WorldWideScience

Sample records for bruno leuschner-2 reactor

  1. Bruno Latour

    DEFF Research Database (Denmark)

    Blok, Anders; Jensen, Torben Elgaard

    French sociologist and philosopher, Bruno Latour, is one of the most significant and creative thinkers of the last decades. Bruno Latour: Hybrid thoughts in a hybrid world is the first comprehensive and accessible English-language introduction to this multi-faceted work. The book focuses on core...

  2. Bruno Latour

    DEFF Research Database (Denmark)

    Blok, Anders; Elgaard Jensen, Torben

    Denne bog er en introduktion til den franske sociolog og filosof Bruno Latour. Bogen er en indføring i Latours forfatterskab og de discipliner, han har beskæftiget sig med og medvirket til at udvikle – f.eks. STS (Science, Technology, Society) og ANT (aktør-netværks-teori). Bogen tager afsæt i en...

  3. Bruno 2016 / Karin Paulus

    Index Scriptorium Estoniae

    Paulus, Karin, 1975-

    2016-01-01

    Valik disainiauhinnale Bruno 2016 kandideerivatest esemetest (Gerda Retter "Jääkideta nahadisain", Raul Abner "Kummut Mix", Argo Ader ja Rain Aduson "Fitbi - spordi mugavalt!", Merili Sulg "Seinašabloon Kasemets", Rita Assor "Lugemispesa-mänguala Aas", Mare Kelpman "Terra pleedid", Henri Viljarand "Vineervalamu Gniss")

  4. "Dvojnaya zvezda" Dzhordano Bruno %t "Double star" of Giordano Bruno

    Science.gov (United States)

    Vizgin, V. P.

    Giordano Bruno's contribution to the history of astronomy includes first of all the infinitiste conception of the Universe incompatible with the Aristotelian one. But the Italian thinker was the great innovator with typically archaic mentality, at least to a considerable extent. The paper presents Bruno's work and life within its cultural and historical context that permits to explain this basic duality of his personality. In the paper are used the most recent editions of documents concerning Bruno's life and doctrine.

  5. Bruno Zumino (1923 - 2014)

    CERN Multimedia

    2014-01-01

    Bruno Zumino died in Berkeley, California, on 21* June, aged 91. His name is mainly associated with the formulation of supersymmetry in four-dimensional space–time.   Bruno Zumino in 1985. (Image credit: Lawrence Berkeley National Laboratory.) Zumino graduated in physics at the University of Rome in 1945 and worked in Göttingen and then at New York University, where he became Chair of the Physics Department. In 1968, he joined the Theory Division at CERN, staying until 1981. It was here that he did his pioneering work with Julius Wess of Karlsruhe in which they formulated the first supersymmetric four-dimensional quantum field theory – the Wess–Zumino model – in 1974. Today supersymmetry is a strong candidate for physics beyond the Standard Model and provides some candidate particles for dark matter. In 1976, two years after its formulation, supersymmetry was combined with the gravitational force, giving birth to supergravity and stunning deve...

  6. Bruno Righini (1931-2014)

    CERN Multimedia

    2014-01-01

    It was with great sadness that we learnt of the passing of our former colleague, Bruno Righini, after a sudden and cruel illness.   Bruno Righini. In his 32 years of work at CERN, Bruno was responsible for the Electronic Test and Maintenance group of EP division. He was a physicist at the University of Bologna and had written textbooks on General and Transient Electronics. Upon his arrival in 1964, he oriented the still small group towards experimental physics, which at the time was going from bubble chamber photographic detectors to counters and electronic recording. This development propelled the creation of new sections of digital electronics and data acquisition, both being fields where Bruno’s competence was outstanding. Sections in charge of instruments, of their design and of the study of the corresponding specifications and standards were duly extended.    In short, the group became responsible for the evaluation, selection and procurement of the electron...

  7. Bruno Pontecorvo selected scientific works recollections on Bruno Pontecorvo

    CERN Document Server

    Pontecorvo, Bruno; Blokhintseva, T D; Cifarelli, L; Matveev, V A; Pokrovskaya, I G; Sapozhnikov, M G

    2013-01-01

    To celebrate the 100th anniversary of the birth of Bruno Pontecorvo, the Italian Physical Society (Società Italiana di Fisica, SIF) in Italy and the Joint Institute for Nuclear Research (JINR, Dubna) in Russia have decided to publish a new expanded edition of the volume "B. Pontecorvo Selected Scientific Works - Recollections on B. Pontecorvo" (Società Italiana di Fisica, Bologna, 1997).

  8. Bruno Ferretti (1913-2010)

    CERN Multimedia

    2010-01-01

    Bruno Ferretti, a key figure in European physics during the early days of CERN and the Laboratory's first director in charge of theoretical physics, passed away on 11 August. A leading physicist, he made important contributions in nuclear and elementary particle physics, quantum field theory and the physics of bremsstrahlung in crystals.   From left to right Felix Bloch, Bruno Ferretti, H J Bhabha and Wolfgang Pauli in 1948. Born and educated in Bologna, Ferretti was part of the group of people in Rome who pursued research in fundamental physics in the early 1940s, despite the hardships of the times. It was there, at the Physics Institute, that he worked with Edoardo Amaldi on ideas for what was to become CERN. In December 1950, at a meeting called by Pierre Auger in the headquarters of the Centre européen de la culture promoted by Denis de Rougemont, Ferretti submitted to the group for scientific studies and research a concise proposal, including costs, for “a European nucl...

  9. Giordano Bruno tuleriit / Paul-Eerik Rummo

    Index Scriptorium Estoniae

    Rummo, Paul-Eerik, 1942-

    2003-01-01

    Sisu: Giordano Bruno tuleriit ; Laul kohmakast kromanjoonlasest ; Eit, jõnglane ja rändaja. Augustiõhtu ; Mäng ; Ballaad mürsukillust südames ; Laul ühest uljast Napoleoni allohvitserist ... ; Hamleti laulud 1 ; Ükskord ennepuiste ; Kinni hoidmas ; Hea et soolagi

  10. Bruno Taut and the Glass House

    DEFF Research Database (Denmark)

    Beim, Anne

    1997-01-01

    The Paper presents a tectonic analysis of the Glass House of Bruno Taut,  exhibited at the 1925 Wrkbund Exposition in Cologne, 1925. This is discussed in correlation with the cultural ideas and artistic inspiration he was influenced by and the innovative technological development that ruled...

  11. Bruno Touschek and the art of physics

    CERN Document Server

    Agapito, Enrico

    2007-01-01

    Bruno Touschek was born in Vienna in 1921 and died in Igls, Austria, in 1978. He was the first to design and bring to completion the first electron-positron collider, the storage ring (Anello di Accumulazione) AdA, built in Frascati, Italy, in 1960.

  12. The contribution of Giordano Bruno to the principle of relativity

    Science.gov (United States)

    De Angelis, Alessandro; Santo, Catarina Espirito

    2015-11-01

    The trial and condemnation of Giordano Bruno was mainly based on arguments of a philosophical and theological nature, and therefore different from Galileo Galilei's trial. Such elements contribute to unfairly devalue the scientific contribution of Bruno and do not properly account for his contribution to physics. This paper discusses the contribution that Bruno made to the principle of relativity. This was first discussed by Galileo Galilei in 1632 using the metaphor known today as 'Galileo's ship', but we shall show that this same metaphor and some of the examples in Galileo's book were already contained in a dialogue published by Bruno in 1584. In fact, Bruno largely anticipated the arguments of Galilei on the relativity principle, in particular to support the Copernican view. It is likely that Galilei was aware of Bruno's work, and it is possible that the young Galilei discussed it with Bruno, since they both stayed in Venice for long periods in 1592.

  13. Lovejoy’s readings of Bruno

    DEFF Research Database (Denmark)

    Catana, Leo

    2010-01-01

    Lovejoy made rather grand methodological statements about the nature of history of ideas in his Great chain of being (1936). These statemens were, it is argued, rhetorical declarations, intended to produce the conviction in the minds of his readers that history of ideas was distinct from history...... of philosophy and thus deserved institutional independence; they were not adequate descriptions of the method actually practiced. Instead, Lovejoy’s historiographical practice can be contextualized within nineteenth-century general histories of philosophy. His studies on Giordano Bruno, dating from 1904...

  14. Bruno's Spaccio and Hyginus' Poetica Astronomica

    DEFF Research Database (Denmark)

    Catana, Leo

    2000-01-01

    The narrative framework of Giordano Bruno’s dialogue Lo spaccio de la bestia trionfante was inspired by Lucian of Samosata and his dialogue The Parliament of the Gods. In this article it is argued that Bruno, within that framework, developed an abundant imagery of astrological constellations...... inspired by the Poetica astronomica, a text ascribed to the Roman mythographer and astronomer Gaius Julius Hyginus (2nd century AD). Already in Lucian’s dialogue, astrological constellations were incorporated into the narrative framework, and precisely this union was imitated in the Renaissance by Leon...

  15. Half Life - The divided life of Bruno Maximovitch Pontecorvo

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    When Bruno Pontecorvo fled to the USSR at the height of the Cold War in 1950, half way through his life, the British Government, MI5 and FBI tried to portray him as scientifically insignificant, and to imply that his disappearance posed no threat to the West. In reality Pontecorvo was already one of the leading experts in nuclear physics, and recently declassified papers reveal that a prime agenda of FBI and MI5 was to cover up their errors. . During his time in the USSR he made major contributions to physics, and justified the sobriquet: "Mr Neutrino". This talk will reveal the background to his sudden flight, and also evaluate his work in theoretical physics in the aftermath of his arrival in Dubna. Previously secret documents now show that he proposed the concept of associated production before Gell Mann and Pais, and he had an idea to discover the neutrino at a reactor. He may be considered the father of neutrino astronomy with his successful prediction that neutrinos from a supernova could be detected, b...

  16. Postphenomenology vs Postpositivism : Don Ihde vs Bruno Latour

    OpenAIRE

    Flores, Fernando

    2014-01-01

    Our presentation will try to clarify the differences between Postphenomenology and Postpositivism. Contemporary studies of technology and its relation to science are very much inspired by the works of Don Ihde and Bruno Latour.Updated February 2016.

  17. Giordano Bruno e il Problema della Modernita

    Directory of Open Access Journals (Sweden)

    Stefano Ulliana

    2005-08-01

    Full Text Available Il testo viene pubblicato per gentile concessione della casa editrice ESI ed e’ tratto dal libro di Stefano Ulliana “Il concetto creativo e dialettico dello Spirito nei Dialoghi Italiani di Giordano Bruno. Il confronto con la tradizione neoplatonico-aristotelica: il testo bruniano De l’Infinito, Universo e mondi”, Edizioni Scientifiche Italiane, Napoli, 2003. Le argomentazioni presentate ne Il concetto creativo e dialettico dello Spirito nei Dialoghi Italiani di Giordano Bruno (Il confronto con la tradizione neoplatonico-aristotelica: il testo bruniano De l’Infinito, Universo e mondi costituiscono le conclusioni ultime e definitive di un lavoro di ricerca che ha investito l’insieme dei Dialoghi Italiani, riuscendo a reperire ed a far emergere quello che pare il nucleo più profondo ed importante—il vero e proprio elevato fondamento—della speculazione bruniana: la presenza attiva di un concetto triadico teologico-politico—il Padre, il Figlio e lo Spirito della tradizione trinitaria cristiana—però riformulato attraverso il capovolgimento rivoluzionario di questa stessa tradizione, attuato attraverso il concetto creativo e dialettico dell’infinito. In questo modo la stessa tradizione platonica pare subire una trasformazione essenziale, abbandonando qualunque forma di alienazione e negazione, per riaprirsi invece verso soluzioni che paiono riprendere moniti ed osservazioni suscitati dalle prime, grandi e maestose, speculazioni dei filosofi presocratici. Parmenide, Eraclito ed Empedocle sembrano rivivere nei testi bruniani, riproponendo una soluzione ben diversa a quei nodi e problemi teoretico-pratici—fondamentale il rapporto Uno-molti e tutto ciò che da esso consegue, sia sul piano naturale che politico—apparentemente risolti e codificati dal pensiero postsocratico, prima platonico e poi aristotelico. L’inscindibilit� del principio di libert� (la figura teologica del Padre ed eguaglianza (il Figlio, attraverso

  18. Pensar la materialidad de los afectos con Giordano Bruno

    Directory of Open Access Journals (Sweden)

    Valentina Bulo

    2016-08-01

    Full Text Available Este ensayo se propone hacer una lectura del texto "De los vínculos en general" de Giordano Bruno a partir de su propia reelaboración de la idea de materia y en vistas al planteamiento actual de la afectividad. No buscamos hacer una lectura historiográfica de Bruno sino más bien nos esforzamos en traer su filosofía para replantearla desde nuestras actuales problemáticas. Para esto partiremos describiendo algunos rasgos relevantes de la idea de materia en Giordano Bruno para luego desde allí acercarnos a su teoría general de los vínculos. Finalmente realizaremos algunas consideraciones de la afectividad a partir de los vínculos brunianos.

  19. Techno-phenomenology: Martin Heidegger and Bruno Latour on ...

    African Journals Online (AJOL)

    This article will set out to elucidate the ways in which the philosophies of technology of Martin Heidegger and Bruno Latour seek to explain how the phenomenal world of nature, objects and tools come to presence as events through their interrelations with each other and with us. Both thinkers seek to overcome a ...

  20. Bruno Touschek e l'arte della fisica

    CERN Document Server

    Agapito, Enrico

    2007-01-01

    Bruno Touschek, nato a Vienna nel 1921 e morto a Igls, in Austria, nel 1978, fu il fisico che nel 1960 progettò e portò a compimento, la costruzione di AdA, il primo Anello di Accumulazione di materia e antimateria (elettroni e positroni), presso i Laboratori del CNEN di Frascati.

  1. Lutshim dizaineram vrutshenõ premii Bruno / Tiina Kolk

    Index Scriptorium Estoniae

    Kolk, Tiina

    2008-01-01

    26. septembril tehti Arhitektuuri- ja disainigaleriis teatavaks Eesti disainiauhinna Bruno võitjad. Parima tootedisaini preemia sai Mare Kelpman, parima disainiprojekti eest sai preemia Tarmo Luisk ja eeskujuliku design management'i eest sai preemia ByRoller. Rahvusvahelisse žürii koosseis. Kommenteerib Ilona Gurjanova

  2. (Re)associating Bruno Latour and Martin Heidegger

    DEFF Research Database (Denmark)

    Riis, Søren

    Martin Heidegger og Bruno Latour har været skelsættende tænkere inden for hver deres forskningsområder i årtier. Mens Heidegger fundamentalt har påvirket forløbet af filosofien i det tyvende århundrede, har Latour været banebrydende i sociologi og science and technology studies gennem de seneste...

  3. Identidade e erotismo em Batuque, de Bruno de Menezes

    OpenAIRE

    SANTOS, Josiclei de Souza

    2007-01-01

    Analisa através das ferramentas dos estudos culturais, o erotismo na obra Batuque do poeta Bruno de Menezes, como meio de leitura para se estudar a identidade negra. Para tanto se estudou o conceito de erotismo relacionado ao corpo e ao sagrado, enquanto manifestação identitária negra. O estudo do fenômeno da identidade do erotismo serviu de base para a análise de como o autor, através do erotismo na linguagem, construiu o signo poético, fruto do fenômeno do hibridismo. ABSTRACT: It analys...

  4. How to Rediscover Our Ground After Nature? A Conversation with Bruno Latour

    DEFF Research Database (Denmark)

    Vandsø, Anette; Thorsen, Line Marie

    2017-01-01

    Et interview med Bruno Latour om kunstens rolle ifht den grundlæggende reorientering mod jorden, gaia som er påkrævet netop nu......Et interview med Bruno Latour om kunstens rolle ifht den grundlæggende reorientering mod jorden, gaia som er påkrævet netop nu...

  5. Bruno Touschek, from Betatrons to Electron-positron Colliders

    CERN Document Server

    Bernardini, Carlo; Pellegrini, Claudio

    2015-01-01

    Bruno Touschek's life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders, storage rings, and gave important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology environmental sciences and cultural heritage studies. We describe Touschek's life in Austria, where he was born, Germany, where he participated to the construction of a betatron during WWII, and Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his life style and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  6. nas teorias de Anthony Giddens e Bruno Latour

    Directory of Open Access Journals (Sweden)

    Karine Pereira Goss

    2006-01-01

    Full Text Available The article discusses three important qualitative currents critical of functionalism: social phenomenology, symbolic interactionism and ethnomethodology. Initially it introduces the main theories and authors that influence each one of those approaches. Then it describes the main theoretical and methodological assumptions of each one of them, their common aspects and most important representatives. Then it analyzes the role they ascribe to the actors cognition, as this is one of the basic principles that is common to the three of them. The article also tries to demonstrate how two contemporary sociologists – Anthony Giddens and Bruno Latour – who are heirs of different sociological traditions share some of the main precepts of those approaches. Finally, besides reflecting on the contributions that the three currents have given to social science, it stresses that one of the ways for sociology to recover a creative perspective is to retrieve the theoretical knowledge in conjunction with the empirical study developed by interactionist schools.

  7. Bruno Rossi and the Racial Laws of Fascist Italy

    Science.gov (United States)

    Bonolis, Luisa

    2011-03-01

    Bruno Rossi (1905-1993), one of the giants of 20th-century physics, was a pioneer in cosmic-ray physics and virtually every other aspect of high-energy astrophysics. His scientific career began at the University of Florence in 1928 and continued at the University of Padua until 1938, when the Fascist anti-Semitic racial laws were passed in Italy. He was dismissed from his professorship and was forced to emigrate, as described in unpublished letters and documents that display the international character of physics and physicists. His young bride Nora Lombroso, his love of physics, and the solidarity of the physics community gave him the courage to begin a new life in Copenhagen, Manchester, and in the New World at the University of Chicago, Cornell University, Los Alamos, and after the Second World War at the Massachusetts Institute of Technology where he became the center of a worldwide research network.

  8. The contribution of Giordano Bruno to the special principle of relativity

    CERN Document Server

    De Angelis, Alesandro

    2015-01-01

    The trial and condemnation of Giordano Bruno was mainly based on arguments of philosophical and theological nature, and therefore di?erent from Galilei's. Such elements contribute to unfairly devalue the scientific contribution of Bruno and do not properly account in particular for his contribution to physics. This paper discusses the contribution of Bruno to the principle of relativity. According to common knowledge, the special principle of relativity was first enunciated in 1632 by Galileo Galilei in his Dialogo sopra i due massimi sistemi del mondo (Dialogue concerning the two chief world systems), using the metaphor today known as "Galileo's ship": in a boat moving at constant speed, the mechanical phenomena can be described by the same laws holding on Earth. We shall show that the same metaphor and some of the examples in Galilei's book were already contained in the dialogue La cena de le Ceneri (The Ash Wednesday Supper) published by Giordano Bruno in 1584. In fact, Giordano Bruno largely anticipated t...

  9. Critical remarks on Bruno Thuring's polemic against Einstein.

    Science.gov (United States)

    Kerschbaum, F.; Lackner, K.; Posch, T.

    2005-08-01

    Bruno Thüring (1905-1989) was among those scientists who joined the campaign against Einstein's Theories of Relativity which was undertaken in the name of so-called "German Physics". Thüring served as director of Vienna's University Observatory between 1940-45; hence, we present biographical information on his scientific and administrative activities in Vienna, partly based on interviews with time-witnesses. It is one of Thüring's basic convictions that Einstein's work cannot be understood without an analysis of the developments of physics and philosophy in the 19th century. While this is true generally, Thüring's account of these developments is rather superficial. For example, Thüring considers Kant's idea of the a priori status of geometry as a wholly sufficient epistemological foundation of mechanics, while both post-Kantian idealism and positivism were a mere backdrop to the development of knowledge - a view which can hardly stand critical examination. Concerning the impact of Einstein's theories on physics, Thüring argues that the principles of special and general relativity be nothing else but arbitrary decisions (as opposed to real insights). Hence these principles would never be verified or falsified by any experiment. The Michelson-Moreley experiment, e.g., would not prove the principles of special relativity. Thüring considers Einstein's interpretation of this experiment as premature and as an arbitrary judgement on a very particular and subaltern phenomenon which would not justify the conclusion that the velocity of the Earth with respect to the luminiferous aether be immeasurable by just any experimental technique.

  10. Giordano Bruno e il Problema della Modernità

    Directory of Open Access Journals (Sweden)

    Stefano Ulliana

    2005-01-01

    Full Text Available Il testo viene pubblicato per gentile concessione della casa editrice ESI ed e’ tratto dal libro di Stefano Ulliana “Il concetto creativo e dialettico dello Spirito nei Dialoghi Italiani di Giordano Bruno. Il confronto con la tradizione neoplatonico-aristotelica: il testo bruniano De l’Infinito, Universo e mondi”, Edizioni Scientifiche Italiane, Napoli, 2003. Le argomentazioni presentate ne Il concetto creativo e dialettico dello Spirito nei Dialoghi Italiani di Giordano Bruno (Il confronto con la tradizione neoplatonico-aristotelica: il testo bruniano De l’Infinito, Universo e mondi costituiscono le conclusioni ultime e definitive di un lavoro di ricerca che ha investito l’insieme dei Dialoghi Italiani, riuscendo a reperire ed a far emergere quello che pare il nucleo più profondo ed importante—il vero e proprio elevato fondamento—della speculazione bruniana: la presenza attiva di un concetto triadico teologico-politico—il Padre, il Figlio e lo Spirito della tradizione trinitaria cristiana—però riformulato attraverso il capovolgimento rivoluzionario di questa stessa tradizione, attuato attraverso il concetto creativo e dialettico dell’infinito. In questo modo la stessa tradizione platonica pare subire una trasformazione essenziale, abbandonando qualunque forma di alienazione e negazione, per riaprirsi invece verso soluzioni che paiono riprendere moniti ed osservazioni suscitati dalle prime, grandi e maestose, speculazioni dei filosofi presocratici. Parmenide, Eraclito ed Empedocle sembrano rivivere nei testi bruniani, riproponendo una soluzione ben diversa a quei nodi e problemi teoretico-pratici—fondamentale il rapporto Uno-molti e tutto ciò che da esso consegue, sia sul piano naturale che politico—apparentemente risolti e codificati dal pensiero postsocratico, prima platonico e poi aristotelico. L’inscindibilità del principio di libertà (la figura teologica del Padre ed eguaglianza (il Figlio, attraverso il

  11. Bruno Munari and the invention of modern graphic design in Italy, 1928-1945

    NARCIS (Netherlands)

    Colizzi, Alessandro

    2011-01-01

    This study examines Bruno Munari’s work as a graphic designer from the late 1920s to mid-1940s, with the aim of understanding the emergence and characteristics of the modernist trend in Italian graphic design. Taking shape in Milan, an original ‘design culture’ eclectically brought together two

  12. Searching for an Estonian design hit among the Brunos / Herke Vaarmann

    Index Scriptorium Estoniae

    Vaarmann, Herke, 1981-

    2009-01-01

    Eesti disainist. Eesti Disainerite Liit annab 2006. aastast välja disainiauhinda Bruno. 26. 09. 2008 anti teist korda välja disainiauhinnad kolmes kategoorias: parim tootedisain - Mare Kelpmani padjakollektsioon "Lights & Stripes", parim disainiprojekt - Tarmo Luisu "LED Stick" valgusti, eeskujuliku design management'i preemia - byRoller. Preemiale kandideerinud valgustitest, mis võiksid edu saavutada

  13. The Object(s) of Culture: Bruno Latour and the Relationship between Science and Culture.

    Science.gov (United States)

    Doll, William E., Jr.; Petrina, Stephen

    This paper begins by describing the type of newspaper stories about global warming, AIDS vaccines, and frozen embryos that are neither pure science nor pure politics. The paper states that the French sociologist and commentator on cultural trends, Bruno Latour, calls such stories "hybrid articles." It suggests that the purity of the…

  14. The Correspondence of Bruno Bettelheim and Rudolf Ekstein.

    Science.gov (United States)

    Fisher, David James

    2006-01-01

    This paper provides the historical, cultural, and clinical context for the relationship between Bruno Bettelheim (1903-1990) and Rudolf Ekstein (1912-2005). Both were Viennese-born and trained intellectuals who received doctorates in the human sciences from the University of Vienna in 1937. Both were deeply identified with lay analysis, emphasizing that for psychoanalysis to perpetuate itself it needed to promote serious and rigorous forms of research. Because Bettelheim was the better known of the two, this introduction focuses on Ekstein's family history, with special emphasis on his experience of loss and trauma and his capacity to recover from personal and educational obstacles. It argues that Ekstein was a representative product of Austro-Marxism in the period between the wars, embracing the ethical brand of democratic socialism and group solidarity that was integral to the theory and practice of Austrian Social Democracy. It discusses Ekstein's training with Moritz Schlick in philosophy and his immersion in the Vienna Circle of logical positivism. From Schlick, Ekstein evolved into a philosophical thinker who learned how to think his own thoughts. Ekstein joined the circle of psychoanalytic pedagogues who clustered around the Vienna Psychoanalytic Society, under the tutelage of Willi Hoffer, August Aichhorn and, above all, Anna Freud. The clinical component of psychoanalysis emanated from his commitment to understanding the inner world of the child. Bettelheim and Ekstein first became aware of each other from reading the analytic literature and finally met in America in the 1950s. They shared a professional interest in conducting research and doing clinical work on severely disturbed children and adolescents, including those with psychotic, borderline and autistic diagnoses. They debated the value of milieu therapy versus psychoanalytically oriented psychotherapy on such children. As their relationship evolved, the two collaborated and began a fascinating

  15. Engineer projects Bruno Caballero in Havana, between tradition and the new system to practice the profession

    Directory of Open Access Journals (Sweden)

    Consuelo Gómez López

    2016-12-01

    Full Text Available This paper deals with the study of the figure and the work carried out by the Spanish Military Engineer Bruno Caballero in the Plaza of Havana between 1717 and 1730, from the corpus of plans and projects executed for walls and fortifications. His figure is presented as an exponent of a group of engineers who had to work straddles two training realities, adapting a work based on experimentation and technical renovation, the demands of a new way of understanding the theory and practice of engineering emerged from the creation in 1711 of the National Corps of Engineers. Particular attention is focused to how the new system professionalization influenced the importance given to projects and drawing when run is provided. Keywords: Bruno Caballero, Havana, projects, drawing, military engineer. I progetti dell’ingegnere Bruno Caballero a L’Avana, tra tradizione e un nuovo sistema di esercizio della professione Il presente articolo studia la figura e il lavoro svolto a L’Avana dall’ingegnere militare spagnolo Bruno Caballero tra il 1717 e il 1740, partendo dal corpus di piani e progetti delle mura e delle fortificazioni della città che lui stesso disegnò. Il suo ruolo fu quello di esponente di un gruppo d'ingegneri che dovettero lavorare tra due realtà molto diverse tra loro, adattando un metodo basato sulla sperimentazione e sul rinnovamento tecnico alle esigenze di un nuovo modo di concepire la teoria e la pratica dell’ingegneria, nato a partire dal 1711 con la creazione del Real Cuerpo de Ingenieros. Nell’articolo si presta particolare attenzione all’influenza che esercitò il nuovo sistema professionale sull’importanza conferita ai progetti, e in particolare ai disegni, e sulla realizzazione delle opere di fortificazione e di difesa. Parole chiave: Bruno Caballero, L'Avana, progetti, disegno, ingegnere militare.

  16. Vienna University Observatory and Bruno Thüring (German Title: Die Wiener Universitätssternwarte und Bruno Thüring )

    Science.gov (United States)

    Kerschbaum, Franz; Posch, Thomas; Lackner, Karin

    We investigate Bruno Thüring's political attitude during the time of National Socialism, based on material from the Vienna Observatory archive, and on statements by his contemporaries. The contribution focuses on the filling of astronomy positions in Vienna, and also on the expulsion of Kasimir Graff. A central role is played by Wilhelm Führer, Obersturmführer der Waffen-SS (Senior Storm Leader of the Armed Protection Squad) and chief civil servant in the Reich science ministry. The transcription of an original letter of 1939 by Führer, addressed to Thüring, is given.

  17. Preservação da qualidade pós-colheita de kiwi 'bruno' pelo controle do etileno Postharvest quality preservation of 'bruno' kiwifruit by ethylene control

    Directory of Open Access Journals (Sweden)

    Marcelo José Vieira

    2010-06-01

    Full Text Available Objetivou-se determinar os efeitos do 1-MCP sobre a conservação pós-colheita de kiwi, cultivar Bruno, armazenado sob atmosfera do ar (AA e atmosfera controlada (AC. Os frutos foram colhidos em abril de 2003 e 2004. Três dias após a colheita, parte dos frutos foi tratada com 1,0 µL.L-1 de 1-MCP e armazenada sob atmosfera do ar (AA e AC com baixo etileno. O tratamento com 1-MCP retardou o aumento da taxa de produção de etileno e reduziu a respiração após remoção de câmara fria, resultando assim no retardo da perda de firmeza da polpa e na redução do desenvolvimento de pericarpo translúcido e senescente. O tratamento com 1-MCP não apresentou efeito significativo sobre os teores de sólidos solúveis. Frutos armazenados sob AA apresentaram alto metabolismo, resultando em baixo potencial de armazenamento, mesmo na presença do 1-MCP. Máxima conservação da qualidade pós-colheita de kiwi 'Bruno' foi observada em frutos tratados com 1-MCP e armazenados sob AC com baixo etileno.This research was carried out to study the effects of 1-MCP on postharvest quality preservation of kiwi 'Bruno' storage under controlled atmosphere and air. Fruits were harvested in April of 2003 and 2004. Three days after harvesting, part of the fruits was treated with 1.0 µL.L-1 of 1-MCP, while the other part remained untreated (control, and then both lots were stored under air (AA and CA with low ethylene. The treatment with 1-MCP delayed the increase in ethylene production rate and reduced respiration of the fruit after removal from cold storage. This was associated with a delay of loss in flesh firmness and a reduction of pericarp translucent and senescent. Treatment with 1-MCP showed no significant effect on SS content. Fruit stored under AA showed high metabolism, resulting in a low storage potential, evenwhentreated with 1-MCP. The greatest benefits on postharvest quality preservation of kiwifruit 'Bruno' was achieved in fruit treated with 1-MCP and

  18. The Function of Play in Bruno Munari’s Children’s Books. A Historical Overview

    OpenAIRE

    Marnie Campagnaro

    2016-01-01

    The ludic dimension of Bruno Munari’s prolific children’s book publishing activity plays an important role, as far as narration and visual arts are concerned. Since the 1940s, and for the following 50 years, books, play and education were fundamental reference points in the artistic production and critical thinking of this Milanese artist. Munari cultivated these influences with extraordinary results in his picturebooks. The following analysis of some of Munari’s texts offers a historical-cri...

  19. Bruno Munari and the invention of modern graphic design in Italy, 1928-1945

    OpenAIRE

    Colizzi, Alessandro

    2011-01-01

    This study examines Bruno Munari’s work as a graphic designer from the late 1920s to mid-1940s, with the aim of understanding the emergence and characteristics of the modernist trend in Italian graphic design. Taking shape in Milan, an original ‘design culture’ eclectically brought together two quite different strains of Modernity: a local tradition represented by the Futurist avant-garde, and a European tradition associated with Constructivism. Munari (1907–1998) worked simultaneously as pai...

  20. Constructivismo y sociología. Siete tesis de Bruno Latour

    Directory of Open Access Journals (Sweden)

    Pablo de Grande

    2013-01-01

    Full Text Available Bruno Latour postula que la sociología contemporánea se dedica en buena medida a explicar cómo ciertas configuraciones sociales (tales que las jerarquías de poder o las desigualdades estructurales afectan el funcionamiento de otros ámbitos en sus contenidos no sociales (tales que el derecho, la religión o el arte. Como consecuencia de esto, la misma habría abandonado su misión primaria de explicar lo social por sí mismo, además de estar produciendo explicaciones repetitivas y poco interesantes. El presente artículo reúne elementos teóricos de diferentes obras de Bruno Latour en función de elaborar siete tesis sobre su crítica radical a la sociología contemporánea. La propuesta principal de Latour es reformular la investigación social, abriendo la ‘caja negra' en la que lo social ha venido a convertirse. Finalmente se realizan algunas consideraciones sobre usos y limitaciones de las posiciones de Bruno Latour.

  1. La postura de Bruno Taut frente al color: la mesa expresionista

    OpenAIRE

    López-Izquierdo, Pía

    2014-01-01

    [EN] Objectives: To determine the role of colour in architecture in the German ExpressionismApproach: In the interwar period, it is hoped the art and architecture in the construction of the House of Utopia. We Begin an exploration on the role of colour in this process, from German Expressionism, with the paradigmatic example of Bruno Taut.Conclusions: Based on the tables of Aby Warburg, we propose a colour table from the expressionist approach “to transform the reality” as tools for colour se...

  2. Bruno Taut e il Ministero della Cultura turco. Traiettorie professionali nella Turchia Repubblicana (1936-1938)

    OpenAIRE

    Gasco, Giorgio

    2007-01-01

    La tesis se compone de cuatro partes. La primera tiene carácter introductivo, ofreciendo un visión general de la breve pero intensa experiencia profesional de Bruno Taut en Turquía. En particular evidencia como el acercamiento a la modernidad ejercido por Taut, bajo un punto de vista teórico y práctico, haya encontrado perfecta sintonía en el contexto cultural de la joven Republica Turca. Gracias a esta empatía Taut ganó el papel privilegiado de Experto en los debates culturales de aquellos a...

  3. Bruno Latour, actor-networks, and the critique of critical sociology

    Directory of Open Access Journals (Sweden)

    Spasić Ivana

    2007-01-01

    Full Text Available The paper analyzes the theoretical opus of Bruno Latour and his treatment of the concept of critique. In the first section "actor-network theory" is presented through its key notions (actant, network, translation, associations together with Latour’s theory of modernity. In the second section various aspects of the relation between Latour and critique are discussed - first his own criticism of others (standard sociology and especially "critical", i.e. Bourdieu’s sociology, then the criticisms aimed at his work, to conclude with the political ambivalences of Latour’s attempt to develop an "acritical" social theory. .

  4. Thomas Digges and Giordano Bruno: 400 Years of Plurality of Worlds

    Science.gov (United States)

    Corbally, C. J.

    1999-05-01

    Some four hundred years ago was the fascinating era when modern astronomy began. Its ``beginning" came with the establishment of the heliocentric universe in people's minds. From Nicolaus Copernicus, through Thomas Digges, to Giordano Bruno we can trace how the Copernican system progressed to the idea of an infinite universe, and how this gave birth to a new tradition in thinking about the plurality of worlds. While this progression does not appear to have been by direct encounter between the principal players, the vision of one was incorporated into the thought of the next. Such progression in our understanding of the universe continues today -- and presumably tomorrow.

  5. Engineer projects Bruno Caballero in Havana, between tradition and the new system to practice the profession

    OpenAIRE

    Consuelo Gómez López; Jesús López Díaz

    2016-01-01

    This paper deals with the study of the figure and the work carried out by the Spanish Military Engineer Bruno Caballero in the Plaza of Havana between 1717 and 1730, from the corpus of plans and projects executed for walls and fortifications. His figure is presented as an exponent of a group of engineers who had to work straddles two training realities, adapting a work based on experimentation and technical renovation, the demands of a new way of understanding the theory and practice of engin...

  6. Cooperación Sur – Sur: Regionalismos e integración en América Latina. Bruno Ayllon; Tahina Ojeda; Javier Surasky

    OpenAIRE

    Solano-Mercado, Ixhel; Benemérita Universidad Autónoma de Puebla (BUAP), México.

    2015-01-01

    Review of the book "Cooperación Sur – Sur: Regionalismos e integración en América Latina" by Bruno Ayllon; Tahina Ojeda; Javier Surasky Reseña del libro "Cooperación Sur – Sur: Regionalismos e integración en América Latina" escrito por Bruno Ayllon; Tahina Ojeda; Javier Surasky.

  7. Varianti d’autore: Invenzioni su una voce di Bruno Maderna

    Directory of Open Access Journals (Sweden)

    Antonio Rodà

    2009-11-01

    Full Text Available Author’s variants: Invenzioni su una voce by Bruno MadernaThe analogue audio documents, containing the Electronic works of the second half of the XX Century, are often the result of a transmission process whose phe-nomenology, although it presents some peculiarities, shows analogies with the tex-tual tradition. In this context, Dimensioni II. Invenzione su una voce by Bruno Mad-erna is an interesting case study: the more than twenty reviewed sources, which are different for duration, content, and recording format; the existence of at least five author’s variants; the many relations among the Helm’s text, the Berberian’s per-formance, the electronic elaborations, and the tape editing process require edition criteria able to render the tradition of the work in its complex articulation. This paper gives a detailed analysis of the audio sources of Invenzione su una voce, based on a deep knowledge of the electronic “writing system”, by mean of which the work has been generated.

  8. Bruno Touschek: particle physicist and father of the electron-positron collider

    CERN Document Server

    Bonolis, Luisa

    2011-01-01

    This article gives a brief outline of the life and works of the Austrian physicist Bruno Touschek, who conceived, proposed and, 50 years ago, brought to completion the construction of AdA, the first electron-positron storage ring. The events which led to the approval of the AdA pro ject and the Franco-Italian collaboration which con- firmed the feasibility of electron-positron storage rings will be recalled. We shall illustrate Bruno Touschek's formation both as a theoretical physicist and as an expert in particle accelerators during the period be- tween the time he had to leave the Vienna Staat Gymnasium in 1938, because of his Jewish origin from the maternal side, until he arrived in Italy in the early 1950s and, in 1960, proposed to build AdA, in Frascati. The events which led to Touschek's collaboration with Rolf Wideroe in the construction of the first European betatron will be de- scribed. The article will make use of a number of unpublished as well as previously unknown documents, which include an earl...

  9. Bruno Braunerde und die Bodentypen - Learning about soil diversity and soil functions with cartoon characters

    Science.gov (United States)

    Hofmann, Anett

    2015-04-01

    "Bruno Braunerde und die Bodentypen" is a German-language learning material that fosters discovery of soil diversity and soil functions in kids, teens and adults who enjoy interactive learning activities. The learning material consists of (i) a large poster (dimensions 200 x 120 cm) showing an imaginative illustrated landscape that could be situated in Austria, Switzerland or southern Germany and (ii) a set of 15 magnetic cards that show different soil cartoon characters, e.g. Bruno Braunerde (Cambisol), Stauni Pseudogley (Stagnic Luvisol) or Heidi Podsol (Podzol) on the front and a fun profession and address (linked to the respective soil functions) on the back side. The task is to place the soil cartoon characters to their 'home' in the landscape. This learning material was developed as a contribution to the International Year of Soils 2015 and is supported by the German, Austrian and Swiss Soil Sciences Societies and the Swiss Federal Office for the Environment. The soil cartoon characters are an adaptation of the original concept by the James Hutton Institute, Aberdeen, Scotland (www.hutton.ac.uk/learning/dirt-doctor).

  10. BRUNO CUNNAIH

    African Journals Online (AJOL)

    cistvr

    Suit ensuite la phase Oedipienne avec la peur de la castration, où la séparation devient définitive. Alors, le sujet entre dans l'ordre symbolique et la chora sera plus ou moins refoulée. Cependant, la chora se fait sentir en tant que pulsion et elle exerce notamment des pressions sur le langage symbolique qui seront perçues ...

  11. Bruno Latour

    DEFF Research Database (Denmark)

    Blok, Anders; Jensen, Torben Elgaard

    pioneered an approach to socio-cultural analysis built on the notion that social life arise in complex networks of actants – people, things, ideas, norms, technologies, and so on – influencing each other in dynamic ways. This book explores how Latour helps us make sense of the changing interrelations...

  12. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  13. The Function of Play in Bruno Munari’s Children’s Books. A Historical Overview

    Directory of Open Access Journals (Sweden)

    Marnie Campagnaro

    2016-11-01

    Full Text Available The ludic dimension of Bruno Munari’s prolific children’s book publishing activity plays an important role, as far as narration and visual arts are concerned. Since the 1940s, and for the following 50 years, books, play and education were fundamental reference points in the artistic production and critical thinking of this Milanese artist. Munari cultivated these influences with extraordinary results in his picturebooks. The following analysis of some of Munari’s texts offers a historical-critical perspective on the value, function and representation of play in this vast production. The present research relies on three main analytical categories: co-authorship, disorientation and the experience of the limit.

  14. Book Presentation: “L’Energia del vuoto” by Bruno Arpaia

    CERN Multimedia

    CERN Library

    2012-01-01

    “It is nighttime on a Swiss highway. A car travels at high speed, heading to Marseilles. Pietro Leone, UN Geneva civil servant, is at the wheel. His son Nico is asleep next to him. The two are fleeing from something unknown...   ... Pietro only knows that, for the past few days, someone has been discreetly following him and his family, and that his wife Emilia, a CERN researcher, vanished from home a few days before…” Would you like to know what happens next? The Library, in cooperation with the association “Cultura Italia”, is organizing a presentation of “L’energia del vuoto”. A brief introduction to this book will be followed by a debate among the participants. Bruno Arpaia, journalist, writer and translator, has written 3 novels and 4 political essays. “L’energia del vuoto” is his latest novel, inspired by a visit he paid to CERN.   “L’energia del...

  15. The Actaeon Myth according to G. Bruno and G. B. Marino

    Directory of Open Access Journals (Sweden)

    Patrizia Farinelli

    2012-12-01

    Full Text Available The paper examines how the classical myth of Actaeon was adopted in the post-Renaissance period by two anti-Classicist authors, Bruno and Marino, whose approaches to the myth differ despite their common rejection of the Classicist aesthetic paradigm. In one of the sonnets making up Giordano Bruno’s dialogue De gli eroici furori (1585, the Actaeon myth is invested with a new, philosophical meaning, and used to represent a new gnoseological concept. An idyll, on the other hand, included in Giovan Battista Marino’s La Sampogna collection (1620, displays a tendency to hyperliterariness and a taste for surprise effects, proposing a version of the myth which admits a metatextual interpretation. The present study compares each author’s writing practice to their respective poetological positions and analyses it in the light of intertextual references.

  16. Il lungo freddo storia di Bruno Pontecorvo, lo scienziato che scelse l'URSS

    CERN Document Server

    Mafai, Miriam

    2012-01-01

    Nelle parole della grande giornalista recentemente scomparsa, la documentata narrazione della storia di Bruno Pontecorvo, fisico nucleare di fama mondiale che, nel pieno della Guerra fredda, scelse di abbandonare l'Occidente e di lavorare e vivere nell'Unione Sovietica. Grazie alla capacità della Mafai nel ricostruire gli eventi cruciali della vita di Pontecorvo in un nuovo quadro rivelatore, "Il lungo freddo" non offre solo un'inedita prospettiva sulla drammatica corsa alla bomba atomica - dalle decisive scoperte del Progetto Manhattan alla tragica esplosione di Hiroshima, dalla prima atomica sovietica alla bomba all'idrogeno - ma rappresenta soprattutto la memoria collettiva di una generazione che ha posto la politica al centro delle proprie scelte di vita. E svela i drammi umani di un conflitto che per più di quarant'anni ha diviso il mondo.

  17. A half-life the divided life of Bruno Pontecorvo, physicist or spy

    CERN Document Server

    Close, Frank

    2015-01-01

    Bruno Pontecorvo dedicated his career to hunting for the Higgs boson of his day: the neutrino, a nearly massless particle considered essential to the process of nuclear fission. His work on the Manhattan project under Enrico Fermi confirmed his reputation as a brilliant physicist and helped usher in the nuclear age. He should have won a Nobel Prize, but late in the summer of 1950 he vanished. At the height of the Cold War, Pontecorvo had disappeared behind the Iron Curtain. In Half-Life, physicist and historian Frank Close offers a heretofore untold history of Pontecorvo’s life, based on unprecedented access to his friends, family, and colleagues. With all the elements of a Cold War thriller—classified atomic research, an infamous double agent, a kidnapping by Soviet operatives—Half-Life is a history of particle physics at perhaps its most powerful: when it created the bomb.

  18. Frank Close presents his book "Neutrino" and a forthcoming book on Bruno Pontecorvo

    CERN Multimedia

    2013-01-01

    Frank Close's book "Neutrino" is short listed for the Italian Galileo Prize. Frank describes how he was inspired to write about Ray Davis' heroic quest to do what many thought was impossible: detecting neutrinos from the sun. He will also describe how he has, in turn, become fascinated by the life and work of "Mr Neutrino" - Bruno Pontecorvo - and is writing a biography of him.   By choosing to move to the USSR suddenly in 1950, Pontecorvo missed out on getting full credit for several seminal ideas about neutrinos including, possibly, their discovery. Why he went to the USSR so suddenly has been unresolved for 60 years. Frank's book "A Life of Two Halves" may answer this question, in 2014. He will update on progress so far. Wednesday 17 April at 4 p.m. in the Library, 52-1-052 Tea and coffee will be served from 3:30 p.m. Here on Indico.

  19. Masochisms. Mythologizing as an Aesthetics of Crisis in the Work of Bruno Schulz

    Directory of Open Access Journals (Sweden)

    Janis Augsburger

    2011-01-01

    Full Text Available The study Masochisms. Mythologizing as an Aesthetics of Crisis in the Work of Bruno Schulz, parts of which have been translated below, presents the thesis that in the work of B. Schulz the phenomenon of mythologizing is connected with masochism – a concept conceived of as a historical, cultural and aesthetic interpretative category. The combination of the two phenomena makes it possible to notice some relationships between Schulz’s literary and graphic works which have not been recognized yet. The author discusses some psychoanalytical, sociological, historical and philosophical notions of masochism applicable to a literary text. She tries to describe the “masochistic aesthetics” appearing in Schulz’s short stories (on the narrative level: lack of motion, suspense, tension and in his graphics (theatricalization, lack of eye contact between the figures and shows how this aesthetics integrates the prose of Schulz, his Idolatrous Book and his illustrations for the short story The Book.

  20. LIBERTAD EN EL ORDEN. BRUNO MORASSUTTI, EL ARTE DE LA PREFABRICACIÓN / Freedom in order. Bruno Morassutti, the art of prefabrication

    Directory of Open Access Journals (Sweden)

    Carmen Díez Medina

    2012-05-01

    Full Text Available RESUMEN En la Italia de la posguerra fue la llamada segunda generación de arquitectos racionalistas, entre los que se encontraban Ignazio Gardella, Ernesto N. Rogers o Franco Albini, la que hizo evolucionar la tradición moderna italiana dejando atrás los dogmatismos formales de la primera, a quien había liderado Terragni. La tradición fue el instrumento que permitió, por un lado, la reconciliación con la historia y, por otro, recuperar la presencia del hombre en una arquitectura que la vanguardia había deshumanizado. Con ingenio y creatividad se consiguió hibridar los fundamentos de las soluciones tradicionales con las posibilidades técnicas y los materiales que en aquellos años estaban al alcance. Estos arquitectos allanaron el camino a los que les sucedieron, a la llamada "tercera generación". A ella pertenece Bruno Morassutti (Padua, 1920, a quien está dedicado este texto, que logró, gracias a su exquisita formación, a su voluntad de aproximarse a la arquitectura desde la práctica y a su enorme talento como constructor, explorar una "terza maniera", abrir una nueva vía por la que poder avanzar críticamente en la Italia de la segunda posguerra a partir de las experiencias desarrolladas por el Movimiento Moderno. Con herramientas como la modulación y la seriación, en el ámbito del diseño, y los sistemas constructivos prefabricados o el montaje por elementos en el de la construcción, consiguió superar la escasez de medios sin renunciar a su apuesta personal. SUMMARY In post-war Italy, architects belonging to the so-called second generation of Italian rationalist architects, such as Ignazio Gardella, Ernesto N. Rogers and Franco Albini, allowed the modern Italian tradition to evolve, leaving behind the formal dogmatism of the first generation, which was led by Terragni. Tradition was the instrument that allowed them to reconcile with history and restore the presence of man within an architecture that the avant-garde had

  1. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  2. Bruno Thüring's utopical post-war plans for Vienna (German Title: Bruno Thürings utopische Nachkriegspläne für Wien)

    Science.gov (United States)

    Schembor, Friedrich Wilhelm

    2011-08-01

    The head of the Viennese Observatory, Bruno Thüuring, as a stout National Socialist, interpreted WW2, which was already under way, as a short-time intermezzo. A new observatory, allegedly promised to him at his appointment, should have been erected after the end of WW2. Lay criteria without scientific survey let find him a suitable building site. Only his call-up to the Wehrmacht in March 1943 put a stop to further preparatory work.

  3. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  4. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  5. Studies on stem cuttings of kiwi (Actinidia chinensis PL. CV Bruno

    Directory of Open Access Journals (Sweden)

    Elizabeth O. Ono

    2000-01-01

    Full Text Available The work was carried out to study the effects of some auxins and boron in the rooting of kiwi (Actinidia chinensis Planch cv Bruno stem cuttings.. These cuttings were treated on the base individually with H2O; NAA 300 mg.L-1; IBA 300 mg.L-1; NAA 300 mg.L-1 + Boron; IBA 300 mg.L-1 + Boron; NAA 0,5%-talc and IBA 0,5%-talc. After the treatments, the cuttings were placed in styrofoam trays with vermiculite under moist conditions for 120 days. The evaluation of auxin and boric acid effects were made by observing rooted stem cuttings percentage; reducing and total sugar analysis (g/100 g of dry matter; and tryptophan analysis (in µg/100 mg of dry matter. The effects of such treatments were observed during four seasons of the year. The results showed that summer season was the best for rooting. Use of IBA or NAA in the cuttings showed to be unnecessary.O presente trabalho teve como objetivo, estudar o efeito de auxinas sintéticas e do boro, sobre o enraizamento de estacas caulinares de kiwi (Actinidia chinensisPlanch. cv Bruno. As estacas continham dois nós com aproximadamente 10 cm de comprimento, contendo 2 folhas cortadas ao meio. As bases das estacas receberam os seguintes tratamentos: control (H2O; NAA 300 mg.L-1; IBA 300 mg.L-1; NAA 300 mg.L-1 + B; IBA 300 mg.L-1 + B; NAA 0,5%-pó e IBA 0,5%-pó. Após os tratamentos as estacas foram plantadas em bandejas de enraizamento contendo vermiculita pura e colocadas em câmara de nebulização por 120 dias até a coleta das mesmas. Para a avaliação do efeito das auxinas e boro, foram realizadas as seguintes observações: 1. porcentagem de estacas enraizadas; 2. análise de açúcares redutores e açúcares totais (em g/100 g de matéria seca; 3. análise de triptofano (em µg/100 mg de matéria seca. Além disso, foram verificados o efeito dos tratamentos em quatro épocas, que corresponderam às estações do ano (primavera, verão, outono e inverno. Através dos resultados obtidos no processo de

  6. Cronache del disincanto. Una comparazione tra Manuel Vázquez Montalbán e Bruno Morchio

    Directory of Open Access Journals (Sweden)

    Alessio Piras

    2016-05-01

    Full Text Available This essay applies the crónica del desincanto theory to Bruno Morchio's crime fiction through a comparison between the first three novels of the Bacci Pagano's series and the first three novels of the Pepe Carvalho sagas, by Manuel Vázquez Montalbán. The comparison aims also to introduce to Italy the notion of disincanto as a critical perspective for the study of crime fictions and for the interpretation of the contemporary Italian society.

  7. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  8. Brute force meets Bruno force in parameter optimisation: introduction of novel constraints for parameter accuracy improvement by symbolic computation.

    Science.gov (United States)

    Nakatsui, M; Horimoto, K; Lemaire, F; Ürgüplü, A; Sedoglavic, A; Boulier, F

    2011-09-01

    Recent remarkable advances in computer performance have enabled us to estimate parameter values by the huge power of numerical computation, the so-called 'Brute force', resulting in the high-speed simultaneous estimation of a large number of parameter values. However, these advancements have not been fully utilised to improve the accuracy of parameter estimation. Here the authors review a novel method for parameter estimation using symbolic computation power, 'Bruno force', named after Bruno Buchberger, who found the Gröbner base. In the method, the objective functions combining the symbolic computation techniques are formulated. First, the authors utilise a symbolic computation technique, differential elimination, which symbolically reduces an equivalent system of differential equations to a system in a given model. Second, since its equivalent system is frequently composed of large equations, the system is further simplified by another symbolic computation. The performance of the authors' method for parameter accuracy improvement is illustrated by two representative models in biology, a simple cascade model and a negative feedback model in comparison with the previous numerical methods. Finally, the limits and extensions of the authors' method are discussed, in terms of the possible power of 'Bruno force' for the development of a new horizon in parameter estimation.

  9. Architectural practice and theory: the case of Bruno Taut's house in Berlin-Dahlewitz

    Directory of Open Access Journals (Sweden)

    Paola Ardizzola

    2017-06-01

    Full Text Available In 1926 Bruno Taut built his own house in Berlin-Dahlewitz. The German architect had already declared his ideas of housing in the book Die neue Whonung (1924 exemplifying the new concept of modern living-style, according to Neues Bauen. In other theoretical writings he defines the Neues Bauen in relation with new needs, tendencies and aesthetics of architecture, referring to important issues as climate, topography and tradition. The book Ein Whonhaus (1927 stigmatizes the coeval construction process of his house: the thirteen chapters are a detailed analysis which give evidence to every technological and morphological choice. Taut focuses on the relationship between architecture and landscape, type of furniture, functional plan layout, use of glass; especially he enlightens the reader as to the use of colour as a construction material. The house has an unconventional shape, it is a quarter of a circle; in his writings the architect painstakingly explains the impressive plan. With the book Ein Whonhaus Taut delivers to memory his home design, transforming process and ideas related to the modern house. He breaks through conventions and changes the notions of what Modernism could produce. The paper highlights the theoretical production related to the architect’s own house as praxis for doing architecture, emphasizing Taut’s contribution to a dialectic mutual relationship between theoretical and architectural practice, in order to achieve a more conscious and effective design process.

  10. CONVECTION REACTOR

    Science.gov (United States)

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  11. Il monitoraggio della produzione trofica: uno strumento per la gestione dell'orso bruno

    Directory of Open Access Journals (Sweden)

    M. Cagno

    2003-10-01

    Full Text Available La variabilità stagionale e annuale della disponibilità di cibo influenza gli spostamenti dell'orso bruno, il potenziale riproduttivo e la suscettibilità alla mortalità causata dall'uomo. Il monitoraggio della produzione trofica annuale e stagionale è un importante strumento gestionale, consentendo la valutazione delle potenzialità trofiche di un'area e la calibrazione di interventi di conservazione. La produzione trofica può essere valutata a diversi livelli secondo una complessità crescente. La valutazione visuale in classi fatta da osservatori esperti è un metodo veloce e poco dispendioso, ma la sua relazione con la produzione reale non è mai stata verificata. Lo scopo di questa ricerca è verificare se la produzione stimata visivamente in classi di abbondanza è un indice attendibile della produzione reale valutata con la conta dei frutti. Due osservatori hanno rilevato indipendentemente la valutazione della produzione trofica tramite a stima visuale in classi di abbondanza, b conta dei frutti presenti su 10 rami di 1937 piante appartenenti a 19 specie di arbusti. Sono state individuate 4 classi di abbondanza: 0, produzione nulla o quasi; 1, produzione < della media; 2, produzione media; 3, produzione > della media. I dati della valutazione sono stati raggruppati per classe di produzione (fattore di classificazione con la conta totale dei frutti come variabile dipendente; tramite analisi della varianza è stato verificato se il numero di frutti in una certa classe di abbondanza fosse significativamente diverso dal numero di frutti rispetto alle altre classi di abbondanza. Il numero totale di frutti è risultato significativamente diverso tra le classi di produzione e per ogni confronto tra coppie di classi. Tali risultati giustificano un monitoraggio speditivo e visuale della produzione trofica con risparmio in termini di risorse umane, fornendo un quadro biologicamente e statisticamente correlato alla produzione reale, a patto che

  12. Aumento de matéria orgânica num latossolo bruno em plantio direto

    Directory of Open Access Journals (Sweden)

    Costa Falberni de Souza

    2004-01-01

    Full Text Available O aumento do estoque de matéria orgânica do solo em sistemas conservacionistas de manejo é dependente do tipo de solo e das condições climáticas, e tem reflexos na qualidade física do solo. Neste estudo, avaliou-se um experimento de longa duração (21 anos quanto ao efeito do sistema plantio direto (PD sobre os estoques de carbono orgânico total (COT e particulado (COP, >53mm, bem como a sua relação com a estabilidade de agregados de um Latossolo Bruno, em Guarapuava, PR. O solo em PD apresentou taxa de incremento de 0,15Mg ha-1 ano-1 de COT e 0,06Mg ha-1 ano-1 de COP na camada de 0-20cm, as quais foram calculadas em comparação aos estoques de carbono orgânico do solo em preparo convencional. As baixas taxas de incremento nos estoques de carbono orgânico possivelmente estejam relacionadas à alta estabilidade física da matéria orgânica neste solo argiloso e com mineralogia predominantemente gibsítica. O diâmetro médio geométrico (DMG dos agregados de solo variou de 1,6 a 3,7mm e foi positiva e linearmente relacionado com os teores de COT e COP, o que reforça a importância da matéria orgânica na qualidade física de Latossolos subtropicais.

  13. REACTOR COOLING

    Science.gov (United States)

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  14. Giordano Bruno crater on the Moon: Detection and Mapping of Hydration Features of Endogenic and/or Exogenic Nature

    Science.gov (United States)

    Saran Bhiravarasu, Sriram; Bhattacharya, Satadru; Chauhan, Prakash

    2017-10-01

    We analyze high resolution spectral and spatial data from the recent lunar missions and report the presence of strong hydration features within the inner flank, hummocky floor, ejecta and impact melt deposits of crater Giordano Bruno. Hydroxyl-bearing lithologies at Giordano Bruno are characterized primarily by a prominent absorption feature near 2800 nm, the band minima of which goes beyond 3000 nm. The hydration features are found to be associated with low-Ca pyroxene-bearing noritic lithologies along the inner crater flanks, whereas similar features are also seen within the hummocky crater floor in association with shocked plagioclase-bearing anorthositic lithology. Interestingly, the ejecta blanket is characterized by sharp, narrow features centered near 2800 nm similar to the features previously reported from Compton-Belkovich volcanic complex and central peak of crater Theophilus. The low-Ca pyroxene-bearing rock exposures within the crater inner flanks are characterized by both presence and absence of the hydration features. Enhanced hydration is also seen within the ejecta blanket covering the nearby Harkhebi K and J craters. We also analyze the impact melts and ejecta using radar images at regions interior and exterior to the Giordano Bruno crater rim.Anomalous behaviors of hydration feature associated with low-Ca pyroxene-rich exposures, its nature and occurrences within the impact melt sheets inside the crater along with the ejecta blankets could possibly indicate endogenic and/or exogenic nature of the observed hydration feature. Initial results indicate the presence of strongest hydration feature in the partially shadowed pole-facing slopes (with low-Ca pyroxene-bearing exposures) and its complete absence in the equator-facing sun-lit slopes. This hints at a possible exogenic origin, whereas the same feature occurring (with same mineral) under both sun-lit and shadowed conditions suggest it to be of magmatic origin. We propose that the heterogeneous

  15. [The dissemination of scientific knowledge, social networks and historians creating new histories: an interview with Bruno Leal].

    Science.gov (United States)

    de Carvalho, Bruno Leal Pastor; Benchimol, Jaime L; Cerqueira, Roberta Cardoso; Papi, Camilo; Lemle, Marina

    2015-01-01

    The interview with historian and journalist Bruno Leal deals with the creation of the Café História blog and the relationship between the internet, communications and the work of historians. His blog has become an important channel to promote historical material, with bibliographical references, helpful information about films, scientific events and videos related to this area. The interviewee stressed the importance of actions that combine communications with history, made criticisms of the current training given to historians and affirmed the need for curricular reform that enables new ways of producing and disseminating historical knowledge.

  16. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  17. Monitoraggio non invasivo dell'orso bruno nell'Appennino abruzzese

    Directory of Open Access Journals (Sweden)

    Annino Petrella

    2003-10-01

    Full Text Available Nell'ambito di un progetto LIFE sulla conservazione dell'orso bruno è in fase di definizione un protocollo di monitoraggio non invasivo della popolazione tramite raccolta di campioni biologici e tipizzazione del genotipo tramite DNA fingerprinting. I campioni biologici sono stati raccolti mediante: A- trappole per la cattura dei peli; B- campionamenti in centri di aggregazione stagionale; C- itinerari campione; D- opportunisticamente. Dal 2000 al 2002 sono stati raccolti complessivamente 355 campioni biologici: 67 nel 2000, 49 nel 2001 e 239 nel 2002. Nel 2002 sono stati raccolti 12 campioni provenienti dal trappolaggio dei peli, 63 campioni nei centri di aggregazione stagionale, 122 campioni tramite sopralluoghi e grazie a segnalazioni verificate, e 42 lungo percorsi campione. Sono stati individuati 13 genotipi. Di questi, 2 erano stati rinvenuti nel 2000 e nel 2001; 2 erano stati rinvenuti nel 2001 e 1 nel 2000. Nel 2002, nelle trappole di raccolta peli, sono stati rilevati 299 campioni, appartenenti a Canidae, Ursus e Ungulata. Il relativo successo di cattura per trappola (n. campioni totali anno/n. trappole totali anno è stato pari a 1,4. Il successo di cattura per cella (n° campioni/n° celle è stato pari a 8,5. Considerando solo i campioni di pelo di orso, identificati tramite analisi dell'mtDNA, il successo di cattura per trappola è stato pari a 0,009 e il successo di cattura per cella è stato di 0,05 (per 4 campioni le analisi genetiche sono ancora in corso. In tutti gli anni di campionamento il numero di genotipi rilevati è stato pari a 19. Il numero di campioni e genotipi rilevati varia in base alla metodologia di raccolta e alla localizzaizone geografica delle unità di campionamento. Nove genotipi provengono da ricerche effettuate all'esterno dell'area del progetto, a nord del Parco Nazionale d'Abruzzo. La densità minima dei genotipi rilevati nel 2002 nell'area del progetto LIFE è pari a 0

  18. Asymmetric distribution of pl10 and bruno2, new members of a conserved core of early germline determinants in cephalochordates

    Directory of Open Access Journals (Sweden)

    Simon eDailey

    2016-01-01

    Full Text Available Molecular fingerprinting of conserved germline and somatic ¨stemness¨ markers in different taxa have been key in defining the mechanism of germline specification (preformation or epigenesis, as well as expression domains of somatic progenitors. The distribution of molecular markers for primordial germ cells (PGCs, including vasa, nanos and piwil1, as well as Vasa antibody staining, support a determinative mechanism of germline specification in the cephalochordate Branchiostoma lanceolatum, similarly to other amphioxus species. pl10 and bruno2, but not bruno4/6, are also expressed in a pattern consistent with these other germline genes, adding to our repertoire of PGC markers in lancelets. Expression of nanos, vasa and the remaining markers (musashi, pufA, pufB, pumilio and piwil2 may define populations of putative somatic progenitors in the tailbud, the amphioxus posterior growth zone, or zones of proliferative activity. Finally, we also identify a novel expression domain for musashi, a classic neural stem cell marker, during notochord development in amphioxus. These results are discussed in the context of germline determination in other taxa, stem cell regulation and regenerative capacity in adult amphioxus.

  19. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  20. NUCLEAR REACTOR

    Science.gov (United States)

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  1. O crepúsculo da ética imperial habsburga em Bruno Schulz e Joseph Roth The twilight of the Habsburg imperial ethics in Bruno Schulz and Joseph Roth

    Directory of Open Access Journals (Sweden)

    Luis S. Krausz

    2007-05-01

    Full Text Available Os escritores Bruno Schulz e Joseph Roth entraram para a história da literatura, respectivamente, como representantes da literatura polonesa e austríaca, como se pertencessem a mundos diversos. Entretanto ambos compartilharam de uma memória comum, que era a vida nas províncias orientais do Império Austro-Húngaro, nas cidades de Drohobycz e Brody, hoje pertencentes à Ucrânia. As obras de ficção de Schulz e de Roth fazem referência ao universo austro-húngaro e habsburgo, um reino milenar que via a si mesmo não simplesmente como uma realidade política, mas como um império que tinha como missão trazer a seus súditos uma forma de vida considerada superior do ponto de vista espiritual, ético e moral. A idéia do Sacro Império Romano Germânico, que se considerava portador de uma mensagem humana, subsistiu, até o século 20, no longo reinado do Kaiser Francisco José e neste sentido a 1ª Guerra Mundial significa não simplesmente o desmembramento político do Império Austro-Húngaro em seus diferentes componentes, mas também a falência de uma idéia de Estado que transcendia à esfera do meramente político para tornar-se um lar espiritual e cultural para seus súditos. O mundo que sobreveio à 1ª Guerra Mundial é marcado pelas tendências fáustico-titânicas de um individualismo materialista, que devota todas suas energias à produção e à acumulação de capital, e é sobre este novo mundo que Schulz e Roth olham em suas obras, sempre do ponto de vista de um universo anterior, marcado pela nostalgia de um exílio irreversível. Palavras-chave: Nostalgia. Exílio. Império Habsburgo. Joseph Roth. Bruno Schulz. Bruno Schulz and Joseph Roth figure in the history of literature as Representatives of Polish and Austrian literature, respectively, as if they were part of different worlds. However, both share a common memory: the life in the eastern provinces of the Austrian-Hungarian Empire, in the cities of Drohobycz

  2. Determination of Budget Expenditures for Hospital Units, Using Econometric Techniques. Case General Hospital “Dr. Juan Bruno Zayas”

    Directory of Open Access Journals (Sweden)

    Rafael Ángel Formigo–Tejera

    2015-12-01

    Full Text Available In the Guidelines for Economic and Social Policy of the Party and the Revolution adopted at the Sixth Congress of the PCC is a need to raise the quality of health care services and improve the attention to the health personnel. In this regard, it has prioritized improving budget planning spending at all levels. The results obtained by applying the method of Exponential Smoothing for 2012, in the General Hospital "Dr. Juan Bruno Zayas Alfonso" will meet the aforementioned objectives. Comparing these results with what really executed in the first quarter, the estimate is closer, in relation with the traditional method, meaning a decrease in expenses of 1,8 %. 

  3. Refrigerator Mothers and Sick Little Boys: Bruno Bettelheim, Eugenics and the De-Pathologization of Jewish Identity

    Directory of Open Access Journals (Sweden)

    griffin jaye epstein

    2014-06-01

    Full Text Available Child psychologist and Nazi concentration camp survivor Bruno Bettelheim’s influential theories of autism reveal a startling connection between Jewish identity, the medicalization of disability, colonial eugenics and race-making practices over the 20th century in North America. Using Bettelheim’s life and work as a case-study, this paper explores Ashkenazi Jewish immigrant complicity in a whitened colonial landscape through the lens of Disability Studies. It asks the question: can we be more accountable to our disabled identities – and to those disabled people who have come before us – if we learn how our families, our identities, our very selves have been complicit in medicalization and violence?  Keywords: madness, race, whiteness, Jewish identity, eugenics, psychiatry

  4. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  5. NEUTRONIC REACTORS

    Science.gov (United States)

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  6. Neutronic reactor

    Science.gov (United States)

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  7. Neutronic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.; Wende, C.W.

    1983-01-04

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  8. Lifting the veil to the history of education. An approach to Rosa Bruno-Jofré’s academic career, thought, and work

    Directory of Open Access Journals (Sweden)

    Jon Igelmo Zaldívar

    2014-07-01

    Full Text Available How to reference this article Igelmo Zaldívar, J; Quiroga Uceda, P. (2014. Levantando el velo de la historia de la educación. Un acercamiento a la trayectoria, el pensamiento y la obra de Rosa Bruno-Jofré. Espacio, Tiempo y Educación, 1(2, pp. 173-198. doi: http://dx.doi.org/10.14516/ete.2014.001.002.007

  9. Lifting the veil to the history of education. An approach to Rosa Bruno-Jofré’s academic career, thought, and work

    OpenAIRE

    Jon Igelmo Zaldívar; Patricia Quiroga Uceda

    2014-01-01

    How to reference this article Igelmo Zaldívar, J; Quiroga Uceda, P. (2014). Levantando el velo de la historia de la educación. Un acercamiento a la trayectoria, el pensamiento y la obra de Rosa Bruno-Jofré. Espacio, Tiempo y Educación, 1(2), pp. 173-198. doi: http://dx.doi.org/10.14516/ete.2014.001.002.007

  10. Bruno Taut: el edificio de la facultad de Ankara y el palacio Katsura de Kioto. La idea de la arquitectura en el concierto de culturas

    OpenAIRE

    Speidel, M. (Manfred)

    2016-01-01

    Los viajes de ida y vuelta que Bruno Taut y su esposa realizaron en su huida de la Alemania nazi hacia oriente le permitió adquirir una visión cosmopolita de la arquitectura que pudo plasmar durante su estancia en Japón en un voluminoso tratado, Architekturüberlegungen-Reflexiones sobre la arquitectura, al que luego sumaría Architekturlehre-Enseñar arquitectura.

  11. Bruno Ibáñez Gálvez, de oficial de Infantería a represor

    Directory of Open Access Journals (Sweden)

    Francisco Asensio Rubio

    2012-01-01

    Full Text Available Bruno Ibáñez Gálvez es conocido como uno de los represores más sanguinarios de la guerra civil española. Su actuación se centró básicamente en Córdoba, ciudad en la que se encontraba al comienzo de la contienda, en parte, por casualidad. Había sido oficial de Infantería en la guerra de África, donde participó en las operaciones de 1909. Abandonó el arma de Infantería e ingresó en la Benemérita en 1911. Vinculado con la provincia de Ciudad Real participó en sonados casos de asesinatos, como el suceso de «La reinilla» o el del asalto al expreso Madrid-Andalucía. Colaboró en la represión del movimiento obrero (1912, 1914, 1917, como militar anti-republicano abandonó el servicio activo durante el primer bienio, reingresando en el segundo. En 1936 estuvo a las órdenes del coronel Cascajo en Córdoba, donde ocupó la Jefatura de Orden Público y el gobierno civil entre 1936 y 1937. Relevado del mando en esa ciudad desempeñó otros cargos hasta el final de la guerra en distintos destinos. Falleció en 1947.Bruno Ibañez Gálvez is well-known as one of the cruelest oppressors of the Spanish Civil War. Primarily, he focused his actions on Cordoba city where he was by chance at the outbreak of the war. In 1909 he took part in the Africa War operations as an infantry officer. In 1911, he left the Infantry and joint up the Spanish Civil Guard. Due to his closeness to Ciudad Real, he was involved in some famous murder cases as the so-called «La reinilla» or the robbery of Madrid-Andalusia express. He contributed to the workers’ movement suppression in 1912, 1914 and 1917 too. As an anti-republican, he quit the active service during the first two-year period («primer bienio» and he re-entered during the second two year period. Between 1936 and 1937, he held the Public Order Headquarters and the civil governorship at Cascajo colonel command. Then, he was removed from his post in Cordoba but he held different posts in several

  12. Nuclear Reactors. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  13. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  14. Addressing Root Causes – the Example of Bruno Kreisky and Austria’s Confrontation with Middle Eastern Terrorism

    Directory of Open Access Journals (Sweden)

    Thomas Riegler

    2011-05-01

    Full Text Available The tenure of Austrian chancellor Bruno Kreisky (1970-1983 is best known as a period of socio-political reform that profoundly transformed and modernized the country. Kreisky is also renowned as a statesman whose international stature was disproportional to Austria’s actual geopolitical insignificance. What is less well known is Kreisky’s counterterrorism policy, which is exceptional both in the context of the 1970s and 1980s as well as that of today. In short: Kreisky argued strongly that terrorism could only be tackled if its root causes were addressed. In order to fight terror, the grievances causing it have to be removed as a form of prevention. Kreisky specifically focused on the Middle Eastern conflict, which, from his point of view, could only be solved by means of a just peace. To achieve this result, a legitimate political representation of the Palestinian cause had to be fostered, thereby rendering the rampant “armed struggle” of militant Palestinians obsolete. This article aims to explore and evaluate Kreisky’s unique counterterrorism policy - both in terms of its successes and failures: on the one hand, Kreisky contributed to the international legitimisation of the Palestinian Liberation Organization (PLO and its chairman, Yassir Arafat, while, on the other hand, Austria suffered some ‘ blowback’ in the form of terrorist attacks orchestrated by hard-line Palestinian elements.

  15. Walther Bothe and Bruno Rossi: the birth and development of coincidence methods in cosmic-ray physics

    CERN Document Server

    Bonolis, Luisa

    2011-01-01

    Theoretical and experimental developments in the 1920s that accompanied the birth of coincidence methods, as well as later crucial applications during the 1930s and 1940s are presented. First, in 1924 Walther Bothe and Hans Geiger applied a coincidence method to the study of Compton scattering with Geiger needle counters. Their historical experiment confirmed the physical reality of radiation quanta and established beyond doubt the strict validity of conservation principles in elementary processes. Then, at the end of the 1920s, Bothe and Werner Kolh\\"orster coupled the coincidence technique with the brand-new Geiger-M\\"uller counter to study cosmic rays, and marked the start of cosmic-ray research as truly a branch of physics. In this framework the coincidence method was further refined by Bruno Rossi, who developed a vacuum-tube electronic device, capable of registering the simultaneous occurrence of electrical pulses from any number of counters with a tenfold improvement in time resolution. The electronic ...

  16. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  17. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  18. Reactor transient

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.

    1956-05-31

    The authors are planning a calculation to be done on the Univac at the Louviers Building to estimate the effect of xenon transients, a high reactor power. This memorandum outlines the reasons why they prefer to do the work at Louviers rather than at another location, such as N.Y.U. They are to calculate the response of the reactor to a sudden change in position of the half rods. Qualitatively, the response will be a change in the rooftop ratio of the neutron flux. The rooftop ratio may oscillate with high damping, or, instead, it may oscillate for many cycles. It has not been possible for them to determine this response by hand calculation because of the complexity of the problem, and yet it is important for them to be certain that high power operation will not lead us to inherently unstable operation. Therefore they have resorted to machine computation. The system of differential equations that describes the response has seven dependent variables; therefore there are seven equations, each coupled with one or more of the others. The authors have discussed the problem with R.R. Haefner at the plant, and it is his opinion that the IBM 650 cannot adequately handle the system of seven equations because the characteristic time constants vary over a range of about 10{sup 8}. The Univac located at the Louviers Building is said to be satisfactory for this computation.

  19. Atmosfera modificada e 1-metilciclopropeno na conservação pós-colheita de kiwis cv. Bruno Modified atmosphere and 1-methylciclopropene on postharvest conservation of kiwis cv. Bruno

    Directory of Open Access Journals (Sweden)

    Leandro Camargo Neves

    2003-12-01

    Full Text Available Neste trabalho avaliou-se, em kiwis da cv Bruno, a ação do 1-Metilciclopropeno (1-MCP, na concentração de 625 ppb, associado ou não à atmosfera modificada gerada com o emprego de embalagem de polietileno de baixa densidade (PEBD, de 22µm. Os tratamentos testados foram: T1, controle (sem embalagem e 1-MCP; T2, sem embalagem com 1-MCP; T3, com embalagem de PEBD sem 1-MCP; T4, embalagem de PEBD mais o 1-MCP, sendo após armazenados em câmara fria a - 0,5 ± 0,5 ºC e 95 ± 5% de umidade relativa (U.R.. As avaliações foram realizadas após o pré-resfriamento, aos 45 dias, 45 + 5 dias (22 ± 3ºC e 75 ± 5% de U.R., 90 dias e 90 + 5 dias (22 ± 3ºC e 75 ± 5% de U.R.. As variáveis analisadas foram: firmeza de polpa (FP, sólidos totais (ST, acidez titulável (AT, concentração de etileno e de CO2 e análise sensorial (somente ao final do experimento. A maior firmeza de polpa e acidez titulável, o menor conteúdo de sólidos totais, as menores concentrações de etileno e CO2 e a melhor aceitabilidade pelos julgadores foi obtida com os frutos acondicionadas em PEBD de 22 µm e tratadas com 1-MCP.In this work was evaluated, for kiwis cv. Bruno, the Methylcyclopropene action (1-MCP, in concentration of 625 ppb, associated or not with modified atmosphere (MA using low density polyethylene bags (LDPE of 22µm. The following treatments were tested: T1: control (no bags and 1-MCP; T2 no bags with 1-MCP; T3 LDPE bags no 1-MCP; T4 LDPE bags and 1-MCP, then they were stored in cold chamber at - 0,5 ± 0,5 ºC and 95 ± 5% of RH for 45 or 90 days. The fruits were evaluated after pre-cooling, 45 days, 45 + 5 days (22 ± 3ºC and 75 ± 5% of RH., 90 days and 90 + 5 days (22 ± 3ºC and 75 ± 5% of RH.. The parameters analyzed were: pulp firmness (PF, total solids (TS, titritable acidity (TA, ethylene and CO2 concentration, and sensorial analyzes (only in the end of the experiment. The largest pulp firmness and titritable acidity, the smaller

  20. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  1. Object-oriented sociology and organizing in the face of emergency: Bruno Latour, Graham Harman and the material turn.

    Science.gov (United States)

    Pierides, Dean; Woodman, Dan

    2012-12-01

    This paper explores the material turn in sociology and the tools it provides for understanding organizational problems highlighted by the Royal Commission into the 2009 'Black Saturday' bushfires during which 173 people died in the Australian State of Victoria. Often inspired by Bruno Latour's material-semiotic sociology of associations, organization scholars employing these tools focus on the messy details of organization otherwise overlooked by approaches assuming a macroscopic frame of analysis. In Latour's approach no object is reducible to something else - such as nature, the social, or atoms - it is instead a stabilized set of relations. A Latourian approach allows us to highlight how the Royal Commission and macroscopic models of organizing do unwitting damage to their objects of inquiry by purifying the 'natural' from the 'social'. Performative elements in their schemas are mistaken for descriptive ones. However, a long standing critique of this approach claims that it becomes its own form of reduction, to nothing but relations. Graham Harman, in his object-oriented philosophy develops this critique by showing that a 'relationist' metaphysics cannot properly accommodate the capacity of 'objects' to cause or mediate surprises. Through our case of the Victorian Bushfires Royal Commission, we argue that a purely relational model of objects loosens a productive tension between the structural and ephemeral that drives sociological analysis. By drawing on elements of Harman's ontology of objects we argue that it is necessary for material-semiotic sociology to retain a central place for the emergence of sociological objects. © London School of Economics and Political Science 2012.

  2. Du secret de Polichinelle au manteau d’ArlequinPourquoi lire l’anthropologie des sciences de Bruno Latour ?

    Directory of Open Access Journals (Sweden)

    Stéphane Van Damme

    2007-06-01

    Full Text Available Discuter publiquement Bruno Latour ne laisse jamais indifférent, mais cède trop souvent la place à une logique de l’anathème, de la dénonciation fidèle à un point de vue critique et ironique sur la production sociologique, ou, effet inverse, à une impression de connivence, un esprit de chapelle, d’intertextualité implicite qui peut séduire ou irriter. Dans le champ de recherches de l’histoire moderne qui est le mien, on pourrait spontanément invalider le travail d’importation d’une telle soci...

  3. CONDUTIVIDADE HIDRÁULICA NO PROCESSO DE ELUIÇÃO EM UM SOLO BRUNO-NÃO-CÁLCICO

    Directory of Open Access Journals (Sweden)

    L.N.V. DE ANDRADE

    1996-01-01

    Full Text Available Com o objetivo de avaliar o efeito da porcentagem de sódio trocável do solo e da concentração eletrolítica da água de percolação, sobre a condutividade hidráulica em um solo Bruno-Não-Cálcico da região do Rio Salitre-BA, o presente experimento foi conduzido em condições de laboratório e consistiu da determinação da condutividade hidráulica do solo saturado utilizando-se diferentes soluções percolantes, da condutividade elétrica da solução percolada e dos teores de sódio antes e após a eluição com as soluções. Utilizando a câmara de membrana de pressão de Richards, foram determinados os teores de sódio deslocado a diferentes tensões. Uma baixa correlação entre a condutividade hidráulica e a porcentagem de sódio intercambiável foi encontrada. A aplicação da solução de sulfato de cálcio apresentou um efeito benéfico sobre a condutividade hidráulica do solo saturado, exceto quando processos irreversíveis de dissolução mineral ocorreram. Este efeito esteve associado ao pH ou ao conteúdo de carbonatos na solução percolante.The purpose of this work was to evaluate the effect of exchangeable sodium percentage and electrolite concentration of percolating water, on the hydraulic conductivity of a Noncalcic Brown Soil of the region of the River Salitre-Ba, Brazil. The experiment was conducted under laboratory conditions and consisted of the determination of the saturated hydraulic conductivity using leaching solutions with different electrolite concentrations. In addition, the eletrical conductivity of the percolate and sodium exchangeable concentration, were measured before and after percolation of the solution. Using Richards pressure-membrane apparatus, contents of sodium dislocated were measured at different tensions. A low correlation between the hydraulic conductivity and the exchangeable sodium percentage levels was found. Application of calcium sulfate solution presented a beneficial effect on the

  4. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  5. Attrition reactor system

    Science.gov (United States)

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  6. Guidebook to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

  7. Giordano Bruno's hermeneutics

    DEFF Research Database (Denmark)

    Catana, Leo

    2007-01-01

    Reviews of the book: John Henry, Renaissance studies, vol. 22.5 (2008), pp. 749-751; Daniel Stolzenberg, Renaissance Quarterly, Vol. 62.3 (2009), pp. 1000-1002.......Reviews of the book: John Henry, Renaissance studies, vol. 22.5 (2008), pp. 749-751; Daniel Stolzenberg, Renaissance Quarterly, Vol. 62.3 (2009), pp. 1000-1002....

  8. Degenerescência da polpa e respiração de quivi cv. "Bruno" em função das condições de armazenamento Internal breakdown and respiration of 'Bruno' kiwifruit in relation to storage conditions

    Directory of Open Access Journals (Sweden)

    Cristiano André Steffens

    2007-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da atmosfera controlada sobre a ocorrência da degenerescência da polpa, de sabor e aroma alcoólico no quivi cultivar "Bruno" e a relação destes parâmetros com a taxa respiratória e o quociente respiratório. Os tratamentos foram 0,5; 1,0 e 1,5kPa O2, combinados com 8, 12 e 16kPa CO2. A incidência de degenerescência da polpa e de frutos com aroma alcoólico foi menor nos frutos armazenados com 8kPa de CO2, independente do nível de O2. A taxa respiratória dos frutos foi menor nos tratamentos com 16kPa de CO2 e o quociente respiratório apresentou os maiores valores no tratamento com 0,5kPa de O2 combinado com 16kPa de CO2. A taxa respiratória correlacionou-se negativamente com a incidência de degenerescência da polpa e com a presença de aroma alcoólico. O quociente respiratório apresentou uma correlação positiva com a degenerescência da polpa e com a incidência de aroma alcoólico. Segundo a análise sensorial, os tratamentos com 1,0 e 1,5kPa de O2, combinados com 8kPa de CO2, não induziram a formação de sabor alcoólico nos frutos.This research was aimed at evaluating the effect of controlled atmosphere on the internal breakdown, alcoholic taste and flavor in ‘Bruno’ kiwifruits and the relationship between these parameters and the rate and respiratory quotient. The treatments were 0.5, 1.0 and 1.5kPa O2 combined with 8, 12 and 16kPa CO2. The internal breakdown and occurrence of fruits with flavor was lower at 8kPa of CO2 independent of O2 level. Respiration rate of fruits was lower at treatments with 16kPa of CO2 and the respiratory quotient showed highest values at treatment with 16kPa of CO2. The respiration rate was negatively correlated with internal breakdown and flavor incidence. The respiratory quotient showed a positive correlation with internal breakdown and alcoholic aroma incidence. According to sensory analysis, the treatments with 1.0 and 1.5kPa of O2 combined

  9. NUCLEAR REACTOR CONTROL SYSTEM

    Science.gov (United States)

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  10. Nuclear reactor overflow line

    Science.gov (United States)

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  11. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  12. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  13. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  14. El concepto de mediación tecnológica en Bruno Latour : una aproximación a la Teoría del Actor Red.

    Directory of Open Access Journals (Sweden)

    Gonzalo Matías Correa-Moreira.

    2012-05-01

    Full Text Available La Teoría de Actor Red (TAR se constituye en un valioso repertorio de herramientas conceptuales y metodológicas para el estudio de los fenómenos de características socio-técnicas. En el presente artículo se presenta la noción de mediación tecnológica elaborada por Bruno Latour en tanto uno de los principales elementos de esta teoría. A la vez se explica la emergencia de la TAR en los estudios sociales sobre ciencia y tecnología y se concluye en su aplicabilidad sobre fenómenos complejos de reformas y participación ciudadana que involucran a actores humanos y no humanos.

  15. Memories and public uses of the past throughout the “antisubversive struggle”. Notes about Carlos Sacheri and Jordán Bruno Genta

    Directory of Open Access Journals (Sweden)

    Facundo Cersosimo

    2016-12-01

    Full Text Available In 1974 Jordan Bruno Genta y Carlos Alberto Sacheri were murdered in the public space. By the time both intelectuals were an important reference of nationalists and catholic groups that, in the agitated political scenario of Argentina, promoted the need of an “antisubversive struggle”. As from the reconstruction of the different public wich they were subject, the present article studies the process of elaboration of alternative memories wich seek to legitimate the repressive action of the Armed Forces after the return of Democracy at 1983. At the closing of the article is also a reflection about the role of the historian at the moment of analyze those fragments of the past signed by the political violence, wich were trimmed and decontextualized to be used in the memorial combats analyzed.

  16. Bruno Crépon, Gérard Van den Berg, Politiques de l’emploi. Apprendre de l’expérience

    OpenAIRE

    Couëtoux, Jean-Edouard

    2017-01-01

    Évaluer l’efficacité des politiques actives de l’emploi apparaît comme un enjeu économique et démocratique central à l’heure où le taux de chômage s’établit en France à 10,2% et où le pays consacre 0,7% de son PIB aux politiques actives de l’emploi, même si les revenus de remplacement demeurent la principale dépense liée au chômage. Bruno Crépon, économiste au Centre de recherches en économie et statistique (CREST) et professeur à l’École nationale de la statistique et de l’administration éco...

  17. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  18. HORIZONTAL BOILING REACTOR SYSTEM

    Science.gov (United States)

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  19. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  20. THERMAL NEUTRONIC REACTOR

    Science.gov (United States)

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  1. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  2. Development of reactor graphite

    Science.gov (United States)

    Haag, G.; Mindermann, D.; Wilhelmi, G.; Persicke, H.; Ulsamer, W.

    1990-04-01

    The German graphite development programme for High Temperature Reactors has been based on the assumption that reactor graphite for core components with lifetime fluences of up to 4 × 10 22 neutrons per cm 2 (EDN) at 400°C can be manufactured from regular pitch coke. The use of secondary coke and vibrational moulding techniques have allowed production of materials with very small anisotropy, high strength, and high purity which are the most important properties of reactor graphite. A variety of graphite grades has been tested in fast neutron irradiation experiments. The results show that suitable graphites for modern High Temperature Reactors with spherical fuel elements are available.

  3. Oscillatory flow chemical reactors

    National Research Council Canada - National Science Library

    Slavnić Danijela S; Bugarski Branko M; Nikačević Nikola M

    2014-01-01

    .... However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat...

  4. Membrane reactors at Degussa.

    Science.gov (United States)

    Wöltinger, Jens; Karau, Andreas; Leuchtenberger, Wolfgang; Drauz, Karlheinz

    2005-01-01

    The review covers the development of membrane reactor technologies at Degussa for the synthesis of fine chemicals. The operation of fed-batch or continuous biocatalytic processes in the enzyme membrane reactor (EMR) is well established at Degussa. Degussa has experience of running EMRs from laboratory gram scale up to a production scale of several hundreds of tons per year. The transfer of the enzyme membrane reactor from biocatalysis to chemical catalysis in the chemzyme membrane reactor (CMR) is discussed. Various homogeneous catalysts have been investigated in the CMR, and the scope and limitation of this new technique is discussed.

  5. Pressurizing new reactors

    Energy Technology Data Exchange (ETDEWEB)

    Neill, J.S.

    1956-01-30

    The Technical Division was asked recently to consider designs for new reactors that would add 8000 MW capacity to the Savannah River Plant. One modification of the existing SRP design that would enable a higher power rating, and therefore require fewer new reactors, is an increase in the maximum pressure in the D{sub 2}O system. The existing reactors at SRP are designed for a maximum pressure in the gas plenum of only 5 psig. Higher pressures enable higher D{sub 2} temperatures and higher sheath temperatures without local boiling or burnout. The requirements in reactor cooling facilities at any given power level would therefore be reduced by pressurizing.

  6. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  7. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  8. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  9. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  10. REFLECTOR FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  11. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  12. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  13. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  14. EFEITOS DO ÁCIDO GIBERÉLICO E DA BAIXA TEMPERATURA NA GERMINAÇÃO DE SEMENTES DE KIWI (Actinidia deliciosa, A. Chev. CULTIVAR BRUNO

    Directory of Open Access Journals (Sweden)

    B MATTIUZ

    1996-01-01

    Full Text Available O kiwi é uma frutífera exótica de clima temperado cuja principal característica de seus frutos é o alto teor de vitamina C. A propagação por semente é de importância, pois além de produzir plantas que se destinem à porta-enxertos, contribui para a obtenção de novas cultivares. Pesquisas tem demonstrado um baixo índice de germinação das sementes de kiwi. O objetivo deste trabalho foi o de avaliar dois diferentes métodos de elevação do índice de germinação de sementes de kiwi, da cultivar Bruno: estratificação à baixa temperatura (4 0C, através dos tratamentos de zero, duas e quatro semanas; ácido giberélico (AG3 testado em cinco diferentes concentrações (0, 100, 500, 1.000 e 2.500 ppm. A testemunha, para ambos os métodos, apresentou um baixo percentual de germinação das sementes (2,49%. Sementes não submetidas aos tratamentos de estratificação, mostraram uma resposta significativa aos tratamentos com AG3, até a concentração de 500 ppm, após a qual se mantiveram constantes. O índice máximo de germinação de sementes não estratificadas, foi de 36,85% com 2.500 ppm de AG3. A estratificação (40C, através de seus tratamentos de duas e quatro semanas, apresentou um efeito significativo na germinação das sementes (70,23%, não ocorrendo diferença significativa entre estes. Conclui-se que o melhor método de ampliação do índice de germinação de sementes de kiwi da cultivar Bruno, foi a estratificação à baixa temperatura (40C, com tratamentos de duas ou quatro semanas de estratificação.The kiwifruit is an exotic fruit tree of temperate climate whose main characteristic is the high content of vitamin C. Seed propagation of this species is very important to produce new varieties and rootstocks. Research results have demonstrated that this species shows a low porcentage of seed germination. The objective of this study was to evaluate different procedures to overcome seed dormancy: stratification (4

  15. Nuclear reactor control column

    Science.gov (United States)

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  16. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Reactor power monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Naotaka; Igawa, Shinji; Kitazono, Hideaki

    1998-02-13

    The present invention provides a reactor power monitoring device capable of ensuring circumstance resistance, high reliability and high speed transmission even if an APRM is disposed in a reactor building (R/B). Namely, signal processing sections (APRM) for transmitting data to a central control chamber are distributed in the reactor building at an area at the lowest temperature among areas where the temperature control in an emergency state is regulated, and a transmission processing section (APRM-I/F) for transmitting data to the other systems is disposed to the central control chamber. An LPRM signal transmission processing section is constituted such that LPRM signals can be transmitted at a high speed by DMA. Set values relevant to reactor tripping (neutron flux high, thermal output high and sudden reduction of a reactor core flow rate) are stored in the APRM-I/F, and reactor tripping calculation is conducted in the APRM-I/F. With such procedure, a reactor power monitoring device having enhanced control function can be attained. (N.H.)

  18. Nuclear reactor reflector

    Science.gov (United States)

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  19. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  20. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  1. NEUTRONIC REACTOR CONTROL

    Science.gov (United States)

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  2. Nuclear reactor reflector

    Science.gov (United States)

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  3. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  4. International scientific cooperation during the 1930s. Bruno Rossi and the development of the status of cosmic rays into a branch of physics.

    Science.gov (United States)

    Bonolis, Luisa

    2014-07-01

    During the 1920s and 1930s, Italian physicists established strong relationships with scientists from other European countries and the United States. The career of Bruno Rossi, a leading personality in the study of cosmic rays and an Italian pioneer of this field of research, provides a prominent example of this kind of international cooperation. Physics underwent major changes during these turbulent years, and the traditional internationalism of physics assumed a more institutionalized character. Against this backdrop, Rossi's early work was crucial in transforming the study of cosmic rays into a branch of modern physics. His friendly relationships with eminent scientists--notably Enrico Fermi, Walther Bothe, Werner Heisenberg, Hans Bethe, and Homi Bhabha--were instrumental both for the exchange of knowledge about experimental practices and theoretical discussions, and for attracting the attention of physicists such as Arthur Compton, Louis Leprince-Ringuet, Pierre Auger and Patrick Blackett to the problem of cosmic rays. Relying on material from different archives in Europe and the United States, this case study aims to provide a glimpse of the intersection between national and international dimensions during the 1930s, at a time when the study of cosmic rays was still very much in its infancy, strongly interlaced with nuclear physics, and full of uncertain, contradictory, and puzzling results. Nevertheless, as a source of high-energy particles it became a proving ground for testing the validity of the laws of quantum electrodynamics, and made a fundamental contribution to the origins of particle physics.

  5. Los nuevos gobernantes de la Monarquía borbónica o el mundo de relaciones y servicios de Bruno Mauricio de Zavala (1682-1736

    Directory of Open Access Journals (Sweden)

    Rafael Guerrero Elecalde

    2017-12-01

    Full Text Available El reinado de Felipe V supuso un momento de importantes cambios en la Monarquía hispánica. La aplicación de las primeras reformas también conllevó el cambio de las elites gobernantes, donde los colectivos periféricos fueron privilegiados por su especial lealtad a la causa borbónica durante la Guerra de Sucesión. Entre ellos, vascos y navarros fueron especialmente privilegiados, alcanzando las más cotas de poder, Así le sucedió a Bruno Mauricio de Zavala, que alcanzó los más altos cargos en la jerarquía militar y estuvo al frente de la gobernación de Buenos Aires. Familias, negocios, capitales, patrocinios, vínculos, servidumbres, contactos en la corte o servicio al rey fueron elementos fundamentales para conocer las formas de gobierno de la Monarquía de principios del siglo XVIII, lo que ayudará a desentrañar los fundamentos de la carrera del fundador de la ciudad de Montevideo como uno de los hombres principales de Felipe V.

  6. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  7. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  8. Natural convection reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Bernath, L.; Menegus, R.L.; Ring, H.F.

    1956-05-01

    A previous report described the conceptual design of a plutonium producing reactor that may be characterized as follows: Power output (2000 MW); cooling - (natural convection of light water through the reactor, up through a draft tube to an evaporative cooling pond, then back to the reactor, and fuel (400 to 500 tons of uranium enriched to 1.2% U-235). Because this reactor would be cooled by the natural convection of light water, it is believed that the construction costs would be significantly less than for a Savannah or Hanford type reactor. Such expensive items as water treatment and water pumping facilities would be eliminated entirely. The inventory of 500 tons of slightly enriched uranium, however, is an unattractive feature. It represents not only a large dollar investment but also makes the reactor less attractive for construction during periods of national emergency because of the almost certain scarcity of even slightly enriched uranium at that time. The Atomic Energy Commission asked that the design be reviewed with the objective of reducing the inventory of uranium, The results of this review are given in this report.

  9. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  10. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  11. La reintroduzione dell'orso bruno (Ursus arctos sulle Alpi Centrali: definizione e valutazione delle core area degli individui immessi

    Directory of Open Access Journals (Sweden)

    Andrea Mustoni

    2003-10-01

    Full Text Available Per riuscire a salvare il relitto nucleo di orso bruno (Ursus arctos presente nell'area delle Dolomiti di Brenta da un'estinzione ormai inevitabile, nel 1996 il Parco Naturale Adamello Brenta (Trentino, Italia ha avviato un progetto che, nell'arco di tempo di quattro anni (1999-2002, ha permesso la liberazione nel territorio trentino di 10 esemplari di orso bruno appartenenti alla popolazione slovena. L'intera operazione ha coinvolto, oltre al Parco (PNAB, la Provincia Autonoma di Trento (PAT e l'Istituto Nazionale per la Fauna Selvatica (INFS; il progetto è finanziato dall'Unione Europea, attraverso lo strumento finanziario "Life Natura". Gli individui "fondatori" (3 maschi e 7 femmine, secondo quanto stabilito nello Studio di Fattibilità realizzato dall'INFS, rappresentano il numero minimo di esemplari in grado di rendere possibile, nel lungo periodo (>100 anni, la ricostituzione sulle Alpi centrali di una popolazione di orsi vitale ed in grado di autosostenersi. Al momento della cattura ogni soggetto è stato munito di un radiocollare e di due marche auricolari trasmittenti in modo da poterne seguire gli spostamenti nel nuovo ambiente di vita e studiarne il comportamento spaziale. Il presente lavoro mostra i risultati ottenuti dall'elaborazione dei dati derivanti dall'attività di monitoraggio (radio-tracking svoltasi tra maggio 1999 (prima campagna di catture e rilasci e giugno 2002 su un campione di 7 esemplari radiocollarati. La prima fase dell'elaborazione dati ha previsto la creazione di un database personalizzato per ogni orso, in cui tutti i dati relativi alle localizzazioni effettuate sono stati ripartiti nelle 4 stagioni - letargo, post-letargo, stagione degli amori, ricerca della tana di svernamento - che caratterizzano il ciclo annuale del plantigrado. Grazie ad un GIS, per ogni orso sono stati calcolati gli home range compresi tra il 100% ed il 20% delle localizzazioni (fix a

  12. MERCHANT MARINE SHIP REACTOR

    Science.gov (United States)

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  13. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  14. Nuclear reactor safety device

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  15. Heat dissipating nuclear reactor

    Science.gov (United States)

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  16. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  17. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    implies, this reactor uses gas as the primary coolant . The coolant has a higher exit temperature when leaving the core than the PWR water 6 AFWL-TN-84...nuclear reactors, coolants must be used to ensure material components are not subject to failure due to the temperature exceeding melting points...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept

  18. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  19. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  20. Nuclear reactor apparatus

    Science.gov (United States)

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  1. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  2. Safe reactor power

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.; Ring, H.F.; Bernath, L.

    1956-05-15

    The upper limit on reactor operating power is established not only by safety considerations during steady-state operation but also by the requirement that during an accident no permanent damage be inflicted upon the reactor or the fuel charge. Two general categories of accidents are recognized; they are the ``nuclear runaway`` and the ``loss of coolant flow`` incidents. In this memorandum an incident of the latter type is analyzed. It is assumed that the safety rods function normally, and a method is defined for establishing the highest operating power that may be permitted if the postulated accident is to do no damage.

  3. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  4. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  5. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  6. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... criteria; passive shutdown and decay heat removal systems; fast breeder reactors in India. PACS No. 28.41.−i. 1. ... water reactors, mainly pressurized heavy water reactors (PHWRs) to extract ∼10 GWe capacity for ..... commissioning phase and most of the supporting systems have been commissioned and.

  7. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  8. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  9. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Fast reactor programme in India. P Chellapandi P R ... Keywords. Sodium fast reactor; design challenges; construction challenges; emerging safety criteria; passive shutdown and decay heat removal systems; fast breeder reactors in India.

  10. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  11. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  12. Nuclear reactor building

    Science.gov (United States)

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  13. JACKETED REACTOR FUEL ELEMENT

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  14. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  15. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  16. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  17. NEUTRONIC REACTOR SHIELD

    Science.gov (United States)

    Fermi, E.; Zinn, W.H.

    1957-09-24

    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  18. Neutronic Reactor Structure

    Science.gov (United States)

    Vernon, H. C.; Weinberg, A. M.

    1961-05-30

    The neutronic reactor is comprised of a core consisting of natural uranium and heavy water with a K-factor greater than unity. The core is surrounded by a reflector consisting of natural uranium and ordinary water with a Kfactor less than unity. (AEC)

  19. NEUTRONIC REACTOR CONTROL ELEMENT

    Science.gov (United States)

    Beaver, R.J.; Leitten, C.F. Jr.

    1962-04-17

    A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

  20. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  1. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  2. Sequencing Bacth Reactors; Reactores biologicos secuenciados

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.; Manoharan, M.

    1999-06-01

    The application of sequencing batch reactors (SBR) for wastewater treatment is becoming increasingly popular. However, published information on process performance and construction costs for SBRs is scarce. For this reason. Environment Canada, the Ontario Ministry of the Environment (MOE), and the Water Environment Association of Ontario (WEAO) decided to sponsor a program to evaluate the performance of 75 municipal SBRs in Canada and the United States. Effluent quality, construction costs, and design and operating problems were investigated. Areas for optimization found as a result of this investigation were classified an prioritized based on their impact on operational costs, treatment capacity, effluent quality, and frequency of occurrence. A list of recommendations for process optimization was prepared. A construction cost comparison between activated sludge systems of continuous flow and SBRs was prepared. (Author) 12 refs.

  3. CER. Research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Jerome [CEA, DEN, DER, Saint-Paul-lez-Durance (France). Jules Horowitz Reactor (JHR)

    2012-10-15

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  4. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  5. Nuclear reactor construction with bottom supported reactor vessel

    Science.gov (United States)

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment

  6. Reactor core stability monitoring method for BWR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Ebata, Shigeo.

    1992-09-01

    In an operation for a BWR type reactor, reactor power is usually increased or decreased by controlling both of control rods and reactor core flow rate. Under a certain condition, the reactor core is made unstable by the coupling of nuclear and thermohydrodynamic characteristics in the reactor. Therefore, the reactor power and the reactor core flow rate are changed within a range predetermined by a design calculation. However, if reactor core stability can be always measured and monitored, it is useful for safe operation, as well as an existent operation range can be extended to enable more effective operation. That is, autoregressive a coefficient is determined successively on real time based on fluctuation components of neutron flux signals. Based on the result, an amplification ratio, as a typical measure of the reactor core stability, is determined on a real time. A time constant of the successive calculation for the autoregressive coefficient can be made variable by the amplification ratio. Then, the amplification ratio is estimated at a constant accuracy. With such procedures, the reactor core stability can be monitored successively in an ON-line manner at a high accuracy, thereby enabling to improve the operation performance. (I.S.).

  7. Spatio-temporal analysis of the urban-rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)

    Science.gov (United States)

    Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C. R.; Zoccali, P.; Di Fazio, S.

    2012-12-01

    The most recent and significant transformations of European landscapes have occurred as a consequence of a series of diffused, varied and often connected phenomena: urban growth and sprawl, agricultural intensification in the most suitable areas and agricultural abandonment in marginal areas. These phenomena can affect dramatically ecosystems' structure and functioning, since certain modifications cause landscape fragmentation while others tend to increase homogeneity. Thus, a thorough comprehension of the evolution trends of landscapes, in particular those linked to urban-rural relations, is crucial for a sustainable landscape planning. In this framework, the main objectives of the present paper are: (a) to investigate Land Use/Land Cover (LULC) transformations and dynamics that occurred over the period 1955-2006 in the municipality of Serra San Bruno (Calabria, Italy), an area particularly representative of the Mediterranean mountainous landscape; (b) to compare the settlement growth with the urban planning tools in charge in the study area; (c) to examine the relationship between urban-rural gradient, landscape metrics, demographic and physical variables; (d) to investigate the evolution of urban-rural gradient composition and configuration along significant axes of landscape changes. Data with a high level of detail (minimum mapping unit 0.2 ha) were obtained through the digitisation of historical aerial photographs and digital orthophotos identifying LULC classes according to the Corine Land Cover legend. The investigated period was divided into four significant time intervals, which were specifically analysed to detect LULC changes. Differently from previous studies, in the present research the spatio-temporal analysis of urban-rural gradient was performed through three subsequent steps: (1) kernel density analysis of settlements; (2) analysis of landscape structure by means of metrics calculated using a moving window method; (3) analysis of composition and

  8. Spatio-temporal analysis of the urban–rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy

    Directory of Open Access Journals (Sweden)

    S. Di Fazio

    2012-12-01

    Full Text Available The most recent and significant transformations of European landscapes have occurred as a consequence of a series of diffused, varied and often connected phenomena: urban growth and sprawl, agricultural intensification in the most suitable areas and agricultural abandonment in marginal areas. These phenomena can affect dramatically ecosystems' structure and functioning, since certain modifications cause landscape fragmentation while others tend to increase homogeneity. Thus, a thorough comprehension of the evolution trends of landscapes, in particular those linked to urban-rural relations, is crucial for a sustainable landscape planning. In this framework, the main objectives of the present paper are: (a to investigate Land Use/Land Cover (LULC transformations and dynamics that occurred over the period 1955–2006 in the municipality of Serra San Bruno (Calabria, Italy, an area particularly representative of the Mediterranean mountainous landscape; (b to compare the settlement growth with the urban planning tools in charge in the study area; (c to examine the relationship between urban–rural gradient, landscape metrics, demographic and physical variables; (d to investigate the evolution of urban–rural gradient composition and configuration along significant axes of landscape changes. Data with a high level of detail (minimum mapping unit 0.2 ha were obtained through the digitisation of historical aerial photographs and digital orthophotos identifying LULC classes according to the Corine Land Cover legend. The investigated period was divided into four significant time intervals, which were specifically analysed to detect LULC changes. Differently from previous studies, in the present research the spatio-temporal analysis of urban–rural gradient was performed through three subsequent steps: (1 kernel density analysis of settlements; (2 analysis of landscape structure by means of metrics calculated using a moving window method; (3 analysis of

  9. Concepción semiótica de la tecnociencia en Bruno Latour. Apuntes para una comunicación pública

    Directory of Open Access Journals (Sweden)

    Alicia Pineda

    2012-12-01

    Full Text Available En este artículo se presenta un análisis de la obra La esperanza de Pandora (2001, en la cual Bruno Latour, da a conocer su concepción semiótica de la tecnociencia. La metodología utilizada es de naturaleza hermenéutica, es decir, basada en el conocimiento e interpretación de algunos de los contenidos relevantes de la obra en referencia, y su contrastación conceptual con los del enfoque semántico-pragmático de la comunicación lingüística. Las conclusiones más importantes del análisis sugieren que: (1 El modelo de “traducción” propuesto por Latour no establece, como tampoco lo hace el enfoque semántico- pragmático, separaciones insalvables, sino integración entre el núcleo interno de la ciencia (núcleo duro: semántico y lo ex- terno (contextos. (2 Se identificaron tres características que vinculan la propuesta de Latour con la comunicación: Principio de simetría, performatividad y ostensibilidad. (3. Las argumentaciones de Latour pudieran entrar en la fundamentación de un nuevo contrato comunicacional de la tecnociencia que calza con la puesta en escena y en discurso de una visión renovada del tecno-periodismo o periodismo tecnológico. (4 El enfoque semántico pragmático de la comunicación lingüística, más allá de ser útil para analizar las prácticas discursivas de la tecnociencia, se revela teórica y empíricamente como una herramienta eficaz para el estudio de los fenómenos de la cultura post-moderna que estén vinculados con la resolución de problemas de orden lingüístico-comunicacional que impactan las esferas tecno-políticas, económicas, sociales, ecológicas, bioéticas y éticas.

  10. Risorse trofiche o disturbo antropico? Elaborazione preliminare e validazione di un indice di idoneità ambientale per l'orso bruno nell'Appennino

    Directory of Open Access Journals (Sweden)

    M. Bello

    2003-10-01

    Full Text Available In un'area di studio nell'Appennino abruzzese (ampia circa 250 km² sono state campionate variabili ambientali relative alla vegetazione, topografia, e presenza antropica in 2110 plot distribuiti lungo transetti da 1 km in 72 celle (1 km² selezionate casualmente dal reticolato geografico UTM. Utilizzando tematismi digitali sono state calcolate, tramite GIS, altre variabili ambientali relative alle stesse categorie. Le variabili sono state combinate in 14 indici (V1-14 utilizzati per calcolare un indice di idoneità ambientale relativo ai plot e alle celle campionate. Sono stati elaborati: A- un indice complessivo di idoneità (HSItotale e, B- 2 indici di idoneità relativi alla disponibilità di risorse trofiche e alla presenza umana (HSIcibo e HSIuomo, rispettivamente. Il valore medio di HSIcibo è stato pari a 0,23, in relazione ai valori medi degli indici di idoneità per la disponibilità di invertebrati (0,01, ghiande (0,004 e alla copertura percentuale di arbusti (0,06. Il valore medio di HSIuomo è risultato maggiore (0,32, soprattutto in relazione all'indice relativo alle variabili pendenza (0,69 e distanza dagli insediamenti umani (0,60. L'indice complessivo medio HSItotale è stato pari a 0,27. Il modello è stato validato comparando, per ogni cella, il valore dei tre indici con l'abbondanza relativa dell'orso bruno stimata lungo percorsi campione dal 1993 al 1998. Gli indici HSItotale e HSIuomo sono risultati significativamente e direttamente correlati con l'abbondanza relativa dell'orso (0,40 >rs< 0,44; p< 0,001; n= 72, mentre la frequentazione dell'orso non è risultata correlata significativamente all'indice HSIcibo (rs= 0,06; p> 0,5; n= 72. Questi dati preliminari, che saranno integrati dai risultati di ulteriori campionamenti in corso, indicano chiaramente che l

  11. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  12. HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  13. AIR COOLED NEUTRONIC REACTOR

    Science.gov (United States)

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  14. NEUTRONIC REACTOR CORE INSTRUMENT

    Science.gov (United States)

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  15. A COOLED NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Creutz, E.C.

    1960-03-15

    A nuclear reactor comprising a pair of graphite blocks separated by an air gap is described. Each of the blocks contains a plurality of channels extending from the gap through the block with a plurality of fuel elements being located in the channels. Means are provided for introducing air into the gap between the graphite blocks and for exhausting the air from the ends of the channels opposite the gap.

  16. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  17. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  18. NUCLEAR REACTOR CORE DESIGN

    Science.gov (United States)

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  19. Nuclear reactor sealing system

    Science.gov (United States)

    McEdwards, James A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  20. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  1. Vastidão de os Seis Pequenos Quadros (1981 de Bruno Kiefer: um estudo sobre sua estrutura intervalar, gestos musicais e possíveis relações com outras composições do autor Vastidão [Vastness] of Seis Pequenos Quadros [Six Small Pictures] (1981 by Bruno Kiefer: a study of its intervallic structure, musical gestures and possible relationships with other works by the composer

    Directory of Open Access Journals (Sweden)

    Germano Gastal Mayer

    2010-01-01

    Full Text Available O presente trabalho oferece uma análise dos gestos musicais e configurações intervalares da peça intitulada Vastidão, pertencente aos Seis Pequenos Quadros (1981 para piano de Bruno Kiefer. A incidência constante de gestos previamente levantados por Luciane CARDASSI (1998 em outras obras de Kiefer bem como a presença do elemento octatônico são estudados e inter-relacionados com obras precedentes do compositor. A teoria dos conjuntos de Allan Forte é utilizada aqui como base teórica. A densidade gestual encontrada nesta composição de data tardia em meio ao conjunto de obras para piano do autor e sua curta duração apontam para uma síntese estilística.The present article offers an analysis of the musical gestures and intervallic configurations of the composition Vastidão [Vastness], which belongs to the set entitled Seis Pequenos Quadros [Six Small Pictures] (1981 for piano by Brazilian composer Bruno Kiefer. The recurring musical gestures from other of Kiefer's compositions, previously surveyed by Luciane CARDASSI (1998, as well as the presence of octatonic elements, are studied and related to preceding Kiefer's works. Set theory by Allan Forte is applied here as a theoretical basis. The density of the gestures observed in this late piece, and its brevity, point to a stylistic synthesis.

  2. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  3. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  4. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  5. Accelerator based fusion reactor

    Science.gov (United States)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  6. Nuclear Reactor Safety; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    This publication announces on an monthly basis the current worldwide information available on all safety-related aspects of reactors, including: accident analysis, safety systems, radiation protection, decommissioning and dismantling, and security measures. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are other US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Technology Data Exchange, the International Atomic Energy Agency's International Nuclear Information System, or government-to-government agreements.

  7. Iris reactor development

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, D.V.; Carelli, M.D. [Westinghouse Electric Corp., Baltimore, MD (United States); Miller, K. [BNFL, Inc., (United Kingdom); Lombardi, C.V.; Ricotti, M.E. [Polytechnic of Milan, Polimi (Italy); Todreas, N.E. [Masachussets Institute of Technology, MIT (United States); Greenspan, E. [University of California at Berkeley, UCB (United States); Yamamoto, K. [JAPC Japan Atomic Power Co., Tokyo (Japan); Nagano, A. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Ninokata, H. [Tokyo Institut of Technology, TIT (Japan); Robertson, J. [Westinghouse and bechtel (United States); Oriolo, F. [Pisa Univ. (Italy)

    2001-07-01

    The development progress of the IRIS (International Reactor Innovative and Secure) nuclear power system is presented. IRIS is currently being developed by an international consortium of industry, laboratory, university and utility establishments, led by Westinghouse. It is aimed at achieving the four major objectives of the Generation IV nuclear systems, i.e., proliferation resistance, enhanced safety, economic competitiveness and reduced waste. The project first year activities, which are summarized here, were focused on core neutronics, in-vessel configuration, steam generator and containment design, safety approach and economic performance. Details of these studies are provided in parallel papers in these proceedings. (author)

  8. NEUTRONIC REACTOR CONSTRUCTION

    Science.gov (United States)

    Vernon, H.C.; Goett, J.J.

    1958-09-01

    A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.

  9. Reactor coolant pump flywheel

    Science.gov (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  10. SODIUM DEUTERIUM REACTOR

    Science.gov (United States)

    Oppenheimer, E.D.; Weisberg, R.A.

    1963-02-26

    This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)

  11. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  12. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  13. Decommissioning of commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Kohei [Japan Atomic Power Co., Tokyo (Japan)

    1997-02-01

    In the case of nuclear reactors, the diversion is often difficult as they are highly purposive, the disassembling is not easy as they are robust, and attention is required to handle the equipment containing radioactive substances. Decommissioning is defined as all the measures taken from the state that facilities become unused to the state of becoming green field. In Japan, already 40 years have elapsed since the effort for nuclear power was begun, and in this paper, the present state and future subjects of the decommissioning of nuclear power stations are summarized at the opportunity that the stop of commercial operation of Tokai Nuclear Power Station was decided recently. In the Tokai Nuclear Power Station, 166 MWe graphite-moderated, carbon dioxide-cooled reactor called improved Calder Hall type is installed, which started the operation in 1966. The circumstances of the decision to stop its operation are explained. The basic policy of the decommissioning of commercial nuclear power stations has been already published by the Advisory Committee for Energy. The state of the decommissioning in various foreign countries is reported. In Japan, the state of green field was realized in 1996 in the decommissioning of the JPDR in Japan Atomic Energy Research institute, and the decommissioning of the atomic powered ship ``Mutsu`` was completed. (K.I.)

  14. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  15. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  16. Rotary reactor and use thereof

    NARCIS (Netherlands)

    Bakker Wridzer, J.W.; Kapteijn, F.; Moulijn, J.A.

    1998-01-01

    The invention relates to a rotary reactor consisting of a number of tubular reaction compartments (A), each provided with a first end and a second end, a ceramic first reactor end plate (B) in which said first ends are received, and a second end plate (B) in which said second ends are received,

  17. Radiation Shielding for Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.T.

    1999-10-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor

  18. Bruno Sportisse, 2008, Pollution atmosphérique. Des processus à la modélisation, collection « Ingénierie et développement durable », Springer, 345 p.

    Directory of Open Access Journals (Sweden)

    Caroline Norrant

    2008-03-01

    Full Text Available Dans son ouvrage « Pollution atmosphérique : des processus à la modélisation », Bruno Sportisse, directeur depuis 2002 du Centre d’enseignement et de recherche sur l’environnement atmosphérique, tente de faire le point sur ce qu’est la pollution atmosphérique, sans pour autant s’adresser à un public « multi spécialiste », étant donné le très grand nombre de spécialités auxquelles cette discipline fait appel. Il s’agirait plutôt d’établir une prise de conscience de la pollution atmosphérique, ...

  19. A Velha Magra da Ilha de Luanda, de Emílio de San Bruno e a memória silenciada do nativismo e do degredo na colonização de Angola

    Directory of Open Access Journals (Sweden)

    Alberto Oliveira Pinto

    2009-12-01

    Full Text Available Oitenta anos depois da publicação de A Velha Magra da Ilha de Luanda. Cenas da vida colonial, de Emílio de San Bruno, pretendemos mostrar, pela análise deste romance, escrito e publicado em Portugal em 1929 e versando sobre Angola no século XIX, como é que uma obra literária pode servir a operação de silenciamento da memória colectiva e, ao mesmo tempo, romper os silêncios da história. Os silêncios em causa são os que impendem sobre a memória do nativismo e do degredo na colonização de Angola.Palavras-chave: Literatura Colonial; História; Memória; Angola; Nativismo; Degredo.

  20. El recurso iconográfico de la Arquitectura de Bruno Taut y la Cadena de Cristal, en el Cine Fantástico Estadounidense del último cuarto del siglo XX

    OpenAIRE

    Ruiz Boto, Francisco Javier

    2015-01-01

    Tesis Doctoral leída en la Universidad Rey Juan Carlos de Madrid en 2015. Director de la Tesis: Alfonso Palazón Meseguer El eje de nuestra investigación consiste en verificar la rehabilitación del universo formal utópico de la fantasía arquitectónica de Bruno Taut y su círculo creativo más cercano en las escenografías y lenguaje visual del cine fantástico estadounidense del último cuarto de siglo XX. La fantasía, tal y como la concebía Taut era uno de los modos más eficaces par...

  1. L'exemple d'un décor religieux dans le nord de la France : Bruno Chérier (1817-1880 et Notre-Dame-des-Anges de Tourcoing

    Directory of Open Access Journals (Sweden)

    Catherine Guillot

    2012-04-01

    Full Text Available Ami et modèle du sculpteur Jean-Baptiste Carpeaux, Bruno Chérier (1817 Valenciennes, 1880 Paris se consacre à partir de la fin des années 1850 jusqu'à sa mort au décor religieux dans le nord de la France. Devenu en 1852 professeur aux écoles académiques de Tourcoing, il répond aux commandes les plus variées dans le domaine de l'art religieux. Ainsi, sa participation au décor de l'église Notre-Dame-des-Anges de Tourcoing est exemplaire de la diversité de ses contributions : chemin de croix, cartons de vitraux, peintures ornementales illusionnistes. Cette église constitue en outre dans le Nord un des rares témoignages conservé presque intégralement de l'art religieux dans la seconde moitié du XIXe siècle. La collaboration de Chérier à ce chantier témoigne d'un statut de l'artiste sous le Second Empire, éloigné de l'image romantique du créateur libre dont est redevable le mythe constitué autour de la figure de Carpeaux.Les auteurs préparent une étude globale de l'œuvre de Bruno Chérier et de son rôle auprès de Carpeaux.

  2. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  3. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  4. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  5. Heating device for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shiratori, Yoshitake; Ijima, Takashi; Katano, Yoshiaki; Saito, Masaki

    1996-05-31

    The present invention provides a control system of a heating device which elevates the temperature of a reactor from a normal temperature to an operation temperature by using a nuclear heating. Namely, the device of the present invention comprises (1) means for detecting reactor temperature, (2) means for detecting reactor power, (3) means for memorizing the corresponding relation of each value of the means (1) and means (2) as standard data when temperature is elevated at a predetermined temperature elevation rate, (4) means for calculating the power corresponding to the current temperature based on the standard data upon elevation of the reactor temperature, and (5) means for controlling the progress or retraction of the power control material of the reactor core based on the power calculated by the means (4). With such a constitution, since the current reactor power elevation rate corresponding to the coolants is controlled based on the standard data upon actual start-up of the reactor, the control for the temperature of coolants can be facilitated. (I.S.)

  6. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  7. Nuclear reactor downcomer flow deflector

    Science.gov (United States)

    Gilmore, Charles B [Greensburg, PA; Altman, David A [Pittsburgh, PA; Singleton, Norman R [Murrysville, PA

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  8. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  9. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  10. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  11. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  12. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  13. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  14. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  15. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  16. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  17. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ganev, I.K.; Lopatkin, A.V.; Naumov, V.V.; Tocheny, L.V.

    1993-12-31

    Of some interest is the comparison between the actinide nuclide burning up (fission) rates such as americium 241, americium 242, curium 244, and neptunium 237, in the reactors with fast or thermal neutron spectra.

  18. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Advanced Carbothermal Electric (ACE) reactor to efficiently extract oxygen from lunar regolith. Unlike state-of-the-art carbothermal...

  19. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  20. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  1. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase 1 effort was to demonstrate the technical feasibility of the Advanced Carbothermal Electric (ACE) Reactor concept. Unlike...

  2. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  3. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory,. Pune 411 008, India ... Abstract. Catalytic reactions are ubiquitous in chemical and allied industries. ... strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  4. Jules Horowitz Reactor, basic design

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  5. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  6. Microchannel Reactors for ISRU Applications

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  7. Reactor antineutrinos and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, A.B. [University of Wisconsin, Department of Physics, Madison, WI (United States)

    2016-11-15

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states. (orig.)

  8. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  9. Propellant actuated nuclear reactor steam depressurization valve

    Science.gov (United States)

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  10. Reactor Simulator Testing Overview

    Science.gov (United States)

    Schoenfeld, Michael P.

    2013-01-01

    Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  11. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  13. REACTOR CONTROL MECHANISM

    Science.gov (United States)

    Lane, J.A.; Engberg, R.E.; Welch, J.M.

    1959-05-12

    A quick-releasing mechanism is described which may be used to rapidiy drop a device supported from beneath during normal use, such as a safety rod in a nuclear reactor. In accordance with this invention an electrical control signal, such as may be provided by radiation detection or other alarm condition sensing devices, is delivered to an electromagnetic solenoid, the armature of which is coupled to an actuating mechanism. The solenoid is energized when the mechanism is in its upper or cocked position. In such position, the mechanism engages a plurality of retaining balls, forcing them outward into engagement with a shoulder or recess in a corresponding section of a tubular extension on the upheld device. When the control signal to the solenoid suddenly ceases, the armature drops out, allowing the actuating mechanism to move slightly but rapidly under the force of a compressed spring. The weight of the device will urge the balls inward against a beveled portion of the actuating mechanism and away from the engaging section on the tubular extension, thus allowing the upheld device to fall freely under the influence of gravity.

  14. 78 FR 71675 - Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence

    Science.gov (United States)

    2013-11-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence... Regulatory Commission. Michele G. Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear...

  15. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  16. SPRAY CALCINATION REACTOR

    Science.gov (United States)

    Johnson, B.M.

    1963-08-20

    A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and

  17. A noção de crença e suas implicações para a modernidade: um diálogo imaginado entre Bruno Latour e Talal Asad

    Directory of Open Access Journals (Sweden)

    Emerson Giumbelli

    2011-06-01

    Full Text Available Trata-se de refletir sobre as implicações da presença da noção de crença na modernidade. Constituída em um projeto crítico, que acarretou sua fragilização ontológica, a noção de crença foi fundamental para a definição moderna de religião. Por outro lado, a modernidade não deixou de incorporar positivamente a mesma noção, o que se evidencia em seu compromisso declarado com o princípio da "liberdade de crença". O texto estabelece conexões entre os sentidos da definição moderna de crença e a construção também moderna da noção de sociedade. Nessa articulação são considerados temas como liberdade e sujeição e situações como o estatuto da credulidade e da blasfêmia. Seu percurso e seu resultado se estabelecem em diálogo com a obra de dois autores, Bruno Latour e Talal Asad.The article aims to reflect on the implications of the presence of the category of belief in modernity. Formed in a critical project, which led to its ontological weakening, the notion of belief was fundamental to the modern definition of religion. On the other hand, modernity did not fail to positively incorporate the same notion, which is evident in its stated commitment to the principle of "freedom of belief". The text establishes connections between the senses of the modern definition of belief and the modern construction of the notion of society. In this exploration, themes as freedom and subjection and situations are considered, as well situations as the status of credulity and blasphemy. Its course and its outcome are set in dialogue with the work of two authors, Bruno Latour and Talal Asad.

  18. Entropy Production in Chemical Reactors

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián C.

    2017-06-01

    We have analyzed entropy production in chemically reacting systems and extended previous results to the two limiting cases of ideal reactors, namely continuous stirred tank reactor (CSTR) and plug flow reactor (PFR). We have found upper and lower bounds for the entropy production in isothermal systems and given expressions for non-isothermal operation and analyzed the influence of pressure and temperature in entropy generation minimization in reactors with a fixed volume and production. We also give a graphical picture of entropy production in chemical reactions subject to constant volume, which allows us to easily assess different options. We show that by dividing a reactor into two smaller ones, operating at different temperatures, the entropy production is lowered, going as near as 48 % less in the case of a CSTR and PFR in series, and reaching 58 % with two CSTR. Finally, we study the optimal pressure and temperature for a single isothermal PFR, taking into account the irreversibility introduced by a compressor and a heat exchanger, decreasing the entropy generation by as much as 30 %.

  19. Antineutrino monitoring of thorium reactors

    Science.gov (United States)

    Akindele, Oluwatomi A.; Bernstein, Adam; Norman, Eric B.

    2016-09-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed 233U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of 233U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg of 233U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of 233U could not be detected within the current IAEA timeliness detection goal using either tests. A rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.

  20. Simplifying Microbial Electrosynthesis Reactor Design

    Directory of Open Access Journals (Sweden)

    Cloelle G.S. Giddings

    2015-05-01

    Full Text Available Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata, which reduces carbon dioxide to acetate. In traditional ‘H-cell’ reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a poteniostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  1. Rapid starting methanol reactor system

    Science.gov (United States)

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  2. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  3. Investigation of KW reactor incident

    Energy Technology Data Exchange (ETDEWEB)

    Sturges, D G [USAEC Hanford Operations Office, Richland, WA (United States); Hauff, T W; Greager, O H [General Electric Co., Richland, WA (United States). Hanford Atomic Products Operation

    1955-02-11

    The new KW reactor was placed in operation on January 4, 1955, and had been running at relatively low power levels for only 17 hours when it was shut down because of a process tube water leak which appeared to be associated with a slug rupture. After several days of unrewarding effort to remove the slugs and tube by customary methods, it developed that considerable melting of the tube and slugs had taken place. It was then evident that removal of the stuck mass and repairs to the damaged tube channel would require unusual measures that were certain to extend the reactor outage for several weeks. This report documents the work and findings of the Committee which investigated the KW reactor incident. Its content represents unanimous agreement among the three Committee members.

  4. STARFIRE: a commercial tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor.

  5. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  6. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  7. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    Energy Technology Data Exchange (ETDEWEB)

    Morrell, Douglas [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-10-29

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room

  8. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  9. Reactor Antineutrino Signals at Morton and Boulby

    CERN Document Server

    Dye, Steve

    2016-01-01

    Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This report presents calculations of reactor antineutrino interactions, from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering, in a water-based detector operated >10 km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are interaction rates and kinetic energy distributions of charged leptons scattered from quasi-elastic and elastic processes. Comparing signal and background distributions evaluates reactor monitoring capability. Scaling the results to detectors of different sizes, target media, and standoff distances is straightforward. Calculations are for two examples of a commercial reactor (P_th~3 GW) operating nearby (L~20 km) an underground facil...

  10. Reactivity control assembly for nuclear reactor

    Science.gov (United States)

    Bollinger, Lawrence R.

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  11. The Westinghouse Small Modular Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Garcia, F. J.; Memmott, M. J.

    2012-07-01

    Westinghouse has developed a small modular reactor (SMR) which incorporates an integral pressurized water reactor (PWR) design. The Westinghouse SMR design also utilizes many of the key features and innovative concepts from the AP1000 plant, including passive safety systems.

  12. What can Recycling in Thermal Reactors Accomplish?

    Energy Technology Data Exchange (ETDEWEB)

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-09-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

  13. Avaliação de atributos de Latossolo Bruno e de Terra Bruna Estruturada da região de Guarapuava, Paraná, por meio de sua energia refletida

    Directory of Open Access Journals (Sweden)

    J. A. M. Demattê

    1999-06-01

    Full Text Available Este trabalho teve por objetivo estudar espectralmente amostras de Latossolo Bruno e Terra Bruna Estruturada, provenientes de rochas vulcânicas ácidas na região Centro Sul do estado do Paraná, nas profundidades de 0-20 e 40-60 cm. Foram realizadas a caracterização, discriminação e previsão dos atributos desses solos por meio de sua energia refletida, obtidas em laboratório, pelo sensor IRIS, na faixa espectral de 400 a 2.500 nm. Foi possível discriminar os solos pela intensidade de reflectância e feições de absorção, apesar de apresentarem altos teores de óxidos de ferro, matéria orgânica e textura muito argilosa. A análise discriminante foi 100% eficiente na separação dos solos por sua energia refletida. A gibbsita, a matéria orgânica, a CTC e a tonalidade e a intensidade da cor foram os atributos dos solos que apresentaram equações múltiplas com coeficientes de correlação mais elevados, para sua previsão, por meio da energia refletida.

  14. An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor

    NARCIS (Netherlands)

    Carneiro, Joana T.; Carneiro, J.T.; Berger, Rob; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    In the present study, kinetic models for the photo-oxidation of cyclohexane in two different photoreactor systems are discussed: a top illumination reactor (TIR) representative of a slurry reactor, and the so-called internally illuminated monolith reactor (IIMR) representing a reactor containing

  15. Operating limits Hanford Production Reactors. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Owsley, G.F. [comp.

    1963-05-20

    This report is applicable to the eight operating production reactors, B, C, D, DR, F, H, KE, and KW. It covers the following: operating parameter limitations; reactivity limitations; control and safety systems; reactor fuel loading; coolant requirements with irradiated fuel in reactor; reactor confinement; test facilities; code compliance; safety instrumentation and set points; and control criteria. Also discussed are administrative procedures for process control, training, audits and inspection, and reports and records.

  16. Digital computer operation of a nuclear reactor

    Science.gov (United States)

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  17. Monolithic reactor: higher yield, less energy

    OpenAIRE

    Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no guarantee that a large commercial reactor will work. Scalability is less than perfect, one might say. Researchers at the Reactor & Catalysis Engineering epartment of the Chemical Technology facult...

  18. Reference worldwide model for antineutrinos from reactors

    OpenAIRE

    Baldoncini, Marica; Callegari, Ivan; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2014-01-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Bor...

  19. Liquid metal cooled nuclear reactor plant system

    Science.gov (United States)

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  20. Hydrodynamics of a Monolithic Stirrer Reactor

    NARCIS (Netherlands)

    Kritzinger, H.P.

    2011-01-01

    The Monolithic Stirrer Reactor (MSR) is a novel concept for heterogeneously catalyzed reactors and is presented as an alternative device to slurry reactors. It uses a modified stirrer on which structured catalyst supports (monoliths) are fixed to form permeable blades. The monoliths consist of small

  1. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  2. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  3. New usage for old reactor

    NARCIS (Netherlands)

    Wassink, J.

    2015-01-01

    The latest measurement instrument of the TU Delft measures the crystal structures of many different materials and is unique within the Netherlands. The so-called Pearl neutron powder diffractometer was opened on 24 September at the RID reactor institute. “It is difficult to overestimate the

  4. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  5. REACTOR CONTROL ROD OPERATING SYSTEM

    Science.gov (United States)

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  6. STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Busey, H.M.

    1958-06-01

    A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.

  7. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  8. Shutdown system for a nuclear reactor

    Science.gov (United States)

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  9. Fast-acting nuclear reactor control device

    Science.gov (United States)

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  10. Tandem Mirror Reactor Systems Code (Version I)

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  11. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  12. Introduction to reactor internal materials for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,.

  13. Savannah River Site production reactor technical specifications. K Production Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  14. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  15. Neutronics of a mixed-flow gas-core reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF/sub 6/ (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation.

  16. Advanced reactor physics methods for heterogeneous reactor cores

    Science.gov (United States)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  17. Automatically scramming nuclear reactor system

    Science.gov (United States)

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2004-10-12

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  18. HEAVY WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  19. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  20. CONTROL MEANS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Tonks, L.

    1962-08-01

    A control device surrounding the active portion of a nuclear reactor is described. The control device consists of a plurality of contiguous cylinders partly filled with a neutron absorbing material and partly filled with a neutron reflecting material, each cylinder having a longitudinal reentrant surface into which a portion of an adjacent cylinder extends, one of the cylinders having two re-entrant surfaces, and means for rotating the cylinders one at a time. (AEC)

  1. APPARATUS FOR CONTROLLING NEUTRONIC REACTORS

    Science.gov (United States)

    Dietrich, J.R.; Harrer, J.M.

    1958-09-16

    A device is described for rapidly cortrolling the reactivity of an active portion of a reactor. The inveniion consists of coaxially disposed members each having circumferenital sections of material having dlfferent neutron absorbing characteristics and means fur moving the members rotatably and translatably relative to each other within the active portion to vary the neutron flux therein. The angular and translational movements of any member change the neutron flux shadowing effect of that member upon the other member.

  2. Reactor safeguards against insider sabotage

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, H.A.

    1982-03-01

    A conceptual safeguards system is structured to show how both reactor operations and physical protection resources could be integrated to prevent release of radioactive material caused by insider sabotage. Operational recovery capabilities are addressed from the viewpoint of both detection of and response to disabled components. Physical protection capabilities for preventing insider sabotage through the application of work rules are analyzed. Recommendations for further development of safeguards system structures, operational recovery, and sabotage prevention are suggested.

  3. Nuclear reactor power monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Tarumi, Teruji; Oda, Naotaka; Goto, Yasushi; Ito, Toshiaki [Toshiba Corp., Kawasaki, Kanagawa (Japan); Mitsubori, Minehisa

    1997-07-11

    The present invention provides a nuclear power monitoring device which does not lose a safety protection function even upon occurrence of a single failure in an APRM system of a BWR type reactor. Namely, an APRM for inputting signals of local power region monitors (LPRM) has four channels. Each of the channels is constituted so as to be bypassed. With such a constitution, LPRM detector signals can be inputted one by one to each of the four channels of the APRM from each of the LPRM detector assembly. Accordingly, a common channel for LPRM detectors can be eliminated in a small-sized reactor. The number of signals of the LPRM detectors inputted to each of the channels of the APRM is increased in a large-scaled reactor. Since each of the APRM can be bypassed, even if a single failure of one APRM is caused during a predetermined maintenance, the monitoring can be conducted smoothly by bypassing other channel. As a result, a multiple safe-protection function can be ensured. (I.S.)

  4. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  5. The ARIES tokamak reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  6. Prospects for Tokamak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  7. Entre o ficcional e o documental: versões da desigualdade em Ônibus 174 (2002, de José Padilha, e Última parada 174 (2008, de Bruno Barreto

    Directory of Open Access Journals (Sweden)

    Ângela Srocynski da Costa

    2017-07-01

    Full Text Available Este trabalho propõe uma análise comparatista da representação da desigualdade social em sua relação com a violência no documentário Ônibus 174 (2002, de José Padilha, e no filme A última parada 174 (2008, de Bruno Barreto. Ambas as obras abordam um evento real que aconteceu no ano de 2000, no Rio de Janeiro, o sequestro do ônibus 174 realizado pelo jovem contraventor de nome Sandro. O evento foi completamente transmitido ao vivo pelas redes de televisão e culminou com o desfecho trágico e traumático da morte de uma das reféns por um tiro da polícia. Longe das câmeras, dentro do carro da polícia, no trajeto para a delegacia, Sandro é assassinado. O número do ônibus, mostrado tantas vezes durante a transmissão, está no nome das duas obras e serve de refrente para ambas as narrativas, uma vez que identifica uma região e uma realidade social. A análise dos objetos se focará na forma como são apresentados os moradores de rua e de regiões periféricas, e a forma como essas representações ajudam a constituir o discurso sobre o crime, a criminalidade e a constituição desse jovem criminoso que acaba por ser assassinado.

  8. Reference worldwide model for antineutrinos from reactors

    Science.gov (United States)

    Baldoncini, Marica; Callegari, Ivan; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2015-03-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework, we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency. We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO +), and proposed (Juno, RENO-50, LENA, and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation, and detection processes are estimated using a Monte Carlo-based approach, which provides an overall site-dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes, and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of ten years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

  9. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  10. A simple model of reactor cores for reactor neutrino flux calculations for the KamLAND experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan)]. E-mail: kyo@awa.tohoku.ac.jp; Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Owada, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suekane, F. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suzuki, A. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Hirano, G. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Kosaka, S. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Ohta, T. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan); Tanaka, H. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan)

    2006-12-21

    KamLAND is a reactor neutrino oscillation experiment with a very long baseline. This experiment successfully measured oscillation phenomena of reactor antineutrinos coming mainly from 53 reactors in Japan. In order to extract the results, it is necessary to accurately calculate time-dependent antineutrino spectra from all the reactors. A simple model of reactor cores and code implementing it were developed for this purpose. This paper describes the model of the reactor cores used in the KamLAND reactor analysis.

  11. Mechanical systems development of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Chang, M. H.; Kim, J. I.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Kim, J. H.; Kim, Y. W.; Lee, G. M.

    1997-07-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose applications such as small capacity power generation, co-generation and sea water desalination. This in mind, survey has been made on the worldwide small and medium integral reactors under development. Reviewed are their technical characteristics, development status, design features, application plans, etc. For the mechanical design scope of work, the structural concept compatible with the characteristics and requirements of integral reactor has been established. Types of major components were evaluated and selected. Functional and structural concept, equipment layout and supporting concept within the reactor pressure vessel have also been established. Preliminary mechanical design requirements were developed considering the reactor lifetime, operation conditions, and the expected loading combinations. To embody the concurrent design approach, recent CAD technology and team engineering concept were evaluated. (author). 31 refs.,16 tabs., 35 figs.

  12. Profiling a reactor component using ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, L.; Seshadri, V.R.; Kumaravadivelu, C.; Sreenivasan, G.; Raghunathan, V.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-04-01

    Nuclear reactors have many components within the reactor vessel. During the life of a reactor it is possible for these components to be displaced or deformed because of the thermal cycles to which they are subject. Also, these components in situ therefore becomes important for the upkeep of the reactor. However, high radiation levels make it difficult to monitor using optical methods. This paper describes an ultrasonic method which was successfully employed in profiling a deformed guide tube of a reactor. The method uses the well-known ultrasonic ranging technique. However, the specialty of the method is the use of air transducers at 40 kHz to overcome the inherent divergence problems and the difficulties associated with high temperatures inherent in a sodium cooled reactor.

  13. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  14. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  15. Structures and Materials of Reactor Internals for PWR in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Kim, W. S.; Kwon, S. C.; Kwon, J. H.; Kim, Y. S.; Kim, H. P.; Yoo, C. S.; Lee, S. R.; Jung, M. K.; Hwang, S. S

    2007-10-15

    Nuclear reactor types in Korea are PWR type reactor (Westinghouse, Combustion Engineering, Farmatome type) and CANDU type reactor. Structures and Materials for reactor internal of PWR type were investigated. Reactor internal was composed of lower core support structure, upper core support assembly, incore instrumentation support structure. Lower core support structure of these structures is the most important. The major material for the reactor internal is type 304 and 316 stainless steel and radial support clevis bolts are made of Inconel. The main damage mechanism for reactor internal was IASCC and the effect of IASCC on reactor internal was investigated. The accident for reactor internal was also investigate.

  16. Contribution of reactor physics in past and future. Is reactor physics useful?

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ. (Japan); Kosaka, Shinya [TEPCO Systems Co. (Japan); Tatsumi, Masahiro [Nuclear Fuel Industries Ltd., Tokyo (Japan)] (and others)

    2003-02-01

    Reactor Physics is a science to create rector and to play an important role in application to calculation science and safety evaluation. This feature articles contains topics, interested problems and development problems in the following field of reactor physics such as theory and experiment of reactor physics, core control, safety evaluation, criticality safety, accelerator driven subcritical reactor (ADS), new type reactor and evaluation of reactor physics. An original nuclear calculation method developed in Japan has been applied to design and analysis of fast breeder reactor. Interested problems are a proposal of fundamental principles of progressive reactor, development of calculation science, new knowledge by application of best estimate method to safety evaluation and investigation of complicated phenomena of criticality safety. (S.Y.)

  17. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by

  18. Fission control system for nuclear reactor

    Science.gov (United States)

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  19. Nuclear reactor shield including magnesium oxide

    Science.gov (United States)

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  20. Fuel handling apparatus for a nuclear reactor

    Science.gov (United States)

    Hawke, Basil C.

    1987-01-01

    Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

  1. SUPERHEATING IN A BOILING WATER REACTOR

    Science.gov (United States)

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  2. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  3. Reactors are indispensable for radioisotope production.

    Science.gov (United States)

    Mushtaq, Ahmad

    2010-12-01

    Radioisotopes can be produced by reactors and accelerators. For certain isotopes there could be an advantage to a certain production method. However, nowadays many reports suggest, that useful isotopes needed in medicine, industry and research could be produced efficiently and dependence on reactors using enriched U-235 may be eliminated. In my view reactors and accelerators will continue to play their role side by side in the supply of suitable and economical sources of isotopes.

  4. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  5. Initiating Events for Multi-Reactor Plant Sites

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  6. Neutron imaging on the VR-1 reactor

    Science.gov (United States)

    Crha, J.; Sklenka, L.; Soltes, J.

    2016-09-01

    Training reactor VR-1 is a low power research reactor with maximal thermal power of 1 kW. The reactor is operated by the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. Due to its low power it suits as a tool for education of university students and training of professionals. In 2015, as part of student research project, neutron imaging was introduced as another type of reactor utilization. The low available neutron flux and the limiting spatial and construction capabilities of the reactor's radial channel led to the development of a special filter/collimator insertion inside the channel and choosing a nonstandard approach by placing a neutron imaging plate inside the channel. The paper describes preliminary experiments carried out on the VR-1 reactor which led to first radiographic images. It seems, that due to the reactor construction and low reactor power, the neutron imaging technique on the VR-1 reactor is feasible mainly for demonstration or educational and training purposes.

  7. Biofilm carrier migration model describes reactor performance.

    Science.gov (United States)

    Boltz, Joshua P; Johnson, Bruce R; Takács, Imre; Daigger, Glen T; Morgenroth, Eberhard; Brockmann, Doris; Kovács, Róbert; Calhoun, Jason M; Choubert, Jean-Marc; Derlon, Nicolas

    2017-06-01

    The accuracy of a biofilm reactor model depends on the extent to which physical system conditions (particularly bulk-liquid hydrodynamics and their influence on biofilm dynamics) deviate from the ideal conditions upon which the model is based. It follows that an improved capacity to model a biofilm reactor does not necessarily rely on an improved biofilm model, but does rely on an improved mathematical description of the biofilm reactor and its components. Existing biofilm reactor models typically include a one-dimensional biofilm model, a process (biokinetic and stoichiometric) model, and a continuous flow stirred tank reactor (CFSTR) mass balance that [when organizing CFSTRs in series] creates a pseudo two-dimensional (2-D) model of bulk-liquid hydrodynamics approaching plug flow. In such a biofilm reactor model, the user-defined biofilm area is specified for each CFSTR; thereby, Xcarrier does not exit the boundaries of the CFSTR to which they are assigned or exchange boundaries with other CFSTRs in the series. The error introduced by this pseudo 2-D biofilm reactor modeling approach may adversely affect model results and limit model-user capacity to accurately calibrate a model. This paper presents a new sub-model that describes the migration of Xcarrier and associated biofilms, and evaluates the impact that Xcarrier migration and axial dispersion has on simulated system performance. Relevance of the new biofilm reactor model to engineering situations is discussed by applying it to known biofilm reactor types and operational conditions.

  8. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  9. Non-equilibrium radiation nuclear reactor

    Science.gov (United States)

    Thom, K.; Schneider, R. T. (Inventor)

    1978-01-01

    An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.

  10. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  11. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)

    1999-03-01

    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.

  12. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  13. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  14. Microchannel Methanation Reactors Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  15. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  16. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  17. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  18. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    Science.gov (United States)

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  19. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  20. Heat dissipating nuclear reactor with metal liner

    Science.gov (United States)

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  1. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  2. CHIMNEY FOR BOILING WATER REACTOR

    Science.gov (United States)

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  3. Synfuel production in nuclear reactors

    Science.gov (United States)

    Henning, C.D.

    Apparatus and method for producing synthetic fuels and synthetic fuel components by using a neutron source as the energy source, such as a fusion reactor. Neutron absorbers are disposed inside a reaction pipe and are heated by capturing neutrons from the neutron source. Synthetic fuel feedstock is then placed into contact with the heated neutron absorbers. The feedstock is heated and dissociates into its constituent synfuel components, or alternatively is at least preheated sufficiently to use in a subsequent electrolysis process to produce synthetic fuels and synthetic fuel components.

  4. Autonomous Control of Space Nuclear Reactors

    Science.gov (United States)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the

  5. Investigation of molten salt fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Enuma, Yasuhiro; Tanaka, Yoshihiko; Konomura, Mamoru; Ichimiya, Masakazu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-06-01

    Phase I of Feasibility Studies on Commercialized Fast Reactor System is being performed for two years from Japanese Fiscal Year 1999. In this report, results of the study on fluid fuel reactors (especially a molten salt fast breeder reactor concept) are described from the viewpoint of technical and economical concerns of the plant system design. In JFY1999, we have started to investigate the fluid fuel reactors as alternative concepts of sodium cooled FBR systems with MOX fuel, and selected the unique concept of a molten chloride fast breeder reactor, whose U-Pu fuel cycle can be related to both light water reactors and fast breeder reactors on the basis of present technical data and design experiences. We selected a preliminary composition of molten fuel and conceptual plant design through evaluation of technical and economical issues essential for the molten salt reactors and then compared them with reference design concepts of sodium cooled FBR systems under limited information on the molten chloride fast breeder reactors. The following results were obtained. (1) The molten chloride fast breeder reactors have inherent safety features in the core and plant performances, ad the fluid fuel is quite promising for cost reduction of the fuel fabrication and reprocessing. (2) On the other hand, the inventory of the molten chloride fuel becomes high and thermal conductivity of the coolant is inferior compared to those of sodium cooled FBR systems, then, the size of main components such as IHX's becomes larger and the amount of construction materials is seems to be increased. (3) Furthermore economical vessel and piping materials which contact with the molten chloride salts are required to be developed. From the results, it is concluded that further steps to investigate the molten chloride fast breeder reactor concepts are too early to be conducted. (author)

  6. K-East and K-West Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — Hanford's "sister reactors", the K-East and the K-West Reactors, were built side-by-side in the early 1950's. The two reactors went operational within four months of...

  7. Simulated nuclear reactor fuel assembly

    Science.gov (United States)

    Berta, Victor T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  8. Dissecting Reactor Antineutrino Flux Calculations

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-01

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.

  9. New Production Reactors Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs.

  10. Research on plasma core reactors

    Science.gov (United States)

    Jarvis, G. A.; Barton, D. M.; Helmick, H. H.; Bernard, W.; White, R. H.

    1976-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17 cm thick by 89 cm diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cu cm aluminum canister in the central region was fueled with UF6 gas and fission density distributions determined. These results are to be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  11. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  12. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  13. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  14. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  15. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  16. Monolithic reactor : Higher yield, less energy

    NARCIS (Netherlands)

    Kreutzer, M.T.; Moulijn, J.A.; Kapteijn, F.; Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no

  17. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  18. Reactor antineutrino spectra and forbidden beta decays

    Science.gov (United States)

    Štefánik, Dušan; Dvornický, Rastislav; Šimkovic, Fedor

    2017-10-01

    The exact relativistic shape factors, associated with the nuclear matrix elements governing the first forbidden beta decays, are presented. It is expected that their consideration can allow a more accurate theoretical description of antineutrino fluxes from the power reactor. A qualitative analysis of the uncertainty of reactor antineutrino flux from 235U within the electron spectrum conversion method is performed.

  19. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  20. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  1. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    IAS Admin

    The aim of this largely pedagogical article is to employ pre-college physics to arrive at an un- derstanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuel pin, the moderator, and lastly the dimensions of the nuclear reactor. 1. Introduction. Design considerations have engaged human ...

  2. Advances in Tandem Mirror fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  3. Selective purge for hydrogenation reactor recycle loop

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  4. Utilisation of British University Research Reactors.

    Science.gov (United States)

    Duncton, P. J.; And Others

    British experience relating to the employment of university research reactors and subcritical assemblies in the education of nuclear scientists and technologists, in the training of reactor operators and for fundamental pure and applied research in this field is reviewed. The facilities available in a number of British universities and the uses…

  5. The First Reactor, 40th Anniversary (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, Corbin; Trapnell, Edward R; Fermi, Enrico; Fermi, Laura; Williams, Robert C

    1982-12-01

    This booklet, an updated version of the original booklet describing the first nuclear reactor, was written in honor of the 40th anniversary of the first reactor or "pile". It is based on firsthand accounts told to Corbin Allardice and Edward R. Trapnell, and includes recollections of Enrico and Laura Fermi.

  6. Helix reactor: great potential for flow chemistry

    NARCIS (Netherlands)

    Geerdink, P.; Runstraat, A. van den; Roelands, C.P.M.; Goetheer, E.L.V.

    2009-01-01

    The Helix reactor is highly suited for precise reaction control based on good hydrodynamics. The hydrodynamics are controlled by the Dean vortices, which create excellent heat transfer properties, approach plug flow and avoid turbulence. The flexibility of this reactor has been demonstrated using a

  7. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Lee, Jae Han

    2007-02-15

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification.

  8. Reactor core and plant design concepts of the Canadian supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Bailey, J.; Rhodes, D.; Guzonas, D.; Hamilton, H.; Haque, Z.; Pencer, J.; Sartipi, A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada is developing a 1200 MWe supercritical water-cooled reactor (SCWR), which has evolved from the well-established pressure-tube type CANDU{sup 1} reactor. This SCWR reactor concept, which is often referred to as the Canadian SCWR, uses supercritical water as a coolant, has a low-pressure heavy water moderator and a direct cycle for power production. The reactor concept incorporates advanced safety features, such as passive emergency core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce the core damage frequency beyond existing nuclear reactors. This paper presents a description of the Canadian SCWR core design concept, the integration of in-core and out-of-core components and the mechanical plant design concept. Supporting systems for reactor safety, reactor control and moderator cooling are also described. (author)

  9. Cooling system for a nuclear reactor

    Science.gov (United States)

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  10. Slurry Bubble Column Reactor Optimization (book chapter)

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, I.K.; Gidaspow, D. (Illinois Inst. of Technology, Chicago, IL); Jung, J. (ANL)

    2007-03-01

    Slurry bubble column reactors (SBCR) are the preferred contactors for the conversion of syngas to fules and chemicals partially due to their superior heat and mass transfer characteristics. The multiphase fluid dynamics in these systems greatly affect the reactor volumetric productivity. Here, we have developed a computational fluid dynamics (CFD) assisted design methodology for searching the optimum particle size for maximum production in a SBCR. Reactor optimization due to heat exchanger configuration was also investigated. We have rearranged the heat exchangers in a SBCR and constructed a CFD model for a baffled reactor. The novel arrangement of the exchangers prevents the unfavorable high catalysts concentration at the lower stage of the reactor. Thus an optimum catalyst concentration is maintained during the course of the production of liquid fuels.

  11. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  12. Cleaning natural water in the clarifier reactor

    Science.gov (United States)

    Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy

    2017-10-01

    The problems of cleaning low turbidity high-color surface waters for drinking water supply are considered. A new design of the clarifier reactor is proposed, which increases the efficiency of water purification and at the same time reduces its operating costs. A detailed description of clarifier reactor design and its operation is given. The study results of the clarifier reactor operation in real conditions for the purification of low turbidity high-color waters are shown. Due to the weighted layer of dense loading use in a process of water purification, the structure productivity can be increased by 2-3 times in comparison with conventional clarifiers with suspended sediment. Using reagents for water purification, the clarifier reactor, due to the processes of contact coagulation, allows reducing the consumption of reagents up to 50%. Investigations of the clarifier reactor operation in technological schemes for various waters purification, including sewage, showed their effectiveness and prospects.

  13. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth

    2018-01-30

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  14. TRIGA research reactors; Reacteurs de recherche Triga

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, D.M.; Razvi, J.; Whittemore, W.L. [Triga General Atomics, San Diego, CA (United States); Duban, B.; Harbonnier, G.; Du Limbert, P.; Durand, J.P. [AREVA/FRAMATOME ANP/CERCA, 92 - Paris-La-Defence (France)

    2004-02-01

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  15. Nuclear propulsion apparatus with alternate reactor segments

    Science.gov (United States)

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  16. Reactivity control assembly for nuclear reactor. [LMFBR

    Science.gov (United States)

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  17. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  18. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  19. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Zaetta, A. [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G. [CEA/Saclay, DEN, 91 - Gif sur Yvette (France)] [and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  20. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors.

  1. Replacement reactor to revolutionise magnets

    CERN Document Server

    Atkins, G

    2002-01-01

    Electric motors, hearing aids and magnetic resonance imaging are only some of the applications that will benefit from the first advances in magnets in a quarter of a century. Magnets achieve their characteristics when electrons align themselves to produce a unified magnetic field. Neutrons can probe these magnetic structures. The focus is not just on making more powerful magnets, but also identifying the characteristics that make magnets cheaper and easier for industry to manufacture. Staff from the ANSTO's Neutron Scattering Group have already performed a number of studies on the properties of magnets using using HIFAR, but the Replacement Research Reactor that will produce cold neutrons would allow scientists to investigate the atomic properties of materials with large molecules. A suite of equipment will enable studies at different temperatures, pressures and magnetic fields

  2. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

    1989-12-01

    The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

  3. FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  4. Dynamic analysis of process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.

  5. Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J., Jr.

    2009-06-01

    The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

  6. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  7. Massive computation methodology for reactor operation (MACRO)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael [Division of applied nuclear physics, Department of physics and astronomy, Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden); Koning, Arjan; Rochman, Dimitri [Nuclear Research and consultancy Group (NRG) Westerduinweg 3, Petten (Netherlands); Bejmer, Klaes-Hakan [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, Vaellingby (Sweden); Henriksson, Hans [Vattenfall Research and Development AB, Jaemtlandsgatan 99, Vaellingby (Sweden)

    2010-07-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  8. Prolongation of the BOR-60 reactor operation

    Directory of Open Access Journals (Sweden)

    Alexey l. Izhutov

    2015-04-01

    Full Text Available The fast neutron reactor BOR-60 is one of the key experimental facilities worldwide to perform large-scale tests of fuel, absorbing, and structural materials for advanced reactors. The BOR-60 reactor was put into operation in December 1969, and by the end of 2014 it had been operating on power for ∼265,000 hours. BOR-60 still demonstrates potential capabilities to extend the lifetime of sodium-cooled fast reactors. The BOR-60 lifetime should have expired at the end of 2014. Over the past few years, a great scope of work has been performed to justify the possibility of extending its lifetime. The work included inspection of the equipment conditions, calculations and experimental research on operating parameters and the conditions of nonremovable components, investigation of the structural material samples after their long-term operation under irradiation, etc. Based on the results of the work performed, the residual lifetime was evaluated and the reactor operator made a decision to extend the lifetime period of the BOR-60 reactor. After considering both a set of documents about the reactor conditions and the positive decision of independent experts, the Regulatory Authority of the Russian Federation extended the BOR-60 operating license up to 2020.

  9. Reactor Monitoring with Antineutrinos - A Progress Report

    Science.gov (United States)

    Bernstein, Adam

    2012-08-01

    The Reactor Safeguards regime is the name given to a set of protocols and technologies used to monitor the consumption and production of fissile materials in nuclear reactors. The Safeguards regime is administered by the International Atomic Energy Agency (IAEA), and is an essential component of the global Treaty on Nuclear Nonproliferation, recently renewed by its 189 remaining signators. (The 190th, North Korea, withdrew from the Treaty in 2003). Beginning in Russia in the 1980s, a number of researchers worldwide have experimentally demonstrated the potential of cubic meter scale antineutrino detectors for non-intrusive real-time monitoring of fissile inventories and power output of reactors. The detectors built so far have operated tens of meters from a reactor core, outside of the containment dome, largely unattended and with remote data acquisition for an entire 1.5 year reactor cycle, and have achieved levels of sensitivity to fissile content of potential interest for the IAEA safeguards regime. In this article, I will describe the unique advantages of antineutrino detectors for cooperative monitoring, consider the prospects and benefits of increasing the range of detectability for small reactors, and provide a partial survey of ongoing global research aimed at improving near-field and far field monitoring and discovery of nuclear reactors.

  10. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  11. 933-IJBCS-Article-Bruno Djossa

    African Journals Online (AJOL)

    DR GATSING

    3Ecole Nationale Supérieure des Sciences et Techniques Agronomiques de Kétou- ENSTA/UAC/Rép. du Bénin ... des résultats que 74 espèces végétales regroupées en plusieurs catégories ..... En cas d'une éventuelle sélection ces quatre.

  12. 933-IJBCS-Article-Bruno Djossa

    African Journals Online (AJOL)

    DR GATSING

    environ 8 mois et la portée est de 1 ou 2 petits. Habitats et distribution. Cette espèce est rencontrée dans les formations marécageuses à inondation saisonnière où existent de hautes herbes, des galeries forestières, des mangroves. En savane.

  13. 2010-IJBCS-Article-Bruno Djossa

    African Journals Online (AJOL)

    hp

    the changes to producer and consumer surplus induced by the decrease ... In this climate change context and manmade threats on pollinators .... Cocoa. Theobroma cacao fruit. 54,6. 51,87 (95). Coconut. Cocos nucifera nut. 998,55. 249,64 (25). Cola nut. Cola nitida nut. 204,75. 133,09 (65). Cotton/ lint. Gossypium spp. fibre.

  14. 1598-IJBCS-Article-Bruno Djossa

    African Journals Online (AJOL)

    hp

    Bats were threatened mainly by their use as bush meat (52-93% of interviewees) and there is some chance to ... eighty per cent of wild plant species require ... on natural resources. We hypothesized that the perception will differ from one region to another but also from one organism to another. These results will help natural.

  15. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  16. Reactor and method for production of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  17. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  18. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  19. A study of reactor vessel integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Kim, Jong Kyung; Shin, Chang Ho; Seo, Bo Kyun [Hanyang Univ., Seoul (Korea, Republic of)

    1999-02-15

    The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years lifetime was calculated by full-scope Monte Carlo simulation for reactor vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional representation of the one-sixteenth of the reactor in-vessel component. Each fuel assemblies were modeled explicitly, and each fuel pins were axially divided into 5 segments. The maximum flux of 4.3 x 10{sup 10} neutrons/cm{sup 2}. sec at the RPV was obtained by tallying neutrons crossing the beltline of inner surface of the RPV.

  20. Uranium mill monitoring for natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Apt, K.E.

    1977-12-01

    Isotopic monitoring of the product stream from operating uranium mills is proposed for discovering other possible natural fission reactors; aspects of their occurrence and discovery are considered. Uranium mill operating characteristics are formulated in terms of the total uranium capacity, the uranium throughput, and the dilution half-time of the mill. The requirements for detection of milled reactor-zone uranium are expressed in terms of the dilution half-time and the sampling frequency. Detection of different amounts of reactor ore with varying degrees of /sup 235/U depletion is considered.

  1. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    A fiberoptic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurized reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverized coal particles at the pressurized entrained flow reactor in Jyvaeskylae was developed and several series of measurements were made. In Orleans a fiberoptic pyrometric device was installed to a pressurised thermogravimetric reactor and the two-colour temperatures of fuel samples were measured. Some results of these measurements are presented. The project belongs to EU`s Joule 2 extension research programme. (author)

  2. Neutronic Reactor Design to Reduce Neutron Loss

    Science.gov (United States)

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  3. Advances in ICF power reactor design

    Science.gov (United States)

    Hogan, W. J.; Kulcinski, G. L.

    1985-04-01

    Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, it is expected to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies.

  4. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Science.gov (United States)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  5. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  6. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43... Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a... health and safety, the environment, or the safeguarding of nuclear reactor facilities; (c) Assesses and...

  7. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Science.gov (United States)

    2013-12-09

    ... COMMISSION Operator Licensing Examination Standards for Power Reactors AGENCY: Nuclear Regulatory Commission... Standards for Power Reactors.'' DATES: Submit comments by February 7, 2014. Comments received after this... of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory...

  8. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  9. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  10. Reactor modeling and physicochemical properties characterization for a polyethylene fluidized bed reactor

    OpenAIRE

    Fernandes, F.A.N.; LONA BATISTA,L. M. F.

    1999-01-01

    A new steady state model for the fluidized bed reactor and a physicochemical characterization model were developed for the simulation of polyethylene production using gas-phase technology. The association of these models was done in order to predict the characteristics of the polymer produced in the fluidized bed reactor (molecular weight, polydispersity, melt index, and other characteristics) throughout the reactor and also to predict the growth of the polymer particle.

  11. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Science.gov (United States)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  12. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  13. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  14. Microbial degradation of MTBE in reactors

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2007-01-01

    , toluene, ethylbenzene and xylenes, may reduce the removal rates of MTBE, or prevent its removal in reactors. With mathematical modelling, the long startup time required for some MTBE degrading reactors could be predicted. Long startup times of up to 200 days were due to the low maximum growth rate...... findings were: membrane bioreactors and fluidized bed reactors had the highest volumetric removal rates of all reactors studied, in the order of 1 000 mg/(l d); competition for oxygen, nutrients and occupancy between MTBE degraders and oxidisers of co-contaminants such as, ammonium and the group of benzene...... of the MTBE degraders, in the order of 0.1 d−1 or less, at 25 °C. However, despite this, high volumetric MTBE removal rates were found to be possible after the startup period when the biomass concentration reached a steady state....

  15. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  16. Thermal Shield and Reactor Structure Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Collier, A.R.

    2001-07-31

    The purpose of this report is to present reactor structure and thermal shield temperature data taken during P-3 and P-5 cycles and compare them with design calculations in order to predict temperatures at higher power levels.

  17. N Reactor Deactivation Program Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  18. Hysteresis phenomenon in nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pirayesh, Behnam; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Akbari, Monireh [Shahid Rajaee Teacher Training Univ., Tehran (Iran, Islamic Republic of). Dept. of Mathematics

    2017-05-15

    This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor's theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.

  19. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  20. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future lunar and Mars robotic and manned missions impose new and innovative technological requirements for their control and protection...

  1. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    Science.gov (United States)

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  2. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  3. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  4. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  5. Optimization of a sequence of reactors

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    1991-01-01

    Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach......Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach...

  6. Advanced Reactors Transition Program Resource Loaded Schedule

    Energy Technology Data Exchange (ETDEWEB)

    GANTT, D.A.

    2000-01-12

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

  7. Advanced Reactors Transition Program Resource Loaded Schedule

    Energy Technology Data Exchange (ETDEWEB)

    BOWEN, W.W.

    1999-11-08

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FFTF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This document reflects the 1 Oct 1999 baseline.

  8. US reactor spent-fuel storage capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.J.; Hoffman, C.C.; Caviness, C.K.

    1982-06-01

    The spent-fuel storage situation at reactors in the US is described. The focus of the report is on the reactors that are developing a spent-fuel storage problem and the alternatives the utilities are utilizing and planning to use to minimize the problem. The alternatives the utilities are using and/or considering are described and include: high-density storage racks, double-tiered storage racks, rod consolidation, dry storage systems, fuel transshipments, and at-reactor storage pools. All of these alternatives are not available to every reactor and utility that is faced with a spent-fuel storage problem. Generally, utilities are reracking or are planning to rerack those spent-fuel pools that can be reracked with higher-density racks or double-tiered racks. Where reracking is not feasible, then fuel transshipments are being performed or considered. Since none of the other alternatives have been fully approved and licensed, these alternatives are all being evaluated. More specifically, this report concentrates on the reactors that are projected to lose full-core reserve discharge capability by the end of 1990. Reactor discharge dates, spent-fuel storage capacity, and inventory were integrated to project the loss of full-core reserve. The primary results from the integration of this data revealed that 40 reactors were projected to lose full-core reserve prior to 1990. These 40 reactors represent 23 different utilities. Each utility is aware of their own spent-fuel storage problem, and each utility is progressing to minimize the problem or evaluating all the alternatives.

  9. Novel oscillatory flow reactors for biotechnological applications

    OpenAIRE

    Reis, N.

    2006-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis explores the biotechnological applications of two novel scale-down oscillatory flow reactors (OFRs). A micro-bioreactor (working mostly in batch) and a continuous meso-reactor systems were developed based on a 4.4 mm internal diameter tube with smooth periodic constrictions (SPC), both operating under oscillatory flow mixing (OFM). The first part is dedicated to the flow characterisation in the novel SPC geom...

  10. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process mea...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  11. Investigation of Design Parameters in Ultrasound Reactors

    OpenAIRE

    Jordens, Jeroen; Degrève, Jan; Braeken, Leen; Van Gerven, Tom

    2012-01-01

    The cavitational activity of a tubular sonoreactor was simulated and related to the chemical reaction rate in order to study the effect of different design parameters. The conversion was improved with a factor 10 by optimization of the reactor diameter. Further improvement of the conversion with 20% was achieved by shifting the transducers apart. When the reactor diameter is in the millimeter scale, stainless steel and borosilicate glass walls very well resemble sound-hard walls. The impact o...

  12. Environmental Information Document: L-reactor reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr. (comp.)

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  13. Current status of fast reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, H.H.

    1979-01-01

    The subject of calculation of reactivity coefficients for fast reactors is developed, starting with a discussion of the status of relevant nuclear data and proceeding to the subjects of group cross section generation and of methods of obtaining reactivity coefficients from group cross sections. Reactivity coefficients measured in critical experiments are compared with calculated values. Dependence of reactivity coefficients on reactor design is discussed. Finally, results of the recent international comparison of calculated reactivity coefficients are presented.

  14. Survey of linear magnetic fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1978-01-01

    The promise and problems of Linear Magnetic Fusion (LMF) for the generation of electrical power are surveyed. A number of axial confinement schemes are described and compared on an n tau basis. Likewise, the range of heating methods is described. The results of seven conceptual LMF reactor design studies are summarized with an emphasis on the interfaces between reactor operation, confinement scheme, and heating methods.

  15. Detecting Dark Photons with Reactor Neutrino Experiments

    Science.gov (United States)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ mass dark photons.

  16. Nuclear electric propulsion reactor control systems status

    Science.gov (United States)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  17. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-11-16

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... above, shall be submitted to the NRC to the attention of the Director, Office of Nuclear Reactor... properly marked and handled in accordance with 10 CFR 73.21. The Director, Office of Nuclear Reactor...

  18. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-12-20

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... Director, Office of Nuclear Reactor Regulation under 10 CFR 50.4. In addition, licensee submittals that... Director, Office of Nuclear Reactor Regulation, may, in writing, relax or rescind any of the above...

  19. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  20. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    Science.gov (United States)

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  1. Long-lived fission product transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ganev, I.K.; Lopatkin, A.V.; Naumov, V.V.; Reshetov, V.A.

    1993-12-31

    One of the main directions in the management of high-level radioactive wastes is the development of specialized reactors for transmutation with maximum support coefficients for the existing power reactor. The developments have shown that it is more expetitious to design the reactor for actinide transmutation and for fission products separately. For the above purposes, the FBR type fast neutron reactor and FMF type fast reactor with melted fuel were considered.

  2. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  3. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  4. The physics of nuclear reactors

    CERN Document Server

    Marguet, Serge

    2017-01-01

    This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: •   The slowing-down of neutrons in matter •   The charged particles and electromagnetic rays •   The calculation scheme, especially the simplification hypothesis •   The concept of criticality based on chain reactions •   The theory of homogeneous and heterogeneous reactors •   The problem of self-shielding �...

  5. Reactor Simulator Integration and Testing

    Science.gov (United States)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  6. Reactor pressure vessel. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, B.J.; Hackett, E.M.; Lee, A.D. [and others

    1996-10-01

    This report describes the issues raised as a result of the staffs review of Generic Letter (GL) 92-01, Revision 1, responses and plant-specific reactor pressure vessel (RPV) assessments and the actions taken or work in progress to address these issues. In addition, the report describes actions taken by the staff and the nuclear industry to develop a thermal annealing process for use at U.S. commercial nuclear power plants. This process is intended to be used as a means of mitigating the effects of neutron radiation on the fracture toughness of RPV materials. The Nuclear Regulatory Commission (NRC) issued GL 92-01, Revision 1, Supplement 1, to obtain information needed to assess compliance with regulatory requirements and licensee commitments regarding RPV integrity. GL 92-01, Revision 1, Supplement 1, was issued as a result of generic issues that were raised in the NRC staff`s reviews of licensee responses to GL 92-01, Revision 1, and plant-specific RPV evaluations. In particular, an integrated review of all data submitted in response to GL 92-01, Revision 1, indicated that licensees may not have considered all relevant data in their RPV assessments. This report is representative of submittals to and evaluations by the staff as of September 30, 1996. An update of this report will be issued at a later date.

  7. Survey of mirror machine reactors

    Energy Technology Data Exchange (ETDEWEB)

    Condit, W.C.

    1978-08-11

    The Magnetic Mirror Fusion Program is one of the two main-line fusion efforts in the United States. Starting from the simple axisymmetric mirror concept in the 1950's, the program has successfully overcome gross flute-type instabilities (using minimum-B magnetic fields), and the most serious of the micro-instabilities which plagued it (the drift-cyclotron loss-cone mode). Dense plasmas approaching the temperature range of interest for fusion have been created (n/sub p/ = 10/sup 14//cc at 10 to 12 keV). At the same time, rather extensive conceptual design studies of possible mirror configurations have led to three principle designs of interest: the standard mirror fission-fusion hybrid, tandem mirror, and the field-reversed mirror. The lectures will discuss these three concepts in turn. There will be no discussion of diagnostics for the mirror machine in these lectures, but typical plasma parameters will be given for each type of machine, and the diagnostic requirements will be apparent. In a working fusion reactor, diagnostics will be required for operational control, and remarks will be made on this subject.

  8. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  9. Uncertainty quantification approaches for advanced reactor analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  10. Results of the Nucifer reactor neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred [MPIK Heidelberg (Germany)

    2016-07-01

    Nuclear reactors are a strong and pure source of electron antineutrinos. With neutrino experiments close to compact reactor cores new insights into neutrino properties and reactor physics can be obtained. The Nucifer experiment is one of the pioneers in this class of very short baseline projects. Its detector to reactor distance is only about 7 m. The data obtained in the last years allowed to estimate the plutonium concentration in the reactor core by the neutrino flux measurement. This is of interest for safeguard applications and non proliferation efforts. The antineutrinos in Nucifer are detected via the inverse beta decay on free protons. Those Hydrogen nuclei are provided by 850 liters of organic liquid scintillator. For higher detection efficiency and background reduction the liquid is loaded with Gadolinium. Despite all shielding efforts and veto systems the background induced by the reactor activity and cosmogenic particles is still the main challenge in the experiment. The principle of the Nucifer detector is similar to the needs of upcoming experiments searching for sterile neutrinos. Therefore, the Nucifer results are also valuable input for the understanding and optimization of those next generation projects. The observation of sterile neutrinos would imply new physics beyond the standard model.

  11. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  12. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  13. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  14. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  15. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  16. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  17. Three-phase packed bed reactor with an evaporating solvent—II. Modelling of the reactor

    NARCIS (Netherlands)

    van Gelder, K.B.; Borman, P.C.; Weenink, R.E.; Westerterp, K.R.

    1990-01-01

    In this paper two models are presented for a three-phase catalytic packed bed reactor in which in evaporating solvent is used to absorb and remove most of the reaction heat. A plug flow model and a model comprising mass and heat dispersion in the reactor are discussed. The results of both models are

  18. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  19. Maintenance of fission and fusion reactors. 10. workshop on fusion reactor engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report contains copies of OHP presented at the title meeting. The presented topics are as follows, maintenance of nuclear power plants and ITER, exchange of shroud in BWR type reactors, deterioration of fission and fusion reactor materials, standards of pressure vessels, malfunction diagnosis method with neural network. (J.P.N.)

  20. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  1. Design guide for category II reactors light and heavy water cooled reactors. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Lobner, P R; Powell, R W; Straker, E A

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems.

  2. Design guide for Category III reactors: pool type reactors. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Lobner, P R; Powell, R W; Straker, E A

    1978-11-01

    The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems.

  3. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kyrki-Rajamaeki, R. [VTT Energy, Espoo (Finland)

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.).

  4. Reactor FaceMap Tool: A modern graphics tool for displaying reactor data

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.C.

    1991-12-31

    A prominent graphical user interface in reactor physics applications at the Savannah River Site is the reactor facemap display. This is a two dimensional view of a cross section of a reactor. In the past each application which needed a facemap implemented its own version. Thus, none of the code was reused, the facemap implementation was hardware dependent and the user interface was different for each facemap. The Reactor FaceMap Tool was built to solve these problems. Through the use of modern computing technologies such as X Windows, object-oriented programming and client/server technology the Reactor FaceMap Tool has the flexibility to work in many diverse applications and the portability to run on numerous types of hardware.

  5. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  6. Control Rod Malfunction at the NRAD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  7. RIA Analysis of Unprotected TRIGA Reactor

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2017-07-01

    Full Text Available An RIA (reactivity initiated accident analysis has been carried out for the TRIGA Mark II research reactor considering both step and ramp reactivity ranges within 0.5 % dk/k (< $1 to 2.0 % dk/k (>$2. The insertion time was set at 10 s. Based on the fact that a reactor becomes unprotected if scram does not work at the event of danger, to define unprotected conditions, the time to actuate scram (trip was taken as close to total simulation time. In this long duration of scram inactivity, it is obtained from the present analysis that the reactor remained safe to up to 1.8 % dk/k ($2.57 for step reactivity and 1.99 % dk/k ($2.84 for ramp reactivity. In addition to negative temperature coefficient of reativity, probably the longer time of reactivity insertion keeps TRIGA safe even at larger magnitudes of reactivity during unprotected reactor transients. Coupled point kinetics, neutronics, and thermal hydraulics code EUREKA-2/R has been utilized for this work. It appears that EUREKA-2/RR predicts the sequence of unprotected transient scenario of TRIGA core with good approximation and the results will definitely be helpful for the reactor operators.

  8. Status of Kijang Resarch Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jee. Y; Kwon, T. H.; Kim, Jun. Y.; Oh, G. B. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The High-flux Advanced Neutron Application Reactor (HANARO) is a multi-purpose reactor in Korea Atomic Energy Research Institute (KAERI) and is being utilized for neutron scattering experiments, material and fuel tests for nuclear power plants, radio-isotope (RI) productions, silicon doping, neutron activation analysis, and neutron radiography. In medical applications, the majority of RIs produced using HANARO are I-131 and Ir-192. Other RIs such as Mo-99 are coming from imports. The self-sufficiency of RI demand becomes an important issue for the public health service in Korea. In this regard the Kijang Research Reactor (KJRR) project was officially launched on the first of April 2012 in need to provide the self-sufficiency of RI demand including Mo-99, increase the neutron transportation doping (NTD) capacity and develop technologies related to the research reactor. When CP is granted, the first excavation is planned to start at the end of this year. In next year, pouring the first concrete and energizing 154kV will follow. In 2018, it is planned to complete utility building construction and reactor building construction.

  9. Risk Management for Sodium Fast Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  10. Lateral restraint assembly for reactor core

    Science.gov (United States)

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  11. Preliminary hazards review overboring Hanford reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nilson, R.; Carlson, P.A.

    1962-07-25

    The General Electric Company, as prime contractor to the AEC at Hanford, is proposing to modify the lattice characteristics of the 8 3/8-inch lattice reactors for the purposes of improving the conversion ratio of these reactors. The proposed overbore modification of the reactors would remove the existing aluminum process tubes, enlarge the diameters of the graphite channels by about one-half inch, insert smooth-bore Zircaloy-2 process tubes and refuel the reactor with larger size, self-supported fuel elements. The overbore fuel will remain the internally-and-externally-cooled cylindrical type, but the weight per foot will be about twice that of the present fuel element. The removal of the inlet and outlet piping connections which would be required in the overboring process will permit the replacement of the existing fittings with ones of improved design. Furthermore, new orifices and venturis which are compatible with the hydraulic characteristics of the overbore tube and fuel geometry and the pumping system will be installed. No basic changes are proposed in the pumping system though the reactor flaw rate may be increased 5--10 percent by changes in hydraulic characteristics depending on the water plant flow capacity.

  12. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  13. Experiment for search for sterile neutrino at SM-3 reactor

    Science.gov (United States)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2016-11-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  14. Weld monitor and failure detector for nuclear reactor system

    Science.gov (United States)

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  15. Proliferation Resistant Nuclear Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount

  16. Small Modular Reactors: Institutional Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  17. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  18. Control system studies for thermionic reactors

    Science.gov (United States)

    Hermsen, R. J.; Gronroos, H. G.

    1978-01-01

    In core thermionic reactor concepts are of interest for space missions that require electrical power in the range of a few tens of kilowatts up to several megawatts. The physical principle involved--thermionic direct conversion of heat to electricity at net efficiencies up to 15 percent--offers potential advantages when compared to other nuclear powerplant concepts. However, the integration of the thermionic diode electrode structure with high-temperature nuclear fuel materials presents new design problems and new reactor physical constraints. Among the topics that must be investigated are those associated with the control system. The results of analytical and simulation studies of thermionic reactor control performed at the Jet Propulsion Laboratory are discussed.

  19. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  20. Nuclear reactor shutdown control rod assembly

    Science.gov (United States)

    Bilibin, Konstantin

    1988-01-01

    A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

  1. Generic small modular reactor plant design.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  2. Geoneutrinos and reactor antineutrinos at SNO+

    CERN Document Server

    Baldoncini, M; Wipperfurth, S A; Fiorentini, G; Mantovani, F; McDonough, W F; Ricci, B

    2016-01-01

    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores ($\\sim$55\\% of the total reactor signal), which generally burn natural uranium. Approximately 18\\% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60\\% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.

  3. Iodine chemistry in a reactor regulation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. [Nuclear Regulatory Commission, Washington, DC (United States). Advisory Committee on Reactor Safeguards

    1996-12-01

    Radioactive iodine has always been an important consideration in the regulation of nuclear power reactors to assure the health and safety of the public. Regulators adopted conservatively bounding predictions of iodine behavior in the earliest days of the development of nuclear power because there was so little known about either accidents or the chemistry of iodine. Today there is a flood of new information and understanding of the chemistry of iodine under reactor accident conditions. This paper offers some thoughts on how the community of scientists engaged in the study of iodine chemistry can present the results of their work so that it is more immediately adopted by the regulator. It is suggested that the scientific community consider the concept of consensus standards so effectively used within the engineering community to define the status of the study of radioactive iodine chemistry for reactor safety. (author) 9 refs.

  4. Wire core reactor for nuclear thermal propulsion

    Science.gov (United States)

    Harty, Richard B.; Brengle, Robert G.

    1993-01-01

    Studies have been performed of a compact high-performance nuclear rocket reactor that incorporates a tungsten alloy wire fuel element. This reactor, termed the wire core reactor, can deliver a specific impulse of 1,000 s using an expander cycle and a nozzle expansion ratio of 500 to 1. The core is constructed of layers of 0.8-mm-dia fueled tungsten wires wound over alternate layers of spacer wires, which forms a rugged annular lattice. Hydrogen flow in the core is annular, flowing from inside to outside. In addition to the concepts compact size and good heat transfer, the core has excellent power-flow matching features and can resist vibration and thermal stresses during star-up and shutdown.

  5. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  6. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  7. Program review: Ground disposal of reactor effluent

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1967-10-18

    With the exception of N Reactor the plutonium production reactors operated by Douglas United Nuclear, Inc., use treated Columbia River water as coolant on a once through basis. Thus, radionuclides formed by neutron activation of Columbia River salts not removed in the water treatment process and water treatment additives are discharged to the river. Although the quantity and possible effects of the radionuclides released are well within nationally accepted limits, emphasis has been placed for some time on reducing the releases to as low a level as possible. More recently increasing concern has been evidenced with regard to the heat which is also discharged to the river. This report discusses concept which not only would drastically reduce the radionuclide content of the river but which would also substantially decrease the heat discharge. This concept is the disposal of the reactor effluent to the ground either to a pond or to a network of trenches.

  8. Neutron dosimetry at the reactor facility VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Deboodt, P.; Vermeersch, F.; Vanhavere, F.; Minsart, G. [SCK-CEN, Belgian Nuclear Research Centre, Mol (Belgium)

    1997-09-01

    The reactor VENUS is a zero-power research reactor mainly devoted to studies on light water fuels. The need for undertaking a neutron spectrometric and dosimetric study became apparent when locally high neutron dose rates were measured. The spectrometric study is based on two approaches. The first is an experimental one in which the neutron spectrum was measured at three positions around the facility. The second is a theoretical one in which a numerical modelling of the neutron transport at the reactor site was performed in order to determine neutron spectra and fluence rates at different positions around the site. The measured and calculated spectra are interpreted in terms of the responses of different individual and environmental dosemeters. These responses are confronted with the in situ measurements. The impact of the ICRP 60 recommendations on the determined dose rates is also studied. (author).

  9. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  10. The Traveling Wave Reactor: Design and Development

    Directory of Open Access Journals (Sweden)

    John Gilleland

    2016-03-01

    Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.

  11. Propriedades físicas de um Latossolo Bruno afetadas pelos sistemas plantio direto e preparo convencional Physical properties of a south Brazilian Oxisol as affected by no-tillage and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    F. S. Costa

    2003-06-01

    Full Text Available A qualidade física de solos agrícolas pode ser afetada pelo sistema de manejo, sendo a magnitude das alterações dependente do tempo de uso do solo e das condições edafoclimáticas. Neste estudo, avaliou-se o efeito de longo prazo (21 anos dos sistemas de preparo convencional (PC e plantio direto (PD sobre propriedades físicas da camada de 0-0,2 m de um Latossolo Bruno alumínico câmbico (629 g kg-1 de argila, em Guarapuava (PR. Em relação à área sob mata nativa, contígua ao experimento e tomada como referência, o cultivo do solo em PC resultou não só no aumento da densidade global (Ds, na resistência do solo à penetração (RP e na temperatura do solo, mas também na diminuição do diâmetro médio geométrico dos agregados (DMG. A adoção do sistema PD promoveu uma melhoria nas propriedades físicas do solo em comparação ao PC, evidenciada pela diminuição de 9 % (de 1,08 para 0,99 Mg m-3 na Ds em subsuperfície (0,1-0,2 m, de 13 % (de 27,9 para 24,7 ºC nas temperatura máximas (15 h, na camada de 0-0,05 m; e pelo aumento de 126 % (de 1,6 para 3,7 mm no DMG dos agregados na superfície do solo (0-0,05 m, e de 26 % (de 0,38 m³ m-3 para 0,48 m³ m-3 no conteúdo de água volumétrica de 0-0,1 m. Por outro lado, o PC e o PD não se diferenciaram quanto aos seus efeitos na porosidade do solo (total, macro e micro, na condutividade hidráulica saturada, na resistência do solo à penetração e no grau de floculação de argila. O rendimento das culturas de soja (18 safras e milho (4 safras foi, respectivamente, 42 e 22 % superior em PD do que em PC, o que, possivelmente, reflete a melhoria na qualidade física do solo.Soil management affects the soil physical quality, but the magnitude of the changes is dependent of use time and regional edaphoclimatic conditions. The objective of this study was to evaluate the long-term (21 yr effect of conventional tillage (CT and no-tillage (NT systems on some physical properties in the

  12. Operating manual for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  13. Modeling of Reactor Kinetics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  14. Rodded shutdown system for a nuclear reactor

    Science.gov (United States)

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  15. Reactor design for nuclear electric propulsion

    Science.gov (United States)

    Koenig, D. R.; Ranken, W. A.

    1979-01-01

    The paper analyzes the consequences of heat pipe failures, that resulted in modifications to the basic design of a heat-pipe cooled, fast spectrum nuclear reactor and led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO2 and molybdenum sheets that span the diameter of the core. Design characteristics are presented and compared for two reactors. A conceptual design for a heat exchanger between the core and the thermionic converter assembly is described. This heat exchanger would provide design and fabrication decoupling of these two assemblies.

  16. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  17. Natural circulation in fusion reactor blankets

    Science.gov (United States)

    Gierszewski, P. J.; Mikic, B.; Todreas, N. E.

    1980-07-01

    The relative importance of natural circulation and heat conduction as heat transfer mechanisms in lithium, sodium and flibe is investigated for a range of magnetic field strengths of interest in fusion reactor blankets. The calculations are based on an order-of-magnitude simplification of the fluid equations, and a modified version of the fission reactor thermal-hydraulic code THERMIT. The results show that conduction is dominant for lithium (and sodium) for typical magnetic field strengths, but that natural circulation is most important in flibe. In fact, preliminary calculations suggest the possibility of a simple flibe blanket module with cooling only along the module boundaries.

  18. Linear inverse problem of the reactor dynamics

    Science.gov (United States)

    Volkov, N. P.

    2017-01-01

    The aim of this work is the study transient processes in nuclear reactors. The mathematical model of the reactor dynamics excluding reverse thermal coupling is investigated. This model is described by a system of integral-differential equations, consisting of a non-stationary anisotropic multispeed kinetic transport equation and a delayed neutron balance equation. An inverse problem was formulated to determine the stationary part of the function source along with the solution of the direct problem. The author obtained sufficient conditions for the existence and uniqueness of a generalized solution of this inverse problem.

  19. Perspectives on reactor safety. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  20. Application of invariant embedding to reactor physics

    CERN Document Server

    Shimizu, Akinao; Parsegian, V L

    1972-01-01

    Application of Invariant Embedding to Reactor Physics describes the application of the method of invariant embedding to radiation shielding and to criticality calculations of atomic reactors. The authors intend to show how this method has been applied to realistic problems, together with the results of applications which will be useful to shielding design. The book is organized into two parts. Part A deals with the reflection and transmission of gamma rays by slabs. The chapters in this section cover topics such as the reflection and transmission problem of gamma rays; formulation of the probl