WorldWideScience

Sample records for bubble growth

  1. Bubble Growth in Lunar Basalts

    Science.gov (United States)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  2. Binary Schemes of Vapor Bubble Growth

    Science.gov (United States)

    Zudin, Yu. B.

    2015-05-01

    A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of "pressure blocking" in a vapor phase is considered.

  3. Growth process of helium bubbles in aluminum

    International Nuclear Information System (INIS)

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal at 200 to 6450C for 1 hr to 100 hr was observed by transmission electronmicroscopy and possible mechanisms are discussed. The effects of helium concentration and cold work were investigated. Helium bubbles are detectable only by annealing above 5500C for 1 hr in both the annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of the bubble distribution are divided into two categories, irrespective of helium concentration and cold work; (1) fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even by the anneal just below the melting point, and (2) the coarsened and nonuniform bubble distribution ranging from 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. From these two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment (1) the growth of bubbles by Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of the intermediate size bubble is explained in this way. (auth.)

  4. Numerical modeling of dimethyl ether (DME) bubble growth and breakup

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; ZHANG YuSheng

    2009-01-01

    A numerical program is written to simulate the process of vapor bubble growth with spherical symmetry from the thermodynamic critical radius in an initially uniformly superheated liquid. The program is validated by the experimental data of superheated water. The calculated results agree with those of experiments well. The program takes into account the variations of properties with temperature precisely to simulate the DME bubble growth under flash boiling conditions. Considering the influences of pressure, surface tension and viscous stress, the linear stability analysis method is adopted to deduce the dispersion equation to represent the disturbance development during the bubble growth, and a new criterion for bubble breakup is established. The results show the bubble becomes more unstable with the increase of bubble Weber number and void fraction, and that with the increase of bubble growth rate or the decrease of initial radius ration of droplet to bubble, the breakup time of bubble becomes shorter.

  5. Bubble growth constants for liquid hydrogen and liquid helium

    International Nuclear Information System (INIS)

    Bubble growth constants are calculated for liquid H2 and liquid He at various pressures and liquid superheats for spherically symmetric growth using Scrivens' solution (Chem. Eng. Sci.; 10 (1959)). The constants are shown to be applicable to bubble growth at a heated wall during boiling of cryogenic liquids. (author)

  6. Dynamics of diffusive bubble growth in magmas: Isothermal case

    Science.gov (United States)

    Prousevitch, A. A.; Sahagian, D. L.; Anderson, A. T.

    1993-12-01

    We have conducted a parametric study and developed a new cell model describing diffusion-induced growth of closely spaced bubbles in magmatic sytems. The model accounts for (1) the effects of advection of melt resulting from bubble growth, and its affect on the local concentration profile; (2) dynamic resistence of the viscous melt during diffusive growth; (3) diffusion of volatiles in response to evolving concentration gradients; (4) mass balance between dissolved volatiles and gas inside the bubble; (5) changes in the equilibrium saturation concentration at the bubble-melt interface; (6) total pressure within the bubble consisting of ambient, surface tension, and dynamic pressures. The results of this study reveal that bubble growth depends strongly on ambient pressure, volatile oversaturation in the melt, and diffusivity coefficients, but only weakly on bubble separation and inital bubble radius. Increased volatile oversaturation increases growth rate to the point at which it actually reduces time for complete bubble growth. This counterintuitive result is due to significant advective volatile flux toward the bubble interface during growth. Viscosity controls growth dynamics only for cases of high viscosity (greater than 10(exp 4) Pa s). The documentation of the evolution of gas fraction in the melt and bubble wall thickness as a function of time makes it possible to estimate bubble disruption thresholds which bear on volcanic eruption mechanisms. Model results can be applied to the larger-scale problem of magmatic degassing in terms of bubble coalescence, flotation and the development of foams in magma chambers and vent systems, and ultimately to the dynamics of eruption mechanisms.

  7. The quasi-static growth of CO2 bubbles

    NARCIS (Netherlands)

    Enriquez, Oscar R.; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea; Meer, van der Devaraj

    2014-01-01

    We study experimentally the growth of an isolated gas bubble in a slightly supersaturated water–CO2 solution at 6 atm pressure. In contrast to what was found in previous experiments at higher supersaturation, the time evolution of the bubble radius differs noticeably from existing theoretical soluti

  8. Helium ion implantation in zirconium: Bubble formation and growth

    Science.gov (United States)

    Totemeier, Aaron Robert

    To evaluate the behavior of inert helium gas bubbles in zirconium three variants of the metal were implanted with 140 keV helium ions to a total fluence of 3x1017 cm--2 and characterized in cross-section TEM in their as-implanted state as well as during annealing at different temperatures. The three zirconium alloys included high-purity crystal bar material, Zircaloy-4, and a powder-metallurgically extruded material with high carbon and oxygen concentrations. At a sample depth consistent with a helium concentration of approximately 5 atomic percent, a change in the structure of the zirconium was observed a high density region of small (4nm diameter) bubbles formed at concentrations above 10 atom percent. Initial bubble formation and growth was observed to occurred at a temperature between 400-450 °C and these initial bubbles had a unique planar geometry prior to migration and coalescence into more three-dimensional bubbles. These planar bubbles appear to be aligned with major axes parallel to the TEM specimen surface and their formation and growth is possibly due to an increase in the thermal vacancy flux within the zirconium. The observations of bubble response to high temperature annealing suggest that in zirconium, as in other metals, maximum bubble size is weakly dependent on annealing time, whereas the bubble size distribution is strongly dependent on time. Specimens that underwent a prolonged room temperature aging developed a multimodal bubble size distribution within the high density region of small bubbles, concentrated near the highest helium concentration depth.

  9. Simulation of bubble growth and coalescence in reacting polymer foams

    Science.gov (United States)

    Marchisio, Daniele; Karimi, Mohsen

    2015-11-01

    This work concerns with the simulation of reacting polymer foams with computational fluid dynamics (CFD). In these systems upon mixing of different ingredients polymerization starts and some gaseous compounds are produced, resulting in the formation of bubbles that growth and coalesce. As the foam expands, the polymerization proceeds resulting in an increase of the apparent viscosity. The evolution of the collective behavior of the bubbles within the polymer foam is tracked by solving a master kinetic equation, formulated in terms of the bubble size distribution. The rate with which individual bubbles grow is instead calculated by resolving the momentum and concentration boundary layers around the bubbles. Moreover, since it is useful to track the evolution of the interface between the foam and the surrounding air, a volume-of-fluid (VOF) model is adopted. The final computational model is implemented in the open-source CFD code openFOAM by making use of the compressibleInterFoam solver. The master kinetic equation is solved with a quadrature-based moment method (QBMM) directly implemented in openFOAM, whereas the bubble growth model is solved independently and ''called'' from the CFD code by using an unstructured database. Model predictions are validated against experimental data. This work was funded by the European Commission under the grant agreement number 604271 (Project acronym: MoDeNa; call identifier: FP7-NMP-2013-SMALL-7).

  10. Effects of system pressure and heat flux on bubble nucleation and growth

    Science.gov (United States)

    Qiu, Chao; Zhang, Huichen

    2015-09-01

    Characteristics of bubble nucleation and growth are critical for its application. It is affected by several factors including viscosity, surface tension and temperature. However, the effect of pressure on bubble nucleation and growth has been underreported, although it processes significant effect on above characteristics. In this work, a micro copper electrode is etched on a slab covered with copper to produce bubble on the surface by current input. The nucleation time of bubble is measured under different heat flux and system pressures. The nucleation and growth processes are recorded with a high speed camera in order to discuss the effects of heat flux and system pressure on bubble characteristics. The experiment results indicate that the micro electrode with higher heat flux produces more thermal energy, which makes the time of bubble nucleation shorter and the speed of bubble growth faster. Higher system pressure causes the increase of the critical nucleation temperature and also baffles the bubble nucleation and growth. Bubble growth includes the stages of rapid growth and dynamic equilibrium, with the speed being from fast to slow. In the former part of rapid growth, heat flux plays a dominant role in bubble growth. While the effect of system pressure on bubble growth becomes significant in the latter part of rapid growth. Both the nucleation time and bubble growth agree well with the theoretical analysis. The obtained results help to accurately control bubble nucleation and growth required in different application.

  11. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could...

  12. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    Science.gov (United States)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  13. A model of bubble growth leading to xylem conduit embolism.

    Science.gov (United States)

    Hölttä, T; Vesala, T; Nikinmaa, E

    2007-11-01

    The dynamics of a gas bubble inside a water conduit after a cavitation event was modeled. A distinction was made between a typical angiosperm conduit with a homogeneous pit membrane and a typical gymnosperm conduit with a torus-margo pit membrane structure. For conduits with torus-margo type pits pit membrane deflection was also modeled and pit aspiration, the displacement of the pit membrane to the low pressure side of the pit chamber, was found to be possible while the emboli was still small. Concurrent with pit aspiration, the high resistance to water flow out of the conduit through the cell walls or aspirated pits will make the embolism process slow. In case of no pit aspiration and always for conduits with homogeneous pit membranes, embolism growth is more rapid but still much slower than bubble growth in bulk water under similar water tension. The time needed for the embolism to fill a whole conduit was found to be dependent on pit and cell wall conductance, conduit radius, xylem water tension, pressure rise in adjacent conduits due to water freed from the embolising conduit, and the rigidity and structure of the pits in the case of margo-torus type pit membrane. The water pressure in the conduit hosting the bubble was found to occur almost immediately after bubble induction inside a conduit, creating a sudden tension release in the conduit, which can be detected by acoustic and ultra-acoustic monitoring of xylem cavitation.

  14. Effect of the proximity of the external surface on the growth characteristics of inert gas bubbles

    International Nuclear Information System (INIS)

    Experimental evidence is discussed in order to show that the proximity of an external surface has a strong effect on the growth of inert gas bubbles. This effect can be explained as follows: while bubbles act as sinks, the external surface provides a copious source for vacancies. These observations suggest the possibility of the growth of inert gas bubbles through spontaneous vacancy condensation. (orig.)

  15. Dynamics of bubble growth for Rayleigh--Taylor unstable interfaces

    International Nuclear Information System (INIS)

    A statistical model is analyzed for the growth of bubbles in a Rayleigh--Taylor unstable interface. The model is compared to solutions of the full Euler equations for compressible two phase flow, using numerical solutions based on the method of front tracking. The front tracking method has the distinguishing feature of being a predominantly Eulerian method in which sharp interfaces are preserved with zero numerical diffusion. Various regimes in the statistical model exhibiting qualitatively distinct behavior are explored

  16. Gas Bubble Growth Dynamics in a Supersaturated Solution: Henry's and Sievert's Solubility Laws

    CERN Document Server

    Gor, Gennady Yu; Kuni, Fedor M

    2012-01-01

    Theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution is presented. We study the influence of Laplace pressure on the bubble growth. We consider two different solubility laws: Henry's law, which is fulfilled for the systems where no gas molecules dissociation takes place and Sievert's law, which is fulfilled for the systems where gas molecules completely dissociate in the solvent into two parts. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux of dissolved gas molecules to the bubble is steady we obtain differential equations on bubble radius for both solubility laws. For the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop bubble dynamics equations for Henry's and Sievert's laws are solved analytically. For both solubility laws three characteristic stages of bubble growth are mar...

  17. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Chaofeng, E-mail: sang@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Sun, Jizhong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Bonnin, Xavier [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, Villetaneuse 93430 (France); Wang, L. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-08-15

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering.

  18. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    International Nuclear Information System (INIS)

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering

  19. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Wang, L.; Wang, Dezhen

    2015-08-01

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering.

  20. Growth of bubbles on a solid surface in response to a pressure reduction.

    Science.gov (United States)

    Li, Jiang; Chen, Haosheng; Zhou, Weizheng; Wu, Bo; Stoyanov, Simeon D; Pelan, Eddie G

    2014-04-22

    A diffusion-controlled method is presented to study the growth of bubbles on a solid surface. The bubbles are nucleated spontaneously on a hydrophobic smooth surface in response to a sudden pressure reduction and then grow with an expanding contact line. The evolution of the bubbles in the early stage is found to grow with a constant bubble radius and a decreasing contact angle, while the bubbles continue their growth with a constant contact angle and an increasing bubble radius after the contact angle reaches its equilibrium value. A total variation of about 60° of the contact angle is observed during the growth of the bubbles with the size scale of 10-100 μm in radius. The growing process is described by the diffusion theory with the validation of the growth constant.

  1. Dynamics of gas bubble growth in oil-refrigerant mixtures under isothermal decompression

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Joao Paulo; Barbosa Junior, Jader R.; Prata, Alvaro T. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: jpdias@polo.ufsc.br, jrb@polo.ufsc.br, prata@polo.ufsc.br

    2010-07-01

    This paper proposes a numerical model to predict the growth of gaseous refrigerant bubbles in oil-refrigerant mixtures with high contents of oil subjected to isothermal decompression. The model considers an Elementary Cell (EC) in which a spherical bubble is surrounded by a concentric and spherical liquid layer containing a limited amount of dissolved liquid refrigerant. The pressure reduction in the EC generates a concentration gradient at the bubble interface and the refrigerant is transported to the bubble by molecular diffusion. After a sufficiently long period of time, the concentration gradient in the liquid layer and the bubble internal pressure reach equilibrium and the bubble stops growing, having attained its stable radius. The equations of momentum and chemical species conservation for the liquid layer, and the mass balance at the bubble interface are solved via a coupled finite difference procedure to determine the bubble internal pressure, the refrigerant radial concentration distribution and the bubble growth rate. Numerical results obtained for a mixture of ISO VG10 ester oil and refrigerant HFC-134a showed that bubble growth dynamics depends on model parameters like the initial bubble radius, initial refrigerant concentration in the liquid layer, decompression rate and EC temperature. Despite its simplicity, the model showed to be a potential tool to predict bubble growth and foaming which may result from important phenomena occurring inside refrigeration compressors such as lubrication of sliding parts and refrigerant degassing from the oil stored in oil sump during compressor start-up. (author)

  2. Growth of bubbles on a solid surface in response to a pressure reduction

    NARCIS (Netherlands)

    Li, J.; Chen, H.; Zhou, W.; Wu, B.; Stoyanov, S.D.; Pelan, E.G.

    2014-01-01

    A diffusion-controlled method is presented to study the growth of bubbles on a solid surface. The bubbles are nucleated spontaneously on a hydrophobic smooth surface in response to a sudden pressure reduction and then grow with an expanding contact line. The evolution of the bubbles in the early sta

  3. Growth and collapse of a vapor bubble in a narrow tube

    NARCIS (Netherlands)

    Ory, E.; Yuan, H.; Prosperetti, A.; Popinet, S.; Zaleski, S.

    2000-01-01

    The fluid mechanical aspects of the axisymmetric growth and collapse of a bubble in a narrow tube filled with a viscous liquid are studied numerically. The tube is open at both ends and connects two liquid reservoirs at constant pressure. The bubble is initially a small sphere and growth is triggere

  4. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    Science.gov (United States)

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  5. Rating Growth of Scientific Knowledge and Risk from Theory Bubbles

    CERN Document Server

    Loeb, Abraham

    2011-01-01

    In physics the value of a theory is measured by its agreement with experimental data. But how should the physics community gauge the value of an emerging theory that has not been tested experimentally as of yet? With no reality check, a hypothesis like string theory may linger for a while before physicists will know its actual value in describing nature. In this short article, I advocate the need for a website operated by graduate students that will use various measures of publicly available data (such as the growth rate of newly funded experiments, research grants, publications, and faculty jobs) to gauge the future dividends of various research frontiers. The analysis can benefit from past experience (e.g. in research areas that suffered from limited experimental data over long periods of time) and aim to alert the community of the risk from future theory bubbles.

  6. Atomistic modeling of growth and coalescence of helium nano-bubbles in tungsten

    International Nuclear Information System (INIS)

    The mechanisms of growth and coalescence of helium nano-bubbles in tungsten are investigated using molecular dynamics simulations. It is shown that crystal symmetries and governed by them properties of dislocations, generated by the growing nano-bubbles, are responsible for main nano-bubble features revealed, including non-spherical shape and anisotropy of surrounding stress field. The transport of helium atoms in non-uniform stress field is simulated at different temperatures and the transport coefficients are determined. The implications of the considered dislocation and helium dynamics on nucleation and growth of bubbles in tungsten with implanted helium are discussed

  7. Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.

    Science.gov (United States)

    Gor, G Yu; Kuchma, A E

    2009-07-21

    This paper presents a theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution. We study systems where gas molecules completely dissociate in the solvent into two parts, thus making Sievert's solubility law valid. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux is steady we obtain a differential equation on bubble radius. Bubble dynamics equation is solved analytically for the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop. We also obtain conditions of diffusion flux steadiness. The fulfillment of these conditions is studied for the case of nucleation of water vapor bubbles in magmatic melts.

  8. Empirical relationships of homogeneous bubble nucleation, growth and coalescence in rhyolitic melt

    Science.gov (United States)

    Giachetti, T.; Gonnermann, H. M.; Gardner, J. E.; Truong, N.; Toledo, P.; Hajimirza, S.

    2015-12-01

    Decompression experiments of homogeneous nucleation, growth and coalescence of bubbles in rhyolitic melt provide new data for an empirical formulation to predict bubble number density and size from controlled experimental conditions. Samples were hydrated at 200-250 MPa and 850 °C to water contents of 5.4-6.0 wt%, followed by decompression at rates of 60-150 MPa.s-1. Samples were held at final pressures for 6-90 s, allowing for bubble growth and coalescence after decompression and nucleation. Scanning electron microscopic (SEM) images and computed tomography (CT) scans of the decompressed glasses were analyzed for size distributions of both isolated and coalesced bubbles separately. Sample porosities vary from 4% to 63%, and connected porosity is positively correlated with total porosity for samples where it is greater than approximately 35%. A steep increase in the proportion of connected bubbles is observed once the average bubble wall thickness becomes lower than approximately 2 μm. In combination with SEM, CT and bubble size distributions these results indicate that bubble coalescence is independent of bubble size. Bubble number density varies from 8.9×1011 m-3 to 4.4×1016 m-3 (melt-referenced), and is positively correlated with the degree of supersaturation (130-210 MPa), as well as initial water content. For most experiments, we do not observe any increase in bubble number density after 10-20 s, suggesting that bubble nucleation has stopped. The bubble number density does not show a systematic correlation with decompression rate.

  9. The rate of gas-bubble growth in tissue under decompression. Mathematical modelling.

    Science.gov (United States)

    Kislyakov YuYa; Kopyltsov, A V

    1988-03-01

    A mathematical model simulating the formation of gas bubbles in biological tissues under decompression is presented. It is written as a system of partial differential equations solved on a computer. For the nitrogen-oxygen gas mixture, used for respiration in deep-water immersions, the effects of the physico-chemical properties of the gases, the magnitude of pressure differentials and the density of bubble-formation centres on the bubble size and rate of growth were studied. It is shown that in the case of drastic pressure differentials the formation of bubbles capable of producing microcirculatory disturbances is accomplished within a few seconds.

  10. Growth of a dry spot under a vapor bubble at high heat flux and high pressure

    CERN Document Server

    Nikolayev, Vadim; Lagier, G -L; Hegseth, J

    2016-01-01

    We report a 2D modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated boiling. The heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater by the boundary element method. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater thus triggering the boiling crisis (critical heat flux).

  11. Skin formation and bubble growth during drying process of polymer solution.

    Science.gov (United States)

    Arai, S; Doi, M

    2012-07-01

    When a polymer solution with volatile solvent is dried, skins are often formed at the surface of the solution. It has been observed that after the skin is formed, bubbles often appear in the solution. We conducted experiments to clarify the relation between the skin formation and the bubble formation. We measured the time dependence of the thickness of the skin layer, the size of the bubbles, and the pressure in the solution. From our experiments, we concluded that i) the gas in the bubble is a mixture of solvent vapor and air dissolved in the solution, ii) the bubble nucleation is assisted by the pressure decrease in the solution covered by the skin layer, and iii) the growth of the bubbles is diffusion limited, mainly limited by the diffusion of air molecules dissolved in the solution.

  12. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    International Nuclear Information System (INIS)

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments

  13. Global Solutions to Bubble Growth in Porous Media

    CERN Document Server

    Karp, Lavi

    2010-01-01

    We study a moving boundary problem modeling an injected fluid into another viscous fluid. The viscous fluid is withdrawn at infinity and governed by Darcy's law. We present solutions to the free boundary problem in terms of time-derivative of a generalized Newtonian potentials of the characteristic function of the bubble. This enables us to show that the bubble occupies the entire space as the time tends to infinity if and only if the internal generalized Newtonian potential of the initial bubble is a quadratic polynomial.

  14. Gas Bubble Growth Dynamics in a Supersaturated Solution: Henry's and Sievert's Solubility Laws

    OpenAIRE

    Gor, Gennady Yu.; Kuchma, Anatoly E.; Kuni, Fedor M.

    2012-01-01

    Theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution is presented. We study the influence of Laplace pressure on the bubble growth. We consider two different solubility laws: Henry's law, which is fulfilled for the systems where no gas molecules dissociation takes place and Sievert's law, which is fulfilled for the systems where gas molecules completely dissociate in the solvent into two parts. We show that the difference between H...

  15. Taxing the rich: recombinations and bubble growth during reionization

    Science.gov (United States)

    Furlanetto, Steven R.; Oh, S. Peng

    2005-11-01

    Reionization is inhomogeneous for two reasons: the clumpiness of the intergalactic medium (IGM), and clustering of the discrete ionizing sources. While numerical simulations can in principle take both into account, they are at present limited by small box sizes. On the other hand, analytic models have only examined the limiting cases of a clumpy IGM (with uniform ionizing emissivity) and clustered sources (embedded in a uniform IGM). Here, we present the first analytic model that includes both factors. At first, recombinations can be ignored and ionized bubbles grow primarily through major mergers, because at any given moment the bubbles have a well-defined characteristic size. As a result, reionization resembles `punctuated equilibrium,' with a series of well-separated sharp jumps in the ionizing background. These features are local effects and do not reflect similar jumps in the global ionized fraction. We then combine our bubble model with a simple description of recombinations in the IGM. We show that the bubbles grow until recombinations balance ionizations, when their expansion abruptly halts. If the IGM density structure is similar to that at moderate redshifts, this limits the bubble radii to ~20 comoving Mpc; however, if the IGM is significantly clumpier at higher redshifts (because of minihalo formation, for example), the limit could be much smaller. Once a bubble reaches saturation, that region of the Universe has for all intents and purposes entered the `post-overlap' stage. Because different HII regions saturate over a finite time interval, the overlap epoch actually has a finite width. Our model also predicts a mean recombination rate several times larger than expected for a uniformly illuminated IGM. This picture naturally explains the substantial large-scale variation in Lyman-series opacity along the lines of sight to the known z > 6 quasars. More quasar spectra will shed light on the transition between the `bubble-dominated' topology

  16. Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces

    Science.gov (United States)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli

    2007-01-01

    Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.

  17. Taxing the Rich: Recombinations and Bubble Growth During Reionization

    CERN Document Server

    Furlanetto, S R; Furlanetto, Steven R.

    2005-01-01

    Reionization is inhomogeneous for two reasons: the clumpiness of the intergalactic medium (IGM) and clustering of the discrete ionizing sources. While numerical simulations can in principle take both into account, they are at present limited by small box sizes. On the other hand, analytic models have only examined the limiting cases of a clumpy IGM (with uniform ionizing emissivity) and clustered sources (embedded in a uniform IGM). Here, we present an analytic model for the evolving topology of reionization that includes both factors. At first, recombinations can be ignored and ionized bubbles grow primarily through major mergers. As a result, reionization resembles "punctuated equilibrium," with a series of well-separated sharp jumps in the ionizing background. These features are local effects and do not reflect similar jumps in the global ionized fraction. We then combine our bubble model with a simple description of recombinations in the IGM. We show that the bubbles stop growing when recombinations balan...

  18. Effects of FLIRT on bubble growth in man.

    Science.gov (United States)

    Winkler, B E; Koch, A; Schoeppenthau, H; Ludwig, T; Tetzlaff, K; Hartig, F; Kaehler, W; Koehler, A; Kanstinger, A; Ciscato, W; Muth, C-M

    2012-11-01

    Recompression during decompression has been suggested to possibly reduce the risk of decompression sickness (DCS). The main objective of the current study was to investigate the effects of FLIRT (First Line Intermittent Recompression Technique) on bubble detection in man. 29 divers underwent 2 simulated dives in a dry recompression chamber to a depth of 40 msw (500 kPa ambient pressure) in random order. A Buehlmann-based decompression profile served as control and was compared to an experimental profile with intermittent recompression during decompression (FLIRT). Circulating bubbles in the right ventricular outflow tract (RVOT) were monitored by Doppler ultrasound and quantified using the Spencer scoring algorithm. Heat shock protein 70 (HSP70), thrombocytes, D-Dimers and serum osmolarity were analyzed before and 120 min after the dive. Both dive profiles elicited bubbles in most subjects (range Spencer 0-4). However, no statistically significant difference was found in bubble scores between the control and the experimental dive procedure. There was no significant change in either HSP70, thrombocytes, and D-Dimers. None of the divers had clinical signs or symptoms suggestive of DCS. We conclude that FLIRT did not significantly alter the number of microbubbles and thus may not be considered superior to classical decompression in regards of preventing DCS.

  19. Experimental Study of Bubble Growth in Stromboli Basalt Melts at 370 MPa and 1 Atmosphere

    Science.gov (United States)

    Bai, L.; Baker, D. R.; Rivers, M.

    2006-05-01

    Volcanic degassing involves gas bubble formation and growth due to the exsolution of the volatiles dissolved in the melts. Although we know that bubble size distributions in natural rocks are controlled by bubble nucleation and growth processes, we are far from a quantitative understanding of their growth. In order to investigate bubble formation and growth under different pressures, degassing experiments using a Stromboli basalt with dissolved H2O, or H2O+CO2, were conducted in a piston-cylinder at 370 MPa and on the GSECARS (Advanced Photon Source) Synchrotron beamline in a custom furnace at one atmosphere. In the high pressure degassing experiments the melts were synthesized at 1250 ° C and 1000 MPa with either about 3.0, 5.0, or 8.0 % H2O or with mixtures of H2O+CO2: approximately 3.0 % H2O and 440 ppm CO2, 5.0 % H2O and 880 ppm CO2, or 8.0 % H2O and 1480 ppm CO2. After homogenization of the dissolved volatiles in the melt, the samples were isothermally decompressed to a final pressure of 370 MPa. The decompressed samples were held at 370 MPa for 0 to 3600 seconds before quenching. In the one atmosphere experiments, the hydrated, volatile-undersaturated melts of the same compositions as the high pressure experiments were synthesized at 1250 ° C and 1000 MPa and quenched to bubble-free glasses. These glasses were heated in-situ on the Synchrotron X-ray beamline at one atmosphere, and then were quenched from different temperatures. The 3D bubble size distributions in the quenched samples were then studied with synchrotron X-ray microtomography. Bubbles nucleated and grew in all samples, producing bubbles with volumes varying between 10-5 and 10-7 mm3 in the high pressure experiments and between 10-1 and 10-7 mm3 in the one atmosphere experiments. The vesicularities of samples from high pressure degassing experiments vary between 0.1 and 6.6 percent. In the one atmosphere degassing experiments the bubbles grew and coalesced, and occasionally popped when the

  20. Distributions of crystals and gas bubbles in reservoir ice during winter growth period

    Directory of Open Access Journals (Sweden)

    Zhi-jun LI

    2011-06-01

    Full Text Available In order to understand the dominant factors of ice physical properties for ice thermodynamics and mechanics, in-situ observations of ice growth and decay processes were carried out. Two samplings were done, in the stages of fast ice growth and steady ice growth. These ice samples were used to observe ice crystals and gas bubbles in ice, and to measure ice density. Vertical profiles of the ice crystal type, ice crystal size, gas bubble shape and size, gas bubble content, as well as ice density were ontained. The results reveal that the upper part of the samples is granular ice and the lower part is columnar ice, the average grain size increases along ice depth and keeps steady within fast and steady ice growth stages; the shape of gas bubbles in ice upper layer is spherical with higher total content, and the shape in the middle and lower layers is cylinder with lower total content; the gas bubble size and content are active along with the ice growth stage; ice density decreases with the gas content increasing.

  1. Birth and growth of cavitation bubbles within water under tension

    CERN Document Server

    Vincent, Olivier; Quinto-Su, Pedro A; Ohl, Claus-Dieter

    2011-01-01

    Water under tension, such as the water rising in tree vessels, is in a metastable state. Water cavitates spontaneously when the tension is high enough, as observed at equilibrium in the water filled holes of a drying hydrogel, called artifical trees. Here, in order to understand the dynamics of cavitation in tensed water, we directly trigger cavitation events, taking advantage of the disturbance generated by a focused laser pulse. We find that the inception of a bubble progresses in two stages. The first stage is ultra-fast, lasting less than microseconds, during which a bubble with a finite volume suddenly appears. This event relaxes the water tension, that we can therefore estimate. A second, slower stage follows when water diffuses into the surrounding medium.

  2. Isobaric bubble growth: a consequence of altering atmospheric gas.

    Science.gov (United States)

    Strauss, R H; Kunkle, T D

    1974-11-01

    During certain treatments of decompression sickness following dives made with compressed air, the U.S. Navy advocates breathing helium-oxygen mixtures. However, stable nitrogen bubbles created within gelatin by decompression have been found to enlarge when the atmosphere was switched from nitrogen to helium without changing ambient pressure. This suggests that decompression sickness would be worsened by switching from nitrogen to helium in the breathing gas mixture.

  3. Nucleation and growth of helium bubbles in aluminum between 20 and 900 K

    DEFF Research Database (Denmark)

    Rajainmäki, H.; Linderoth, Søren; Hansen, H. E.;

    1988-01-01

    The nucleation and growth of helium bubbles have been monitored in 3implanted aluminum by the positron-lifetime technique and transmission electron microscopy. Helium atoms are mobile during the implantation and are subsequently trapped by vacancies. The annealing stages I and III are observed...... the final 900-K annealing. The helium density, as a function of annealing temperature, was determined from the positron-lifetime data employing recent theoretical calculations. Also, the bubble size was estimated. The presence of helium bubbles was verified with transmission electron microscopy...... and they were found to be polygon shaped. The fraction of positrons annihilating in the helium bubbles was found to decrease when lowering the temperature below room temperature, in accord with results on empty voids in aluminum....

  4. Steam bubble growth in the bulk of overheated N2O4-NO chemically reacting solution

    International Nuclear Information System (INIS)

    A mathematical model and numerical investigation of the vapour bubble growth that begins from the bubble critical size at the positive radius fluctuation during the initial moment in the bulk of the overheated N2O4-NO liquid solution are presented. The mathematical model has been stated under the following assumptions: the movement of a bubble wall and surrounding liquid is spherically symmetrical; thermal parameters in the bubble are distributed uniformly; the vapour phase follows the ideal gas law; heat transfer is not affected by the compressibility of liquid; if dissolution of light components is determined by Henry's law, then Hertz-Knudsen's equation determines the velocity of phase transition for a N2O4 component. The mathematical model presented can be applied to another fluids, including chemically reacting ones

  5. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    Science.gov (United States)

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. PMID:27243604

  6. Helium bubble nucleation and growth in α-Fe: insights from first–principles simulations

    International Nuclear Information System (INIS)

    We have carried out a first-principles study on the nucleation and early-stage growth of He bubbles in Fe. The energetics, atomic and electronic structure of He-vacancy complexes, involving both a monovacancy and a nine-vacancy cluster, are examined. Based on the energetics, we then perform thermodynamics analysis to gain deeper insights into He bubble nucleation and growth. We have determined the energy cost for the nucleation of He bubbles and found that up to eight He atoms can be trapped at a single vacancy. In order to capture more He atoms, the vacancy has to emit Frenkel pairs to release the substantial stress building on the surrounding Fe lattice. Compared to the monovacancy, the nine-vacancy cluster has a lower energy cost for He bubble nucleation and growth. He atoms at the vacancy repel the surrounding electronic charge and redistribute it on the neighboring Fe atoms. The thermodynamic analysis reveals that He chemical potential provides a driving force for He bubble nucleation and growth. There are two critical He chemical potentials that are of particular importance: one of them marks the transition from single He occupation to multiple He occupation at a monovacancy while the other sets off He-induced superabundant vacancy formation. (paper)

  7. Helium bubble nucleation and growth in α-Fe: insights from first-principles simulations.

    Science.gov (United States)

    Xiao, W; Zhang, X; Geng, W T; Lu, G

    2014-06-25

    We have carried out a first-principles study on the nucleation and early-stage growth of He bubbles in Fe. The energetics, atomic and electronic structure of He-vacancy complexes, involving both a monovacancy and a nine-vacancy cluster, are examined. Based on the energetics, we then perform thermodynamics analysis to gain deeper insights into He bubble nucleation and growth. We have determined the energy cost for the nucleation of He bubbles and found that up to eight He atoms can be trapped at a single vacancy. In order to capture more He atoms, the vacancy has to emit Frenkel pairs to release the substantial stress building on the surrounding Fe lattice. Compared to the monovacancy, the nine-vacancy cluster has a lower energy cost for He bubble nucleation and growth. He atoms at the vacancy repel the surrounding electronic charge and redistribute it on the neighboring Fe atoms. The thermodynamic analysis reveals that He chemical potential provides a driving force for He bubble nucleation and growth. There are two critical He chemical potentials that are of particular importance: one of them marks the transition from single He occupation to multiple He occupation at a monovacancy while the other sets off He-induced superabundant vacancy formation.

  8. A simultaneous observation of bubble growth and microlayer behavior for an isolated boiling regime of saturated water

    International Nuclear Information System (INIS)

    The bubble growth rate and microlayer behavior were simultaneously visualized for an isolated boiling regime of saturated water. The increase rate of the bubble volume dropped sharply when the microlayer was totally depleted. However, the contribution of the superheated liquid layer evaporation to the bubble volume increase was comparable to or even higher than that of the microlayer evaporation during the time when the microlayer evaporation was active. The microlayer under the coalesced bubble was much thicker than that under single isolated bubble. (author)

  9. Experimental and numerical study on the growth and collapse of a bubble in a narrow tube

    Institute of Scientific and Technical Information of China (English)

    Bao-Yu Ni; A-Man Zhang; Qian-Xi Wang; Bin Wang

    2012-01-01

    The growth,expansion and collapse of a bubble in a narrow tube are studied using both experiments and numerical simulations.In experiment,the bubble is generatedby an electric spark in a water tank and recorded by a highspeed camera system.In numerical simulation,the evolution of the bubble is solved by adopting axisymmetric boundary integral equation,considering the surface tension effect.The results of experiments and numerical simulations are compared and good agreements are achieved.Both of them show that a counter-jet forms and penetrates the bubble at the end of the collapse stage,before a ring type bubble forms.Under the attraction of the tube wall due to Bjerknes force,a ring jet is generated,pointing towards the tube.On the basis of this,some physical quantities like the pressure on the tube wall and kinetic energy are calculated in a case study.The effects of tube diameters and tube lengths on the bubble's behaviors are also investigated.

  10. Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations

    Science.gov (United States)

    Abhishek, A.; Warrier, M.; Ganesh, R.; Caro, A.

    2016-04-01

    Helium(He) produced by transmutation process inside structural material due to neutron irradiation plays a vital role in the degradation of material properties. We have carried out Molecular dynamics(MD) simulations to study the growth of He bubble in Iron-Chromium alloy. Simulations are carried out at two different temperatures, viz. 0.1 K and 800 K, upto He bubble radius of 2.5 nm. An equation for variation of volume of He bubbles with the number of He atoms is obtained at both the temperatures. Bubble pressure and potential energy variation is obtained with increasing bubble radius. Dislocations are also found to be emitted after the bubble reaches a critical radius of 0.39 nm at 800 K. Separate MD simulations of He with pre-created voids are also carried out to study the binding energies of He and Vacancy (V) to Hem-Vn cluster. Binding energies are found to be in the range of 1-5.5 eV.

  11. Bubble rupture in bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Chen Rouxi

    2015-01-01

    Full Text Available As the distinctive properties and different applications of nanofibers, the demand of nanofibers increased sharply in recently years. Bubble electrospinning is one of the most effective and industrialized methods for nanofiber production. To optimize the set-up of bubble electrospinning and improve its mass production, the dynamic properties of un-charged and charged bubbles are studied experimentally, the growth and rupture process of a bubble are also discussed in this paper.

  12. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film

    Institute of Scientific and Technical Information of China (English)

    TAO Yu-Jia; HUAI Xiu-Lan; LI Zhi-Gang

    2009-01-01

    A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film,movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase flow and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid fihn with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling.

  13. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film

    International Nuclear Information System (INIS)

    A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase now and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling. (fundamental areas of phenomenology (including applications))

  14. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas

  15. Grain Growth and Bubble Evolution in U-Mo Alloy by Multiscale Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo; Wiencek, Tom; Hofman, Gerard; Anitescu, Mihai; Yacout, Abdellatif M.

    2015-01-01

    Increased grain size in U-Mo dispersion fuel is believed to affect the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase-field modeling is used to investigate the grain growth behavior in U-Mo alloys. The material properties of U-Mo alloys predicted by first-principles calculations are incorporated into the mesoscale phase-field models to study the effect of annealing temperature, annealing time and the initial grain structures of fuel particles on the grain growth. The grain growth rate is evaluated and compared with experiment. Meanwhile, the gas bubble evolution kinetics in irradiated U-Mo alloy fuels is investigated to understand its effect on fuel swelling. We systematically examine the effect of Xe, vacancy, and SIA concentration, fission defect generation, and elastic interaction on the growth kinetics of gas bubble. The bubble size distribution and swelling of U-Mo are simulated and compared to experimental measurements.

  16. A novel closed system bubble column photobioreactor for detailed characterisation of micro- and macroalgal growth

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Christensen, L.; Iversen, J. J. L.

    2014-01-01

    was suited for cultivation of algae due to fast gas-to-liquid mass transfer (kLa) and fast mixing provided by split and dual sparging. Specific growth rates (SGRs) were measured using both offline and online measurements. The latter was possible, because rectilinear correlation was observed between carbon...... that provide new information about growth kinetics of algae. © 2013 Springer Science+Business Media Dordrecht.......Growth of the marine microalga Tetraselmis striata Butcher and the macroalga Chondrus crispus Stackhouse was investigated in batch cultures in a closed system bubble column photobioreactor. A laboratory cultivation system was constructed that allowed online monitoring of pH and dissolved oxygen...

  17. Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety.

    Science.gov (United States)

    Crum, L A; Mao, Y

    1996-05-01

    Computations are made of the conditions necessary to obtain bubble growth by rectified diffusion under a variety of conditions associated with low-frequency sonar propagation in the ocean. The complex issue of microbubble nuclei stabilization is treated by assuming either a sufficient level of supersaturation to stabilize the initial bubble size, or by examining a microbubble nucleus with zero surface tension. The bubble growth rates and thresholds are obtained for a ranged of sound-pressure levels (re: 1 microPa) from 150-220 dB, for initial bubble radii from 1-10 microns, and for levels of the dissolved gas concentration from 100% to 223% of saturation. It was determined that for the range of conditions examined, it was necessary to utilize three different formulations of the equations for bubble growth. The results of these calculations (and assumptions concerning nuclei stabilization) indicate that for SPL's in excess of 210 dB, significant bubble growth can be expected to occur, and divers and marine mammals exposed to these conditions could be at risk. For SPL's below about 190 dB, however, except under relatively extreme conditions of supersaturation, significant bubble growth is unexpected.

  18. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  19. A new model of grain growth kinetics in UO{sub 2} fuel pellets. Part 1: Grain growth kinetics controlled by grain face bubble migration

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S. [Russian Academy of Sciences, Nuclear Safety Institute (IBRAE), 52, B. Tulskaya, Moscow 115191 (Russian Federation)]. E-mail: vms@ibrae.ac.ru

    2005-11-15

    A new mechanism of the lenticular grain face bubble migration which controls the bubble mobility and determines the drag force exerted on the grain boundary, is developed. It is shown that besides a more complicated (so called 'lenticular') shape of grain face bubbles, the migration mechanism of these bubbles might be essentially different from the intragranular bubbles, owing to their specific location on and interaction with a grain boundary. The model is validated against tests on grain growth kinetics during steady irradiation exposure and during post-irradiation annealing of UO{sub 2} fuel samples, and allows explanation of a strong retarding effect of irradiation on the grain growth observed in these tests.

  20. Observation and theoretic analysis of gas-bubble formation and growth in water-model

    Institute of Scientific and Technical Information of China (English)

    WU Rui-zhi; SHU Da; SUN Bao-de; WANG Jun; LU Yan-ling

    2005-01-01

    The behavior of bubbles is observed with high-speed digital camera in water-model. It is found that each bubble has three processes: bubble formation, bubble coalescence and bubble division. Bubble shape is spherical firstly, then elliptical and spherical crown after coalescence, and spherical again after division. These phenomena are explained theoretically. And the bubble size is defined newly. The so-defined bubble size is measured through digital camera and LECO graphical analyzer. And the measured results are compared with those in literatures.

  1. Improvement of growth rate of plants by bubble discharge in water

    Science.gov (United States)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  2. Molecular dynamics simulation of the formation, growth and bursting of bubbles in tungsten exposed to high fluxes of low energy deuterium

    Science.gov (United States)

    Liu, Shengguang; Dai, Shuyu; Sang, Chaofeng; Sun, Jizhong; Stirner, Thomas; Wang, Dezhen

    2015-08-01

    Molecular dynamics simulations are carried out to investigate the formation, growth and bursting of bubbles in tungsten exposed to the irradiation of an extremely high deuterium flux. It is found that the bubbles form in the region near the location of the implanted ion distribution peaks, and that the effect of the substrate temperature on the bubble formation depth is negligible; it is also found that the percentage of deuterium that is found in D2 molecules increases as the bubble grows, and that the evolution of the bubble's internal pressure is strongly associated with the properties of its surrounding structure. The simulations display the development of a dome-shaped structure at the tungsten surface during the bubble growth. The merging of two deuterium bubbles is also observed. The present simulations also show that the bubble bursts by generating a partially opened lid, which has already been observed in previous independent experiments.

  3. Experimental investigation of remote seismic triggering by gas bubble growth in groundwater

    Science.gov (United States)

    Crews, J. B.; Cooper, C. A.

    2014-12-01

    Remotely triggered seismicity is the process by which an earthquake at one location initiates others after a time delay ranging from seconds to days, over distances up to thousands of kilometers. Candidate mechanisms have been proposed, but none specifically address the role of carbon dioxide (CO2) gas bubble growth in groundwater as a driver of remote seismic triggering in active volcanic and geothermal regions, where shallow crustal CO2 gas is abundant. In the present study, we hypothesize that a seismic wave from a distant source can initiate rapid gas bubble growth in CO2-rich groundwater, resulting in a persistent increase in pore fluid pressure and a reduction of effective stress, which can trigger failure on a critically loaded geologic fault. Under conditions representative of a confined aquifer, a Berea sandstone core flooded with an aqueous CO2 solution was subjected to a six-period burst of 0.05-0.3 Hz, 0.1-0.4 MPa confining stress oscillations. After the oscillations were terminated, the pore fluid pressure exceeded its initial value by 13-60 cm equivalent freshwater head, scaling with the amplitude and frequency - a surplus that is consistent with borehole water level changes [Roeloffs et al. (1995) USGS Open File Report, 95-42] observed in response to the June 28 1992 MW 7.3 Landers, California earthquake Rayleigh wave in Parkfield and Long Valley caldera, California, where remotely triggered earthquakes occurred [Hill et al. (1993) Science, 260(5114); Hill et al. (1995) Journal of Geophysical Research, 100(B7)]. Our experimental results indicate that seismically initiated gas bubble growth in groundwater is a physically plausible mechanism for remote seismic triggering in active volcanic and geothermal regions, suggesting that the aqueous CO2 saturation state in a confined aquifer may be used to assess susceptibility to remote seismic triggering.

  4. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation

    Science.gov (United States)

    Troughton, S. C.; Nominé, A.; Nominé, A. V.; Henrion, G.; Clyne, T. W.

    2015-12-01

    Synchronised electrical current and high speed video information are presented from individual discharges on Al substrates during PEO processing. Exposure time was 8 μs and linear spatial resolution 9 μm. Image sequences were captured for periods of 2 s, during which the sample surface was illuminated with short duration flashes (revealing bubbles formed where the discharge reached the surface of the coating). Correlations were thus established between discharge current, light emission from the discharge channel and (externally-illuminated) dimensions of the bubble as it expanded and contracted. Bubbles reached radii of 500 μm, within periods of 100 μs, with peak growth velocity about 10 m/s. It is deduced that bubble growth occurs as a consequence of the progressive volatilisation of water (electrolyte), without substantial increases in either pressure or temperature within the bubble. Current continues to flow through the discharge as the bubble expands, and this growth (and the related increase in electrical resistance) is thought to be responsible for the current being cut off (soon after the point of maximum radius). A semi-quantitative audit is presented of the transformations between different forms of energy that take place during the lifetime of a discharge.

  5. Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall

    Institute of Scientific and Technical Information of China (English)

    Juntao Huang; Huisheng Zhang

    2007-01-01

    A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, inclu-ding its growth, collapse and rebound near a rigid wall. Single-phase Navier-Stokes equation in the liquid region is solved by MAC projection algorithm combined with second-order ENO scheme for the advection terms. The moving inter-face is captured by the level set function, and the interface velocity is resolved by "one-side" velocity extension from the liquid region to the bubble region, complementing the second-order weighted least squares method across the inter-face and projection inside bubble. The use of non-uniform grid overcomes the difficulty caused by the large computatio-nal domain and very small bubble size. The computation is very stable without suffering from large flow-field gradients, and the results are in good agreements with other studies. The bubble interface kinematics, dynamics and its effect on the wall are highlighted, which shows that the code can effecti-vely capture the "shock wave"-like pressure and velocity at jet impact, toroidal bubble, and complicated pressure struc-ture with peak, plateau and valley in the later stage of bubble oscillating.

  6. Dynamical growth of the hadron bubbles during the quark-hadron phase transition

    CERN Document Server

    Shukla, P K; Sen-Gupta, S K

    2001-01-01

    The rate of dynamical growth of the hadron bubbles in a supercooled baryon free quark-gluon plasma, is evaluated by solving the equations of relativistic fluid dynamics in all space. For a non-viscous plasma, this dynamical growth rate is found to depend only on the range of correlation $\\xi$ of order parameter fluctuation, and the radius $R$ of the critical hadron bubble, the two length scales relevant for the description of the critical phenomena. Unlike Csernai-Kapusta result, this rate does not vanish in the limit of zero viscosity. Further, it is shown that the dynamical prefactor acquires an additive component when the medium becomes viscous. Interestingly, under certain reasonable assumption for the velocity of the sound in the medium, the viscous and the non-viscous parts of the prefactor are found to be identical to the results obtained by Csernai-Kapusta and Ruggeri-Friedman (for the case of zero viscosity) respectively. It is also demonstrated that the first order phase transition from QGP to hadro...

  7. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys.

    Science.gov (United States)

    Hale, Lucas M; Zimmerman, Jonathan A; Wong, Bryan M

    2016-05-21

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material's structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of material defects, and we compare the material behavior displayed with expectations from experiment and theory. We also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations. PMID:27208963

  8. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    Science.gov (United States)

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%.

  9. Numerical investigation of volume of fluid and level set interface capturing methods for bubble growth and detachment

    International Nuclear Information System (INIS)

    The injection of an air bubble in a liquid at rest is an interface flow problem where surface tension and its modeling at solid boundaries is a key factor. It is the subject of this study. Numerical simulations have been performed to study 3D axi-symmetrical bubble growth from an orifice through a horizontal wall. The gas inflow velocity used was sufficiently small to ensure that the bubble growth is quasi-static so that surface tension and buoyancy forces are dominant. The wall was considered non-wettable to avoid spreading of the interface along the wall. The Navier-Stokes equations were solved with two different interface capturing methods based on Volume of Fluid (VOF) and Level Set (LS) as well as coupled CVOFLS. In the VOF method the bubble interface was tracked using either an algebraic solver which results in some diffusion of the interface (compressive scheme implemented in OpenFOAM), or it was determined using a geometric reconstruction scheme (Geo-Reconstruct Scheme from Fluent). The TransAT code was used for the LS model which captures the interface using signed distance function. The bubble volume and center of gravity have been investigated during the growth using the three solvers and numerical results have been assessed against experimental data. These results have shown that reconstructing the interface using the LS method gives good agreement with the experiments. In VOF (compressive scheme), the bubble detaches at earlier times resulting in a smaller detachment volume. The coupled CVOFLS-GeoReconstruct was found to be more computationally expensive than the VOF-GeoReconstruct and to present bubble oscillation during the growth.

  10. Molecular dynamics simulation of the formation, growth and bursting of bubbles in tungsten exposed to high fluxes of low energy deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengguang, E-mail: sgliu@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Dai, Shuyu; Sang, Chaofeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Sun, Jizhong, E-mail: jsun@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Stirner, Thomas [University of Applied Sciences Deggendorf, Edlmairstr. 6+8, D-94469 Deggendorf (Germany); Wang, Dezhen [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-08-15

    Molecular dynamics simulations are carried out to investigate the formation, growth and bursting of bubbles in tungsten exposed to the irradiation of an extremely high deuterium flux. It is found that the bubbles form in the region near the location of the implanted ion distribution peaks, and that the effect of the substrate temperature on the bubble formation depth is negligible; it is also found that the percentage of deuterium that is found in D{sub 2} molecules increases as the bubble grows, and that the evolution of the bubble’s internal pressure is strongly associated with the properties of its surrounding structure. The simulations display the development of a dome-shaped structure at the tungsten surface during the bubble growth. The merging of two deuterium bubbles is also observed. The present simulations also show that the bubble bursts by generating a partially opened lid, which has already been observed in previous independent experiments.

  11. Molecular dynamics simulation of the formation, growth and bursting of bubbles in tungsten exposed to high fluxes of low energy deuterium

    International Nuclear Information System (INIS)

    Molecular dynamics simulations are carried out to investigate the formation, growth and bursting of bubbles in tungsten exposed to the irradiation of an extremely high deuterium flux. It is found that the bubbles form in the region near the location of the implanted ion distribution peaks, and that the effect of the substrate temperature on the bubble formation depth is negligible; it is also found that the percentage of deuterium that is found in D2 molecules increases as the bubble grows, and that the evolution of the bubble’s internal pressure is strongly associated with the properties of its surrounding structure. The simulations display the development of a dome-shaped structure at the tungsten surface during the bubble growth. The merging of two deuterium bubbles is also observed. The present simulations also show that the bubble bursts by generating a partially opened lid, which has already been observed in previous independent experiments

  12. The growth and collapse of transient bubbles in an inviscid fluid

    Institute of Scientific and Technical Information of China (English)

    Yue-binCAI; Chuan-jingLU; 等

    1996-01-01

    The potential flow problem of transient motion of bubbles is studied using the hydrid boundary-finite element method with the boundary discretized by squadratic elements.The interaction of bubbles with a free surface and the interaction between bubbles are presented.

  13. Thermodynamically consistent modeling for dissolution/growth of bubbles in an incompressible solvent

    CERN Document Server

    Bothe, Dieter

    2014-01-01

    We derive mathematical models of the elementary process of dissolution/growth of bubbles in a liquid under pressure control. The modeling starts with a fully compressible version, both for the liquid and the gas phase so that the entropy principle can be easily evaluated. This yields a full PDE system for a compressible two-phase fluid with mass transfer of the gaseous species. Then the passage to an incompressible solvent in the liquid phase is discussed, where a carefully chosen equation of state for the liquid mixture pressure allows for a limit in which the solvent density is constant. We finally provide a simplification of the PDE system in case of a dilute solution.

  14. Investigation on Characteristics of Bubble Growth and Effect of System Pressure on Bubble Growth%不同系统压力下汽泡生长特性及压力影响机理分析

    Institute of Scientific and Technical Information of China (English)

    陈德奇; 潘良明; 袁德文; 黄彦平

    2011-01-01

    为了探讨系统压力变化对窄流道内汽泡生长的影响,在不同系统压力(0.1~1 MPa)下采用高速摄像仪对2 mm竖直矩形窄流道内的汽泡生长进行可视化研究.研究表明,发现在0.1~0.3 MPa下汽泡的生长主要在核化点处进行,但在较高压力(Ps≥0.6 MPa)时汽泡生长主要是在滑移中进行,汽泡的尺寸也显著减小;由于汽泡行为发生变化,不同系统压力下加热壁面上的换热状况有着很大区别.用拉普拉斯数(La)和时间因子(ξ)分别对汽泡半径和汽泡生长时间进行无量纲化后,无量纲汽泡生长曲线遵循指数曲线变化;指数曲线的系数七随系统压力升高而减小.%In order to analyze the effect of system pressure on bubble growth in a narrow channel, a visual investigation on bubble growth under different system pressure (0.1-1 MPa) in a vertical rectangular narrow channel with 2 mm gap was carried out using the high speed camera. It was found that the bubble was growing at the nucleate site under 0.1-0.3 MPa system pressure; while it was sliding along the heating wall during growing under higher system pressure (ps>0.6 MPa ), and the size was much smaller. The heat transfer on the heating wall is obviously different due to different bubble behavior under different system pressure.After non-dimensionalization of bubble radius and bubble growth time with Laplace number, La, and time factor,ξ, respectively, the dimensionless bubble growth curve fits the power curve very well, and the coefficient k of the power curve decreases with the increasing of the system pressure.

  15. Modeling of helium bubble nucleation and growth in austenitic stainless steels using an Object Kinetic Monte Carlo method

    Science.gov (United States)

    De Backer, A.; Adjanor, G.; Domain, C.; Lescoat, M. L.; Jublot-Leclerc, S.; Fortuna, F.; Gentils, A.; Ortiz, C. J.; Souidi, A.; Becquart, C. S.

    2015-06-01

    Implantation of 10 keV helium in 316L steel thin foils was performed in JANNuS-Orsay facility and modeled using a multiscale approach. Density Functional Theory (DFT) atomistic calculations [1] were used to obtain the properties of He and He-vacancy clusters, and the Binary Collision Approximation based code MARLOWE was applied to determine the damage and He-ion depth profiles as in [2,3]. The processes involved in the homogeneous He bubble nucleation and growth were defined and implemented in the Object Kinetic Monte Carlo code LAKIMOCA [4]. In particular as the He to dpa ratio was high, self-trapping of He clusters and the trap mutation of He-vacancy clusters had to be taken into account. With this multiscale approach, the formation of bubbles was modeled up to nanometer-scale size, where bubbles can be observed by Transmission Electron Microscopy. Their densities and sizes were studied as functions of fluence (up to 5 × 1019 He/m2) at two temperatures (473 and 723 K) and for different sample thicknesses (25-250 nm). It appears that the damage is not only due to the collision cascades but is also strongly controlled by the He accumulation in pressurized bubbles. Comparison with experimental data is discussed and sensible agreement is achieved.

  16. Bubbles and market crashes

    CERN Document Server

    Youssefmir, M; Hogg, T; Youssefmir, Michael; Huberman, Bernardo; Hogg, Tad

    1994-01-01

    We present a dynamical theory of asset price bubbles that exhibits the appearance of bubbles and their subsequent crashes. We show that when speculative trends dominate over fundamental beliefs, bubbles form, leading to the growth of asset prices away from their fundamental value. This growth makes the system increasingly susceptible to any exogenous shock, thus eventually precipitating a crash. We also present computer experiments which in their aggregate behavior confirm the predictions of the theory.

  17. A mechanical analysis of metallic tritide aging by helium bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Montheillet, F. [Ecole Nationale Superieure des Mines (SMS), CNRS UMR 5146 (PECM), 158 cours Fauriel, 42023 Saint-Etienne Cedex 2 (France)], E-mail: montheil@emse.fr; Delaplanche, D.; Fabre, A.; Munier, E.; Thiebaut, S. [Commissariat a l' Energie Atomique de Valduc, 21120 Is-sur-Tille (France)

    2008-10-25

    A simple mechanical model is proposed for the aging of a metallic tritide. The material is assumed to be elastic-power law viscoplastic. Part of the helium atoms generated by tritium decay form spherical bubbles that weaken the elastic moduli of the overall material. By contrast, others can be stored in solid solution in the matrix and are likely to increase the moduli. Two variants of the model are compared, assuming either instantaneous or finite rate diffusion of helium. They predict globally similar evolutions of the gas pressure inside the bubbles, the geometrical parameters (bubble radius, overall swelling), as well as the matrix and overall elastic moduli. The results are in good agreement with atomistic calculations of the pressure evolution. Furthermore, recent experimental measurements of the Young modulus changes during aging are better reproduced when He diffusion rate is finite, thus supporting the second variant of the model.

  18. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    Science.gov (United States)

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions.

  19. Bubble-sweeping mechanisms

    Institute of Scientific and Technical Information of China (English)

    王昊; 彭晓峰; 王补宣; 李笃中

    2003-01-01

    A series of subcooled boiling experiments was conducted on very small platinum wires having diameters of 0.1 and 0.025 mm. Vapor bubbles were visually observed to sweep back and forth along the wires in the experiments. The dynamic characteristics of bubble-sweeping phenomenon are described, and the induced bubble interaction and nonlinear growth are investigated to understand the boiling heat transfer mechanisms. An unsymmetrical temperature model is proposed to explain the physical mechanism.

  20. Dynamics of vapor bubbles growth at boiling resulting from enthalpy excess of the surrounding superheated liquid and sound pulses generated by bubbles

    Science.gov (United States)

    Dorofeev, B. M.; Volkova, V. I.

    2016-01-01

    The results of experiments investigating the exponential dependence of the vapor bubble radius on time at saturated boiling are generalized. Three different methods to obtain this dependence are suggested: (1) by the application of the transient heat conduction equation, (2) by using the correlations of energy conservation, and (3) by solving a similar electrodynamic problem. Based on the known experimental data, the accuracy of the dependence up to one percent and a few percent accuracy of its description based on the sound pressure generated by a vapor bubble have been determined. A significant divergence of the power dependence of the vapor bubble radius on time (with an exponent of 1/2) with the experimental results and its inadequacy for the description of the sound pulse generated by the bubble have been demonstrated.

  1. 竖直窄流道内过冷流动沸腾的单汽泡生长模型%Model for single bubble growth of subcooled flow boiling in vertical narrow rectangular channel

    Institute of Scientific and Technical Information of China (English)

    袁德文; 潘良明; 陈德奇

    2009-01-01

    The process of bubble growth on heating wall in subcooled boiling includes the micro-layer evaporation on heating wall and the bubble top coagulation when the bubbles grow to a certain size and emerge into the subcooled mainstream fluid. Based on this consideration, a model for the single bubble growth of subcooled flow boiling in vertical narrow rectangular channel was proposed. Compared with experimental results, the error of the simulation results using the proposed model is less than ?5%. The simulation results indicated that as the wall superheat increases, the bubble growth gets faster, with the subcooled degree of mainstream increases, the bubble growth in later stage would be slowed, with the contact angle increases, the contact radius of the bubble bottom and the wall tension would be strengthened, resulting in faster bubble growth to make the bubble to be flat and more easily exposed to the mainstream. The velocity of mainstream has no significant effects on bubble growth rate.%@@ 引言 沸腾具有极高的换热效率的原因就在于沸腾过程中大量气相对周围液体的扰动.对汽泡形成、生长、脱离等过程机理的了解是理解和优化沸腾换热过程的关键.

  2. The effect of acceleration on the growth and shedding of laminar separation bubbles

    Science.gov (United States)

    Bhattacharya, Samik; Rival, David

    2015-11-01

    It has been observed that when a laminar boundary layer separates, the shear layer undergoes transition to turbulence and subsequently reattaches to form a laminar separation bubble (LSB). In this work, a SD7003 airfoil, held at an angle of attack of 8 degree, is towed with different acceleration profiles starting from rest. The separation region is then analyzed with time-resolved, planar PIV at short convective times during the initial acceleration phase. The aim of this work is to characterize the variation in size and shedding frequency of the laminar separation bubble with increasing acceleration. We show that the formation and shedding process in the LSB depends on the rate of vorticity-containing mass transported by the separated shear layer. Consequently, any changes in the structure of the shear layer affect the formation of the LSB downstream. Finally, attempts are also made to characterize the shedding frequency of the bubble with increasing acceleration. Here the unsteadiness of the LSB is found to be closely linked to the degree of boundary-layer acceleration on the airfoil surface.

  3. Nucleation and growth of hydrogen bubbles on dislocations in tungsten under high flux low energy plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Grigorev, Petr [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Ghent University, Department of Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Dubinko, Vladimir [National Science Center, Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Bonny, Giovanni [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Van Oost, Guido; Noterdaeme, Jean-Marie [Ghent University, Department of Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation)

    2015-06-01

    A new mechanism for the nucleation and growth of hydrogen (H) bubbles on dislocations under plasma exposure of tungsten was recently proposed on the basis of direct ab initio calculations. Density functional theory calculations demonstrated that H atoms are strongly bound to a screw dislocation core and exhibit fast one-dimensional migration along its line. Once the number of hydrogen atoms trapped on a dislocation segment exceeds eight, the emission of a jog occurs thereby converting a pure H{sub N} cluster into a H{sub N+1}-jog configuration. On the basis of these results a kinetic model was formulated to evaluate the conditions (i.e., range of temperature and flux exposure) for the transformation of pure H clusters into supercritical hydrogen–vacancy clusters attached to the dislocation line. In this work, a parametric study employing the kinetic nucleation model was performed to derive the hydrogen bubble formation energy function that offers the best agreement with available experimental results. The obtained results allow one to rationalize the depth and temperature dependence of the experimentally observed hydrogen deposition after high flux low energy plasma exposure for ITER relevant conditions.

  4. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  5. Bubble Sliding Growth Phenomena and Mass Velocity and Heat Flux Effect on Sliding Bubble Growth%汽泡滑移现象及质量流速和热流密度对汽泡滑移生长的影响

    Institute of Scientific and Technical Information of China (English)

    陈德奇; 潘良明; 袁德文

    2011-01-01

    以去离子水为工质,对较高系统压力下竖直矩形窄流道内的汽泡生长特性进行可视化研究.由于单位体积潜热的提高,系统压力升高将抑制汽泡的生长,使得在相同生长时间内汽泡的尺寸大幅减小;随着系统压力升高,汽泡在核化点处的生长时间会明显地缩短.压力较高时,汽泡生长主要是在滑移过程中进行,滑移过程中,会间歇性地离开又再附上加热壁面;汽泡的滑移生长并不会随着质量流速或热流密度的变化而发生单调性地变化.%A visual experiment is carried out with water as working fluid at higher system pressure to investigate the bubble growth in vertical narrow channel in this paper. It is found that the bubble growth is significantly restrained with the increasing of system pressure, resulting in obviously decrease in bubble size within the same growth time. Also the bubble growth time at nucleation point will be shortened notably with higher system pressure. The main bubble growing period is during bubble sliding, and the bubble will lift off and return to the heating wall periodically. Growth of sliding bubble would not be affected by mass flux and heat flux monotonously.

  6. Dynamic Bubble Behaviour during Microscale Subcooled Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M.Christopher

    2005-01-01

    @@ Bubble cycles, including initiation, growth and departure, are the physical basis of nucleate boiling. The presentinvestigation, however, reveals unusual bubble motions during subcooled nucleate boiling on microwires 25 orl00μm in diameter. Two types of bubble motions, bubble sweeping and bubble return, are observed in theexperiments. Bubble sweeping describes a bubble moving back and forth along the wire, which is motion parallelto the wire. Bubble return is the bubble moving back to the wire after it has detached or leaping above thewire. Theoretical analyses and numerical simulations are conducted to investigate the driving mechanisms forboth bubble sweeping and return. Marangoni flow from warm to cool regions along the bubble interface is foundto produce the shear stresses needed to drive these unusual bubble movements.

  7. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    International Nuclear Information System (INIS)

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  8. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States); Shao, Lin [Texas A & M Univ., College Station, TX (United States); Tsvetkov, Pavel [Texas A & M Univ., College Station, TX (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  9. Modelling and Simulation of Bubble Growth Dynamicsin Vacuum Jet%真空射流闪蒸特性的气泡动力学分析

    Institute of Scientific and Technical Information of China (English)

    陈鹏飞; 周晨初; 徐云飞; 洪流

    2016-01-01

    针对液体射流的真空闪蒸特性,建立气泡动力学模型分析了射流内部的气泡生长特性,并提出用无量纲数Ch描述真空射流中的气泡生长条件.通过数值仿真方法模拟了气泡在真空射流中的生长过程,研究了气泡初始半径、液体粘度、射流温度和射流半径等参数对气泡生长的影响.在真空环境中开展了不同液体工质的真空喷射试验,试验结果与Ch数预测结果吻合良好;开展水射流的闪蒸试验,获得了破碎距离的变化规律,并与计算结果进行了对比分析.%The growth of the bubble,inside a liquid jet in vacuum environment,was empirically approximated,mathemtically modeled,theoretically analyzed in fluid dynamics,and experimentally evaluated.The impact of the growth conditions,including but not limited to the the initial bubble radius,liquid viscosity,temperature,saturated vapor pressure,surface tension and jet-radius,on the buble-growth was investigated.In the simulation,the dimensionless bubble-formation critirion,Ch,was defined in terms of the surface tension,saturated vapor pressure and jetradius.The calculated results show that Ch significandy affects the bubble growth and jet' s flashing breakup.For example,the bubble grows only when Ch > 1,easily resulting in a flashing breakup of the jet because the bubble initial radius is smaller than jet radius.The vacuum ejection with different liquids,water in particular,was performed.The predicted and measured Chs were in good agreement.More realistic model is needed to fully understand the bubble growth.

  10. A novel closed system bubble column photobioreactor for detailed characterisation of micro and macroalgal growth

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Christensen, L.; Iversen, J. J.L.

    dissolved oxygen tension and was intended for characterization of photoautotrophic growth. Regulation of temperature was done by cooling and carbon dioxide additions regulated pH. The carbon dioxide addition rate was used to optimize irradiance and thereby optimizing growth conditions. Photosynthetically......La) and fast mixing provided by split and dual sparging. Specific growth rates (SGRs) were measured using both off-line and on-line measurements. The latter was possible, because linear correlation was observed between carbon dioxide addition and optical density, which proves that carbon dioxide addition...... photosynthetic quotients and carbon mass balances were used to validate the system. We have developed a system and presented some data handling tools that provides new information about the growth kinetic of algae....

  11. Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals?

    Science.gov (United States)

    Houser, D S; Howard, R; Ridgway, S

    2001-11-21

    The potential for acoustically mediated causes of stranding in cetaceans (whales and dolphins) is of increasing concern given recent stranding events associated with anthropogenic acoustic activity. We examine a potentially debilitating non-auditory mechanism called rectified diffusion. Rectified diffusion causes gas bubble growth, which in an insonified animal may produce emboli, tissue separation and high, localized pressure in nervous tissue. Using the results of a dolphin dive study and a model of rectified diffusion for low-frequency exposure, we demonstrate that the diving behavior of cetaceans prior to an intense acoustic exposure may increase the chance of rectified diffusion. Specifically, deep diving and slow ascent/descent speed contributes to increased gas-tissue saturation, a condition that amplifies the likelihood of rectified diffusion. The depth of lung collapse limits nitrogen uptake per dive and the surface interval duration influences the amount of nitrogen washout from tissues between dives. Model results suggest that low-frequency rectified diffusion models need to be advanced, that the diving behavior of marine mammals of concern needs to be investigated to identify at-risk animals, and that more intensive studies of gas dynamics within diving marine mammals should be undertaken.

  12. Bubble puzzles

    NARCIS (Netherlands)

    Lohse, Detlef

    2003-01-01

    With their ubiquitous occurrence in a multitude of fluid systems, bubbles occupy an important place in contemporary science and technology. One can readily cite several examples: the production and transport of oil, in which bubbles are purposely injected to help lift heavy oil to the surface; energ

  13. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.

    2008-01-01

    Explosive evaporation occurs when a liquid is exposed to extremely high heat-fluxes. Within a few microseconds a bubble in the form vapour film is generated, followed by rapid growth due to the pressure impulse and finally the bubbles collapse. This effect, which already has proven its use in curren

  14. Bubble, Bubble, Toil and Trouble.

    Science.gov (United States)

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  15. Radiation Damping at a Bubble Wall

    CERN Document Server

    Lee, J; Lee, C H; Jang, J; Lee, Jae-weon; Kim, Kyungsub; Lee, Chul H.; Jang, Ji-ho

    1999-01-01

    The first order phase transition proceeds via nucleation and growth of true vacuum bubbles. When charged particles collide with the bubble they could radiate electromagnetic wave. We show that, due to an energy loss of the particles by the radiation, the damping pressure acting on the bubble wall depends on the velocity of the wall even in a thermal equilibrium state.

  16. Cellular Injury of Cardiomyocytes during Hepatocyte Growth Factor Gene Transfection with Ultrasound-Triggered Bubble Liposome Destruction

    Directory of Open Access Journals (Sweden)

    Kazuo Komamura

    2011-01-01

    Full Text Available We transfected naked HGF plasmid DNA into cultured cardiomyocytes using a sonoporation method consisting of ultrasound-triggered bubble liposome destruction. We examined the effects on transfection efficiency of three concentrations of bubble liposome (1×106, 1×107, 1×108/mL, three concentrations of HGF DNA (60, 120, 180 μg/mL, two insonification times (30, 60 sec, and three incubation times (15, 60, 120 min. We found that low concentrations of bubble liposome and low concentrations of DNA provided the largest amount of the HGF protein expression by the sonoporated cardiomyocytes. Variation of insonification and incubation times did not affect the amount of product. Following insonification, cardiomyocytes showed cellular injury, as determined by a dye exclusion test. The extent of injury was most severe with the highest concentration of bubble liposome. In conclusion, there are some trade-offs between gene transfection efficiency and cellular injury using ultrasound-triggered bubble liposome destruction as a method for gene transfection.

  17. Microfluidic "blinking" bubble pump

    NARCIS (Netherlands)

    Yin, Zhizhong; Prosperetti, Andrea

    2005-01-01

    The paper reports data obtained on a simple micropump, suitable for electrolytes, based on the periodic growth and collapse of a single vapor bubble in a microchannel. With a channel diameter of the order of 100 µm, pumping rates of several tens of µl/min and pressure differences of several kPa are

  18. Comparison of numerical simulations and laboratory studies of shock waves and cavitation bubble growth produced by optical breakdown in water

    Energy Technology Data Exchange (ETDEWEB)

    Chapyak, E.J.; Godwin, R.P. [Los Alamos National Lab., NM (United States); Vogel, A. [Medizinisches Laserzentrum Luebeck GmbH (Germany)

    1997-04-01

    In numerical calculations of idealized bubble dynamics test problems, Los Alamos computational tools perform well. A realistic equation of state must be used and geometrical features must be carefully modeled to simulate experiments accurately. In this work, we compare numerical simulations taking these features into account with experiments performed at the Medizinisches Laserzentrum Lubeck. We compare the measured and calculated positions of the shock front and of the bubble wall as a function of time in the laser optical breakdown of water produced by 30-ps 1-mJ Nd:YAG laser pulses.

  19. Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Univ. of Electronic Science and Technology of China, Chengdu (China); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States); Kurtz, Richard J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zu, Xiaotao [Univ. of Electronic Science and Technology of China, Chengdu (China); Peng, S. M. [China Academy of Engineering Physics, Mianyang (China); Long, X. G. [China Academy of Engineering Physics, Mianyang (China); Zhou, X. S. [China Academy of Engineering Physics, Mianyang (China)

    2015-07-15

    The nucleation and growth of helium (He) bubbles in the bulk and at Σ3 <110> {112} and Σ73b <110> {661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2 <111> {111} dislocation loop is formed with the sequential collection of <111> interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2 <111> dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2 <111> loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯ 1 2] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.

  20. Noise Bubbles

    OpenAIRE

    Mario Forni; Luca Gambetti; Marco Lippi; Luca Sala

    2014-01-01

    We introduce noisy information into a standard present value stock price model. Agents receive a noisy signal about the structural shock driving future dividend variations. The resulting equilibrium stock price includes a transitory component — the "noise bubble" — which can be responsible for boom and bust episodes unrelated to economic fundamentals. We propose a non-standard VAR procedure to estimate the structural shock and the "noise" shock, their impulse response functions and the bubble...

  1. Antigravitating bubbles

    CERN Document Server

    Barnaveli, A T; Barnaveli, Andro; Gogberashvili, Merab

    1995-01-01

    We investigate the gravitational behavior of spherical domain walls (bubbles) arising during the phase transitions in the early Universe. In the thin-wall approximation we show the existence of the new solution of Einstein equations with negative gravitational mass of bubbles and the reversed direction of time flow on the shell. This walls exhibit gravitational repulsion just as the planar walls are assumed to do. The equilibrium radius and critical mass of such objects are found for realistic models.

  2. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  3. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity

    Science.gov (United States)

    Crews, Jackson B.; Cooper, Clay A.

    2014-09-01

    Changes in borehole water levels and remotely triggered seismicity occur in response to near and distant earthquakes at locations around the globe, but the mechanisms for these phenomena are not well understood. Experiments were conducted to show that seismically initiated gas bubble growth in groundwater can trigger a sustained increase in pore fluid pressure consistent in magnitude with observed coseismic borehole water level rise, constituting a physically plausible mechanism for remote triggering of secondary earthquakes through the reduction of effective stress in critically loaded geologic faults. A portion of the CO2 degassing from the Earth's crust dissolves in groundwater where seismic Rayleigh and P waves cause dilational strain, which can reduce pore fluid pressure to or below the bubble pressure, triggering CO2 gas bubble growth in the saturated zone, indicated by a spontaneous buildup of pore fluid pressure. Excess pore fluid pressure was measured in response to the application of 0.1-1.0 MPa, 0.01-0.30 Hz confining stress oscillations to a Berea sandstone core flooded with initially subsaturated aqueous CO2, under conditions representative of a confined aquifer. Confining stress oscillations equivalent to the dynamic stress of the 28 June 1992 Mw 7.3 Landers, California, earthquake Rayleigh wave as it traveled through the Long Valley caldera, and Parkfield, California, increased the pore fluid pressure in the Berea core by an average of 36 ± 15 cm and 23 ± 15 cm of equivalent freshwater head, respectively, in agreement with 41.8 cm and 34 cm rises recorded in wells at those locations.

  4. 重力对单气泡生长特性的影响%Effects of Microgravity on the Characteristics of Single Bubble Growth

    Institute of Scientific and Technical Information of China (English)

    杨燕; 潘良明; 魏敬华

    2012-01-01

    采用VOF(Volume of Fluid)多相流模型,通过用户自定义函数UDF(User Defined Function)实现相变过程中质量和能量的输运,对微重力条件下尺寸为10 mm×10 mm×25 mm的矩形通道的池沸腾现象进行数值模拟,得到了微重力及常重力作用下单个气泡生长特性的差异.模拟结果表明,微重力条件下气泡周围的流线与温度场的分布有显著差异;由于表面张力作用,微重力下的气泡脱离特性与常重力下不同;在微重力条件下,气泡直径的变化比较复杂,并与重力加速度的大小有关;Marangoni流对微重力下的流动影响很大,使换热系数波动,而且波动的幅度随重力加速度的减小而增大.%Based on the previous experiment and the VOF(Volume of Fluid) multiphase model, the growth characteristics of a single bubble was numerically investigated,on the condition of microgravity, for the section size of 10 mm×10 mm×25 mm rectangular channel of pool boiling.The transportation of mass and energy during the phase change is implemented by adding source term to the mass and energy equations with User Defined Function(UDF).The results show that under the microgravity condition,the streamline and the temperature field distribution around the bubble have difference;due to surface tension,the bubble under microgravity and normal gravity are different from the bubble detachment;under the condition of microgravity,the change of bubble diameter is more complex,and the heat transfer coefficient fluctuate,the increase of microgravity will enlarge the amplitude of fluctuations.

  5. Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k(L)a.

    Science.gov (United States)

    Doig, Steven D; Ortiz-Ochoa, Kenny; Ward, John M; Baganz, Frank

    2005-01-01

    This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.

  6. Bubbling Threat

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The shift of China’s monetary policy stance from "moderately loose" to "prudent" in 2011 indicates curbing inflation and asset bubbles have become the Central Government’s top priority. But is China’s bubble problem short-term or long-term? Is it only monetary or related to economic structure? Is it the cause of China’s economic imbalance or the result? And what kind of deep-rooted problems in the macro economy does it reflect? All these questions call for deep thought,said Zhang Monan,a

  7. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  8. 闪急沸腾条件下的乙醇气泡生长数值模拟%Numerical Simulation of Bubble Growth in Ethanol Under Flash Boiling Condition

    Institute of Scientific and Technical Information of China (English)

    王天友; 刘宗伟; 贾明; 孙凯

    2015-01-01

    A method for solving bubble growth equation by coupling energy equation and momentum equation was adopted to investigate the bubble growth process in ethanol under flash boiling condition. The accuracy of numerical model was verified by comparing the predictions with the experimental data of bubble growth in superheated water and trichlorotrifluoroethane. By investigating the effect of ambient pressure and degree of superheat on bubble radius,speed,acceleration,various forces,temperature difference and thickness of thermal boundary layer,the evolution of bubble in ethanol was revealed. The results show that different bubble growth characteristics of ethanol are due to the competition between surface tension,viscous force,and fluid dynamic resistance,which inhibit the growth of bubble and pressure difference,thermal feedback effects,which promote the growth of bubble. Jacob number(Ja)has great influence on bubble growth characteristics in different stages. In the transition stage,the etha-nol bubble growth gradually transforms from the heat transfer dominated regime to the inertial force dominated regime with increased Jacob number. At constant pressure,the bubble growth delay decreases and the maximum acceleration increases with the increase of Jacob number in surface tension dominated regime,and bubble growth velocity in-creases with increased Jacob number in heat transfer dominated regime.%采用能量方程和动量方程耦合求解的方法,开展了闪急沸腾条件下的乙醇气泡生长数值模拟研究。通过与过热水和三氟三氯乙烷气泡生长的实验数据对比,验证了数值模拟方法的准确性。在此基础上,通过改变环境压力和过热度,研究了不同初始状态下乙醇气泡半径、生长速度、生长加速度、不同的力、热边界层温差和厚度等参数随时间的变化规律。结果表明,乙醇气泡生长过程中表现出的生长特性是抑制生长的表面张力、黏性力、流动

  9. 经济增长泡沫的测度--三变量模型与虚拟经济研究%The Measurement of Bubble Economy Growth--Three Variables Model and the Study in Virtual Economy

    Institute of Scientific and Technical Information of China (English)

    毛善成

    2015-01-01

    虚拟经济对经济增长的贡献率等于经济增长泡沫多少的相对测度。利用三变量模型估算了泰国和中国的经济增长泡沫,从而给出1997年亚洲金融风暴首先在泰国爆发的原因,1986~1998年泰国经济增长中有40%的经济泡沫是发生金融危机的数量基础,接下来泰国经济进入了去泡沫发展周期,1999~2010年经济增长只有不足2%的泡沫。作为比较,美国1992~2001年经济增长有三分之一为泡沫,进入21世纪后泡沫继续扩大终于2007破灭。中国2000~2009年经济增长的24%为增长泡沫,2009年增加4万亿刺激计划,其M2已从2009年的60万亿增加到2014年上半年的120万亿,估计中国2009~2014经济增长的30%~40%为增长泡沫,所以中国发生房地产泡沫破灭的危险已接近40%这根临界线。%Rates of virtual economy’s making a contributions to GDP growth is equal to the measurement of bubble economy growth. By three variables model,we estimated the bubble economy growth in Thailand and China, and we found out the origin of 1997 Asia financial crisis starting in Thailand. There was 40% bubble economy growth in Thailand’s economic growth in1986~1998, being a root of financial crisis occurrence. There was lack 2% bubble economy in Thailand’s economic growth in 1999~2010, an eliminating bubble economy cycle. Moreover, there was 1/3 bubble economy in America’s economic growth in 1992~2001, the bubble kept on enlarging in 21century and broke in 2007. There was 24% bubble economy growth in China’s economic growth in 2000~2009, China increased 4 hundreds of millions to stimulate economic growth in 2009, M2 was 60 hundreds of millions in 2009 to 120 hundreds of millions in six 2014, so we estimated that China’s bubble economy growth was 30%~40% and had approximated the critical line of 40% bubble econo-my, so there is a risk that China’s bubble real estate will break soon.

  10. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  11. Bubble Drag Reduction Requires Large Bubbles

    Science.gov (United States)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  12. Ostwald ripening in multiple-bubble nuclei

    Science.gov (United States)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-01

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 106 Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t-x with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t1/2 law) to diffusion-limited (the t1/3 law) growth.

  13. Ostwald Ripening in Multiple-Bubble Nuclei

    CERN Document Server

    Watanabe, Hiroshi; Inaoka, Hajime; Ito, Nobuyasu

    2014-01-01

    The ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 million Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as $t^{-x}$ with scaling exponent $x$. As the initial temperature increases, the exponent changes from $x=3/2$ to $1$, which implies that the growth of bubbles changes from interface-limited (the $t^{1/2}$ law) to diffusion-limited (the $t^{1/3}$ law) growth.

  14. Ostwald ripening in multiple-bubble nuclei.

    Science.gov (United States)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-21

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 10(6) Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t(-x) with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t(1/2) law) to diffusion-limited (the t(1/3) law) growth.

  15. Simple improvements to classical bubble nucleation models

    CERN Document Server

    Tanaka, Kyoko K; Angélil, Raymond; Diemand, Jürg

    2015-01-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a new prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by T...

  16. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    Science.gov (United States)

    Crews, Jackson B.

    Visualization experiments, core-scale laboratory experiments, and numerical simulations were conducted to examine the transient effect of dilational seismic wave propagation on pore fluid pressure in aquifers hosting groundwater that is near saturation with respect to dissolved carbon dioxide (CO2) gas. Groundwater can become charged with dissolved CO2 through contact with gas-phase CO2 in the Earth's crust derived from magma degasing, metamorphism, and biogenic processes. The propagation of dilational seismic waves (e.g., Rayleigh and p-waves) causes oscillation of the mean normal confining stress and pore fluid pressure. When the amplitude of the pore fluid pressure oscillation is large enough to drive the pore fluid pressure below the bubble pressure, an aqueous-to-gas-phase transition can occur in the pore space, which causes a buildup of pore fluid pressure and reduces the inter-granular effective stress under confined conditions. In visualization experiments conducted in a Hele-Shaw cell representing a smooth-walled, vertically oriented fracture, millisecond-scale pressure perturbations triggered bubble nucleation and growth lasting tens of seconds, with resulting pore fluid overpressure proportional to the magnitude of the pressure perturbation. In a Berea sandstone core flooded with initially under-saturated aqueous CO2 under conditions representative of a confined aquifer, rapid reductions in confining stress triggered transient pore pressure rise up to 0.7 MPa (100 psi) overpressure on a timescale of ~10 hours. The rate of pore pressure buildup in the first 100 seconds was proportional to the saturation with respect to dissolved CO 2 at the pore pressure minimum. Sinusoidal confining stress oscillations on a Berea sandstone core produced excess pore fluid pressure after the oscillations were terminated. Confining stress oscillations in the 0.1-0.4 MPa (15-60 psi) amplitude range and 0.05-0.30 Hz frequency band increased the pore fluid pressure by 13-60 cm

  17. Instability and breakup of cavitation bubbles within diesel drops

    Institute of Scientific and Technical Information of China (English)

    Ming Lü; Zhi Ning; Kai Yan; Juan Fu; Chunhua Sun

    2015-01-01

    A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize the cavitation bubble, while inertial force destabilizes the cavitation bubble. The droplet viscosity plays a dominant role on the stability of cavitation bubbles compared with that of air and bubble. Bubble–droplet radius ratio is a key factor to control the bubble stability, especially in the high radius ratio range. Internal hydrodynamic and surface tension forces are found to stabilize the cavitation bubble, while bubble stability has little relationship with the external hydrodynamic force. Inertia makes bubble breakup easily, however, the breakup time is only slightly changed when bubble growth speed reaches a certain value (50 m·s−1). In contrast, viscous force makes bubble hard to break. With the increasing initial bubble–droplet radius ratio, the bubble growth rate increases, the bubble breakup radius decreases, and the bubble breakup time becomes shorter.

  18. Measuring the surface tension of soap bubbles

    Science.gov (United States)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  19. On the bubble? With healthcare job growth outstripping population in aging Rust Belt cities, some question the trend's durability.

    Science.gov (United States)

    Carlson, Joe; Kutscher, Beth

    2013-03-01

    Aging Rust Belt cities are some of the leaders in healthcare job growth despite stagnant or decreasing populations, even amid mounting pressure to cut healthcare costs. Areas seeing rapid population growth aren't as dependent on healthcare. "Cities that are growing quickly are most likely adding diversified industries," says Dr. Sheldon Retchin, of the Virginia Commonwealth University Health System.

  20. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  1. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    International Nuclear Information System (INIS)

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10−13 s) and growth (10−7 s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differences in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference

  2. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, Yuki [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Saito, Takayuki, E-mail: saito.takayuki@shizuoka.ac.jp [Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan)

    2015-09-14

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differences in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.

  3. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  4. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  5. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable. Howe...... component in stock market valuation ratios, consistent with a rational bubble....

  6. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to. On......, there is evidence of an explosive component in stock market valuation ratios, consistent with a rational bubble.......Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  7. "Financial Bubbles" and Monetary Policy

    Science.gov (United States)

    Tikhonov, Yuriy A.; Pudovkina, Olga E.; Permjakova, Juliana V.

    2016-01-01

    The relevance of this research is caused by the need of strengthening a role of monetary regulators to prevent financial bubbles in the financial markets. The aim of the article is the analysis of a problem of crisis phenomena in the markets of financial assets owing to an inadequate growth of their cost, owing to subjective reasons. The leading…

  8. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and fina

  9. Gas bubble dynamics in soft materials.

    Science.gov (United States)

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul

    2015-01-01

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  10. FEM Based Numerical Simulation of Bubble Growth in Power-Law Liquid%气泡在幂律流体中长大过程的有限元数值模拟

    Institute of Scientific and Technical Information of China (English)

    许星明; 赵国群; 李辉平; 秦升学

    2009-01-01

    针对幂律型流体,建立了气泡在有限聚合物熔体内长大过程的有限元模型.气泡内气体遵守理想气体定律,且气泡边界处发泡剂浓度与气泡内气体压强符合亨利定律.采用Galerkin方法对有限元控制方程进行求解,并编写了计算程序.采用隐式差分法对扩散方程中的时间导数项进行离散,确保了数值计算的稳定性.采用幂律型流体本构关系描述聚合物流变性质,计算了不同材料的物性参数和工艺参数对气泡长大过程的影响.%The modeling for spherical bubble growth in a limited amount of power-law liquid was presented by using finite element based numerical simulation method. The gas inside the bubble obeys the ideal gas law, and the gas concentration at the bubble surface follows Henry's law. A computer code was programmed to solve the equations with Galerkin method. Implicit difference scheme was used to discretize time in advection-diffusion equation. The rheology of the melt was described by power-law constitutive equation. In each incremental time step, grids were remeshed to acquire more accurate numerical results. The influence of the initial bubble radius, zero-shear viscosity, diffusion coefficient, solubility coefficient and surface tension on bubble growth was studied and presented respectively.

  11. Modelling of microalgal growth and lipid production in Dunaliella tertiolecta using nitrogen-phosphorus-potassium fertilizer medium in sintered disk chromatographic glass bubble column.

    Science.gov (United States)

    Kumar, Anup; Guria, Chandan; Chitres, G; Chakraborty, Arunangshu; Pathak, A K

    2016-10-01

    A comprehensive mathematical model involving NPK-10:26:26 fertilizer, NaCl, NaHCO3, light and temperature operating variables for Dunaliella tertiolecta cultivation is formulated to predict microalgae-biomass and lipid productivity. Proposed model includes Monod/Andrews kinetics for the absorption of essential nutrients into algae-biomass and Droop model involving internal nutrient cell quota for microalgae growth, assuming algae-biomass is composed of sugar, functional-pool and neutral-lipid. Biokinetic model parameters are determined by minimizing the residual-sum-of-square-errors between experimental and computed microalgae-biomass and lipid productivity using genetic algorithm. Developed model is validated with the experiments of Dunaliella tertiolecta cultivation using air-agitated sintered-disk chromatographic glass-bubble column and the effects of operating variables on microalgae-biomass and lipid productivity is investigated. Finally, parametric sensitivity analysis is carried out to know the sensitivity of model parameters on the obtained results in the input parameter space. Proposed model may be helpful in scale-up studies and implementation of model-based control strategy in large-scale algal cultivation. PMID:27450983

  12. Simple improvements to classical bubble nucleation models

    Science.gov (United States)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  13. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  14. 窄矩形通道内过冷流动沸腾汽泡生长模型研究%Experimental Study on Bubble Growth Model of Subcooled Flow Boiling in Narrow Rectangular Channel

    Institute of Scientific and Technical Information of China (English)

    胡健; 高璞珍; 许超; 李少丹; 郑强

    2014-01-01

    By using a high speed camera ,a visual investigation of vapor bubble grow th under different system pressures in narrow rectangular channel was performed . The influences of system pressure ,bulk subcooling ,wall superheat and bulk velocity on bubble growth were analyzed . Bubble growth model which could meet different experimental conditions was established based on the Zuber model .The results show that Ja , Bo , Re and non‐dimensional temperature θcan describe the impact of the thermal parameters and flow parameters on bubble grow th comprehensively . T he exponential coefficients of K and n decrease with increasing system pressure ;bubble growth time and maximum diameter decrease with increasing θ.It is proved that the model correlates with the experimental data very well . As the bubble diameters are stochastic intensely under low pressure ,the relative errors between the model predicted values and experimental data under low pressure are relatively large .%采用高速摄影的方式,对不同系统压力条件下窄矩形通道内汽泡生长过程进行了可视化实验研究,分析了回路系统压力、主流过冷度、壁面过热度、主流速度等热工参数对汽泡生长的影响,并在Zuber公式的基础上建立了可满足不同实验工况的汽泡生长模型。结果表明:Ja、Bo、Re和无量纲温度θ可较为全面地描述热工参数和流动参数对汽泡生长的影响,在其他条件相同的情况下,汽泡生长指数拟合曲线的 K和n值随压力的升高明显减小;θ越大,汽泡的生长时间和所能达到的最大直径越小;在给定的参数范围内模型结果与实验结果符合较好,但由于低压条件下汽泡直径变化的随机性更强,所以模型结果与个别低压实验数据的相对误差较大。

  15. Soap Bubbles and Logic.

    Science.gov (United States)

    Levine, Shellie-helane; And Others

    1986-01-01

    Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)

  16. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  17. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  18. Preheating in Bubble Collision

    CERN Document Server

    Zhang, Jun

    2010-01-01

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatically oscillating of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually high inelastic. The cosmological implications of this result are discussed.

  19. Dynamical viscosity of nucleating bubbles

    CERN Document Server

    Alamoudi, S M; Boyanovsky, D; Aragão de Carvalho, C; Fraga, E S; Jorás, S E; Takakura, F I

    1999-01-01

    We study the viscosity corrections to the growth rate of nucleating bubbles in a first order phase transition in scalar field theory. We obtain the non-equilibrium equation of motion of the coordinate that describes small departures from the critical bubble and extract the growth rate consistently in weak coupling and in the thin wall limit. Viscosity effects arise from the interaction of this coordinate with the stable quantum and thermal fluctuations around a critical bubble. In the case of 1+1 dimensions we provide an estimate for the growth rate that depends on the details of the free energy functional. In 3+1 dimensions we recognize robust features that are a direct consequence of the thin wall approximation and give the leading viscosity corrections.These are long-wavelength hydrodynamic fluctuations that describe surface waves, quasi-Goldstone modes which are related to ripples on interfaces in phase ordered Ising-like systems. We discuss the applicability of our results to describe the growth rate of ...

  20. Bubbles tomorrow and bubbles yesterday, but never bubbles today?

    OpenAIRE

    Williams, John C.

    2013-01-01

    Standard asset price models have generally failed to detect bubbles, with enormous costs to the economy. Economists are now creating promising new models that account for bubbles by relaxing the assumption of rational expectations and allowing people’s decisions to be driven by their perceptions of what the future may hold. ; This letter is adapted from a presentation by the president and CEO of the Federal Reserve Bank of San Francisco to the National Association for Business Economics in Sa...

  1. Circulatory bubble dynamics: from physical to biological aspects.

    Science.gov (United States)

    Papadopoulou, Virginie; Tang, Meng-Xing; Balestra, Costantino; Eckersley, Robert J; Karapantsios, Thodoris D

    2014-04-01

    Bubbles can form in the body during or after decompression from pressure exposures such as those undergone by scuba divers, astronauts, caisson and tunnel workers. Bubble growth and detachment physics then becomes significant in predicting and controlling the probability of these bubbles causing mechanical problems by blocking vessels, displacing tissues, or inducing an inflammatory cascade if they persist for too long in the body before being dissolved. By contrast to decompression induced bubbles whose site of initial formation and exact composition are debated, there are other instances of bubbles in the bloodstream which are well-defined. Gas emboli unwillingly introduced during surgical procedures and ultrasound microbubbles injected for use as contrast or drug delivery agents are therefore also discussed. After presenting the different ways that bubbles can end up in the human bloodstream, the general mathematical formalism related to the physics of bubble growth and detachment from decompression is reviewed. Bubble behavior in the bloodstream is then discussed, including bubble dissolution in blood, bubble rheology and biological interactions for the different cases of bubble and blood composition considered.

  2. In Situ Measurement of Local Hydrogen Production Rate by Bubble-Evolved Recording

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2013-01-01

    Full Text Available Hydrogen visibly bubbles during photocatalytic water splitting under illumination with above-bandgap radiation, which provides a direct measurement of local gas-evolving reaction rate. In this paper, optical microscopy of superfield depth was used for recording the hydrogen bubble growth on Cd0.5Zn0.5S photocatalyst in reaction liquid and illuminated with purple light. By analyzing change of hydrogen bubble size as a function of time, we understood that hydrogen bubble growth experienced two periods, which were inertia effect dominated period and diffusion effect dominated period, respectively. The tendency of hydrogen bubble growth was similar to that of the gas bubble in boiling, while the difference in bubble diameter and growth time magnitude was great. Meanwhile, we obtained the local hydrogen production rate on photocatalyst active site by measuring hydrogen bubble growth variation characteristics. This method makes it possible to confirm local actual hydrogen evolution rate quantitatively during photocatalytic water splitting.

  3. Modeling of surface cleaning by cavitation bubble dynamics and collapse.

    Science.gov (United States)

    Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung

    2016-03-01

    Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.

  4. A critical review of physiological bubble formation in hyperbaric decompression.

    Science.gov (United States)

    Papadopoulou, Virginie; Eckersley, Robert J; Balestra, Costantino; Karapantsios, Thodoris D; Tang, Meng-Xing

    2013-05-01

    Bubbles are known to form in the body after scuba dives, even those done well within the decompression model limits. These can sometimes trigger decompression sickness and the dive protocols should therefore aim to limit bubble formation and growth from hyperbaric decompression. Understanding these processes physiologically has been a challenge for decades and there are a number of questions still unanswered. The physics and historical background of this field of study is presented and the latest studies and current developments reviewed. Heterogeneous nucleation is shown to remain the prime candidate for bubble formation in this context. The two main theories to account for micronuclei stability are then to consider hydrophobicity of surfaces or tissue elasticity, both of which could also explain some physiological observations. Finally the modeling relevance of the bubble formation process is discussed, together with that of bubble growth as well as multiple bubble behavior. PMID:23523006

  5. Tribonucleation of bubbles

    CERN Document Server

    Wildeman, Sander; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2016-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for "writing with bubbles," i.e., creating controlled patterns ...

  6. Planar Soap Bubbles

    CERN Document Server

    Vaughn, R

    1998-01-01

    The generalized soap bubble problem seeks the least perimeter way to enclose and separate n given volumes in R^m. We study the possible configurations for perimeter minimizing bubble complexes enclosing more than two regions. We prove that perimeter minimizing planar bubble complexes with equal pressure regions and without empty chambers must have connected regions. As a consequence, we show that the least perimeter planar graph that encloses and separates three equal areas in R^2 using convex cells and without empty chambers is a "standard triple bubble" with connected regions.

  7. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  8. Bubble evolution and properties in homogeneous nucleation simulations.

    Science.gov (United States)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

  9. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  10. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun;

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel-t...

  11. Let Them Blow Bubbles.

    Science.gov (United States)

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  12. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  13. Tribonucleation of bubbles

    NARCIS (Netherlands)

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rub

  14. Clustering in bubbly liquids

    Science.gov (United States)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  15. Viscosity Destabilizes Sonoluminescing Bubbles

    NARCIS (Netherlands)

    Toegel, Ruediger; Luther, Stefan; Lohse, Detlef

    2006-01-01

    In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave, typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylformamide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar

  16. Always Blowing Bubbles.

    Science.gov (United States)

    Grambo, Gregory

    1995-01-01

    Ways to explore blowing bubbles through observation, experimentation, and discovery are suggested to stimulate gifted children, with attention to such areas as the function of film in the liquid and the reason for the common spherical shape of bubbles. Experiments that children can try and tips for the teacher are presented. (SW)

  17. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    Veen, van der Roeland Cornelis Adriaan

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study t

  18. Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell.

    Science.gov (United States)

    Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe

    2016-08-01

    We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size. PMID:27627394

  19. Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell

    Science.gov (United States)

    Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe

    2016-08-01

    We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.

  20. Bubble collision with gravitation

    CERN Document Server

    Hwang, Dong-il; Lee, Wonwoo; Yeom, Dong-han

    2012-01-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  1. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Science.gov (United States)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  2. Bubble dynamics in perfused tissue undergoing decompression.

    Science.gov (United States)

    Meisel, S; Nir, A; Kerem, D

    1981-02-01

    A mathematical model describing bubble dynamics in a perfused tissue undergoing decompression is presented, taking into account physical expansion and inward diffusion from surrounding supersaturated tissue as growth promoting factors and tissue gas elimination by perfusion, tissue elasticity, surface tension and inherent unsaturation as resolving driving forces. The expected behavior after a step reduction of pressure of a bubble initially existing in the tissue, displaying both growth and resolution has been demonstrated. A strong perfusion-dependence of bubble resolution time at low perfusion rates is apparent. The model can account for various exposure pressures and saturation fractions of any inert gas-tissue combination for which a set of physical and physiological parameters is available.

  3. Comparative analysis of growth characteristics of hydrate formation on the surface of suspended water droplet and bubble%悬垂水滴与悬浮气泡表面气体水合物形成特性对比

    Institute of Scientific and Technical Information of China (English)

    陆引哲; 刘道平; 杨亮

    2015-01-01

    Based on a set of high-pressure visual experiment device used for the natural gas hydrates crystallization and growth on the surface of suspended water droplet and suspended bubble,the influence of factors such as pressure,temperature,water quality on the crystallization and growth are analyzed and discussed respectively.Comparative analysis of the experimental phenomena about the characteristics of hydrate formation on the surface of suspended water droplet and bubble was discussed.Temperature and pressure are the important factors of hydrate crystallization and growth.The decrease of temperature or the increase of pressure will also improve the growth of hydrate.This paper also provides experimental support for the development of spray and bubbling method to improve the hydrate formation.%基于悬垂水滴和悬浮气泡表面形成气体水合物的可视化耐高压实验装置,分析探讨了反应压力、温度、水质等因素对水滴和气泡表面气体水合物成核和生长规律的影响。对已有的关于研究单个静止悬垂水滴和悬浮气泡表面气体水合物生长特性的实验现象及结果进行了对比分析,得出结论:温度和压力是影响表面水合物结晶与生长的重要因素;温度的降低或压力的升高均使水合反应速度加快。研究为发展喷雾法和鼓泡法这两种强化制备水合物的方式提供了有效的实验支撑。

  4. Effect of bubble size on nanofiber diameter in bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Ren Zhong-Fu

    2016-01-01

    Full Text Available Polymer bubbles are widely used for fabrication of nanofibers. Bubble size affects not only bubble's surface tension, but also fiber's morphology. A mathematical model is established to reveal the effect of bubble size on the spinning process, and the experiment verification shows the theoretical analysis is reliable.

  5. Bubble dynamics in a standing sound field: the bubble habitat.

    Science.gov (United States)

    Koch, P; Kurz, T; Parlitz, U; Lauterborn, W

    2011-11-01

    Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure. PMID:22088010

  6. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Yves

    2016-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis.

  7. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  8. The bubble memory option

    Science.gov (United States)

    Weisenstein, C.

    1985-09-01

    The suitability of bubble memory for military applications is examined from the standpoint of reliability, performance, and cost effectiveness. It is shown that bubble memory can provide performance superior to that of traditional memory media while handling all the challenges posed by military requirements: reliability, operation in harsh environments and wide temperature ranges, package density, security, performance, and low power consumption. The extensive capabilities combined with low life-cycle costs make bubble memory the choice for a variety of strategic and tactical military applications.

  9. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  10. Assisted heterogeneous multinucleation and bubble growth in semicrystalline ethylene-vinyl acetate copolymer/expanded graphite nanocomposite foams: Control of morphology and viscoelastic properties

    Directory of Open Access Journals (Sweden)

    O. Yousefzade

    2015-10-01

    Full Text Available Nanocomposite foams of ethylene-vinyl acetate copolymer (EVA reinforced by expanded graphite (EG were prepared using supercritical nitrogen in batch foaming process. Effects of EG particle size, crosslinking of EVA chains and foaming temperature on the cell morphology and foam viscoelastic properties were investigated. EG sheet surface interestingly provide multiple heterogeneous nucleation sites for bubbles. This role is considerably intensified by incorporating lower loadings of EG with higher aspect ratio. The amorphous and non-crosslinked domains of EVA matrix constitute denser bubble areas. Higher void fraction and more uniform cell structure is achieved for non-crosslinked EVA/EG nanocomposites foamed at higher temperatures. With regard to the structural variation, the void fraction of foam samples decreases with increasing the EG content. Storage and loss moduli were analyzed to study the viscoelastic properties of nanocomposite foams. Surprisingly, the foaming process of EVA results in a drastic reduction in loss and storage moduli regardless of whether the thermoplastic matrix contains EG nanofiller or not. For the EVA/EG foams with the same composition, the nanocomposite having higher void fraction shows relatively lower loss modulus and more restricted molecular movements. The study findings have verified that the dynamics of polymer chains varies after foaming EVA matrix in the presence of EG.

  11. When Soap Bubbles Collide

    OpenAIRE

    Adams, Colin; Morgan, Frank; Sullivan, John M.

    2004-01-01

    Can you fill R^n with a froth of "soap bubbles" that meet at most n at a time? Not if they have bounded diameter, as follows from Lebesgue's Covering Theorem. We provide some related results and conjectures.

  12. Popping the Bubble

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Government adopts regulations to control real estate prices A mid concerns surrounding the presence of housing bubbles across China,the Chinese Government is taking action to secure and stabilize the real

  13. Chemistry in Soap Bubbles.

    Science.gov (United States)

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  14. Bubbling Out of Control

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Jim Chanos,founder of the U.S. hedge fund Kynikos Associates,characterized the prop-erty bubble in China as "Dubai times 1,000-or worse." Many Chinese economists agree. Yi Xianrong,a senior researcher at the Institute of Finance and Banking under the Chinese Academy of Social Sciences,said the property bubble in China was far worse than the Dubai crisis in an interview with the Beijing-based International Herald Leader. Edited excerpts follow:

  15. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  16. A Gold Bubble?

    OpenAIRE

    Dirk G Baur; Kristoffer Glover

    2012-01-01

    In this paper we use a test developed by Phillips et al. (2011) to identify a bubble in the gold market. We find that the price of gold followed an explosive price process between 2002 and 2012 interrupted only briefly by the subprime crisis in 2008. We also provide a theoretical foundation for such bubble tests based on a behavioural model of heterogeneous agents and demonstrate that periods of explosive price behaviour are consistent with increased chartist activity in the gold market. The ...

  17. Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume.

    Science.gov (United States)

    Srinivasan, R Srini; Gerth, Wayne A; Powell, Michael R

    2002-02-01

    Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.

  18. Radio Bubbles in Clusters

    CERN Document Server

    Dunn, R J H; Taylor, G B

    2005-01-01

    We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with Ghz radio emission, to our sample, and also investigating ``ghost bubbles,'' i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10 MHz and 10 GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 < k/f < 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have high...

  19. Concentration distribution around a growing gas bubble in tissue.

    Science.gov (United States)

    Mohammadein, S A; Mohamed, K G

    2010-05-01

    This paper presents the concentration distribution around a growing nitrogen gas bubble in the blood and other tissues of divers who surface too quickly, when the ambient pressure through the decompression process is variable and constant. This effort is a modification of Sirinivasan et al. model (1999) [9]. The mathematical model is solved analytically to find the growth rate of a gas bubble in a tissue after decompression in the ambient pressure. Moreover, the concentration distribution around the growing bubble is introduced. The growth process is affected by ascent rate alpha (t), tissue diffusivity D(T), initial concentration difference DeltaC(0), surface tension sigma and void fraction varphi(0).

  20. Helium nano-bubble evolution in aging metal tritides.

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, Donald F.

    2004-05-01

    A continuum-scale, evolutionary model of helium (He) nano-bubble nucleation, growth and He release for aging bulk metal tritides is presented which accounts for major features of the experimental database. Bubble nucleation, modeled as self-trapping of interstitially diffusing He atoms, is found to occur during the first few days following tritium introduction into the metal and is sensitive to the He diffusivity and pairing energy. An effective helium diffusivity of 0.3 x 10{sup -16} cm{sup 2}/s at 300 K is required to generate the average bubble density of 5x 1017 bubbles/cm3 observed by transmission electron microscopy (TEM). Early bubble growth by dislocation loop punching with a l/radius bubble pressure dependence produces good agreement with He atomic volumes and bubble pressures determined from swelling data, nuclear magnetic resonance (NMR) measurements, and hydride pressure-composition-temperature (PCT) shifts. The model predicts that later in life neighboring bubble interactions may first lower the loop punching pressure through cooperative stress effects, then raise the pressure by partial blocking of loops. It also accounts for the shape of the bubble spacing distribution obtained from NMR data. This distribution is found to remain fixed with age, justifying the separation of nucleation and growth phases, providing a sensitive test of the growth formulation, and indicating that further significant bubble nucleation does not occur throughout life. Helium generated within the escape depth of surfaces and surface-connected porosity produces the low-level early helium release. Accelerated or rapid release is modeled as inter-bubble fracture using an average ligament stress criterion. Good agreement is found between the predicted onset of fracture and the observed He-metal ratio (HeM) for rapid He release from bulk palladium tritide. An examination of how inter-bubble fracture varies over the bubble spacing distribution shows that the critical Hem will be

  1. Bubble transport in subcooled flow boiling

    Science.gov (United States)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  2. Root Causes of the Housing Bubble

    Science.gov (United States)

    Kaizoji, Taisei

    In this chapter we investigate root causes of the recent US housing bubble which has been caused a serious downturn in US economic growth since autumn of 2008. We propose a simple model of housing markets in order to indicate the possible determinants of recent housing prices. Utilizing the model, we verify a number of hypotheses which have been proposed in the recent literature on the housing bubbles. We suggest that the main causes of the housing bubble from 2000 to 2006 are (1) non-elastic housing supply in the metropolitan areas, and (2) declines in the mortgage loan rate and the housing premium by the massive mortgage credit expansion. We also suggest that these factors were strongly influenced by policies that governments and the Federal Reserve Board performed.

  3. Numerical analysis of bubble growth in a molten steel/(N2,H2) supersaturation system%钢液/(N2、H2)过饱和体系中气泡生长的数值分析

    Institute of Scientific and Technical Information of China (English)

    刘建华; 李康伟; 沈少波; 刘洪波; 季益龙; 刘建

    2016-01-01

    采用水/CO2体系模拟研究钢液/( N2、H2)过饱和体系中气泡生长动力学行为,分别建立水溶液和钢液中气泡形核长大机理模型。基于三种不同的气泡生长数学模型,分别研究水/CO2和钢液/( N2、H2)体系数学模型中气泡生长动力学,并采用水模型实验数据对数学模型进行验证。分析钢液/( N2、H2)体系前期和后期处理压力以及钢液深度等因素对气泡生长的影响。研究表明:采用气泡浮选去除夹杂物技术时,前期处理压力对气泡生长有显著促进作用;后期处理压力对气泡生长有阻碍作用,随着后期处理压力的升高影响逐渐加强;钢液深度对气泡生长有阻碍作用,随着钢液深度的增加影响逐渐减弱;相比氮气,钢液中氢气气泡析出长大更快。%A water/carbon dioxide system was used to study bubble growth dynamics in a molten steel/( N2 ,H2 ) supersaturation system. Bubble nucleation and growth mechanism models in the aqueous solution and the molten steel were respectively established. Bubble growth dynamics in the water/carbon dioxide system and the molten steel/( N2 ,H2 ) system was studied based on three different kinds of bubble growth mathematical models. Water modeling experimental data were used to validate the mathematical models. The influences of preprocessing pressure, post-processing pressure and the depth of molten steel on bubble growth were analyzed in the molten steel/( N2 ,H2 ) system. It is found that when using the technology of inclusion removal by bubble flotation, preprocessing pres-sure has significant effect on the bubble growth. However, post-processing pressure blocks the bubble growth, and with increasing post-processing pressure, the influence gradually strengthens. The depth of molten steel has retarding effect on the bubble growth, and with the increasing of the depth of molten steel, the influence gradually weakens. Compared with nitrogen bubbles

  4. Insights in hydrodynamics of bubbling fluidized beds at elevated pressure by DEM-CFD approach

    Institute of Scientific and Technical Information of China (English)

    Zahra Mansourpour; Sedighe Karimi; Reza Zarghami; Navid Mostoufi; Rahmat Sotudeh-Gharebagh

    2010-01-01

    A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas-solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the dis-crete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble sta-bility, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.

  5. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  6. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  7. Investigation of bubble-bubble interaction effect during the collapse of multi-bubble system

    Science.gov (United States)

    Shao, Xueming; Zhang, Lingxin; Wang, Wenfeng

    2014-11-01

    Bubble collapse is not only an important subject among bubble dynamics, but also a key consequence of cavitation. It has been demonstrated that the structural damage is associated with the rapid change in flow fields during bubble collapse. How to model and simulate the behavior of the bubble collapse is now of great interest. In the present study, both theoretical analysis and a direct numerical simulation on the basis of VOF are performed to investigate the collapses of single bubble and bubble cluster. The effect of bubble-bubble interaction on the collapse of multi-bubble system is presented. The work was supported by the National Natural Science Foundation of China (11272284, 11332009).

  8. MEASUREMENT OF BUBBLE-BUBBLE INTERACTION DEPENDED ON REYNOLDS NUMBER USING STEREOSCOPIC BUBBLE-TRACKING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    QU Jian-wu; MURAI Yuichi; YAMAMOTO Fujio

    2005-01-01

    Bubble-bubble interaction in free rising bubbly flows is experimentally investigated in the present study.The velocity vectors of the bubbles are measured by a stereoscopic bubble-tracking technique and then the relative velocity vectors of two nearest-neighbor bubbles are calculated with high statistical reliability.With the measurement data at Reynolds number ranging from 5 to 75, the vertical attraction and the horizontal repulsion are confirmed for Re<10 as known by the past study based on Navier-Stokes simulation.The new finding of the present measurement is that the bubbles of Re>30 have repulsive velocity bothin the horizontal and the vertical directions as those rise closely.Moreover, the three-dimensional structure of the bubble-bubble interaction is discussed with the data analysis of the interaction vector fields.

  9. Fermi Bubbles with HAWC

    CERN Document Server

    Solares, H A Ayala; Hüntemeyer, P

    2015-01-01

    The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With...

  10. BLOWING COSMIC BUBBLES

    Science.gov (United States)

    2002-01-01

    This NASA Hubble Space Telescope image reveals an expanding shell of glowing gas surrounding a hot, massive star in our Milky Way Galaxy. This shell is being shaped by strong stellar winds of material and radiation produced by the bright star at the left, which is 10 to 20 times more massive than our Sun. These fierce winds are sculpting the surrounding material - composed of gas and dust - into the curve-shaped bubble. Astronomers have dubbed it the Bubble Nebula (NGC 7635). The nebula is 10 light-years across, more than twice the distance from Earth to the nearest star. Only part of the bubble is visible in this image. The glowing gas in the lower right-hand corner is a dense region of material that is getting blasted by radiation from the Bubble Nebula's massive star. The radiation is eating into the gas, creating finger-like features. This interaction also heats up the gas, causing it to glow. Scientists study the Bubble Nebula to understand how hot stars interact with the surrounding material. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  11. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.

    Science.gov (United States)

    Kang, Shih-Tsung; Huang, Yi-Luan; Yeh, Chih-Kuang

    2014-03-01

    This study investigated the manipulation of bubbles generated by acoustic droplet vaporization (ADV) under clinically relevant flow conditions. Optical microscopy and high-frequency ultrasound imaging were used to observe bubbles generated by 2-MHz ultrasound pulses at different time points after the onset of ADV. The dependence of the bubble population on droplet concentration, flow velocity, fluid viscosity and acoustic parameters, including acoustic pressure, pulse duration and pulse repetition frequency, was investigated. The results indicated that post-ADV bubble growth spontaneously driven by air permeation markedly affected the bubble population after insonation. The bubbles can grow to a stable equilibrium diameter as great as twice the original diameter in 0.5-1 s, as predicted by the theoretical calculation. The growth trend is independent of flow velocity, but dependent on fluid viscosity and droplet concentration, which directly influence the rate of gas uptake by bubbles and the rate of gas exchange across the wall of the semipermeable tube containing the bubbles and, hence, the gas content of the host medium. Varying the acoustic pressure does not markedly change the formation of bubbles as long as the ADV thresholds of most droplets are reached. Varying pulse duration and pulse repetition frequency markedly reduces the number of bubbles. Lengthening pulse duration favors the production of large bubbles, but reduces the total number of bubbles. Increasing the PRF interestingly provides superior performance in bubble disruption. These results also suggest that an ADV bubble population cannot be assessed simply on the basis of initial droplet size or enhancement of imaging contrast by the bubbles. Determining the optimal acoustic parameters requires careful consideration of their impact on the bubble population produced for different application scenarios.

  12. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  13. Pseudo-Stable Bubbles

    CERN Document Server

    Gleiser, Marcello

    1994-01-01

    The evolution of spherically symmetric unstable scalar field configurations (``bubbles'') is examined for both symmetric (SDWP) and asymmetric (ADWP) double-well potentials. Bubbles with initial static energies $E_0\\la E_{{\\rm crit}}$, where $E_{{\\rm crit}}$ is some critical value, shrink in a time scale determined by their linear dimension, or ``radius''. Bubbles with $E_0\\ga E_{{\\rm crit}}$ evolve into time-dependent, localized configurations which are {\\it very} long-lived compared to characteristic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.tic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.

  14. Mechanics of collapsing cavitation bubbles

    NARCIS (Netherlands)

    Wijngaarden, van L.

    2016-01-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage.

  15. Simulation of cryogenic liquid flows with vapor bubbles

    Science.gov (United States)

    De Jong, Frederik J.; Sabnis, Jayant S.

    1991-01-01

    Liquid flows in rocket engine components (such as bearings, seals, and pumps) often involve the formation of vapor bubbles due to local superheating of the fluid (either boiling or cavitation). Under the present effort, an analysis has been developed for liquid flows with vapor bubbles, based on a combined Eulerian-Lagrangian technique, in which the continuous (liquid) phase is treated by solving a system of Eulerian conservation equations, while the discrete (vapor bubble) phase is dealt with by integrating Lagrangian equations of motion in computational coordinates. Vapor bubbles of changing size can be accommodated easily by this analysis, and models for the simulation of bubble formation, growth, and motion have been included. The effect of bubble motion and other bubble processes on the continuous (liquid) phase has been accounted for by appropriate bubble mass, momentum, and energy interchange source terms in the Eulerian conservation equations. To demonstrate the viability of the resulting procedure, the cavitating flow of liquid oxygen through a simplified model of a labyrinth seal has been successfully calculated.

  16. Bubble departure in pool and flow boiling systems: A review and latest developments

    International Nuclear Information System (INIS)

    Many of the vapor bubble departure diameter correlations for pool and flow boiling which have been proposed in the open literature are reviewed. In addition, the recent unified bubble detachment model for pool and flow boiling proposed by Zeng et al. (1992a, 1992b) is discussed. It is demonstrated that the unified model, which requires the vapor bubble growth rate as an input, is the only one which satisfactorily predicts vapor bubble departure diameters over the entire range of boiling conditions for which bubble detachment data exist

  17. In situ X-ray tomographic microscopy observations of vesiculation of bubble-free and bubble-bearing magmas

    Science.gov (United States)

    Pistone, Mattia; Caricchi, Luca; Fife, Julie L.; Mader, Kevin; Ulmer, Peter

    2015-12-01

    Magma degassing is thought to play a major role in magma fractionation, transport, storage, and volcanic eruption dynamics. However, the conditions that determine when and how magma degassing operates prior to and during an eruption remain poorly constrained. We performed experiments to explore if the initial presence of gas bubbles in magma influences the capability of gas to escape from the magma. Vesiculation of natural H2O-poor (bubble coalescence during vesiculation. In both sets of experiments, vesiculation was triggered by heating the samples at room pressure. Our results suggest that the presence of pre-existing gas bubbles during a nucleation event significantly decreases the tendency of bubbles to coalesce and inhibits magma outgassing. In contrast, in initially bubble-free samples, the nucleation and growth of bubbles is accompanied by significant coalescence and outgassing. We infer that volatile-undersaturated (i.e. bubble-free) magmas in the reservoirs are more likely to erupt effusively, while the presence of excess gas already at depth (i.e. bubble-bearing systems) increases the likelihood of explosive eruptions.

  18. STUDY ON THE GROWTH AND COLLAPSE OF CAVITATION BUBBLE WITHIN A DROPLET%单液滴内空化气泡的生长及溃灭研究

    Institute of Scientific and Technical Information of China (English)

    吕明; 宁智; 孙春华

    2016-01-01

    Cavitation bubbles always exist in the diesel jet leaving the nozzle and in the diesel droplets breaking up from the jet as a result of supercavitation of the diesel within the injection nozzle, and it can increase the instability of jet and droplets in part due to the two-phase mixture, while the mechanism of this effect is still unclear. Growth and collapse of spherically symmetric bubble within the diesel droplet has been then simulated numerically based on the volume of fluid (VOF) method. The numerical results show that the process of bubble growth is divided into three stages, including surface tension controlled domain, comprehensive competition controlled domain with the surface tension, the inertial force and the viscous force, and inertial force controlled domain. In addition, the bubble collapse within a droplet consists of multiple collapse and rebound stages, similar to the vibration process of a damping spring oscillator. According to the variation of bubble radius with time at the end of each cycle, the process of bubble collapse can be divided into fast, slow and stable stages.%超空化燃油射流使得喷雾中部分燃油分裂液滴内含有空化气泡;空化气泡的生长及溃灭对液滴的分裂与雾化具有重要影响。基于VOF方法首次对超空化条件下燃油液滴内空化气泡的生长及溃灭过程进行了数值模拟。通过研究发现,单液滴内空化气泡的生长过程可以按控制机理划分为表面张力控制阶段、综合竞争阶段和惯性力控制阶段;在第I阶段,空泡的生长主要受表面张力的控制作用,惯性力对空泡生长的促进作用及黏性力对空泡生长的抑制作用可以忽略;在第II阶段,空泡的生长受表面张力、惯性力及黏性力三者的综合作用,空泡的生长速率是促进空泡生长的惯性力和抑制空泡生长的表面张力及黏性力相互竞争、共同作用的结果;在第III阶段,空泡的生长主要受

  19. Heavy liquid bubble chamber

    CERN Multimedia

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  20. Double Bubble? No Trouble!

    Science.gov (United States)

    Shaw, Mike I.; Smith, Greg F.

    1995-01-01

    Describes a soap-solution activity involving formation of bubbles encasing the students that requires only readily available materials and can be adapted easily for use with various grade levels. Discusses student learning outcomes including qualitative and quantitative observations and the concept of surface tension. (JRH)

  1. Understanding the bubbles

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    that are identified to exist between the Internet and housing market bubbles: uncertainty and sentiments. The iteration between uncertainty and sentiments leads to the emergence of the third commonality: residue. The residue is the difference between the actors’ overall sentiment about exaggerated future prospects...

  2. Critical scattering by bubbles

    International Nuclear Information System (INIS)

    We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.)

  3. Popping the Bubble

    Institute of Scientific and Technical Information of China (English)

    LAN XINZHEN

    2010-01-01

    @@ Amid concerns surrounding the presence of housing bubbles across China,the Chinese Government is taking action to secure and stabilize the real estate market.In the past month,the government launched a series of regulatory policies aimed at cooling the overheated market.

  4. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  5. Oscillations of soap bubbles

    Science.gov (United States)

    Kornek, U.; Müller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R.

    2010-07-01

    Oscillations of droplets or bubbles of a confined fluid in a fluid environment are found in various situations in everyday life, in technological processing and in natural phenomena on different length scales. Air bubbles in liquids or liquid droplets in air are well-known examples. Soap bubbles represent a particularly simple, beautiful and attractive system to study the dynamics of a closed gas volume embedded in the same or a different gas. Their dynamics is governed by the densities and viscosities of the gases and by the film tension. Dynamic equations describing their oscillations under simplifying assumptions have been well known since the beginning of the 20th century. Both analytical description and numerical modeling have made considerable progress since then, but quantitative experiments have been lacking so far. On the other hand, a soap bubble represents an easily manageable paradigm for the study of oscillations of fluid spheres. We use a technique to create axisymmetric initial non-equilibrium states, and we observe damped oscillations into equilibrium by means of a fast video camera. Symmetries of the oscillations, frequencies and damping rates of the eigenmodes as well as the coupling of modes are analyzed. They are compared to analytical models from the literature and to numerical calculations from the literature and this work.

  6. BEBC bubble chamber

    CERN Multimedia

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  7. Saturation of shape instabilities in single-bubble sonoluminescence.

    Science.gov (United States)

    Levinsen, Mogens T

    2014-07-01

    Excitation of shape instabilities represents one route to bubble death in single-bubble sonoluminescence. This feature is satisfactorily explained by an expansion to first order in the amplitude of a shape distortion in the form of a spherical harmonic. By taking the expansion to second order, it is found that regions of parameter space exist where the exponential growth into bubble disruption is checked and a saturated stable state of shape distortion is possible. Experimental evidence provided by Mie scattering is presented, and a possible connection to simultaneous spatially anisotropic light emission is discussed. PMID:25122388

  8. Bubble contributions to scalar correlators with mixed actions

    CERN Document Server

    Fu, Ziwen

    2013-01-01

    WWithin mixed-action chiral perturbation theory (MA$\\chi$PT), Sasa's derivation of the bubble contribution to scalar $a_0$ meson is extended to those of scalar $\\kappa$ and $\\sigma$ mesons. We revealed that $\\kappa$ bubble has two double poles and $\\sigma$ bubble contains a quadratic-in-$t^2$ growth factor stemming from the multiplication of two double poles for a general mass tuning of valence quarks and sea quarks. The corresponding preliminary analytical expressions in MA$\\chi$PT with 2+1 chiral valence quarks and 2+1 staggered sea quarks will be helpful for lattice studies of scalar mesons.

  9. Growing bubbles in a slightly supersaturated liquid solution

    CERN Document Server

    Enríquez, Oscar R; Bruggert, Gert-Wim; Lohse, Detlef; Prosperetti, Andrea; van der Meer, Devaraj; Sun, Chao

    2013-01-01

    We have designed and constructed an experimental system to study gas bubble growth in slightly supersatu- rated liquids. This is achieved by working with carbon dioxide dissolved in water, pressurized at a maximum of 1 MPa and applying a small pressure drop from saturation conditions. Bubbles grow from hydrophobic cavities etched on silicon wafers, which allows us to control their number and position. Hence, the experiment can be used to investigate the interaction among bubbles growing in close proximity when the main mass transfer mechanism is diffusion and there is a limited availability of the dissolved species.

  10. Photon Number Conserving Models of H II Bubbles during Reionization

    CERN Document Server

    Paranjape, Aseem; Padmanabhan, Hamsa

    2015-01-01

    Traditional excursion set based models of H II bubble growth during the epoch of reionization are known to violate photon number conservation, in the sense that the mass fraction in ionized bubbles in these models does not equal the ratio of the number of ionizing photons produced by sources and the number of hydrogen atoms in the intergalactic medium. We demonstrate that this problem arises from a fundamental conceptual shortcoming of the excursion set approach (already recognised in the literature on this formalism) which only tracks average mass fractions instead of the exact, stochastic source counts. With this insight, we build an approximately photon number conserving Monte Carlo model of bubble growth based on partitioning regions of dark matter into halos. Our model, which is formally valid for white noise initial conditions (ICs), shows dramatic improvements in photon number conservation, as well as substantial differences in the bubble size distribution, as compared to traditional models. We explore...

  11. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, T.; Kvist, T.M.; Hyldegaard, O.

    2008-01-01

    and heliox breathing. Preoxygenation enhanced bubble disappearance compared with oxygen and heliox breathing but did not prevent bubble growth. The results indicate that oxygen breathing at 25 kPa promotes air bubble growth in adipose tissue regardless of the tissue nitrogen pressure Udgivelsesdato: 2008/11......At altitude, bubbles are known to form and grow in blood and tissues causing altitude decompression sickness. Previous reports indicate that treatment of decompression sickness by means of oxygen breathing at altitude may cause unwanted bubble growth. In this report we visually followed the in vivo.......7) after which they started shrinking or remained stable throughout the observation period. Bubble growth time was significantly longer during oxygen breathing compared with heliox breathing and preoxygenated animals. Significantly more bubbles disappeared in preoxygenated animals compared with oxygen...

  12. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles. PMID:27150777

  13. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  14. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    -shaped plasma bubbles. The second topic was pursued because the inability to predict the day-to-day occurrence of plasma bubbles indicated inadequate knowledge of the physics of plasma bubbles. An understanding of bubble formation requires an understanding of the roles of the various terms in the linearized growth rate of the collisional Rayleigh-Taylor instability. In our study, we examined electric-field perturbations found in SM-D EFI data and found that the seeding is more likely to be produced in the E region rather than the F region. The results of this investigation are presented in the Appendix of this report and will be submitted for publication in the Journal of Geophysical Research.

  15. Decompression-induced bubble formation in salmonids: comparison to gas bubble disease.

    Science.gov (United States)

    Beyer, D L; D'Aoust, B G; Smith, L S

    1976-12-01

    The relationship of gas bubble disease (GBD) in fish to decompression-induced bubble formation was investigated with salmonids. Acute bioassays were used to determine equilibration times for critical effects in fish decompressed from depths to 200 fsw. It was found that equilibration of critical tissues was complete in 60-90 min. Salmonids and air-breathers are sensitive to decompressions at similar levels of supersaturation if elimination of excess gas following decompression is unrestricted. However, if elimination is restricted, bubble formation and growth increase accordingly. Tests with mixtures of He-O2, Ar-O2, N2-O2 (80% inert gas: 20% O2) and pure oxygen demonstrated that gas solubility as well as supersaturation (delta P), pressure ratio (initial pressure: final pressure), and absolute pressure must be considered in setting tolerance limits for any decompression. Gases with higher solubility are more likely to produce bubbles upon decompression. Oxygen, however, does not follow this relationship until higher pressures are reached, probably owing to its function in metabolism and in binding with hemoglobin. Tissue responses observed in both GBD and decompressed fish involved similar pathological effects at acute exposures. The circulatory system was consistently affected by bubbles that occluded vessels and blocked flow through the heart.

  16. Effect of an entrained air bubble on the acoustics of an ink channel.

    Science.gov (United States)

    Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2008-05-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.

  17. Bubble driven quasioscillatory translational motion of catalytic micromotors.

    Science.gov (United States)

    Manjare, Manoj; Yang, Bo; Zhao, Y-P

    2012-09-21

    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  18. More bubbling solutions

    International Nuclear Information System (INIS)

    In this note we construct families of asymptotically flat, smooth, horizonless solutions with a large number of non-trivial two-cycles (bubbles) of N = 1 five-dimensional supergravity with an arbitrary number of vector multiplets, which may or may not have the charges of a macroscopic black hole and which contain the known bubbling solutions as a sub-family. We do this by lifting various multi-center BPS states of type IIA compactified on Calabi-Yau three-folds and taking the decompactification (M-theory) limit. We also analyse various properties of these solutions, including the conserved charges, the shape, especially the (absence of) throat and closed timelike curves, and relate them to the various properties of the four-dimensional BPS states. We finish by briefly commenting on their degeneracies and their possible relations to the fuzzball proposal of Mathur et al

  19. CRISIS FOCUS Blowing Bubbles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese stock and property markets have been outperforming expectations, fueled by an unprecedented surge in bank lending. Xie Guozhong, an economist and board member of Rosetta Stone Advisors, argues the robust Chinese economic figures are only propped up by bubbles, whose bursting will lead to a hard landing for the economy. Xie published his opinion in a related article in Caijing Magazine. Edited excerpts follow:

  20. Mechanisms of gas bubble retention

    International Nuclear Information System (INIS)

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength

  1. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness

    DEFF Research Database (Denmark)

    Randsoe, T; Hyldegaard, O

    2009-01-01

    effect of normobaric oxygen breathing and intravascular PFC infusion could lead to either enhanced extravascular bubble growth on decompression due to the increased oxygen supply, or that PFC infusion could lead to faster bubble elimination due to the increased solubility and transport capacity in blood...... combined with PFC infusion. All bubble observations were done at 101.3 kPa pressure. During oxygen breathing with or without combined PFC infusion, bubbles disappeared faster compared with air breathing. Combined oxygen breathing and PFC infusion caused faster bubble disappearance compared with oxygen...... breathing. The combined effect of oxygen breathing and PFC infusion neither prevented nor increased transient bubble growth time, rate, or growth ratio compared with oxygen breathing alone. We conclude that oxygen breathing in combination with PFC infusion causes faster bubble disappearance and does...

  2. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  3. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles.

    Science.gov (United States)

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses.

  4. Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.

    Science.gov (United States)

    Aymé-Bellegarda, E J

    1990-08-01

    This work is concerned with the influence of the finite-amplitude distortion of a driving diagnostic ultrasonic field on the collapse and rebound of a gas-filled spherical microbubble, present in the exposed compressible liquid. Such an analysis is especially important since one of the mechanisms for cavitation damage comes from the very large gas pressures generated at bubble collapse and in the subsequent pressure wave formed by bubble rebound. Gilmore's model [F.R. Gilmore, "The growth or collapse of a spherical bubble in a viscous compressible liquid," Hydrodynamics Lab. Rep. No. 26-4, California Institute of Technology, Pasadena, CA (1952)] for bubble dynamics is used to obtain the motion of the bubble interface when subjected to a pulsed diagnostic ultrasonic field of large amplitude. Knowledge of the bubble motion allows one to derive the pressure distribution around the bubble. Numerical results over a range of initial bubble sizes, acoustic pressures, and frequencies relevant to medical use show that the strength of the pressure spikes radiated by the rebounding bubble depends upon (i) the acoustic frequency (f), (ii) the initial bubble size (R0), and (iii) the magnitude of the pressure amplitude of the fundamental (PF) in a Fourier series description of the distorted pulse. As the pressure spikes propagate outward from the bubble wall, their strength is attenuated as the reciprocal of the distance from the center of collapse.

  5. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    International Nuclear Information System (INIS)

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  6. Electrowetting of a soap bubble

    CERN Document Server

    Arscott, Steve

    2013-01-01

    A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture - the surfaces are composed of highly doped, commercial silicon wafers covered with nanometre thick films of Teflon. Voltages less than 40V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g. laboratory-on-a-chip) - the potential gains in terms of volume, speed and surface/volume ratio are non-negligible.

  7. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubble...

  8. In Search of the Big Bubble

    Science.gov (United States)

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  9. Mathematical model of diffusion-limited evolution of multiple gas bubbles in tissue.

    Science.gov (United States)

    Srinivasan, R Srini; Gerth, Wayne A; Powell, Michael R

    2003-04-01

    Models of gas bubble dynamics employed in probabilistic analyses of decompression sickness incidence in man must be theoretically consistent and simple, if they are to yield useful results without requiring excessive computations. They are generally formulated in terms of ordinary differential equations that describe diffusion-limited gas exchange between a gas bubble and the extravascular tissue surrounding it. In our previous model (Ann. Biomed. Eng. 30: 232-246, 2002), we showed that with appropriate representation of sink pressures to account for gas loss or gain due to heterogeneous blood perfusion in the unstirred diffusion region around the bubble, diffusion-limited bubble growth in a tissue of finite volume can be simulated without postulating a boundary layer across which gas flux is discontinuous. However, interactions between two or more bubbles caused by competition for available gas cannot be considered in this model, because the diffusion region has a fixed volume with zero gas flux at its outer boundary. The present work extends the previous model to accommodate interactions among multiple bubbles by allowing the diffusion region volume of each bubble to vary during bubble evolution. For given decompression and tissue volume, bubble growth is sustained only if the bubble number density is below a certain maximum.

  10. Heat transfer mechanisms in bubbly Rayleigh-Benard convection

    CERN Document Server

    Oresta, Paolo; Lohse, Detlef; Prosperetti, Andrea

    2008-01-01

    The heat transfer mechanism in Rayleigh-Benard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with point-like vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both thermally and mechanically. It is shown that the effect of the bubbles is strongly dependent on the ratio of the sensible heat to the latent heat as embodied in the Jacob number Ja. For very small Ja the bubbles stabilize the flow by absorbing heat in the warmer regions and releasing it in the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth destabilizes the flow with respect to single-phase convection and considerably increases the Nusselt number.

  11. Evolution of the plasma bubble in a narrow gap.

    Science.gov (United States)

    Chu, Hong-Yu; Lee, Hung-Ken

    2011-11-25

    We investigate the evolution of the plasma bubble in a narrow gap. According to the morphological changes, we further show that there are three phases during the evolution for spherical fluctuating, radial fingering, and dense branching plasma bubbles, which are similar to the radial fingering pattern in a Hele-Shaw cell. The dependences of the wavelength of the fingering boundary are experimentally discussed. The dense branching plasma bubble is found with a fractal dimension of D(f)=1.74. The reduced surface tension pressure from the local heatings due to the filamentary discharges is suspected of being responsible for the growth of the radial fingering and the dense branching plasma bubbles.

  12. Rational Asset Pricing Bubbles Revisited

    OpenAIRE

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  13. Rational Bubbles in Stock Prices?

    OpenAIRE

    Behzad T. Diba; Grossman, Herschel I.

    1985-01-01

    This paper reports empirical tests for the existence of rational bubbles in stock prices. The analysis focuses on a familiar model that defines market fundamentals to be the expected present value of dividends, discounted at a constantrate, and defines a rational bubble to be a self-confirming divergence of stock prices from market fundamentals in response to extraneous variables. The tests are based on the theoretical result that, if rational bubbles exist, time series obtained by differenci...

  14. Helium bubble bursting in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Sefta, Faiza [University of California, Berkeley, California 94720 (United States); Juslin, Niklas [University of Tennessee, Knoxville, Tennessee 37996 (United States); Wirth, Brian D., E-mail: bdwirth@utk.edu [University of Tennessee, Oak Ridge National Laboratory, Knoxville, Tennessee 37996 (United States)

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  15. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  16. Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow

    International Nuclear Information System (INIS)

    A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C Rm √(ρL/σ) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 ± 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R0, and C is √12, while for attached boiling bubbles C is found to amount 1.9√12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)

  17. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead-lithium with the Self-consistent nucleation theory and surface tension corrections

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFoam(r) CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a cr...

  18. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    Science.gov (United States)

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media.

  19. Characteristics researches of natural gas hydrate growth on the suspended bubble surface%悬浮气泡表面天然气水合物形成的特性研究

    Institute of Scientific and Technical Information of China (English)

    叶鹏; 刘道平; 张健

    2013-01-01

    基于悬浮气泡表面生成气体水合物的高压可视化实验装置,分析探讨了系统压力、温度、水质因素对天然气水合物的成核和生长规律的影响。研究结果表明,随着反应温度的降低和反应压力的增大,诱导时间和生长时间呈现出缩减的趋势,气泡表面水合物逐渐由粗糙变得光滑;蒸馏水形成的水合物比较规则、密实,而纯净水形成的水合物略显凌乱、松散;相同实验条件下,蒸馏水生成水合物的诱导时间和生长时间较短。%Based on a set of high-pressure visual experiment device built for the investigation of the natural gas hydrates crystallization and grow th on the suspended gas bubble surface ,the in-fluence factors such as pressure ,temperature ,water quality were analyzed and discussed .The results showed that the higher pressure or the lower temperature resulted in the less induction time and growth time ,which led to surface changing from rough to smooth .The surface of hy-drate film in distilled water is smoother and tidier than that in pure water .Under the same exper-imental conditions ,the hydrate film in distilled water grew faster than that in pure water .

  20. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  1. Tuning bubbly structures in microchannels.

    Science.gov (United States)

    Vuong, Sharon M; Anna, Shelley L

    2012-06-01

    Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row ("dripping"), to multiple rows ("alternating"), to densely packed bubbles ("bamboo" and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters.

  2. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias;

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well...

  3. Bubbles under stress.

    Science.gov (United States)

    Bohn, S

    2003-06-01

    We present an experimental and theoretical investigation of a system composed of two soap bubbles strained between two parallel solid surfaces. The two-bubble cluster can be found in several configurations. The existence and stability of each of these states is studied as a function of the distance between the two facing surfaces. The change of this distance can induce a transition from one configuration to another; we observe that most transitions are subcritical, showing that the system is often trapped in states where the minimum of free energy is only local. The hysteretic transitions are responsible for the dissipation of elastic energy. The existence of more than one stable states for given boundaries conditions combined with the absence of thermalization means that the history of the system has to be taken into account and that there is no unique stress-strain relation. In the present system, because of its simplicity, a complete quantitative analysis of these general processes is obtained. The presented results may contribute to a better understanding of the dynamics of more complex systems such as foams or granular materials where similar processes are at work. PMID:15011058

  4. Growing bubbles rising in line

    Directory of Open Access Journals (Sweden)

    John F. Harper

    2001-01-01

    Full Text Available Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is boiling, or is a supersaturated solution of a gas, or simply because the pressure decreases with height. That omission is now addressed, for spherical bubbles rising at high Reynolds numbers. As the flow is then nearly irrotational, Lagrange's equations can be used with Rayleigh's dissipation function. The theory also works for bubbles shrinking as they rise because they dissolve.

  5. THE SEMIEMPIRICAL MODEL OF THE MULTICOMPONENT BUBBLE BEHAVIOUR IN GLASS MELTS

    Directory of Open Access Journals (Sweden)

    LUBOMÍR NĚMEC

    2012-12-01

    Full Text Available A semi-empirical model of the bubble growth and dissolution in glasses with a fining agent has been derived. This model applies the experimental data from bubble observation at melting and fining temperatures. The experimental data needed for the model involved the temperature dependences of the average growth rate of the bubble radius and the average concentration of the fining gas in the bubbles. Both sets of values were measured in the laboratory in the glass of the float type and applied in the model. The measurements of the solubilities and diffusion coefficients of the gases present in the glass – needed for the analytical model of multicomponent bubbles – were thus avoided. The course of the partial bubble absorption with the temperature decreasing was simulated by means of two factors modifying the experimental values of the bubble growth rates at constant temperature. The temperature dependence of the resulting bubble growth rate qualitatively corresponded to the experimental observations in the soda-lime-silica glass, but a more detailed experimental and comparative study has yet to be performed. Such a study is being prepared.

  6. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Science.gov (United States)

    Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-01

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn't cause the gas bubble alignment, and fast 1-D migration of interstitials along directions in the body-centered cubic U matrix causes the gas bubble alignment along directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  7. Introductory Applicaton of Defocusing DPIV to the Study of Bubbly Shear Flows

    Science.gov (United States)

    Pereira, Francisco; Gharib, Morteza; Dabiri, Dana; Modarress, Darius

    1999-11-01

    A study of a three-dimensional bubbly flow is presented to demonstrate the applicability of the newly developed defocusing digital particle image velocimetry technique. The DDPIV instrument provides bubble size and location information within a one cubic foot volume. A three-dimensional two-phase flow measurement is performed to obtain a full-field quantitative description of the global dynamics of air bubbles in a vortical shear flow generated by a model boat propeller. Clouds of sub-millimeter air bubbles are injected upstream the propeller. The velocity field is calculated from volumetric cross-correlation of consecutive three-dimensional sets of bubble locations, whereas the bubble size information is estimated from the blurred image of bubbles. Flow analysis is presented in terms of vorticity and bubble trajectory. The bubble size distribution upstream and downstream the propeller is discussed. Growth and collapse of bubbles are detected and related to the respective velocity field in the suction and high-pressure regions of the propeller.

  8. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang Y.; Burkes, Douglas; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-07-08

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  9. A 3D Bubble Merger Model for RTI Mixing

    Science.gov (United States)

    Cheng, Baolian

    2015-11-01

    In this work we present a model for the merger processes of bubbles at the edge of an unstable acceleration driven mixing layer. Steady acceleration defines a self-similar mixing process, with a time-dependent inverse cascade of structures of increasing size. The time evolution is itself a renormalization group evolution. The model predicts the growth rate of a Rayleigh-Taylor chaotic fluid-mixing layer. The 3-D model differs from the 2-D merger model in several important ways. Beyond the extension of the model to three dimensions, the model contains one phenomenological parameter, the variance of the bubble radii at fixed time. The model also predicts several experimental numbers: the bubble mixing rate, the mean bubble radius, and the bubble height separation at the time of merger. From these we also obtain the bubble height to the radius aspect ratio, which is in good agreement with experiments. Applications to recent NIF and Omega experiments will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  10. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); D’Errico, Francesco [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); Scuola di Ingegneria, Universitá di Pisa, Largo Lucio Lazzarino 1, Pisa (Italy)

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1–10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200–400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  11. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Science.gov (United States)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence; d'Errico, Francesco

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1-10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200-400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  12. Real Estate Price Bubble and Its Impact in the Baltic States

    Directory of Open Access Journals (Sweden)

    Laura Tupėnaitė

    2011-04-01

    Full Text Available The article analyses the problem of the real estate price bubble in the Baltic States. The definition of the real estate price bubble is discussed, the main reasons as well as bubble influencing fundamental and irrational factors and price bubble burst sequences to national economics are analysed. Based on the research model and developed by the authors, the practical research of the real estate market in the Baltic States was performed.Trends towards the real estate prices were researched and the influence of fundamental and irrational factors on the growth of the real estate prices was discussed. Research results proved the existence of the price bubble in the Baltic States real estate market during the period from 2004 to 2006. The influence of the real estate price bubble burst on the national economy of the Baltic States is discussed at the end of this article. Article in Lithuanian

  13. ADSORPTION OF NANO-PARTICLES ON BUBBLE SURFACE IN NANO-PARTICLE SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    Buxuan Wang; Chunhui Li; Xiaofeng Peng

    2005-01-01

    The adsorption of nano-particles on bubble surface is discussed for saturated boiling on thin wire of nano-particle suspensions. Owing to the decrease of surface tension for suspensions, the nano-particles tend to adsorb on the bubble surface to decrease the Gibbs free energy for stability, and meanwhile the velocity of nano-particles would be smaller than that of bubble growth. The long-range van der Waals force existing between "water particles" and nano-particles is considered the attractive force between the nano-particles and the bubble surface. Thus, the nano-particles would attach on the bubble surface if the particle-surface distance is smaller than its critical value. The distribution of nano-particles on the bubble surface and in the adjacent region is also investigated.

  14. Directed self-assembly of microcomponents enabled by laser-activated bubble latching.

    Science.gov (United States)

    Jiang, Li; Erickson, David

    2011-09-01

    This article introduces a method for microscale assembly using laser-activated bubble latching. The technique combines the advantages of directed fluidic assembly and surface tension-driven latching to create arbitrarily complex and irregular structures with unique properties. The bubble latches, generated through the laser degradation of the tile material, are created on the fly, reversibly linking components at user-determined locations. Different phases of latching bubble growth are analyzed, and shear force calculations show that each bubble is able to support a tensile force of approximately 0.33 μN. We demonstrate that by exploiting the compressibility of bubbles, assembled objects can be made to switch between rigid and flexible states, facilitating component assembly and transport. Furthermore, we show reconfiguration capabilities through the use of bubble hinging. This novel hybrid approach to the assembly of microscale components offers significant user control while retaining a simplistic design environment. PMID:21793555

  15. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    International Nuclear Information System (INIS)

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  16. Effect of cavitation bubble collapse on hydraulic oil temperature

    Institute of Scientific and Technical Information of China (English)

    沈伟; 张健; 孙毅; 张迪嘉; 姜继海

    2016-01-01

    Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.

  17. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    Science.gov (United States)

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  18. Strings on Bubbling Geometries

    CERN Document Server

    Lin, Hai; Shock, Jonathan P

    2010-01-01

    We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wavefunction.

  19. The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole

    Science.gov (United States)

    Abboud, Jack E.; Oweis, Ghanem F.

    2013-01-01

    An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

  20. Doughnut-shaped soap bubbles

    Science.gov (United States)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  1. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  2. Partial coalescence of soap bubbles

    Science.gov (United States)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  3. Thermal Phase in Bubbling Geometries

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-Yong

    2008-01-01

    We use matrix model to study thermal phase in bubbling half-BPS type IIB geometries with SO(4)×SO(4) symmetry.Near the horizon limit,we find that thermal vacua of bubbling geometries have disjoint parts,and each part is one kind of phase of the thermal system.We connect the thermal dynamics of bubbling geometries with one-dimensional fermions thermal system.Finally,we try to give a new possible way to resolve information loss puzzle.

  4. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    Science.gov (United States)

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.

  5. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    Science.gov (United States)

    Annenkova, E. A.; Kreider, W.; Sapozhnikov, O. A.

    2015-10-01

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.

  6. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Kreider, W. [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States); Sapozhnikov, O. A. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States)

    2015-10-28

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.

  7. Growing bubbles and freezing drops: depletion effects and tip singularities

    NARCIS (Netherlands)

    Enríquez Paz y Puente, Oscar Raúl

    2015-01-01

    In this thesis, the author investigates the growth of gas bubbles in a supersaturated solution and the freezing of water drops when placed on a cold plate. Supersaturated solutions are common in nature and industry; perhaps the best know examples are carbonated drinks, such as beer or soda. These ar

  8. Ostwald Ripening in Multiple-Bubble Nuclei

    OpenAIRE

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-01-01

    The ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 million Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as $t^{-x}$ with scaling exponent $x$. As ...

  9. Smashing Bubbles and Vanishing Sugar.

    Science.gov (United States)

    Ward, Alan

    1979-01-01

    Science activities with soap bubbles for primary school children are described in this article. Another activity involves children in determining the whereabouts of sugar as it dissolves in water. (SA)

  10. Magnetism. Blowing magnetic skyrmion bubbles.

    Science.gov (United States)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel

    2015-07-17

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics. PMID:26067256

  11. The Housing Bubble Fact Sheet

    OpenAIRE

    Dean Baker

    2005-01-01

    This paper explains the basic facts about the current housing market. It lays out the evidence that the rise in housing prices constitutes a housing bubble - and explains what can be expected when it inevitably collapses.

  12. Pulling bubbles from a bath

    Science.gov (United States)

    Kao, Justin C. T.; Blakemore, Andrea L.; Hosoi, A. E.

    2010-06-01

    Deposition of bubbles on a wall withdrawn from a liquid bath is a phenomenon observed in many everyday situations—the foam lacing left behind in an emptied glass of beer, for instance. It is also of importance to the many industrial processes where uniformity of coating is desirable. We report work on an idealized version of this situation, the drag-out of a single bubble in Landau-Levich-Derjaguin flow. We find that a well-defined critical wall speed exists, separating the two regimes of bubble persistence at the meniscus and bubble deposition on the moving wall. Experiments show that this transition occurs at Ca∗˜Bo0.73. A similar result is obtained theoretically by balancing viscous stresses and gravity.

  13. Microstreaming from Sessile Semicylindrical Bubbles

    Science.gov (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  14. Bubble bean bags in shampoo

    CERN Document Server

    Kundu, Anup; Das, Gargi; Harikrishnan, G

    2011-01-01

    In these fluid dynamics videos, we, for the first time, show various interactions of a 'Taylor bubble' with their smaller and differently, shaped counterparts, in a shear thinning, non-Newtonian fluid, confined in a narrow channel.

  15. Transient bubbles, bublets and breakup

    Science.gov (United States)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  16. Mechanisms of single bubble cleaning.

    Science.gov (United States)

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8substrate and remove particles without significant contact of the gas phase. (II) For small distances, γsubstrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the

  17. Bubbles Created from Vacuum Fluctuation

    Institute of Scientific and Technical Information of China (English)

    刘辽; 贺锋

    2001-01-01

    We show that bubbles of S2 × S2 can be created from vacuum fluctuation in the background de Sitter universes of k =0.1, so the space-time foam-like structure might really be constructed from bubbles of S2×S2 in the very early inflating phase of our universe. Still, whether such a foam-like structure persisted during the later evolution of the universe is a problem unsolved at present.

  18. Doughnut-shaped soap bubbles.

    Science.gov (United States)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for Vbubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance. PMID:26565252

  19. Doughnut-shaped soap bubbles

    CERN Document Server

    Preve, Deison

    2015-01-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume $V$ and with a fixed equatorial perimeter $L$. It is well known that the sphere is the solution for $V=L^3/6\\pi^2$, and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for $V<\\alpha L^3/6\\pi^2$, with $\\alpha\\approx 0.21$, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtainin...

  20. Treatment of micro air bubbles in rat adipose tissue at 25 kPa altitude exposures with perfluorocarbon emulsions and nitric oxide

    DEFF Research Database (Denmark)

    Randsøe, Thomas; Hyldegaard, O

    2014-01-01

    .e., oxygen in particular) and water vapor contribute to bubble growth and stabilization during altitude exposures. Accordingly, we hypothesize that the administration of PFC and NO donors upon hypobaric pressure exposures either (1) enhance the bubble disappearance rate through faster desaturation...... of nitrogen, or in contrast (2) promote bubble growth and stabilization through an increased oxygen supply. METHODS: In anesthetized rats, micro air bubbles (containing 79% nitrogen) of 4-500 nl were injected into exposed abdominal adipose tissue. Rats were decompressed in 36 min to 25 kPa (~10,376 m above...... sea level) and bubbles studied for 210 min during continued oxygen breathing (FIO2 = 1). Rats were administered PFC, NO, or combined PFC and NO. RESULTS: In all groups, most bubbles grew transiently, followed by a stabilization phase. There were no differences in the overall bubble growth or decay...

  1. Response of Microscopic Bubbles to Sudden Decrease of Ambient Pressure in Viscous Compressible Liquid

    Institute of Scientific and Technical Information of China (English)

    A. P. Szumowski; J. Piechna

    2001-01-01

    A shock tube is used to investigate the bubble dynamics under sudden decrease of ambient pressure. Both the oscillating and monotonously growing bubbles were simultaneously observed. Theoretical approach is based on Considering the linear approximation of these equations for the quasiequilibrium state, two critical Weber numbers are defined. They enable one to predict the following modes of the bubble expansion: (i) unbounded growth, (ii) asymptotic growth to limited volume and (iii) attenuated oscillations, depending on the pressure force,viscosity and compressibility of the liquid.

  2. Bubbles Tomorrow and Bubbles Yesterday, but Never Bubbles Today?

    OpenAIRE

    Williams, John C.

    2013-01-01

    Considering their importance and the amount of effort that has gone into understanding them, asset price bubbles continue to perplex. The evidence of these bubbles seldom squares with what would be expected from standard asset price theory. Unlike the suggestions from theory, expectations of prices of both stocks and houses tend to be procyclical—price expectations are driven by recent price performance. Thus, price expectations are extrapolative rather than rational, as assumed by standard a...

  3. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  4. Study of Interfacial Mass Transfer on Vapor Bubbles in Microgravity

    Directory of Open Access Journals (Sweden)

    Johannes Straub

    2005-03-01

    Full Text Available The knowledge of interfacial heat and mass transfer is important for environmental and technical applications, especially nowadays for numerical simulations of two phase problems. However, the data available up to now are inconsistent, because most experiments performed on earth suffer under buoyancy and convection, and thus the boundary conditions at the evaluation could not clearly be defined. Therefore, we seized the opportunity to investigate interfacial heat and mass transfer in microgravity environment. In these experiments the growth and collapse in the overall superheated and subcooled bubles, respectively, liquid or free vapor bubbles were observed at various liquid temperature and pressure states and over periods of from a few seconds up to 300 seconds. It was for the first time that such very long periods of bubble growth could be observed. The experimental set-up allowed the control of the liquid supersaturation before the bubbles were initiated by a short heat pulse at a miniaturized heater. Therefore it was possible to perform a systematic parametric study. The measured curves for vapor bubble growth are in good agreement with our numerical simulation. Based on this model the kinetic coefficients for the evaporation and condensation according to Hertz-Knudsen have been derived from the experimental data.

  5. Nucleus factory on cavitation bubble for amyloid β fibril.

    Science.gov (United States)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  6. Doppler bubble detection and decompression sickness: a prospective clinical trial.

    Science.gov (United States)

    Bayne, C G; Hunt, W S; Johanson, D C; Flynn, E T; Weathersby, P K

    1985-09-01

    Decompression sickness in human beings exposed to high ambient pressure is thought to follow from gas bubble formation and growth in the body during return to low pressure. Detection of Doppler-shifted ultrasonic reflections in major blood vessels has been promoted as a noninvasive and sensitive indicator of the imminence of decompression sickness. We have conducted a double-blind, prospective clinical trial of Doppler ultrasonic bubble detection in simulated diving using 83 men, of whom 8 were stricken and treated for the clinical disease. Diagnosis based only on the Doppler signals had no correlation with clinical diagnosis. Bubble scores were only slightly higher in the stricken group. The Doppler technique does not appear to be of diagnostic value in the absence of other clinical information.

  7. Nucleus factory on cavitation bubble for amyloid β fibril

    Science.gov (United States)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  8. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  9. Modelling of single bubble-dynamics and thermal effects

    Science.gov (United States)

    Papoulias, D.; Gavaises, M.

    2015-12-01

    This paper evaluates the solution effects of different Rayleigh-Plesset models (R-P) for simulating the growth/collapse dynamics and thermal behaviour of homogeneous gas bubbles. The flow inputs used for the discrete cavitation bubble calculations are obtained from Reynolds-averaged Navier-Stokes simulations (RANS), performed in high-pressure nozzle holes. Parametric 1-D results are presented for the classical thermal R-P equation [1] as well as for refined models which incorporated compressibility corrections and thermal effects [2, 3]. The thermal bubble model is coupled with the energy equation, which provides the temperature of the bubble as a function of conduction/convection and radiation heat-transfer mechanisms. For approximating gas pressure variations a high-order virial equation of state (EOS) was used, based on Helmholtz free energy principle [4]. The coded thermal R-P model was validated against experimental measurements [5] and model predictions [6] reported in single-bubble sonoluminescence (SBSL).

  10. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  11. Bubble-bubble interaction: A potential source of cavitation noise

    CERN Document Server

    Ida, Masato

    2009-01-01

    The interaction between microbubbles through pressure pulses has been studied to show that it can be a source of cavitation noise. A recent report demonstrated that the acoustic noise generated by a shrimp originates from the collapse of a cavitation bubble produced when the shrimp closes its snapper claw. The recorded acoustic signal contains a broadband noise that consists of positive and negative pulses, but a theoretical model for single bubbles fails to reproduce the negative ones. Using a nonlinear multibubble model we have shown here that the negative pulses can be explained by considering the interaction of microbubbles formed after the cavitation bubble has collapsed and fragmented: Positive pulses produced at the collapse of the microbubbles hit and impulsively compress neighboring microbubbles to generate reflected pulses whose amplitudes are negative. Discussing the details of the noise generation process, we have found that no negative pulses are generated if the internal pressure of the reflecti...

  12. Bubble-sort图和Modified Bubble-sort图的自同构群%Automorphism Groups of Bubble-sort Graphs and Modified Bubble-sort Graphs

    Institute of Scientific and Technical Information of China (English)

    张昭; 黄琼湘

    2005-01-01

    Bubble-sort graphs and modified bubble-sort graphs are two classes of Cayley graphs which are widely studied for their application in network construction. In this paper, we determine the full automorphism groups of bubble-sort graphs and modified bubble-sort graphs.%Bubble-Sort图和Modified Bubble-Sort图是两类特殊的Cayley图,由于其在网络构建中的应用而受到广泛关注.本文完全确定了这两类图的自同构群.

  13. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  14. Experimental study on characteristics of bubble growth and pressure wave propagation by supersonic gas jets under water%水下超声速燃气射流气泡的生长及压力波传播特性实验研究

    Institute of Scientific and Technical Information of China (English)

    汤龙生; 刘宇; 吴智锋; 赵文胜

    2011-01-01

    To investigate effects of supersonic gas jets under water, gas generator and underwater testing system is used to study the growth and evolution of gas bubble by supersonic gas jets and pressure pulse propagation characteristics under water. The characteristic of pressure pulse attenuation is investigated. The experimental results show that the growth and collapse of the gas bubble cause the pressure pulse, and the pulsation can quickly decay under water.%为获取燃气射流对上游水域的影响特性,采用燃气发生器和水下实验系统,研究了水下超声速燃气射流的气泡生长及演变过程,以及气泡压力波在水中的传播特性,并研究了压力波在水介质中的衰减规律.研究表明,燃气泡生长和"破碎"伴生着压力脉动在水介质中传播,气泡压力波的能量在水介质中快速衰减.

  15. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  16. The stability of buoyant bubbles in the atmospheres of galaxy clusters

    CERN Document Server

    Kaiser, C R; Pope, E C D; Fangohr, H

    2005-01-01

    The buoyant rise of hot plasma bubbles inflated by AGN outflows in galaxy clusters can heat the cluster gas and thereby compensate radiative energy losses of this material. Numerical simulations of this effect often show the complete disruption of the bubbles followed by the mixing of the bubble material with the surrounding cluster gas due to fluid instabilities on the bubble surface. This prediction is inconsistent with the observations of apparently coherent bubble structures in clusters. We derive a general description in the linear regime of the growth of instabilities on the surface between two fluids under the influence of a gravitational field, viscosity, surface tension provided by a magnetic field and relative motion of the two fluids with respect to each other. We demonstrate that Kelvin-Helmholtz instabilities are always suppressed, if the fluids are viscous. They are also suppressed in the inviscid case for fluids of very different mass densities. We show that the effects of shear viscosity as we...

  17. Annealing Behaviour of Helium Bubbles in Titanium Films by Thermal Desorption Spectroscopy and Positron Beam Analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Chao-Zhuo; ZHOU Zhu-Ying; SHI Li-Qun; WANG Bao-Yi; HAO Xiao-Peng; ZHAO Guo-Qing

    2007-01-01

    @@ Helium-containing Ti films are prepared using magnetron sputtering in the helium-argon atmosphere. Isochronal annealing at different temperatures for an hour is employed to reveal the behaviour of helium bubble growth. Ion beam analysis is used to measure the retained helium content. Helium can release largely when annealing above 970 K. A thermal helium desorption spectroscopy system is constructed for assessment of the evolution of helium bubbles in the annealed samples by linear heating (0.4K/s) from room temperature to 1500K. Also, Doppler broadening measurements of positron annihilation radiation spectrum are performed by using changeable energy positron beam. Bubble coarsening evolves gradually below 680K, migration and coalescence of small bubbles dominates in the range of 680-970K, and the Ostwald ripening mechanism enlarges the bubbles with a massive release above 970K.

  18. Simulation of exchanges of multiple gases in bubbles in the body.

    Science.gov (United States)

    Burkard, M E; Van Liew, H D

    1994-02-01

    This communication introduces a system of equations, for numerical solution, which simulates the generation, growth, and decay of bubbles. The system is an advance over previous works because it allows for simultaneous diffusion of any number of gases. Our purpose for developing the system is to gain insight into the bubbles that occur in the body in decompression sickness (DCS). We validate the calculation system by matching observed data of DCS bubbles and of large subcutaneous gas pockets in rats. We demonstrate how a temporary supersaturation and bubble formation can occur without change of ambient pressure when there is a change in the inert gas being breathed. With exposures to hypobaric environments, such as when astronauts work in space, simulations show that O2, CO2, and water vapor add appreciably to volume of bubbles and affect the diffusion of inert gas.

  19. Kinetics of conversion of air bubbles to air-hydrate crystals in antarctic ice

    CERN Document Server

    Price, P B

    1995-01-01

    The depth-dependence of bubble concentration at pressures above the transition to the air hydrate phase and the optical scattering length due to bubbles in deep ice at the South Pole are modeled using diffusion-growth data from the laboratory, taking into account the dependence of age and temperature on depth in the ice. The model fits the available data on bubbles in cores from Vostok and Byrd and on scattering length in deep ice at the South Pole. It explains why bubbles and air hydrate crystals co-exist in deep ice over a range of depths as great as 800 m and predicts that at depths below \\rm \\sim 1400 m the AMANDA neutrino observatory at the South Pole will operate unimpaired by light scattering from bubbles.

  20. Decompression induced bubble dynamics on ex vivo fat and muscle tissue surfaces with a new experimental set up.

    Science.gov (United States)

    Papadopoulou, Virginie; Evgenidis, Sotiris; Eckersley, Robert J; Mesimeris, Thodoris; Balestra, Costantino; Kostoglou, Margaritis; Tang, Meng-Xing; Karapantsios, Thodoris D

    2015-05-01

    Vascular gas bubbles are routinely observed after scuba dives using ultrasound imaging, however the precise formation mechanism and site of these bubbles are still debated and growth from decompression in vivo has not been extensively studied, due in part to imaging difficulties. An experimental set-up was developed for optical recording of bubble growth and density on tissue surface area during hyperbaric decompression. Muscle and fat tissues (rabbits, ex vivo) were covered with nitrogen saturated distilled water and decompression experiments performed, from 3 to 0bar, at a rate of 1bar/min. Pictures were automatically acquired every 5s from the start of the decompression for 1h with a resolution of 1.75μm. A custom MatLab analysis code implementing a circular Hough transform was written and shown to be able to track bubble growth sequences including bubble center, radius, contact line and contact angles over time. Bubble density, nucleation threshold and detachment size, as well as coalescence behavior, were shown significantly different for muscle and fat tissues surfaces, whereas growth rates after a critical size were governed by diffusion as expected. Heterogeneous nucleation was observed from preferential sites on the tissue substrate, where the bubbles grow, detach and new bubbles form in turn. No new nucleation sites were observed after the first 10min post decompression start so bubble density did not vary after this point in the experiment. In addition, a competition for dissolved gas between adjacent multiple bubbles was demonstrated in increased delay times as well as slower growth rates for non-isolated bubbles.

  1. Helium bubble evolution in a Zr–Sn–Nb–Fe–Cr alloy during post-annealing: An in-situ investigation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Peng, S.M.; Chen, B. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Naab, F.N. [Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, G.A.; Zhou, W. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Xiang, X. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Sun, K., E-mail: kaisun@umich.edu [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Zu, X.T., E-mail: xtzu@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-09-15

    The formation of helium bubbles is considered to be detrimental to the mechanical performance of the nuclear materials. The growth behaviors of helium bubbles in a helium ion implanted Zr–Sn–Nb–Fe–Cr alloy with respect to the helium fluence and subsequently annealing procedure were investigated by in-situ transmission electron microscopy. In the as-implanted sample, the measured size distributions of the helium bubbles are consistent with the simulated helium concentrations. Moreover, the mean size of the helium bubbles increases with the increase of the irradiation temperatures and the helium fluence. The in-situ heating study performed in a transmission electron microscope indicates that the mean size of the helium bubbles increase slowly below 923 K and dramatically above 923 K. The coarsening mechanism of the helium bubbles in the alloy is suggested based on the study. - Highlights: • Helium bubble growth in zirconium with annealing was in-situ investigated in TEM. • The mean helium bubble size increase with helium fluence and annealing temperature. • Helium bubble size distribution is same as that of helium concentration by SRIM. • Mean bubble size increases slowly and quickly with temperature below and above 923 K. • The growth mechanism of the helium bubbles in Zr alloy has been discussed.

  2. Helium bubble evolution in a Zr–Sn–Nb–Fe–Cr alloy during post-annealing: An in-situ investigation

    International Nuclear Information System (INIS)

    The formation of helium bubbles is considered to be detrimental to the mechanical performance of the nuclear materials. The growth behaviors of helium bubbles in a helium ion implanted Zr–Sn–Nb–Fe–Cr alloy with respect to the helium fluence and subsequently annealing procedure were investigated by in-situ transmission electron microscopy. In the as-implanted sample, the measured size distributions of the helium bubbles are consistent with the simulated helium concentrations. Moreover, the mean size of the helium bubbles increases with the increase of the irradiation temperatures and the helium fluence. The in-situ heating study performed in a transmission electron microscope indicates that the mean size of the helium bubbles increase slowly below 923 K and dramatically above 923 K. The coarsening mechanism of the helium bubbles in the alloy is suggested based on the study. - Highlights: • Helium bubble growth in zirconium with annealing was in-situ investigated in TEM. • The mean helium bubble size increase with helium fluence and annealing temperature. • Helium bubble size distribution is same as that of helium concentration by SRIM. • Mean bubble size increases slowly and quickly with temperature below and above 923 K. • The growth mechanism of the helium bubbles in Zr alloy has been discussed

  3. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles

    Science.gov (United States)

    Aster, Ellen M.; Wallace, Paul J.; Moore, Lowell R.; Watkins, James; Gazel, Esteban; Bodnar, Robert J.

    2016-09-01

    Melt inclusions record valuable information about pre-eruptive volatile concentrations of melts. However, a vapor bubble commonly forms in inclusions after trapping, and this decreases the dissolved CO2 concentration in the melt (glass) phase in the inclusion. To quantify CO2 loss to vapor bubbles, Raman spectroscopic analysis was used to determine the density of CO2 in bubbles in melt inclusions from two Cascade cinder cones near Mt. Lassen and two Mexican cinder cones (Jorullo, Parícutin). Using analyses of dissolved CO2 and H2O in the glass in the inclusions, the measured CO2 vapor densities were used to reconstruct the original dissolved CO2 contents of the melt inclusions at the time of trapping. Our results show that 30-90% of the CO2 in a melt inclusion is contained in the vapor bubble, values similar to those found in other recent studies. We developed a model for vapor bubble growth to show how post-entrapment bubbles form in melt inclusions as a result of cooling, crystallization, and eruptive quenching. The model allows us to predict the bubble volume fraction as a function of ΔT (the difference between the trapping temperature and eruptive temperature) and the amount of CO2 lost to a bubble. Comparison of the Raman and modeling methods shows highly variable agreement. For 10 of 17 inclusions, the two methods are within ± 550 ppm CO2 (avg. difference 290 ppm), equivalent to ±~300 bars uncertainty in estimated trapping pressure for restored inclusions. Discrepancies between the two methods occur for inclusions that have been strongly affected by post-entrapment diffusive H+ loss, because this process enhances bubble formation. For our dataset, restoring the CO2 lost to vapor bubbles increases inferred trapping pressures of the inclusions by 600 to as much as 4000 bars, highlighting the importance of accounting for vapor bubble formation in melt inclusion studies.

  4. Tohoku one meter bubble chamber

    International Nuclear Information System (INIS)

    At the request of Tohoku University and the National Laboratory for High Energy Physics, IHI has developed a complete freon bubble chamber system successfully, which is used for photo analysis of elementary particles physics. This system will be delivered to Fermi National Accelerator Laboratory (FNAL) in Illinois (U.S.A.) and will be coupled with the superconducting accelerator (TEVATRON) for the study of elementary particles. The total system of the freon bubble chamber is composed of a stainless steel casting spherical bubble chamber with a diameter of about one meter, an expansion system for freon pressure control, hydraulic system for driving an expansion piston, a freon feed system, a temperature control system, an overall control system as well as camera and flashlight for photograph. (author)

  5. Role of metabolic gases in bubble formation during hypobaric exposures.

    Science.gov (United States)

    Foster, P P; Conkin, J; Powell, M R; Waligora, J M; Chhikara, R S

    1998-03-01

    Our hypothesis is that metabolic gases play a role in the initial explosive growth phase of bubble formation during hypobaric exposures. Models that account for optimal internal tensions of dissolved gases to predict the probability of occurrence of venous gas emboli were statistically fitted to 426 hypobaric exposures from National Aeronautics and Space Administration tests. The presence of venous gas emboli in the pulmonary artery was detected with an ultrasound Doppler detector. The model fit and parameter estimation were done by using the statistical method of maximum likelihood. The analysis results were as follows. 1) For the model without an input of noninert dissolved gas tissue tension, the log likelihood (in absolute value) was 255.01. 2) When an additional parameter was added to the model to account for the dissolved noninert gas tissue tension, the log likelihood was 251.70. The significance of the additional parameter was established based on the likelihood ratio test (P bubble formation was 19. 1 kPa (143 mmHg). 4) The additional gas tissue tension, supposedly due to noninert gases, did not show an exponential decay as a function of time during denitrogenation, but it remained constant. 5) The positive sign for this parameter term in the model is characteristic of an outward radial pressure of gases in the bubble. This analysis suggests that dissolved gases other than N2 in tissues may facilitate the initial explosive bubble-growth phase.

  6. Soap Bubbles on a Cold Day.

    Science.gov (United States)

    Waiveris, Charles

    1994-01-01

    Discusses the effects of blowing bubbles in extremely cold weather. Describes the freezing conditions of the bubbles and some physical properties. Suggests using the activity with all ages of students. (MVL)

  7. Bubble memory module for spacecraft application

    Science.gov (United States)

    Hayes, P. J.; Looney, K. T.; Nichols, C. D.

    1985-01-01

    Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.

  8. Bubble Content in Air/Hydro System--Part 1:Measurement of Bubble Content

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of bubble formation in air/hydro systems is investigated. Results presented in this paper include further insight into the mechanism of bubble formation and the measurement of bubble content. The regularity of bubble transport in the system is found, with an idea for a new method for separating gas from oil. The method has been verified experimentally with favorable results.

  9. Single bubble sonoluminescence and stable cavitation

    Institute of Scientific and Technical Information of China (English)

    CHEN Qian; QIAN Menglu

    2004-01-01

    A single bubble trapped at an antinode of an acoustic standing wave field in water can emit 50ps-140ps light pulses, called "single bubble sonoluminescence" (SBSL). It arouses much interest in physical acoustics because of its highly non-linear characteristics, high concentration of energy, and stable cavitation behavior. In this paper, bubble stability, the dynamic behavior of bubbles, non-invasive measurement of driving acoustic pressure and Mie scattering method are introduced.

  10. Radiation Characteristics of Glass Containing Gas Bubbles

    OpenAIRE

    Pilon, Laurent; Viskanta, Raymond

    2003-01-01

    In many materials processing and manufacturing situations such as steel, aluminum, ceramics and glass, gas bubbles can form in liquid and solid phases. The presence of such bubbles affects the thermophysical properties and radiation characteristics of the two-phase system and hence the transport phenomena. This paper presents a general formulation of the radiation characteristics of semitransparent media containing large gas bubbles (bubble radius is much larger than the wavelength of radiati...

  11. Modeling bubbly-cap flows using two-group average bubble number density

    International Nuclear Information System (INIS)

    The basic concept of two-group average bubble number density equations along with three-fluid model has been demonstrated for vertical gas-liquid flow. Specifically, the current study focused on: (i)classification of bubble interaction between spherical bubbles (Group-1) and cap bubbles (Group- 2), (ii) preliminary consideration of source and sink terms in the averaged bubble number density equations via the model of Hibiki and Ishii [1] and (iii) assessment by means of experimental data sets at bubbly-to-cap flow transition. Reasonable agreement was achieved between measured and predicted distributions of void fraction, interfacial area concentration (IAC) and volume equivalent bubble diameter. (author)

  12. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM.

    Science.gov (United States)

    Shervani-Tabar, Mohammad T; Mobadersany, Nima

    2013-07-01

    In electrical discharge machining due to the electrical current, very small bubbles are created in the dielectric fluid between the tool and the workpiece. Increase of the number of bubbles and their growth in size generate a single bubble. The bubble has an important role in electrical discharge machining. In this paper the effect of ultrasonic vibration of the tool and the velocity fields and pressure distribution in the dielectric fluid around the bubble in the process of electrical discharge machining are studied numerically. The boundary integral equation method is applied for the numerical solution of the problem. It is shown that ultrasonic vibration of the tool has great influence on the evolution of the bubble, fluid behavior and the efficiency of the machining in EDM. At the last stages of the collapse phase of the bubble, a liquid jet develops on the bubble which has different shapes. Due to the different cases, and a high pressure region appears just near the jet of the bubble. Also the fluid particles have the highest relative velocity just near the liquid jet of the bubble.

  13. Frictional drag reduction by bubble injection

    Science.gov (United States)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  14. Affirmative Discrimination and the Bubble

    Science.gov (United States)

    Clegg, Roger

    2011-01-01

    In this essay, the author discusses how affirmative action contributed to an unnatural rise in enrollments in college. In considering the higher education bubble, he makes the case that as the opposition to preferences continues to build, the momentum of this trend will only increase as funding shrinks. He offers some tentative answers to a series…

  15. Bursting the Taylor cone bubble

    Science.gov (United States)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  16. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  17. The Big European Bubble Chamber

    CERN Document Server

    1977-01-01

    The 3.70 metre Big European Bubble Chamber (BEBC), dismantled on 9 August 1984. During operation it was one of the biggest detectors in the world, producing direct visual recordings of particle tracks. 6.3 million photos of interactions were taken with the chamber in the course of its existence.

  18. Laser induced bubbles inside liquids: Transient optical properties and effects on a beam propagation

    International Nuclear Information System (INIS)

    Light transmission through a laser formed bubble (LFB) following ablation of a metallic target inside water was studied. During the early expansion and late collapsing phases, the refraction index nb of the hot high-pressure vapor bubble is higher than 1.23 and close to that of the surrounding liquid. The cavity growth lowers nb down to 1.00 and causes strong defocusing of the incident laser beam with consequent enlargement of the ablation crater diameter, here overcoming factor two. Inhomogeneous water vapor clustering inside the cool expanded bubble further perturbs the light transmission and induces irregular ablation by the successive laser pulse.

  19. Experimental study of the interaction between the spark-induced cavitation bubble and the air bubble

    Institute of Scientific and Technical Information of China (English)

    罗晶; 许唯临; 牛志攀; 罗书靖; 郑秋文

    2013-01-01

    Experiments are carried out by using high-speed photography to investigate the interaction between the spark-generated cavitation bubble and the air bubble in its surrounding fluid. Three problems are discussed in detail: the impact of the air bubble upon the development of the cavitation bubble, the evolution of the air bubble under the influence of the cavitation bubble, and the change of the fluid pressure during the development of a micro jet of the cavitation bubble. Based on the experimental results, under the condition of no air bubble present, the lifetime of the cavitation bubble from expansion to contraction increases with the increase of the maximum radius. On the other hand, when there is an air bubble present, different sized cavitation bubbles have similarity with one another generally in terms of the lifetime from expansion to contraction, which does not depend on the maximum radius. Also, with the presence of an air bubble, the lifetime of the smaller cavitation bubble is extended while that of the bigger ones reduced. Furthermore, it is shown in the experiment that the low pressure formed in the opposite direction to the cavitation bubble micro jet makes the air bubble in the low pressure area being stretched into a steplike shape.

  20. How long will a bubble be ?

    CERN Document Server

    Gilet, T; Reyssat, E; Vandewalle, N; Dorbolo, S

    2007-01-01

    A soap bubble is a metastable object that eventually breaks. Indeed, the soapy water film thins until rupture, due to drainage and evaporation. In our experimental investigations, floating bubbles at the surface of a liquid bath have been considered. Their lifetime has been measured and reported with respect to their radius. Large bubbles last longer than small ones. Moreover, small bubbles have more predictable lifetimes than large ones. We propose a general equation for that lifetime, based on the lubrication theory. The evaporation is shown to be an essential process which determines the bubble lifetime.

  1. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. PMID:22078340

  2. Shell correction energy for bubble nuclei

    CERN Document Server

    Yu, Y; Magierski, P; Bulgac, Aurel; Magierski, Piotr

    2000-01-01

    The positioning of a bubble inside a many fermion system does not affect the volume, surface or curvature terms in the liquid drop expansion of the total energy. Besides possible Coulomb effects, the only other contribution to the ground state energy of such a system arises from shell effects. We show that the potential energy surface is a rather shallow function of the displacement of the bubble from the center and in most cases the preferential position of a bubble is off center. Systems with bubbles are expected to have bands of extremely low lying collective states, corresponding to various bubble displacements.

  3. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α0,4, spectrum in k-3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  4. Supercoiling induces denaturation bubbles in circular DNA.

    Science.gov (United States)

    Jeon, Jae-Hyung; Adamcik, Jozef; Dietler, Giovanni; Metzler, Ralf

    2010-11-12

    We present a theoretical framework for the thermodynamic properties of supercoiling-induced denaturation bubbles in circular double-stranded DNA molecules. We explore how DNA supercoiling, ambient salt concentration, and sequence heterogeneity impact on the bubble occurrence. An analytical derivation of the probability distribution to find multiple bubbles is derived and the relevance for supercoiled DNA discussed. We show that in vivo sustained DNA bubbles are likely to occur due to partial twist release in regions rich in weaker AT base pairs. Single DNA plasmid imaging experiments clearly demonstrate the existence of bubbles in free solution.

  5. Bubble Universe Dynamics After Free Passage

    CERN Document Server

    Ahlqvist, Pontus; Greene, Brian

    2013-01-01

    We consider bubble collisions in single scalar field theories with multiple vacua. Recent work has argued that at sufficiently high impact velocities, collisions between such bubble vacua are governed by 'free passage' dynamics in which field interactions can be ignored during the collision, providing a systematic process for populating local minima without quantum nucleation. We focus on the time period that follows the bubble collision and provide evidence that, for certain potentials, interactions can drive significant deviations from the free-passage bubble profile, thwarting the production of bubbles with different field values.

  6. Dynamics of single and multiple bubbles and associated heat transfer in nucleate boiling under low gravity conditions.

    Science.gov (United States)

    Qiu, D; Son, G; Dhir, V K; Chao, D; Logsdon, K

    2002-10-01

    Experimental studies and numerical simulation of growth and lift-off processes of single bubbles formed on designed nucleation sites have been conducted under low-gravity conditions. Merging of multiple bubbles and lift-off processes during boiling of water in the parabola flights of KC-135 aircraft were also experimentally studied. The heating area of the flat heater surface was discretized and equipped with a number of small heating elements that were separately powered in the temperature-control mode. As such, the wall superheat remained nearly constant during the growth and departure of the bubbles, whereas the local heat flux varied during the boiling process. From numerical calculation it is found that peak of heat flux occurs locally at the contact line of bubble and heater surface. Dry conditions exist inside the bubble base area, which is characterized through a zero heat flux region in the numerical calculation and a lower heat flux period in the experimental results. During the merger of multiple bubbles, dry-out continues. In both the numerical calculations and experimental results, the bubble lift-off is associated with an apparent increase in heat flux. Wall heat flux variation with time and spatial distribution during the growth of a single bubble from numerical simulations are compared with experimental data.

  7. Numerical simulation of bubble behaviors in subcooled flow boiling under swing motion

    Energy Technology Data Exchange (ETDEWEB)

    Wei Jinghua [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044 (China); Pan Liangming, E-mail: cneng@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044 (China); Chen Deqi; Zhang Hui [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044 (China); Xu Jianjun; Huang Yanping [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 6140041 (China)

    2011-08-15

    Highlights: > Secondary flow exists inside bubbles due to the evaporation and condensation. > The relative motion of these two bubbles generates two symmetrical vortexes and a stagnant region. > The supplementary microlayer between the two coalescing bubbles is observed in the simulation. > The additional inertia forces generated by swing are negligible. > The fluctuation of mass flow rate caused by swing motion effects the F{sub sl}, F{sub qs}, F{sub h} and the phase distribution significantly. - Abstract: A numerical investigation of bubble behaviors in subcooled flow boiling of water under the effect of additional inertial forces has been performed considering energy and mass transfer during phase change based on the VOF (volume-of-fluid) method. The pressure ranges from 0.1 to 1.0 MPa, and heat flux from 200 to 500 kW/m{sup 2}. The mass flow rate and inlet subcooling are specified at 320 kg/m{sup 2} s and 10 K, respectively. The liquid-vapor interface is captured using the piecewise linearity interpolation calculation (PLIC) geometry restructuring method. The simulations are carried out on upward water flow in a vertical, rectangular duct with single side heating surface. The pressure, velocity vector and temperature distribution around two isolated bubbles are studied firstly. The behaviors of bubble coalescence, sliding, detachment from the heated wall, and the bubble shape variation during lifetime are further examined. The bubble behaviors in the different pressure and heat flux are investigated. The simulated results of bubble growth rate and wall temperature are agreed well with the correlations in the literatures. The additional inertial forces caused by swing are negligible, but the fluctuation of mass flow rate caused by swing motion influences the forces acting on bubble significantly. Compared with the motionless condition, the pressure drop is increased and the fluctuation becomes acute as heat flux increases under the swing condition.

  8. A study of gas bubbles in liquid mercury in a vertical Hele-Shaw cell

    International Nuclear Information System (INIS)

    High-quality observations of mesoscopic gas bubbles in liquid metal are vital for a further development of pyrometallurgical gas injection reactors. However, the opacity of metals enforces the use of indirect imaging techniques with limited temporal or spatial resolution. In addition, accurate interface tracking requires tomography which further complicates the design of a high-temperature experimental setup. In this paper, an alternative approach is suggested that circumvents these two main restrictions. By injecting gas in a thin layer of liquid metal entrapped between two flat and closely spaced plates, bubbles in a Hele-Shaw flow regime are generated. The resulting quasi-2D multiphase flow phenomena can be fully captured from a single point of view and, when using a non-wetted transparent plate material, the bubbles can be observed directly. The feasibility of this approach is demonstrated by observations on buoyancy-driven nitrogen bubbles in liquid mercury in a vertical Hele-Shaw cell. By using a moving high-speed camera to make continuous close up recordings of individual bubbles, the position and geometry of these bubbles are quantified with a high resolution along their entire path. After a thorough evaluation of the experimental accuracy, this information is used for a detailed analysis of the bubble expansion along the path. While the observed bubble growth is mainly caused by the hydrostatic pressure gradient, a careful assessment of the volume variations for smaller bubbles shows that an accurate bubble description should account for significant dynamic pressure variations that seem to be largely regime dependent. (orig.)

  9. Mathematical models for tritium permeation analysis in liquid metal flows with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Batet, L. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Physics and Nuclear Engineering (Spain); Mas de les Valls, E., E-mail: elisabet.masdelesvalls@gits.ws [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Heat Engines (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Tritium transport in wall-attached He bubbles is studied. • Tritium mainly by-passes the bubble and its partial pressure in the bubble is homogeneous. • The bubble boundary layer depth is about twice the bubble radius. • Simplified tritium transport models are developed and validated. • A preliminary tritium wall function is proposed for wall-attached He bubbles flows. - Abstract: In LIBRETTO-2 test, evidence was obtained that helium bubbles nucleated and grew in the neutron irradiated PbLi probes. If such phenomenon occurs inside liquid metal (LM) breeding blanket channels, the study of its effect on tritium permeation and heat transfer in the near wall region will acquire utmost importance. The T4F research group has developed in the past a nucleation, growth and transport model for helium bubbles in LM flows, as well as a tritium transport model in such a multi-fluid system. In the present study, we are focused on the near-wall region analysis in order to obtain a wall function that allow reproducing the tritium permeation with coarse meshes and, hence, reduce the computational time. First, we perform some detailed CFD simulations of the near-wall region where bubbles might be attached. In these simulations, tritium diffusion processes as well as tritium recombination and dissociation are modelled. The analysis of such simulations allows us to further understand the complex phenomena and justify the use of simplified models. As a result, a new model for tritium transport across a LM–solid interface partially covered by helium bubbles is developed, implemented and validated. This simplified model can be seen as a wall function for the CFD simulation which substantially reduces computational time.

  10. Exercise and nitric oxide prevent bubble formation: a novel approach to the prevention of decompression sickness?

    Science.gov (United States)

    Wisløff, Ulrik; Richardson, Russell S; Brubakk, Alf O

    2004-03-16

    Nitrogen dissolves in the blood during dives, but comes out of solution if divers return to normal pressure too rapidly. Nitrogen bubbles cause a range of effects from skin rashes to seizures, coma and death. It is believed that these bubbles form from bubble precursors (gas nuclei). Recently we have shown that a single bout of exercise 20 h, but not 48 h, before a simulated dive prevents bubble formation and protects rats from severe decompression sickness (DCS) and death. Furthermore, we demonstrated that administration of N(omega)-nitro-l-arginine methyl ester, a non-selective inhibitor of NO synthase (NOS), turns a dive from safe to unsafe in sedentary but not exercised rats. Therefore based upon previous data an attractive hypothesis is that it may be possible to use either exercise or NO-releasing agents before a dive to inhibit bubble formation and thus protect against DCS. Consequently, the aims of the present study were to determine whether protection against bubble formation in 'diving' rats was provided by (1) chronic and acute administration of a NO-releasing agent and (2) exercise less than 20 h prior to the dive. NO given for 5 days and then 20 h prior to a dive to 700 kPa lasting 45 min breathing air significantly reduced bubble formation and prevented death. The same effect was seen if NO was given only 30 min before the dive. Exercise 20 h before a dive suppressed bubble formation and prevented death, with no effect at any other time (48, 10, 5 and 0.5 h prior to the dive). Pre-dive activities have not been considered to influence the growth of bubbles and thus the risk of serious DCS. The present novel findings of a protective effect against bubble formation and death by appropriately timed exercise and an NO-releasing agent may form the basis of a new approach to preventing serious decompression sickness.

  11. Digital Microfluidics with Bubble Manipulations by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Shih-Kang Fan

    2012-03-01

    Full Text Available This paper presents basic bubble manipulations, including transporting, splitting, and merging, by dielectrophoresis (DEP in an oil environment. In our presented method, bubbles are placed between parallel plates in an oil medium of a low vapor pressure, which eliminates the possibility of changing the gaseous composition of the bubble caused by evaporation of the medium. DEP has been previously investigated to actuate dielectric droplets and is adopted here to drive the oil environment as well as the immersed bubbles between parallel plates. In our experiment, air bubbles of 0.3 ml were successfully transported in a 20 cSt silicone oil medium between a 75 mm-high parallel plate gap. In addition, 0.6 ml air bubbles were successfully split into two 0.3 ml air bubbles, and then merged again by DEP. These successful manipulations make digital gaseous lab-on-a-chip a reality.

  12. The contribution of bubble chambers to European scientific collaboration

    International Nuclear Information System (INIS)

    We tend to take the organization of bubble chamber experiments for granted today. Yet the schemes put in practice in the early 1960s were innovative at the time. They required breaking with existing habits of mind which were dominated by the so-called truck team system for doing experiments. They required the formulation of new procedures for both the definition and the implementation of an experimental programme, procedures which were to serve as a ''model'' for the organization of experimental work at CERN with other techniques. And they stimulated an impressive growth of physics activities in universities and national institutes in the CERN member states. In short, bubble chamber physics was the avenue through which multinational, multi-institutional collaborative work was initiated at CERN, the means whereby the laboratory fulfilled its mission to rebuild physics on a European scale. If the bubble chamber physicists achieved these objectives it is not simply because they had already developed a tradition of collaboration. It was also because their technique imposed certain forms of organization on them. It was this combination of historical, technical and political factors which ensured that bubble chamber physics played the key role that it did in the early history of CERN and indeed of European high-energy physics as a whole. (orig./HB)

  13. Nonmigrating tidal signature in the distributions of equatorial plasma bubbles and prereversal enhancement

    Science.gov (United States)

    Kil, Hyosub; Kwak, Young-Sil; Lee, Woo Kyoung; Krall, Jonathan; Huba, Joseph D.; Oh, Seung-Jun

    2015-04-01

    Some wave-like features in the longitudinal distribution of equatorial plasma bubbles understood in association with diurnal eastward propagating zonal wave number 3 nonmigrating tide (DE3) in the dayside. However, whether or not the wave features are the daytime DE3 signature has not yet been rigorously investigated. This study investigates (1) the existence of the DE3 signature in the longitudinal distribution of bubbles by analyzing the first Republic of China (ROCSAT-1) satellite data acquired in 2000-2002 and (2) the role of daytime DE3 in the creation of bubbles by examining the linear growth rate of the generalized Rayleigh-Taylor (R-T) instability. The linear growth rate is derived from the "Sami2 is Another Model of the Ionosphere" model simulation results. In the longitudinal distribution of bubbles derived from ROCSAT-1 observations, the wave number 4 component, the representative characteristic of DE3, is a weak feature. In addition, the amplitude and phase of the wave number 4 component do not show a consistent behavior in comparison with those of DE3. Our numerical calculation results show that the linear growth rate of the R-T instability is not sensitive to the variation of the daytime vertical plasma drift. These results indicate that the DE3 signature in the occurrence rate of bubbles is not obvious and the effect of daytime DE3 on the creation of bubbles is negligible.

  14. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    Science.gov (United States)

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. PMID:26964960

  15. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    Science.gov (United States)

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.

  16. Developed ‘laminar’ bubbly flow with non-uniform bubble sizes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bubbles with different sizes have different dynamic and kineticbehavior in a two-phase bubbly flow. A common two-fluid model based on the uniform bubble size assumption is not suitable for a bubbly flow with non-uniform bubble sizes. To deal with non-uniform bubbly flows, a multi-fluid model is established, with which bubbles are divided into several groups according to their sizes and a set of basic equations is derived for each group of bubbles with almost the same size. Through analyzing the bubble-bubble and bubble-pipe wall interactions, two new constitutive laws for the wall-force and pressure difference between the liquid phase and interface are developed to close the averaged basic equations. The respective phase distributions for each group of bubbles measured by a specially designed three-dimensional photographic method are used to check the model. Comparison between model-predicted values and experimental data shows that the model can describe laminar bubbly flow with non-uniform bubble sizes.

  17. Bubble–bubble interaction effects on dynamics of multiple bubbles in a vortical flow field

    Directory of Open Access Journals (Sweden)

    Bing Cui

    2016-02-01

    Full Text Available Bubble–bubble interactions play important roles in the dynamic behaviours of multiple bubbles or bubble clouds in a vortical flow field. Based on the Rayleigh–Plesset equation and the modified Maxey–Riley equation of a single bubble, bubble–bubble interaction terms are derived and introduced for multiple bubbles. Thus, both the Rayleigh–Plesset and modified Maxey–Riley equations are improved by considering bubble–bubble interactions and then applied for the multiple bubbles entrainment into a stationary Gaussian vortex. Runge–Kutta fourth-order scheme is adopted to solve the coupled dynamic and kinematic equations and the convergence study has been conducted. Numerical result has also been compared and validated with the published experimental data. On this basis, the oscillation, trajectory and effects of different parameters of double-bubble and multi-bubble entrainment into Gaussian vortex have been studied and the results have been compared with those of the cases without bubble–bubble interactions. It indicates that bubble–bubble interactions influence the amplitudes and periods of bubble oscillations severely, but have small effects on bubble trajectories.

  18. Conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2015-01-01

    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...

  19. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years......, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  20. Bubbling the False Vacuum Away

    CERN Document Server

    Gleiser, Marcelo; Thorarinson, Joel

    2007-01-01

    We investigate the role of nonperturbative, bubble-like inhomogeneities on the decay rate of false-vacuum states in two and three-dimensional scalar field theories. The inhomogeneities are induced by setting up large-amplitude oscillations of the field about the false vacuum as, for example, after a rapid quench or in certain models of cosmological inflation. We show that, for a wide range of parameters, the presence of large-amplitude bubble-like inhomogeneities greatly accelerates the decay rate, changing it from the well-known exponential suppression of homogeneous nucleation to a power-law suppression. It is argued that this fast, power-law vacuum decay -- known as resonant nucleation -- is promoted by the presence of long-lived oscillons among the nonperturbative fluctuations about the false vacuum. A phase diagram is obtained distinguishing three possible mechanisms for vacuum decay: homogeneous nucleation, resonant nucleation, and cross-over. Possible applications are briefly discussed.

  1. Bubble entrapment through topological change

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2010-05-03

    When a viscousdrop impacts onto a solid surface, it entraps a myriad of microbubbles at the interface between liquid and solid. We present direct high-speed video observations of this entrapment. For viscousdrops, the tip of the spreading lamella is separated from the surface and levitated on a cushion of air. We show that the primary mechanism for the bubble entrapment is contact between this precursor sheet of liquid with the solid and not air pulled directly through cusps in the contact line. The sheet makes contact with the solid surface,forming a wetted patch, which grows in size, but only entraps a bubble when it meets the advancing contact line. The leading front of this wet patch can also lead to the localized thinning and puncturing of the liquid film producing strong splashing of droplets.

  2. Bubble-induced cave collapse.

    Directory of Open Access Journals (Sweden)

    Lakshika Girihagama

    Full Text Available Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m. Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section, with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet, and the bubbles were produced using a syringe located at the cave floor.

  3. BEBC Big European Bubble Chamber

    CERN Multimedia

    1974-01-01

    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  4. Soap bubbles in paintings: Art and science

    Science.gov (United States)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  5. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    Science.gov (United States)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  6. 'Bubble chamber model' of fast atom bombardment induced processes.

    Science.gov (United States)

    Kosevich, Marina V; Shelkovsky, Vadim S; Boryak, Oleg A; Orlov, Vadim V

    2003-01-01

    which is not destructive for biomolecules. Another important feature of the model is that the timescale of bubble growth is no longer limited by the relaxation time of the excited zone ( approximately 10(-12) s), but rather resembles the timescale characteristic of common boiling, sufficient for multiple interactions of gas molecules and formation of clusters. Further, when the bubbles burst, microdroplets are released, which implies that FAB processes are similar to those in spraying techniques. Thus, two processes contribute to the ion production, namely, release of volatile solvent clusters from bubbles and of non-volatile solute from sputtered droplets. This view reconciles contradictory views on the dominance of either gas-phase or liquid-phase effects in FAB. Some other effects, such as suppression of all other ions by surface-active compounds, are consistent with the suggested model.

  7. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    Directory of Open Access Journals (Sweden)

    S. Greene

    2014-07-01

    Full Text Available Microbial methane (CH4 ebullition (bubbling from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw lake in interior Alaska. We find that summertime ebullition dominates annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.

  8. Experimental Investigation of Rising Gas Bubble Characteristics from a Vertical Tube under CCFL Condition

    Directory of Open Access Journals (Sweden)

    Kunihito Matsumura

    2012-01-01

    Full Text Available This paper describes an experimental study of gas/liquid countercurrent flow in a vertical circular tube. CCFL experiments were carried out with three different water levels in the upper plenum, two different tube diameters. Measurements were made for liquid and gas flow rates, time variations of pressure at locations of the upper entry of the tube and lower plenum. Visual observations were also conducted to investigate the relationship between rising gas bubble characteristics and time variation of gas pressure at the upper entry of the tube. The results indicate that one bubble formation cycle (e.g., bubble growth, expansion, and detachment into the water pool corresponds to one pressure fluctuation cycle. For the 20 mm diameter tube, it was confirmed that there was a characteristic waiting time between bubble cycles in which no bubble was formed at the upper entry of the tube. The waiting time is a favorable time for a liquid introduction into the tube from the upper plenum. The bubble volumes are compared with existing bubble formation correlations.

  9. Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams

    Science.gov (United States)

    Yuan, Jianyu; Li, Yanxiang; Wang, Ningzhen; Cheng, Ying; Chen, Xiang

    2016-06-01

    The bubble generation process in conditioned A356 alloy melt through submerged spiry orifices with a wide diameter range (from 0.07 to 1.0 mm) is investigated in order to prepare aluminum foams with fine pores. The gas flow rate and chamber pressure relationship for each orifice is first determined when blowing gas in atmospheric environment. The effects of chamber pressure ( P c) and orifice diameter ( D o) on bubble size are then analyzed separately when blowing gas in melt. A three-dimensional fitting curve is obtained illustrating both the influences of orifice diameter and chamber pressure on bubble size based on the experimental data. It is found that the bubble size has a V-shaped relationship with orifice diameter and chamber pressure neighboring the optimized parameter ( D o = 0.25 mm, P c = 0.4 MPa). The bubble generation mechanism is proposed based on the Rayleigh-Plesset equation. It is found that the bubbles will not be generated until a threshold pressure difference is reached. The threshold pressure difference is dependent on the orifice diameter, which determines the time span of pre-formation stage and bubble growth stage.

  10. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.

    Science.gov (United States)

    Diemand, Jürg; Angélil, Raymond; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-11-01

    We present results from direct, large-scale molecular dynamics simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones atoms and cover up to 56 million time steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions; only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucleation simulations. The critical bubbles sizes derived with the nucleation theorem agree well with the CNT predictions at all temperatures. Local hot spots reported in the literature are not seen: Regions where a bubble nucleation event will occur are not above the average temperature, and no correlation of temperature fluctuations with subsequent bubble formation is seen.

  11. Suppression of shocked-bubble expansion due to tissue confinement with application to shock-wave lithotripsy.

    Science.gov (United States)

    Freund, Jonathan B

    2008-05-01

    Estimates are made of the effect of tissue confinement on the response of small bubbles subjected to lithotriptor shock pressures. To do this the Rayleigh-Plesset equation, which governs the dynamics of spherical bubbles, is generalized to treat a bubble in a liquid region (blood), which is in turn encased within an elastic membrane (like a vessel's basement membrane), beyond which a Voigt viscoelastic material models the exterior tissue. Material properties are estimated from a range of measurements available for kidneys and similar soft tissues. Special attention is given to the constitutive modeling of the basement membranes because of their expected importance due to their proximity to the bubble and their toughness. It is found that the highest expected values for the elasticity of the membrane and surrounding tissue are insufficient to suppress bubble growth. The reduced confinement of a cylindrical vessel should not alter this conclusion. Tissue viscosities taken from ultrasound measurements suppress bubble growth somewhat, though not to a degree expected to resist injury. However, the higher reported viscosities measured by other means, which are arguably more relevant to the deformations caused by growing bubbles, do indeed significantly suppress bubble expansion.

  12. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  13. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  14. Manipulating bubbles with secondary Bjerknes forces

    Energy Technology Data Exchange (ETDEWEB)

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  15. Tube erosion in bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.K. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center; Stallings, J.W. [Electric Power Research Inst., Palo Alto, CA (United States)

    1991-12-31

    This paper reports on experimental and theoretical studies that were preformed of the interaction between bubbles and tubes and tube erosion in fluidized beds. The results are applicable to the erosion of horizontal tubes in the bottom row of a tube bundle in a bubbling bed. Cold model experimental data show that erosion is caused by the impact of bubble wakes on the tubes, with the rate of erosion increasing with the velocity of wake impact with the particle size. Wake impacts resulting from the vertical coalescence of pairs of bubbles directly beneath the tube result in particularly high rates of erosion damage. Theoretical results from a computer simulation of bubbling and erosion show very strong effects of the bed geometry and bubbling conditions on computed rates of erosion. These results show, for example, that the rate of erosion can be very sensitive to the vertical location of the bottom row of tubes with respect to the distributor.

  16. Direct Numerical Simulation of the Lift Force in Bubbly Flows

    NARCIS (Netherlands)

    Dijkhuizen, Wouter; Sint Annaland, van Martin; Kuipers, Hans

    2008-01-01

    It is well-known that the lift force is responsible for the segregation of small and large bubbles encountered in bubbly flows through pipes and bubble columns: in the case of up flow small spherical bubbles move to the wall, while larger deformed bubbles move to the core region. Depending on the fl

  17. Electric field effects on the dynamics of bubble detachment from an inclined surface

    Science.gov (United States)

    Di Marco, P.; Morganti, N.; Saccone, G.

    2015-11-01

    An experimental apparatus to study bubble detachment from an inclined surface under the action of electric forces is described. It consists of a container filled with FC72 at room temperature and pressure where a train of gas bubbles is injected from an orifice. An electrostatic field can be imposed around the bubble, while the cell can be tilted from 0 to 90°. It is possible to study interface growth with the aid of high-speed cinematography. Since the interface is asymmetrical, a mirror system allowed to acquire, in the same frame, two images at 90° of the bubble. Different inclinations, injection rates and voltages were tested in order to couple the effects of shear gravity and electric field. Curvature and contact angles have been derived with appropriate interpolation methods of the profile. Force balances on the bubble were checked, finding an electric force, which, at first pulls the bubbles from the orifice, then pushes it against the surface. The motion of the center of gravity confirms this behaviour. A power balance has been developed to determine the energy contributions, revealing that surface growth incorporates both the effects of inlet power and electric field.

  18. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    Science.gov (United States)

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse.

  19. Kinetics of hydrate formation using gas bubble suspended in water

    Institute of Scientific and Technical Information of China (English)

    马昌峰; 陈光进; 郭天民

    2002-01-01

    An innovative experimental technique, which was devised to study the effects of temperature and pressure on the rate of hydrate formation at the surface of a gas bubble suspended in a stagnant water phase, was adapted in this work. Under such conditions, the hydrate-growth process is free from dynamic mass transfer factors. The rate of hydrate formation of methane and carbon dioxide has been systematically studied. The measured hydrate-growth data were correlated by using the molar Gibbs free energy as driving force. In the course of the experiments, some interesting surface phenomena were observed.

  20. Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved interface

    CERN Document Server

    Schiffbauer, Jarrod

    2016-01-01

    Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension--hence Laplace pressure--is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated.

  1. Sound synchronization of bubble trains in a viscous fluid: experiment and modeling.

    Science.gov (United States)

    Pereira, Felipe Augusto Cardoso; Baptista, Murilo da Silva; Sartorelli, José Carlos

    2014-10-01

    We investigate the dynamics of formation of air bubbles expelled from a nozzle immersed in a viscous fluid under the influence of sound waves. We have obtained bifurcation diagrams by measuring the time between successive bubbles, having the air flow (Q) as a parameter control for many values of the sound wave amplitude (A), the height (H) of the solution above the top of the nozzle, and three values of the sound frequency (fs). Our parameter spaces (Q,A) revealed a scenario for the onset of synchronization dominated by Arnold tongues (frequency locking) which gives place to chaotic phase synchronization for sufficiently large A. The experimental results were accurately reproduced by numerical simulations of a model combining a simple bubble growth model for the bubble train and a coupling term with the sound wave added to the equilibrium pressure.

  2. Direct Simulations of Homogeneous Bubble Nucleation: Agreement with CNT and no Local Hot Spots

    CERN Document Server

    Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-01-01

    We present results from direct, large-scale molecular dynamics (MD) simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones (LJ) atoms and cover up to 56 million time-steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical (NVE) simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions - only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucle...

  3. The economy of "soap bubbles" (continued)

    OpenAIRE

    O. Baranovskyi

    2009-01-01

    The author defines the essence of economic "bubbles". He reveals the peculiar features of "soap bubbles" on the markets of shares and consumer credits, in crediting realty purchases, granting credits to medium-size and small business and on the markets of realty and derivatives, as well as "soap bubbles" as a consequence of overconcentration of market, credit, Interest, and exchange risks and the liquidity risks and analyses their evolution. The article considers the specificity of economic (...

  4. Detailed Jet Dynamics in a Collapsing Bubble

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  5. Remote sensing of bubble clouds in seawater

    OpenAIRE

    Flatau, Piotr J.; Flatau, Maria; Zaneveld, J. R. V.; Mobley, Curtis D.

    2000-01-01

    We report on the influence of submerged bubble clouds on the remote sensing properties of water. We show that the optical effect of bubbles on radiative transfer and on the estimate of the ocean color is significant. We present a global map of the volume fraction of air in water derived from daily wind speed data. This map, together with the parameterization of the microphysical properties, shows the possible significance of bubble clouds on the albedo of incoming solar energy

  6. Bubble Universes With Different Gravitational Constants

    OpenAIRE

    Takamizu, Yu-ichi; Maeda, Kei-ichi

    2015-01-01

    We argue a scenario motivated by the context of string landscape, where our universe is produced by a new vacuum bubble embedded in an old bubble and these bubble universes have not only different cosmological constants, but also their own different gravitational constants. We study these effects on the primordial curvature perturbations. In order to construct a model of varying gravitational constants, we use the Jordan-Brans-Dicke (JBD) theory where different expectation values of scalar fi...

  7. Bremsstrahlung Radiation At a Vacuum Bubble Wall

    CERN Document Server

    Lee, Jae-Weon; Lee, Chul H; Jang, Ji-ho

    2007-01-01

    When charged particles collide with a vacuum bubble, they can radiate strong electromagnetic waves due to rapid deceleration. Owing to the energy loss of the particles by this bremsstrahlung radiation, there is a non-negligible damping pressure acting on the bubble wall even when thermal equilibrium is maintained. In the non-relativistic region, this pressure is proportional to the velocity of the wall and could have influenced the bubble dynamics in the early universe.

  8. A signature of anisotropic bubble collisions

    OpenAIRE

    Salem, Michael P.

    2010-01-01

    Our universe may have formed via bubble nucleation in an eternally-inflating background. Furthermore, the background may have a compact dimension---the modulus of which tunnels out of a metastable minimum during bubble nucleation---which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions aff...

  9. Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures.

    Science.gov (United States)

    Rosselló, Juan Manuel; Dellavale, Damián; Bonetto, Fabián José

    2013-09-01

    In this study we report several experimental and numerical results on the influence of static pressure (P_{0}) over the main parameters in single bubble sonoluminescence (SBSL), using a sulfuric acid aqueous solution (SA) with low concentrations of argon gas dissolved. Bifrequency driving was used in the experiments to enhance spatial stability of the bubbles. The experimental results were compared with simulations provided by a numerical code that models the radial dynamics of the bubbles. The results showed that an increase on the static pressure of the system shifts the Bjerknes instability threshold, allowing the bubble to access higher acoustic pressures (P_{Ac}^{}). Furthermore, a decrease in the measured ambient radius R_{0} and the calculated relative gas concentration c_{∞}/c_{0} were observed. A notorious increment in the bubble collapse violence and energy focusing for P_{0} above 1 bar was achieved. These were mainly indicated by the growth of the bubble expansion ratio (R_{max}/R_{0}), the bubble mechanical energy density, and the maximum bubble wall velocity dR/dt. In agreement with the previous statement, the maximum temperature during the bubble collapse predicted by the model is augmented as well. The use of different harmonics in the ultrasound pressure field regarding energy focusing is also discussed. Finally, we analyzed the stability regions of the R_{0}-P_{Ac}^{} parameter space via numerical predictions for P_{0} above the measured, identifying the shape instabilities as the main limiting agent to obtain further energy concentration in SA systems at high static pressures.

  10. Gas Holdups of Small and Large Bubbles in a Large-scale Bubble Column with Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-bo; YANG Suo-he; ZHANG Tong-wang; TONG Ze-min

    2004-01-01

    Gas holdups of large bubbles and small bubbles were measured by means of dynamic gas disengagement approach in the pressured bubble column with a diameter of 0. 3 m and a height of 6. 6 m. The effects of superficial gas velocity, liquid surface tension, liquid viscosity andsystem pressure on gas holdups of small bubbles and large bubbles were investigated. The holdup of large bubbles increases and the holdup of small bubbles decreases with an increase of liquid viscosity. Meanwhile, the holdup of large bubbles decreases with increasing the system pressure. A correlation for the holdup of small bubbles was obtained from the experimental data.

  11. Spectroscopic characteristic of conical bubble luminescence

    Institute of Scientific and Technical Information of China (English)

    Chen Qi-Dai; Fu Li-Min; Ai Xi-Cheng; Zhang Jian-Ping; Wang Long

    2005-01-01

    The conical bubble sonoluminescence (CBSL) from the collapse of the bubble was observed in an improved Utube apparatus. The emitted light energy of a single CBSL flash was measured to be ~ 1.4mJ. The pulse width was about 100μs. The spectra of luminescence were continuum superimposed with the spectral bands from the excitedstate C2, CN and CH. The CBSL provides a link between the light emission of the single-bubble and the multi-bubble sonoluminescence (SBSL and MBSL).

  12. Bubble burst as jamming phase transition

    CERN Document Server

    Nishinari, Katsuhiro; Saito, Yukiko Umeno; Watanabe, Tsutomu

    2010-01-01

    Recently research on bubble and its burst attract much interest of researchers in various field such as economics and physics. Economists have been regarding bubble as a disorder in prices. However, this research strategy has overlooked an importance of the volume of transactions. In this paper, we have proposed a bubble burst model by focusing the transactions incorporating a traffic model that represents spontaneous traffic jam. We find that the phenomenon of bubble burst shares many similar properties with traffic jam formation by comparing data taken from US housing market. Our result suggests that the transaction could be a driving force of bursting phenomenon.

  13. Bubble formation in additive manufacturing of glass

    Science.gov (United States)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  14. Propagation and Dissolution of CO2 bubbles in Algae Photo-bioreactors

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    Research grade photo-bioreactors are used to study and cultivate different algal species for biofuel production. In an attempt to study the growth properties of a local algal species in rain water, a custom made bioreactor is designed and being tested. Bio-algae consumes dissolved CO2 in water and during its growth cycle, the consumed CO2 must be replenished. Conventional methods use supply of air or CO2 bubbles in the growth medium. The propagation and dissolution of the bubbles, however, are strongly dependent on the design parameters of the photo-bioreactor. In this paper, we discuss the numerical modeling of the air and CO2 bubble propagation and dissolution in the photo-bioreactor. Using the results the bioreactor design will be modified for maximum productivity.

  15. Photon Bubbles in the Circumstellar Envelopes of Young Massive Stars

    CERN Document Server

    Turner, N J; Yorke, H W

    2007-01-01

    We show that the optically-thick dusty envelopes surrounding young high-mass stars are subject to the photon bubble instability. The infrared radiation passing through the envelope amplifies magnetosonic disturbances, with growth rates in our local numerical radiation MHD calculations that are consistent with a linear analysis. Modes with wavelengths comparable to the gas pressure scale height grow by more than two orders of magnitude in a thousand years, reaching non-linear amplitudes within the envelope lifetime. If the magnetic pressure in the envelope exceeds the gas pressure, the instability develops into trains of propagating shocks. Radiation escapes readily through the low-density material between the shocks, enabling accretion to continue despite the Eddington limit imposed by the dust opacity. The supersonic motions arising from the photon bubble instability can help explain the large velocity dispersions of hot molecular cores, while conditions in the shocked gas are suitable for maser emission. We...

  16. Interaction of a bubble and a bubble cluster in an ultrasonic field

    Institute of Scientific and Technical Information of China (English)

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation,we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster.The behavior of the bubbles is observed in coupled and uncoupled states.The oscillation of bubbles inside the cluster is in a coupled state.The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density,initial radius,distance,driving frequency,and amplitude of ultrasound.However,if a bubble approaches a bubble cluster of the same initial radii,coupled oscillation would be induced and a repulsive force is evoked,which may be the reason why the bubble cluster can exist steadily.With the increment of the number density of the bubble cluster,a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles.It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound.

  17. Energetic molding of chiral magnetic bubbles

    Science.gov (United States)

    Lau, Derek; Sundar, Vignesh; Zhu, Jian-Gang; Sokalski, Vincent

    2016-08-01

    Topologically protected magnetic structures such as skyrmions and domain walls (DWs) have drawn a great deal of attention recently due to their thermal stability and potential for manipulation by spin current, which is the result of chiral magnetic configurations induced by the interfacial Dzyaloshinskii-Moriya interaction (DMI). Designing devices that incorporate DMI necessitates a thorough understanding of how the interaction presents and can be measured. One approach is to measure growth asymmetry of chiral bubble domains in perpendicularly magnetized thin films, which has been described elsewhere by thermally activated DW motion. Here, we demonstrate that the anisotropic angular dependence of DW energy originating from the DMI is critical to understanding this behavior. Domains in Co/Ni multilayers are observed to preferentially grow into nonelliptical teardrop shapes, which vary with the magnitude of an applied in-plane field. We model the domain profile using energetic calculations of equilibrium shape via the Wulff construction, which serves as a new paradigm for describing chiral domains that explains both the teardrop shape and the reversal of growth symmetry at large fields.

  18. Colorful Demos with a Long-Lasting Soap Bubble.

    Science.gov (United States)

    Behroozi, F.; Olson, D. W.

    1994-01-01

    Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)

  19. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    NARCIS (Netherlands)

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing fluidize

  20. Biosynthesis within a bubble architecture

    Science.gov (United States)

    Choi, Hyo-Jick; Montemagno, Carlo D.

    2006-05-01

    Sub-cellular compartmentalization is critical to life; it minimizes diffusion effects and enables locally high concentrations of biochemicals for improved reaction kinetics. We demonstrate an example of in vitro biochemical synthesis inside the water channels of foam using engineered artificial organelles (bacteriorhodopsin and F0F1-ATP synthase reconstituted polymer vesicles) as functional units to produce ATP. These results show that the interstitial space of bubbles serves as a metaphor for sub-cellular structure, providing a new platform for both investigating cellular metabolism and the engineering of biofunctional materials and systems.

  1. Stationary bubbles: information loss paradox?

    CERN Document Server

    Domènech, Guillem

    2016-01-01

    The main purpose of this work is to build classically stationary bubbles, within the thin-shell formalism, which are unstable under quantum effects; they either collapse into a black hole or expand. Thus, the final state can be thought of a superposition of geometries. We point out that, from a quantum mechanical point of view, there is no issue with a loss of information in such configuration. A classical observer sees a definite geometry and, hence, finds an effective loss of information. Although it does not cover all possible cases, we emphasise the role of semi-classical gravitational effects, mediated by instatons, in alleviating/solving the information loss paradox.

  2. Giant bubble pinch-off

    OpenAIRE

    Bergmann, Raymond; Meer, Van Der; Stijnman, Mark; Sandtke, Marijn; Prosperetti, Andrea; Lohse, Detlef

    2006-01-01

    Self-similarity has been the paradigmatic picture for the pinch-off of a drop. Here we will show through high-speed imaging and boundary integral simulations that the inverse problem, the pinch-off of an air bubble in water, is not self-similar in a strict sense: A disk is quickly pulled through a water surface, leading to a giant, cylindrical void which after collapse creates an upward and a downward jet. Only in the limiting case of large Froude numbers does the purely inertial scaling h(-l...

  3. Magma mixing enhanced by bubble segregation

    Directory of Open Access Journals (Sweden)

    S. Wiesmaier

    2015-04-01

    Full Text Available That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble

  4. Differential criterion of a bubble collapse in viscous liquids

    CERN Document Server

    Bogoyavlenskiy, V A

    1999-01-01

    The present work is devoted to a model of bubble collapse in a Newtonian viscous liquid caused by an initial bubble wall motion. The obtained bubble dynamics described by an analytic solution significantly depends on the liquid and bubble parameters. The theory gives two types of bubble behavior: collapse and viscous damping. This results in a general collapse condition proposed as the sufficient differential criterion. The suggested criterion is discussed and successfully applied to the analysis of the void and gas bubble collapses.

  5. Modified Bubble Core Fields and Bubble Shape in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    WU Hai-Cheng; XIE Bai-Song

    2013-01-01

    Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically.It is found that the slope of transverse fields are reduced significantly,however,the slope of longitudinal electric field,which plays a key role on electrons acceleration in bubble,changes little.Moreover a modified longitudinal compressed bubble shape leads to a shorter dephasing distance which makes the electrons acceleration energy reduced to some extent.As a comparison we perform particle-in-cell simulations whose results are consistent with that of our theoretical consideration.

  6. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  7. Structure of nanoscale gas bubbles in metals

    Energy Technology Data Exchange (ETDEWEB)

    Caro, A., E-mail: caro@lanl.gov; Schwen, D.; Martinez, E. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  8. Videotaping the Lifespan of a Soap Bubble.

    Science.gov (United States)

    Ramme, Goran

    1995-01-01

    Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)

  9. Analytical solutions for problems of bubble dynamics

    CERN Document Server

    Kudryashov, Nikolai A

    2016-01-01

    Recently, an asymptotic solution of the Rayleigh equation for an empty bubble in $N$ dimensions has been obtained. Here we give the closed--from general analytical solution of this equation. We also find the general solution of the Rayleigh equation in $N$ dimensions for the case of a gas--filled hyperspherical bubble. In addition, we include a surface tension into consideration.

  10. The Physics of Foams, Droplets and Bubbles

    Science.gov (United States)

    Sarker, Dipak K.

    2013-01-01

    Foams or bubble dispersions are common to milkshakes, bread, champagne froth, shaving mousse, shampoo, crude oil extraction systems, upholstery packing and bubble wrap, whereas the term droplet is often synonymous with either a small drop of water or a drop of oil--a type of coarse dispersion. The latter are seen in butter and milk, household…

  11. Probing luminescence from nonspherical bubble collapse

    NARCIS (Netherlands)

    Ohl, Claus-Dieter

    2002-01-01

    The luminescence from single laser produced cavitation bubbles for varying degrees of asphericity is investigated temporally, spatially, and spectrally. The degree of asphericity is controlled with an adjustable rigid boundary near the bubble. Temporally, single and multiple light emission events ha

  12. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    Sourabh S Diwan; O N Ramesh

    2007-02-01

    This work is an experimental investigation of the dynamics and control of the laminar separation bubbles which are typically present on the suction surface of an aerofoil at a large angle of attack. A separation bubble is produced on the upper surface of a flat plate by appropriately contouring the top wall of the wind tunnel. First, a basic (unforced) separation bubble is obtained to set a benchmark for further experiments. Parametric study is done where the reference velocity is decreased to quantify its effect on the aspect ratio of the bubble. It is found that with decrease in Reynolds number, the height of the bubble increases at a greater rate than the length. This feature could be useful in characterising separation bubbles especially from the point of view of low Reynolds number aerofoil design. Artificial disturbance is introduced at two different initial amplitudes (infinitesimal and finite) upstream of separation location and hotwire anemometry is used to trace the wave packet as it is advected downstream. The evolution of wave packets is seen to take place in two distinct stages. Finite amplitude forcing causes periodic quenching of the bubble. Interestingly, even an infinitesimally small forcing is seen to modify and thereby control the separation bubble.

  13. Cavitation inception from bubble nuclei.

    Science.gov (United States)

    Mørch, K A

    2015-10-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  14. Giant bubble pinch-off

    CERN Document Server

    Bergmann, R; Prosperetti, A; Sandtke, M; Stijnman, M; Van der Meer, D; Bergmann, Raymond; Lohse, Detlef; Meer, Devaraj van der; Prosperetti, Andrea; Sandtke, Marijn; Stijnman, Mark

    2006-01-01

    Self-similarity has been the paradigmatic picture for the pinch-off of a drop. Here we will show through high-speed imaging and boundary integral simulations that the inverse problem, the pinch-off of an air bubble in water, is not self-similar in a strict sense: A disk is quickly pulled through a water surface, leading to a giant, cylindrical void which after collapse creates an upward and a downward jet. Only in the limiting case of large Froude number the neck radius $h$ scales as $h(-\\log h)^{1/4} \\propto \\tau^{1/2}$, the purely inertial scaling. For any finite Froude number the collapse is slower, and a second length-scale, the curvature of the void, comes into play. Both length-scales are found to exhibit power-law scaling in time, but with different exponents depending on the Froude number, signaling the non-universality of the bubble pinch-off.

  15. The impact of anisotropy from finite light traveltime on detecting ionized bubbles in redshifted 21-cm maps

    Science.gov (United States)

    Majumdar, Suman; Bharadwaj, Somnath; Datta, Kanan K.; Choudhury, T. Roy

    2011-05-01

    The detection of ionized bubbles around quasars in redshifted 21-cm maps is possibly one of the most direct future probes of reionization. We consider two models for the growth of spherical ionized bubbles to study the apparent shapes of the bubbles in redshifted 21-cm maps, taking into account the finite light traveltime (FLTT) across the bubble. In both models, the bubble has a period of rapid growth beyond which its radius either saturates or grows slowly. We find that the FLTT, whose effect is particularly pronounced for large bubbles, causes the bubble’s image to continue to grow well after its actual growth is over. There are two distinct FLTT distortions in the bubble’s image: (i) its apparent centre is shifted along the line of sight (LOS) towards the observer from the quasar and (ii) it is anisotropic along the LOS. The bubble initially appears elongated along the LOS. This is reversed in the later stages of growth where the bubble appears compressed. The FLTT distortions are expected to have an impact on matched filter bubble detection where it is most convenient to use a spherical template for the filter. We find that the best matched spherical filter gives a reasonably good estimate of the size and the shift in the centre of the anisotropic image. The mismatch between the spherical filter and the anisotropic image causes a degradation in the signal-to-noise ratio relative to that of a spherical bubble. The degradation is in the range 10-20 per cent during the period of rapid growth when the image appears elongated and is less than 10 per cent in the later stages when the image appears compressed. We conclude that a spherical filter is adequate for bubble detection. The FLTT distortions do not affect the lower limits for bubble detection with 1000 h of GMRT observations. The smallest spherical filter for which a detection is possible has comoving radii 24 and 33 Mpc for 3σ and 5σ detections, respectively, assuming a neutral fraction 0.6 at z˜ 8.

  16. Galactic Teamwork Makes Distant Bubbles

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey

  17. Magma mixing enhanced by bubble segregation

    Science.gov (United States)

    Wiesmaier, S.; Morgavi, D.; Renggli, C. J.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-08-01

    In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be

  18. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  19. Solar prominences: 'double, double ... boil and bubble'

    CERN Document Server

    Keppens, Rony

    2015-01-01

    Observations revealed rich dynamics within prominences, the cool 10,000 K, macroscopic (sizes of order 100 Mm) "clouds" in the million degree solar corona. Even quiescent prominences are continuously perturbed by hot, rising bubbles. Since prominence matter is hundredfold denser than coronal plasma, this bubbling is related to Rayleigh-Taylor instabilities. Here we report on true macroscopic simulations well into this bubbling phase, adopting a magnetohydrodynamic description from chromospheric layers up to 30 Mm height. Our virtual prominences rapidly establish fully non-linear (magneto)convective motions where hot bubbles interplay with falling pillars, with dynamical details including upwelling pillars forming within bubbles. Our simulations show impacting Rayleigh-Taylor fingers reflecting on transition region plasma, ensuring that cool, dense chromospheric material gets mixed with prominence matter up to very large heights. This offers an explanation for the return mass cycle mystery for prominence mater...

  20. Bubble Universes With Different Gravitational Constants

    CERN Document Server

    Takamizu, Yu-ichi

    2015-01-01

    We argue a scenario motivated by the context of string landscape, where our universe is produced by a new vacuum bubble embedded in an old bubble and these bubble universes have not only different cosmological constants, but also their own different gravitational constants. We study these effects on the primordial curvature perturbations. In order to construct a model of varying gravitational constants, we use the Jordan-Brans-Dicke (JBD) theory where different expectation values of scalar fields produce difference of constants. In this system, we investigate the nucleation of bubble universe and dynamics of the wall separating two spacetimes. In particular, the primordial curvature perturbation on superhorizon scales can be affected by the wall trajectory as the boundary effect. We show the effect of gravitational constant in the exterior bubble universe can provide a peak like a bump feature at a large scale in a modulation of power spectrum.

  1. Primary Particles from different bubble generation techniques

    Science.gov (United States)

    Butcher, A. C.; King, S. M.; Rosenoern, T.; Nilsson, E. D.; Bilde, M.

    2011-12-01

    Sea spray aerosols (SSA) are of major interest to global climate models due to large uncertainty in their emissions and ability to form Cloud Condensation Nuclei (CCN). In general, SSA are produced from wind breaking waves that entrain air and cause bubble bursting on the ocean surface. Preliminary results are presented for bubble generation, bubble size distribution, and CCN activity for laboratory generated SSA. In this study, the major processes of bubble formation are examined with respect to particle emissions. It has been suggested that a plunging jet closely resembles breaking wave bubble entrainment processes and subsequent bubble size distributions (Fuentes, Coe et al. 2010). Figure 1 shows the different particle size distributions obtained from the various bubble generation techniques. In general, frits produce a higher concentration of particles with a stronger bimodal particle size distribution than the various jet configurations used. The experiments consist of a stainless steel cylinder closed at both ends with fittings for aerosol sampling, flow connections for the recirculating jet, and air supply. Bubble generation included a recirculating jet with 16 mm or 4 mm nozzles, a stainless steel frit, or a ceramic frit. The chemical composition of the particles produced via bubble bursting processes has been probed using particle CCN activity. The CCN activity of sodium chloride, artificial sea salt purchased from Tropic Marin, and laboratory grade artificial sea salt (Kester, Duedall et al. 1967) has been compared. Considering the the limits of the shape factor as rough error bars for sodium chloride and bubbled sea salt, the CCN activity of artificial sea salt, Tropic Marin sea salt, and sodium chloride are not significantly different. This work has been supported by the Carlsberg Foundation.

  2. Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions

    Science.gov (United States)

    Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.

    1988-01-01

    This paper will describe the experimental and analytical work that has been done to establish justification and feasibility for a Shuttle mid-deck experiment involving mass transfer between a gas bubble and a liquid. The experiment involves the observation and measurement of the dissolution of an isolated, immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble have been successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration has been accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model has been developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity. The results will yield information on transport under conditions of pure diffusion.

  3. Micro-bubble generated by laser irradiation on an individual carbon nanocoil

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yanming, E-mail: amandaming@mail.dlut.edu.cn [School of Physics and Optoelectronic Technology, DUT, Linggong Road, Dalian 116024 (China); Pan, Lujun, E-mail: lpan@dlut.edu.cn [School of Physics and Optoelectronic Technology, DUT, Linggong Road, Dalian 116024 (China); Liu, Yuli, E-mail: liuyuli2005@163.com [School of Physics and Optoelectronic Technology, DUT, Linggong Road, Dalian 116024 (China); Sun, Tao, E-mail: 332077309@qq.com [School of Energy and Power Engineering, DUT, Linggong Road, Dalian 116024 (China)

    2015-08-01

    Highlights: • We have investigated laser irradiated microbubbles which can be generated at fixed point on surface of an individual carbon nanocoil (CNC) immerged in deionized water. • The microbubble can be operated easily and flexibly. • Based on classical heat and mass transfer theories, the bubble growth data is in good agreement with the simplified model. - Abstract: We have investigated the micro-bubbles generated by laser induction on an individual carbon nanocoil (CNC) immerged in deionized water. The photon energy of the incident focused laser beam is absorbed by CNC and converted to thermal energy, which efficiently vaporizes the surrounding water, and subsequently a micro-bubble is generated at the laser location. The dynamics behavior of bubble generation, including its nucleation, expansion and steady-state, has been studied experimentally and theoretically. We have derived equations to analyze the expansion process of a bubble based on classical heat and mass transfer theories. The conclusion is in good agreement with the experiment. CNC, which acts as a realistic micro-bubble generator, can be operated easily and flexibly.

  4. Analysis of large two phase uranium dioxide bubble behavior in water and sodium pools

    International Nuclear Information System (INIS)

    An understanding of the behavior of large, two-phase UO2 bubbles is important in assessing the consequences of a hypothetical core disruptive accident in a fast reactor. The UVABUBL II computer program was written to study the dynamics and heat and mass transfer in large UO2 bubbles, and the code was used to analyze data from the underwater and undersodium FAST experiments conducted at Oak Ridge National Laboratory in which the behavior of UO2 bubbles under a wide variety of conditions was examined. Significant understanding of the phenomena that govern UO2 bubble behavior in both water and sodium was obtained by matching calculations of pressure, bubble size, and bubble growth and collapse rate to the experimental data. Heat and mass transfer included radiative heat losses and coolant entrainment. Larger heat transfer rates were calculated for the water tests with significant surface vaporization occurring. Because of the high thermal conductivity of sodium, no surface vaporization was calculated for the sodium tests. Entrainment was not found to be necessary for either the water or sodium tests, but calculations that included entrainment implied that it may be occurring. 38 references

  5. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content.

    Science.gov (United States)

    Roth, A E; Jones, C D; Durian, D J

    2013-04-01

    We report on the statistics of bubble size, topology, and shape and on their role in the coarsening dynamics for foams consisting of bubbles compressed between two parallel plates. The design of the sample cell permits control of the liquid content, through a constant pressure condition set by the height of the foam above a liquid reservoir. We find that in the scaling regime, all bubble distributions are independent not only of time, but also of liquid content. For coarsening, the average rate decreases with liquid content due to the blocking of gas diffusion by Plateau borders inflated with liquid; we achieve a factor of 4 reduction from the dry limit. By observing the growth rate of individual bubbles, we find that von Neumann's law becomes progressively violated with increasing wetness and decreasing bubble size. We successfully model this behavior by explicitly incorporating the border-blocking effect into the von Neumann argument. Two dimensionless bubble shape parameters naturally arise, one of which is primarily responsible for the violation of von Neumann's law for foams that are not perfectly dry.

  6. Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy).

    Science.gov (United States)

    Xu, Zhen; Hall, Timothy L; Fowlkes, J Brian; Cain, Charles A

    2007-07-01

    High intensity pulsed ultrasound can produce significant mechanical tissue fractionation with sharp boundaries ("histotripsy"). At a tissue-fluid interface, histotripsy produces clearly demarcated tissue erosion and the erosion efficiency depends on pulse parameters. Acoustic cavitation is believed to be the primary mechanism for the histotripsy process. To investigate the physical basis of the dependence of tissue erosion on pulse parameters, an optical method was used to monitor the effects of pulse parameters on the cavitating bubble cloud generated by histotripsy pulses at a tissue-water interface. The pulse parameters studied include pulse duration, peak rarefactional pressure, and pulse repetition frequency (PRF). Results show that the duration of growth and collapse (collapse cycle) of the bubble cloud increased with increasing pulse duration, peak rarefactional pressure, and PRF when the next pulse arrived after the collapse of the previous bubble cloud. When the PRF was too high such that the next pulse arrived before the collapse of the previous bubble cloud, only a portion of histotripsy pulses could effectively create and collapse the bubble cloud. The collapse cycle of the bubble cloud also increased with increasing gas concentration. These results may explain previous in vitro results on effects of pulse parameters on tissue erosion.

  7. Mobile access to the Internet: from personal bubble to satellites

    Science.gov (United States)

    Gerla, Mario

    2001-10-01

    Mobile, wireless access and networking has emerged in the last few years as one of the most important directions of Internet growth. The popularity of mobile, and, more generally, nomadic Internet access is due to many enabling factors including: (a) emergence of meaningful applications tailored to the individual on the move; (b) small form factor and long battery life; (c) efficient middleware designed to support mobility; and, (d) efficient wireless networking technologies. A key player in the mobile Internet access is the nomad, i.e. the individual equipped with various computing and I/O gadgets (cellular phone, earphones, GPS navigator, palm pilot, beeper, portable scanner, digital camera, etc.). These devices form his/her Personal Area Network or PAN or personal bubble. The connectivity within the bubble is wireless (using for example a low cost, low power wireless LAN such as Bluetooth). The bubble can expand and contract dynamically depending on needs. It may temporarily include sensors and actuators as the nomad walks into a new environment. In this paper, we identify the need for the interconnection of the PAN with other wireless networks in order to achieve costeffective mobile access to the Internet. We will overview some key networking technologies required to support the PAN (eg, Bluetooth). We will also discuss an emerging technology, Ad Hoc wireless networking which is the natural complement of the PAN in sparsely populated areas. Finally, we will identify the need for intelligent routers to assist the mobile user in the selection of the best Internet access strategy.

  8. Critical concentration for hydrogen bubble formation in metals.

    Science.gov (United States)

    Sun, Lu; Jin, Shuo; Zhou, Hong-Bo; Zhang, Ying; Zhang, Wenqing; Ueda, Y; Lee, H T; Lu, Guang-Hong

    2014-10-01

    Employing a thermodynamic model with previously calculated first-principle energetics as inputs, we determined the hydrogen (H) concentration at the interstitial and monovacancy as well as its dependence on temperature and pressure in tungsten and molybdenum. Based on this, we predicted the critical H concentration for H bubble formation at different temperatures. The critical concentration, defined as the value when the concentration of H at a certain mH-vacancy complex first became equal to that of H at the interstitial, was 24 ppm/7.3 GPa and 410 ppm/4.7 GPa at 600 K in tungsten and molybdenum in the case of a monovacancy. Beyond the critical H concentration, numerous H atoms accumulated in the monovacancy, leading to the formation and rapid growth of H-vacancy complexes, which was considered the preliminary stage of H bubble formation. We expect that the proposed approach will be generally used to determine the critical H concentration for H bubble formation in metals.

  9. Shock-induced collapse of a bubble inside a deformable vessel.

    Science.gov (United States)

    Coralic, Vedran; Colonius, Tim

    2013-07-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a (10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy.

  10. Effects of heterogeneous structure and diffusion permeability of body tissues on decompression gas bubble dynamics.

    Science.gov (United States)

    Nikolaev, V P

    2000-07-01

    To gain insight into the special nature of gas bubbles that may form in astronauts, aviators and divers, we developed a mathematical model which describes the following: 1) the dynamics of extravascular bubbles formed in intercellular cavities of a hypothetical tissue undergoing decompression; and 2) the dynamics of nitrogen tension in a thin layer of intercellular fluid and in a thick layer of cells surrounding the bubbles. This model is based on the assumption that, due to limited cellular membrane permeability for gas, a value of effective nitrogen diffusivity in the massive layer of cells in the radial direction is essentially lower compared to conventionally accepted values of nitrogen diffusivity in water and body tissues. Due to rather high nitrogen diffusivity in intercellular fluid, a bubble formed just at completion of fast one-stage reduction of ambient pressure almost instantly grows to the size determined by the initial volume of the intercellular cavity, surface tension of the fluid, the initial nitrogen tension in the tissue, and the level of final pressure. The rate of further bubble growth and maximum bubble size depend on comparatively low effective nitrogen diffusivity in the cell layer, the tissue perfusion rate, the initial nitrogen tension in the tissue, and the final ambient pressure. The tissue deformation pressure performs its conservative action on bubble dynamics only in a limited volume of tissue (at a high density of formed bubbles). Our model is completely consistent with the available data concerning the random latency times to the onset of decompression sickness (DCS) symptoms associated with hypobaric decompressions simulating extravehicular activity. We believe that this model could be used as a theoretical basis for development of more adequate methods for the DCS risk prediction.

  11. Growth

    Science.gov (United States)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  12. The concentration distribution around a growing gas bubble in a bio tissue under the effect of suction process.

    Science.gov (United States)

    Mohammadein, S A

    2014-07-01

    The concentration distribution around a growing nitrogen gas bubble in the blood and other bio tissues of divers who ascend to surface too quickly is obtained by Mohammadein and Mohamed model (2010) for variant and constant ambient pressure through the decompression process. In this paper, the growing of gas bubbles and concentration distribution under the effect of suction process are studied as a modification of Mohammadein and Mohamed model (zero suction). The growth of gas bubble is affected by ascent rate, tissue diffusivity, initial concentration difference, surface tension and void fraction. Mohammadein and Mohamed model (2010) is obtained as a special case from the present model. Results showed that, the suction process activates the systemic blood circulation and delay the growth of gas bubbles in the bio tissues to avoid the incidence of decompression sickness (DCS).

  13. Legacies of the bubble chamber

    International Nuclear Information System (INIS)

    Legacies are what we pass on to those who follow us, the foundations on which the next advances in our science are being made; the things by which we shall be remembered, recorded in learned journals, written in the text books -food for the historians of science. This is not a summary, and it will draw no conclusions. It is a personal view which will look a little wider than the main physics results to include a mention of one or two of the technologies and methods handed on to both particle physics and other branches of sciences, a brief reference to bubble chamber pictures as aids in teaching, and a comment on the challenge now increasingly applied in the UK - and perhaps elsewhere -as a criterion for funding research: will it contribute to ''wealth creation''? (orig.)

  14. Bubbles and denaturation in DNA

    CERN Document Server

    Van Erp, T S; Peyrard, M; Erp, Titus S. van; Cuesta-Lopez, Santiago; Peyrard, Michel

    2006-01-01

    The local opening of DNA is an intriguing phenomenon from a statistical physics point of view, but is also essential for its biological function. For instance, the transcription and replication of our genetic code can not take place without the unwinding of the DNA double helix. Although these biological processes are driven by proteins, there might well be a relation between these biological openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopic models, like the Peyrard-Bishop-Dauxois model, have fairly accurately reproduced some experimental denaturation curves and the sharp phase transition in the thermodynamic limit. It is, hence, tempting to see whether these models could be used to predict the biological activity of DNA. In a previous study, we introduced a method that allows to obtain very accurate results on this subject, which showed that some previous claims in this direction, based on molecular dynamics studies, were premature. This could either imply that the present...

  15. An explanation of how split melt processing can enhance the critical current density of Bi2212 round wires based on examination of bubble size and density formed in the melt

    International Nuclear Information System (INIS)

    The recent discovery that gas bubbles formed in the melt state are a major current-limiting mechanism in Bi2Sr2CaCu2Ox (Bi2212) round wires has prompted explicit examination of the bubble density in split melt processed samples which, under optimized 1 bar processing conditions, can exhibit significant (30–50%) enhancement of critical current density, Jc. By examining quenched and furnace-cooled samples from different points in the split melt processing (SMP), we found that the bubble size correlates well to the Jc. Compared with standard processed samples, the bubble size is smaller in SMP samples which are cooled directly to room temperature by an intermediate cooling from the first melt before being reheated to the second melt. Bubble size and density observations suggest that Jc can only be increased when bubble growth in the second melt is prevented by very tight control of the reheat temperature. Smaller bubble size is favorable for Jc because filament connectivity is determined by the effectiveness of bubble bridging by Bi2212 grain growth on cooling from the second melt. Because SMP appears to allow higher Jc by shrinking bubble size rather than by diminishing the bubble volume fraction, we conclude that SMP is unlikely to offer benefits to newer processes like over-pressure processing which raise Jc much more significantly by full Bi2212 densification and bubble elimination. (paper)

  16. Micro-bubble Enhanced Sonoporation

    Science.gov (United States)

    Tachibana, Rie; Okamoto, Akio; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2010-03-01

    A gene transfer system that uses ultrasound, known as sonoporation, has recently been developed, and it is known that micro-bubbles can help gene transfection in this technique. However, the mechanism and optimal induction conditions have not yet been fully clarified. We examined the factors that affect the gene induction rate, and attempted to devise a method for high-efficiency gene induction. In vitro, we inducted a GFP-containing plasmid into fibroblast cells (NIH3T3) using an ultrasound contrast agent (Sonazoid®, or micro-bubbles) and piezoelectric transducer. Cells were cultured on 24-well plates. The GFP-containing plasmid (concentration: 15 mg/ml) and Sonazoid® were mixed with the cell suspension. Ultrasound frequency was 2.0 MHz (burst wave, duty cycle: 10%), ultrasound intensity was varied from 0 W/cm2 to 11.0 W/cm2, exposure time ranged from 0 s to 120 s, and burst repetition frequency was varied from 50 Hz to 50000 Hz. Gene induction ratio was higher with stronger or longer ultrasound exposure, and gene induction ratio was affected by ultrasound burst repetition frequency. However, the ratio was less than 1%. We also measured cell survival and visualized cells with holes using propidium iodide. We found that about 80% of cells were alive, and many cells developed holes with ultrasound exposure at a burst repetition frequency of 5 kHz. These results suggest that fewer genes enter the cells or are expressed under these conditions. These problems require further study.

  17. Surfactants for Bubble Removal against Buoyancy.

    Science.gov (United States)

    Raza, Md Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  18. Bubbles in live-stranded dolphins.

    Science.gov (United States)

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S

    2012-04-01

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.

  19. Track formation in a liquid hydrogen ultrasonic bubble chamber

    CERN Document Server

    Brown, R C A; Jarman, P D

    1973-01-01

    Track sensitivity to minimum ionising particles has been demonstrated in liquid hydrogen using only an intense ultrasonic field. Carefully designed transducer systems are shown to be capable of producing pressure amplitudes >2.8 atm in a standing wave system in liquid hydrogen. The growth of bubbles to visible size (0.1 mm) in less than 0.2 ms, and their collapse in less than 15 ms, indicates that rapid cycling rates of 50-100 pulses per second may be feasible with this technique. (11 refs).

  20. Liquid jet pumped by rising gas bubbles

    Science.gov (United States)

    Hussain, N. A.; Siegel, R.

    1975-01-01

    A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.

  1. Lifetime of bubble rafts: cooperativity and avalanches.

    Science.gov (United States)

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-15

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes. PMID:17677967

  2. Numerical investigation of bubble nonlinear dynamics characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo; Hu, Bo [Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Haoyang; Jiang, Wei [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  3. A view inside the Gargamelle bubble chamber

    CERN Multimedia

    1970-01-01

    Gargamelle was the name given to a big bubble chamber built at the Saclay Laboratory in France during the late 1960s. It was designed principally for the detection at CERN of the elusive particles called neutrinos. A bubble chamber contains a liquid under pressure, which reveals the tracks of electrically charged particles as trails of tiny bubbles when the pressure is reduced. Neutrinos have no charge, and so leave no tracks, but the aim with Gargamelle was "see neutrinos" by making visible any charged particles set in motion by the interaction of neutrinos in the liquid

  4. Arrested Bubble Rise in a Narrow Tube

    Science.gov (United States)

    Lamstaes, Catherine; Eggers, Jens

    2016-06-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ_c , where ℓ_c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rarrested motion.

  5. On thermonuclear processes in cavitation bubbles

    Science.gov (United States)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  6. Bubbles of Nothing in Flux Compactifications

    CERN Document Server

    Blanco-Pillado, Jose J

    2010-01-01

    We construct a simple $5d$ flux compactification stabilized by a complex scalar field winding the extra dimension and demonstrate an instability via nucleation of a bubble of nothing. This occurs when the Kaluza -- Klein dimension degenerates to a point, defining the bubble surface. Because the extra dimension is stabilized by a flux, the bubble surface must be charged, in this case under the axionic part of the complex scalar. This smooth geometry can be seen as a de Sitter topological defect with asymptotic behavior identical to the pure compactification. We discuss how a similar construction can be implemented in more general Freund -- Rubin compactifications.

  7. Interactions of multiple spark-generated bubbles with phase differences

    Science.gov (United States)

    Fong, Siew Wan; Adhikari, Deepak; Klaseboer, Evert; Khoo, Boo Cheong

    2009-04-01

    This paper aims to study the complex interaction between multiple bubbles, and to provide a summary and physical explanation of the phenomena observed during the interaction of two bubbles. High-speed photography is utilized to observe the experiments involving multiple spark-generated bubbles. Numerical simulations corresponding to the experiments are performed using the Boundary Element Method (BEM). The bubbles are typically between 3 and 5 mm in radius and are generated either in-phase (at the same time) or with phase differences. Complex phenomena are observed such as bubble splitting, and high-speed jetting inside a bubble caused by another collapsing bubble nearby (termed the ‘catapult’ effect). The two-bubble interactions are broadly classified in a graph according to two parameters: the relative inter-bubble distance and the phase difference (a new parameter introduced). The BEM simulations provide insight into the physics, such as bubble shape changes in detail, and jet velocities. Also presented in this paper are the experimental results of three bubble interactions. The interesting and complex observations of multiple bubble interaction are important for a better understanding of real life applications in medical ultrasonic treatment and ultrasonic cleaning. Many of the three bubble interactions can be explained by isolating bubble pairs and classifying their interaction according to the graph for the two bubble case. This graph can be a useful tool to predict the behavior of multiple bubble interactions.

  8. MARANGONI CONVECTION AROUND A VENTILATED AIR BUBBLE UNDER MICROGRAVITY CONDITIONS

    NARCIS (Netherlands)

    HOEFSLOOT, HCJ; JANSSEN, LPBM; HOOGSTRATEN, HW

    1994-01-01

    Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble deter

  9. Conservation of bubble size distribution during gas reactive absorption in bubble column reactors

    Directory of Open Access Journals (Sweden)

    P. L.C. LAGE

    1999-12-01

    Full Text Available Conservation of the bubble size distribution function was applied to the reactive absorption of carbon dioxide in a bubble column reactor. The model developed was solved by the method of characteristics and by a Monte Carlo method. Simulations were carried out using simplified models for the liquid phase and for the gas-liquid mass transfer. Predictions of gas holdup and outlet gas composition showed that the concept of a mean bubble diameter is not applicable when the bubble size distribution is reasonably polydispersed. In these cases, the mass mean velocity and the numerical mean velocity of the bubbles are very different. Therefore, quantification of the polydispersion of bubbles was shown to be essential to gas-phase hydrodynamics modeling.

  10. Bubbles, Bubbles, Tremors & Trouble: The Bayou Corne Sinkhole

    Science.gov (United States)

    Nunn, J. A.

    2013-12-01

    In May 2012, thermogenic methane bubbles were first observed in Bayou Corne in Assumption Parish, Louisiana. As of July 2013, ninety one bubbling sites have been identified. Gas was also found in the top of the Mississippi River Alluvial Aquifer (MRAA) about 125 ft below the surface. Vent wells drilled into the MRAA have flared more 16 million SCF of gas. Trace amounts of hydrogen sulfide also have been detected. Bayou Corne flows above the Napoleonville salt dome which has been an active area for oil and gas exploration since the 1920s. The dome is also a site of dissolution salt mining which has produced large caverns with diameters of up to 300 ft and heights of 2000 ft. Some caverns are used for storage of natural gas. Microseismic activity was confirmed by an Earthscope seismic station in White Castle, LA in July 2012. An array of microseismic stations set up in the area recorded more than 60 microseismic events in late July and early August, 2012. These microseismic events were located on the western side of the dome. Estimated focal depths are just above the top of salt. In August 2012, a sinkhole developed overnight just to the northwest of a plugged and abandoned brine filled cavern (see figure below). The sinkhole continues to grow in area to more than 20 acres and has consumed a pipeline right of way. The sinkhole is more than 750 ft deep at its center. Microseismic activity was reduced for several months following the formation of the sinkhole. Microseismic events have reoccurred episodically since then with periods of frequent events preceding slumping of material into the sinkhole or a 'burp' where fluid levels in the sinkhole drop and then rebound followed by a decrease in microseismic activity. Some gas and/or oil may appear at the surface of the sinkhole following a 'burp'. Very long period events also have been observed which are believed to be related to subsurface fluid movement. A relief well drilled into the abandoned brine cavern found that

  11. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    CERN Document Server

    Arscott, Steve

    2013-01-01

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  12. Time-Dependent Changes in a Shampoo Bubble

    Science.gov (United States)

    Chattopadhyay, Arun

    2000-10-01

    This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.

  13. Thermodynamic property of gases in the sonoluminescing bubble

    Institute of Scientific and Technical Information of China (English)

    AN Yu; LI Guiqin; ZHOU Tieying

    2001-01-01

    With the theory of statistical physics dealing with chemical reaction (the law of mass action), the different thermodynamic property of noble gases (mono-atomic gases) in a small bubble and diatomic gases in a small bubble semi-quantitatively are analyzed. As bubbles of the mono-atomic and the diatomic gases are compressed, shock waves are produced in both bubbles. Though shock wave leads to sharp increase of pressure and temperature of gases in the bubble, diatomic gas will excitated vibrations and dissociate themselves to mono-atomic gas,these processes will consume many accumulated heat energy and block the further increase of the temperature. Therefore, compare with the mono-atomic gases in the bubble, there will be no enough charged particles ionized to flash for diatomic gases in the bubble, this may be the reason why a bubble of diatomic gases has no single bubble sonoluminescence while a bubble of noble gases has.

  14. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  15. Hydrodynamics, Acoustics and Scaling of Traveling Bubble Cavitation

    OpenAIRE

    Kuhn de Chizelle, Yan P.

    1994-01-01

    Recent observations of the geometries of growing and collapsing bubbles over axisymmetric headforms have revealed the complexity of the "microfluidmechanics" associated with these flows (Hamilton et al., 1982, Briançon Marjollet and Franc, 1990, Ceccio and Brennen, 1991). Among the complex features observed were bubble to bubble interaction, cavitation noise generation and bubble interaction with the boundary layer which leads to the shearing of the underside of the bubble and ...

  16. Effects of Gas Dynamics on Rapidly Collapsing Bubbles

    OpenAIRE

    Bauman, Spenser; Fomitchev-Zamilov, Max

    2013-01-01

    The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows ho...

  17. Timescales of bubble coalescence, outgassing, and foam collapse in decompressed rhyolitic melts

    Science.gov (United States)

    Martel, Caroline; Iacono-Marziano, Giada

    2016-04-01

    The timescale of degassing and outgassing in hydrous rhyolitic melts is investigated in a wide range of conditions by means of decompression experiments. The evolution of vesicularity, bubble diameter, and number density is characterized as a function of time either of decompression or spent at final pressure, in order to determine the effect of final pressure, temperature, syn- versus post-decompression degassing, melt composition, and microlites, on the timescale of bubble growth, coalescence, and outgassing. The result suggest that different bubble evolution and degassing-outgassing timescale corresponding to explosive and effusive eruption regimes can be cast in bulk viscosity (melt + bubbles; nbulk) versus decompression time (rather than path) space. The nbulk-time relationships defines three domains of (i) bubble nucleation and growth, restricted to short durations and high nbulk ( 10-13 m2) to extensive (permeability ˜10-11-12 m2), and (iii) outgassing, restricted to long durations and low nbulk(> ˜10 h for nbulk 10-10 m2) that eventually leads to foam collapse. These findings are applied to the case studies of Mt Pelée and Mt Pinatubo to infer the transition from pumice to dense pyroclasts in volcanic eruptions and the possibility of evolving from an explosive Plinian eruption to an effusive dome-growth event by giving the vesicular magma enough time to outgas and collapse (i.e. hundreds to tens of hours for nbulk ˜105 to 104 Pa.s, respectively). We also show the drastic effect of microlites on re-arranging preexistent bubbles and potentially triggering a late nucleation event.

  18. Dielectrophoretic levitation of droplets and bubbles

    Science.gov (United States)

    Jones, T. B.

    1982-01-01

    Uncharged droplets and bubbles can be levitated dielectrophoretically in liquids using strong, nonuniform electric fields. The general equations of motion for a droplet or bubble in an axisymmetric, divergence-free electrostatic field allow determination of the conditions necessary and sufficient for stable levitation. The design of dielectrophoretic (DEP) levitation electrode structures is simplified by a Taylor-series expansion of cusped axisymmetric electrostatic fields. Extensive experimental measurements on bubbles in insulating liquids verify the simple dielectrophoretic model. Other have extended dielectrophoretic levitation to very small particles in aqueous media. Applications of DEP levitation to the study of gas bubbles, liquid droplets, and solid particles are discussed. Some of these applications are of special interest in the reduced gravitational field of a spacecraft.

  19. The Soap-Bubble-Geometry Contest.

    Science.gov (United States)

    Morgan, Frank; Melnick, Edward R.; Nicholson, Ramona

    1997-01-01

    Presents an activity on soap-bubble geometry using a guessing contest, explanations, and demonstrations that allow students to mesh observation and mathematical reasoning to discover that mathematics is much more than just number crunching. (ASK)

  20. Effects of Ambient Pressure on Bubble Characteristics

    Institute of Scientific and Technical Information of China (English)

    卢新培; 刘明海; 江中和; 潘垣

    2002-01-01

    The effects of the ambient pressure Pambient on the bubble characteristics of pulsed discharge in water are investigated. The simulation results show that, when Pambient increases from 1 atm to 100 atm, the bubble radius R decreases from 4cma to 7mm, and its pulsation period decreases frown 8ms to 0.2ms. The results also show that the peak pressure of the first shock wave is independent of Pambient, but the peak pressure of the second shock wave caused by the bubble re-expansion decreases when Pambient increases. On the other hand, the larger the ambient pressure, the larger the peak pressure of the plasma in the bubble, while the plasma temperature is independent of Pambient.

  1. Critical bubble radius in solvent sublation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The complex compound of dithizone-Co(Ⅱ) was separated and concentrated from the aqueous phase to n-octanol by solvent sublation. From the analysis of the coalescence behavior of bubbles on water-organic interface, the conception of critical bubble radius was proposed, and the value of the critical bubble radius in the water-octanol system was obtained: 1.196 × 10-3 m. The simulation of the mathematical model using CBR and experimental data is completed with perfect results, and the simulation of the mathematical model using CBR is very different with the classic one. The analytical results proved that the critical bubble radius should be adequately considered in mathematical model of solvent sublation.

  2. Sonochemical effects on single-bubble sonoluminescence

    CERN Document Server

    Yuan, L

    2005-01-01

    A refined hydro-chemical model for single-bubble sonoluminescence is presented. The processes of water vapor evaporation and condensation, mass diffusion, and chemical reactions are taken into account. Numerical simulations of Xe-, Ar- and He-filled bubbles are carried out. The results show that the trapped water vapor in conjunction with its endothermic chemical reactions significantly reduces the temperature within the bubble so that the degrees of ionization are generally very low. The chemical radicals generated from water vapor are shown to play an increasingly important role in the light emission from Xe to He bubbles. Light spectra and pulses computed from an optically thin model and from an essentially blackbody model are compared with recent experimental results. It is found that the results of the blackbody model generally match better with the experiment ones than those of the optically thin model. Suggestions on how to reconcile the conflict are given.

  3. The 2008 oil bubble: Causes and consequences

    International Nuclear Information System (INIS)

    We argue that 'the 2008 Oil Bubble' was directly and indirectly created by the Federal Reserve in response to deflationary risks that resurfaced after the housing bubble burst and the resulting credit crisis of 2008. Deflationary risks first appeared after the dot.com bubble burst in 2000 and after the terrorist attacks on September 11, 2001. Manipulation of the US dollar value has been one of the key emergency tools in the Fed's arsenal. During the entire period from 2000 to 2008, the US dollar has been falling, while the price of crude oil has been rising, with the culmination in July 2008. If other global central banks embrace the Fed's anti-deflationary strategies, the consequences could be dire for the global economy, potentially resulting in an ultimate gold bubble.

  4. The 2008 oil bubble. Causes and consequences

    International Nuclear Information System (INIS)

    We argue that 'the 2008 Oil Bubble' was directly and indirectly created by the Federal Reserve in response to deflationary risks that resurfaced after the housing bubble burst and the resulting credit crisis of 2008. Deflationary risks first appeared after the dot.com bubble burst in 2000 and after the terrorist attacks on September 11, 2001. Manipulation of the US dollar value has been one of the key emergency tools in the Fed's arsenal. During the entire period from 2000 to 2008, the US dollar has been falling, while the price of crude oil has been rising, with the culmination in July 2008. If other global central banks embrace the Fed's anti-deflationary strategies, the consequences could be dire for the global economy, potentially resulting in an ultimate gold bubble. (author)

  5. Simulations of Buoyant Bubbles in Galaxy Clusters

    CERN Document Server

    Brüggen, M

    2003-01-01

    It is generally argued that most clusters of galaxies host cooling flows in which radiative cooling in the centre causes a slow inflow. However, recent observations by Chandra and XMM conflict with the predicted cooling flow rates. Here we report highly resolved hydrodynamic simulations which show that buoyant bubbles can offset the cooling in the inner regions of clusters and can significantly delay the deposition of cold gas. The subsonic rise of bubbles uplifts colder material from the central regions of the cluster. This colder material appears as bright rims around the bubbles. The bubbles themselves appear as depressions in the X-ray surface brightness as observed in a growing number of clusters.

  6. Living Near de Sitter Bubble Walls

    CERN Document Server

    Cho, J H; Cho, Jin-Ho; Nam, Soonkeon

    2006-01-01

    We study various bubble solutions in string/M theories obtained by double Wick rotations of (non-)extremal brane configurations. Typically, the geometry interpolates de Sitter space-time times non-compact extra-dimensional space in the near-bubble wall region and the asymptotic flat Minkowski space-time. These bubble solutions provide nice background geometries to reconcile string/M theories with de Sitter space-time. For the applications of these solutions to cosmology, we consider multi-bubble solutions and find a landscape of varying cosmological constant. Double Wick rotation in string/M theories introduces imaginary higher-form fields. Rather than regard these fields as classical pathologies, we interpret them as semi-classical decay processes of de Sitter vacuum via the production of spherical branes. We speculate on the possibility of solving the cosmological constant problem making use of the condensation of the spherical membranes.

  7. Shapes of Bubbles and Drops in Motion.

    Science.gov (United States)

    O'Connell, James

    2000-01-01

    Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)

  8. Using sound to study bubble coalescence.

    Science.gov (United States)

    Kracht, W; Finch, J A

    2009-04-01

    Frothers are surfactants used in flotation to aid generation of small bubbles, an effect attributed to coalescence prevention. Studying coalescence at the moment of bubble creation is a challenge because events occur over a time frame of milliseconds. This communication introduces a novel acoustic technique to study coalescence as bubbles are generated at a capillary. The sound signal was linked to bubble formation and coalescence events using high-speed cinematography. The technique has the resolution to detect events that occur within 1-2 ms. The results show that for common flotation frothers and n-alcohols (C(4)-C(8)) coalescence prevention is not simply related to surface activity. A total stress model is used to give a qualitative explanation to the action observed. Results for salt (sodium chloride) are included for comparison. PMID:19128806

  9. Methane bubbling: from speculation to quantification

    Science.gov (United States)

    Grinham, A. R.; Dunbabin, M.; Yuan, Z.

    2013-12-01

    Rates of methane bubbling (ebullition) represent a notoriously difficult emission pathway to quantify with highly variable spatial and temporal changes. However, the importance of bubbling fluxes in terms of total emissions is increasingly recognised from a number of different globally relevant natural systems including lakes, reservoirs and wetlands. This represents a critical challenge to current survey efforts to quantify greenhouse gas emissions and reduce the uncertainty associated with bubbling fluxes. A number of different methods have been proposed to overcome this challenge including bubble traps, floating chambers, echo sounders, laser spectrography and camera systems. Each method has relative merits and deficiencies with all trading-off the ability to directly quantify methane and provide spatial and temporal coverage. Here we present a novel method that allows direct measurement of methane bubble concentration as well as the ability to persistently monitor a wide spatial area. Central to the monitoring system is an Autonomous Surface Vessel (ASV) and an Optical Methane Detector (OMD). The ASV is equipped with solar panels and uses electric motors for propulsion to allow persistent environmental monitoring. The OMD has a path length of 1.3 m and 7 Hz sampling so a typical mission of 3 hours at 1 m s-1 covers an area in excess of 10 000 m2 and over 65 000 data points. The system was assessed on four sub-tropical freshwater reservoirs of varying surface area (0.5 to 100 km2), age (2 to 65 y) and catchment land use (40 to 90% natural vegetation cover). Each reservoir had unique challenges in terms of navigation and field conditions to test feasibility of this method. Deployment length varied from a single day to over 4 months to test method durability. In addition to ASV bubble surveys, floating static chambers were deployed to determine diffusive fluxes. Localised instantaneous bubble flux rates within a single reservoir ranged over three orders of

  10. Beer tapping: dynamics of bubbles after impact

    Science.gov (United States)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  11. Brexit or Bremain ? Evidence from bubble analysis

    OpenAIRE

    Bianchetti, Marco; Galli, Davide; Ricci, Camilla; Salvatori, Angelo; Scaringi, Marco

    2016-01-01

    We applied the Johansen-Ledoit-Sornette (JLS) model to detect possible bubbles and crashes related to the Brexit/Bremain referendum scheduled for 23rd June 2016. Our implementation includes an enhanced model calibration using Genetic Algorithms. We selected a few historical financial series sensitive to the Brexit/Bremain scenario, representative of multiple asset classes. We found that equity and currency asset classes show no bubble signals, while rates, credit and real estate show super-ex...

  12. The Graphs of Planar Soap Bubbles

    OpenAIRE

    Eppstein, David

    2012-01-01

    We characterize the graphs formed by two-dimensional soap bubbles as being exactly the 3-regular bridgeless planar multigraphs. Our characterization combines a local characterization of soap bubble graphs in terms of the curvatures of arcs meeting at common vertices, a proof that this characterization remains invariant under Moebius transformations, an application of Moebius invariance to prove bridgelessness, and a Moebius-invariant power diagram of circles previously developed by the author...

  13. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  14. Wall slip of bubbles in foams

    OpenAIRE

    WEAIRE, DENIS LAWRENCE

    2006-01-01

    PUBLISHED We present a computational analysis of the flow of liquid foam along a smooth wall, as encountered in the transport of foams in vessels and pipes. We concentrate on the slip of the bubbles at the wall and present some novel finite element calculations of this motion for the case of fully mobile gas/liquid interfaces. Our two-dimensional simulations provide for the first time the bubble shapes and entire flow field, giving detailed insight into the distribution of stre...

  15. Test ventilation with smoke, bubbles, and balloons

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs.

  16. Topological vacuum bubbles by anyon braiding

    OpenAIRE

    Han, Cheolhee; Park, Jinhong; Gefen, Yuval; Sim, H.-S.

    2016-01-01

    According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles created from vacuum and self-annihilating without interacting with real particles. Here we show that this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbl...

  17. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is taken from one of CERN's bubble chambers and shows the decay of a positive kaon in flight. The decay products of this kaon can be seen spiraling in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that has been heated to boiling point.

  18. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.

    Science.gov (United States)

    Arbabi, A; Mastikhin, I V

    2012-12-01

    The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T(2)(*) necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction. There was an expected underestimation of bubble sizes at faster flow rates due to the limitations of the theory derived for small bubble sizes and non-interacting spherical bubbles (low void fractions and slow flow rates). This approach lends itself to studies of bubbly flows and cavitating media characterized by small bubble sizes and low void fractions. PMID:23117260

  19. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures.

    Science.gov (United States)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-08-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.

  20. Fluid dynamics of bubbles in liquid

    Directory of Open Access Journals (Sweden)

    SCHEID C.M.

    1999-01-01

    Full Text Available Results gathered from the literature on the dynamics of bubbles in liquid are correlated by means of a formulation traditionally employed to describe the dynamics of isometric solid particles. It is assumed that the shape of the bubble depends, by means of the Eotvos number, on its diameter and on the gas-liquid surface tension. The analysis reported herein includes the dynamics of the isolated bubble along with wall and concentration effects. However, the effects of gas circulation in the bubble, which result in terminal velocities higher than those of a rigid sphere, are not being considered. A limited number of experimental points are obtained employing a modified version of the Mariotte flask which permits the precise measure of bubble volume. A classic bubble column is also employed in order to measure gas holdup in the continuous phase. Experiments were carried out employing air, with distilled water, potable water, water with variable amounts of surfactant and glycerin as the liquid phase.

  1. Interstellar Bubbles in Two Young HII Regions

    CERN Document Server

    Naze, Y; Points, S D; Danforth, C W; Rosado, M; Chen, C H R; Naze, Yael; Chu, You-Hua; Points, Sean D.; Danforth, Charles W.; Rosado, Margarita

    2001-01-01

    Massive stars are expected to produce wind-blown bubbles in the interstellar medium; however, ring nebulae, suggesting the existence of bubbles, are rarely seen around main-sequence O stars. To search for wind-blown bubbles around main-sequence O stars, we have obtained high-resolution Hubble Space Telescope WFPC2 images and high-dispersion echelle spectra of two pristine HII regions, N11B and N180B, in the Large Magellanic Cloud. These HII regions are ionized by OB associations that still contain O3 stars, suggesting that the HII regions are young and have not hosted any supernova explosions. Our observations show that wind-blown bubbles in these HII regions can be detected kinematically but not morphologically because their expansion velocities are comparable to or only slightly higher than the isothermal sound velocity in the HII regions. Bubbles are detected around concentrations of massive stars, individual O stars, and even an evolved red supergiant (a fossil bubble). Comparisons between the observed bu...

  2. Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Rie; Nguyen, Thao T.P.; Sugiura, Takahiro; Ito, Yoshiro, E-mail: itoy@vos.nagaokaut.ac.jp

    2015-10-01

    Highlights: • Observations at 1 μs interval were carried out for laser ablation in water. • Laser-induced shock wave and cavitation bubble are dynamically observed. • Jet-like shadows are observed during LAL in water after multiple-pulse irradiation. • Cloudlike-shadow moving away from the irradiated copper surface was observed. - Abstract: Laser ablation in liquid (LAL) is utilized in many applications, such as the fabrication of nanoparticles, laser cleaning and laser peening. We have developed a high-speed laser stroboscopic videography system that enables observations at intervals of 1 μs. Using this imaging system, we investigated the dynamics of cavitation bubbles induced by LAL to elucidate the timing and location of nanoparticle formation and dispersion into the surrounding liquid. The initial bubble demonstrated a well-defined, smooth boundary during its growth and shrinkage. Although previous studies have reported the ejection of particles at the boundary of the bubble, this was not observed in our images. Intermixing between the gas phase of the bubble and the surrounding liquid occurred when the first bubble collapsed. Jet-like shadows were recorded during LAL in water after multiple-pulse irradiation, but were not observed in freshly filled water that had not yet been irradiated. These shadows disappeared within 10 μs and are postulated to be micro-bubbles induced by interactions between nanoparticles suspended in the water and the incoming laser beam.

  3. Modification of the Young-Laplace equation and prediction of bubble interface in the presence of nanoparticles.

    Science.gov (United States)

    Vafaei, Saeid; Wen, Dongsheng

    2015-11-01

    Bubbles are fundamental to our daily life and have wide applications such as in the chemical and petrochemical industry, pharmaceutical engineering, mineral processing and colloids engineering. This paper reviews the existing theoretical and experimental bubble studies, with a special focus on the dynamics of triple line and the influence of nanoparticles on the bubble growth and departure process. Nanoparticles are found to influence significantly the effective interfacial properties and the dynamics of triple line, whose effects are dependent on the particle morphology and their interaction with the substrate. While the Young-Laplace equation is widely applied to predict the bubble shape, its application is limited under highly non-equilibrium conditions. Using gold nanoparticle as an example, new experimental study is conducted to reveal the particle concentration influence on the behaviour of triple line and bubble dynamics. A new method is developed to predict the bubble shape when the interfacial equilibrium conditions cannot be met, such as during the oscillation period. The method is used to calculate the pressure difference between the gas and liquid phases, which is shown to oscillate across the liquid-gas interface and is responsible for the interface fluctuation. The comparison of the theoretical study with the experimental data shows a very good agreement, which suggests its potential application to predict bubble shape during non-equilibrium conditions.

  4. CFD simulation of bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Ekambara, K., E-mail: ekambara@ualberta.c [Department of Chemical and Materials Engineering, University of Alberta, 536 CME Building, Edmonton, AB, T6G 2G6 (Canada); Dhotre, M.T. [Thermal-Hydraulics Laboratory, Nuclear Energy and Safety Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2010-05-15

    Three-dimensional simulations of gas-liquid flow in the bubble column using the Euler-Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k-epsilon, k-epsilon RNG, k-omega, Reynolds stress model (RSM) and large eddy simulation (LES) using a commercial code (ANSYS-CFX). For this purpose, the predictions are compared against the experimental data of . Performance of the turbulence models is assessed on basis of comparison of axial liquid velocity, fractional gas hold-up, turbulent kinetic energy and turbulent eddy dissipation rate. All the non-drag (turbulent dispersion, virtual mass and lift force) and drag force were incorporated in the model. The low-Reynolds number treatment of the k-omega yields a better qualitative prediction than the k-epsilon model. The RSM predictions are comparable with LES results and seemed to give better prediction near the sparger, where the flow is more anisotropic and gives a clue why RANS approaches fails to predict the flow in this region. However, the large eddy simulations showed good agreement with the experimental data, but requires higher computational time than RSM.

  5. Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt : Effect of interface engineering

    NARCIS (Netherlands)

    Lavrijsen, R.; Hartmann, D. M. F.; van den Brink, Ton; Yin, Y.; Barcones, B.; Duine, R. A.; Verheijen, M. A.; Swagten, H. J. M.; Koopmans, B.

    2015-01-01

    We analyze the impact of growth conditions on the asymmetric magnetic bubble expansion under an in-plane field in ultrathin Pt/Co/Pt films. Specifically, using sputter deposition, we vary the Ar pressure during the growth of the top Pt layer. This induces a large change in the interfacial structure

  6. Bubbles Pose The Biggest Threat

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ The fast economic growth China has experienced in the past three decades is mainly attributed to dividends of production elements (including labor force and resources), market-oriented reform and globalization. Today, the contribution of the three major dividends is weakening and the growth model built on low-cost advantages can no longer be sustained.

  7. Development of a high capacity bubble domain memory element and related epitaxial garnet materials for application in spacecraft data recorders. Item 2: The optimization of material-device parameters for application in bubble domain memory elements for spacecraft data recorders

    Science.gov (United States)

    Besser, P. J.

    1976-01-01

    Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.

  8. Bubble dynamics and the quark-hadron phase transition in nuclear collisions

    CERN Document Server

    Fogaça, D A; Fariello, R; Navarra, F S

    2016-01-01

    We study the nucleation of a quark gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at FAIR and NICA. When the right energy density (or baryon density) is reached the conversion of one phase into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate it we solve the Relativistic Rayleigh$-$Plesset equation which governs the dynamics of a relativistic spherical bubble in a cold and strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka model and the QGP is described by the MIT bag model and also by a mean field model of QCD.

  9. Single cell membrane poration by bubble-induced microjets in a microfluidic chip.

    Science.gov (United States)

    Li, Z G; Liu, A Q; Klaseboer, E; Zhang, J B; Ohl, C D

    2013-03-21

    This paper demonstrates membrane poration of a single suspension cell due to a fast liquid microjet. The jet is formed during the collapse of a laser induced bubble created at a variable stand-off distance from the target cell. The cell is trapped by a converging structure within a microfluidic chip. The asymmetrical growth and collapse of the cavitation bubble next to the cell lead to the microjetting, which deforms and porates the cell membrane. In the experiments, the membrane porations of myeloma cells are probed with the uptake of trypan blue. Time-resolved studies of the diffusion of trypan blue show a marked dependency on the bubble dynamics, i.e. the stand-off distance. The penetration length of the dye increases with shorter distances. Numerical simulations of the diffusion process agree with larger pores formed on the cell membrane. This method allows for a fast, repeatable, and localized rupture of membranes of individual cells in suspension. PMID:23364762

  10. A novel approach to prevent bubble coalescence during measurement of bubble size in flotation

    Institute of Scientific and Technical Information of China (English)

    张炜

    2014-01-01

    Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated. To evaluate the performance of a frother, an apparatus to measure the bubble size is a basic necessity. McGill Bubble Size Analyzer (MBSA) or bubble viewer that has been developed and completed by McGill University’s Mineral Processing Group during the last decade is a unique instrument to serve this purpose. Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber. Results show that there is no difference in Sauter mean (D32) when tap or de-ionized water was used instead of process water. However, the frother concentration, in this research DowFroth 250 (DF250), inside the chamber exhibited a pronounced effect on bubble size. Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications. It was also noted that the frother concentration which has been so far practiced in plant measurements (CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.

  11. Molecular dynamics study of helium bubble pressure in titanium

    Institute of Scientific and Technical Information of China (English)

    Zhang Bao-Ling; Wang Jun; Hou Qing

    2011-01-01

    In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.

  12. Analysis of the hydrogen bubble concerns in the Three-Mile Island Unit-2 Reactor vessel

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, S.; Schmidt, K.H.; Honekamp, J.R. (Argonne National Lab., IL (USA))

    1983-01-01

    After the accident at the Three-Mile Island Reactor, press reports appeared about a non-condensable bubble in the reactor vessel. Danger of explosion was reported to be imminent. We analyzed all possible sources of non-condensable gases and determined that a continuing growth of the bubble during several days after the accident was not possible. (1) Most of the initial hydrogen in the bubble was produced by the reaction of the Zircaloy cladding with the super-heated water. (2) During the first 16 hr after shutdown, when boiling of the primary coolant water took place, in the worst case stoichiometric amounts of hydrogen and oxygen could have been produced by radiolysis, leading to a maximum amount of oxygen in the bubble, of 0.7% of the hydrogen, which is well below the explosion limit. (3) After this 16 hr period, when boiling had totally ceased, no further oxygen could have been produced by radiolysis of the primary cooling water. On the contrary, oxygen was recombined with hydrogen due to radiolysis at such a rate that the oxygen in the water was completely removed in less than five minutes. The subsequent rate of removal of oxygen from the bubble by dissolution and radiolysis depended essentially on the rate of dissolution.

  13. Bubble spreading during the boiling crisis: modelling and experimenting in microgravity

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Lecoutre, C; Chatain, D

    2016-01-01

    Boiling is a very efficient way to transfer heat from a heater to the liquid carrier. We discuss the boiling crisis, a transition between two regimes of boiling: nucleate and film boiling. The boiling crisis results in a sharp decrease in the heat transfer rate, which can cause a major accident in industrial heat exchangers. In this communication, we present a physical model of the boiling crisis based on the vapor recoil effect. Under the action of the vapor recoil the gas bubbles begin to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes its spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. In the experiments both in the Mir spa...

  14. The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W

    Science.gov (United States)

    Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.; Voter, Arthur F.

    2016-05-01

    Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we use traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.

  15. Constraining Quasar Parameters Through Bubble Detection in Redshifted 21-cm Maps

    CERN Document Server

    Majumdar, Suman; Bharadwaj, Somnath

    2011-01-01

    A growing bubble of ionized hydrogen (HII) around a very high redshift quasar will have many anisotropic features in its shape mainly due to finite light travel time (FLTT), neutral hydrogen density fluctuations in the IGM and clustering of stellar sources. Detection of such a bubble in redshifted 21-cm observations, will not only be a direct probe to the epoch of reionization but will also provide us insight about the quasars' luminosity and age. We simulate a growing HII bubble around a quasar at z ~ 8 in an IGM with mean neutral fraction x_HI = 0.5, using a semi-numerical formalism. A targeted matched filter bubble search on this simulated visibility data is performed with spherical and anisotropic filters, considering 1000 hrs of GMRT observation. We simulate our search at five different stage of growth of the target HII bubble. We find that, in almost all realizations of our simulations the search results over estimate the photon emission rate (N_phs) and the age (tau_Q) of the quasar, due to the effect ...

  16. Hydrostatic pressure effect on micro air bubbles deposited on surfaces with a retreating tip.

    Science.gov (United States)

    Huynh, So Hung; Wang, Jingming; Yu, Yang; Ng, Tuck Wah

    2014-06-01

    The effect of hydrostatic pressure on 6 μL air bubbles formed on micropillar structured PDMS and silicone surfaces using a 2 mm diameter stainless steel tip retreated at 1 mm/s was investigated. Dimensional analysis of the tip retraction process showed the experiments to be conducted in the condition where fluid inertial forces are comparable in magnitude with surface tension forces, while viscous forces were lower. Larger bubbles could be left behind on the structured PDMS surface. For hydrostatic pressures in excess of 20 mm H2O (196 Pa), the volume of bubble deposited was found to decrease progressively with pressure increase. The differences in width of the deposited bubbles (in contact with the substrate) were significant at any particular pressure but marginal in height. The attainable height before rupture reduced with pressure increase, thereby accounting for the reducing dispensed volume characteristic. On structured PDMS, the gaseous bridge width (in contact with the substrate) was invariant with tip retraction, while on silicone it was initially reducing before becoming invariant in the lead up to rupture. With silicone, hence, reductions in the contact width and height were both responsible for reduced volumes with pressure increase. Increased hydrostatic pressure was also found to restrict the growth in contact width on silicone during the stage when air was injected in through the tip. The ability to effect bubble size in such a simple manner may already be harnessed in nature and suggests possibilities in technological applications.

  17. An Eulerian-based Bubble Dynamics Model for Computational Fluid Dynamics

    Science.gov (United States)

    Balu, Asish; Kinzel, Michael

    2015-11-01

    Cavitation dynamics of nuclei are largely governed by the Rayleigh-Plesset Equation (RPE). This research explores the implementation of a one-way coupling to the solution of the RPE to a computational fluid dynamics (CFD) simulation in an Eulerian-framework. In this work, we used transport equations (i.e., advection) of the bubble radius and bubble growth rate, both of which are governed by advection mechanisms and coupling to the RPE through the CFD pressure field. The method is validated in the context of hypothetical pressure fields by prescribing a temporally varying pressure. Then, it is extended to one-way coupling with cavitation development in three different flow situations: (1) flow over a cylinder, (2) bubble formation during a bottle collapse event, and (3) cavitation in a tip vortex. In the context of these flows, the CFD simulations replicate an equivalent MATLAB-based solution to the RPE, thus validating the model. Additionally, an analytical formulation for appropriate upper and lower bounds for the bubble's physical properties is presented. These boundary values allow the CFD solver to run at larger time steps, therefore increasing the rate of convergence as well as maintaining solution accuracy. The results from this work suggest that Eulerian-based RPE cavitation models are practical and have the potential to simulate large numbers of bubbles that challenge Lagrangian methods.

  18. Optical nucleation of bubble clouds in a high pressure spherical resonator.

    Science.gov (United States)

    Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R

    2011-11-01

    An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.

  19. Financial Bubbles, Real Estate Bubbles, Derivative Bubbles, and the Financial and Economic Crisis

    Science.gov (United States)

    Sornette, Didier; Woodard, Ryan

    The financial crisis of 2008, which started with an initially well-defined epicenter focused on mortgage backed securities (MBS), has been cascading into a global economic recession, whose increasing severity and uncertain duration has led and is continuing to lead to massive losses and damage for billions of people. Heavy central bank interventions and government spending programs have been launched worldwide and especially in the USA and Europe, with the hope to unfreeze credit and bolster consumption. Here, we present evidence and articulate a general framework that allows one to diagnose the fundamental cause of the unfolding financial and economic crisis: the accumulation of several bubbles and their interplay and mutual reinforcement have led to an illusion of a "perpetual money machine" allowing financial institutions to extract wealth from an unsustainable artificial process. Taking stock of this diagnostic, we conclude that many of the interventions to address the so-called liquidity crisis and to encourage more consumption are ill-advised and even dangerous, given that precautionary reserves were not accumulated in the "good times" but that huge liabilities were. The most "interesting" present times constitute unique opportunities but also great challenges, for which we offer a few recommendations.

  20. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  1. Herds of methane chambers grazing bubbles

    Science.gov (United States)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  2. Collapse dynamics of smectic-A bubbles.

    Science.gov (United States)

    Caillier, F; Oswald, P

    2006-06-01

    The collapse dynamics of smectic-A bubbles are analyzed experimentally and theoretically. Each bubble is expanded from a flat film stretched at the end of a hollow cylinder and deflated through a pressure release by means of a capillary tube. Its total collapse time can be varied between 0.1s and 20s by suitably choosing the length and the internal diameter of the capillary. This experiment allowed us to show that the collapse takes place in two steps: an initial one, which lasts a fraction of a second, where the meniscus destabilizes and fills up with focal conics, followed by a much longer period during which the bubble collapses and exchanges material with the meniscus. By measuring simultaneously the Laplace pressure and the internal pressure inside the bubble, we were able to fully characterize the shear-thinning behavior of the smectic phase within the meniscus. We emphasize that this method is generic and could be applied as well to other systems such as soap bubbles, on condition that inertial effects are negligible. PMID:16791458

  3. Sonoluminescence: Why fiery bubbles have eternal life

    Science.gov (United States)

    Lohse, Detlef; Brenner, Michael; Hilgenfeldt, Sascha

    1996-11-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. Phase diagrams are presented in the gas concentration vs forcing pressure state space and also in the ambient radius vs forcing pressure state space. These phase diagrams are based on the thresholds for energy focusing in the bubble and on those for (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa ~ 1.2 - 1.5atm and low gas concentration of less than 0.4% of saturation. The results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. The essential feature is the removal of almost all nitrogen and oxygen from the bubble through reaction to soluble compounds (i.e. NOx or NH_3).

  4. Recent development in magnetic-bubble memory

    Science.gov (United States)

    Suzuki, Ryo

    1986-11-01

    The magnetic-bubble memory - the new solid-state nonvolatile memory - has taken a prominent place in today's memory market. It is widely used in industrial and information area, because it is reliable, maintenance-free, and durable. Improvements on bubble materials, processing, and chip design, especially Permalloy tracks, led magnetic-bubble memory to 4-Mbit devices which are now commercially available. Conventional Permalloy tracks are, however, not suitable for higher bit density devices because they require a large driving field. To overcome this problem, ion-implanted tracks have been developed. Physics of ion-implantation to garnets and the ion-implanted tracks have been studied and understood. The ion-implanted devices have been developed as 16-Mbit hybrid devices. The ion-implanted bubble technology is promising for 64-Mbit devices in the near future. In packaging, the innovative development has been done. The PFC (Picture Frame Core) packages reduce the device size drastically. In the future, the Bloch line memory - an ultra-high density memory will be developed, based on bubble memory technology. This paper reviews these technologies in detail.

  5. Large-Scale Clustering in Bubble Models

    CERN Document Server

    Borgani, S

    1993-01-01

    We analyze the statistical properties of bubble models for the large-scale distribution of galaxies. To this aim, we realize static simulations, in which galaxies are mostly randomly arranged in the regions surrounding bubbles. As a first test, we realize simulations of the Lick map, by suitably projecting the three-dimensional simulations. In this way, we are able to safely compare the angular correlation function implied by a bubbly geometry to that of the APM sample. We find that several bubble models provide an adequate amount of large-scale correlation, which nicely fits that of APM galaxies. Further, we apply the statistics of the count-in-cell moments to the three-dimensional distribution and compare them with available observational data on variance, skewness and kurtosis. Based on our purely geometrical constructions, we find that a well defined hierarchical scaling of higher order moments up to scales $\\sim 70\\hm$. The overall emerging picture is that the bubbly geometry is well suited to reproduce ...

  6. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  7. Inflation and bubbles in general relativity

    Science.gov (United States)

    Laguna-Castillo, Pablo; Matzner, Richard A.

    1986-11-01

    Following Israel's study of singular hypersurfaces and thin shells in general relativity, the complete set of Einstein's field equations in the presence of a bubble boundary SIGMA is reviewed for all spherically symmetric embedding four-geometries M+/-. The mapping that identifies points between the boundaries Σ+ and Σ- is obtained explicitly when the regions M+ and M- are described by a de Sitter and a Minkowski metric, respectively. In addition, the evolution of a bubble with vanishing surface energy density is studied in a spatially flat Robertson-Walker space-time, for region M- radiation dominated with a vanishing cosmological constant, and an energy equation in M+ determined by the matching. It is found that this type of bubble leads to a ``worm-hole'' matching; that is, an infinite extent exterior of a sphere is joined across the wall to another infinite extent exterior of a sphere. Interior-interior matches are also possible. Under this model, solutions for a bubble following a Hubble law are analyzed. Numerical solutions for bubbles with constant tension are also obtained.

  8. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author)

  9. On the dynamics of moving single bubble sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Galavani, Zeinab, E-mail: z_galavani@sina.kntu.ac.i [Department of Physics, K. N. Toosi University of Technology, P.O. Box: 16315-1618, Tehran (Iran, Islamic Republic of); Rezaei-Nasirabad, Reza, E-mail: rezanuc_83@ph.iut.ac.i [Department of Physics, Isfahan University of Technology, P.O. Box: 84154, Isfahan (Iran, Islamic Republic of); Bhattarai, Suresh [Department of Physics, St. Xavier' s College, P.O. Box: 7437, Kathmandu (Nepal)

    2010-10-04

    It is well known that the primary Bjerknes force is the origin of the trapping of sonoluminescing bubble in the sound field in liquid. In the present Letter, the quantitative investigation of the behavior of hydrodynamic force on the moving sonoluminescing (SL) bubble introduces the new role of stabilizing the trajectory motion of the bubble for primary Bjerknes force. Using a complete force balanced radial-translational dynamics, it is analytically discussed that by increasing the bubble distance from the antinode of the sound field the increase of the magnitude of inward Bjerknes force, controls the size of the domain of the bubble trajectory. At this time the wake produced by the rapid variation of the bubble's relative translational velocity to the surrounding liquid, changes the bubble direction of motion through the effect of history force. The required momentum for accelerating the SL bubble around the central antinode is produced by the added mass force at the bubble collapse. It is revealed in a re-examination of the coupled radial-translational dynamics for a trapping bubble that because of the bubble lower translational acceleration caused due to the lower added mass force and the bubble attraction towards the acoustic antinodes in presence of inward Bjerknes force, the small bubble will be trapped at the antinode of the sound field.

  10. Trapping of helium in nano-bubbles in euxenite: Positive identification and implications

    Science.gov (United States)

    Seydoux-Guillaume, Anne-Magali; David, Marie-Laure; Alix, Kevin; Datas, Lucien; Bingen, Bernard

    2016-08-01

    The (Y,REE,U,Th)-(Nb,Ta,Ti) oxides, like euxenite, fergusonite, pyrochlore, zirconolite, are known to contain nanometric spherical cavities or bubbles, interpreted to contain radiogenic helium. In-situ analyses by Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) inside nano-bubbles from an euxenite crystal, sampled in its host c. 920 Ma old pegmatite in Norway, deliver, for the first time, a positive identification of helium and an estimation of helium pressure in such bubbles. The chemically unaltered euxenite crystal proves amorphous and homogeneously speckled with bubbles ranging from 5 to 68 nm in diameter, around a log-normal distribution centered at 19 nm. The euxenite contains 9.87 wt% UO2 and 3.15 wt% ThO2. It accumulated a theoretical alpha-decay dose of 3.46 ×1020 α / g (i.e. 170 He/nm3), at a dose rate of 11 926 α / g / s. This corresponds to production of 0.23 wt% He. The density of helium inside the bubbles, estimated from EELS data, ranges from 2 to 45 He/nm3, leading to a pressure of 8 to 500 MPa. The proportion of produced helium trapped in bubbles is about 10%. Helium bubbles clearly influence helium diffusion. They may contribute to the swelling of euxenite during amorphization and to the fracturing of the host rock. Our results suggest that dose, dose rate and structural state seem to be important parameters for the nucleation, growth and coalescence of helium bubbles but also demonstrate the crucial need of experimental studies to be able to develop a predictive model of the long term behavior of materials in response to helium irradiation. Furthermore, chemical alteration of euxenite, here materialized by fluid driven dissolution-precipitation towards silica bearing euxenite, removes the bubbles and mobilizes helium into the rock via cracks and grain boundaries. It is then suggested that helium-rich fluid released from such U-Th rich sources may percolate into surrounding rock units

  11. Pattern Generation by Bubble Packing Method

    Directory of Open Access Journals (Sweden)

    Goel V.K.

    2013-06-01

    Full Text Available This paper presents a new computational method forornamental Pattern design. The work is a concerted effort ofevaluation of various methods and the comparatively betterprocess is used for designing keeping in mind the accuracyrequirement for such Indian traditional ethnic designs. The firststep in the process to apply the CAD tools to design the patterns.Small semantics (profile are made using the mathematicalmodelling to make different pattern. Geometric constraints suchas scaling, rotation, transformation etc. are applied to make andmodify the profiles. To create patterns, obtains node locationsthrough a physically based particle simulation, which we call'bubble packing. Bubbles are closely packed on the corners,edges and on the surface domain, and nodes are placed at thecenters of the bubbles. Experimental results show that ourmethod can create high quality ornamental patterns. Thefabrication of the ornaments is on rapid prototype machine.

  12. Bubbles of Nothing and Supersymmetric Compactifications

    CERN Document Server

    Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon

    2016-01-01

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such "topologically unobstructed" cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to $M_3 \\times S_1$ presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this dec...

  13. One Bubble to Rule Them All

    CERN Document Server

    Hartle, James

    2016-01-01

    We apply the principles of quantum mechanics and quantum cosmology to predict probabilities for our local observations of a universe undergoing false vacuum eternal inflation. At a sufficiently fine-grained level, histories of the universe describe a mosaic of bubble universes separated by inflationary regions. We show that predictions for local observations can be obtained directly from sets of much coarser grained histories which only follow a single bubble. These coarse-grained histories contain neither information about our unobservable location nor about the unobservable large-scale structure outside our own bubble. Applied to a landscape of false vacua in the no-boundary state we predict our local universe emerged from the dominant decay channel of the lowest energy false vacuum. We compare and contrast this framework for prediction based on quantum cosmology with traditional approaches to the measure problem in cosmology.

  14. Bubbles, shocks and elementary technical trading strategies

    Science.gov (United States)

    Fry, John

    2014-01-01

    In this paper we provide a unifying framework for a set of seemingly disparate models for bubbles, shocks and elementary technical trading strategies in financial markets. Markets operate by balancing intrinsic levels of risk and return. This seemingly simple observation is commonly over-looked by academics and practitioners alike. Our model shares its origins in statistical physics with others. However, under our approach, changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. This structure leads to an improved physical and econometric model. We develop models for bubbles, shocks and elementary technical trading strategies. The list of empirical applications is both interesting and topical and includes real-estate bubbles and the on-going Eurozone crisis. We close by comparing the results of our model with purely qualitative findings from the finance literature.

  15. Rational speculative bubbles: A critical view

    Directory of Open Access Journals (Sweden)

    Radonjić Ognjen

    2007-01-01

    Full Text Available According to the theory of rational bubbles, the bubble is present whenever asset prices progressively diverge from their fundamental value, which occurs because agents expect that asset prices will continue to grow exponentially (self-fulfilling prophecies far in the future and consistently, which promises the realization of ever larger capital gains. In our opinion, the basic shortcoming of this theory refers to the assumption that all market agents are perfectly informed and rational and, accordingly, form homogeneous expectations. The model does not explain decision-making processes or expectation formation, nor does it detect potential psychological and institutional factors that might significantly influence decision making processes and market participants’ reactions to news. Since assumptions of the model critically determine its validity, we conclude that comprehensiveness of the rational bubble model is, to put it mildly, limited.

  16. Photon Bubble Turbulence in Cold Atomic Gases

    CERN Document Server

    Rodrigues, João D; Ferreira, António V; Terças, Hugo; Kaiser, Robin; Mendonça, José T

    2016-01-01

    Turbulent radiation flow is ubiquitous in many physical systems where light-matter interaction becomes relevant. Photon bubbling, in particular, has been identified as the main source of turbulent radiation transport in many astrophysical objects, such as stars and accretion disks. This mechanism takes place when radiation trapping in optically dense media becomes unstable, leading to the energy dissipation from the larger to the smaller bubbles. Here, we report on the observation of photon bubble turbulence in cold atomic gases in the presence of multiple scattering of light. The instability is theoretically explained by a fluid description for the atom density coupled to a diffusive transport equation for the photons, which is known to be accurate in the multiple scattering regime investigated here. We determine the power spectrum of the atom density fluctuations, which displays an unusual $\\sim k^{-4}$ scaling, and entails a complex underlying turbulent dynamics resulting from the formation of dynamical bu...

  17. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    Science.gov (United States)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  18. Bubble of Real Estate Does Not Appear in Beijing

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The report newly issued by Citigroup enables the people in Beijing to feel consoling that Beijing does not appear bubble in real estate. But the bubble of real estate has appeared only in Shanghai, Tianjin,Shenyang and Ningbo.

  19. On the (im)possibility of warp bubbles

    OpenAIRE

    Broeck, Chris Van Den

    1999-01-01

    Various objections against Alcubierre's warp drive geometry are reviewed. Superluminal warp bubbles seem an unlikey possibility within the framework of general relativity and quantum field theory, although subluminal bubbles may still be possible.

  20. Blowing Bubbles: An Interdisciplinary Science and Mathematics Lab.

    Science.gov (United States)

    Stallings, Lynn; Wimpey, Kim

    2000-01-01

    Introduces a bubble activity to teach about the nature of molecules, surface tension, light waves, and color. Explains how to make the bubble solution and includes a lab worksheet with answers to the questions. (YDS)