, which allows the plant site to be released from the regulatory control (site release). Decontamination activity in NPP decommissioning is one of the main technical activities to be performed during the decommissioning. The decontamination at decommissioning sites is usually performed due to several reasons such as reducing personnel dose and disposal costs, and cleanup to meet license termination requirements by using physical or chemical removal techniques proven through the previous experience practices. This paper introduces the best and worst practices for the decontamination activities collected from the decommissioning operational experiences through the implementation of nuclear decommissioning projects around the world. Review of the experiences of decontamination shows that it is important to conduct an advanced planning for optimized implementation of decontamination taking into considering site specific conditions such as operating time, reactor type, system, and so on. Also, a review of newer decontamination methods is necessary to safely and economically decommission the nuclear facility.

  20. New iteration of decommissioning program for NPP Krsko

    International Nuclear Information System (INIS)

    Lokner, V.; Levanat, I.; Rapic, A.; Zeleznik, N.; Mele, I.; Jenko, T.

    2004-01-01

    As required by the paragraph 10 of the Agreement between the governments of Slovenia and Croatia on status and other legal issues related to investment, exploitation, and decommissioning of Nuclear power plant Krsko, Decommissioning program for Krsko NPP including LILW and spent fuel management was drafted. The Intergovernmental body required that the Program should be extensive revision of existing program as one of several iterations to be prepared before the final version. The purpose of the Program is to estimate the expenses of the future decommissioning, radioactive waste and spent fuel management for Krsko NPP. Costing estimation would be the basis for establishment of a special fund in Croatia and for adjustment of the annual rates for the existing decommissioning fund in Slovenia. The Program development was entrusted to specialized organizations both in Croatia and Slovenia, which formed the Project team as the operative body. Consulting firms from Croatia and Slovenia were involved as well as experts from the International Atomic Energy Agency (through short visits to Zagreb and Ljubljana) for specialized fields (e.g. economic aspects of decommissioning, pre-feasibility study for spent fuel repository in crystalline rock, etc.). The analysis was performed in several steps. The first step was to develop rational and feasible integral scenarios (strategies) of decommissioning and LILW and spent fuel management on the basis of detailed technical analysis and within defined boundary conditions. Based on technological data, every scenario was attributed with time distribution of expenses for all main activities. In the second step, financial analysis of the scenarios was undertaken aiming at estimation of total discounted expense and the related annuity (19 installments to the single fund, empty in 2003) for each of the scenarios. The third step involves additional analysis of the chosen scenarios aiming at their (technical or financial) improvements even at

  1. Ecological aspects of decommissioning of the Chornobyl Nuclear Power Plant

    International Nuclear Information System (INIS)

    Oskolkov, B.Ya.; Nosovskij, A.V.

    2001-01-01

    During the development of Design of ChNPP Decommissioning, it is necessary to consider all the real ecological conditions of its existence and, taking into account the economic potential, to define the achievable and expedient final result, i.e. the final ecological goal. The final goal of ChNPP decommissioning from the point of view of ecology is the termination of the unfavorable influence of the object on the ecosystem of the location area and renovation of the natural conditions of the environment up to the starting level, i.e. like it was prior to the NPP construction or to the level of accepted for the society at present considering the minimization of the problems for the future generations. For the Chornobyl NPP this result is practically unachievable

  2. Decommissioning analyzis of a university cyclotron

    International Nuclear Information System (INIS)

    Eggermont, G.X.; Buls, N.; Hermanne, A.

    1996-01-01

    In the widespread use of some medical nuclear facilities, such as cyclotrons for isotope production, Life cycle analyzis, including decommissioning, was not taken into account. The structural materials of an accelerator and the concrete shielding of the bunker are activated by neutrons. This could yield a considerable volume of nuclear waste and needs radiation protection concern for occupational workers and the environment during some decennia. At the university of Brussels (WB) a prospective radiation protection and waste analyzis is being made for the later decommissioning of their cyclotron. Only few similar studies have been published. In Belgium future nuclear dismantling operations will be submitted to a radiation protection authorization procedure. Meanwhile the nuclear waste authorities insist on dismantling planning, including financial provisioning. An optimization exercise was made at the VUB-cyclotron, taking into account international trends to clearance levels for low level nuclear waste. Conceptual prevention opportunities e.g. selective material choice could be identified for future accelerator constructions. (author)

  3. Decommissioning of nuclear power plants: policies, strategies and costs

    International Nuclear Information System (INIS)

    Lund, I.

    2004-01-01

    As many nuclear power plants will reach the end of their lifetime during the next 20 years or so, decommissioning is an increasingly important topic for governments, regulators and industries. From a governmental viewpoint, particularly in a deregulated market, one essential aspect is to ensure that money for the decommissioning of nuclear installations will be available at the time it is needed, and that no 'stranded' liabilities will be left to be financed by the taxpayers rather than by the electricity consumers. For this reason, there is governmental interest in understanding decommissioning costs, and in periodically reviewing decommissioning cost estimates from nuclear installation owners. Robust cost estimates are key elements in designing and implementing a coherent and comprehensive national decommissioning policy including the legal and regulatory bases for the collection, saving and use of decommissioning funds. From the industry viewpoint, it is essential to assess and monitor decommissioning costs in order to develop a coherent decommissioning strategy that reflects national policy and assures worker and public safety, whilst also being cost effective. For these reasons, nuclear power plant owners are interested in understanding decommissioning costs as best as possible and in identifying major cost drivers, whether they be policy, strategy or 'physical' in nature. National policy considerations will guide the development of national regulations that are relevant for decommissioning activities. Following these policies and regulations, industrial managers responsible for decommissioning activities will develop strategies which best suit their needs, while appropriately meeting all government requirements. Decommissioning costs will be determined by technical and economic conditions, as well as by the strategy adopted. Against this backdrop, the study analyses the relationships among decommissioning policy as developed by governments, decommissioning

  4. Minimization of waste volumes by means of pin-pointed decontamination during decommissioning measures. Final report

    International Nuclear Information System (INIS)

    Henschel, K.; Jacobs, W.; Kanitz, L.; Schildbach, T.

    1992-06-01

    This semi-automated equipment is able to remove surface building contamination as well as take radioactive measurements. This equipment is newly developed. The goal of the equipment is to improve the identification of areas of contamination and the compounding decontamination of epoxy layer building construction material by using commercially available components minimizing the waste volume. A system design for decommissioning of building surfaces was developed, selected components were tested and their function certified. With this systems concept the decontamination of fixed epoxy layers up to 20 m in height is possible. Operational data for the system are available. (orig.) [de

  5. The brief introduction to decommissioning of nuclear reactor projects

    International Nuclear Information System (INIS)

    Zhao Shixin

    1991-01-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste

  6. The brief introduction to decommissioning of nuclear reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Shixin, Zhao [Beijing Inst. of Nuclear Engineering (China)

    1991-08-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste.

  7. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  8. Securing decommissioning funds. Why organization matters?

    International Nuclear Information System (INIS)

    Tchapga, F.

    2005-01-01

    Full text: Securing decommissioning funds requires that the financial resources set aside for the purpose of decommissioning be managed prudently. Decommissioning of nuclear power plant is prescribed by National Atomic Laws or by other nuclear legislation. It is a mandatory operation. The operators of nuclear power plants set money aside for that purpose. This is known as 'Decommissioning reserve fund'. Decommissioning implies costs very distant in time. Thus, it is obvious, from an economic point of view, that the funds set aside should be managed. As decommissioning is mandatory, the funds accumulated should be secured. In others words, they should be available when needed. Availability of funds is influenced by endogenous and exogenous factors. Endogenous factors are a matter of design of the reserve funds. They include the management of the funds, its monitoring and control... Availability of funds is influenced by these factors, depending on the rules to which the behaviour of the manager of the funds is subjected. In contrast, exogenous factors deal with the energy context. These factors are mainly the electricity sector organisation and/or the overall economic situation. They are decisive factors of the economic performance of the reserve fund for a given design. Therefore, the requirement of availability of funds, when needed, is a matter of compatibility between the design of the decommissioning funds and the electricity context. Put differently, reserve fund's design need to be consistent with the electricity context's features in respect of the availability of funds. Current reserve funds were designed in a context of monopoly regime. In this context, availability of decommissioning funds was not questionable. At least, as far as the design of the reserve funds is concerned. This is because nuclear generator didn't confront any competition pressure. Electricity prices were set trough rate base mechanism, and all the business risks were borne by the

  9. Platform decommissioning. Environmental challenges and practical solutions

    International Nuclear Information System (INIS)

    Kvalvik, Inge

    1998-01-01

    The publication gives a short introduction of platform decommissioning, followed by an overview of what to be decommissioned and removed. This will be followed by some of the vital technologies and methods within decommissioning, abandonment of wells, removal and handling of remains that is reuse and scrapping. A final presentation with a view of current research and developments is given. 3 figs

  10. A study of a decommissioning activities classification structure for decommissioning of the project management of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Ha, Jei Hyun; Moon, Jei kwon

    2015-01-01

    Decommissioning activities and requirements that was established in the planning stage should be organized systematically in the course of dismantling the NPP. The work breakdown structure is essential to ensuring that all the project scope is identified, estimated and executed. The project manager needs to ensure that a WBS is established early in the project and maintained throughout the project life cycle. A project management system is ongoing under the circumstance of having no experience dismantling the NPP. The system related to the NPP decommissioning should have technical criteria as well as regulatory requirements in the full scale of decommissioning stage. In the dismantling stage, decommissioning plan document should include the results of radiation/radioactivity characterization, evaluation of the amount of dismantled waste, calculation of the expose dose rate, evaluation of decommissioning cost and schedule after shutdown

  11. A study of a decommissioning activities classification structure for decommissioning of the project management of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Ha, Jei Hyun; Moon, Jei kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Decommissioning activities and requirements that was established in the planning stage should be organized systematically in the course of dismantling the NPP. The work breakdown structure is essential to ensuring that all the project scope is identified, estimated and executed. The project manager needs to ensure that a WBS is established early in the project and maintained throughout the project life cycle. A project management system is ongoing under the circumstance of having no experience dismantling the NPP. The system related to the NPP decommissioning should have technical criteria as well as regulatory requirements in the full scale of decommissioning stage. In the dismantling stage, decommissioning plan document should include the results of radiation/radioactivity characterization, evaluation of the amount of dismantled waste, calculation of the expose dose rate, evaluation of decommissioning cost and schedule after shutdown.

  12. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  13. Status of the support researches for the regulation of nuclear facilities decommissioning in Japan

    International Nuclear Information System (INIS)

    Masuda, Yusuke; Iguchi, Yukihiro; Kawasaki, Satoru; Kato, Masami

    2011-01-01

    In Japan, 4 nuclear power stations are under decommissioning and some nuclear fuel cycle facilities are expected to be decommissioned in the future. On the other hand, the safety regulation of decommissioning of nuclear facilities was changed by amending act in 2005. An approval system after review process of decommissioning plan was adopted and applied to the power stations above. In this situation, based on the experiences of the new regulatory system, the system should be well established and moreover, it should be improved and enhanced in the future. Nuclear Industry and Safety Agency (NISA) is in charge of regulation of commercial nuclear facilities in Japan and decommissioning of them is included. Japan Nuclear Energy Safety Organization (JNES) is in charge of technical supports for NISA as a TSO (Technical Support Organization) also in this field. As for decommissioning, based on regulatory needs, JNES has been continuing research activities from October 2003, when JNES has been established. Considering the 'Prioritized Nuclear Safety Research Plan (August 2009)' of the Nuclear Safety Commission of Japan and the situation of operators facilities, 'Regulatory Support Research Plan between FY 2010-2014' was established in November 2009, which shows the present regulatory needs and a research program. This program consists of researches for 1. review process of decommissioning plan of power reactors, 2. review process of decommissioning plan of nuclear fuel cycle facilities, 3. termination of license at the end of decommissioning and 4. management of decommissioning waste. For the item 1, JNES studied safety assessment methods of dismantling, e.g. obtaining data and analysis of behavior of dust diffusion and risk assessment during decommissioning, which are useful findings for the review process. For the item 2, safety requirements for the decommissioning of nuclear fuel cycle facilities was compiled, which will be used in the future review. For the item 3

  14. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY... the NRC's regulations relating to the decommissioning process for nuclear power reactors. The revision... Commission (NRC) is issuing Revision 1 of regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power...

  15. Development of a Decommissioning Certificate Program

    International Nuclear Information System (INIS)

    Morton, M. R.

    1999-01-01

    A Decommissioning Certificate Program has been developed at Washington State University Tri-Cities (WSU TC) in conjunction with Bechtel Hanford, Inc. (BHI), and the U.S. Department of Energy (DOE)to address the increasing need for qualified professionals to direct and manage decommissioning projects. The cooperative effort between academia, industry, and government in the development and delivery of this Program of education and training is described, as well as the Program's design to prepare students to contribute sooner, and at a higher level, to decommissioning projects

  16. The Importance of Decommissioning Planning for African Countries

    International Nuclear Information System (INIS)

    Reisenweaver, D.W.

    2011-01-01

    Many countries in Africa have facilities that will require eventual decommissioning. If the entire life cycle of a nuclear facility is considered, decommissioning is just the last activity. The IAEA has published a number of documents that can be used during the decommissioning process, from initial planning to final release of the site. These documents are discussed briefly in this paper and further discussion is provided that will explain why planning for decommissioning should start now.

  17. Decontamination and decommissioning project status of the TRIGA mark-2±3 research reactors

    International Nuclear Information System (INIS)

    Jung, K. J.; Baek, S. T.; Jung, W. S.; Park, S. K.; Jung, K. H.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO at the Korea Atomic Energy Research Institute (KAERI) in Taejeon. Decontamination and decommissioning (D and D) project of the TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). In 1998, Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Science and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license at the end of September 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project

  18. Decontamination and decommissioning project status of the TRIGA Mark II and III in Korea

    International Nuclear Information System (INIS)

    Paik, S.T.; Park, S.K.; Chung, K.W.; Chung, U.S.; Jung, K.J.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO (High-flux Advanced Neutron Application Reactor) at the Korea Atomic Energy Institute (KAERI) in Taejon. Decontamination and decommissioning (D and D) project of TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. The first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is the technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Since and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license in mid 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project. (author)

  19. Nuclear power plant decommissioning. The nature of problems

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Yaziz

    1986-04-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large-scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane.

  20. U.S. experience with organizational issues during decommissioning

    International Nuclear Information System (INIS)

    Durbin, N.E.; Harty, R.

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant

  1. U.S. experience with organizational issues during decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, N.E. [MPD Consulting, Kirkland, WA (United States); Harty, R. [Battelle Pacific Northwest National Laboratory, Richland, WA (United States)

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant.

  2. BNFL decommissioning strategy and techniques

    International Nuclear Information System (INIS)

    Taylor, D.

    2002-01-01

    This paper provides an overview of the range of reactor decommissioning projects being managed by BNFL, both on its own sites and for other client organizations in the UK and abroad. It also describes the decommissioning strategies and techniques that have been developed by BNFL and adopted in order to carry out this work

  3. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  4. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  5. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Buck, S.; Colquhoun, A.

    1990-01-01

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  6. Plant security during decommissioning; challenges and lessons learned from German phase out decision

    International Nuclear Information System (INIS)

    Renner, Andrea; Esch, Markus

    2013-01-01

    Purpose of this paper is to point out the security challenges that may occur during the decommissioning, based on the issues and lessons learned from the German phase out decision. Though national regulations may be different in other countries the basic problems and issues will be the same. Therefore presented solutions will be applicable in other countries as well. The radioactive material remaining at the NPP during decommissioning has the most influence on how the security measures have to be designed. The radioactive material defines the risk potential of the plant and this determines the needed security level. The following aspects have been challenging in Germany: - Scenarios varying from those, used for plants in operation, due to changed operating conditions - Spent fuel will stay in the spent fuel pool for a quite long period before it can be removed from the plant. Risk potential of the plant stays high and requires a high level of security measures - Security measures according to the existing operating license have to stay in place as they are, unless the first license for decommissioning is given respective the spent fuel is removed from the plant site. This even led to the question if improvements of security measures, planned and announced with focus on a plant remaining in operation for another couple of years, need to be done although they will not be required after removing the spent fuel from the plant. A further important aspect for the security design is the fact that a plant under decommissioning has completely different and strongly varying operating procedures, compared to the stable ones of an operating plant. This leads to different needs concerning workspace, infrastructure on plant site, access to buildings etc. An optimized and highly flexible security concept is needed to ensure an adequate level of security as well as an efficient decommissioning. A deep analysis of the vital plant functions, depending on the different

  7. Approaches to estimating decommissioning costs

    International Nuclear Information System (INIS)

    Smith, R.I.

    1990-07-01

    The chronological development of methodology for estimating the cost of nuclear reactor power station decommissioning is traced from the mid-1970s through 1990. Three techniques for developing decommissioning cost estimates are described. The two viable techniques are compared by examining estimates developed for the same nuclear power station using both methods. The comparison shows that the differences between the estimates are due largely to differing assumptions regarding the size of the utility and operating contractor overhead staffs. It is concluded that the two methods provide bounding estimates on a range of manageable costs, and provide reasonable bases for the utility rate adjustments necessary to pay for future decommissioning costs. 6 refs

  8. Final report for the 190-D complex decontamination and decommissioning

    International Nuclear Information System (INIS)

    Thoren, S.D.

    1996-09-01

    This report documents the decontamination and decommissioning (D ampersand D) of the 190-D complex. (located on the Hanford Site in Richland, Washington). D ampersand D of the 190-D complex included decontaminating and removing hazardous and radiologically contaminated materials; dismantling equipment piping and utility infrastructure; demolishing the structure; and restoring the site. The 100-D Area contains two of the nine inactive plutonium production reactors. The reactor sites are located along the south shore of the Columbia River where the sites cover the northern part of the Hanford Site. The 190-D complex is located in the 100-D Area and is composed of the following seven buildings: 185-D De-aeration Building, 189-D Refrigeration Building, 190-D Tank Room Highbay, 190-D Process Pump Room, 190-DA Process Pump Room Annex, 195-D Vertical Safety Rod Test Tower, 1724-D Underwater Test Facility

  9. An overview of U.S. decommissioning experience -- A basic introduction

    International Nuclear Information System (INIS)

    Boing, L.E.

    1998-01-01

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community

  10. Draft principles, policy, and acceptance criteria for decommissioning of U.S. Department of Energy contaminated surplus facilities and summary of international decommissioning programs

    International Nuclear Information System (INIS)

    Singh, B.K.

    1994-12-01

    Decommissioning activities enable the DOE to reuse all or part of a facility for future activities and reduce hazards to the general public and any future work force. The DOE Office of Environment, Health and Safety has prepared this document, which consists of decommissioning principles and acceptance criteria, in an attempt to establish a policy that is in agreement with the NRC policy. The purpose of this document is to assist individuals involved with decommissioning activities in determining their specific responsibilities as identified in Draft DOE Order 5820.DDD, ''Decommissioning of US Department of Energy Contaminated Surplus Facilities'' (Appendix A). This document is not intended to provide specific decommissioning methodology. The policies and principles of several international decommissioning programs are also summarized. These programs are from the IAEA, the NRC, and several foreign countries expecting to decommission nuclear facilities. They are included here to demonstrate the different policies that are to be followed throughout the world and to allow the reader to become familiar with the state of the art for environment, safety, and health (ES and H) aspects of nuclear decommissioning

  11. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  12. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  13. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  14. Decommissioning - The worldwide challenge

    International Nuclear Information System (INIS)

    McKeown, John

    2002-01-01

    Full text: Whatever the future may hold for nuclear power, there are closed or ageing nuclear facilities in many countries around the world. While these may be in safe care and maintenance at present, a sustainable long term solution is required. Facilities need to be decommissioned, contaminated land remediated, and wastes conditioned for safe storage or disposal. Practical nuclear site restoration has been demonstrated internationally. This experience has revealed generic challenges in dealing with old, often experimental, facilities. These include: Facilities not designed for ease of decommissioning; Records of plant construction and operation, and of the materials utilised and wastes produced, not to modern standards; Fuels and wastes stored for long periods in less than optimal conditions, leading to deterioration and handling problems; The historic use of experimental fuels and materials, giving rise to unique waste streams requiring unique waste management solutions; The application of modern safety and environmental standards to plant which dates from the 1940s, 50s and 60s, requiring investment before decommissioning can even commence. These problems can be tackled, as examples from UKAEA's own programme will illustrate. But two fundamental issues must be recognised and considered. First, the costs of decommissioning older facilities are very high, and may place a heavy burden on national budgets, despite using best efforts to control them. We can limit these costs by learning from one another's experience and sharing the development of new techniques and technologies. UKAEA has already initiated a programme of international collaboration, and hopes that other IAEA countries will be encouraged to follow suit. But whilst the costs of decommissioning may be high, the process normally meets with public acceptance. This is seldom the case for long term waste storage or disposal. Until waste management routes are available - either nationally or internationally

  15. The work and perspective of the OECD/NEA in decommissioning

    International Nuclear Information System (INIS)

    O'Sullivan, P.; Pescatore, C.

    2008-01-01

    OECD member countries are increasingly faced with the need to make provisions for dealing with all aspects of dealing with the management of legacy nuclear installations, especially in terms of having in place adequate policies and regulatory frameworks for ensuring both safety and the efficient implementation of the decommissioning projects. Efficiency also requires that funding schemes are capable of providing adequate funds when required, even in the event that issues arise during implementation that were not anticipated during the planning phase. Waste management arrangements may encompass separate disposal routes for different categories of waste, including Very Low Level Waste, and may also include provisions for clearance and recycling. Recent moves in several countries towards establishing new nuclear programmes are bringing decommissioning activities into fresh focus, for reasons of public confidence (i.e. demonstrating that decommissioning can be done). In some instances existing nuclear sites will be used for the construction of new installations, but stakeholder issues are important for these sites as well. Maturing decommissioning experience should also provide lessons that would help in the reduction of lifetime costs for nuclear plants and other facilities. The challenge lying ahead is to establish a framework that will account for growing nuclear industrial activities in competitive, globalized markets, while maintaining and assuring the safety of decommissioning for the public and for workers. Within this context, institutional arrangements, stakeholder issues, costs and funding, waste management and release policies, as well as availability of technologies and skills, need to be kept under review. (authors)

  16. Some studies related to decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Bergman, C.; Menon, S.

    1990-02-01

    Decommissioning of large nuclear reactors has not yet taken place in the Nordic countries. Small nuclear installations, however, have been dismantled. This NKA-programme has dealt with some interesting and important factors which have to be analysed before a large scale decommissioning programme starts. Prior to decommissioning, knowledge is required regarding the nuclide inventory in various parts of the reactor. Measurements were performed in regions close to the reactor tank and the biological shield. These experimental data are used to verify theoretical calculations. All radioactive waste generated during decommissioning will have to be tansported to a repository. Studies show that in all the Nordic countries there are adequate transport systems with which decommissioning waste can be transported. Another requirement for orderly decommissioning planning is that sufficient information about the plant and its operation history must be available. It appears that if properly handled and sorted, all such information can be extracted from existing documentation. (authors)

  17. Decommissioning alternatives, process and work activities

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The following outlines the topics discussed under Decommissioning Alternatives, Process and Work Activities: (1) decommissioning alternatives, (2) work activities for prompt removal/dismantling, (3) work activities for entombment with delayed dismantling, and (4) work activities for mothballing with delayed dismantling

  18. The development and application of a prioritization methodology for the decommissioning of the Iraq Former Nuclear Complex

    International Nuclear Information System (INIS)

    Jarjies, A.; Abbas, M.; Fernandes, H.M.; Coates, R.

    2008-01-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site is Al-Tuwaitha, the former nuclear research centre which contains about 18 facilities including research reactors, hot cells and waste treatment and storage facilities. There are a further nine sites identified in the country which principally processed uranic material. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. A prioritization methodology has therefore been developed in order to aid the decision-making process. The process comprises three principal stages of assessment: A quantitative surrogate risk assessment based primarily on radiological risk, but also taking account of other hazards; A range of sensitivity analyses to assess the robustness of the quantitative assessment, motivated by the present incomplete and uncertain data set on which the assessment is based; The inclusion of qualitative Other Modifying Factors, e g., social, political and pragmatic management inputs, which can have a significant influence on the prioritization ranking resulting from the above quantitative assessment. The output from this prioritization methodology has robustly identified and consistently ranked a group of Tuwaitha facilities with the highest risk, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. However, the initial order of priority for undertaking dismantling and decommissioning work has crucially been influenced by some of the Other Modifying Factors. In particular, given Iraq's isolation from the international

  19. The development and application of a prioritization methodology for the decommissioning of the Iraq Former Nuclear Complex

    Energy Technology Data Exchange (ETDEWEB)

    Jarjies, A. [Ministry of Science and Technology (MoST), Baghdad (Iraq); Abbas, M. [Consultant to MoST, Baghdad (Iraq); Fernandes, H.M. [lnternational Atomic Energy Agency, Vienna (Austria); Coates, R. [Formerly with the International Atomic Energy Agency, Vienna (Austria)

    2008-07-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site is Al-Tuwaitha, the former nuclear research centre which contains about 18 facilities including research reactors, hot cells and waste treatment and storage facilities. There are a further nine sites identified in the country which principally processed uranic material. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. A prioritization methodology has therefore been developed in order to aid the decision-making process. The process comprises three principal stages of assessment: A quantitative surrogate risk assessment based primarily on radiological risk, but also taking account of other hazards; A range of sensitivity analyses to assess the robustness of the quantitative assessment, motivated by the present incomplete and uncertain data set on which the assessment is based; The inclusion of qualitative Other Modifying Factors, e g., social, political and pragmatic management inputs, which can have a significant influence on the prioritization ranking resulting from the above quantitative assessment. The output from this prioritization methodology has robustly identified and consistently ranked a group of Tuwaitha facilities with the highest risk, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. However, the initial order of priority for undertaking dismantling and decommissioning work has crucially been influenced by some of the Other Modifying Factors. In particular, given Iraq's isolation from the international

  20. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  1. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  2. Cost estimation for decommissioning of research reactors

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Tello, Cledola Cassia Oliveira de; Segabinaze, Roberto de Oliveira; Daniska, Vladimir

    2013-01-01

    In the case of research reactors, the limited data that is available tends to provide only overall decommissioning costs, without any breakdown of the main cost elements. In order to address this subject, it is important to collect and analyse all available data of decommissioning costs for the research reactors. The IAEA has started the DACCORD Project focused on data analysis and costing of research reactors decommissioning. Data collection is organized in accordance with the International Structure for Decommissioning Costing (ISDC), developed jointly by the IAEA, the OECD Nuclear Energy Agency and the European Commission. The specific aims of the project include the development of representative and comparative data and datasets for preliminary costing for decommissioning. This paper will focus on presenting a technique to consider several representative input data in accordance with the ISDC structure and using the CERREX (Cost Estimation for Research Reactors in Excel) software developed by IAEA. (author)

  3. Risk Management of Large Component in Decommissioning

    International Nuclear Information System (INIS)

    Nah, Kyung Ku; Kim, Tae Ryong

    2014-01-01

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down

  4. Risk Management of Large Component in Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Ku; Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down.

  5. Apollo decommissioning project, Apollo, Pennsylvania. Final technical report

    International Nuclear Information System (INIS)

    1997-01-01

    In November, 1991 Babcock and Wilcox (B and W) received a grant to partially fund the decommissioning of the former Apollo Nuclear Fuel Facility. The decommissioning was performed in accordance with a Nuclear Regulatory Commission (NRC) approved decommissioning plan. This report summarizes the decommissioning of the Apollo Nuclear Fuel Facility and the radiological surveying of the site to demonstrate that these decommissioning activities were effective in reducing residual activity well below NRC's criteria for release for unrestricted use. The Apollo Nuclear Fuel Facility was utilized by the Nuclear Materials and Equipment Corporation (NUMEC) and B and W for nuclear research and production under Atomic Energy Commission and Department of Energy (DOE) contracts during 20 plus years of nuclear fuel manufacturing operations

  6. Comparing nuclear decommissioning in the UK and France

    International Nuclear Information System (INIS)

    Walls, J.; Garcier, R.

    2008-01-01

    In this paper we will compare the decommissioning policies in the UK and France. Both countries have a long nuclear history and decommissioning has taken place since the 1960. However, the proposed decommissioning of Magnox and AGR sites in the UK and of UNGG sites in France brings decommissioning efforts to a new level. Whilst we explore in detail the approaches and methodologies adopted in each country we remain sensitive to the effects that political and economic history play in shaping the policy response. In this paper we draw upon interviews conducted with a range of key stakeholders including: national regulators, companies involved in decommissioning, local politicians and community representatives. We also analyse key academic and non academic literature. (authors)

  7. Workshop on Radiological characterisation for decommissioning - Compilation of abstracts, papers, presentations and posters

    International Nuclear Information System (INIS)

    2012-01-01

    The OECD Nuclear Energy Agency (NEA), in cooperation with Studsvik Nuclear AB, the Swedish Radiation Safety Authority (SSM), Swedish Nuclear Fuel and Waste Management Co (SKB) and AB SVAFO, has arranged a workshop on Radiological characterisation for decommissioning and dismantling. The objective of the workshop was to highlight, examine and discuss strategic issues related to radiological characterisation of nuclear facilities to facilitate their safe and efficient decommissioning. The workshop was a forum for learning about current practices, exchange of experiences of both successful and less successful projects, discussion of best practice and needs for improvement, and development of networks in the area of radiological characterisation, waste management and decommissioning. The workshop was arranged in coordination with an ongoing NEA WPDD project on radiological characterisation for decommissioning. The outcome of the workshop was captured in workshop proceedings and in the final NEA WPDD project report. A three-day programme was planned. A short introduction by representatives from Studsvik and OECD/NEA started the workshop followed by presentations by invited speakers from international organisations. Four topical sessions covered issues relating to Characterisation of materials and systems, Characterisation of rooms and buildings, Characterisation of land and groundwater, Software support, record keeping, quality assurance and logistics. Each session contained 3 - 5 presentations and group discussions. Each session was concluded with a short analysis of the presentations and the outcome of the group discussions. The workshop also held a poster session with topics as above. After the formal closing of the workshop, half a day was dedicated for guided tours at the Studsvik and SVAFO facilities. It was possible to visit waste management facilities, the reactor decommissioning project and materials technology laboratories. This document is the Compilation of

  8. What will we do with the low level waste from reactor decommissioning?

    International Nuclear Information System (INIS)

    Meehan, A. R.; Wilmott, S.; Crockett, G.; Watt, N. R.

    2008-01-01

    The decommissioning of the UK's Magnox reactor sites will produce large volumes of low level waste (LLW) arisings. The vast majority of this waste takes the form of concrete, building rubble and redundant plant containing relatively low levels of radioactivity. Magnox Electric Ltd (Magnox) is leading a strategic initiative funded by the Nuclear Decommissioning Authority (NDA) to explore opportunities for the disposal of such waste to suitably engineered facilities that might be located on or adjacent to the site of waste arising, if appropriate and subject to regulatory acceptance and stakeholder views. The strategic issues surrounding this initiative are described along with an update of progress with stakeholder consultations in relation to the proposed licensing of the first such facility at Hinkley Point A, which could be viewed as a test case for the development of similar disposal facilities at other nuclear sites in England and Wales. (authors)

  9. Reactor decommissioning strategy: a new start for BNFL

    International Nuclear Information System (INIS)

    Woollam, P.; Nurden, P.

    2001-01-01

    The key points of BNFL Magnox Electric's revised waste management and reactor decommissioning strategy for the reactor sites are enlisted. Reactors will be defuelled as soon as practicable after shutdown. Predominantly Caesium contaminated plant will be dismantled when it is no longer needed. Cobalt contaminated plant such as boilers will remain in position until the reactors are dismantled, but appropriate decontamination technology will be regularly reviewed. All buildings except the reactor buildings will be dismantled as soon as practicable after they are no longer needed. Operational ILW, except some activated components, will be retrieved and packaged during the Care and Maintenance preparation period. All wastes will be stored on site, and handled in the long term in accordance with Government policy. Reactor buildings and their residual contents will be placed in a passive safe storage Care and Maintenance condition in a manner appropriate for the site. Contaminated land will be managed to maintain public safety. The reactors will be finally dismantled in a sequenced programme with a start date and duration to be decided at the appropriate time in the light of circumstances prevalent at that time. Currently, the Company is considering a sequenced programme across all sites, notionally beginning around 100 years from station shutdown, leading to a range of deferral periods. For provisioning purposes, the Company has costed a strategy involving reactor dismantling deferrals ranging from 85 to about 105 years in order to demonstrate prudent provisioning to meet its liabilities. A risk provision to reflect the potential for shorter deferral periods is included in the cost estimates. The end point for reactor decommissioning is site clearance and delicensing, based on the assumption that a reasonably practicable interpretation of the 'no danger' clause in the Nuclear Installations Act 1965 (as amended) can be developed. In line with Government policy, and taking

  10. Nuclear power plant decommissioning costs in perspective

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey; Deffrennes, Marc; Weber, Inge

    2016-01-01

    At the international level, actual experience is limited in the completion of nuclear power plant decommissioning projects. Cost data for decommissioning projects are thus largely unavailable, with few examples of analyses or comparisons between estimates and actual costs at the project level. The Nuclear Energy Agency (NEA) initiated a project to address this knowledge gap and in early 2016 published the outcomes in the report on Costs of Decommissioning Nuclear Power Plants. The study reviews decommissioning costs and funding practices adopted by NEA member countries, based on the collection and analysis of survey data via a questionnaire. The work was carried out in co-operation with the International Atomic Energy Agency (IAEA) and the European Commission (EC). (authors)

  11. Decommissioning of IFEC

    International Nuclear Information System (INIS)

    Ceccotti, G.; Sberze, L.

    1995-05-01

    The IFEC nuclear fuel fabrication plant operated in Italy for more then thirty years and has now been successfully decommissioned. The rules and regulations relating to Quality Assurance established during the fabrication of Cirene reactor fuel have been adhered to during the decommissioning phase. The use of personnel with large experience in the nuclear field has resulted in vast majority of cares of material and apparatus to be reutilized in conventional activities without the need of calling on the assistance of external firms. The whole decontamination process was successfully completed on time and in particular the quantity of contaminated wastes was kept to eminimun

  12. Establishment the code for prediction of waste volume on NPP decommissioning

    International Nuclear Information System (INIS)

    Cho, W. H.; Park, S. K.; Choi, Y. D.; Kim, I. S.; Moon, J. K.

    2013-01-01

    In practice, decommissioning waste volume can be estimated appropriately by finding the differences between prediction and actual operation and considering the operational problem or supplementary matters. So in the nuclear developed countries such as U.S. or Japan, the decommissioning waste volume is predicted on the basis of the experience in their own decommissioning projects. Because of the contamination caused by radioactive material, decontamination activity and management of radio-active waste should be considered in decommissioning of nuclear facility unlike the usual plant or facility. As the decommissioning activity is performed repeatedly, data for similar activities are accumulated, and optimal strategy can be achieved by comparison with the predicted strategy. Therefore, a variety of decommissioning experiences are the most important. In Korea, there is no data on the decommissioning of commercial nuclear power plants yet. However, KAERI has accumulated the basis decommissioning data of nuclear facility through decommissioning of research reactor (KRR-2) and uranium conversion plant (UCP). And DECOMMIS(DECOMMissioning Information Management System) was developed to provide and manage the whole data of decommissioning project. Two codes, FAC code and WBS code, were established in this process. FAC code is the one which is classified by decommissioning target of nuclear facility, and WBS code is classified by each decommissioning activity. The reason why two codes where created is that the codes used in DEFACS (Decommissioning Facility Characterization management System) and DEWOCS (Decommissioning Work-unit productivity Calculation System) are different from each other, and they were classified each purpose. DEFACS which manages the facility needs the code that categorizes facility characteristics, and DEWOCS which calculates unit productivity needs the code that categorizes decommissioning waste volume. KAERI has accumulated decommissioning data of KRR

  13. IPR-R1 TRIGA research reactor decommissioning plan

    International Nuclear Information System (INIS)

    Andrade Grossi, Pablo; Oliveira de Tello, Cledola Cassia; Mesquita, Amir Zacarias

    2008-01-01

    The International Atomic Energy Agency (IAEA) is concerning to establish or adopt standards of safety for the protection of health, life and property in the development and application of nuclear energy for peaceful purposes. In this way the IAEA recommends that decommissioning planning should be part of all radioactive installation licensing process. There are over 200 research reactors that have either not operated for a considerable period of time and may never return to operation or, are close to permanent shutdown. Many countries do not have a decommissioning policy, and like Brazil not all installations have their decommissioning plan as part of the licensing documentation. Brazil is signatory of Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management, but until now there is no decommissioning policy, and specifically for research reactor there is no decommissioning guidelines in the standards. The Nuclear Technology Development Centre (CDTN/CNEN) has a TRIGA Mark I Research Reactor IPR-R1 in operation for 47 years with 3.6% average fuel burn-up. The original power was 100 k W and it is being licensed for 250 k W, and it needs the decommissioning plan as part of the licensing requirements. In the paper it is presented the basis of decommissioning plan, an overview and the end state / final goal of decommissioning activities for the IPR-R1, and the Brazilian ongoing activities about this subject. (author)

  14. 30 CFR 285.906 - What must my decommissioning application include?

    Science.gov (United States)

    2010-07-01

    ... OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Decommissioning Applications § 285.906 What must my decommissioning application include? You must... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my decommissioning application...

  15. Reactor decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1984-01-01

    A pioneering project on the decommissioning of the Windscale Advanced Gas-cooled Reactor, by the UKAEA, is described. Reactor data; policy; waste management; remote handling equipment; development; and recording and timescales, are all briefly discussed. (U.K.)

  16. Decommissioning wind energy projects: An economic and political analysis

    International Nuclear Information System (INIS)

    Ferrell, Shannon L.; DeVuyst, Eric A.

    2013-01-01

    Wind energy is the fastest-growing segment of new electrical power capacity in the United States, with the potential for significant growth in the future. To facilitate such growth, a number of concerns between developers and landowners must be resolved, including assurance of wind turbine decommissioning at the end of their useful lives. Oklahoma legislators enlisted the authors to develop an economically-sound proposal to ensure developers complete their decommissioning obligations. Economic analysis of turbine decommissioning is complicated by a lack of operational experience, as few U.S. projects have been decommissioned. This leads to a lack of data regarding decommissioning costs. Politically, the negotiation leading to the finally-enacted solution juxtaposed economic theory against political pragmatism, leading to a different but hopefully sound solution. This article will provide background for the decommissioning issue, chronicle the development of the decommissioning component of the Oklahoma Wind Energy Act, and frame issues that remain for policymakers in regulating wind power development. - Highlights: ► Wind energy is the fastest-growing component of U.S. power generation. ► Decommissioning wind projects is policy concern for wind development. ► Little public information on wind turbine decommissioning costs exists. ► Oklahoma’s solution attempts to account for both costs and risks. ► Additional research is needed to create a more precise policy solution.

  17. Decommissioning and disposal costs in Switzerland

    International Nuclear Information System (INIS)

    Zurkinden, Auguste

    2003-01-01

    Introduction Goal: Secure sufficient financial resources. Question: How much money is needed? Mean: Concrete plans for decommissioning and waste disposal. - It is the task of the operators to elaborate these plans and to evaluate the corresponding costs - Plans and costs are to be reviewed by the authorities Decommissioning Plans and Costs - Comprise decommissioning, dismantling and management (including disposal) of the waste. - New studies 2001 for each Swiss nuclear power plant (KKB 2 x 380 MWe, KKM 370 MWe, KKG 1020 MWe, KKL 1180 MWe). - Studies performed by NIS (D). - Last developments taken into account (Niederaichbach, Gundremmingen, Kahl). Decommissioning: Results and Review Results: Total cost estimates decreasing (billion CHF) 1994 1998 2001 13.7 13.1 11.8 Lower costs for spent fuel conditioning and BE/HAA/LMA repository (Opalinus Clay) Split in 2025: 5.6 bil. CHF paid by NPP 6.2 billion CHF in Fund Review: Concentrates on disposal, ongoing

  18. Ecological and political issues surrounding decommissioning of offshore oil facilities in the Southern California Bight

    Science.gov (United States)

    Schroeder, Donna M.; Love, Milton S.

    2004-01-01

    To aid legislators, resource managers, and the general public, this paper summarizes and clarifies some of the issues and options that the federal government and the state of California face in decommissioning offshore oil and gas production platforms, particularly as these relate to platform ecology. Both local marine ecology and political climate play a role in decommissioning offshore oil production platforms. Compared to the relatively supportive political climate in the Gulf of Mexico for “rigs-to-reefs” programs, conflicting social values among stakeholders in Southern California increases the need for understanding ecological impacts of various decommissioning alternatives (which range from total removal to allowing some or all of platform structure to remain in the ocean). Additional scientific needs in the decommissioning process include further assessment of platform habitat quality, estimation of regional impacts of decommissioning alternatives to marine populations, and determination of biological effects of any residual contaminants. The principal management need is a ranking of environmental priorities (e.g. species-of-interest and marine habitats). Because considerable numbers of economically important species reside near oil platforms, National Oceanic and Atmospheric Administration Fisheries should consider the consequences of decommissioning alternatives in their overall management plans. Management strategies could include designating reefed platforms as marine protected areas. The overarching conclusion from both ecological and political perspectives is that decommissioning decisions should be made on a case-by-case basis.

  19. Stakeholder involvement in the decommissioning of Trojan and Maine Yankee nuclear power plants

    International Nuclear Information System (INIS)

    Watson, Bruce A.; Orlando, Dominick A.

    2006-01-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in the decommissioning planning, the conduct of decommissioning operations, the volume of low-level radioactive waste, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated its 10 CFR Part 50 license. Maine Yankee elected to reduce the 10 CFR Part 50 license to only the requirements for the ISFSI. While the NRC regulations are flexible and allow different approaches to ISFSI licensing, there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, stakeholder and public input resulted in the licensee entering into an agreement with a citizen group and resulted in State legislation that lowered the dose limit below the NRC radiological criteria of 0.25 milli-Sievert/year (mSv/yr) (25 mrem/yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs) that were well below the NRC DCGL screening values. This contributed to

  20. NMSS handbook for decommissioning fuel cycle and materials licensees

    International Nuclear Information System (INIS)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ''Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.'' The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC's SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook